bfd/
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
CommitLineData
b49e97c9 1/* MIPS-specific support for ELF
64543e1a 2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
e407c74b 3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
58238693 4 Free Software Foundation, Inc.
b49e97c9
TS
5
6 Most of the information added by Ian Lance Taylor, Cygnus Support,
7 <ian@cygnus.com>.
8 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
9 <mark@codesourcery.com>
10 Traditional MIPS targets support added by Koundinya.K, Dansk Data
11 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
12
ae9a127f 13 This file is part of BFD, the Binary File Descriptor library.
b49e97c9 14
ae9a127f
NC
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
cd123cb7 17 the Free Software Foundation; either version 3 of the License, or
ae9a127f 18 (at your option) any later version.
b49e97c9 19
ae9a127f
NC
20 This program is distributed in the hope that it will be useful,
21 but WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 GNU General Public License for more details.
b49e97c9 24
ae9a127f
NC
25 You should have received a copy of the GNU General Public License
26 along with this program; if not, write to the Free Software
cd123cb7
NC
27 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
28 MA 02110-1301, USA. */
29
b49e97c9
TS
30
31/* This file handles functionality common to the different MIPS ABI's. */
32
b49e97c9 33#include "sysdep.h"
3db64b00 34#include "bfd.h"
b49e97c9 35#include "libbfd.h"
64543e1a 36#include "libiberty.h"
b49e97c9
TS
37#include "elf-bfd.h"
38#include "elfxx-mips.h"
39#include "elf/mips.h"
0a44bf69 40#include "elf-vxworks.h"
b49e97c9
TS
41
42/* Get the ECOFF swapping routines. */
43#include "coff/sym.h"
44#include "coff/symconst.h"
45#include "coff/ecoff.h"
46#include "coff/mips.h"
47
b15e6682
AO
48#include "hashtab.h"
49
ead49a57
RS
50/* This structure is used to hold information about one GOT entry.
51 There are three types of entry:
52
53 (1) absolute addresses
54 (abfd == NULL)
55 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
56 (abfd != NULL, symndx >= 0)
020d7251 57 (3) SYMBOL addresses, where SYMBOL is not local to an input bfd
ead49a57
RS
58 (abfd != NULL, symndx == -1)
59
60 Type (3) entries are treated differently for different types of GOT.
61 In the "master" GOT -- i.e. the one that describes every GOT
62 reference needed in the link -- the mips_got_entry is keyed on both
63 the symbol and the input bfd that references it. If it turns out
64 that we need multiple GOTs, we can then use this information to
65 create separate GOTs for each input bfd.
66
67 However, we want each of these separate GOTs to have at most one
68 entry for a given symbol, so their type (3) entries are keyed only
69 on the symbol. The input bfd given by the "abfd" field is somewhat
70 arbitrary in this case.
71
72 This means that when there are multiple GOTs, each GOT has a unique
73 mips_got_entry for every symbol within it. We can therefore use the
74 mips_got_entry fields (tls_type and gotidx) to track the symbol's
75 GOT index.
76
77 However, if it turns out that we need only a single GOT, we continue
78 to use the master GOT to describe it. There may therefore be several
79 mips_got_entries for the same symbol, each with a different input bfd.
80 We want to make sure that each symbol gets a unique GOT entry, so when
81 there's a single GOT, we use the symbol's hash entry, not the
82 mips_got_entry fields, to track a symbol's GOT index. */
b15e6682
AO
83struct mips_got_entry
84{
85 /* The input bfd in which the symbol is defined. */
86 bfd *abfd;
f4416af6
AO
87 /* The index of the symbol, as stored in the relocation r_info, if
88 we have a local symbol; -1 otherwise. */
89 long symndx;
90 union
91 {
92 /* If abfd == NULL, an address that must be stored in the got. */
93 bfd_vma address;
94 /* If abfd != NULL && symndx != -1, the addend of the relocation
95 that should be added to the symbol value. */
96 bfd_vma addend;
97 /* If abfd != NULL && symndx == -1, the hash table entry
020d7251
RS
98 corresponding to symbol in the GOT. The symbol's entry
99 is in the local area if h->global_got_area is GGA_NONE,
100 otherwise it is in the global area. */
f4416af6
AO
101 struct mips_elf_link_hash_entry *h;
102 } d;
0f20cc35 103
e641e783
RS
104 /* The TLS type of this GOT entry: GOT_NORMAL, GOT_TLS_IE, GOT_TLS_GD
105 or GOT_TLS_LDM. An LDM GOT entry will be a local symbol entry with
106 r_symndx == 0. */
0f20cc35
DJ
107 unsigned char tls_type;
108
b15e6682 109 /* The offset from the beginning of the .got section to the entry
f4416af6
AO
110 corresponding to this symbol+addend. If it's a global symbol
111 whose offset is yet to be decided, it's going to be -1. */
112 long gotidx;
b15e6682
AO
113};
114
c224138d
RS
115/* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
116 The structures form a non-overlapping list that is sorted by increasing
117 MIN_ADDEND. */
118struct mips_got_page_range
119{
120 struct mips_got_page_range *next;
121 bfd_signed_vma min_addend;
122 bfd_signed_vma max_addend;
123};
124
125/* This structure describes the range of addends that are applied to page
126 relocations against a given symbol. */
127struct mips_got_page_entry
128{
129 /* The input bfd in which the symbol is defined. */
130 bfd *abfd;
131 /* The index of the symbol, as stored in the relocation r_info. */
132 long symndx;
133 /* The ranges for this page entry. */
134 struct mips_got_page_range *ranges;
135 /* The maximum number of page entries needed for RANGES. */
136 bfd_vma num_pages;
137};
138
f0abc2a1 139/* This structure is used to hold .got information when linking. */
b49e97c9
TS
140
141struct mips_got_info
142{
b49e97c9
TS
143 /* The number of global .got entries. */
144 unsigned int global_gotno;
23cc69b6
RS
145 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
146 unsigned int reloc_only_gotno;
0f20cc35
DJ
147 /* The number of .got slots used for TLS. */
148 unsigned int tls_gotno;
149 /* The first unused TLS .got entry. Used only during
150 mips_elf_initialize_tls_index. */
151 unsigned int tls_assigned_gotno;
c224138d 152 /* The number of local .got entries, eventually including page entries. */
b49e97c9 153 unsigned int local_gotno;
c224138d
RS
154 /* The maximum number of page entries needed. */
155 unsigned int page_gotno;
b49e97c9
TS
156 /* The number of local .got entries we have used. */
157 unsigned int assigned_gotno;
b15e6682
AO
158 /* A hash table holding members of the got. */
159 struct htab *got_entries;
c224138d
RS
160 /* A hash table of mips_got_page_entry structures. */
161 struct htab *got_page_entries;
f4416af6
AO
162 /* A hash table mapping input bfds to other mips_got_info. NULL
163 unless multi-got was necessary. */
164 struct htab *bfd2got;
165 /* In multi-got links, a pointer to the next got (err, rather, most
166 of the time, it points to the previous got). */
167 struct mips_got_info *next;
0f20cc35
DJ
168 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
169 for none, or MINUS_TWO for not yet assigned. This is needed
170 because a single-GOT link may have multiple hash table entries
171 for the LDM. It does not get initialized in multi-GOT mode. */
172 bfd_vma tls_ldm_offset;
f4416af6
AO
173};
174
175/* Map an input bfd to a got in a multi-got link. */
176
91d6fa6a
NC
177struct mips_elf_bfd2got_hash
178{
f4416af6
AO
179 bfd *bfd;
180 struct mips_got_info *g;
181};
182
183/* Structure passed when traversing the bfd2got hash table, used to
184 create and merge bfd's gots. */
185
186struct mips_elf_got_per_bfd_arg
187{
188 /* A hashtable that maps bfds to gots. */
189 htab_t bfd2got;
190 /* The output bfd. */
191 bfd *obfd;
192 /* The link information. */
193 struct bfd_link_info *info;
194 /* A pointer to the primary got, i.e., the one that's going to get
195 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
196 DT_MIPS_GOTSYM. */
197 struct mips_got_info *primary;
198 /* A non-primary got we're trying to merge with other input bfd's
199 gots. */
200 struct mips_got_info *current;
201 /* The maximum number of got entries that can be addressed with a
202 16-bit offset. */
203 unsigned int max_count;
c224138d
RS
204 /* The maximum number of page entries needed by each got. */
205 unsigned int max_pages;
0f20cc35
DJ
206 /* The total number of global entries which will live in the
207 primary got and be automatically relocated. This includes
208 those not referenced by the primary GOT but included in
209 the "master" GOT. */
210 unsigned int global_count;
f4416af6
AO
211};
212
213/* Another structure used to pass arguments for got entries traversal. */
214
215struct mips_elf_set_global_got_offset_arg
216{
217 struct mips_got_info *g;
218 int value;
219 unsigned int needed_relocs;
220 struct bfd_link_info *info;
b49e97c9
TS
221};
222
0f20cc35
DJ
223/* A structure used to count TLS relocations or GOT entries, for GOT
224 entry or ELF symbol table traversal. */
225
226struct mips_elf_count_tls_arg
227{
228 struct bfd_link_info *info;
229 unsigned int needed;
230};
231
f0abc2a1
AM
232struct _mips_elf_section_data
233{
234 struct bfd_elf_section_data elf;
235 union
236 {
f0abc2a1
AM
237 bfd_byte *tdata;
238 } u;
239};
240
241#define mips_elf_section_data(sec) \
68bfbfcc 242 ((struct _mips_elf_section_data *) elf_section_data (sec))
f0abc2a1 243
d5eaccd7
RS
244#define is_mips_elf(bfd) \
245 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
246 && elf_tdata (bfd) != NULL \
4dfe6ac6 247 && elf_object_id (bfd) == MIPS_ELF_DATA)
d5eaccd7 248
634835ae
RS
249/* The ABI says that every symbol used by dynamic relocations must have
250 a global GOT entry. Among other things, this provides the dynamic
251 linker with a free, directly-indexed cache. The GOT can therefore
252 contain symbols that are not referenced by GOT relocations themselves
253 (in other words, it may have symbols that are not referenced by things
254 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
255
256 GOT relocations are less likely to overflow if we put the associated
257 GOT entries towards the beginning. We therefore divide the global
258 GOT entries into two areas: "normal" and "reloc-only". Entries in
259 the first area can be used for both dynamic relocations and GP-relative
260 accesses, while those in the "reloc-only" area are for dynamic
261 relocations only.
262
263 These GGA_* ("Global GOT Area") values are organised so that lower
264 values are more general than higher values. Also, non-GGA_NONE
265 values are ordered by the position of the area in the GOT. */
266#define GGA_NORMAL 0
267#define GGA_RELOC_ONLY 1
268#define GGA_NONE 2
269
861fb55a
DJ
270/* Information about a non-PIC interface to a PIC function. There are
271 two ways of creating these interfaces. The first is to add:
272
273 lui $25,%hi(func)
274 addiu $25,$25,%lo(func)
275
276 immediately before a PIC function "func". The second is to add:
277
278 lui $25,%hi(func)
279 j func
280 addiu $25,$25,%lo(func)
281
282 to a separate trampoline section.
283
284 Stubs of the first kind go in a new section immediately before the
285 target function. Stubs of the second kind go in a single section
286 pointed to by the hash table's "strampoline" field. */
287struct mips_elf_la25_stub {
288 /* The generated section that contains this stub. */
289 asection *stub_section;
290
291 /* The offset of the stub from the start of STUB_SECTION. */
292 bfd_vma offset;
293
294 /* One symbol for the original function. Its location is available
295 in H->root.root.u.def. */
296 struct mips_elf_link_hash_entry *h;
297};
298
299/* Macros for populating a mips_elf_la25_stub. */
300
301#define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
302#define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
303#define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
d21911ea
MR
304#define LA25_LUI_MICROMIPS(VAL) \
305 (0x41b90000 | (VAL)) /* lui t9,VAL */
306#define LA25_J_MICROMIPS(VAL) \
307 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
308#define LA25_ADDIU_MICROMIPS(VAL) \
309 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
861fb55a 310
b49e97c9
TS
311/* This structure is passed to mips_elf_sort_hash_table_f when sorting
312 the dynamic symbols. */
313
314struct mips_elf_hash_sort_data
315{
316 /* The symbol in the global GOT with the lowest dynamic symbol table
317 index. */
318 struct elf_link_hash_entry *low;
0f20cc35
DJ
319 /* The least dynamic symbol table index corresponding to a non-TLS
320 symbol with a GOT entry. */
b49e97c9 321 long min_got_dynindx;
f4416af6
AO
322 /* The greatest dynamic symbol table index corresponding to a symbol
323 with a GOT entry that is not referenced (e.g., a dynamic symbol
9e4aeb93 324 with dynamic relocations pointing to it from non-primary GOTs). */
f4416af6 325 long max_unref_got_dynindx;
b49e97c9
TS
326 /* The greatest dynamic symbol table index not corresponding to a
327 symbol without a GOT entry. */
328 long max_non_got_dynindx;
329};
330
331/* The MIPS ELF linker needs additional information for each symbol in
332 the global hash table. */
333
334struct mips_elf_link_hash_entry
335{
336 struct elf_link_hash_entry root;
337
338 /* External symbol information. */
339 EXTR esym;
340
861fb55a
DJ
341 /* The la25 stub we have created for ths symbol, if any. */
342 struct mips_elf_la25_stub *la25_stub;
343
b49e97c9
TS
344 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
345 this symbol. */
346 unsigned int possibly_dynamic_relocs;
347
b49e97c9
TS
348 /* If there is a stub that 32 bit functions should use to call this
349 16 bit function, this points to the section containing the stub. */
350 asection *fn_stub;
351
b49e97c9
TS
352 /* If there is a stub that 16 bit functions should use to call this
353 32 bit function, this points to the section containing the stub. */
354 asection *call_stub;
355
356 /* This is like the call_stub field, but it is used if the function
357 being called returns a floating point value. */
358 asection *call_fp_stub;
7c5fcef7 359
0f20cc35
DJ
360#define GOT_NORMAL 0
361#define GOT_TLS_GD 1
362#define GOT_TLS_LDM 2
363#define GOT_TLS_IE 4
e641e783 364#define GOT_TLS_TYPE 7
0f20cc35
DJ
365#define GOT_TLS_OFFSET_DONE 0x40
366#define GOT_TLS_DONE 0x80
e641e783
RS
367 unsigned char tls_ie_type;
368 unsigned char tls_gd_type;
71782a75 369
e641e783 370 /* These fields are only used in single-GOT mode; in multi-GOT mode there
0f20cc35
DJ
371 is one mips_got_entry per GOT entry, so the offset is stored
372 there. In single-GOT mode there may be many mips_got_entry
e641e783
RS
373 structures all referring to the same GOT slot. */
374 bfd_vma tls_ie_got_offset;
375 bfd_vma tls_gd_got_offset;
71782a75 376
634835ae
RS
377 /* The highest GGA_* value that satisfies all references to this symbol. */
378 unsigned int global_got_area : 2;
379
6ccf4795
RS
380 /* True if all GOT relocations against this symbol are for calls. This is
381 a looser condition than no_fn_stub below, because there may be other
382 non-call non-GOT relocations against the symbol. */
383 unsigned int got_only_for_calls : 1;
384
71782a75
RS
385 /* True if one of the relocations described by possibly_dynamic_relocs
386 is against a readonly section. */
387 unsigned int readonly_reloc : 1;
388
861fb55a
DJ
389 /* True if there is a relocation against this symbol that must be
390 resolved by the static linker (in other words, if the relocation
391 cannot possibly be made dynamic). */
392 unsigned int has_static_relocs : 1;
393
71782a75
RS
394 /* True if we must not create a .MIPS.stubs entry for this symbol.
395 This is set, for example, if there are relocations related to
396 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
397 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
398 unsigned int no_fn_stub : 1;
399
400 /* Whether we need the fn_stub; this is true if this symbol appears
401 in any relocs other than a 16 bit call. */
402 unsigned int need_fn_stub : 1;
403
861fb55a
DJ
404 /* True if this symbol is referenced by branch relocations from
405 any non-PIC input file. This is used to determine whether an
406 la25 stub is required. */
407 unsigned int has_nonpic_branches : 1;
33bb52fb
RS
408
409 /* Does this symbol need a traditional MIPS lazy-binding stub
410 (as opposed to a PLT entry)? */
411 unsigned int needs_lazy_stub : 1;
b49e97c9
TS
412};
413
414/* MIPS ELF linker hash table. */
415
416struct mips_elf_link_hash_table
417{
418 struct elf_link_hash_table root;
861fb55a 419
b49e97c9
TS
420 /* The number of .rtproc entries. */
421 bfd_size_type procedure_count;
861fb55a 422
b49e97c9
TS
423 /* The size of the .compact_rel section (if SGI_COMPAT). */
424 bfd_size_type compact_rel_size;
861fb55a 425
e6aea42d
MR
426 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
427 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
b34976b6 428 bfd_boolean use_rld_obj_head;
861fb55a 429
b4082c70
DD
430 /* The __rld_map or __rld_obj_head symbol. */
431 struct elf_link_hash_entry *rld_symbol;
861fb55a 432
b49e97c9 433 /* This is set if we see any mips16 stub sections. */
b34976b6 434 bfd_boolean mips16_stubs_seen;
861fb55a
DJ
435
436 /* True if we can generate copy relocs and PLTs. */
437 bfd_boolean use_plts_and_copy_relocs;
438
0a44bf69
RS
439 /* True if we're generating code for VxWorks. */
440 bfd_boolean is_vxworks;
861fb55a 441
0e53d9da
AN
442 /* True if we already reported the small-data section overflow. */
443 bfd_boolean small_data_overflow_reported;
861fb55a 444
0a44bf69
RS
445 /* Shortcuts to some dynamic sections, or NULL if they are not
446 being used. */
447 asection *srelbss;
448 asection *sdynbss;
449 asection *srelplt;
450 asection *srelplt2;
451 asection *sgotplt;
452 asection *splt;
4e41d0d7 453 asection *sstubs;
a8028dd0 454 asection *sgot;
861fb55a 455
a8028dd0
RS
456 /* The master GOT information. */
457 struct mips_got_info *got_info;
861fb55a 458
d222d210
RS
459 /* The global symbol in the GOT with the lowest index in the dynamic
460 symbol table. */
461 struct elf_link_hash_entry *global_gotsym;
462
861fb55a 463 /* The size of the PLT header in bytes. */
0a44bf69 464 bfd_vma plt_header_size;
861fb55a
DJ
465
466 /* The size of a PLT entry in bytes. */
0a44bf69 467 bfd_vma plt_entry_size;
861fb55a 468
33bb52fb
RS
469 /* The number of functions that need a lazy-binding stub. */
470 bfd_vma lazy_stub_count;
861fb55a 471
5108fc1b
RS
472 /* The size of a function stub entry in bytes. */
473 bfd_vma function_stub_size;
861fb55a
DJ
474
475 /* The number of reserved entries at the beginning of the GOT. */
476 unsigned int reserved_gotno;
477
478 /* The section used for mips_elf_la25_stub trampolines.
479 See the comment above that structure for details. */
480 asection *strampoline;
481
482 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
483 pairs. */
484 htab_t la25_stubs;
485
486 /* A function FN (NAME, IS, OS) that creates a new input section
487 called NAME and links it to output section OS. If IS is nonnull,
488 the new section should go immediately before it, otherwise it
489 should go at the (current) beginning of OS.
490
491 The function returns the new section on success, otherwise it
492 returns null. */
493 asection *(*add_stub_section) (const char *, asection *, asection *);
494};
495
4dfe6ac6
NC
496/* Get the MIPS ELF linker hash table from a link_info structure. */
497
498#define mips_elf_hash_table(p) \
499 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
500 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
501
861fb55a 502/* A structure used to communicate with htab_traverse callbacks. */
4dfe6ac6
NC
503struct mips_htab_traverse_info
504{
861fb55a
DJ
505 /* The usual link-wide information. */
506 struct bfd_link_info *info;
507 bfd *output_bfd;
508
509 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
510 bfd_boolean error;
b49e97c9
TS
511};
512
6ae68ba3
MR
513/* MIPS ELF private object data. */
514
515struct mips_elf_obj_tdata
516{
517 /* Generic ELF private object data. */
518 struct elf_obj_tdata root;
519
520 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
521 bfd *abi_fp_bfd;
522};
523
524/* Get MIPS ELF private object data from BFD's tdata. */
525
526#define mips_elf_tdata(bfd) \
527 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
528
0f20cc35
DJ
529#define TLS_RELOC_P(r_type) \
530 (r_type == R_MIPS_TLS_DTPMOD32 \
531 || r_type == R_MIPS_TLS_DTPMOD64 \
532 || r_type == R_MIPS_TLS_DTPREL32 \
533 || r_type == R_MIPS_TLS_DTPREL64 \
534 || r_type == R_MIPS_TLS_GD \
535 || r_type == R_MIPS_TLS_LDM \
536 || r_type == R_MIPS_TLS_DTPREL_HI16 \
537 || r_type == R_MIPS_TLS_DTPREL_LO16 \
538 || r_type == R_MIPS_TLS_GOTTPREL \
539 || r_type == R_MIPS_TLS_TPREL32 \
540 || r_type == R_MIPS_TLS_TPREL64 \
541 || r_type == R_MIPS_TLS_TPREL_HI16 \
df58fc94 542 || r_type == R_MIPS_TLS_TPREL_LO16 \
d0f13682
CLT
543 || r_type == R_MIPS16_TLS_GD \
544 || r_type == R_MIPS16_TLS_LDM \
545 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
546 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
547 || r_type == R_MIPS16_TLS_GOTTPREL \
548 || r_type == R_MIPS16_TLS_TPREL_HI16 \
549 || r_type == R_MIPS16_TLS_TPREL_LO16 \
df58fc94
RS
550 || r_type == R_MICROMIPS_TLS_GD \
551 || r_type == R_MICROMIPS_TLS_LDM \
552 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
553 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
554 || r_type == R_MICROMIPS_TLS_GOTTPREL \
555 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
556 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
0f20cc35 557
b49e97c9
TS
558/* Structure used to pass information to mips_elf_output_extsym. */
559
560struct extsym_info
561{
9e4aeb93
RS
562 bfd *abfd;
563 struct bfd_link_info *info;
b49e97c9
TS
564 struct ecoff_debug_info *debug;
565 const struct ecoff_debug_swap *swap;
b34976b6 566 bfd_boolean failed;
b49e97c9
TS
567};
568
8dc1a139 569/* The names of the runtime procedure table symbols used on IRIX5. */
b49e97c9
TS
570
571static const char * const mips_elf_dynsym_rtproc_names[] =
572{
573 "_procedure_table",
574 "_procedure_string_table",
575 "_procedure_table_size",
576 NULL
577};
578
579/* These structures are used to generate the .compact_rel section on
8dc1a139 580 IRIX5. */
b49e97c9
TS
581
582typedef struct
583{
584 unsigned long id1; /* Always one? */
585 unsigned long num; /* Number of compact relocation entries. */
586 unsigned long id2; /* Always two? */
587 unsigned long offset; /* The file offset of the first relocation. */
588 unsigned long reserved0; /* Zero? */
589 unsigned long reserved1; /* Zero? */
590} Elf32_compact_rel;
591
592typedef struct
593{
594 bfd_byte id1[4];
595 bfd_byte num[4];
596 bfd_byte id2[4];
597 bfd_byte offset[4];
598 bfd_byte reserved0[4];
599 bfd_byte reserved1[4];
600} Elf32_External_compact_rel;
601
602typedef struct
603{
604 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
605 unsigned int rtype : 4; /* Relocation types. See below. */
606 unsigned int dist2to : 8;
607 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
608 unsigned long konst; /* KONST field. See below. */
609 unsigned long vaddr; /* VADDR to be relocated. */
610} Elf32_crinfo;
611
612typedef struct
613{
614 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
615 unsigned int rtype : 4; /* Relocation types. See below. */
616 unsigned int dist2to : 8;
617 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
618 unsigned long konst; /* KONST field. See below. */
619} Elf32_crinfo2;
620
621typedef struct
622{
623 bfd_byte info[4];
624 bfd_byte konst[4];
625 bfd_byte vaddr[4];
626} Elf32_External_crinfo;
627
628typedef struct
629{
630 bfd_byte info[4];
631 bfd_byte konst[4];
632} Elf32_External_crinfo2;
633
634/* These are the constants used to swap the bitfields in a crinfo. */
635
636#define CRINFO_CTYPE (0x1)
637#define CRINFO_CTYPE_SH (31)
638#define CRINFO_RTYPE (0xf)
639#define CRINFO_RTYPE_SH (27)
640#define CRINFO_DIST2TO (0xff)
641#define CRINFO_DIST2TO_SH (19)
642#define CRINFO_RELVADDR (0x7ffff)
643#define CRINFO_RELVADDR_SH (0)
644
645/* A compact relocation info has long (3 words) or short (2 words)
646 formats. A short format doesn't have VADDR field and relvaddr
647 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
648#define CRF_MIPS_LONG 1
649#define CRF_MIPS_SHORT 0
650
651/* There are 4 types of compact relocation at least. The value KONST
652 has different meaning for each type:
653
654 (type) (konst)
655 CT_MIPS_REL32 Address in data
656 CT_MIPS_WORD Address in word (XXX)
657 CT_MIPS_GPHI_LO GP - vaddr
658 CT_MIPS_JMPAD Address to jump
659 */
660
661#define CRT_MIPS_REL32 0xa
662#define CRT_MIPS_WORD 0xb
663#define CRT_MIPS_GPHI_LO 0xc
664#define CRT_MIPS_JMPAD 0xd
665
666#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
667#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
668#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
669#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
670\f
671/* The structure of the runtime procedure descriptor created by the
672 loader for use by the static exception system. */
673
674typedef struct runtime_pdr {
ae9a127f
NC
675 bfd_vma adr; /* Memory address of start of procedure. */
676 long regmask; /* Save register mask. */
677 long regoffset; /* Save register offset. */
678 long fregmask; /* Save floating point register mask. */
679 long fregoffset; /* Save floating point register offset. */
680 long frameoffset; /* Frame size. */
681 short framereg; /* Frame pointer register. */
682 short pcreg; /* Offset or reg of return pc. */
683 long irpss; /* Index into the runtime string table. */
b49e97c9 684 long reserved;
ae9a127f 685 struct exception_info *exception_info;/* Pointer to exception array. */
b49e97c9
TS
686} RPDR, *pRPDR;
687#define cbRPDR sizeof (RPDR)
688#define rpdNil ((pRPDR) 0)
689\f
b15e6682 690static struct mips_got_entry *mips_elf_create_local_got_entry
a8028dd0
RS
691 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
692 struct mips_elf_link_hash_entry *, int);
b34976b6 693static bfd_boolean mips_elf_sort_hash_table_f
9719ad41 694 (struct mips_elf_link_hash_entry *, void *);
9719ad41
RS
695static bfd_vma mips_elf_high
696 (bfd_vma);
b34976b6 697static bfd_boolean mips_elf_create_dynamic_relocation
9719ad41
RS
698 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
699 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
700 bfd_vma *, asection *);
f4416af6 701static bfd_vma mips_elf_adjust_gp
9719ad41 702 (bfd *, struct mips_got_info *, bfd *);
f4416af6 703static struct mips_got_info *mips_elf_got_for_ibfd
9719ad41 704 (struct mips_got_info *, bfd *);
f4416af6 705
b49e97c9
TS
706/* This will be used when we sort the dynamic relocation records. */
707static bfd *reldyn_sorting_bfd;
708
6d30f5b2
NC
709/* True if ABFD is for CPUs with load interlocking that include
710 non-MIPS1 CPUs and R3900. */
711#define LOAD_INTERLOCKS_P(abfd) \
712 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
713 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
714
cd8d5a82
CF
715/* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
716 This should be safe for all architectures. We enable this predicate
717 for RM9000 for now. */
718#define JAL_TO_BAL_P(abfd) \
719 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
720
721/* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
722 This should be safe for all architectures. We enable this predicate for
723 all CPUs. */
724#define JALR_TO_BAL_P(abfd) 1
725
38a7df63
CF
726/* True if ABFD is for CPUs that are faster if JR is converted to B.
727 This should be safe for all architectures. We enable this predicate for
728 all CPUs. */
729#define JR_TO_B_P(abfd) 1
730
861fb55a
DJ
731/* True if ABFD is a PIC object. */
732#define PIC_OBJECT_P(abfd) \
733 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
734
b49e97c9 735/* Nonzero if ABFD is using the N32 ABI. */
b49e97c9
TS
736#define ABI_N32_P(abfd) \
737 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
738
4a14403c 739/* Nonzero if ABFD is using the N64 ABI. */
b49e97c9 740#define ABI_64_P(abfd) \
141ff970 741 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
b49e97c9 742
4a14403c
TS
743/* Nonzero if ABFD is using NewABI conventions. */
744#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
745
746/* The IRIX compatibility level we are striving for. */
b49e97c9
TS
747#define IRIX_COMPAT(abfd) \
748 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
749
b49e97c9
TS
750/* Whether we are trying to be compatible with IRIX at all. */
751#define SGI_COMPAT(abfd) \
752 (IRIX_COMPAT (abfd) != ict_none)
753
754/* The name of the options section. */
755#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
d80dcc6a 756 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
b49e97c9 757
cc2e31b9
RS
758/* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
759 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
760#define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
761 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
762
943284cc
DJ
763/* Whether the section is readonly. */
764#define MIPS_ELF_READONLY_SECTION(sec) \
765 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
766 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
767
b49e97c9 768/* The name of the stub section. */
ca07892d 769#define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
b49e97c9
TS
770
771/* The size of an external REL relocation. */
772#define MIPS_ELF_REL_SIZE(abfd) \
773 (get_elf_backend_data (abfd)->s->sizeof_rel)
774
0a44bf69
RS
775/* The size of an external RELA relocation. */
776#define MIPS_ELF_RELA_SIZE(abfd) \
777 (get_elf_backend_data (abfd)->s->sizeof_rela)
778
b49e97c9
TS
779/* The size of an external dynamic table entry. */
780#define MIPS_ELF_DYN_SIZE(abfd) \
781 (get_elf_backend_data (abfd)->s->sizeof_dyn)
782
783/* The size of a GOT entry. */
784#define MIPS_ELF_GOT_SIZE(abfd) \
785 (get_elf_backend_data (abfd)->s->arch_size / 8)
786
b4082c70
DD
787/* The size of the .rld_map section. */
788#define MIPS_ELF_RLD_MAP_SIZE(abfd) \
789 (get_elf_backend_data (abfd)->s->arch_size / 8)
790
b49e97c9
TS
791/* The size of a symbol-table entry. */
792#define MIPS_ELF_SYM_SIZE(abfd) \
793 (get_elf_backend_data (abfd)->s->sizeof_sym)
794
795/* The default alignment for sections, as a power of two. */
796#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
45d6a902 797 (get_elf_backend_data (abfd)->s->log_file_align)
b49e97c9
TS
798
799/* Get word-sized data. */
800#define MIPS_ELF_GET_WORD(abfd, ptr) \
801 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
802
803/* Put out word-sized data. */
804#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
805 (ABI_64_P (abfd) \
806 ? bfd_put_64 (abfd, val, ptr) \
807 : bfd_put_32 (abfd, val, ptr))
808
861fb55a
DJ
809/* The opcode for word-sized loads (LW or LD). */
810#define MIPS_ELF_LOAD_WORD(abfd) \
811 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
812
b49e97c9 813/* Add a dynamic symbol table-entry. */
9719ad41 814#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
5a580b3a 815 _bfd_elf_add_dynamic_entry (info, tag, val)
b49e97c9
TS
816
817#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
818 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
819
0a44bf69
RS
820/* The name of the dynamic relocation section. */
821#define MIPS_ELF_REL_DYN_NAME(INFO) \
822 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
823
b49e97c9
TS
824/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
825 from smaller values. Start with zero, widen, *then* decrement. */
826#define MINUS_ONE (((bfd_vma)0) - 1)
c5ae1840 827#define MINUS_TWO (((bfd_vma)0) - 2)
b49e97c9 828
51e38d68
RS
829/* The value to write into got[1] for SVR4 targets, to identify it is
830 a GNU object. The dynamic linker can then use got[1] to store the
831 module pointer. */
832#define MIPS_ELF_GNU_GOT1_MASK(abfd) \
833 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
834
f4416af6 835/* The offset of $gp from the beginning of the .got section. */
0a44bf69
RS
836#define ELF_MIPS_GP_OFFSET(INFO) \
837 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
f4416af6
AO
838
839/* The maximum size of the GOT for it to be addressable using 16-bit
840 offsets from $gp. */
0a44bf69 841#define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
f4416af6 842
6a691779 843/* Instructions which appear in a stub. */
3d6746ca
DD
844#define STUB_LW(abfd) \
845 ((ABI_64_P (abfd) \
846 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
847 : 0x8f998010)) /* lw t9,0x8010(gp) */
848#define STUB_MOVE(abfd) \
849 ((ABI_64_P (abfd) \
850 ? 0x03e0782d /* daddu t7,ra */ \
851 : 0x03e07821)) /* addu t7,ra */
852#define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
853#define STUB_JALR 0x0320f809 /* jalr t9,ra */
5108fc1b
RS
854#define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
855#define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
3d6746ca
DD
856#define STUB_LI16S(abfd, VAL) \
857 ((ABI_64_P (abfd) \
858 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
859 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
860
5108fc1b
RS
861#define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
862#define MIPS_FUNCTION_STUB_BIG_SIZE 20
b49e97c9
TS
863
864/* The name of the dynamic interpreter. This is put in the .interp
865 section. */
866
867#define ELF_DYNAMIC_INTERPRETER(abfd) \
868 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
869 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
870 : "/usr/lib/libc.so.1")
871
872#ifdef BFD64
ee6423ed
AO
873#define MNAME(bfd,pre,pos) \
874 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
b49e97c9
TS
875#define ELF_R_SYM(bfd, i) \
876 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
877#define ELF_R_TYPE(bfd, i) \
878 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
879#define ELF_R_INFO(bfd, s, t) \
880 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
881#else
ee6423ed 882#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
b49e97c9
TS
883#define ELF_R_SYM(bfd, i) \
884 (ELF32_R_SYM (i))
885#define ELF_R_TYPE(bfd, i) \
886 (ELF32_R_TYPE (i))
887#define ELF_R_INFO(bfd, s, t) \
888 (ELF32_R_INFO (s, t))
889#endif
890\f
891 /* The mips16 compiler uses a couple of special sections to handle
892 floating point arguments.
893
894 Section names that look like .mips16.fn.FNNAME contain stubs that
895 copy floating point arguments from the fp regs to the gp regs and
896 then jump to FNNAME. If any 32 bit function calls FNNAME, the
897 call should be redirected to the stub instead. If no 32 bit
898 function calls FNNAME, the stub should be discarded. We need to
899 consider any reference to the function, not just a call, because
900 if the address of the function is taken we will need the stub,
901 since the address might be passed to a 32 bit function.
902
903 Section names that look like .mips16.call.FNNAME contain stubs
904 that copy floating point arguments from the gp regs to the fp
905 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
906 then any 16 bit function that calls FNNAME should be redirected
907 to the stub instead. If FNNAME is not a 32 bit function, the
908 stub should be discarded.
909
910 .mips16.call.fp.FNNAME sections are similar, but contain stubs
911 which call FNNAME and then copy the return value from the fp regs
912 to the gp regs. These stubs store the return value in $18 while
913 calling FNNAME; any function which might call one of these stubs
914 must arrange to save $18 around the call. (This case is not
915 needed for 32 bit functions that call 16 bit functions, because
916 16 bit functions always return floating point values in both
917 $f0/$f1 and $2/$3.)
918
919 Note that in all cases FNNAME might be defined statically.
920 Therefore, FNNAME is not used literally. Instead, the relocation
921 information will indicate which symbol the section is for.
922
923 We record any stubs that we find in the symbol table. */
924
925#define FN_STUB ".mips16.fn."
926#define CALL_STUB ".mips16.call."
927#define CALL_FP_STUB ".mips16.call.fp."
b9d58d71
TS
928
929#define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
930#define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
931#define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
b49e97c9 932\f
861fb55a 933/* The format of the first PLT entry in an O32 executable. */
6d30f5b2
NC
934static const bfd_vma mips_o32_exec_plt0_entry[] =
935{
861fb55a
DJ
936 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
937 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
938 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
939 0x031cc023, /* subu $24, $24, $28 */
81f5d455 940 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
861fb55a
DJ
941 0x0018c082, /* srl $24, $24, 2 */
942 0x0320f809, /* jalr $25 */
943 0x2718fffe /* subu $24, $24, 2 */
944};
945
946/* The format of the first PLT entry in an N32 executable. Different
947 because gp ($28) is not available; we use t2 ($14) instead. */
6d30f5b2
NC
948static const bfd_vma mips_n32_exec_plt0_entry[] =
949{
861fb55a
DJ
950 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
951 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
952 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
953 0x030ec023, /* subu $24, $24, $14 */
81f5d455 954 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
861fb55a
DJ
955 0x0018c082, /* srl $24, $24, 2 */
956 0x0320f809, /* jalr $25 */
957 0x2718fffe /* subu $24, $24, 2 */
958};
959
960/* The format of the first PLT entry in an N64 executable. Different
961 from N32 because of the increased size of GOT entries. */
6d30f5b2
NC
962static const bfd_vma mips_n64_exec_plt0_entry[] =
963{
861fb55a
DJ
964 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
965 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
966 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
967 0x030ec023, /* subu $24, $24, $14 */
81f5d455 968 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */
861fb55a
DJ
969 0x0018c0c2, /* srl $24, $24, 3 */
970 0x0320f809, /* jalr $25 */
971 0x2718fffe /* subu $24, $24, 2 */
972};
973
974/* The format of subsequent PLT entries. */
6d30f5b2
NC
975static const bfd_vma mips_exec_plt_entry[] =
976{
861fb55a
DJ
977 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
978 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
979 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
980 0x03200008 /* jr $25 */
981};
982
0a44bf69 983/* The format of the first PLT entry in a VxWorks executable. */
6d30f5b2
NC
984static const bfd_vma mips_vxworks_exec_plt0_entry[] =
985{
0a44bf69
RS
986 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
987 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
988 0x8f390008, /* lw t9, 8(t9) */
989 0x00000000, /* nop */
990 0x03200008, /* jr t9 */
991 0x00000000 /* nop */
992};
993
994/* The format of subsequent PLT entries. */
6d30f5b2
NC
995static const bfd_vma mips_vxworks_exec_plt_entry[] =
996{
0a44bf69
RS
997 0x10000000, /* b .PLT_resolver */
998 0x24180000, /* li t8, <pltindex> */
999 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1000 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1001 0x8f390000, /* lw t9, 0(t9) */
1002 0x00000000, /* nop */
1003 0x03200008, /* jr t9 */
1004 0x00000000 /* nop */
1005};
1006
1007/* The format of the first PLT entry in a VxWorks shared object. */
6d30f5b2
NC
1008static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1009{
0a44bf69
RS
1010 0x8f990008, /* lw t9, 8(gp) */
1011 0x00000000, /* nop */
1012 0x03200008, /* jr t9 */
1013 0x00000000, /* nop */
1014 0x00000000, /* nop */
1015 0x00000000 /* nop */
1016};
1017
1018/* The format of subsequent PLT entries. */
6d30f5b2
NC
1019static const bfd_vma mips_vxworks_shared_plt_entry[] =
1020{
0a44bf69
RS
1021 0x10000000, /* b .PLT_resolver */
1022 0x24180000 /* li t8, <pltindex> */
1023};
1024\f
d21911ea
MR
1025/* microMIPS 32-bit opcode helper installer. */
1026
1027static void
1028bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1029{
1030 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1031 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1032}
1033
1034/* microMIPS 32-bit opcode helper retriever. */
1035
1036static bfd_vma
1037bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1038{
1039 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1040}
1041\f
b49e97c9
TS
1042/* Look up an entry in a MIPS ELF linker hash table. */
1043
1044#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1045 ((struct mips_elf_link_hash_entry *) \
1046 elf_link_hash_lookup (&(table)->root, (string), (create), \
1047 (copy), (follow)))
1048
1049/* Traverse a MIPS ELF linker hash table. */
1050
1051#define mips_elf_link_hash_traverse(table, func, info) \
1052 (elf_link_hash_traverse \
1053 (&(table)->root, \
9719ad41 1054 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
b49e97c9
TS
1055 (info)))
1056
0f20cc35
DJ
1057/* Find the base offsets for thread-local storage in this object,
1058 for GD/LD and IE/LE respectively. */
1059
1060#define TP_OFFSET 0x7000
1061#define DTP_OFFSET 0x8000
1062
1063static bfd_vma
1064dtprel_base (struct bfd_link_info *info)
1065{
1066 /* If tls_sec is NULL, we should have signalled an error already. */
1067 if (elf_hash_table (info)->tls_sec == NULL)
1068 return 0;
1069 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1070}
1071
1072static bfd_vma
1073tprel_base (struct bfd_link_info *info)
1074{
1075 /* If tls_sec is NULL, we should have signalled an error already. */
1076 if (elf_hash_table (info)->tls_sec == NULL)
1077 return 0;
1078 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1079}
1080
b49e97c9
TS
1081/* Create an entry in a MIPS ELF linker hash table. */
1082
1083static struct bfd_hash_entry *
9719ad41
RS
1084mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1085 struct bfd_hash_table *table, const char *string)
b49e97c9
TS
1086{
1087 struct mips_elf_link_hash_entry *ret =
1088 (struct mips_elf_link_hash_entry *) entry;
1089
1090 /* Allocate the structure if it has not already been allocated by a
1091 subclass. */
9719ad41
RS
1092 if (ret == NULL)
1093 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1094 if (ret == NULL)
b49e97c9
TS
1095 return (struct bfd_hash_entry *) ret;
1096
1097 /* Call the allocation method of the superclass. */
1098 ret = ((struct mips_elf_link_hash_entry *)
1099 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1100 table, string));
9719ad41 1101 if (ret != NULL)
b49e97c9
TS
1102 {
1103 /* Set local fields. */
1104 memset (&ret->esym, 0, sizeof (EXTR));
1105 /* We use -2 as a marker to indicate that the information has
1106 not been set. -1 means there is no associated ifd. */
1107 ret->esym.ifd = -2;
861fb55a 1108 ret->la25_stub = 0;
b49e97c9 1109 ret->possibly_dynamic_relocs = 0;
b49e97c9 1110 ret->fn_stub = NULL;
b49e97c9
TS
1111 ret->call_stub = NULL;
1112 ret->call_fp_stub = NULL;
e641e783
RS
1113 ret->tls_ie_type = GOT_NORMAL;
1114 ret->tls_gd_type = GOT_NORMAL;
634835ae 1115 ret->global_got_area = GGA_NONE;
6ccf4795 1116 ret->got_only_for_calls = TRUE;
71782a75 1117 ret->readonly_reloc = FALSE;
861fb55a 1118 ret->has_static_relocs = FALSE;
71782a75
RS
1119 ret->no_fn_stub = FALSE;
1120 ret->need_fn_stub = FALSE;
861fb55a 1121 ret->has_nonpic_branches = FALSE;
33bb52fb 1122 ret->needs_lazy_stub = FALSE;
b49e97c9
TS
1123 }
1124
1125 return (struct bfd_hash_entry *) ret;
1126}
f0abc2a1 1127
6ae68ba3
MR
1128/* Allocate MIPS ELF private object data. */
1129
1130bfd_boolean
1131_bfd_mips_elf_mkobject (bfd *abfd)
1132{
1133 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1134 MIPS_ELF_DATA);
1135}
1136
f0abc2a1 1137bfd_boolean
9719ad41 1138_bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
f0abc2a1 1139{
f592407e
AM
1140 if (!sec->used_by_bfd)
1141 {
1142 struct _mips_elf_section_data *sdata;
1143 bfd_size_type amt = sizeof (*sdata);
f0abc2a1 1144
f592407e
AM
1145 sdata = bfd_zalloc (abfd, amt);
1146 if (sdata == NULL)
1147 return FALSE;
1148 sec->used_by_bfd = sdata;
1149 }
f0abc2a1
AM
1150
1151 return _bfd_elf_new_section_hook (abfd, sec);
1152}
b49e97c9
TS
1153\f
1154/* Read ECOFF debugging information from a .mdebug section into a
1155 ecoff_debug_info structure. */
1156
b34976b6 1157bfd_boolean
9719ad41
RS
1158_bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1159 struct ecoff_debug_info *debug)
b49e97c9
TS
1160{
1161 HDRR *symhdr;
1162 const struct ecoff_debug_swap *swap;
9719ad41 1163 char *ext_hdr;
b49e97c9
TS
1164
1165 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1166 memset (debug, 0, sizeof (*debug));
1167
9719ad41 1168 ext_hdr = bfd_malloc (swap->external_hdr_size);
b49e97c9
TS
1169 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1170 goto error_return;
1171
9719ad41 1172 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
82e51918 1173 swap->external_hdr_size))
b49e97c9
TS
1174 goto error_return;
1175
1176 symhdr = &debug->symbolic_header;
1177 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1178
1179 /* The symbolic header contains absolute file offsets and sizes to
1180 read. */
1181#define READ(ptr, offset, count, size, type) \
1182 if (symhdr->count == 0) \
1183 debug->ptr = NULL; \
1184 else \
1185 { \
1186 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
9719ad41 1187 debug->ptr = bfd_malloc (amt); \
b49e97c9
TS
1188 if (debug->ptr == NULL) \
1189 goto error_return; \
9719ad41 1190 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
b49e97c9
TS
1191 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1192 goto error_return; \
1193 }
1194
1195 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
9719ad41
RS
1196 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1197 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1198 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1199 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
b49e97c9
TS
1200 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1201 union aux_ext *);
1202 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1203 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
9719ad41
RS
1204 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1205 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1206 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
b49e97c9
TS
1207#undef READ
1208
1209 debug->fdr = NULL;
b49e97c9 1210
b34976b6 1211 return TRUE;
b49e97c9
TS
1212
1213 error_return:
1214 if (ext_hdr != NULL)
1215 free (ext_hdr);
1216 if (debug->line != NULL)
1217 free (debug->line);
1218 if (debug->external_dnr != NULL)
1219 free (debug->external_dnr);
1220 if (debug->external_pdr != NULL)
1221 free (debug->external_pdr);
1222 if (debug->external_sym != NULL)
1223 free (debug->external_sym);
1224 if (debug->external_opt != NULL)
1225 free (debug->external_opt);
1226 if (debug->external_aux != NULL)
1227 free (debug->external_aux);
1228 if (debug->ss != NULL)
1229 free (debug->ss);
1230 if (debug->ssext != NULL)
1231 free (debug->ssext);
1232 if (debug->external_fdr != NULL)
1233 free (debug->external_fdr);
1234 if (debug->external_rfd != NULL)
1235 free (debug->external_rfd);
1236 if (debug->external_ext != NULL)
1237 free (debug->external_ext);
b34976b6 1238 return FALSE;
b49e97c9
TS
1239}
1240\f
1241/* Swap RPDR (runtime procedure table entry) for output. */
1242
1243static void
9719ad41 1244ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
b49e97c9
TS
1245{
1246 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1247 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1248 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1249 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1250 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1251 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1252
1253 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1254 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1255
1256 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
b49e97c9
TS
1257}
1258
1259/* Create a runtime procedure table from the .mdebug section. */
1260
b34976b6 1261static bfd_boolean
9719ad41
RS
1262mips_elf_create_procedure_table (void *handle, bfd *abfd,
1263 struct bfd_link_info *info, asection *s,
1264 struct ecoff_debug_info *debug)
b49e97c9
TS
1265{
1266 const struct ecoff_debug_swap *swap;
1267 HDRR *hdr = &debug->symbolic_header;
1268 RPDR *rpdr, *rp;
1269 struct rpdr_ext *erp;
9719ad41 1270 void *rtproc;
b49e97c9
TS
1271 struct pdr_ext *epdr;
1272 struct sym_ext *esym;
1273 char *ss, **sv;
1274 char *str;
1275 bfd_size_type size;
1276 bfd_size_type count;
1277 unsigned long sindex;
1278 unsigned long i;
1279 PDR pdr;
1280 SYMR sym;
1281 const char *no_name_func = _("static procedure (no name)");
1282
1283 epdr = NULL;
1284 rpdr = NULL;
1285 esym = NULL;
1286 ss = NULL;
1287 sv = NULL;
1288
1289 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1290
1291 sindex = strlen (no_name_func) + 1;
1292 count = hdr->ipdMax;
1293 if (count > 0)
1294 {
1295 size = swap->external_pdr_size;
1296
9719ad41 1297 epdr = bfd_malloc (size * count);
b49e97c9
TS
1298 if (epdr == NULL)
1299 goto error_return;
1300
9719ad41 1301 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
b49e97c9
TS
1302 goto error_return;
1303
1304 size = sizeof (RPDR);
9719ad41 1305 rp = rpdr = bfd_malloc (size * count);
b49e97c9
TS
1306 if (rpdr == NULL)
1307 goto error_return;
1308
1309 size = sizeof (char *);
9719ad41 1310 sv = bfd_malloc (size * count);
b49e97c9
TS
1311 if (sv == NULL)
1312 goto error_return;
1313
1314 count = hdr->isymMax;
1315 size = swap->external_sym_size;
9719ad41 1316 esym = bfd_malloc (size * count);
b49e97c9
TS
1317 if (esym == NULL)
1318 goto error_return;
1319
9719ad41 1320 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
b49e97c9
TS
1321 goto error_return;
1322
1323 count = hdr->issMax;
9719ad41 1324 ss = bfd_malloc (count);
b49e97c9
TS
1325 if (ss == NULL)
1326 goto error_return;
f075ee0c 1327 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
b49e97c9
TS
1328 goto error_return;
1329
1330 count = hdr->ipdMax;
1331 for (i = 0; i < (unsigned long) count; i++, rp++)
1332 {
9719ad41
RS
1333 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1334 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
b49e97c9
TS
1335 rp->adr = sym.value;
1336 rp->regmask = pdr.regmask;
1337 rp->regoffset = pdr.regoffset;
1338 rp->fregmask = pdr.fregmask;
1339 rp->fregoffset = pdr.fregoffset;
1340 rp->frameoffset = pdr.frameoffset;
1341 rp->framereg = pdr.framereg;
1342 rp->pcreg = pdr.pcreg;
1343 rp->irpss = sindex;
1344 sv[i] = ss + sym.iss;
1345 sindex += strlen (sv[i]) + 1;
1346 }
1347 }
1348
1349 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1350 size = BFD_ALIGN (size, 16);
9719ad41 1351 rtproc = bfd_alloc (abfd, size);
b49e97c9
TS
1352 if (rtproc == NULL)
1353 {
1354 mips_elf_hash_table (info)->procedure_count = 0;
1355 goto error_return;
1356 }
1357
1358 mips_elf_hash_table (info)->procedure_count = count + 2;
1359
9719ad41 1360 erp = rtproc;
b49e97c9
TS
1361 memset (erp, 0, sizeof (struct rpdr_ext));
1362 erp++;
1363 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1364 strcpy (str, no_name_func);
1365 str += strlen (no_name_func) + 1;
1366 for (i = 0; i < count; i++)
1367 {
1368 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1369 strcpy (str, sv[i]);
1370 str += strlen (sv[i]) + 1;
1371 }
1372 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1373
1374 /* Set the size and contents of .rtproc section. */
eea6121a 1375 s->size = size;
9719ad41 1376 s->contents = rtproc;
b49e97c9
TS
1377
1378 /* Skip this section later on (I don't think this currently
1379 matters, but someday it might). */
8423293d 1380 s->map_head.link_order = NULL;
b49e97c9
TS
1381
1382 if (epdr != NULL)
1383 free (epdr);
1384 if (rpdr != NULL)
1385 free (rpdr);
1386 if (esym != NULL)
1387 free (esym);
1388 if (ss != NULL)
1389 free (ss);
1390 if (sv != NULL)
1391 free (sv);
1392
b34976b6 1393 return TRUE;
b49e97c9
TS
1394
1395 error_return:
1396 if (epdr != NULL)
1397 free (epdr);
1398 if (rpdr != NULL)
1399 free (rpdr);
1400 if (esym != NULL)
1401 free (esym);
1402 if (ss != NULL)
1403 free (ss);
1404 if (sv != NULL)
1405 free (sv);
b34976b6 1406 return FALSE;
b49e97c9 1407}
738e5348 1408\f
861fb55a
DJ
1409/* We're going to create a stub for H. Create a symbol for the stub's
1410 value and size, to help make the disassembly easier to read. */
1411
1412static bfd_boolean
1413mips_elf_create_stub_symbol (struct bfd_link_info *info,
1414 struct mips_elf_link_hash_entry *h,
1415 const char *prefix, asection *s, bfd_vma value,
1416 bfd_vma size)
1417{
1418 struct bfd_link_hash_entry *bh;
1419 struct elf_link_hash_entry *elfh;
1420 const char *name;
1421
df58fc94
RS
1422 if (ELF_ST_IS_MICROMIPS (h->root.other))
1423 value |= 1;
1424
861fb55a
DJ
1425 /* Create a new symbol. */
1426 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1427 bh = NULL;
1428 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1429 BSF_LOCAL, s, value, NULL,
1430 TRUE, FALSE, &bh))
1431 return FALSE;
1432
1433 /* Make it a local function. */
1434 elfh = (struct elf_link_hash_entry *) bh;
1435 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1436 elfh->size = size;
1437 elfh->forced_local = 1;
1438 return TRUE;
1439}
1440
738e5348
RS
1441/* We're about to redefine H. Create a symbol to represent H's
1442 current value and size, to help make the disassembly easier
1443 to read. */
1444
1445static bfd_boolean
1446mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1447 struct mips_elf_link_hash_entry *h,
1448 const char *prefix)
1449{
1450 struct bfd_link_hash_entry *bh;
1451 struct elf_link_hash_entry *elfh;
1452 const char *name;
1453 asection *s;
1454 bfd_vma value;
1455
1456 /* Read the symbol's value. */
1457 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1458 || h->root.root.type == bfd_link_hash_defweak);
1459 s = h->root.root.u.def.section;
1460 value = h->root.root.u.def.value;
1461
1462 /* Create a new symbol. */
1463 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1464 bh = NULL;
1465 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1466 BSF_LOCAL, s, value, NULL,
1467 TRUE, FALSE, &bh))
1468 return FALSE;
1469
1470 /* Make it local and copy the other attributes from H. */
1471 elfh = (struct elf_link_hash_entry *) bh;
1472 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1473 elfh->other = h->root.other;
1474 elfh->size = h->root.size;
1475 elfh->forced_local = 1;
1476 return TRUE;
1477}
1478
1479/* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1480 function rather than to a hard-float stub. */
1481
1482static bfd_boolean
1483section_allows_mips16_refs_p (asection *section)
1484{
1485 const char *name;
1486
1487 name = bfd_get_section_name (section->owner, section);
1488 return (FN_STUB_P (name)
1489 || CALL_STUB_P (name)
1490 || CALL_FP_STUB_P (name)
1491 || strcmp (name, ".pdr") == 0);
1492}
1493
1494/* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1495 stub section of some kind. Return the R_SYMNDX of the target
1496 function, or 0 if we can't decide which function that is. */
1497
1498static unsigned long
cb4437b8
MR
1499mips16_stub_symndx (const struct elf_backend_data *bed,
1500 asection *sec ATTRIBUTE_UNUSED,
502e814e 1501 const Elf_Internal_Rela *relocs,
738e5348
RS
1502 const Elf_Internal_Rela *relend)
1503{
cb4437b8 1504 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
738e5348
RS
1505 const Elf_Internal_Rela *rel;
1506
cb4437b8
MR
1507 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1508 one in a compound relocation. */
1509 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
738e5348
RS
1510 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1511 return ELF_R_SYM (sec->owner, rel->r_info);
1512
1513 /* Otherwise trust the first relocation, whatever its kind. This is
1514 the traditional behavior. */
1515 if (relocs < relend)
1516 return ELF_R_SYM (sec->owner, relocs->r_info);
1517
1518 return 0;
1519}
b49e97c9
TS
1520
1521/* Check the mips16 stubs for a particular symbol, and see if we can
1522 discard them. */
1523
861fb55a
DJ
1524static void
1525mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1526 struct mips_elf_link_hash_entry *h)
b49e97c9 1527{
738e5348
RS
1528 /* Dynamic symbols must use the standard call interface, in case other
1529 objects try to call them. */
1530 if (h->fn_stub != NULL
1531 && h->root.dynindx != -1)
1532 {
1533 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1534 h->need_fn_stub = TRUE;
1535 }
1536
b49e97c9
TS
1537 if (h->fn_stub != NULL
1538 && ! h->need_fn_stub)
1539 {
1540 /* We don't need the fn_stub; the only references to this symbol
1541 are 16 bit calls. Clobber the size to 0 to prevent it from
1542 being included in the link. */
eea6121a 1543 h->fn_stub->size = 0;
b49e97c9
TS
1544 h->fn_stub->flags &= ~SEC_RELOC;
1545 h->fn_stub->reloc_count = 0;
1546 h->fn_stub->flags |= SEC_EXCLUDE;
1547 }
1548
1549 if (h->call_stub != NULL
30c09090 1550 && ELF_ST_IS_MIPS16 (h->root.other))
b49e97c9
TS
1551 {
1552 /* We don't need the call_stub; this is a 16 bit function, so
1553 calls from other 16 bit functions are OK. Clobber the size
1554 to 0 to prevent it from being included in the link. */
eea6121a 1555 h->call_stub->size = 0;
b49e97c9
TS
1556 h->call_stub->flags &= ~SEC_RELOC;
1557 h->call_stub->reloc_count = 0;
1558 h->call_stub->flags |= SEC_EXCLUDE;
1559 }
1560
1561 if (h->call_fp_stub != NULL
30c09090 1562 && ELF_ST_IS_MIPS16 (h->root.other))
b49e97c9
TS
1563 {
1564 /* We don't need the call_stub; this is a 16 bit function, so
1565 calls from other 16 bit functions are OK. Clobber the size
1566 to 0 to prevent it from being included in the link. */
eea6121a 1567 h->call_fp_stub->size = 0;
b49e97c9
TS
1568 h->call_fp_stub->flags &= ~SEC_RELOC;
1569 h->call_fp_stub->reloc_count = 0;
1570 h->call_fp_stub->flags |= SEC_EXCLUDE;
1571 }
861fb55a
DJ
1572}
1573
1574/* Hashtable callbacks for mips_elf_la25_stubs. */
1575
1576static hashval_t
1577mips_elf_la25_stub_hash (const void *entry_)
1578{
1579 const struct mips_elf_la25_stub *entry;
1580
1581 entry = (struct mips_elf_la25_stub *) entry_;
1582 return entry->h->root.root.u.def.section->id
1583 + entry->h->root.root.u.def.value;
1584}
1585
1586static int
1587mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1588{
1589 const struct mips_elf_la25_stub *entry1, *entry2;
1590
1591 entry1 = (struct mips_elf_la25_stub *) entry1_;
1592 entry2 = (struct mips_elf_la25_stub *) entry2_;
1593 return ((entry1->h->root.root.u.def.section
1594 == entry2->h->root.root.u.def.section)
1595 && (entry1->h->root.root.u.def.value
1596 == entry2->h->root.root.u.def.value));
1597}
1598
1599/* Called by the linker to set up the la25 stub-creation code. FN is
1600 the linker's implementation of add_stub_function. Return true on
1601 success. */
1602
1603bfd_boolean
1604_bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1605 asection *(*fn) (const char *, asection *,
1606 asection *))
1607{
1608 struct mips_elf_link_hash_table *htab;
1609
1610 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1611 if (htab == NULL)
1612 return FALSE;
1613
861fb55a
DJ
1614 htab->add_stub_section = fn;
1615 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1616 mips_elf_la25_stub_eq, NULL);
1617 if (htab->la25_stubs == NULL)
1618 return FALSE;
1619
1620 return TRUE;
1621}
1622
1623/* Return true if H is a locally-defined PIC function, in the sense
8f0c309a
CLT
1624 that it or its fn_stub might need $25 to be valid on entry.
1625 Note that MIPS16 functions set up $gp using PC-relative instructions,
1626 so they themselves never need $25 to be valid. Only non-MIPS16
1627 entry points are of interest here. */
861fb55a
DJ
1628
1629static bfd_boolean
1630mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1631{
1632 return ((h->root.root.type == bfd_link_hash_defined
1633 || h->root.root.type == bfd_link_hash_defweak)
1634 && h->root.def_regular
1635 && !bfd_is_abs_section (h->root.root.u.def.section)
8f0c309a
CLT
1636 && (!ELF_ST_IS_MIPS16 (h->root.other)
1637 || (h->fn_stub && h->need_fn_stub))
861fb55a
DJ
1638 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1639 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1640}
1641
8f0c309a
CLT
1642/* Set *SEC to the input section that contains the target of STUB.
1643 Return the offset of the target from the start of that section. */
1644
1645static bfd_vma
1646mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1647 asection **sec)
1648{
1649 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1650 {
1651 BFD_ASSERT (stub->h->need_fn_stub);
1652 *sec = stub->h->fn_stub;
1653 return 0;
1654 }
1655 else
1656 {
1657 *sec = stub->h->root.root.u.def.section;
1658 return stub->h->root.root.u.def.value;
1659 }
1660}
1661
861fb55a
DJ
1662/* STUB describes an la25 stub that we have decided to implement
1663 by inserting an LUI/ADDIU pair before the target function.
1664 Create the section and redirect the function symbol to it. */
1665
1666static bfd_boolean
1667mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1668 struct bfd_link_info *info)
1669{
1670 struct mips_elf_link_hash_table *htab;
1671 char *name;
1672 asection *s, *input_section;
1673 unsigned int align;
1674
1675 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1676 if (htab == NULL)
1677 return FALSE;
861fb55a
DJ
1678
1679 /* Create a unique name for the new section. */
1680 name = bfd_malloc (11 + sizeof (".text.stub."));
1681 if (name == NULL)
1682 return FALSE;
1683 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1684
1685 /* Create the section. */
8f0c309a 1686 mips_elf_get_la25_target (stub, &input_section);
861fb55a
DJ
1687 s = htab->add_stub_section (name, input_section,
1688 input_section->output_section);
1689 if (s == NULL)
1690 return FALSE;
1691
1692 /* Make sure that any padding goes before the stub. */
1693 align = input_section->alignment_power;
1694 if (!bfd_set_section_alignment (s->owner, s, align))
1695 return FALSE;
1696 if (align > 3)
1697 s->size = (1 << align) - 8;
1698
1699 /* Create a symbol for the stub. */
1700 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1701 stub->stub_section = s;
1702 stub->offset = s->size;
1703
1704 /* Allocate room for it. */
1705 s->size += 8;
1706 return TRUE;
1707}
1708
1709/* STUB describes an la25 stub that we have decided to implement
1710 with a separate trampoline. Allocate room for it and redirect
1711 the function symbol to it. */
1712
1713static bfd_boolean
1714mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1715 struct bfd_link_info *info)
1716{
1717 struct mips_elf_link_hash_table *htab;
1718 asection *s;
1719
1720 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1721 if (htab == NULL)
1722 return FALSE;
861fb55a
DJ
1723
1724 /* Create a trampoline section, if we haven't already. */
1725 s = htab->strampoline;
1726 if (s == NULL)
1727 {
1728 asection *input_section = stub->h->root.root.u.def.section;
1729 s = htab->add_stub_section (".text", NULL,
1730 input_section->output_section);
1731 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1732 return FALSE;
1733 htab->strampoline = s;
1734 }
1735
1736 /* Create a symbol for the stub. */
1737 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1738 stub->stub_section = s;
1739 stub->offset = s->size;
1740
1741 /* Allocate room for it. */
1742 s->size += 16;
1743 return TRUE;
1744}
1745
1746/* H describes a symbol that needs an la25 stub. Make sure that an
1747 appropriate stub exists and point H at it. */
1748
1749static bfd_boolean
1750mips_elf_add_la25_stub (struct bfd_link_info *info,
1751 struct mips_elf_link_hash_entry *h)
1752{
1753 struct mips_elf_link_hash_table *htab;
1754 struct mips_elf_la25_stub search, *stub;
1755 bfd_boolean use_trampoline_p;
1756 asection *s;
1757 bfd_vma value;
1758 void **slot;
1759
861fb55a
DJ
1760 /* Describe the stub we want. */
1761 search.stub_section = NULL;
1762 search.offset = 0;
1763 search.h = h;
1764
1765 /* See if we've already created an equivalent stub. */
1766 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1767 if (htab == NULL)
1768 return FALSE;
1769
861fb55a
DJ
1770 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1771 if (slot == NULL)
1772 return FALSE;
1773
1774 stub = (struct mips_elf_la25_stub *) *slot;
1775 if (stub != NULL)
1776 {
1777 /* We can reuse the existing stub. */
1778 h->la25_stub = stub;
1779 return TRUE;
1780 }
1781
1782 /* Create a permanent copy of ENTRY and add it to the hash table. */
1783 stub = bfd_malloc (sizeof (search));
1784 if (stub == NULL)
1785 return FALSE;
1786 *stub = search;
1787 *slot = stub;
1788
8f0c309a
CLT
1789 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1790 of the section and if we would need no more than 2 nops. */
1791 value = mips_elf_get_la25_target (stub, &s);
1792 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1793
861fb55a
DJ
1794 h->la25_stub = stub;
1795 return (use_trampoline_p
1796 ? mips_elf_add_la25_trampoline (stub, info)
1797 : mips_elf_add_la25_intro (stub, info));
1798}
1799
1800/* A mips_elf_link_hash_traverse callback that is called before sizing
1801 sections. DATA points to a mips_htab_traverse_info structure. */
1802
1803static bfd_boolean
1804mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1805{
1806 struct mips_htab_traverse_info *hti;
1807
1808 hti = (struct mips_htab_traverse_info *) data;
861fb55a
DJ
1809 if (!hti->info->relocatable)
1810 mips_elf_check_mips16_stubs (hti->info, h);
b49e97c9 1811
861fb55a
DJ
1812 if (mips_elf_local_pic_function_p (h))
1813 {
ba85c43e
NC
1814 /* PR 12845: If H is in a section that has been garbage
1815 collected it will have its output section set to *ABS*. */
1816 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1817 return TRUE;
1818
861fb55a
DJ
1819 /* H is a function that might need $25 to be valid on entry.
1820 If we're creating a non-PIC relocatable object, mark H as
1821 being PIC. If we're creating a non-relocatable object with
1822 non-PIC branches and jumps to H, make sure that H has an la25
1823 stub. */
1824 if (hti->info->relocatable)
1825 {
1826 if (!PIC_OBJECT_P (hti->output_bfd))
1827 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
1828 }
1829 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
1830 {
1831 hti->error = TRUE;
1832 return FALSE;
1833 }
1834 }
b34976b6 1835 return TRUE;
b49e97c9
TS
1836}
1837\f
d6f16593
MR
1838/* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1839 Most mips16 instructions are 16 bits, but these instructions
1840 are 32 bits.
1841
1842 The format of these instructions is:
1843
1844 +--------------+--------------------------------+
1845 | JALX | X| Imm 20:16 | Imm 25:21 |
1846 +--------------+--------------------------------+
1847 | Immediate 15:0 |
1848 +-----------------------------------------------+
1849
1850 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1851 Note that the immediate value in the first word is swapped.
1852
1853 When producing a relocatable object file, R_MIPS16_26 is
1854 handled mostly like R_MIPS_26. In particular, the addend is
1855 stored as a straight 26-bit value in a 32-bit instruction.
1856 (gas makes life simpler for itself by never adjusting a
1857 R_MIPS16_26 reloc to be against a section, so the addend is
1858 always zero). However, the 32 bit instruction is stored as 2
1859 16-bit values, rather than a single 32-bit value. In a
1860 big-endian file, the result is the same; in a little-endian
1861 file, the two 16-bit halves of the 32 bit value are swapped.
1862 This is so that a disassembler can recognize the jal
1863 instruction.
1864
1865 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1866 instruction stored as two 16-bit values. The addend A is the
1867 contents of the targ26 field. The calculation is the same as
1868 R_MIPS_26. When storing the calculated value, reorder the
1869 immediate value as shown above, and don't forget to store the
1870 value as two 16-bit values.
1871
1872 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1873 defined as
1874
1875 big-endian:
1876 +--------+----------------------+
1877 | | |
1878 | | targ26-16 |
1879 |31 26|25 0|
1880 +--------+----------------------+
1881
1882 little-endian:
1883 +----------+------+-------------+
1884 | | | |
1885 | sub1 | | sub2 |
1886 |0 9|10 15|16 31|
1887 +----------+--------------------+
1888 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1889 ((sub1 << 16) | sub2)).
1890
1891 When producing a relocatable object file, the calculation is
1892 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1893 When producing a fully linked file, the calculation is
1894 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1895 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1896
738e5348
RS
1897 The table below lists the other MIPS16 instruction relocations.
1898 Each one is calculated in the same way as the non-MIPS16 relocation
1899 given on the right, but using the extended MIPS16 layout of 16-bit
1900 immediate fields:
1901
1902 R_MIPS16_GPREL R_MIPS_GPREL16
1903 R_MIPS16_GOT16 R_MIPS_GOT16
1904 R_MIPS16_CALL16 R_MIPS_CALL16
1905 R_MIPS16_HI16 R_MIPS_HI16
1906 R_MIPS16_LO16 R_MIPS_LO16
1907
1908 A typical instruction will have a format like this:
d6f16593
MR
1909
1910 +--------------+--------------------------------+
1911 | EXTEND | Imm 10:5 | Imm 15:11 |
1912 +--------------+--------------------------------+
1913 | Major | rx | ry | Imm 4:0 |
1914 +--------------+--------------------------------+
1915
1916 EXTEND is the five bit value 11110. Major is the instruction
1917 opcode.
1918
738e5348
RS
1919 All we need to do here is shuffle the bits appropriately.
1920 As above, the two 16-bit halves must be swapped on a
1921 little-endian system. */
1922
1923static inline bfd_boolean
1924mips16_reloc_p (int r_type)
1925{
1926 switch (r_type)
1927 {
1928 case R_MIPS16_26:
1929 case R_MIPS16_GPREL:
1930 case R_MIPS16_GOT16:
1931 case R_MIPS16_CALL16:
1932 case R_MIPS16_HI16:
1933 case R_MIPS16_LO16:
d0f13682
CLT
1934 case R_MIPS16_TLS_GD:
1935 case R_MIPS16_TLS_LDM:
1936 case R_MIPS16_TLS_DTPREL_HI16:
1937 case R_MIPS16_TLS_DTPREL_LO16:
1938 case R_MIPS16_TLS_GOTTPREL:
1939 case R_MIPS16_TLS_TPREL_HI16:
1940 case R_MIPS16_TLS_TPREL_LO16:
738e5348
RS
1941 return TRUE;
1942
1943 default:
1944 return FALSE;
1945 }
1946}
1947
df58fc94
RS
1948/* Check if a microMIPS reloc. */
1949
1950static inline bfd_boolean
1951micromips_reloc_p (unsigned int r_type)
1952{
1953 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
1954}
1955
1956/* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
1957 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
1958 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
1959
1960static inline bfd_boolean
1961micromips_reloc_shuffle_p (unsigned int r_type)
1962{
1963 return (micromips_reloc_p (r_type)
1964 && r_type != R_MICROMIPS_PC7_S1
1965 && r_type != R_MICROMIPS_PC10_S1);
1966}
1967
738e5348
RS
1968static inline bfd_boolean
1969got16_reloc_p (int r_type)
1970{
df58fc94
RS
1971 return (r_type == R_MIPS_GOT16
1972 || r_type == R_MIPS16_GOT16
1973 || r_type == R_MICROMIPS_GOT16);
738e5348
RS
1974}
1975
1976static inline bfd_boolean
1977call16_reloc_p (int r_type)
1978{
df58fc94
RS
1979 return (r_type == R_MIPS_CALL16
1980 || r_type == R_MIPS16_CALL16
1981 || r_type == R_MICROMIPS_CALL16);
1982}
1983
1984static inline bfd_boolean
1985got_disp_reloc_p (unsigned int r_type)
1986{
1987 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
1988}
1989
1990static inline bfd_boolean
1991got_page_reloc_p (unsigned int r_type)
1992{
1993 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
1994}
1995
1996static inline bfd_boolean
1997got_ofst_reloc_p (unsigned int r_type)
1998{
1999 return r_type == R_MIPS_GOT_OFST || r_type == R_MICROMIPS_GOT_OFST;
2000}
2001
2002static inline bfd_boolean
2003got_hi16_reloc_p (unsigned int r_type)
2004{
2005 return r_type == R_MIPS_GOT_HI16 || r_type == R_MICROMIPS_GOT_HI16;
2006}
2007
2008static inline bfd_boolean
2009got_lo16_reloc_p (unsigned int r_type)
2010{
2011 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2012}
2013
2014static inline bfd_boolean
2015call_hi16_reloc_p (unsigned int r_type)
2016{
2017 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2018}
2019
2020static inline bfd_boolean
2021call_lo16_reloc_p (unsigned int r_type)
2022{
2023 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
738e5348
RS
2024}
2025
2026static inline bfd_boolean
2027hi16_reloc_p (int r_type)
2028{
df58fc94
RS
2029 return (r_type == R_MIPS_HI16
2030 || r_type == R_MIPS16_HI16
2031 || r_type == R_MICROMIPS_HI16);
738e5348 2032}
d6f16593 2033
738e5348
RS
2034static inline bfd_boolean
2035lo16_reloc_p (int r_type)
2036{
df58fc94
RS
2037 return (r_type == R_MIPS_LO16
2038 || r_type == R_MIPS16_LO16
2039 || r_type == R_MICROMIPS_LO16);
738e5348
RS
2040}
2041
2042static inline bfd_boolean
2043mips16_call_reloc_p (int r_type)
2044{
2045 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2046}
d6f16593 2047
38a7df63
CF
2048static inline bfd_boolean
2049jal_reloc_p (int r_type)
2050{
df58fc94
RS
2051 return (r_type == R_MIPS_26
2052 || r_type == R_MIPS16_26
2053 || r_type == R_MICROMIPS_26_S1);
2054}
2055
2056static inline bfd_boolean
2057micromips_branch_reloc_p (int r_type)
2058{
2059 return (r_type == R_MICROMIPS_26_S1
2060 || r_type == R_MICROMIPS_PC16_S1
2061 || r_type == R_MICROMIPS_PC10_S1
2062 || r_type == R_MICROMIPS_PC7_S1);
2063}
2064
2065static inline bfd_boolean
2066tls_gd_reloc_p (unsigned int r_type)
2067{
d0f13682
CLT
2068 return (r_type == R_MIPS_TLS_GD
2069 || r_type == R_MIPS16_TLS_GD
2070 || r_type == R_MICROMIPS_TLS_GD);
df58fc94
RS
2071}
2072
2073static inline bfd_boolean
2074tls_ldm_reloc_p (unsigned int r_type)
2075{
d0f13682
CLT
2076 return (r_type == R_MIPS_TLS_LDM
2077 || r_type == R_MIPS16_TLS_LDM
2078 || r_type == R_MICROMIPS_TLS_LDM);
df58fc94
RS
2079}
2080
2081static inline bfd_boolean
2082tls_gottprel_reloc_p (unsigned int r_type)
2083{
d0f13682
CLT
2084 return (r_type == R_MIPS_TLS_GOTTPREL
2085 || r_type == R_MIPS16_TLS_GOTTPREL
2086 || r_type == R_MICROMIPS_TLS_GOTTPREL);
38a7df63
CF
2087}
2088
d6f16593 2089void
df58fc94
RS
2090_bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2091 bfd_boolean jal_shuffle, bfd_byte *data)
d6f16593 2092{
df58fc94 2093 bfd_vma first, second, val;
d6f16593 2094
df58fc94 2095 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
d6f16593
MR
2096 return;
2097
df58fc94
RS
2098 /* Pick up the first and second halfwords of the instruction. */
2099 first = bfd_get_16 (abfd, data);
2100 second = bfd_get_16 (abfd, data + 2);
2101 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2102 val = first << 16 | second;
2103 else if (r_type != R_MIPS16_26)
2104 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2105 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
d6f16593 2106 else
df58fc94
RS
2107 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2108 | ((first & 0x1f) << 21) | second);
d6f16593
MR
2109 bfd_put_32 (abfd, val, data);
2110}
2111
2112void
df58fc94
RS
2113_bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2114 bfd_boolean jal_shuffle, bfd_byte *data)
d6f16593 2115{
df58fc94 2116 bfd_vma first, second, val;
d6f16593 2117
df58fc94 2118 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
d6f16593
MR
2119 return;
2120
2121 val = bfd_get_32 (abfd, data);
df58fc94 2122 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
d6f16593 2123 {
df58fc94
RS
2124 second = val & 0xffff;
2125 first = val >> 16;
2126 }
2127 else if (r_type != R_MIPS16_26)
2128 {
2129 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2130 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
d6f16593
MR
2131 }
2132 else
2133 {
df58fc94
RS
2134 second = val & 0xffff;
2135 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2136 | ((val >> 21) & 0x1f);
d6f16593 2137 }
df58fc94
RS
2138 bfd_put_16 (abfd, second, data + 2);
2139 bfd_put_16 (abfd, first, data);
d6f16593
MR
2140}
2141
b49e97c9 2142bfd_reloc_status_type
9719ad41
RS
2143_bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2144 arelent *reloc_entry, asection *input_section,
2145 bfd_boolean relocatable, void *data, bfd_vma gp)
b49e97c9
TS
2146{
2147 bfd_vma relocation;
a7ebbfdf 2148 bfd_signed_vma val;
30ac9238 2149 bfd_reloc_status_type status;
b49e97c9
TS
2150
2151 if (bfd_is_com_section (symbol->section))
2152 relocation = 0;
2153 else
2154 relocation = symbol->value;
2155
2156 relocation += symbol->section->output_section->vma;
2157 relocation += symbol->section->output_offset;
2158
07515404 2159 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
b49e97c9
TS
2160 return bfd_reloc_outofrange;
2161
b49e97c9 2162 /* Set val to the offset into the section or symbol. */
a7ebbfdf
TS
2163 val = reloc_entry->addend;
2164
30ac9238 2165 _bfd_mips_elf_sign_extend (val, 16);
a7ebbfdf 2166
b49e97c9 2167 /* Adjust val for the final section location and GP value. If we
1049f94e 2168 are producing relocatable output, we don't want to do this for
b49e97c9 2169 an external symbol. */
1049f94e 2170 if (! relocatable
b49e97c9
TS
2171 || (symbol->flags & BSF_SECTION_SYM) != 0)
2172 val += relocation - gp;
2173
a7ebbfdf
TS
2174 if (reloc_entry->howto->partial_inplace)
2175 {
30ac9238
RS
2176 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2177 (bfd_byte *) data
2178 + reloc_entry->address);
2179 if (status != bfd_reloc_ok)
2180 return status;
a7ebbfdf
TS
2181 }
2182 else
2183 reloc_entry->addend = val;
b49e97c9 2184
1049f94e 2185 if (relocatable)
b49e97c9 2186 reloc_entry->address += input_section->output_offset;
30ac9238
RS
2187
2188 return bfd_reloc_ok;
2189}
2190
2191/* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2192 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2193 that contains the relocation field and DATA points to the start of
2194 INPUT_SECTION. */
2195
2196struct mips_hi16
2197{
2198 struct mips_hi16 *next;
2199 bfd_byte *data;
2200 asection *input_section;
2201 arelent rel;
2202};
2203
2204/* FIXME: This should not be a static variable. */
2205
2206static struct mips_hi16 *mips_hi16_list;
2207
2208/* A howto special_function for REL *HI16 relocations. We can only
2209 calculate the correct value once we've seen the partnering
2210 *LO16 relocation, so just save the information for later.
2211
2212 The ABI requires that the *LO16 immediately follow the *HI16.
2213 However, as a GNU extension, we permit an arbitrary number of
2214 *HI16s to be associated with a single *LO16. This significantly
2215 simplies the relocation handling in gcc. */
2216
2217bfd_reloc_status_type
2218_bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2219 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2220 asection *input_section, bfd *output_bfd,
2221 char **error_message ATTRIBUTE_UNUSED)
2222{
2223 struct mips_hi16 *n;
2224
07515404 2225 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2226 return bfd_reloc_outofrange;
2227
2228 n = bfd_malloc (sizeof *n);
2229 if (n == NULL)
2230 return bfd_reloc_outofrange;
2231
2232 n->next = mips_hi16_list;
2233 n->data = data;
2234 n->input_section = input_section;
2235 n->rel = *reloc_entry;
2236 mips_hi16_list = n;
2237
2238 if (output_bfd != NULL)
2239 reloc_entry->address += input_section->output_offset;
2240
2241 return bfd_reloc_ok;
2242}
2243
738e5348 2244/* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
30ac9238
RS
2245 like any other 16-bit relocation when applied to global symbols, but is
2246 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2247
2248bfd_reloc_status_type
2249_bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2250 void *data, asection *input_section,
2251 bfd *output_bfd, char **error_message)
2252{
2253 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2254 || bfd_is_und_section (bfd_get_section (symbol))
2255 || bfd_is_com_section (bfd_get_section (symbol)))
2256 /* The relocation is against a global symbol. */
2257 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2258 input_section, output_bfd,
2259 error_message);
2260
2261 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2262 input_section, output_bfd, error_message);
2263}
2264
2265/* A howto special_function for REL *LO16 relocations. The *LO16 itself
2266 is a straightforward 16 bit inplace relocation, but we must deal with
2267 any partnering high-part relocations as well. */
2268
2269bfd_reloc_status_type
2270_bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2271 void *data, asection *input_section,
2272 bfd *output_bfd, char **error_message)
2273{
2274 bfd_vma vallo;
d6f16593 2275 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
30ac9238 2276
07515404 2277 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2278 return bfd_reloc_outofrange;
2279
df58fc94 2280 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
d6f16593 2281 location);
df58fc94
RS
2282 vallo = bfd_get_32 (abfd, location);
2283 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2284 location);
d6f16593 2285
30ac9238
RS
2286 while (mips_hi16_list != NULL)
2287 {
2288 bfd_reloc_status_type ret;
2289 struct mips_hi16 *hi;
2290
2291 hi = mips_hi16_list;
2292
738e5348
RS
2293 /* R_MIPS*_GOT16 relocations are something of a special case. We
2294 want to install the addend in the same way as for a R_MIPS*_HI16
30ac9238
RS
2295 relocation (with a rightshift of 16). However, since GOT16
2296 relocations can also be used with global symbols, their howto
2297 has a rightshift of 0. */
2298 if (hi->rel.howto->type == R_MIPS_GOT16)
2299 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
738e5348
RS
2300 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2301 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
df58fc94
RS
2302 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2303 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
30ac9238
RS
2304
2305 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2306 carry or borrow will induce a change of +1 or -1 in the high part. */
2307 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2308
30ac9238
RS
2309 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2310 hi->input_section, output_bfd,
2311 error_message);
2312 if (ret != bfd_reloc_ok)
2313 return ret;
2314
2315 mips_hi16_list = hi->next;
2316 free (hi);
2317 }
2318
2319 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2320 input_section, output_bfd,
2321 error_message);
2322}
2323
2324/* A generic howto special_function. This calculates and installs the
2325 relocation itself, thus avoiding the oft-discussed problems in
2326 bfd_perform_relocation and bfd_install_relocation. */
2327
2328bfd_reloc_status_type
2329_bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2330 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2331 asection *input_section, bfd *output_bfd,
2332 char **error_message ATTRIBUTE_UNUSED)
2333{
2334 bfd_signed_vma val;
2335 bfd_reloc_status_type status;
2336 bfd_boolean relocatable;
2337
2338 relocatable = (output_bfd != NULL);
2339
07515404 2340 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2341 return bfd_reloc_outofrange;
2342
2343 /* Build up the field adjustment in VAL. */
2344 val = 0;
2345 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2346 {
2347 /* Either we're calculating the final field value or we have a
2348 relocation against a section symbol. Add in the section's
2349 offset or address. */
2350 val += symbol->section->output_section->vma;
2351 val += symbol->section->output_offset;
2352 }
2353
2354 if (!relocatable)
2355 {
2356 /* We're calculating the final field value. Add in the symbol's value
2357 and, if pc-relative, subtract the address of the field itself. */
2358 val += symbol->value;
2359 if (reloc_entry->howto->pc_relative)
2360 {
2361 val -= input_section->output_section->vma;
2362 val -= input_section->output_offset;
2363 val -= reloc_entry->address;
2364 }
2365 }
2366
2367 /* VAL is now the final adjustment. If we're keeping this relocation
2368 in the output file, and if the relocation uses a separate addend,
2369 we just need to add VAL to that addend. Otherwise we need to add
2370 VAL to the relocation field itself. */
2371 if (relocatable && !reloc_entry->howto->partial_inplace)
2372 reloc_entry->addend += val;
2373 else
2374 {
d6f16593
MR
2375 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2376
30ac9238
RS
2377 /* Add in the separate addend, if any. */
2378 val += reloc_entry->addend;
2379
2380 /* Add VAL to the relocation field. */
df58fc94
RS
2381 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2382 location);
30ac9238 2383 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
d6f16593 2384 location);
df58fc94
RS
2385 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2386 location);
d6f16593 2387
30ac9238
RS
2388 if (status != bfd_reloc_ok)
2389 return status;
2390 }
2391
2392 if (relocatable)
2393 reloc_entry->address += input_section->output_offset;
b49e97c9
TS
2394
2395 return bfd_reloc_ok;
2396}
2397\f
2398/* Swap an entry in a .gptab section. Note that these routines rely
2399 on the equivalence of the two elements of the union. */
2400
2401static void
9719ad41
RS
2402bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2403 Elf32_gptab *in)
b49e97c9
TS
2404{
2405 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2406 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2407}
2408
2409static void
9719ad41
RS
2410bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2411 Elf32_External_gptab *ex)
b49e97c9
TS
2412{
2413 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2414 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2415}
2416
2417static void
9719ad41
RS
2418bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2419 Elf32_External_compact_rel *ex)
b49e97c9
TS
2420{
2421 H_PUT_32 (abfd, in->id1, ex->id1);
2422 H_PUT_32 (abfd, in->num, ex->num);
2423 H_PUT_32 (abfd, in->id2, ex->id2);
2424 H_PUT_32 (abfd, in->offset, ex->offset);
2425 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2426 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2427}
2428
2429static void
9719ad41
RS
2430bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2431 Elf32_External_crinfo *ex)
b49e97c9
TS
2432{
2433 unsigned long l;
2434
2435 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2436 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2437 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2438 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2439 H_PUT_32 (abfd, l, ex->info);
2440 H_PUT_32 (abfd, in->konst, ex->konst);
2441 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2442}
b49e97c9
TS
2443\f
2444/* A .reginfo section holds a single Elf32_RegInfo structure. These
2445 routines swap this structure in and out. They are used outside of
2446 BFD, so they are globally visible. */
2447
2448void
9719ad41
RS
2449bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2450 Elf32_RegInfo *in)
b49e97c9
TS
2451{
2452 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2453 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2454 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2455 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2456 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2457 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2458}
2459
2460void
9719ad41
RS
2461bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2462 Elf32_External_RegInfo *ex)
b49e97c9
TS
2463{
2464 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2465 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2466 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2467 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2468 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2469 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2470}
2471
2472/* In the 64 bit ABI, the .MIPS.options section holds register
2473 information in an Elf64_Reginfo structure. These routines swap
2474 them in and out. They are globally visible because they are used
2475 outside of BFD. These routines are here so that gas can call them
2476 without worrying about whether the 64 bit ABI has been included. */
2477
2478void
9719ad41
RS
2479bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2480 Elf64_Internal_RegInfo *in)
b49e97c9
TS
2481{
2482 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2483 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2484 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2485 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2486 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2487 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2488 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2489}
2490
2491void
9719ad41
RS
2492bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2493 Elf64_External_RegInfo *ex)
b49e97c9
TS
2494{
2495 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2496 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2497 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2498 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2499 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2500 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2501 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2502}
2503
2504/* Swap in an options header. */
2505
2506void
9719ad41
RS
2507bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2508 Elf_Internal_Options *in)
b49e97c9
TS
2509{
2510 in->kind = H_GET_8 (abfd, ex->kind);
2511 in->size = H_GET_8 (abfd, ex->size);
2512 in->section = H_GET_16 (abfd, ex->section);
2513 in->info = H_GET_32 (abfd, ex->info);
2514}
2515
2516/* Swap out an options header. */
2517
2518void
9719ad41
RS
2519bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2520 Elf_External_Options *ex)
b49e97c9
TS
2521{
2522 H_PUT_8 (abfd, in->kind, ex->kind);
2523 H_PUT_8 (abfd, in->size, ex->size);
2524 H_PUT_16 (abfd, in->section, ex->section);
2525 H_PUT_32 (abfd, in->info, ex->info);
2526}
2527\f
2528/* This function is called via qsort() to sort the dynamic relocation
2529 entries by increasing r_symndx value. */
2530
2531static int
9719ad41 2532sort_dynamic_relocs (const void *arg1, const void *arg2)
b49e97c9 2533{
947216bf
AM
2534 Elf_Internal_Rela int_reloc1;
2535 Elf_Internal_Rela int_reloc2;
6870500c 2536 int diff;
b49e97c9 2537
947216bf
AM
2538 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2539 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
b49e97c9 2540
6870500c
RS
2541 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2542 if (diff != 0)
2543 return diff;
2544
2545 if (int_reloc1.r_offset < int_reloc2.r_offset)
2546 return -1;
2547 if (int_reloc1.r_offset > int_reloc2.r_offset)
2548 return 1;
2549 return 0;
b49e97c9
TS
2550}
2551
f4416af6
AO
2552/* Like sort_dynamic_relocs, but used for elf64 relocations. */
2553
2554static int
7e3102a7
AM
2555sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2556 const void *arg2 ATTRIBUTE_UNUSED)
f4416af6 2557{
7e3102a7 2558#ifdef BFD64
f4416af6
AO
2559 Elf_Internal_Rela int_reloc1[3];
2560 Elf_Internal_Rela int_reloc2[3];
2561
2562 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2563 (reldyn_sorting_bfd, arg1, int_reloc1);
2564 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2565 (reldyn_sorting_bfd, arg2, int_reloc2);
2566
6870500c
RS
2567 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2568 return -1;
2569 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2570 return 1;
2571
2572 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2573 return -1;
2574 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2575 return 1;
2576 return 0;
7e3102a7
AM
2577#else
2578 abort ();
2579#endif
f4416af6
AO
2580}
2581
2582
b49e97c9
TS
2583/* This routine is used to write out ECOFF debugging external symbol
2584 information. It is called via mips_elf_link_hash_traverse. The
2585 ECOFF external symbol information must match the ELF external
2586 symbol information. Unfortunately, at this point we don't know
2587 whether a symbol is required by reloc information, so the two
2588 tables may wind up being different. We must sort out the external
2589 symbol information before we can set the final size of the .mdebug
2590 section, and we must set the size of the .mdebug section before we
2591 can relocate any sections, and we can't know which symbols are
2592 required by relocation until we relocate the sections.
2593 Fortunately, it is relatively unlikely that any symbol will be
2594 stripped but required by a reloc. In particular, it can not happen
2595 when generating a final executable. */
2596
b34976b6 2597static bfd_boolean
9719ad41 2598mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 2599{
9719ad41 2600 struct extsym_info *einfo = data;
b34976b6 2601 bfd_boolean strip;
b49e97c9
TS
2602 asection *sec, *output_section;
2603
b49e97c9 2604 if (h->root.indx == -2)
b34976b6 2605 strip = FALSE;
f5385ebf 2606 else if ((h->root.def_dynamic
77cfaee6
AM
2607 || h->root.ref_dynamic
2608 || h->root.type == bfd_link_hash_new)
f5385ebf
AM
2609 && !h->root.def_regular
2610 && !h->root.ref_regular)
b34976b6 2611 strip = TRUE;
b49e97c9
TS
2612 else if (einfo->info->strip == strip_all
2613 || (einfo->info->strip == strip_some
2614 && bfd_hash_lookup (einfo->info->keep_hash,
2615 h->root.root.root.string,
b34976b6
AM
2616 FALSE, FALSE) == NULL))
2617 strip = TRUE;
b49e97c9 2618 else
b34976b6 2619 strip = FALSE;
b49e97c9
TS
2620
2621 if (strip)
b34976b6 2622 return TRUE;
b49e97c9
TS
2623
2624 if (h->esym.ifd == -2)
2625 {
2626 h->esym.jmptbl = 0;
2627 h->esym.cobol_main = 0;
2628 h->esym.weakext = 0;
2629 h->esym.reserved = 0;
2630 h->esym.ifd = ifdNil;
2631 h->esym.asym.value = 0;
2632 h->esym.asym.st = stGlobal;
2633
2634 if (h->root.root.type == bfd_link_hash_undefined
2635 || h->root.root.type == bfd_link_hash_undefweak)
2636 {
2637 const char *name;
2638
2639 /* Use undefined class. Also, set class and type for some
2640 special symbols. */
2641 name = h->root.root.root.string;
2642 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2643 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2644 {
2645 h->esym.asym.sc = scData;
2646 h->esym.asym.st = stLabel;
2647 h->esym.asym.value = 0;
2648 }
2649 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2650 {
2651 h->esym.asym.sc = scAbs;
2652 h->esym.asym.st = stLabel;
2653 h->esym.asym.value =
2654 mips_elf_hash_table (einfo->info)->procedure_count;
2655 }
4a14403c 2656 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
b49e97c9
TS
2657 {
2658 h->esym.asym.sc = scAbs;
2659 h->esym.asym.st = stLabel;
2660 h->esym.asym.value = elf_gp (einfo->abfd);
2661 }
2662 else
2663 h->esym.asym.sc = scUndefined;
2664 }
2665 else if (h->root.root.type != bfd_link_hash_defined
2666 && h->root.root.type != bfd_link_hash_defweak)
2667 h->esym.asym.sc = scAbs;
2668 else
2669 {
2670 const char *name;
2671
2672 sec = h->root.root.u.def.section;
2673 output_section = sec->output_section;
2674
2675 /* When making a shared library and symbol h is the one from
2676 the another shared library, OUTPUT_SECTION may be null. */
2677 if (output_section == NULL)
2678 h->esym.asym.sc = scUndefined;
2679 else
2680 {
2681 name = bfd_section_name (output_section->owner, output_section);
2682
2683 if (strcmp (name, ".text") == 0)
2684 h->esym.asym.sc = scText;
2685 else if (strcmp (name, ".data") == 0)
2686 h->esym.asym.sc = scData;
2687 else if (strcmp (name, ".sdata") == 0)
2688 h->esym.asym.sc = scSData;
2689 else if (strcmp (name, ".rodata") == 0
2690 || strcmp (name, ".rdata") == 0)
2691 h->esym.asym.sc = scRData;
2692 else if (strcmp (name, ".bss") == 0)
2693 h->esym.asym.sc = scBss;
2694 else if (strcmp (name, ".sbss") == 0)
2695 h->esym.asym.sc = scSBss;
2696 else if (strcmp (name, ".init") == 0)
2697 h->esym.asym.sc = scInit;
2698 else if (strcmp (name, ".fini") == 0)
2699 h->esym.asym.sc = scFini;
2700 else
2701 h->esym.asym.sc = scAbs;
2702 }
2703 }
2704
2705 h->esym.asym.reserved = 0;
2706 h->esym.asym.index = indexNil;
2707 }
2708
2709 if (h->root.root.type == bfd_link_hash_common)
2710 h->esym.asym.value = h->root.root.u.c.size;
2711 else if (h->root.root.type == bfd_link_hash_defined
2712 || h->root.root.type == bfd_link_hash_defweak)
2713 {
2714 if (h->esym.asym.sc == scCommon)
2715 h->esym.asym.sc = scBss;
2716 else if (h->esym.asym.sc == scSCommon)
2717 h->esym.asym.sc = scSBss;
2718
2719 sec = h->root.root.u.def.section;
2720 output_section = sec->output_section;
2721 if (output_section != NULL)
2722 h->esym.asym.value = (h->root.root.u.def.value
2723 + sec->output_offset
2724 + output_section->vma);
2725 else
2726 h->esym.asym.value = 0;
2727 }
33bb52fb 2728 else
b49e97c9
TS
2729 {
2730 struct mips_elf_link_hash_entry *hd = h;
b49e97c9
TS
2731
2732 while (hd->root.root.type == bfd_link_hash_indirect)
33bb52fb 2733 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
b49e97c9 2734
33bb52fb 2735 if (hd->needs_lazy_stub)
b49e97c9
TS
2736 {
2737 /* Set type and value for a symbol with a function stub. */
2738 h->esym.asym.st = stProc;
2739 sec = hd->root.root.u.def.section;
2740 if (sec == NULL)
2741 h->esym.asym.value = 0;
2742 else
2743 {
2744 output_section = sec->output_section;
2745 if (output_section != NULL)
2746 h->esym.asym.value = (hd->root.plt.offset
2747 + sec->output_offset
2748 + output_section->vma);
2749 else
2750 h->esym.asym.value = 0;
2751 }
b49e97c9
TS
2752 }
2753 }
2754
2755 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2756 h->root.root.root.string,
2757 &h->esym))
2758 {
b34976b6
AM
2759 einfo->failed = TRUE;
2760 return FALSE;
b49e97c9
TS
2761 }
2762
b34976b6 2763 return TRUE;
b49e97c9
TS
2764}
2765
2766/* A comparison routine used to sort .gptab entries. */
2767
2768static int
9719ad41 2769gptab_compare (const void *p1, const void *p2)
b49e97c9 2770{
9719ad41
RS
2771 const Elf32_gptab *a1 = p1;
2772 const Elf32_gptab *a2 = p2;
b49e97c9
TS
2773
2774 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2775}
2776\f
b15e6682 2777/* Functions to manage the got entry hash table. */
f4416af6
AO
2778
2779/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2780 hash number. */
2781
2782static INLINE hashval_t
9719ad41 2783mips_elf_hash_bfd_vma (bfd_vma addr)
f4416af6
AO
2784{
2785#ifdef BFD64
2786 return addr + (addr >> 32);
2787#else
2788 return addr;
2789#endif
2790}
2791
2792/* got_entries only match if they're identical, except for gotidx, so
2793 use all fields to compute the hash, and compare the appropriate
2794 union members. */
2795
b15e6682 2796static int
9719ad41 2797mips_elf_got_entry_eq (const void *entry1, const void *entry2)
b15e6682
AO
2798{
2799 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2800 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2801
e641e783
RS
2802 return (e1->abfd == e2->abfd
2803 && e1->symndx == e2->symndx
2804 && (e1->tls_type & GOT_TLS_TYPE) == (e2->tls_type & GOT_TLS_TYPE)
2805 && (!e1->abfd ? e1->d.address == e2->d.address
2806 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
2807 : e1->d.h == e2->d.h));
f4416af6
AO
2808}
2809
2810/* multi_got_entries are still a match in the case of global objects,
2811 even if the input bfd in which they're referenced differs, so the
2812 hash computation and compare functions are adjusted
2813 accordingly. */
2814
2815static hashval_t
d9bf376d 2816mips_elf_got_entry_hash (const void *entry_)
f4416af6
AO
2817{
2818 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2819
e641e783
RS
2820 return (entry->symndx
2821 + (((entry->tls_type & GOT_TLS_TYPE) == GOT_TLS_LDM) << 18)
2822 + ((entry->tls_type & GOT_TLS_TYPE) == GOT_TLS_LDM ? 0
2823 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
2824 : entry->symndx >= 0 ? (entry->abfd->id
2825 + mips_elf_hash_bfd_vma (entry->d.addend))
2826 : entry->d.h->root.root.root.hash));
f4416af6
AO
2827}
2828
2829static int
9719ad41 2830mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
2831{
2832 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2833 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2834
e641e783
RS
2835 return (e1->symndx == e2->symndx
2836 && (e1->tls_type & GOT_TLS_TYPE) == (e2->tls_type & GOT_TLS_TYPE)
2837 && ((e1->tls_type & GOT_TLS_TYPE) == GOT_TLS_LDM ? TRUE
2838 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
2839 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
2840 && e1->d.addend == e2->d.addend)
2841 : e2->abfd && e1->d.h == e2->d.h));
b15e6682 2842}
c224138d
RS
2843
2844static hashval_t
2845mips_got_page_entry_hash (const void *entry_)
2846{
2847 const struct mips_got_page_entry *entry;
2848
2849 entry = (const struct mips_got_page_entry *) entry_;
2850 return entry->abfd->id + entry->symndx;
2851}
2852
2853static int
2854mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
2855{
2856 const struct mips_got_page_entry *entry1, *entry2;
2857
2858 entry1 = (const struct mips_got_page_entry *) entry1_;
2859 entry2 = (const struct mips_got_page_entry *) entry2_;
2860 return entry1->abfd == entry2->abfd && entry1->symndx == entry2->symndx;
2861}
b15e6682 2862\f
5334aa52
RS
2863/* Create and return a new mips_got_info structure. MASTER_GOT_P
2864 is true if this is the master GOT rather than a multigot. */
2865
2866static struct mips_got_info *
2867mips_elf_create_got_info (bfd *abfd, bfd_boolean master_got_p)
2868{
2869 struct mips_got_info *g;
2870
2871 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
2872 if (g == NULL)
2873 return NULL;
2874
2875 g->tls_ldm_offset = MINUS_ONE;
2876 if (master_got_p)
2877 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
2878 mips_elf_got_entry_eq, NULL);
2879 else
d9bf376d 2880 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
5334aa52
RS
2881 mips_elf_multi_got_entry_eq, NULL);
2882 if (g->got_entries == NULL)
2883 return NULL;
2884
2885 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
2886 mips_got_page_entry_eq, NULL);
2887 if (g->got_page_entries == NULL)
2888 return NULL;
2889
2890 return g;
2891}
2892
0a44bf69
RS
2893/* Return the dynamic relocation section. If it doesn't exist, try to
2894 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2895 if creation fails. */
f4416af6
AO
2896
2897static asection *
0a44bf69 2898mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
f4416af6 2899{
0a44bf69 2900 const char *dname;
f4416af6 2901 asection *sreloc;
0a44bf69 2902 bfd *dynobj;
f4416af6 2903
0a44bf69
RS
2904 dname = MIPS_ELF_REL_DYN_NAME (info);
2905 dynobj = elf_hash_table (info)->dynobj;
3d4d4302 2906 sreloc = bfd_get_linker_section (dynobj, dname);
f4416af6
AO
2907 if (sreloc == NULL && create_p)
2908 {
3d4d4302
AM
2909 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
2910 (SEC_ALLOC
2911 | SEC_LOAD
2912 | SEC_HAS_CONTENTS
2913 | SEC_IN_MEMORY
2914 | SEC_LINKER_CREATED
2915 | SEC_READONLY));
f4416af6 2916 if (sreloc == NULL
f4416af6 2917 || ! bfd_set_section_alignment (dynobj, sreloc,
d80dcc6a 2918 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
f4416af6
AO
2919 return NULL;
2920 }
2921 return sreloc;
2922}
2923
e641e783
RS
2924/* Return the GOT_TLS_* type required by relocation type R_TYPE. */
2925
2926static int
2927mips_elf_reloc_tls_type (unsigned int r_type)
2928{
2929 if (tls_gd_reloc_p (r_type))
2930 return GOT_TLS_GD;
2931
2932 if (tls_ldm_reloc_p (r_type))
2933 return GOT_TLS_LDM;
2934
2935 if (tls_gottprel_reloc_p (r_type))
2936 return GOT_TLS_IE;
2937
2938 return GOT_NORMAL;
2939}
2940
2941/* Return the number of GOT slots needed for GOT TLS type TYPE. */
2942
2943static int
2944mips_tls_got_entries (unsigned int type)
2945{
2946 switch (type)
2947 {
2948 case GOT_TLS_GD:
2949 case GOT_TLS_LDM:
2950 return 2;
2951
2952 case GOT_TLS_IE:
2953 return 1;
2954
2955 case GOT_NORMAL:
2956 return 0;
2957 }
2958 abort ();
2959}
2960
0f20cc35
DJ
2961/* Count the number of relocations needed for a TLS GOT entry, with
2962 access types from TLS_TYPE, and symbol H (or a local symbol if H
2963 is NULL). */
2964
2965static int
2966mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2967 struct elf_link_hash_entry *h)
2968{
2969 int indx = 0;
0f20cc35
DJ
2970 bfd_boolean need_relocs = FALSE;
2971 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2972
2973 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2974 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2975 indx = h->dynindx;
2976
2977 if ((info->shared || indx != 0)
2978 && (h == NULL
2979 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2980 || h->root.type != bfd_link_hash_undefweak))
2981 need_relocs = TRUE;
2982
2983 if (!need_relocs)
e641e783 2984 return 0;
0f20cc35 2985
e641e783 2986 switch (tls_type & GOT_TLS_TYPE)
0f20cc35 2987 {
e641e783
RS
2988 case GOT_TLS_GD:
2989 return indx != 0 ? 2 : 1;
0f20cc35 2990
e641e783
RS
2991 case GOT_TLS_IE:
2992 return 1;
0f20cc35 2993
e641e783
RS
2994 case GOT_TLS_LDM:
2995 return info->shared ? 1 : 0;
0f20cc35 2996
e641e783
RS
2997 default:
2998 return 0;
2999 }
0f20cc35
DJ
3000}
3001
3002/* Count the number of TLS relocations required for the GOT entry in
3003 ARG1, if it describes a local symbol. */
3004
3005static int
3006mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
3007{
3008 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
3009 struct mips_elf_count_tls_arg *arg = arg2;
3010
3011 if (entry->abfd != NULL && entry->symndx != -1)
3012 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
3013
3014 return 1;
3015}
3016
3017/* Count the number of TLS GOT entries required for the global (or
3018 forced-local) symbol in ARG1. */
3019
3020static int
3021mips_elf_count_global_tls_entries (void *arg1, void *arg2)
3022{
3023 struct mips_elf_link_hash_entry *hm
3024 = (struct mips_elf_link_hash_entry *) arg1;
3025 struct mips_elf_count_tls_arg *arg = arg2;
3026
1fd20d70
RS
3027 if (hm->root.root.type == bfd_link_hash_indirect
3028 || hm->root.root.type == bfd_link_hash_warning)
3029 return 1;
3030
e641e783 3031 if (hm->tls_gd_type)
0f20cc35 3032 arg->needed += 2;
e641e783 3033 if (hm->tls_ie_type)
0f20cc35
DJ
3034 arg->needed += 1;
3035
3036 return 1;
3037}
3038
3039/* Count the number of TLS relocations required for the global (or
3040 forced-local) symbol in ARG1. */
3041
3042static int
3043mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
3044{
3045 struct mips_elf_link_hash_entry *hm
3046 = (struct mips_elf_link_hash_entry *) arg1;
3047 struct mips_elf_count_tls_arg *arg = arg2;
3048
1fd20d70
RS
3049 if (hm->root.root.type == bfd_link_hash_indirect
3050 || hm->root.root.type == bfd_link_hash_warning)
3051 return 1;
3052
e641e783
RS
3053 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_ie_type, &hm->root);
3054 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_gd_type, &hm->root);
0f20cc35
DJ
3055
3056 return 1;
3057}
3058
3059/* Output a simple dynamic relocation into SRELOC. */
3060
3061static void
3062mips_elf_output_dynamic_relocation (bfd *output_bfd,
3063 asection *sreloc,
861fb55a 3064 unsigned long reloc_index,
0f20cc35
DJ
3065 unsigned long indx,
3066 int r_type,
3067 bfd_vma offset)
3068{
3069 Elf_Internal_Rela rel[3];
3070
3071 memset (rel, 0, sizeof (rel));
3072
3073 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3074 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3075
3076 if (ABI_64_P (output_bfd))
3077 {
3078 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3079 (output_bfd, &rel[0],
3080 (sreloc->contents
861fb55a 3081 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
0f20cc35
DJ
3082 }
3083 else
3084 bfd_elf32_swap_reloc_out
3085 (output_bfd, &rel[0],
3086 (sreloc->contents
861fb55a 3087 + reloc_index * sizeof (Elf32_External_Rel)));
0f20cc35
DJ
3088}
3089
3090/* Initialize a set of TLS GOT entries for one symbol. */
3091
3092static void
3093mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
3094 unsigned char *tls_type_p,
3095 struct bfd_link_info *info,
3096 struct mips_elf_link_hash_entry *h,
3097 bfd_vma value)
3098{
23cc69b6 3099 struct mips_elf_link_hash_table *htab;
0f20cc35
DJ
3100 int indx;
3101 asection *sreloc, *sgot;
e641e783 3102 bfd_vma got_offset2;
0f20cc35
DJ
3103 bfd_boolean need_relocs = FALSE;
3104
23cc69b6 3105 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3106 if (htab == NULL)
3107 return;
3108
23cc69b6 3109 sgot = htab->sgot;
0f20cc35
DJ
3110
3111 indx = 0;
3112 if (h != NULL)
3113 {
3114 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3115
3116 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
3117 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3118 indx = h->root.dynindx;
3119 }
3120
3121 if (*tls_type_p & GOT_TLS_DONE)
3122 return;
3123
3124 if ((info->shared || indx != 0)
3125 && (h == NULL
3126 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3127 || h->root.type != bfd_link_hash_undefweak))
3128 need_relocs = TRUE;
3129
3130 /* MINUS_ONE means the symbol is not defined in this object. It may not
3131 be defined at all; assume that the value doesn't matter in that
3132 case. Otherwise complain if we would use the value. */
3133 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3134 || h->root.root.type == bfd_link_hash_undefweak);
3135
3136 /* Emit necessary relocations. */
0a44bf69 3137 sreloc = mips_elf_rel_dyn_section (info, FALSE);
0f20cc35 3138
e641e783 3139 switch (*tls_type_p & GOT_TLS_TYPE)
0f20cc35 3140 {
e641e783
RS
3141 case GOT_TLS_GD:
3142 /* General Dynamic. */
3143 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
0f20cc35
DJ
3144
3145 if (need_relocs)
3146 {
3147 mips_elf_output_dynamic_relocation
861fb55a 3148 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35 3149 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
e641e783 3150 sgot->output_offset + sgot->output_section->vma + got_offset);
0f20cc35
DJ
3151
3152 if (indx)
3153 mips_elf_output_dynamic_relocation
861fb55a 3154 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35 3155 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
e641e783 3156 sgot->output_offset + sgot->output_section->vma + got_offset2);
0f20cc35
DJ
3157 else
3158 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
e641e783 3159 sgot->contents + got_offset2);
0f20cc35
DJ
3160 }
3161 else
3162 {
3163 MIPS_ELF_PUT_WORD (abfd, 1,
e641e783 3164 sgot->contents + got_offset);
0f20cc35 3165 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
e641e783 3166 sgot->contents + got_offset2);
0f20cc35 3167 }
e641e783 3168 break;
0f20cc35 3169
e641e783
RS
3170 case GOT_TLS_IE:
3171 /* Initial Exec model. */
0f20cc35
DJ
3172 if (need_relocs)
3173 {
3174 if (indx == 0)
3175 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
e641e783 3176 sgot->contents + got_offset);
0f20cc35
DJ
3177 else
3178 MIPS_ELF_PUT_WORD (abfd, 0,
e641e783 3179 sgot->contents + got_offset);
0f20cc35
DJ
3180
3181 mips_elf_output_dynamic_relocation
861fb55a 3182 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35 3183 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
e641e783 3184 sgot->output_offset + sgot->output_section->vma + got_offset);
0f20cc35
DJ
3185 }
3186 else
3187 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
e641e783
RS
3188 sgot->contents + got_offset);
3189 break;
0f20cc35 3190
e641e783 3191 case GOT_TLS_LDM:
0f20cc35
DJ
3192 /* The initial offset is zero, and the LD offsets will include the
3193 bias by DTP_OFFSET. */
3194 MIPS_ELF_PUT_WORD (abfd, 0,
3195 sgot->contents + got_offset
3196 + MIPS_ELF_GOT_SIZE (abfd));
3197
3198 if (!info->shared)
3199 MIPS_ELF_PUT_WORD (abfd, 1,
3200 sgot->contents + got_offset);
3201 else
3202 mips_elf_output_dynamic_relocation
861fb55a 3203 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35
DJ
3204 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3205 sgot->output_offset + sgot->output_section->vma + got_offset);
e641e783
RS
3206 break;
3207
3208 default:
3209 abort ();
0f20cc35
DJ
3210 }
3211
3212 *tls_type_p |= GOT_TLS_DONE;
3213}
3214
e641e783
RS
3215/* Return the GOT index to use for a relocation against H using the
3216 TLS model in *TLS_TYPE. The GOT entries for this symbol/model
3217 combination start at GOT_INDEX into ABFD's GOT. This function
3218 initializes the GOT entries and corresponding relocations. */
0f20cc35
DJ
3219
3220static bfd_vma
3221mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
e641e783 3222 struct bfd_link_info *info,
0f20cc35
DJ
3223 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
3224{
0f20cc35 3225 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
e641e783
RS
3226 return got_index;
3227}
0f20cc35 3228
e641e783
RS
3229/* Return the GOT index to use for a relocation of type R_TYPE against H
3230 in ABFD. */
0f20cc35 3231
e641e783
RS
3232static bfd_vma
3233mips_tls_single_got_index (bfd *abfd, int r_type, struct bfd_link_info *info,
3234 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
3235{
3236 if (tls_gottprel_reloc_p (r_type))
3237 return mips_tls_got_index (abfd, h->tls_ie_got_offset, &h->tls_ie_type,
3238 info, h, symbol);
df58fc94 3239 if (tls_gd_reloc_p (r_type))
e641e783
RS
3240 return mips_tls_got_index (abfd, h->tls_gd_got_offset, &h->tls_gd_type,
3241 info, h, symbol);
3242 abort ();
0f20cc35
DJ
3243}
3244
0a44bf69
RS
3245/* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3246 for global symbol H. .got.plt comes before the GOT, so the offset
3247 will be negative. */
3248
3249static bfd_vma
3250mips_elf_gotplt_index (struct bfd_link_info *info,
3251 struct elf_link_hash_entry *h)
3252{
3253 bfd_vma plt_index, got_address, got_value;
3254 struct mips_elf_link_hash_table *htab;
3255
3256 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3257 BFD_ASSERT (htab != NULL);
3258
0a44bf69
RS
3259 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
3260
861fb55a
DJ
3261 /* This function only works for VxWorks, because a non-VxWorks .got.plt
3262 section starts with reserved entries. */
3263 BFD_ASSERT (htab->is_vxworks);
3264
0a44bf69
RS
3265 /* Calculate the index of the symbol's PLT entry. */
3266 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
3267
3268 /* Calculate the address of the associated .got.plt entry. */
3269 got_address = (htab->sgotplt->output_section->vma
3270 + htab->sgotplt->output_offset
3271 + plt_index * 4);
3272
3273 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3274 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3275 + htab->root.hgot->root.u.def.section->output_offset
3276 + htab->root.hgot->root.u.def.value);
3277
3278 return got_address - got_value;
3279}
3280
5c18022e 3281/* Return the GOT offset for address VALUE. If there is not yet a GOT
0a44bf69
RS
3282 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3283 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3284 offset can be found. */
b49e97c9
TS
3285
3286static bfd_vma
9719ad41 3287mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3288 bfd_vma value, unsigned long r_symndx,
0f20cc35 3289 struct mips_elf_link_hash_entry *h, int r_type)
b49e97c9 3290{
a8028dd0 3291 struct mips_elf_link_hash_table *htab;
b15e6682 3292 struct mips_got_entry *entry;
b49e97c9 3293
a8028dd0 3294 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3295 BFD_ASSERT (htab != NULL);
3296
a8028dd0
RS
3297 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3298 r_symndx, h, r_type);
0f20cc35 3299 if (!entry)
b15e6682 3300 return MINUS_ONE;
0f20cc35 3301
e641e783 3302 if (entry->tls_type)
ead49a57 3303 {
a8028dd0 3304 if (entry->symndx == -1 && htab->got_info->next == NULL)
ead49a57
RS
3305 /* A type (3) entry in the single-GOT case. We use the symbol's
3306 hash table entry to track the index. */
e641e783 3307 return mips_tls_single_got_index (abfd, r_type, info, h, value);
ead49a57
RS
3308 else
3309 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
e641e783 3310 info, h, value);
ead49a57 3311 }
0f20cc35
DJ
3312 else
3313 return entry->gotidx;
b49e97c9
TS
3314}
3315
3316/* Returns the GOT index for the global symbol indicated by H. */
3317
3318static bfd_vma
0f20cc35
DJ
3319mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
3320 int r_type, struct bfd_link_info *info)
b49e97c9 3321{
a8028dd0 3322 struct mips_elf_link_hash_table *htab;
91d6fa6a 3323 bfd_vma got_index;
f4416af6 3324 struct mips_got_info *g, *gg;
d0c7ff07 3325 long global_got_dynindx = 0;
b49e97c9 3326
a8028dd0 3327 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3328 BFD_ASSERT (htab != NULL);
3329
a8028dd0 3330 gg = g = htab->got_info;
f4416af6
AO
3331 if (g->bfd2got && ibfd)
3332 {
3333 struct mips_got_entry e, *p;
143d77c5 3334
f4416af6
AO
3335 BFD_ASSERT (h->dynindx >= 0);
3336
3337 g = mips_elf_got_for_ibfd (g, ibfd);
0f20cc35 3338 if (g->next != gg || TLS_RELOC_P (r_type))
f4416af6
AO
3339 {
3340 e.abfd = ibfd;
3341 e.symndx = -1;
3342 e.d.h = (struct mips_elf_link_hash_entry *)h;
e641e783 3343 e.tls_type = mips_elf_reloc_tls_type (r_type);
f4416af6 3344
9719ad41 3345 p = htab_find (g->got_entries, &e);
f4416af6 3346
e641e783 3347 BFD_ASSERT (p && p->gotidx > 0);
0f20cc35 3348
e641e783 3349 if (p->tls_type)
0f20cc35
DJ
3350 {
3351 bfd_vma value = MINUS_ONE;
3352 if ((h->root.type == bfd_link_hash_defined
3353 || h->root.type == bfd_link_hash_defweak)
3354 && h->root.u.def.section->output_section)
3355 value = (h->root.u.def.value
3356 + h->root.u.def.section->output_offset
3357 + h->root.u.def.section->output_section->vma);
3358
e641e783 3359 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type,
0f20cc35
DJ
3360 info, e.d.h, value);
3361 }
3362 else
3363 return p->gotidx;
f4416af6
AO
3364 }
3365 }
3366
d222d210
RS
3367 if (htab->global_gotsym != NULL)
3368 global_got_dynindx = htab->global_gotsym->dynindx;
b49e97c9 3369
0f20cc35
DJ
3370 if (TLS_RELOC_P (r_type))
3371 {
3372 struct mips_elf_link_hash_entry *hm
3373 = (struct mips_elf_link_hash_entry *) h;
3374 bfd_vma value = MINUS_ONE;
3375
3376 if ((h->root.type == bfd_link_hash_defined
3377 || h->root.type == bfd_link_hash_defweak)
3378 && h->root.u.def.section->output_section)
3379 value = (h->root.u.def.value
3380 + h->root.u.def.section->output_offset
3381 + h->root.u.def.section->output_section->vma);
3382
e641e783 3383 got_index = mips_tls_single_got_index (abfd, r_type, info, hm, value);
0f20cc35
DJ
3384 }
3385 else
3386 {
3387 /* Once we determine the global GOT entry with the lowest dynamic
3388 symbol table index, we must put all dynamic symbols with greater
3389 indices into the GOT. That makes it easy to calculate the GOT
3390 offset. */
3391 BFD_ASSERT (h->dynindx >= global_got_dynindx);
91d6fa6a
NC
3392 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3393 * MIPS_ELF_GOT_SIZE (abfd));
0f20cc35 3394 }
91d6fa6a 3395 BFD_ASSERT (got_index < htab->sgot->size);
b49e97c9 3396
91d6fa6a 3397 return got_index;
b49e97c9
TS
3398}
3399
5c18022e
RS
3400/* Find a GOT page entry that points to within 32KB of VALUE. These
3401 entries are supposed to be placed at small offsets in the GOT, i.e.,
3402 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3403 entry could be created. If OFFSETP is nonnull, use it to return the
0a44bf69 3404 offset of the GOT entry from VALUE. */
b49e97c9
TS
3405
3406static bfd_vma
9719ad41 3407mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3408 bfd_vma value, bfd_vma *offsetp)
b49e97c9 3409{
91d6fa6a 3410 bfd_vma page, got_index;
b15e6682 3411 struct mips_got_entry *entry;
b49e97c9 3412
0a44bf69 3413 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
a8028dd0
RS
3414 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3415 NULL, R_MIPS_GOT_PAGE);
b49e97c9 3416
b15e6682
AO
3417 if (!entry)
3418 return MINUS_ONE;
143d77c5 3419
91d6fa6a 3420 got_index = entry->gotidx;
b49e97c9
TS
3421
3422 if (offsetp)
f4416af6 3423 *offsetp = value - entry->d.address;
b49e97c9 3424
91d6fa6a 3425 return got_index;
b49e97c9
TS
3426}
3427
738e5348 3428/* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
020d7251
RS
3429 EXTERNAL is true if the relocation was originally against a global
3430 symbol that binds locally. */
b49e97c9
TS
3431
3432static bfd_vma
9719ad41 3433mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3434 bfd_vma value, bfd_boolean external)
b49e97c9 3435{
b15e6682 3436 struct mips_got_entry *entry;
b49e97c9 3437
0a44bf69
RS
3438 /* GOT16 relocations against local symbols are followed by a LO16
3439 relocation; those against global symbols are not. Thus if the
3440 symbol was originally local, the GOT16 relocation should load the
3441 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
b49e97c9 3442 if (! external)
0a44bf69 3443 value = mips_elf_high (value) << 16;
b49e97c9 3444
738e5348
RS
3445 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3446 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3447 same in all cases. */
a8028dd0
RS
3448 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3449 NULL, R_MIPS_GOT16);
b15e6682
AO
3450 if (entry)
3451 return entry->gotidx;
3452 else
3453 return MINUS_ONE;
b49e97c9
TS
3454}
3455
3456/* Returns the offset for the entry at the INDEXth position
3457 in the GOT. */
3458
3459static bfd_vma
a8028dd0 3460mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
91d6fa6a 3461 bfd *input_bfd, bfd_vma got_index)
b49e97c9 3462{
a8028dd0 3463 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
3464 asection *sgot;
3465 bfd_vma gp;
3466
a8028dd0 3467 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3468 BFD_ASSERT (htab != NULL);
3469
a8028dd0 3470 sgot = htab->sgot;
f4416af6 3471 gp = _bfd_get_gp_value (output_bfd)
a8028dd0 3472 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
143d77c5 3473
91d6fa6a 3474 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
b49e97c9
TS
3475}
3476
0a44bf69
RS
3477/* Create and return a local GOT entry for VALUE, which was calculated
3478 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3479 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3480 instead. */
b49e97c9 3481
b15e6682 3482static struct mips_got_entry *
0a44bf69 3483mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
a8028dd0 3484 bfd *ibfd, bfd_vma value,
5c18022e 3485 unsigned long r_symndx,
0f20cc35
DJ
3486 struct mips_elf_link_hash_entry *h,
3487 int r_type)
b49e97c9 3488{
b15e6682 3489 struct mips_got_entry entry, **loc;
f4416af6 3490 struct mips_got_info *g;
0a44bf69
RS
3491 struct mips_elf_link_hash_table *htab;
3492
3493 htab = mips_elf_hash_table (info);
4dfe6ac6 3494 BFD_ASSERT (htab != NULL);
b15e6682 3495
f4416af6
AO
3496 entry.abfd = NULL;
3497 entry.symndx = -1;
3498 entry.d.address = value;
e641e783 3499 entry.tls_type = mips_elf_reloc_tls_type (r_type);
f4416af6 3500
a8028dd0 3501 g = mips_elf_got_for_ibfd (htab->got_info, ibfd);
f4416af6
AO
3502 if (g == NULL)
3503 {
a8028dd0 3504 g = mips_elf_got_for_ibfd (htab->got_info, abfd);
f4416af6
AO
3505 BFD_ASSERT (g != NULL);
3506 }
b15e6682 3507
020d7251
RS
3508 /* This function shouldn't be called for symbols that live in the global
3509 area of the GOT. */
3510 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
e641e783 3511 if (entry.tls_type)
0f20cc35
DJ
3512 {
3513 struct mips_got_entry *p;
3514
3515 entry.abfd = ibfd;
df58fc94 3516 if (tls_ldm_reloc_p (r_type))
0f20cc35 3517 {
0f20cc35
DJ
3518 entry.symndx = 0;
3519 entry.d.addend = 0;
3520 }
3521 else if (h == NULL)
3522 {
3523 entry.symndx = r_symndx;
3524 entry.d.addend = 0;
3525 }
3526 else
3527 entry.d.h = h;
3528
3529 p = (struct mips_got_entry *)
3530 htab_find (g->got_entries, &entry);
3531
3532 BFD_ASSERT (p);
3533 return p;
3534 }
3535
b15e6682
AO
3536 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3537 INSERT);
3538 if (*loc)
3539 return *loc;
143d77c5 3540
b15e6682
AO
3541 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
3542
3543 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3544
3545 if (! *loc)
3546 return NULL;
143d77c5 3547
b15e6682
AO
3548 memcpy (*loc, &entry, sizeof entry);
3549
8275b357 3550 if (g->assigned_gotno > g->local_gotno)
b49e97c9 3551 {
f4416af6 3552 (*loc)->gotidx = -1;
b49e97c9
TS
3553 /* We didn't allocate enough space in the GOT. */
3554 (*_bfd_error_handler)
3555 (_("not enough GOT space for local GOT entries"));
3556 bfd_set_error (bfd_error_bad_value);
b15e6682 3557 return NULL;
b49e97c9
TS
3558 }
3559
3560 MIPS_ELF_PUT_WORD (abfd, value,
a8028dd0 3561 (htab->sgot->contents + entry.gotidx));
b15e6682 3562
5c18022e 3563 /* These GOT entries need a dynamic relocation on VxWorks. */
0a44bf69
RS
3564 if (htab->is_vxworks)
3565 {
3566 Elf_Internal_Rela outrel;
5c18022e 3567 asection *s;
91d6fa6a 3568 bfd_byte *rloc;
0a44bf69 3569 bfd_vma got_address;
0a44bf69
RS
3570
3571 s = mips_elf_rel_dyn_section (info, FALSE);
a8028dd0
RS
3572 got_address = (htab->sgot->output_section->vma
3573 + htab->sgot->output_offset
0a44bf69
RS
3574 + entry.gotidx);
3575
91d6fa6a 3576 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
0a44bf69 3577 outrel.r_offset = got_address;
5c18022e
RS
3578 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3579 outrel.r_addend = value;
91d6fa6a 3580 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
0a44bf69
RS
3581 }
3582
b15e6682 3583 return *loc;
b49e97c9
TS
3584}
3585
d4596a51
RS
3586/* Return the number of dynamic section symbols required by OUTPUT_BFD.
3587 The number might be exact or a worst-case estimate, depending on how
3588 much information is available to elf_backend_omit_section_dynsym at
3589 the current linking stage. */
3590
3591static bfd_size_type
3592count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3593{
3594 bfd_size_type count;
3595
3596 count = 0;
3597 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
3598 {
3599 asection *p;
3600 const struct elf_backend_data *bed;
3601
3602 bed = get_elf_backend_data (output_bfd);
3603 for (p = output_bfd->sections; p ; p = p->next)
3604 if ((p->flags & SEC_EXCLUDE) == 0
3605 && (p->flags & SEC_ALLOC) != 0
3606 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3607 ++count;
3608 }
3609 return count;
3610}
3611
b49e97c9 3612/* Sort the dynamic symbol table so that symbols that need GOT entries
d4596a51 3613 appear towards the end. */
b49e97c9 3614
b34976b6 3615static bfd_boolean
d4596a51 3616mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
b49e97c9 3617{
a8028dd0 3618 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
3619 struct mips_elf_hash_sort_data hsd;
3620 struct mips_got_info *g;
b49e97c9 3621
d4596a51
RS
3622 if (elf_hash_table (info)->dynsymcount == 0)
3623 return TRUE;
3624
a8028dd0 3625 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3626 BFD_ASSERT (htab != NULL);
3627
a8028dd0 3628 g = htab->got_info;
d4596a51
RS
3629 if (g == NULL)
3630 return TRUE;
f4416af6 3631
b49e97c9 3632 hsd.low = NULL;
23cc69b6
RS
3633 hsd.max_unref_got_dynindx
3634 = hsd.min_got_dynindx
3635 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
d4596a51 3636 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
b49e97c9
TS
3637 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3638 elf_hash_table (info)),
3639 mips_elf_sort_hash_table_f,
3640 &hsd);
3641
3642 /* There should have been enough room in the symbol table to
44c410de 3643 accommodate both the GOT and non-GOT symbols. */
b49e97c9 3644 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
d4596a51
RS
3645 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3646 == elf_hash_table (info)->dynsymcount);
3647 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3648 == g->global_gotno);
b49e97c9
TS
3649
3650 /* Now we know which dynamic symbol has the lowest dynamic symbol
3651 table index in the GOT. */
d222d210 3652 htab->global_gotsym = hsd.low;
b49e97c9 3653
b34976b6 3654 return TRUE;
b49e97c9
TS
3655}
3656
3657/* If H needs a GOT entry, assign it the highest available dynamic
3658 index. Otherwise, assign it the lowest available dynamic
3659 index. */
3660
b34976b6 3661static bfd_boolean
9719ad41 3662mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 3663{
9719ad41 3664 struct mips_elf_hash_sort_data *hsd = data;
b49e97c9 3665
b49e97c9
TS
3666 /* Symbols without dynamic symbol table entries aren't interesting
3667 at all. */
3668 if (h->root.dynindx == -1)
b34976b6 3669 return TRUE;
b49e97c9 3670
634835ae 3671 switch (h->global_got_area)
f4416af6 3672 {
634835ae
RS
3673 case GGA_NONE:
3674 h->root.dynindx = hsd->max_non_got_dynindx++;
3675 break;
0f20cc35 3676
634835ae 3677 case GGA_NORMAL:
b49e97c9
TS
3678 h->root.dynindx = --hsd->min_got_dynindx;
3679 hsd->low = (struct elf_link_hash_entry *) h;
634835ae
RS
3680 break;
3681
3682 case GGA_RELOC_ONLY:
634835ae
RS
3683 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3684 hsd->low = (struct elf_link_hash_entry *) h;
3685 h->root.dynindx = hsd->max_unref_got_dynindx++;
3686 break;
b49e97c9
TS
3687 }
3688
b34976b6 3689 return TRUE;
b49e97c9
TS
3690}
3691
e641e783
RS
3692/* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3693 entry for it. FOR_CALL is true if the caller is only interested in
6ccf4795 3694 using the GOT entry for calls. */
b49e97c9 3695
b34976b6 3696static bfd_boolean
9719ad41
RS
3697mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3698 bfd *abfd, struct bfd_link_info *info,
e641e783 3699 bfd_boolean for_call, int r_type)
b49e97c9 3700{
a8028dd0 3701 struct mips_elf_link_hash_table *htab;
634835ae 3702 struct mips_elf_link_hash_entry *hmips;
f4416af6 3703 struct mips_got_entry entry, **loc;
a8028dd0
RS
3704 struct mips_got_info *g;
3705
3706 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3707 BFD_ASSERT (htab != NULL);
3708
634835ae 3709 hmips = (struct mips_elf_link_hash_entry *) h;
6ccf4795
RS
3710 if (!for_call)
3711 hmips->got_only_for_calls = FALSE;
f4416af6 3712
b49e97c9
TS
3713 /* A global symbol in the GOT must also be in the dynamic symbol
3714 table. */
7c5fcef7
L
3715 if (h->dynindx == -1)
3716 {
3717 switch (ELF_ST_VISIBILITY (h->other))
3718 {
3719 case STV_INTERNAL:
3720 case STV_HIDDEN:
33bb52fb 3721 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
7c5fcef7
L
3722 break;
3723 }
c152c796 3724 if (!bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 3725 return FALSE;
7c5fcef7 3726 }
b49e97c9 3727
86324f90 3728 /* Make sure we have a GOT to put this entry into. */
a8028dd0 3729 g = htab->got_info;
86324f90
EC
3730 BFD_ASSERT (g != NULL);
3731
f4416af6
AO
3732 entry.abfd = abfd;
3733 entry.symndx = -1;
3734 entry.d.h = (struct mips_elf_link_hash_entry *) h;
e641e783 3735 entry.tls_type = mips_elf_reloc_tls_type (r_type);
f4416af6
AO
3736
3737 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3738 INSERT);
3739
b49e97c9
TS
3740 /* If we've already marked this entry as needing GOT space, we don't
3741 need to do it again. */
f4416af6 3742 if (*loc)
e641e783 3743 return TRUE;
f4416af6
AO
3744
3745 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3746
3747 if (! *loc)
3748 return FALSE;
143d77c5 3749
f4416af6 3750 entry.gotidx = -1;
0f20cc35 3751
f4416af6
AO
3752 memcpy (*loc, &entry, sizeof entry);
3753
e641e783 3754 if (entry.tls_type == GOT_NORMAL)
634835ae 3755 hmips->global_got_area = GGA_NORMAL;
e641e783
RS
3756 else if (entry.tls_type == GOT_TLS_IE)
3757 hmips->tls_ie_type = entry.tls_type;
3758 else if (entry.tls_type == GOT_TLS_GD)
3759 hmips->tls_gd_type = entry.tls_type;
b49e97c9 3760
b34976b6 3761 return TRUE;
b49e97c9 3762}
f4416af6 3763
e641e783
RS
3764/* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
3765 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
f4416af6
AO
3766
3767static bfd_boolean
9719ad41 3768mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
e641e783 3769 struct bfd_link_info *info, int r_type)
f4416af6 3770{
a8028dd0
RS
3771 struct mips_elf_link_hash_table *htab;
3772 struct mips_got_info *g;
f4416af6
AO
3773 struct mips_got_entry entry, **loc;
3774
a8028dd0 3775 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3776 BFD_ASSERT (htab != NULL);
3777
a8028dd0
RS
3778 g = htab->got_info;
3779 BFD_ASSERT (g != NULL);
3780
f4416af6
AO
3781 entry.abfd = abfd;
3782 entry.symndx = symndx;
3783 entry.d.addend = addend;
e641e783 3784 entry.tls_type = mips_elf_reloc_tls_type (r_type);
f4416af6
AO
3785 loc = (struct mips_got_entry **)
3786 htab_find_slot (g->got_entries, &entry, INSERT);
3787
3788 if (*loc)
e641e783 3789 return TRUE;
f4416af6 3790
946c668d 3791 entry.gotidx = -1;
e641e783 3792 if (entry.tls_type)
0f20cc35 3793 {
e641e783
RS
3794 if (entry.tls_type != GOT_TLS_LDM)
3795 g->tls_gotno += mips_tls_got_entries (entry.tls_type);
0f20cc35
DJ
3796 else if (g->tls_ldm_offset == MINUS_ONE)
3797 {
3798 g->tls_ldm_offset = MINUS_TWO;
e641e783 3799 g->tls_gotno += mips_tls_got_entries (entry.tls_type);
0f20cc35
DJ
3800 }
3801 }
3802 else
e641e783 3803 g->local_gotno += 1;
f4416af6
AO
3804
3805 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3806
3807 if (! *loc)
3808 return FALSE;
143d77c5 3809
f4416af6
AO
3810 memcpy (*loc, &entry, sizeof entry);
3811
3812 return TRUE;
3813}
c224138d
RS
3814
3815/* Return the maximum number of GOT page entries required for RANGE. */
3816
3817static bfd_vma
3818mips_elf_pages_for_range (const struct mips_got_page_range *range)
3819{
3820 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
3821}
3822
3a3b6725 3823/* Record that ABFD has a page relocation against symbol SYMNDX and
a8028dd0
RS
3824 that ADDEND is the addend for that relocation.
3825
3826 This function creates an upper bound on the number of GOT slots
3827 required; no attempt is made to combine references to non-overridable
3828 global symbols across multiple input files. */
c224138d
RS
3829
3830static bfd_boolean
a8028dd0
RS
3831mips_elf_record_got_page_entry (struct bfd_link_info *info, bfd *abfd,
3832 long symndx, bfd_signed_vma addend)
c224138d 3833{
a8028dd0
RS
3834 struct mips_elf_link_hash_table *htab;
3835 struct mips_got_info *g;
c224138d
RS
3836 struct mips_got_page_entry lookup, *entry;
3837 struct mips_got_page_range **range_ptr, *range;
3838 bfd_vma old_pages, new_pages;
3839 void **loc;
3840
a8028dd0 3841 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3842 BFD_ASSERT (htab != NULL);
3843
a8028dd0
RS
3844 g = htab->got_info;
3845 BFD_ASSERT (g != NULL);
3846
c224138d
RS
3847 /* Find the mips_got_page_entry hash table entry for this symbol. */
3848 lookup.abfd = abfd;
3849 lookup.symndx = symndx;
3850 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
3851 if (loc == NULL)
3852 return FALSE;
3853
3854 /* Create a mips_got_page_entry if this is the first time we've
3855 seen the symbol. */
3856 entry = (struct mips_got_page_entry *) *loc;
3857 if (!entry)
3858 {
3859 entry = bfd_alloc (abfd, sizeof (*entry));
3860 if (!entry)
3861 return FALSE;
3862
3863 entry->abfd = abfd;
3864 entry->symndx = symndx;
3865 entry->ranges = NULL;
3866 entry->num_pages = 0;
3867 *loc = entry;
3868 }
3869
3870 /* Skip over ranges whose maximum extent cannot share a page entry
3871 with ADDEND. */
3872 range_ptr = &entry->ranges;
3873 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
3874 range_ptr = &(*range_ptr)->next;
3875
3876 /* If we scanned to the end of the list, or found a range whose
3877 minimum extent cannot share a page entry with ADDEND, create
3878 a new singleton range. */
3879 range = *range_ptr;
3880 if (!range || addend < range->min_addend - 0xffff)
3881 {
3882 range = bfd_alloc (abfd, sizeof (*range));
3883 if (!range)
3884 return FALSE;
3885
3886 range->next = *range_ptr;
3887 range->min_addend = addend;
3888 range->max_addend = addend;
3889
3890 *range_ptr = range;
3891 entry->num_pages++;
3892 g->page_gotno++;
3893 return TRUE;
3894 }
3895
3896 /* Remember how many pages the old range contributed. */
3897 old_pages = mips_elf_pages_for_range (range);
3898
3899 /* Update the ranges. */
3900 if (addend < range->min_addend)
3901 range->min_addend = addend;
3902 else if (addend > range->max_addend)
3903 {
3904 if (range->next && addend >= range->next->min_addend - 0xffff)
3905 {
3906 old_pages += mips_elf_pages_for_range (range->next);
3907 range->max_addend = range->next->max_addend;
3908 range->next = range->next->next;
3909 }
3910 else
3911 range->max_addend = addend;
3912 }
3913
3914 /* Record any change in the total estimate. */
3915 new_pages = mips_elf_pages_for_range (range);
3916 if (old_pages != new_pages)
3917 {
3918 entry->num_pages += new_pages - old_pages;
3919 g->page_gotno += new_pages - old_pages;
3920 }
3921
3922 return TRUE;
3923}
33bb52fb
RS
3924
3925/* Add room for N relocations to the .rel(a).dyn section in ABFD. */
3926
3927static void
3928mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
3929 unsigned int n)
3930{
3931 asection *s;
3932 struct mips_elf_link_hash_table *htab;
3933
3934 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3935 BFD_ASSERT (htab != NULL);
3936
33bb52fb
RS
3937 s = mips_elf_rel_dyn_section (info, FALSE);
3938 BFD_ASSERT (s != NULL);
3939
3940 if (htab->is_vxworks)
3941 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
3942 else
3943 {
3944 if (s->size == 0)
3945 {
3946 /* Make room for a null element. */
3947 s->size += MIPS_ELF_REL_SIZE (abfd);
3948 ++s->reloc_count;
3949 }
3950 s->size += n * MIPS_ELF_REL_SIZE (abfd);
3951 }
3952}
3953\f
3954/* A htab_traverse callback for GOT entries. Set boolean *DATA to true
3955 if the GOT entry is for an indirect or warning symbol. */
3956
3957static int
3958mips_elf_check_recreate_got (void **entryp, void *data)
3959{
3960 struct mips_got_entry *entry;
3961 bfd_boolean *must_recreate;
3962
3963 entry = (struct mips_got_entry *) *entryp;
3964 must_recreate = (bfd_boolean *) data;
3965 if (entry->abfd != NULL && entry->symndx == -1)
3966 {
3967 struct mips_elf_link_hash_entry *h;
3968
3969 h = entry->d.h;
3970 if (h->root.root.type == bfd_link_hash_indirect
3971 || h->root.root.type == bfd_link_hash_warning)
3972 {
3973 *must_recreate = TRUE;
3974 return 0;
3975 }
3976 }
3977 return 1;
3978}
3979
3980/* A htab_traverse callback for GOT entries. Add all entries to
3981 hash table *DATA, converting entries for indirect and warning
3982 symbols into entries for the target symbol. Set *DATA to null
3983 on error. */
3984
3985static int
3986mips_elf_recreate_got (void **entryp, void *data)
3987{
3988 htab_t *new_got;
3989 struct mips_got_entry *entry;
3990 void **slot;
3991
3992 new_got = (htab_t *) data;
3993 entry = (struct mips_got_entry *) *entryp;
3994 if (entry->abfd != NULL && entry->symndx == -1)
3995 {
3996 struct mips_elf_link_hash_entry *h;
3997
3998 h = entry->d.h;
3999 while (h->root.root.type == bfd_link_hash_indirect
4000 || h->root.root.type == bfd_link_hash_warning)
634835ae
RS
4001 {
4002 BFD_ASSERT (h->global_got_area == GGA_NONE);
4003 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4004 }
33bb52fb
RS
4005 entry->d.h = h;
4006 }
4007 slot = htab_find_slot (*new_got, entry, INSERT);
4008 if (slot == NULL)
4009 {
4010 *new_got = NULL;
4011 return 0;
4012 }
4013 if (*slot == NULL)
4014 *slot = entry;
33bb52fb
RS
4015 return 1;
4016}
4017
4018/* If any entries in G->got_entries are for indirect or warning symbols,
4019 replace them with entries for the target symbol. */
4020
4021static bfd_boolean
4022mips_elf_resolve_final_got_entries (struct mips_got_info *g)
4023{
4024 bfd_boolean must_recreate;
4025 htab_t new_got;
4026
4027 must_recreate = FALSE;
4028 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &must_recreate);
4029 if (must_recreate)
4030 {
4031 new_got = htab_create (htab_size (g->got_entries),
4032 mips_elf_got_entry_hash,
4033 mips_elf_got_entry_eq, NULL);
4034 htab_traverse (g->got_entries, mips_elf_recreate_got, &new_got);
4035 if (new_got == NULL)
4036 return FALSE;
4037
33bb52fb
RS
4038 htab_delete (g->got_entries);
4039 g->got_entries = new_got;
4040 }
4041 return TRUE;
4042}
4043
634835ae 4044/* A mips_elf_link_hash_traverse callback for which DATA points
020d7251
RS
4045 to the link_info structure. Count the number of type (3) entries
4046 in the master GOT. */
33bb52fb
RS
4047
4048static int
d4596a51 4049mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
33bb52fb 4050{
020d7251 4051 struct bfd_link_info *info;
6ccf4795 4052 struct mips_elf_link_hash_table *htab;
33bb52fb
RS
4053 struct mips_got_info *g;
4054
020d7251 4055 info = (struct bfd_link_info *) data;
6ccf4795
RS
4056 htab = mips_elf_hash_table (info);
4057 g = htab->got_info;
d4596a51 4058 if (h->global_got_area != GGA_NONE)
33bb52fb 4059 {
020d7251
RS
4060 /* Make a final decision about whether the symbol belongs in the
4061 local or global GOT. Symbols that bind locally can (and in the
4062 case of forced-local symbols, must) live in the local GOT.
4063 Those that are aren't in the dynamic symbol table must also
4064 live in the local GOT.
4065
4066 Note that the former condition does not always imply the
4067 latter: symbols do not bind locally if they are completely
4068 undefined. We'll report undefined symbols later if appropriate. */
6ccf4795
RS
4069 if (h->root.dynindx == -1
4070 || (h->got_only_for_calls
4071 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4072 : SYMBOL_REFERENCES_LOCAL (info, &h->root)))
d4596a51 4073 {
020d7251
RS
4074 /* The symbol belongs in the local GOT. We no longer need this
4075 entry if it was only used for relocations; those relocations
4076 will be against the null or section symbol instead of H. */
d4596a51
RS
4077 if (h->global_got_area != GGA_RELOC_ONLY)
4078 g->local_gotno++;
4079 h->global_got_area = GGA_NONE;
4080 }
6ccf4795
RS
4081 else if (htab->is_vxworks
4082 && h->got_only_for_calls
4083 && h->root.plt.offset != MINUS_ONE)
4084 /* On VxWorks, calls can refer directly to the .got.plt entry;
4085 they don't need entries in the regular GOT. .got.plt entries
4086 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4087 h->global_got_area = GGA_NONE;
d4596a51 4088 else
23cc69b6
RS
4089 {
4090 g->global_gotno++;
4091 if (h->global_got_area == GGA_RELOC_ONLY)
4092 g->reloc_only_gotno++;
4093 }
33bb52fb
RS
4094 }
4095 return 1;
4096}
f4416af6
AO
4097\f
4098/* Compute the hash value of the bfd in a bfd2got hash entry. */
4099
4100static hashval_t
9719ad41 4101mips_elf_bfd2got_entry_hash (const void *entry_)
f4416af6
AO
4102{
4103 const struct mips_elf_bfd2got_hash *entry
4104 = (struct mips_elf_bfd2got_hash *)entry_;
4105
4106 return entry->bfd->id;
4107}
4108
4109/* Check whether two hash entries have the same bfd. */
4110
4111static int
9719ad41 4112mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
4113{
4114 const struct mips_elf_bfd2got_hash *e1
4115 = (const struct mips_elf_bfd2got_hash *)entry1;
4116 const struct mips_elf_bfd2got_hash *e2
4117 = (const struct mips_elf_bfd2got_hash *)entry2;
4118
4119 return e1->bfd == e2->bfd;
4120}
4121
bad36eac 4122/* In a multi-got link, determine the GOT to be used for IBFD. G must
f4416af6
AO
4123 be the master GOT data. */
4124
4125static struct mips_got_info *
9719ad41 4126mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
f4416af6
AO
4127{
4128 struct mips_elf_bfd2got_hash e, *p;
4129
4130 if (! g->bfd2got)
4131 return g;
4132
4133 e.bfd = ibfd;
9719ad41 4134 p = htab_find (g->bfd2got, &e);
f4416af6
AO
4135 return p ? p->g : NULL;
4136}
4137
c224138d
RS
4138/* Use BFD2GOT to find ABFD's got entry, creating one if none exists.
4139 Return NULL if an error occured. */
f4416af6 4140
c224138d
RS
4141static struct mips_got_info *
4142mips_elf_get_got_for_bfd (struct htab *bfd2got, bfd *output_bfd,
4143 bfd *input_bfd)
f4416af6 4144{
f4416af6
AO
4145 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
4146 void **bfdgotp;
143d77c5 4147
c224138d 4148 bfdgot_entry.bfd = input_bfd;
f4416af6 4149 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
c224138d 4150 bfdgot = (struct mips_elf_bfd2got_hash *) *bfdgotp;
f4416af6 4151
c224138d 4152 if (bfdgot == NULL)
f4416af6 4153 {
c224138d
RS
4154 bfdgot = ((struct mips_elf_bfd2got_hash *)
4155 bfd_alloc (output_bfd, sizeof (struct mips_elf_bfd2got_hash)));
f4416af6 4156 if (bfdgot == NULL)
c224138d 4157 return NULL;
f4416af6
AO
4158
4159 *bfdgotp = bfdgot;
4160
c224138d 4161 bfdgot->bfd = input_bfd;
5334aa52
RS
4162 bfdgot->g = mips_elf_create_got_info (input_bfd, FALSE);
4163 if (bfdgot->g == NULL)
c224138d 4164 return NULL;
f4416af6
AO
4165 }
4166
c224138d
RS
4167 return bfdgot->g;
4168}
4169
4170/* A htab_traverse callback for the entries in the master got.
4171 Create one separate got for each bfd that has entries in the global
4172 got, such that we can tell how many local and global entries each
4173 bfd requires. */
4174
4175static int
4176mips_elf_make_got_per_bfd (void **entryp, void *p)
4177{
4178 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4179 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
4180 struct mips_got_info *g;
4181
4182 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
4183 if (g == NULL)
4184 {
4185 arg->obfd = NULL;
4186 return 0;
4187 }
4188
f4416af6
AO
4189 /* Insert the GOT entry in the bfd's got entry hash table. */
4190 entryp = htab_find_slot (g->got_entries, entry, INSERT);
4191 if (*entryp != NULL)
4192 return 1;
143d77c5 4193
f4416af6
AO
4194 *entryp = entry;
4195
0f20cc35 4196 if (entry->tls_type)
e641e783 4197 g->tls_gotno += mips_tls_got_entries (entry->tls_type & GOT_TLS_TYPE);
020d7251 4198 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
e641e783 4199 g->local_gotno += 1;
f4416af6 4200 else
e641e783 4201 g->global_gotno += 1;
f4416af6
AO
4202
4203 return 1;
4204}
4205
c224138d
RS
4206/* A htab_traverse callback for the page entries in the master got.
4207 Associate each page entry with the bfd's got. */
4208
4209static int
4210mips_elf_make_got_pages_per_bfd (void **entryp, void *p)
4211{
4212 struct mips_got_page_entry *entry = (struct mips_got_page_entry *) *entryp;
4213 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *) p;
4214 struct mips_got_info *g;
4215
4216 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
4217 if (g == NULL)
4218 {
4219 arg->obfd = NULL;
4220 return 0;
4221 }
4222
4223 /* Insert the GOT entry in the bfd's got entry hash table. */
4224 entryp = htab_find_slot (g->got_page_entries, entry, INSERT);
4225 if (*entryp != NULL)
4226 return 1;
4227
4228 *entryp = entry;
4229 g->page_gotno += entry->num_pages;
4230 return 1;
4231}
4232
4233/* Consider merging the got described by BFD2GOT with TO, using the
4234 information given by ARG. Return -1 if this would lead to overflow,
4235 1 if they were merged successfully, and 0 if a merge failed due to
4236 lack of memory. (These values are chosen so that nonnegative return
4237 values can be returned by a htab_traverse callback.) */
4238
4239static int
4240mips_elf_merge_got_with (struct mips_elf_bfd2got_hash *bfd2got,
4241 struct mips_got_info *to,
4242 struct mips_elf_got_per_bfd_arg *arg)
4243{
4244 struct mips_got_info *from = bfd2got->g;
4245 unsigned int estimate;
4246
4247 /* Work out how many page entries we would need for the combined GOT. */
4248 estimate = arg->max_pages;
4249 if (estimate >= from->page_gotno + to->page_gotno)
4250 estimate = from->page_gotno + to->page_gotno;
4251
e2ece73c 4252 /* And conservatively estimate how many local and TLS entries
c224138d 4253 would be needed. */
e2ece73c
RS
4254 estimate += from->local_gotno + to->local_gotno;
4255 estimate += from->tls_gotno + to->tls_gotno;
4256
17214937
RS
4257 /* If we're merging with the primary got, any TLS relocations will
4258 come after the full set of global entries. Otherwise estimate those
e2ece73c 4259 conservatively as well. */
17214937 4260 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
e2ece73c
RS
4261 estimate += arg->global_count;
4262 else
4263 estimate += from->global_gotno + to->global_gotno;
c224138d
RS
4264
4265 /* Bail out if the combined GOT might be too big. */
4266 if (estimate > arg->max_count)
4267 return -1;
4268
4269 /* Commit to the merge. Record that TO is now the bfd for this got. */
4270 bfd2got->g = to;
4271
4272 /* Transfer the bfd's got information from FROM to TO. */
4273 htab_traverse (from->got_entries, mips_elf_make_got_per_bfd, arg);
4274 if (arg->obfd == NULL)
4275 return 0;
4276
4277 htab_traverse (from->got_page_entries, mips_elf_make_got_pages_per_bfd, arg);
4278 if (arg->obfd == NULL)
4279 return 0;
4280
4281 /* We don't have to worry about releasing memory of the actual
4282 got entries, since they're all in the master got_entries hash
4283 table anyway. */
4284 htab_delete (from->got_entries);
4285 htab_delete (from->got_page_entries);
4286 return 1;
4287}
4288
f4416af6
AO
4289/* Attempt to merge gots of different input bfds. Try to use as much
4290 as possible of the primary got, since it doesn't require explicit
4291 dynamic relocations, but don't use bfds that would reference global
4292 symbols out of the addressable range. Failing the primary got,
4293 attempt to merge with the current got, or finish the current got
4294 and then make make the new got current. */
4295
4296static int
9719ad41 4297mips_elf_merge_gots (void **bfd2got_, void *p)
f4416af6
AO
4298{
4299 struct mips_elf_bfd2got_hash *bfd2got
4300 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
4301 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
c224138d
RS
4302 struct mips_got_info *g;
4303 unsigned int estimate;
4304 int result;
4305
4306 g = bfd2got->g;
4307
4308 /* Work out the number of page, local and TLS entries. */
4309 estimate = arg->max_pages;
4310 if (estimate > g->page_gotno)
4311 estimate = g->page_gotno;
4312 estimate += g->local_gotno + g->tls_gotno;
0f20cc35
DJ
4313
4314 /* We place TLS GOT entries after both locals and globals. The globals
4315 for the primary GOT may overflow the normal GOT size limit, so be
4316 sure not to merge a GOT which requires TLS with the primary GOT in that
4317 case. This doesn't affect non-primary GOTs. */
c224138d 4318 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
143d77c5 4319
c224138d 4320 if (estimate <= arg->max_count)
f4416af6 4321 {
c224138d
RS
4322 /* If we don't have a primary GOT, use it as
4323 a starting point for the primary GOT. */
4324 if (!arg->primary)
4325 {
4326 arg->primary = bfd2got->g;
4327 return 1;
4328 }
f4416af6 4329
c224138d
RS
4330 /* Try merging with the primary GOT. */
4331 result = mips_elf_merge_got_with (bfd2got, arg->primary, arg);
4332 if (result >= 0)
4333 return result;
f4416af6 4334 }
c224138d 4335
f4416af6 4336 /* If we can merge with the last-created got, do it. */
c224138d 4337 if (arg->current)
f4416af6 4338 {
c224138d
RS
4339 result = mips_elf_merge_got_with (bfd2got, arg->current, arg);
4340 if (result >= 0)
4341 return result;
f4416af6 4342 }
c224138d 4343
f4416af6
AO
4344 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4345 fits; if it turns out that it doesn't, we'll get relocation
4346 overflows anyway. */
c224138d
RS
4347 g->next = arg->current;
4348 arg->current = g;
0f20cc35
DJ
4349
4350 return 1;
4351}
4352
ead49a57
RS
4353/* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
4354 is null iff there is just a single GOT. */
0f20cc35
DJ
4355
4356static int
4357mips_elf_initialize_tls_index (void **entryp, void *p)
4358{
4359 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4360 struct mips_got_info *g = p;
ead49a57 4361 bfd_vma next_index;
cbf2cba4 4362 unsigned char tls_type;
0f20cc35
DJ
4363
4364 /* We're only interested in TLS symbols. */
e641e783
RS
4365 tls_type = (entry->tls_type & GOT_TLS_TYPE);
4366 if (tls_type == 0)
0f20cc35
DJ
4367 return 1;
4368
ead49a57
RS
4369 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
4370
4371 if (entry->symndx == -1 && g->next == NULL)
0f20cc35 4372 {
ead49a57
RS
4373 /* A type (3) got entry in the single-GOT case. We use the symbol's
4374 hash table entry to track its index. */
e641e783
RS
4375 if (tls_type == GOT_TLS_IE)
4376 {
4377 if (entry->d.h->tls_ie_type & GOT_TLS_OFFSET_DONE)
4378 return 1;
4379 entry->d.h->tls_ie_type |= GOT_TLS_OFFSET_DONE;
4380 entry->d.h->tls_ie_got_offset = next_index;
4381 }
4382 else
4383 {
4384 BFD_ASSERT (tls_type == GOT_TLS_GD);
4385 if (entry->d.h->tls_gd_type & GOT_TLS_OFFSET_DONE)
4386 return 1;
4387 entry->d.h->tls_gd_type |= GOT_TLS_OFFSET_DONE;
4388 entry->d.h->tls_gd_got_offset = next_index;
4389 }
ead49a57
RS
4390 }
4391 else
4392 {
e641e783 4393 if (tls_type == GOT_TLS_LDM)
0f20cc35 4394 {
ead49a57
RS
4395 /* There are separate mips_got_entry objects for each input bfd
4396 that requires an LDM entry. Make sure that all LDM entries in
4397 a GOT resolve to the same index. */
4398 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
4005427f 4399 {
ead49a57 4400 entry->gotidx = g->tls_ldm_offset;
4005427f
RS
4401 return 1;
4402 }
ead49a57 4403 g->tls_ldm_offset = next_index;
0f20cc35 4404 }
ead49a57 4405 entry->gotidx = next_index;
f4416af6
AO
4406 }
4407
ead49a57 4408 /* Account for the entries we've just allocated. */
e641e783 4409 g->tls_assigned_gotno += mips_tls_got_entries (tls_type);
f4416af6
AO
4410 return 1;
4411}
4412
4413/* If passed a NULL mips_got_info in the argument, set the marker used
4414 to tell whether a global symbol needs a got entry (in the primary
4415 got) to the given VALUE.
4416
4417 If passed a pointer G to a mips_got_info in the argument (it must
4418 not be the primary GOT), compute the offset from the beginning of
4419 the (primary) GOT section to the entry in G corresponding to the
4420 global symbol. G's assigned_gotno must contain the index of the
4421 first available global GOT entry in G. VALUE must contain the size
4422 of a GOT entry in bytes. For each global GOT entry that requires a
4423 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4cc11e76 4424 marked as not eligible for lazy resolution through a function
f4416af6
AO
4425 stub. */
4426static int
9719ad41 4427mips_elf_set_global_got_offset (void **entryp, void *p)
f4416af6
AO
4428{
4429 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4430 struct mips_elf_set_global_got_offset_arg *arg
4431 = (struct mips_elf_set_global_got_offset_arg *)p;
4432 struct mips_got_info *g = arg->g;
4433
0f20cc35
DJ
4434 if (g && entry->tls_type != GOT_NORMAL)
4435 arg->needed_relocs +=
4436 mips_tls_got_relocs (arg->info, entry->tls_type,
4437 entry->symndx == -1 ? &entry->d.h->root : NULL);
4438
634835ae
RS
4439 if (entry->abfd != NULL
4440 && entry->symndx == -1
4441 && entry->d.h->global_got_area != GGA_NONE)
f4416af6
AO
4442 {
4443 if (g)
4444 {
f4416af6 4445 entry->gotidx = arg->value * (long) g->assigned_gotno++;
f4416af6
AO
4446 if (arg->info->shared
4447 || (elf_hash_table (arg->info)->dynamic_sections_created
f5385ebf
AM
4448 && entry->d.h->root.def_dynamic
4449 && !entry->d.h->root.def_regular))
f4416af6
AO
4450 ++arg->needed_relocs;
4451 }
4452 else
634835ae 4453 entry->d.h->global_got_area = arg->value;
f4416af6
AO
4454 }
4455
4456 return 1;
4457}
4458
33bb52fb
RS
4459/* A htab_traverse callback for GOT entries for which DATA is the
4460 bfd_link_info. Forbid any global symbols from having traditional
4461 lazy-binding stubs. */
4462
0626d451 4463static int
33bb52fb 4464mips_elf_forbid_lazy_stubs (void **entryp, void *data)
0626d451 4465{
33bb52fb
RS
4466 struct bfd_link_info *info;
4467 struct mips_elf_link_hash_table *htab;
4468 struct mips_got_entry *entry;
0626d451 4469
33bb52fb
RS
4470 entry = (struct mips_got_entry *) *entryp;
4471 info = (struct bfd_link_info *) data;
4472 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4473 BFD_ASSERT (htab != NULL);
4474
0626d451
RS
4475 if (entry->abfd != NULL
4476 && entry->symndx == -1
33bb52fb 4477 && entry->d.h->needs_lazy_stub)
f4416af6 4478 {
33bb52fb
RS
4479 entry->d.h->needs_lazy_stub = FALSE;
4480 htab->lazy_stub_count--;
f4416af6 4481 }
143d77c5 4482
f4416af6
AO
4483 return 1;
4484}
4485
f4416af6
AO
4486/* Return the offset of an input bfd IBFD's GOT from the beginning of
4487 the primary GOT. */
4488static bfd_vma
9719ad41 4489mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
f4416af6
AO
4490{
4491 if (g->bfd2got == NULL)
4492 return 0;
4493
4494 g = mips_elf_got_for_ibfd (g, ibfd);
4495 if (! g)
4496 return 0;
4497
4498 BFD_ASSERT (g->next);
4499
4500 g = g->next;
143d77c5 4501
0f20cc35
DJ
4502 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4503 * MIPS_ELF_GOT_SIZE (abfd);
f4416af6
AO
4504}
4505
4506/* Turn a single GOT that is too big for 16-bit addressing into
4507 a sequence of GOTs, each one 16-bit addressable. */
4508
4509static bfd_boolean
9719ad41 4510mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
a8028dd0 4511 asection *got, bfd_size_type pages)
f4416af6 4512{
a8028dd0 4513 struct mips_elf_link_hash_table *htab;
f4416af6
AO
4514 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4515 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
a8028dd0 4516 struct mips_got_info *g, *gg;
33bb52fb
RS
4517 unsigned int assign, needed_relocs;
4518 bfd *dynobj;
f4416af6 4519
33bb52fb 4520 dynobj = elf_hash_table (info)->dynobj;
a8028dd0 4521 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4522 BFD_ASSERT (htab != NULL);
4523
a8028dd0 4524 g = htab->got_info;
f4416af6 4525 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
9719ad41 4526 mips_elf_bfd2got_entry_eq, NULL);
f4416af6
AO
4527 if (g->bfd2got == NULL)
4528 return FALSE;
4529
4530 got_per_bfd_arg.bfd2got = g->bfd2got;
4531 got_per_bfd_arg.obfd = abfd;
4532 got_per_bfd_arg.info = info;
4533
4534 /* Count how many GOT entries each input bfd requires, creating a
4535 map from bfd to got info while at that. */
f4416af6
AO
4536 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
4537 if (got_per_bfd_arg.obfd == NULL)
4538 return FALSE;
4539
c224138d
RS
4540 /* Also count how many page entries each input bfd requires. */
4541 htab_traverse (g->got_page_entries, mips_elf_make_got_pages_per_bfd,
4542 &got_per_bfd_arg);
4543 if (got_per_bfd_arg.obfd == NULL)
4544 return FALSE;
4545
f4416af6
AO
4546 got_per_bfd_arg.current = NULL;
4547 got_per_bfd_arg.primary = NULL;
0a44bf69 4548 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
f4416af6 4549 / MIPS_ELF_GOT_SIZE (abfd))
861fb55a 4550 - htab->reserved_gotno);
c224138d 4551 got_per_bfd_arg.max_pages = pages;
0f20cc35
DJ
4552 /* The number of globals that will be included in the primary GOT.
4553 See the calls to mips_elf_set_global_got_offset below for more
4554 information. */
4555 got_per_bfd_arg.global_count = g->global_gotno;
f4416af6
AO
4556
4557 /* Try to merge the GOTs of input bfds together, as long as they
4558 don't seem to exceed the maximum GOT size, choosing one of them
4559 to be the primary GOT. */
4560 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
4561 if (got_per_bfd_arg.obfd == NULL)
4562 return FALSE;
4563
0f20cc35 4564 /* If we do not find any suitable primary GOT, create an empty one. */
f4416af6 4565 if (got_per_bfd_arg.primary == NULL)
5334aa52 4566 g->next = mips_elf_create_got_info (abfd, FALSE);
f4416af6
AO
4567 else
4568 g->next = got_per_bfd_arg.primary;
4569 g->next->next = got_per_bfd_arg.current;
4570
4571 /* GG is now the master GOT, and G is the primary GOT. */
4572 gg = g;
4573 g = g->next;
4574
4575 /* Map the output bfd to the primary got. That's what we're going
4576 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4577 didn't mark in check_relocs, and we want a quick way to find it.
4578 We can't just use gg->next because we're going to reverse the
4579 list. */
4580 {
4581 struct mips_elf_bfd2got_hash *bfdgot;
4582 void **bfdgotp;
143d77c5 4583
f4416af6
AO
4584 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
4585 (abfd, sizeof (struct mips_elf_bfd2got_hash));
4586
4587 if (bfdgot == NULL)
4588 return FALSE;
4589
4590 bfdgot->bfd = abfd;
4591 bfdgot->g = g;
4592 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
4593
4594 BFD_ASSERT (*bfdgotp == NULL);
4595 *bfdgotp = bfdgot;
4596 }
4597
634835ae
RS
4598 /* Every symbol that is referenced in a dynamic relocation must be
4599 present in the primary GOT, so arrange for them to appear after
4600 those that are actually referenced. */
23cc69b6 4601 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
634835ae 4602 g->global_gotno = gg->global_gotno;
f4416af6 4603
f4416af6 4604 set_got_offset_arg.g = NULL;
634835ae 4605 set_got_offset_arg.value = GGA_RELOC_ONLY;
f4416af6
AO
4606 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
4607 &set_got_offset_arg);
634835ae 4608 set_got_offset_arg.value = GGA_NORMAL;
f4416af6
AO
4609 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
4610 &set_got_offset_arg);
f4416af6
AO
4611
4612 /* Now go through the GOTs assigning them offset ranges.
4613 [assigned_gotno, local_gotno[ will be set to the range of local
4614 entries in each GOT. We can then compute the end of a GOT by
4615 adding local_gotno to global_gotno. We reverse the list and make
4616 it circular since then we'll be able to quickly compute the
4617 beginning of a GOT, by computing the end of its predecessor. To
4618 avoid special cases for the primary GOT, while still preserving
4619 assertions that are valid for both single- and multi-got links,
4620 we arrange for the main got struct to have the right number of
4621 global entries, but set its local_gotno such that the initial
4622 offset of the primary GOT is zero. Remember that the primary GOT
4623 will become the last item in the circular linked list, so it
4624 points back to the master GOT. */
4625 gg->local_gotno = -g->global_gotno;
4626 gg->global_gotno = g->global_gotno;
0f20cc35 4627 gg->tls_gotno = 0;
f4416af6
AO
4628 assign = 0;
4629 gg->next = gg;
4630
4631 do
4632 {
4633 struct mips_got_info *gn;
4634
861fb55a 4635 assign += htab->reserved_gotno;
f4416af6 4636 g->assigned_gotno = assign;
c224138d
RS
4637 g->local_gotno += assign;
4638 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
0f20cc35
DJ
4639 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4640
ead49a57
RS
4641 /* Take g out of the direct list, and push it onto the reversed
4642 list that gg points to. g->next is guaranteed to be nonnull after
4643 this operation, as required by mips_elf_initialize_tls_index. */
4644 gn = g->next;
4645 g->next = gg->next;
4646 gg->next = g;
4647
0f20cc35
DJ
4648 /* Set up any TLS entries. We always place the TLS entries after
4649 all non-TLS entries. */
4650 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4651 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
1fd20d70 4652 BFD_ASSERT (g->tls_assigned_gotno == assign);
f4416af6 4653
ead49a57 4654 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
f4416af6 4655 g = gn;
0626d451 4656
33bb52fb
RS
4657 /* Forbid global symbols in every non-primary GOT from having
4658 lazy-binding stubs. */
0626d451 4659 if (g)
33bb52fb 4660 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
f4416af6
AO
4661 }
4662 while (g);
4663
59b08994 4664 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
33bb52fb
RS
4665
4666 needed_relocs = 0;
4667 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (abfd);
4668 set_got_offset_arg.info = info;
4669 for (g = gg->next; g && g->next != gg; g = g->next)
4670 {
4671 unsigned int save_assign;
4672
4673 /* Assign offsets to global GOT entries. */
4674 save_assign = g->assigned_gotno;
4675 g->assigned_gotno = g->local_gotno;
4676 set_got_offset_arg.g = g;
4677 set_got_offset_arg.needed_relocs = 0;
4678 htab_traverse (g->got_entries,
4679 mips_elf_set_global_got_offset,
4680 &set_got_offset_arg);
4681 needed_relocs += set_got_offset_arg.needed_relocs;
4682 BFD_ASSERT (g->assigned_gotno - g->local_gotno <= g->global_gotno);
4683
4684 g->assigned_gotno = save_assign;
4685 if (info->shared)
4686 {
4687 needed_relocs += g->local_gotno - g->assigned_gotno;
4688 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
4689 + g->next->global_gotno
4690 + g->next->tls_gotno
861fb55a 4691 + htab->reserved_gotno);
33bb52fb
RS
4692 }
4693 }
4694
4695 if (needed_relocs)
4696 mips_elf_allocate_dynamic_relocations (dynobj, info,
4697 needed_relocs);
143d77c5 4698
f4416af6
AO
4699 return TRUE;
4700}
143d77c5 4701
b49e97c9
TS
4702\f
4703/* Returns the first relocation of type r_type found, beginning with
4704 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4705
4706static const Elf_Internal_Rela *
9719ad41
RS
4707mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4708 const Elf_Internal_Rela *relocation,
4709 const Elf_Internal_Rela *relend)
b49e97c9 4710{
c000e262
TS
4711 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4712
b49e97c9
TS
4713 while (relocation < relend)
4714 {
c000e262
TS
4715 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4716 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
b49e97c9
TS
4717 return relocation;
4718
4719 ++relocation;
4720 }
4721
4722 /* We didn't find it. */
b49e97c9
TS
4723 return NULL;
4724}
4725
020d7251 4726/* Return whether an input relocation is against a local symbol. */
b49e97c9 4727
b34976b6 4728static bfd_boolean
9719ad41
RS
4729mips_elf_local_relocation_p (bfd *input_bfd,
4730 const Elf_Internal_Rela *relocation,
020d7251 4731 asection **local_sections)
b49e97c9
TS
4732{
4733 unsigned long r_symndx;
4734 Elf_Internal_Shdr *symtab_hdr;
b49e97c9
TS
4735 size_t extsymoff;
4736
4737 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4738 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4739 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4740
4741 if (r_symndx < extsymoff)
b34976b6 4742 return TRUE;
b49e97c9 4743 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
b34976b6 4744 return TRUE;
b49e97c9 4745
b34976b6 4746 return FALSE;
b49e97c9
TS
4747}
4748\f
4749/* Sign-extend VALUE, which has the indicated number of BITS. */
4750
a7ebbfdf 4751bfd_vma
9719ad41 4752_bfd_mips_elf_sign_extend (bfd_vma value, int bits)
b49e97c9
TS
4753{
4754 if (value & ((bfd_vma) 1 << (bits - 1)))
4755 /* VALUE is negative. */
4756 value |= ((bfd_vma) - 1) << bits;
4757
4758 return value;
4759}
4760
4761/* Return non-zero if the indicated VALUE has overflowed the maximum
4cc11e76 4762 range expressible by a signed number with the indicated number of
b49e97c9
TS
4763 BITS. */
4764
b34976b6 4765static bfd_boolean
9719ad41 4766mips_elf_overflow_p (bfd_vma value, int bits)
b49e97c9
TS
4767{
4768 bfd_signed_vma svalue = (bfd_signed_vma) value;
4769
4770 if (svalue > (1 << (bits - 1)) - 1)
4771 /* The value is too big. */
b34976b6 4772 return TRUE;
b49e97c9
TS
4773 else if (svalue < -(1 << (bits - 1)))
4774 /* The value is too small. */
b34976b6 4775 return TRUE;
b49e97c9
TS
4776
4777 /* All is well. */
b34976b6 4778 return FALSE;
b49e97c9
TS
4779}
4780
4781/* Calculate the %high function. */
4782
4783static bfd_vma
9719ad41 4784mips_elf_high (bfd_vma value)
b49e97c9
TS
4785{
4786 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
4787}
4788
4789/* Calculate the %higher function. */
4790
4791static bfd_vma
9719ad41 4792mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
4793{
4794#ifdef BFD64
4795 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
4796#else
4797 abort ();
c5ae1840 4798 return MINUS_ONE;
b49e97c9
TS
4799#endif
4800}
4801
4802/* Calculate the %highest function. */
4803
4804static bfd_vma
9719ad41 4805mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
4806{
4807#ifdef BFD64
b15e6682 4808 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
b49e97c9
TS
4809#else
4810 abort ();
c5ae1840 4811 return MINUS_ONE;
b49e97c9
TS
4812#endif
4813}
4814\f
4815/* Create the .compact_rel section. */
4816
b34976b6 4817static bfd_boolean
9719ad41
RS
4818mips_elf_create_compact_rel_section
4819 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
4820{
4821 flagword flags;
4822 register asection *s;
4823
3d4d4302 4824 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
b49e97c9
TS
4825 {
4826 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
4827 | SEC_READONLY);
4828
3d4d4302 4829 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
b49e97c9 4830 if (s == NULL
b49e97c9
TS
4831 || ! bfd_set_section_alignment (abfd, s,
4832 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 4833 return FALSE;
b49e97c9 4834
eea6121a 4835 s->size = sizeof (Elf32_External_compact_rel);
b49e97c9
TS
4836 }
4837
b34976b6 4838 return TRUE;
b49e97c9
TS
4839}
4840
4841/* Create the .got section to hold the global offset table. */
4842
b34976b6 4843static bfd_boolean
23cc69b6 4844mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
4845{
4846 flagword flags;
4847 register asection *s;
4848 struct elf_link_hash_entry *h;
14a793b2 4849 struct bfd_link_hash_entry *bh;
0a44bf69
RS
4850 struct mips_elf_link_hash_table *htab;
4851
4852 htab = mips_elf_hash_table (info);
4dfe6ac6 4853 BFD_ASSERT (htab != NULL);
b49e97c9
TS
4854
4855 /* This function may be called more than once. */
23cc69b6
RS
4856 if (htab->sgot)
4857 return TRUE;
b49e97c9
TS
4858
4859 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4860 | SEC_LINKER_CREATED);
4861
72b4917c
TS
4862 /* We have to use an alignment of 2**4 here because this is hardcoded
4863 in the function stub generation and in the linker script. */
87e0a731 4864 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
b49e97c9 4865 if (s == NULL
72b4917c 4866 || ! bfd_set_section_alignment (abfd, s, 4))
b34976b6 4867 return FALSE;
a8028dd0 4868 htab->sgot = s;
b49e97c9
TS
4869
4870 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
4871 linker script because we don't want to define the symbol if we
4872 are not creating a global offset table. */
14a793b2 4873 bh = NULL;
b49e97c9
TS
4874 if (! (_bfd_generic_link_add_one_symbol
4875 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
9719ad41 4876 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 4877 return FALSE;
14a793b2
AM
4878
4879 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
4880 h->non_elf = 0;
4881 h->def_regular = 1;
b49e97c9 4882 h->type = STT_OBJECT;
d329bcd1 4883 elf_hash_table (info)->hgot = h;
b49e97c9
TS
4884
4885 if (info->shared
c152c796 4886 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 4887 return FALSE;
b49e97c9 4888
5334aa52 4889 htab->got_info = mips_elf_create_got_info (abfd, TRUE);
f0abc2a1 4890 mips_elf_section_data (s)->elf.this_hdr.sh_flags
b49e97c9
TS
4891 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4892
861fb55a 4893 /* We also need a .got.plt section when generating PLTs. */
87e0a731
AM
4894 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
4895 SEC_ALLOC | SEC_LOAD
4896 | SEC_HAS_CONTENTS
4897 | SEC_IN_MEMORY
4898 | SEC_LINKER_CREATED);
861fb55a
DJ
4899 if (s == NULL)
4900 return FALSE;
4901 htab->sgotplt = s;
0a44bf69 4902
b34976b6 4903 return TRUE;
b49e97c9 4904}
b49e97c9 4905\f
0a44bf69
RS
4906/* Return true if H refers to the special VxWorks __GOTT_BASE__ or
4907 __GOTT_INDEX__ symbols. These symbols are only special for
4908 shared objects; they are not used in executables. */
4909
4910static bfd_boolean
4911is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
4912{
4913 return (mips_elf_hash_table (info)->is_vxworks
4914 && info->shared
4915 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
4916 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
4917}
861fb55a
DJ
4918
4919/* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
4920 require an la25 stub. See also mips_elf_local_pic_function_p,
4921 which determines whether the destination function ever requires a
4922 stub. */
4923
4924static bfd_boolean
8f0c309a
CLT
4925mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
4926 bfd_boolean target_is_16_bit_code_p)
861fb55a
DJ
4927{
4928 /* We specifically ignore branches and jumps from EF_PIC objects,
4929 where the onus is on the compiler or programmer to perform any
4930 necessary initialization of $25. Sometimes such initialization
4931 is unnecessary; for example, -mno-shared functions do not use
4932 the incoming value of $25, and may therefore be called directly. */
4933 if (PIC_OBJECT_P (input_bfd))
4934 return FALSE;
4935
4936 switch (r_type)
4937 {
4938 case R_MIPS_26:
4939 case R_MIPS_PC16:
df58fc94
RS
4940 case R_MICROMIPS_26_S1:
4941 case R_MICROMIPS_PC7_S1:
4942 case R_MICROMIPS_PC10_S1:
4943 case R_MICROMIPS_PC16_S1:
4944 case R_MICROMIPS_PC23_S2:
861fb55a
DJ
4945 return TRUE;
4946
8f0c309a
CLT
4947 case R_MIPS16_26:
4948 return !target_is_16_bit_code_p;
4949
861fb55a
DJ
4950 default:
4951 return FALSE;
4952 }
4953}
0a44bf69 4954\f
b49e97c9
TS
4955/* Calculate the value produced by the RELOCATION (which comes from
4956 the INPUT_BFD). The ADDEND is the addend to use for this
4957 RELOCATION; RELOCATION->R_ADDEND is ignored.
4958
4959 The result of the relocation calculation is stored in VALUEP.
38a7df63 4960 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
df58fc94 4961 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
b49e97c9
TS
4962
4963 This function returns bfd_reloc_continue if the caller need take no
4964 further action regarding this relocation, bfd_reloc_notsupported if
4965 something goes dramatically wrong, bfd_reloc_overflow if an
4966 overflow occurs, and bfd_reloc_ok to indicate success. */
4967
4968static bfd_reloc_status_type
9719ad41
RS
4969mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
4970 asection *input_section,
4971 struct bfd_link_info *info,
4972 const Elf_Internal_Rela *relocation,
4973 bfd_vma addend, reloc_howto_type *howto,
4974 Elf_Internal_Sym *local_syms,
4975 asection **local_sections, bfd_vma *valuep,
38a7df63
CF
4976 const char **namep,
4977 bfd_boolean *cross_mode_jump_p,
9719ad41 4978 bfd_boolean save_addend)
b49e97c9
TS
4979{
4980 /* The eventual value we will return. */
4981 bfd_vma value;
4982 /* The address of the symbol against which the relocation is
4983 occurring. */
4984 bfd_vma symbol = 0;
4985 /* The final GP value to be used for the relocatable, executable, or
4986 shared object file being produced. */
0a61c8c2 4987 bfd_vma gp;
b49e97c9
TS
4988 /* The place (section offset or address) of the storage unit being
4989 relocated. */
4990 bfd_vma p;
4991 /* The value of GP used to create the relocatable object. */
0a61c8c2 4992 bfd_vma gp0;
b49e97c9
TS
4993 /* The offset into the global offset table at which the address of
4994 the relocation entry symbol, adjusted by the addend, resides
4995 during execution. */
4996 bfd_vma g = MINUS_ONE;
4997 /* The section in which the symbol referenced by the relocation is
4998 located. */
4999 asection *sec = NULL;
5000 struct mips_elf_link_hash_entry *h = NULL;
b34976b6 5001 /* TRUE if the symbol referred to by this relocation is a local
b49e97c9 5002 symbol. */
b34976b6
AM
5003 bfd_boolean local_p, was_local_p;
5004 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5005 bfd_boolean gp_disp_p = FALSE;
bbe506e8
TS
5006 /* TRUE if the symbol referred to by this relocation is
5007 "__gnu_local_gp". */
5008 bfd_boolean gnu_local_gp_p = FALSE;
b49e97c9
TS
5009 Elf_Internal_Shdr *symtab_hdr;
5010 size_t extsymoff;
5011 unsigned long r_symndx;
5012 int r_type;
b34976b6 5013 /* TRUE if overflow occurred during the calculation of the
b49e97c9 5014 relocation value. */
b34976b6
AM
5015 bfd_boolean overflowed_p;
5016 /* TRUE if this relocation refers to a MIPS16 function. */
5017 bfd_boolean target_is_16_bit_code_p = FALSE;
df58fc94 5018 bfd_boolean target_is_micromips_code_p = FALSE;
0a44bf69
RS
5019 struct mips_elf_link_hash_table *htab;
5020 bfd *dynobj;
5021
5022 dynobj = elf_hash_table (info)->dynobj;
5023 htab = mips_elf_hash_table (info);
4dfe6ac6 5024 BFD_ASSERT (htab != NULL);
b49e97c9
TS
5025
5026 /* Parse the relocation. */
5027 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5028 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5029 p = (input_section->output_section->vma
5030 + input_section->output_offset
5031 + relocation->r_offset);
5032
5033 /* Assume that there will be no overflow. */
b34976b6 5034 overflowed_p = FALSE;
b49e97c9
TS
5035
5036 /* Figure out whether or not the symbol is local, and get the offset
5037 used in the array of hash table entries. */
5038 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5039 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
020d7251 5040 local_sections);
bce03d3d 5041 was_local_p = local_p;
b49e97c9
TS
5042 if (! elf_bad_symtab (input_bfd))
5043 extsymoff = symtab_hdr->sh_info;
5044 else
5045 {
5046 /* The symbol table does not follow the rule that local symbols
5047 must come before globals. */
5048 extsymoff = 0;
5049 }
5050
5051 /* Figure out the value of the symbol. */
5052 if (local_p)
5053 {
5054 Elf_Internal_Sym *sym;
5055
5056 sym = local_syms + r_symndx;
5057 sec = local_sections[r_symndx];
5058
5059 symbol = sec->output_section->vma + sec->output_offset;
d4df96e6
L
5060 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
5061 || (sec->flags & SEC_MERGE))
b49e97c9 5062 symbol += sym->st_value;
d4df96e6
L
5063 if ((sec->flags & SEC_MERGE)
5064 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
5065 {
5066 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5067 addend -= symbol;
5068 addend += sec->output_section->vma + sec->output_offset;
5069 }
b49e97c9 5070
df58fc94
RS
5071 /* MIPS16/microMIPS text labels should be treated as odd. */
5072 if (ELF_ST_IS_COMPRESSED (sym->st_other))
b49e97c9
TS
5073 ++symbol;
5074
5075 /* Record the name of this symbol, for our caller. */
5076 *namep = bfd_elf_string_from_elf_section (input_bfd,
5077 symtab_hdr->sh_link,
5078 sym->st_name);
5079 if (*namep == '\0')
5080 *namep = bfd_section_name (input_bfd, sec);
5081
30c09090 5082 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
df58fc94 5083 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
b49e97c9
TS
5084 }
5085 else
5086 {
560e09e9
NC
5087 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5088
b49e97c9
TS
5089 /* For global symbols we look up the symbol in the hash-table. */
5090 h = ((struct mips_elf_link_hash_entry *)
5091 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5092 /* Find the real hash-table entry for this symbol. */
5093 while (h->root.root.type == bfd_link_hash_indirect
5094 || h->root.root.type == bfd_link_hash_warning)
5095 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5096
5097 /* Record the name of this symbol, for our caller. */
5098 *namep = h->root.root.root.string;
5099
5100 /* See if this is the special _gp_disp symbol. Note that such a
5101 symbol must always be a global symbol. */
560e09e9 5102 if (strcmp (*namep, "_gp_disp") == 0
b49e97c9
TS
5103 && ! NEWABI_P (input_bfd))
5104 {
5105 /* Relocations against _gp_disp are permitted only with
5106 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
738e5348 5107 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
b49e97c9
TS
5108 return bfd_reloc_notsupported;
5109
b34976b6 5110 gp_disp_p = TRUE;
b49e97c9 5111 }
bbe506e8
TS
5112 /* See if this is the special _gp symbol. Note that such a
5113 symbol must always be a global symbol. */
5114 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5115 gnu_local_gp_p = TRUE;
5116
5117
b49e97c9
TS
5118 /* If this symbol is defined, calculate its address. Note that
5119 _gp_disp is a magic symbol, always implicitly defined by the
5120 linker, so it's inappropriate to check to see whether or not
5121 its defined. */
5122 else if ((h->root.root.type == bfd_link_hash_defined
5123 || h->root.root.type == bfd_link_hash_defweak)
5124 && h->root.root.u.def.section)
5125 {
5126 sec = h->root.root.u.def.section;
5127 if (sec->output_section)
5128 symbol = (h->root.root.u.def.value
5129 + sec->output_section->vma
5130 + sec->output_offset);
5131 else
5132 symbol = h->root.root.u.def.value;
5133 }
5134 else if (h->root.root.type == bfd_link_hash_undefweak)
5135 /* We allow relocations against undefined weak symbols, giving
5136 it the value zero, so that you can undefined weak functions
5137 and check to see if they exist by looking at their
5138 addresses. */
5139 symbol = 0;
59c2e50f 5140 else if (info->unresolved_syms_in_objects == RM_IGNORE
b49e97c9
TS
5141 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5142 symbol = 0;
a4d0f181
TS
5143 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5144 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
b49e97c9
TS
5145 {
5146 /* If this is a dynamic link, we should have created a
5147 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5148 in in _bfd_mips_elf_create_dynamic_sections.
5149 Otherwise, we should define the symbol with a value of 0.
5150 FIXME: It should probably get into the symbol table
5151 somehow as well. */
5152 BFD_ASSERT (! info->shared);
5153 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5154 symbol = 0;
5155 }
5e2b0d47
NC
5156 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5157 {
5158 /* This is an optional symbol - an Irix specific extension to the
5159 ELF spec. Ignore it for now.
5160 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5161 than simply ignoring them, but we do not handle this for now.
5162 For information see the "64-bit ELF Object File Specification"
5163 which is available from here:
5164 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5165 symbol = 0;
5166 }
e7e2196d
MR
5167 else if ((*info->callbacks->undefined_symbol)
5168 (info, h->root.root.root.string, input_bfd,
5169 input_section, relocation->r_offset,
5170 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5171 || ELF_ST_VISIBILITY (h->root.other)))
5172 {
5173 return bfd_reloc_undefined;
5174 }
b49e97c9
TS
5175 else
5176 {
e7e2196d 5177 return bfd_reloc_notsupported;
b49e97c9
TS
5178 }
5179
30c09090 5180 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
df58fc94
RS
5181 /* If the output section is the PLT section,
5182 then the target is not microMIPS. */
5183 target_is_micromips_code_p = (htab->splt != sec
5184 && ELF_ST_IS_MICROMIPS (h->root.other));
b49e97c9
TS
5185 }
5186
738e5348
RS
5187 /* If this is a reference to a 16-bit function with a stub, we need
5188 to redirect the relocation to the stub unless:
5189
5190 (a) the relocation is for a MIPS16 JAL;
5191
5192 (b) the relocation is for a MIPS16 PIC call, and there are no
5193 non-MIPS16 uses of the GOT slot; or
5194
5195 (c) the section allows direct references to MIPS16 functions. */
5196 if (r_type != R_MIPS16_26
5197 && !info->relocatable
5198 && ((h != NULL
5199 && h->fn_stub != NULL
5200 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
b9d58d71
TS
5201 || (local_p
5202 && elf_tdata (input_bfd)->local_stubs != NULL
b49e97c9 5203 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
738e5348 5204 && !section_allows_mips16_refs_p (input_section))
b49e97c9
TS
5205 {
5206 /* This is a 32- or 64-bit call to a 16-bit function. We should
5207 have already noticed that we were going to need the
5208 stub. */
5209 if (local_p)
8f0c309a
CLT
5210 {
5211 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
5212 value = 0;
5213 }
b49e97c9
TS
5214 else
5215 {
5216 BFD_ASSERT (h->need_fn_stub);
8f0c309a
CLT
5217 if (h->la25_stub)
5218 {
5219 /* If a LA25 header for the stub itself exists, point to the
5220 prepended LUI/ADDIU sequence. */
5221 sec = h->la25_stub->stub_section;
5222 value = h->la25_stub->offset;
5223 }
5224 else
5225 {
5226 sec = h->fn_stub;
5227 value = 0;
5228 }
b49e97c9
TS
5229 }
5230
8f0c309a 5231 symbol = sec->output_section->vma + sec->output_offset + value;
f38c2df5
TS
5232 /* The target is 16-bit, but the stub isn't. */
5233 target_is_16_bit_code_p = FALSE;
b49e97c9
TS
5234 }
5235 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
738e5348
RS
5236 need to redirect the call to the stub. Note that we specifically
5237 exclude R_MIPS16_CALL16 from this behavior; indirect calls should
5238 use an indirect stub instead. */
1049f94e 5239 else if (r_type == R_MIPS16_26 && !info->relocatable
b314ec0e 5240 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
b9d58d71
TS
5241 || (local_p
5242 && elf_tdata (input_bfd)->local_call_stubs != NULL
5243 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
b49e97c9
TS
5244 && !target_is_16_bit_code_p)
5245 {
b9d58d71
TS
5246 if (local_p)
5247 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5248 else
b49e97c9 5249 {
b9d58d71
TS
5250 /* If both call_stub and call_fp_stub are defined, we can figure
5251 out which one to use by checking which one appears in the input
5252 file. */
5253 if (h->call_stub != NULL && h->call_fp_stub != NULL)
b49e97c9 5254 {
b9d58d71 5255 asection *o;
68ffbac6 5256
b9d58d71
TS
5257 sec = NULL;
5258 for (o = input_bfd->sections; o != NULL; o = o->next)
b49e97c9 5259 {
b9d58d71
TS
5260 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5261 {
5262 sec = h->call_fp_stub;
5263 break;
5264 }
b49e97c9 5265 }
b9d58d71
TS
5266 if (sec == NULL)
5267 sec = h->call_stub;
b49e97c9 5268 }
b9d58d71 5269 else if (h->call_stub != NULL)
b49e97c9 5270 sec = h->call_stub;
b9d58d71
TS
5271 else
5272 sec = h->call_fp_stub;
5273 }
b49e97c9 5274
eea6121a 5275 BFD_ASSERT (sec->size > 0);
b49e97c9
TS
5276 symbol = sec->output_section->vma + sec->output_offset;
5277 }
861fb55a
DJ
5278 /* If this is a direct call to a PIC function, redirect to the
5279 non-PIC stub. */
5280 else if (h != NULL && h->la25_stub
8f0c309a
CLT
5281 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5282 target_is_16_bit_code_p))
861fb55a
DJ
5283 symbol = (h->la25_stub->stub_section->output_section->vma
5284 + h->la25_stub->stub_section->output_offset
5285 + h->la25_stub->offset);
b49e97c9 5286
df58fc94
RS
5287 /* Make sure MIPS16 and microMIPS are not used together. */
5288 if ((r_type == R_MIPS16_26 && target_is_micromips_code_p)
5289 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5290 {
5291 (*_bfd_error_handler)
5292 (_("MIPS16 and microMIPS functions cannot call each other"));
5293 return bfd_reloc_notsupported;
5294 }
5295
b49e97c9 5296 /* Calls from 16-bit code to 32-bit code and vice versa require the
df58fc94
RS
5297 mode change. However, we can ignore calls to undefined weak symbols,
5298 which should never be executed at runtime. This exception is important
5299 because the assembly writer may have "known" that any definition of the
5300 symbol would be 16-bit code, and that direct jumps were therefore
5301 acceptable. */
5302 *cross_mode_jump_p = (!info->relocatable
5303 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5304 && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p)
5305 || (r_type == R_MICROMIPS_26_S1
5306 && !target_is_micromips_code_p)
5307 || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR)
5308 && (target_is_16_bit_code_p
5309 || target_is_micromips_code_p))));
b49e97c9 5310
9f1a453e
MR
5311 local_p = (h == NULL
5312 || (h->got_only_for_calls
5313 ? SYMBOL_CALLS_LOCAL (info, &h->root)
5314 : SYMBOL_REFERENCES_LOCAL (info, &h->root)));
b49e97c9 5315
0a61c8c2
RS
5316 gp0 = _bfd_get_gp_value (input_bfd);
5317 gp = _bfd_get_gp_value (abfd);
23cc69b6 5318 if (htab->got_info)
a8028dd0 5319 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
0a61c8c2
RS
5320
5321 if (gnu_local_gp_p)
5322 symbol = gp;
5323
df58fc94
RS
5324 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5325 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5326 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5327 if (got_page_reloc_p (r_type) && !local_p)
020d7251 5328 {
df58fc94
RS
5329 r_type = (micromips_reloc_p (r_type)
5330 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
020d7251
RS
5331 addend = 0;
5332 }
5333
e77760d2 5334 /* If we haven't already determined the GOT offset, and we're going
0a61c8c2 5335 to need it, get it now. */
b49e97c9
TS
5336 switch (r_type)
5337 {
738e5348
RS
5338 case R_MIPS16_CALL16:
5339 case R_MIPS16_GOT16:
b49e97c9
TS
5340 case R_MIPS_CALL16:
5341 case R_MIPS_GOT16:
5342 case R_MIPS_GOT_DISP:
5343 case R_MIPS_GOT_HI16:
5344 case R_MIPS_CALL_HI16:
5345 case R_MIPS_GOT_LO16:
5346 case R_MIPS_CALL_LO16:
df58fc94
RS
5347 case R_MICROMIPS_CALL16:
5348 case R_MICROMIPS_GOT16:
5349 case R_MICROMIPS_GOT_DISP:
5350 case R_MICROMIPS_GOT_HI16:
5351 case R_MICROMIPS_CALL_HI16:
5352 case R_MICROMIPS_GOT_LO16:
5353 case R_MICROMIPS_CALL_LO16:
0f20cc35
DJ
5354 case R_MIPS_TLS_GD:
5355 case R_MIPS_TLS_GOTTPREL:
5356 case R_MIPS_TLS_LDM:
d0f13682
CLT
5357 case R_MIPS16_TLS_GD:
5358 case R_MIPS16_TLS_GOTTPREL:
5359 case R_MIPS16_TLS_LDM:
df58fc94
RS
5360 case R_MICROMIPS_TLS_GD:
5361 case R_MICROMIPS_TLS_GOTTPREL:
5362 case R_MICROMIPS_TLS_LDM:
b49e97c9 5363 /* Find the index into the GOT where this value is located. */
df58fc94 5364 if (tls_ldm_reloc_p (r_type))
0f20cc35 5365 {
0a44bf69 5366 g = mips_elf_local_got_index (abfd, input_bfd, info,
5c18022e 5367 0, 0, NULL, r_type);
0f20cc35
DJ
5368 if (g == MINUS_ONE)
5369 return bfd_reloc_outofrange;
5370 }
5371 else if (!local_p)
b49e97c9 5372 {
0a44bf69
RS
5373 /* On VxWorks, CALL relocations should refer to the .got.plt
5374 entry, which is initialized to point at the PLT stub. */
5375 if (htab->is_vxworks
df58fc94
RS
5376 && (call_hi16_reloc_p (r_type)
5377 || call_lo16_reloc_p (r_type)
738e5348 5378 || call16_reloc_p (r_type)))
0a44bf69
RS
5379 {
5380 BFD_ASSERT (addend == 0);
5381 BFD_ASSERT (h->root.needs_plt);
5382 g = mips_elf_gotplt_index (info, &h->root);
5383 }
5384 else
b49e97c9 5385 {
020d7251 5386 BFD_ASSERT (addend == 0);
0a44bf69
RS
5387 g = mips_elf_global_got_index (dynobj, input_bfd,
5388 &h->root, r_type, info);
e641e783 5389 if (!TLS_RELOC_P (r_type)
020d7251
RS
5390 && !elf_hash_table (info)->dynamic_sections_created)
5391 /* This is a static link. We must initialize the GOT entry. */
a8028dd0 5392 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
b49e97c9
TS
5393 }
5394 }
0a44bf69 5395 else if (!htab->is_vxworks
738e5348 5396 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
0a44bf69 5397 /* The calculation below does not involve "g". */
b49e97c9
TS
5398 break;
5399 else
5400 {
5c18022e 5401 g = mips_elf_local_got_index (abfd, input_bfd, info,
0a44bf69 5402 symbol + addend, r_symndx, h, r_type);
b49e97c9
TS
5403 if (g == MINUS_ONE)
5404 return bfd_reloc_outofrange;
5405 }
5406
5407 /* Convert GOT indices to actual offsets. */
a8028dd0 5408 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
b49e97c9 5409 break;
b49e97c9
TS
5410 }
5411
0a44bf69
RS
5412 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5413 symbols are resolved by the loader. Add them to .rela.dyn. */
5414 if (h != NULL && is_gott_symbol (info, &h->root))
5415 {
5416 Elf_Internal_Rela outrel;
5417 bfd_byte *loc;
5418 asection *s;
5419
5420 s = mips_elf_rel_dyn_section (info, FALSE);
5421 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5422
5423 outrel.r_offset = (input_section->output_section->vma
5424 + input_section->output_offset
5425 + relocation->r_offset);
5426 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5427 outrel.r_addend = addend;
5428 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
9e3313ae
RS
5429
5430 /* If we've written this relocation for a readonly section,
5431 we need to set DF_TEXTREL again, so that we do not delete the
5432 DT_TEXTREL tag. */
5433 if (MIPS_ELF_READONLY_SECTION (input_section))
5434 info->flags |= DF_TEXTREL;
5435
0a44bf69
RS
5436 *valuep = 0;
5437 return bfd_reloc_ok;
5438 }
5439
b49e97c9
TS
5440 /* Figure out what kind of relocation is being performed. */
5441 switch (r_type)
5442 {
5443 case R_MIPS_NONE:
5444 return bfd_reloc_continue;
5445
5446 case R_MIPS_16:
a7ebbfdf 5447 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
b49e97c9
TS
5448 overflowed_p = mips_elf_overflow_p (value, 16);
5449 break;
5450
5451 case R_MIPS_32:
5452 case R_MIPS_REL32:
5453 case R_MIPS_64:
5454 if ((info->shared
861fb55a 5455 || (htab->root.dynamic_sections_created
b49e97c9 5456 && h != NULL
f5385ebf 5457 && h->root.def_dynamic
861fb55a
DJ
5458 && !h->root.def_regular
5459 && !h->has_static_relocs))
cf35638d 5460 && r_symndx != STN_UNDEF
9a59ad6b
DJ
5461 && (h == NULL
5462 || h->root.root.type != bfd_link_hash_undefweak
5463 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
b49e97c9
TS
5464 && (input_section->flags & SEC_ALLOC) != 0)
5465 {
861fb55a 5466 /* If we're creating a shared library, then we can't know
b49e97c9
TS
5467 where the symbol will end up. So, we create a relocation
5468 record in the output, and leave the job up to the dynamic
861fb55a
DJ
5469 linker. We must do the same for executable references to
5470 shared library symbols, unless we've decided to use copy
5471 relocs or PLTs instead. */
b49e97c9
TS
5472 value = addend;
5473 if (!mips_elf_create_dynamic_relocation (abfd,
5474 info,
5475 relocation,
5476 h,
5477 sec,
5478 symbol,
5479 &value,
5480 input_section))
5481 return bfd_reloc_undefined;
5482 }
5483 else
5484 {
5485 if (r_type != R_MIPS_REL32)
5486 value = symbol + addend;
5487 else
5488 value = addend;
5489 }
5490 value &= howto->dst_mask;
092dcd75
CD
5491 break;
5492
5493 case R_MIPS_PC32:
5494 value = symbol + addend - p;
5495 value &= howto->dst_mask;
b49e97c9
TS
5496 break;
5497
b49e97c9
TS
5498 case R_MIPS16_26:
5499 /* The calculation for R_MIPS16_26 is just the same as for an
5500 R_MIPS_26. It's only the storage of the relocated field into
5501 the output file that's different. That's handled in
5502 mips_elf_perform_relocation. So, we just fall through to the
5503 R_MIPS_26 case here. */
5504 case R_MIPS_26:
df58fc94
RS
5505 case R_MICROMIPS_26_S1:
5506 {
5507 unsigned int shift;
5508
5509 /* Make sure the target of JALX is word-aligned. Bit 0 must be
5510 the correct ISA mode selector and bit 1 must be 0. */
5511 if (*cross_mode_jump_p && (symbol & 3) != (r_type == R_MIPS_26))
5512 return bfd_reloc_outofrange;
5513
5514 /* Shift is 2, unusually, for microMIPS JALX. */
5515 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5516
5517 if (was_local_p)
5518 value = addend | ((p + 4) & (0xfc000000 << shift));
5519 else
5520 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5521 value = (value + symbol) >> shift;
5522 if (!was_local_p && h->root.root.type != bfd_link_hash_undefweak)
5523 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5524 value &= howto->dst_mask;
5525 }
b49e97c9
TS
5526 break;
5527
0f20cc35 5528 case R_MIPS_TLS_DTPREL_HI16:
d0f13682 5529 case R_MIPS16_TLS_DTPREL_HI16:
df58fc94 5530 case R_MICROMIPS_TLS_DTPREL_HI16:
0f20cc35
DJ
5531 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5532 & howto->dst_mask);
5533 break;
5534
5535 case R_MIPS_TLS_DTPREL_LO16:
741d6ea8
JM
5536 case R_MIPS_TLS_DTPREL32:
5537 case R_MIPS_TLS_DTPREL64:
d0f13682 5538 case R_MIPS16_TLS_DTPREL_LO16:
df58fc94 5539 case R_MICROMIPS_TLS_DTPREL_LO16:
0f20cc35
DJ
5540 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5541 break;
5542
5543 case R_MIPS_TLS_TPREL_HI16:
d0f13682 5544 case R_MIPS16_TLS_TPREL_HI16:
df58fc94 5545 case R_MICROMIPS_TLS_TPREL_HI16:
0f20cc35
DJ
5546 value = (mips_elf_high (addend + symbol - tprel_base (info))
5547 & howto->dst_mask);
5548 break;
5549
5550 case R_MIPS_TLS_TPREL_LO16:
d0f13682
CLT
5551 case R_MIPS_TLS_TPREL32:
5552 case R_MIPS_TLS_TPREL64:
5553 case R_MIPS16_TLS_TPREL_LO16:
df58fc94 5554 case R_MICROMIPS_TLS_TPREL_LO16:
0f20cc35
DJ
5555 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5556 break;
5557
b49e97c9 5558 case R_MIPS_HI16:
d6f16593 5559 case R_MIPS16_HI16:
df58fc94 5560 case R_MICROMIPS_HI16:
b49e97c9
TS
5561 if (!gp_disp_p)
5562 {
5563 value = mips_elf_high (addend + symbol);
5564 value &= howto->dst_mask;
5565 }
5566 else
5567 {
d6f16593
MR
5568 /* For MIPS16 ABI code we generate this sequence
5569 0: li $v0,%hi(_gp_disp)
5570 4: addiupc $v1,%lo(_gp_disp)
5571 8: sll $v0,16
5572 12: addu $v0,$v1
5573 14: move $gp,$v0
5574 So the offsets of hi and lo relocs are the same, but the
888b9c01
CLT
5575 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5576 ADDIUPC clears the low two bits of the instruction address,
5577 so the base is ($t9 + 4) & ~3. */
d6f16593 5578 if (r_type == R_MIPS16_HI16)
888b9c01 5579 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
df58fc94
RS
5580 /* The microMIPS .cpload sequence uses the same assembly
5581 instructions as the traditional psABI version, but the
5582 incoming $t9 has the low bit set. */
5583 else if (r_type == R_MICROMIPS_HI16)
5584 value = mips_elf_high (addend + gp - p - 1);
d6f16593
MR
5585 else
5586 value = mips_elf_high (addend + gp - p);
b49e97c9
TS
5587 overflowed_p = mips_elf_overflow_p (value, 16);
5588 }
5589 break;
5590
5591 case R_MIPS_LO16:
d6f16593 5592 case R_MIPS16_LO16:
df58fc94
RS
5593 case R_MICROMIPS_LO16:
5594 case R_MICROMIPS_HI0_LO16:
b49e97c9
TS
5595 if (!gp_disp_p)
5596 value = (symbol + addend) & howto->dst_mask;
5597 else
5598 {
d6f16593
MR
5599 /* See the comment for R_MIPS16_HI16 above for the reason
5600 for this conditional. */
5601 if (r_type == R_MIPS16_LO16)
888b9c01 5602 value = addend + gp - (p & ~(bfd_vma) 0x3);
df58fc94
RS
5603 else if (r_type == R_MICROMIPS_LO16
5604 || r_type == R_MICROMIPS_HI0_LO16)
5605 value = addend + gp - p + 3;
d6f16593
MR
5606 else
5607 value = addend + gp - p + 4;
b49e97c9 5608 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
8dc1a139 5609 for overflow. But, on, say, IRIX5, relocations against
b49e97c9
TS
5610 _gp_disp are normally generated from the .cpload
5611 pseudo-op. It generates code that normally looks like
5612 this:
5613
5614 lui $gp,%hi(_gp_disp)
5615 addiu $gp,$gp,%lo(_gp_disp)
5616 addu $gp,$gp,$t9
5617
5618 Here $t9 holds the address of the function being called,
5619 as required by the MIPS ELF ABI. The R_MIPS_LO16
5620 relocation can easily overflow in this situation, but the
5621 R_MIPS_HI16 relocation will handle the overflow.
5622 Therefore, we consider this a bug in the MIPS ABI, and do
5623 not check for overflow here. */
5624 }
5625 break;
5626
5627 case R_MIPS_LITERAL:
df58fc94 5628 case R_MICROMIPS_LITERAL:
b49e97c9
TS
5629 /* Because we don't merge literal sections, we can handle this
5630 just like R_MIPS_GPREL16. In the long run, we should merge
5631 shared literals, and then we will need to additional work
5632 here. */
5633
5634 /* Fall through. */
5635
5636 case R_MIPS16_GPREL:
5637 /* The R_MIPS16_GPREL performs the same calculation as
5638 R_MIPS_GPREL16, but stores the relocated bits in a different
5639 order. We don't need to do anything special here; the
5640 differences are handled in mips_elf_perform_relocation. */
5641 case R_MIPS_GPREL16:
df58fc94
RS
5642 case R_MICROMIPS_GPREL7_S2:
5643 case R_MICROMIPS_GPREL16:
bce03d3d
AO
5644 /* Only sign-extend the addend if it was extracted from the
5645 instruction. If the addend was separate, leave it alone,
5646 otherwise we may lose significant bits. */
5647 if (howto->partial_inplace)
a7ebbfdf 5648 addend = _bfd_mips_elf_sign_extend (addend, 16);
bce03d3d
AO
5649 value = symbol + addend - gp;
5650 /* If the symbol was local, any earlier relocatable links will
5651 have adjusted its addend with the gp offset, so compensate
5652 for that now. Don't do it for symbols forced local in this
5653 link, though, since they won't have had the gp offset applied
5654 to them before. */
5655 if (was_local_p)
5656 value += gp0;
b49e97c9
TS
5657 overflowed_p = mips_elf_overflow_p (value, 16);
5658 break;
5659
738e5348
RS
5660 case R_MIPS16_GOT16:
5661 case R_MIPS16_CALL16:
b49e97c9
TS
5662 case R_MIPS_GOT16:
5663 case R_MIPS_CALL16:
df58fc94
RS
5664 case R_MICROMIPS_GOT16:
5665 case R_MICROMIPS_CALL16:
0a44bf69 5666 /* VxWorks does not have separate local and global semantics for
738e5348 5667 R_MIPS*_GOT16; every relocation evaluates to "G". */
0a44bf69 5668 if (!htab->is_vxworks && local_p)
b49e97c9 5669 {
5c18022e 5670 value = mips_elf_got16_entry (abfd, input_bfd, info,
020d7251 5671 symbol + addend, !was_local_p);
b49e97c9
TS
5672 if (value == MINUS_ONE)
5673 return bfd_reloc_outofrange;
5674 value
a8028dd0 5675 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
b49e97c9
TS
5676 overflowed_p = mips_elf_overflow_p (value, 16);
5677 break;
5678 }
5679
5680 /* Fall through. */
5681
0f20cc35
DJ
5682 case R_MIPS_TLS_GD:
5683 case R_MIPS_TLS_GOTTPREL:
5684 case R_MIPS_TLS_LDM:
b49e97c9 5685 case R_MIPS_GOT_DISP:
d0f13682
CLT
5686 case R_MIPS16_TLS_GD:
5687 case R_MIPS16_TLS_GOTTPREL:
5688 case R_MIPS16_TLS_LDM:
df58fc94
RS
5689 case R_MICROMIPS_TLS_GD:
5690 case R_MICROMIPS_TLS_GOTTPREL:
5691 case R_MICROMIPS_TLS_LDM:
5692 case R_MICROMIPS_GOT_DISP:
b49e97c9
TS
5693 value = g;
5694 overflowed_p = mips_elf_overflow_p (value, 16);
5695 break;
5696
5697 case R_MIPS_GPREL32:
bce03d3d
AO
5698 value = (addend + symbol + gp0 - gp);
5699 if (!save_addend)
5700 value &= howto->dst_mask;
b49e97c9
TS
5701 break;
5702
5703 case R_MIPS_PC16:
bad36eac
DJ
5704 case R_MIPS_GNU_REL16_S2:
5705 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
5706 overflowed_p = mips_elf_overflow_p (value, 18);
37caec6b
TS
5707 value >>= howto->rightshift;
5708 value &= howto->dst_mask;
b49e97c9
TS
5709 break;
5710
df58fc94
RS
5711 case R_MICROMIPS_PC7_S1:
5712 value = symbol + _bfd_mips_elf_sign_extend (addend, 8) - p;
5713 overflowed_p = mips_elf_overflow_p (value, 8);
5714 value >>= howto->rightshift;
5715 value &= howto->dst_mask;
5716 break;
5717
5718 case R_MICROMIPS_PC10_S1:
5719 value = symbol + _bfd_mips_elf_sign_extend (addend, 11) - p;
5720 overflowed_p = mips_elf_overflow_p (value, 11);
5721 value >>= howto->rightshift;
5722 value &= howto->dst_mask;
5723 break;
5724
5725 case R_MICROMIPS_PC16_S1:
5726 value = symbol + _bfd_mips_elf_sign_extend (addend, 17) - p;
5727 overflowed_p = mips_elf_overflow_p (value, 17);
5728 value >>= howto->rightshift;
5729 value &= howto->dst_mask;
5730 break;
5731
5732 case R_MICROMIPS_PC23_S2:
5733 value = symbol + _bfd_mips_elf_sign_extend (addend, 25) - ((p | 3) ^ 3);
5734 overflowed_p = mips_elf_overflow_p (value, 25);
5735 value >>= howto->rightshift;
5736 value &= howto->dst_mask;
5737 break;
5738
b49e97c9
TS
5739 case R_MIPS_GOT_HI16:
5740 case R_MIPS_CALL_HI16:
df58fc94
RS
5741 case R_MICROMIPS_GOT_HI16:
5742 case R_MICROMIPS_CALL_HI16:
b49e97c9
TS
5743 /* We're allowed to handle these two relocations identically.
5744 The dynamic linker is allowed to handle the CALL relocations
5745 differently by creating a lazy evaluation stub. */
5746 value = g;
5747 value = mips_elf_high (value);
5748 value &= howto->dst_mask;
5749 break;
5750
5751 case R_MIPS_GOT_LO16:
5752 case R_MIPS_CALL_LO16:
df58fc94
RS
5753 case R_MICROMIPS_GOT_LO16:
5754 case R_MICROMIPS_CALL_LO16:
b49e97c9
TS
5755 value = g & howto->dst_mask;
5756 break;
5757
5758 case R_MIPS_GOT_PAGE:
df58fc94 5759 case R_MICROMIPS_GOT_PAGE:
5c18022e 5760 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
b49e97c9
TS
5761 if (value == MINUS_ONE)
5762 return bfd_reloc_outofrange;
a8028dd0 5763 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
b49e97c9
TS
5764 overflowed_p = mips_elf_overflow_p (value, 16);
5765 break;
5766
5767 case R_MIPS_GOT_OFST:
df58fc94 5768 case R_MICROMIPS_GOT_OFST:
93a2b7ae 5769 if (local_p)
5c18022e 5770 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
0fdc1bf1
AO
5771 else
5772 value = addend;
b49e97c9
TS
5773 overflowed_p = mips_elf_overflow_p (value, 16);
5774 break;
5775
5776 case R_MIPS_SUB:
df58fc94 5777 case R_MICROMIPS_SUB:
b49e97c9
TS
5778 value = symbol - addend;
5779 value &= howto->dst_mask;
5780 break;
5781
5782 case R_MIPS_HIGHER:
df58fc94 5783 case R_MICROMIPS_HIGHER:
b49e97c9
TS
5784 value = mips_elf_higher (addend + symbol);
5785 value &= howto->dst_mask;
5786 break;
5787
5788 case R_MIPS_HIGHEST:
df58fc94 5789 case R_MICROMIPS_HIGHEST:
b49e97c9
TS
5790 value = mips_elf_highest (addend + symbol);
5791 value &= howto->dst_mask;
5792 break;
5793
5794 case R_MIPS_SCN_DISP:
df58fc94 5795 case R_MICROMIPS_SCN_DISP:
b49e97c9
TS
5796 value = symbol + addend - sec->output_offset;
5797 value &= howto->dst_mask;
5798 break;
5799
b49e97c9 5800 case R_MIPS_JALR:
df58fc94 5801 case R_MICROMIPS_JALR:
1367d393
ILT
5802 /* This relocation is only a hint. In some cases, we optimize
5803 it into a bal instruction. But we don't try to optimize
5bbc5ae7
AN
5804 when the symbol does not resolve locally. */
5805 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
1367d393
ILT
5806 return bfd_reloc_continue;
5807 value = symbol + addend;
5808 break;
b49e97c9 5809
1367d393 5810 case R_MIPS_PJUMP:
b49e97c9
TS
5811 case R_MIPS_GNU_VTINHERIT:
5812 case R_MIPS_GNU_VTENTRY:
5813 /* We don't do anything with these at present. */
5814 return bfd_reloc_continue;
5815
5816 default:
5817 /* An unrecognized relocation type. */
5818 return bfd_reloc_notsupported;
5819 }
5820
5821 /* Store the VALUE for our caller. */
5822 *valuep = value;
5823 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
5824}
5825
5826/* Obtain the field relocated by RELOCATION. */
5827
5828static bfd_vma
9719ad41
RS
5829mips_elf_obtain_contents (reloc_howto_type *howto,
5830 const Elf_Internal_Rela *relocation,
5831 bfd *input_bfd, bfd_byte *contents)
b49e97c9
TS
5832{
5833 bfd_vma x;
5834 bfd_byte *location = contents + relocation->r_offset;
5835
5836 /* Obtain the bytes. */
5837 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
5838
b49e97c9
TS
5839 return x;
5840}
5841
5842/* It has been determined that the result of the RELOCATION is the
5843 VALUE. Use HOWTO to place VALUE into the output file at the
5844 appropriate position. The SECTION is the section to which the
68ffbac6 5845 relocation applies.
38a7df63 5846 CROSS_MODE_JUMP_P is true if the relocation field
df58fc94 5847 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
b49e97c9 5848
b34976b6 5849 Returns FALSE if anything goes wrong. */
b49e97c9 5850
b34976b6 5851static bfd_boolean
9719ad41
RS
5852mips_elf_perform_relocation (struct bfd_link_info *info,
5853 reloc_howto_type *howto,
5854 const Elf_Internal_Rela *relocation,
5855 bfd_vma value, bfd *input_bfd,
5856 asection *input_section, bfd_byte *contents,
38a7df63 5857 bfd_boolean cross_mode_jump_p)
b49e97c9
TS
5858{
5859 bfd_vma x;
5860 bfd_byte *location;
5861 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5862
5863 /* Figure out where the relocation is occurring. */
5864 location = contents + relocation->r_offset;
5865
df58fc94 5866 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
d6f16593 5867
b49e97c9
TS
5868 /* Obtain the current value. */
5869 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5870
5871 /* Clear the field we are setting. */
5872 x &= ~howto->dst_mask;
5873
b49e97c9
TS
5874 /* Set the field. */
5875 x |= (value & howto->dst_mask);
5876
5877 /* If required, turn JAL into JALX. */
38a7df63 5878 if (cross_mode_jump_p && jal_reloc_p (r_type))
b49e97c9 5879 {
b34976b6 5880 bfd_boolean ok;
b49e97c9
TS
5881 bfd_vma opcode = x >> 26;
5882 bfd_vma jalx_opcode;
5883
5884 /* Check to see if the opcode is already JAL or JALX. */
5885 if (r_type == R_MIPS16_26)
5886 {
5887 ok = ((opcode == 0x6) || (opcode == 0x7));
5888 jalx_opcode = 0x7;
5889 }
df58fc94
RS
5890 else if (r_type == R_MICROMIPS_26_S1)
5891 {
5892 ok = ((opcode == 0x3d) || (opcode == 0x3c));
5893 jalx_opcode = 0x3c;
5894 }
b49e97c9
TS
5895 else
5896 {
5897 ok = ((opcode == 0x3) || (opcode == 0x1d));
5898 jalx_opcode = 0x1d;
5899 }
5900
3bdf9505
MR
5901 /* If the opcode is not JAL or JALX, there's a problem. We cannot
5902 convert J or JALS to JALX. */
b49e97c9
TS
5903 if (!ok)
5904 {
5905 (*_bfd_error_handler)
3bdf9505 5906 (_("%B: %A+0x%lx: Unsupported jump between ISA modes; consider recompiling with interlinking enabled."),
d003868e
AM
5907 input_bfd,
5908 input_section,
b49e97c9
TS
5909 (unsigned long) relocation->r_offset);
5910 bfd_set_error (bfd_error_bad_value);
b34976b6 5911 return FALSE;
b49e97c9
TS
5912 }
5913
5914 /* Make this the JALX opcode. */
5915 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
5916 }
5917
38a7df63
CF
5918 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
5919 range. */
cd8d5a82 5920 if (!info->relocatable
38a7df63 5921 && !cross_mode_jump_p
cd8d5a82
CF
5922 && ((JAL_TO_BAL_P (input_bfd)
5923 && r_type == R_MIPS_26
5924 && (x >> 26) == 0x3) /* jal addr */
5925 || (JALR_TO_BAL_P (input_bfd)
5926 && r_type == R_MIPS_JALR
38a7df63
CF
5927 && x == 0x0320f809) /* jalr t9 */
5928 || (JR_TO_B_P (input_bfd)
5929 && r_type == R_MIPS_JALR
5930 && x == 0x03200008))) /* jr t9 */
1367d393
ILT
5931 {
5932 bfd_vma addr;
5933 bfd_vma dest;
5934 bfd_signed_vma off;
5935
5936 addr = (input_section->output_section->vma
5937 + input_section->output_offset
5938 + relocation->r_offset
5939 + 4);
5940 if (r_type == R_MIPS_26)
5941 dest = (value << 2) | ((addr >> 28) << 28);
5942 else
5943 dest = value;
5944 off = dest - addr;
5945 if (off <= 0x1ffff && off >= -0x20000)
38a7df63
CF
5946 {
5947 if (x == 0x03200008) /* jr t9 */
5948 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
5949 else
5950 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
5951 }
1367d393
ILT
5952 }
5953
b49e97c9
TS
5954 /* Put the value into the output. */
5955 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
d6f16593 5956
df58fc94
RS
5957 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !info->relocatable,
5958 location);
d6f16593 5959
b34976b6 5960 return TRUE;
b49e97c9 5961}
b49e97c9 5962\f
b49e97c9
TS
5963/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
5964 is the original relocation, which is now being transformed into a
5965 dynamic relocation. The ADDENDP is adjusted if necessary; the
5966 caller should store the result in place of the original addend. */
5967
b34976b6 5968static bfd_boolean
9719ad41
RS
5969mips_elf_create_dynamic_relocation (bfd *output_bfd,
5970 struct bfd_link_info *info,
5971 const Elf_Internal_Rela *rel,
5972 struct mips_elf_link_hash_entry *h,
5973 asection *sec, bfd_vma symbol,
5974 bfd_vma *addendp, asection *input_section)
b49e97c9 5975{
947216bf 5976 Elf_Internal_Rela outrel[3];
b49e97c9
TS
5977 asection *sreloc;
5978 bfd *dynobj;
5979 int r_type;
5d41f0b6
RS
5980 long indx;
5981 bfd_boolean defined_p;
0a44bf69 5982 struct mips_elf_link_hash_table *htab;
b49e97c9 5983
0a44bf69 5984 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
5985 BFD_ASSERT (htab != NULL);
5986
b49e97c9
TS
5987 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
5988 dynobj = elf_hash_table (info)->dynobj;
0a44bf69 5989 sreloc = mips_elf_rel_dyn_section (info, FALSE);
b49e97c9
TS
5990 BFD_ASSERT (sreloc != NULL);
5991 BFD_ASSERT (sreloc->contents != NULL);
5992 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
eea6121a 5993 < sreloc->size);
b49e97c9 5994
b49e97c9
TS
5995 outrel[0].r_offset =
5996 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
9ddf8309
TS
5997 if (ABI_64_P (output_bfd))
5998 {
5999 outrel[1].r_offset =
6000 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6001 outrel[2].r_offset =
6002 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6003 }
b49e97c9 6004
c5ae1840 6005 if (outrel[0].r_offset == MINUS_ONE)
0d591ff7 6006 /* The relocation field has been deleted. */
5d41f0b6
RS
6007 return TRUE;
6008
6009 if (outrel[0].r_offset == MINUS_TWO)
0d591ff7
RS
6010 {
6011 /* The relocation field has been converted into a relative value of
6012 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6013 the field to be fully relocated, so add in the symbol's value. */
0d591ff7 6014 *addendp += symbol;
5d41f0b6 6015 return TRUE;
0d591ff7 6016 }
b49e97c9 6017
5d41f0b6
RS
6018 /* We must now calculate the dynamic symbol table index to use
6019 in the relocation. */
d4a77f3f 6020 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
5d41f0b6 6021 {
020d7251 6022 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
5d41f0b6
RS
6023 indx = h->root.dynindx;
6024 if (SGI_COMPAT (output_bfd))
6025 defined_p = h->root.def_regular;
6026 else
6027 /* ??? glibc's ld.so just adds the final GOT entry to the
6028 relocation field. It therefore treats relocs against
6029 defined symbols in the same way as relocs against
6030 undefined symbols. */
6031 defined_p = FALSE;
6032 }
b49e97c9
TS
6033 else
6034 {
5d41f0b6
RS
6035 if (sec != NULL && bfd_is_abs_section (sec))
6036 indx = 0;
6037 else if (sec == NULL || sec->owner == NULL)
fdd07405 6038 {
5d41f0b6
RS
6039 bfd_set_error (bfd_error_bad_value);
6040 return FALSE;
b49e97c9
TS
6041 }
6042 else
6043 {
5d41f0b6 6044 indx = elf_section_data (sec->output_section)->dynindx;
74541ad4
AM
6045 if (indx == 0)
6046 {
6047 asection *osec = htab->root.text_index_section;
6048 indx = elf_section_data (osec)->dynindx;
6049 }
5d41f0b6
RS
6050 if (indx == 0)
6051 abort ();
b49e97c9
TS
6052 }
6053
5d41f0b6
RS
6054 /* Instead of generating a relocation using the section
6055 symbol, we may as well make it a fully relative
6056 relocation. We want to avoid generating relocations to
6057 local symbols because we used to generate them
6058 incorrectly, without adding the original symbol value,
6059 which is mandated by the ABI for section symbols. In
6060 order to give dynamic loaders and applications time to
6061 phase out the incorrect use, we refrain from emitting
6062 section-relative relocations. It's not like they're
6063 useful, after all. This should be a bit more efficient
6064 as well. */
6065 /* ??? Although this behavior is compatible with glibc's ld.so,
6066 the ABI says that relocations against STN_UNDEF should have
6067 a symbol value of 0. Irix rld honors this, so relocations
6068 against STN_UNDEF have no effect. */
6069 if (!SGI_COMPAT (output_bfd))
6070 indx = 0;
6071 defined_p = TRUE;
b49e97c9
TS
6072 }
6073
5d41f0b6
RS
6074 /* If the relocation was previously an absolute relocation and
6075 this symbol will not be referred to by the relocation, we must
6076 adjust it by the value we give it in the dynamic symbol table.
6077 Otherwise leave the job up to the dynamic linker. */
6078 if (defined_p && r_type != R_MIPS_REL32)
6079 *addendp += symbol;
6080
0a44bf69
RS
6081 if (htab->is_vxworks)
6082 /* VxWorks uses non-relative relocations for this. */
6083 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6084 else
6085 /* The relocation is always an REL32 relocation because we don't
6086 know where the shared library will wind up at load-time. */
6087 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6088 R_MIPS_REL32);
6089
5d41f0b6
RS
6090 /* For strict adherence to the ABI specification, we should
6091 generate a R_MIPS_64 relocation record by itself before the
6092 _REL32/_64 record as well, such that the addend is read in as
6093 a 64-bit value (REL32 is a 32-bit relocation, after all).
6094 However, since none of the existing ELF64 MIPS dynamic
6095 loaders seems to care, we don't waste space with these
6096 artificial relocations. If this turns out to not be true,
6097 mips_elf_allocate_dynamic_relocation() should be tweaked so
6098 as to make room for a pair of dynamic relocations per
6099 invocation if ABI_64_P, and here we should generate an
6100 additional relocation record with R_MIPS_64 by itself for a
6101 NULL symbol before this relocation record. */
6102 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6103 ABI_64_P (output_bfd)
6104 ? R_MIPS_64
6105 : R_MIPS_NONE);
6106 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6107
6108 /* Adjust the output offset of the relocation to reference the
6109 correct location in the output file. */
6110 outrel[0].r_offset += (input_section->output_section->vma
6111 + input_section->output_offset);
6112 outrel[1].r_offset += (input_section->output_section->vma
6113 + input_section->output_offset);
6114 outrel[2].r_offset += (input_section->output_section->vma
6115 + input_section->output_offset);
6116
b49e97c9
TS
6117 /* Put the relocation back out. We have to use the special
6118 relocation outputter in the 64-bit case since the 64-bit
6119 relocation format is non-standard. */
6120 if (ABI_64_P (output_bfd))
6121 {
6122 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6123 (output_bfd, &outrel[0],
6124 (sreloc->contents
6125 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6126 }
0a44bf69
RS
6127 else if (htab->is_vxworks)
6128 {
6129 /* VxWorks uses RELA rather than REL dynamic relocations. */
6130 outrel[0].r_addend = *addendp;
6131 bfd_elf32_swap_reloca_out
6132 (output_bfd, &outrel[0],
6133 (sreloc->contents
6134 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6135 }
b49e97c9 6136 else
947216bf
AM
6137 bfd_elf32_swap_reloc_out
6138 (output_bfd, &outrel[0],
6139 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
b49e97c9 6140
b49e97c9
TS
6141 /* We've now added another relocation. */
6142 ++sreloc->reloc_count;
6143
6144 /* Make sure the output section is writable. The dynamic linker
6145 will be writing to it. */
6146 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6147 |= SHF_WRITE;
6148
6149 /* On IRIX5, make an entry of compact relocation info. */
5d41f0b6 6150 if (IRIX_COMPAT (output_bfd) == ict_irix5)
b49e97c9 6151 {
3d4d4302 6152 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
b49e97c9
TS
6153 bfd_byte *cr;
6154
6155 if (scpt)
6156 {
6157 Elf32_crinfo cptrel;
6158
6159 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6160 cptrel.vaddr = (rel->r_offset
6161 + input_section->output_section->vma
6162 + input_section->output_offset);
6163 if (r_type == R_MIPS_REL32)
6164 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6165 else
6166 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6167 mips_elf_set_cr_dist2to (cptrel, 0);
6168 cptrel.konst = *addendp;
6169
6170 cr = (scpt->contents
6171 + sizeof (Elf32_External_compact_rel));
abc0f8d0 6172 mips_elf_set_cr_relvaddr (cptrel, 0);
b49e97c9
TS
6173 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6174 ((Elf32_External_crinfo *) cr
6175 + scpt->reloc_count));
6176 ++scpt->reloc_count;
6177 }
6178 }
6179
943284cc
DJ
6180 /* If we've written this relocation for a readonly section,
6181 we need to set DF_TEXTREL again, so that we do not delete the
6182 DT_TEXTREL tag. */
6183 if (MIPS_ELF_READONLY_SECTION (input_section))
6184 info->flags |= DF_TEXTREL;
6185
b34976b6 6186 return TRUE;
b49e97c9
TS
6187}
6188\f
b49e97c9
TS
6189/* Return the MACH for a MIPS e_flags value. */
6190
6191unsigned long
9719ad41 6192_bfd_elf_mips_mach (flagword flags)
b49e97c9
TS
6193{
6194 switch (flags & EF_MIPS_MACH)
6195 {
6196 case E_MIPS_MACH_3900:
6197 return bfd_mach_mips3900;
6198
6199 case E_MIPS_MACH_4010:
6200 return bfd_mach_mips4010;
6201
6202 case E_MIPS_MACH_4100:
6203 return bfd_mach_mips4100;
6204
6205 case E_MIPS_MACH_4111:
6206 return bfd_mach_mips4111;
6207
00707a0e
RS
6208 case E_MIPS_MACH_4120:
6209 return bfd_mach_mips4120;
6210
b49e97c9
TS
6211 case E_MIPS_MACH_4650:
6212 return bfd_mach_mips4650;
6213
00707a0e
RS
6214 case E_MIPS_MACH_5400:
6215 return bfd_mach_mips5400;
6216
6217 case E_MIPS_MACH_5500:
6218 return bfd_mach_mips5500;
6219
e407c74b
NC
6220 case E_MIPS_MACH_5900:
6221 return bfd_mach_mips5900;
6222
0d2e43ed
ILT
6223 case E_MIPS_MACH_9000:
6224 return bfd_mach_mips9000;
6225
b49e97c9
TS
6226 case E_MIPS_MACH_SB1:
6227 return bfd_mach_mips_sb1;
6228
350cc38d
MS
6229 case E_MIPS_MACH_LS2E:
6230 return bfd_mach_mips_loongson_2e;
6231
6232 case E_MIPS_MACH_LS2F:
6233 return bfd_mach_mips_loongson_2f;
6234
fd503541
NC
6235 case E_MIPS_MACH_LS3A:
6236 return bfd_mach_mips_loongson_3a;
6237
432233b3
AP
6238 case E_MIPS_MACH_OCTEON2:
6239 return bfd_mach_mips_octeon2;
6240
6f179bd0
AN
6241 case E_MIPS_MACH_OCTEON:
6242 return bfd_mach_mips_octeon;
6243
52b6b6b9
JM
6244 case E_MIPS_MACH_XLR:
6245 return bfd_mach_mips_xlr;
6246
b49e97c9
TS
6247 default:
6248 switch (flags & EF_MIPS_ARCH)
6249 {
6250 default:
6251 case E_MIPS_ARCH_1:
6252 return bfd_mach_mips3000;
b49e97c9
TS
6253
6254 case E_MIPS_ARCH_2:
6255 return bfd_mach_mips6000;
b49e97c9
TS
6256
6257 case E_MIPS_ARCH_3:
6258 return bfd_mach_mips4000;
b49e97c9
TS
6259
6260 case E_MIPS_ARCH_4:
6261 return bfd_mach_mips8000;
b49e97c9
TS
6262
6263 case E_MIPS_ARCH_5:
6264 return bfd_mach_mips5;
b49e97c9
TS
6265
6266 case E_MIPS_ARCH_32:
6267 return bfd_mach_mipsisa32;
b49e97c9
TS
6268
6269 case E_MIPS_ARCH_64:
6270 return bfd_mach_mipsisa64;
af7ee8bf
CD
6271
6272 case E_MIPS_ARCH_32R2:
6273 return bfd_mach_mipsisa32r2;
5f74bc13
CD
6274
6275 case E_MIPS_ARCH_64R2:
6276 return bfd_mach_mipsisa64r2;
b49e97c9
TS
6277 }
6278 }
6279
6280 return 0;
6281}
6282
6283/* Return printable name for ABI. */
6284
6285static INLINE char *
9719ad41 6286elf_mips_abi_name (bfd *abfd)
b49e97c9
TS
6287{
6288 flagword flags;
6289
6290 flags = elf_elfheader (abfd)->e_flags;
6291 switch (flags & EF_MIPS_ABI)
6292 {
6293 case 0:
6294 if (ABI_N32_P (abfd))
6295 return "N32";
6296 else if (ABI_64_P (abfd))
6297 return "64";
6298 else
6299 return "none";
6300 case E_MIPS_ABI_O32:
6301 return "O32";
6302 case E_MIPS_ABI_O64:
6303 return "O64";
6304 case E_MIPS_ABI_EABI32:
6305 return "EABI32";
6306 case E_MIPS_ABI_EABI64:
6307 return "EABI64";
6308 default:
6309 return "unknown abi";
6310 }
6311}
6312\f
6313/* MIPS ELF uses two common sections. One is the usual one, and the
6314 other is for small objects. All the small objects are kept
6315 together, and then referenced via the gp pointer, which yields
6316 faster assembler code. This is what we use for the small common
6317 section. This approach is copied from ecoff.c. */
6318static asection mips_elf_scom_section;
6319static asymbol mips_elf_scom_symbol;
6320static asymbol *mips_elf_scom_symbol_ptr;
6321
6322/* MIPS ELF also uses an acommon section, which represents an
6323 allocated common symbol which may be overridden by a
6324 definition in a shared library. */
6325static asection mips_elf_acom_section;
6326static asymbol mips_elf_acom_symbol;
6327static asymbol *mips_elf_acom_symbol_ptr;
6328
738e5348 6329/* This is used for both the 32-bit and the 64-bit ABI. */
b49e97c9
TS
6330
6331void
9719ad41 6332_bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
b49e97c9
TS
6333{
6334 elf_symbol_type *elfsym;
6335
738e5348 6336 /* Handle the special MIPS section numbers that a symbol may use. */
b49e97c9
TS
6337 elfsym = (elf_symbol_type *) asym;
6338 switch (elfsym->internal_elf_sym.st_shndx)
6339 {
6340 case SHN_MIPS_ACOMMON:
6341 /* This section is used in a dynamically linked executable file.
6342 It is an allocated common section. The dynamic linker can
6343 either resolve these symbols to something in a shared
6344 library, or it can just leave them here. For our purposes,
6345 we can consider these symbols to be in a new section. */
6346 if (mips_elf_acom_section.name == NULL)
6347 {
6348 /* Initialize the acommon section. */
6349 mips_elf_acom_section.name = ".acommon";
6350 mips_elf_acom_section.flags = SEC_ALLOC;
6351 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6352 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6353 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6354 mips_elf_acom_symbol.name = ".acommon";
6355 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6356 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6357 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6358 }
6359 asym->section = &mips_elf_acom_section;
6360 break;
6361
6362 case SHN_COMMON:
6363 /* Common symbols less than the GP size are automatically
6364 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6365 if (asym->value > elf_gp_size (abfd)
b59eed79 6366 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
b49e97c9
TS
6367 || IRIX_COMPAT (abfd) == ict_irix6)
6368 break;
6369 /* Fall through. */
6370 case SHN_MIPS_SCOMMON:
6371 if (mips_elf_scom_section.name == NULL)
6372 {
6373 /* Initialize the small common section. */
6374 mips_elf_scom_section.name = ".scommon";
6375 mips_elf_scom_section.flags = SEC_IS_COMMON;
6376 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6377 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6378 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6379 mips_elf_scom_symbol.name = ".scommon";
6380 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6381 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6382 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6383 }
6384 asym->section = &mips_elf_scom_section;
6385 asym->value = elfsym->internal_elf_sym.st_size;
6386 break;
6387
6388 case SHN_MIPS_SUNDEFINED:
6389 asym->section = bfd_und_section_ptr;
6390 break;
6391
b49e97c9 6392 case SHN_MIPS_TEXT:
00b4930b
TS
6393 {
6394 asection *section = bfd_get_section_by_name (abfd, ".text");
6395
00b4930b
TS
6396 if (section != NULL)
6397 {
6398 asym->section = section;
6399 /* MIPS_TEXT is a bit special, the address is not an offset
6400 to the base of the .text section. So substract the section
6401 base address to make it an offset. */
6402 asym->value -= section->vma;
6403 }
6404 }
b49e97c9
TS
6405 break;
6406
6407 case SHN_MIPS_DATA:
00b4930b
TS
6408 {
6409 asection *section = bfd_get_section_by_name (abfd, ".data");
6410
00b4930b
TS
6411 if (section != NULL)
6412 {
6413 asym->section = section;
6414 /* MIPS_DATA is a bit special, the address is not an offset
6415 to the base of the .data section. So substract the section
6416 base address to make it an offset. */
6417 asym->value -= section->vma;
6418 }
6419 }
b49e97c9 6420 break;
b49e97c9 6421 }
738e5348 6422
df58fc94
RS
6423 /* If this is an odd-valued function symbol, assume it's a MIPS16
6424 or microMIPS one. */
738e5348
RS
6425 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6426 && (asym->value & 1) != 0)
6427 {
6428 asym->value--;
df58fc94
RS
6429 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
6430 elfsym->internal_elf_sym.st_other
6431 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6432 else
6433 elfsym->internal_elf_sym.st_other
6434 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
738e5348 6435 }
b49e97c9
TS
6436}
6437\f
8c946ed5
RS
6438/* Implement elf_backend_eh_frame_address_size. This differs from
6439 the default in the way it handles EABI64.
6440
6441 EABI64 was originally specified as an LP64 ABI, and that is what
6442 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6443 historically accepted the combination of -mabi=eabi and -mlong32,
6444 and this ILP32 variation has become semi-official over time.
6445 Both forms use elf32 and have pointer-sized FDE addresses.
6446
6447 If an EABI object was generated by GCC 4.0 or above, it will have
6448 an empty .gcc_compiled_longXX section, where XX is the size of longs
6449 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6450 have no special marking to distinguish them from LP64 objects.
6451
6452 We don't want users of the official LP64 ABI to be punished for the
6453 existence of the ILP32 variant, but at the same time, we don't want
6454 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6455 We therefore take the following approach:
6456
6457 - If ABFD contains a .gcc_compiled_longXX section, use it to
6458 determine the pointer size.
6459
6460 - Otherwise check the type of the first relocation. Assume that
6461 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6462
6463 - Otherwise punt.
6464
6465 The second check is enough to detect LP64 objects generated by pre-4.0
6466 compilers because, in the kind of output generated by those compilers,
6467 the first relocation will be associated with either a CIE personality
6468 routine or an FDE start address. Furthermore, the compilers never
6469 used a special (non-pointer) encoding for this ABI.
6470
6471 Checking the relocation type should also be safe because there is no
6472 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6473 did so. */
6474
6475unsigned int
6476_bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6477{
6478 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6479 return 8;
6480 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6481 {
6482 bfd_boolean long32_p, long64_p;
6483
6484 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6485 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6486 if (long32_p && long64_p)
6487 return 0;
6488 if (long32_p)
6489 return 4;
6490 if (long64_p)
6491 return 8;
6492
6493 if (sec->reloc_count > 0
6494 && elf_section_data (sec)->relocs != NULL
6495 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6496 == R_MIPS_64))
6497 return 8;
6498
6499 return 0;
6500 }
6501 return 4;
6502}
6503\f
174fd7f9
RS
6504/* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6505 relocations against two unnamed section symbols to resolve to the
6506 same address. For example, if we have code like:
6507
6508 lw $4,%got_disp(.data)($gp)
6509 lw $25,%got_disp(.text)($gp)
6510 jalr $25
6511
6512 then the linker will resolve both relocations to .data and the program
6513 will jump there rather than to .text.
6514
6515 We can work around this problem by giving names to local section symbols.
6516 This is also what the MIPSpro tools do. */
6517
6518bfd_boolean
6519_bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6520{
6521 return SGI_COMPAT (abfd);
6522}
6523\f
b49e97c9
TS
6524/* Work over a section just before writing it out. This routine is
6525 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6526 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6527 a better way. */
6528
b34976b6 6529bfd_boolean
9719ad41 6530_bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
b49e97c9
TS
6531{
6532 if (hdr->sh_type == SHT_MIPS_REGINFO
6533 && hdr->sh_size > 0)
6534 {
6535 bfd_byte buf[4];
6536
6537 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6538 BFD_ASSERT (hdr->contents == NULL);
6539
6540 if (bfd_seek (abfd,
6541 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6542 SEEK_SET) != 0)
b34976b6 6543 return FALSE;
b49e97c9 6544 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 6545 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 6546 return FALSE;
b49e97c9
TS
6547 }
6548
6549 if (hdr->sh_type == SHT_MIPS_OPTIONS
6550 && hdr->bfd_section != NULL
f0abc2a1
AM
6551 && mips_elf_section_data (hdr->bfd_section) != NULL
6552 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
b49e97c9
TS
6553 {
6554 bfd_byte *contents, *l, *lend;
6555
f0abc2a1
AM
6556 /* We stored the section contents in the tdata field in the
6557 set_section_contents routine. We save the section contents
6558 so that we don't have to read them again.
b49e97c9
TS
6559 At this point we know that elf_gp is set, so we can look
6560 through the section contents to see if there is an
6561 ODK_REGINFO structure. */
6562
f0abc2a1 6563 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
b49e97c9
TS
6564 l = contents;
6565 lend = contents + hdr->sh_size;
6566 while (l + sizeof (Elf_External_Options) <= lend)
6567 {
6568 Elf_Internal_Options intopt;
6569
6570 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6571 &intopt);
1bc8074d
MR
6572 if (intopt.size < sizeof (Elf_External_Options))
6573 {
6574 (*_bfd_error_handler)
6575 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6576 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6577 break;
6578 }
b49e97c9
TS
6579 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6580 {
6581 bfd_byte buf[8];
6582
6583 if (bfd_seek (abfd,
6584 (hdr->sh_offset
6585 + (l - contents)
6586 + sizeof (Elf_External_Options)
6587 + (sizeof (Elf64_External_RegInfo) - 8)),
6588 SEEK_SET) != 0)
b34976b6 6589 return FALSE;
b49e97c9 6590 H_PUT_64 (abfd, elf_gp (abfd), buf);
9719ad41 6591 if (bfd_bwrite (buf, 8, abfd) != 8)
b34976b6 6592 return FALSE;
b49e97c9
TS
6593 }
6594 else if (intopt.kind == ODK_REGINFO)
6595 {
6596 bfd_byte buf[4];
6597
6598 if (bfd_seek (abfd,
6599 (hdr->sh_offset
6600 + (l - contents)
6601 + sizeof (Elf_External_Options)
6602 + (sizeof (Elf32_External_RegInfo) - 4)),
6603 SEEK_SET) != 0)
b34976b6 6604 return FALSE;
b49e97c9 6605 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 6606 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 6607 return FALSE;
b49e97c9
TS
6608 }
6609 l += intopt.size;
6610 }
6611 }
6612
6613 if (hdr->bfd_section != NULL)
6614 {
6615 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6616
2d0f9ad9
JM
6617 /* .sbss is not handled specially here because the GNU/Linux
6618 prelinker can convert .sbss from NOBITS to PROGBITS and
6619 changing it back to NOBITS breaks the binary. The entry in
6620 _bfd_mips_elf_special_sections will ensure the correct flags
6621 are set on .sbss if BFD creates it without reading it from an
6622 input file, and without special handling here the flags set
6623 on it in an input file will be followed. */
b49e97c9
TS
6624 if (strcmp (name, ".sdata") == 0
6625 || strcmp (name, ".lit8") == 0
6626 || strcmp (name, ".lit4") == 0)
6627 {
6628 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
6629 hdr->sh_type = SHT_PROGBITS;
6630 }
b49e97c9
TS
6631 else if (strcmp (name, ".srdata") == 0)
6632 {
6633 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
6634 hdr->sh_type = SHT_PROGBITS;
6635 }
6636 else if (strcmp (name, ".compact_rel") == 0)
6637 {
6638 hdr->sh_flags = 0;
6639 hdr->sh_type = SHT_PROGBITS;
6640 }
6641 else if (strcmp (name, ".rtproc") == 0)
6642 {
6643 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
6644 {
6645 unsigned int adjust;
6646
6647 adjust = hdr->sh_size % hdr->sh_addralign;
6648 if (adjust != 0)
6649 hdr->sh_size += hdr->sh_addralign - adjust;
6650 }
6651 }
6652 }
6653
b34976b6 6654 return TRUE;
b49e97c9
TS
6655}
6656
6657/* Handle a MIPS specific section when reading an object file. This
6658 is called when elfcode.h finds a section with an unknown type.
6659 This routine supports both the 32-bit and 64-bit ELF ABI.
6660
6661 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
6662 how to. */
6663
b34976b6 6664bfd_boolean
6dc132d9
L
6665_bfd_mips_elf_section_from_shdr (bfd *abfd,
6666 Elf_Internal_Shdr *hdr,
6667 const char *name,
6668 int shindex)
b49e97c9
TS
6669{
6670 flagword flags = 0;
6671
6672 /* There ought to be a place to keep ELF backend specific flags, but
6673 at the moment there isn't one. We just keep track of the
6674 sections by their name, instead. Fortunately, the ABI gives
6675 suggested names for all the MIPS specific sections, so we will
6676 probably get away with this. */
6677 switch (hdr->sh_type)
6678 {
6679 case SHT_MIPS_LIBLIST:
6680 if (strcmp (name, ".liblist") != 0)
b34976b6 6681 return FALSE;
b49e97c9
TS
6682 break;
6683 case SHT_MIPS_MSYM:
6684 if (strcmp (name, ".msym") != 0)
b34976b6 6685 return FALSE;
b49e97c9
TS
6686 break;
6687 case SHT_MIPS_CONFLICT:
6688 if (strcmp (name, ".conflict") != 0)
b34976b6 6689 return FALSE;
b49e97c9
TS
6690 break;
6691 case SHT_MIPS_GPTAB:
0112cd26 6692 if (! CONST_STRNEQ (name, ".gptab."))
b34976b6 6693 return FALSE;
b49e97c9
TS
6694 break;
6695 case SHT_MIPS_UCODE:
6696 if (strcmp (name, ".ucode") != 0)
b34976b6 6697 return FALSE;
b49e97c9
TS
6698 break;
6699 case SHT_MIPS_DEBUG:
6700 if (strcmp (name, ".mdebug") != 0)
b34976b6 6701 return FALSE;
b49e97c9
TS
6702 flags = SEC_DEBUGGING;
6703 break;
6704 case SHT_MIPS_REGINFO:
6705 if (strcmp (name, ".reginfo") != 0
6706 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
b34976b6 6707 return FALSE;
b49e97c9
TS
6708 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
6709 break;
6710 case SHT_MIPS_IFACE:
6711 if (strcmp (name, ".MIPS.interfaces") != 0)
b34976b6 6712 return FALSE;
b49e97c9
TS
6713 break;
6714 case SHT_MIPS_CONTENT:
0112cd26 6715 if (! CONST_STRNEQ (name, ".MIPS.content"))
b34976b6 6716 return FALSE;
b49e97c9
TS
6717 break;
6718 case SHT_MIPS_OPTIONS:
cc2e31b9 6719 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b34976b6 6720 return FALSE;
b49e97c9
TS
6721 break;
6722 case SHT_MIPS_DWARF:
1b315056 6723 if (! CONST_STRNEQ (name, ".debug_")
355d10dc 6724 && ! CONST_STRNEQ (name, ".zdebug_"))
b34976b6 6725 return FALSE;
b49e97c9
TS
6726 break;
6727 case SHT_MIPS_SYMBOL_LIB:
6728 if (strcmp (name, ".MIPS.symlib") != 0)
b34976b6 6729 return FALSE;
b49e97c9
TS
6730 break;
6731 case SHT_MIPS_EVENTS:
0112cd26
NC
6732 if (! CONST_STRNEQ (name, ".MIPS.events")
6733 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
b34976b6 6734 return FALSE;
b49e97c9
TS
6735 break;
6736 default:
cc2e31b9 6737 break;
b49e97c9
TS
6738 }
6739
6dc132d9 6740 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
b34976b6 6741 return FALSE;
b49e97c9
TS
6742
6743 if (flags)
6744 {
6745 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
6746 (bfd_get_section_flags (abfd,
6747 hdr->bfd_section)
6748 | flags)))
b34976b6 6749 return FALSE;
b49e97c9
TS
6750 }
6751
6752 /* FIXME: We should record sh_info for a .gptab section. */
6753
6754 /* For a .reginfo section, set the gp value in the tdata information
6755 from the contents of this section. We need the gp value while
6756 processing relocs, so we just get it now. The .reginfo section
6757 is not used in the 64-bit MIPS ELF ABI. */
6758 if (hdr->sh_type == SHT_MIPS_REGINFO)
6759 {
6760 Elf32_External_RegInfo ext;
6761 Elf32_RegInfo s;
6762
9719ad41
RS
6763 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
6764 &ext, 0, sizeof ext))
b34976b6 6765 return FALSE;
b49e97c9
TS
6766 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
6767 elf_gp (abfd) = s.ri_gp_value;
6768 }
6769
6770 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
6771 set the gp value based on what we find. We may see both
6772 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
6773 they should agree. */
6774 if (hdr->sh_type == SHT_MIPS_OPTIONS)
6775 {
6776 bfd_byte *contents, *l, *lend;
6777
9719ad41 6778 contents = bfd_malloc (hdr->sh_size);
b49e97c9 6779 if (contents == NULL)
b34976b6 6780 return FALSE;
b49e97c9 6781 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
9719ad41 6782 0, hdr->sh_size))
b49e97c9
TS
6783 {
6784 free (contents);
b34976b6 6785 return FALSE;
b49e97c9
TS
6786 }
6787 l = contents;
6788 lend = contents + hdr->sh_size;
6789 while (l + sizeof (Elf_External_Options) <= lend)
6790 {
6791 Elf_Internal_Options intopt;
6792
6793 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6794 &intopt);
1bc8074d
MR
6795 if (intopt.size < sizeof (Elf_External_Options))
6796 {
6797 (*_bfd_error_handler)
6798 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6799 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6800 break;
6801 }
b49e97c9
TS
6802 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6803 {
6804 Elf64_Internal_RegInfo intreg;
6805
6806 bfd_mips_elf64_swap_reginfo_in
6807 (abfd,
6808 ((Elf64_External_RegInfo *)
6809 (l + sizeof (Elf_External_Options))),
6810 &intreg);
6811 elf_gp (abfd) = intreg.ri_gp_value;
6812 }
6813 else if (intopt.kind == ODK_REGINFO)
6814 {
6815 Elf32_RegInfo intreg;
6816
6817 bfd_mips_elf32_swap_reginfo_in
6818 (abfd,
6819 ((Elf32_External_RegInfo *)
6820 (l + sizeof (Elf_External_Options))),
6821 &intreg);
6822 elf_gp (abfd) = intreg.ri_gp_value;
6823 }
6824 l += intopt.size;
6825 }
6826 free (contents);
6827 }
6828
b34976b6 6829 return TRUE;
b49e97c9
TS
6830}
6831
6832/* Set the correct type for a MIPS ELF section. We do this by the
6833 section name, which is a hack, but ought to work. This routine is
6834 used by both the 32-bit and the 64-bit ABI. */
6835
b34976b6 6836bfd_boolean
9719ad41 6837_bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
b49e97c9 6838{
0414f35b 6839 const char *name = bfd_get_section_name (abfd, sec);
b49e97c9
TS
6840
6841 if (strcmp (name, ".liblist") == 0)
6842 {
6843 hdr->sh_type = SHT_MIPS_LIBLIST;
eea6121a 6844 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
b49e97c9
TS
6845 /* The sh_link field is set in final_write_processing. */
6846 }
6847 else if (strcmp (name, ".conflict") == 0)
6848 hdr->sh_type = SHT_MIPS_CONFLICT;
0112cd26 6849 else if (CONST_STRNEQ (name, ".gptab."))
b49e97c9
TS
6850 {
6851 hdr->sh_type = SHT_MIPS_GPTAB;
6852 hdr->sh_entsize = sizeof (Elf32_External_gptab);
6853 /* The sh_info field is set in final_write_processing. */
6854 }
6855 else if (strcmp (name, ".ucode") == 0)
6856 hdr->sh_type = SHT_MIPS_UCODE;
6857 else if (strcmp (name, ".mdebug") == 0)
6858 {
6859 hdr->sh_type = SHT_MIPS_DEBUG;
8dc1a139 6860 /* In a shared object on IRIX 5.3, the .mdebug section has an
b49e97c9
TS
6861 entsize of 0. FIXME: Does this matter? */
6862 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
6863 hdr->sh_entsize = 0;
6864 else
6865 hdr->sh_entsize = 1;
6866 }
6867 else if (strcmp (name, ".reginfo") == 0)
6868 {
6869 hdr->sh_type = SHT_MIPS_REGINFO;
8dc1a139 6870 /* In a shared object on IRIX 5.3, the .reginfo section has an
b49e97c9
TS
6871 entsize of 0x18. FIXME: Does this matter? */
6872 if (SGI_COMPAT (abfd))
6873 {
6874 if ((abfd->flags & DYNAMIC) != 0)
6875 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6876 else
6877 hdr->sh_entsize = 1;
6878 }
6879 else
6880 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6881 }
6882 else if (SGI_COMPAT (abfd)
6883 && (strcmp (name, ".hash") == 0
6884 || strcmp (name, ".dynamic") == 0
6885 || strcmp (name, ".dynstr") == 0))
6886 {
6887 if (SGI_COMPAT (abfd))
6888 hdr->sh_entsize = 0;
6889#if 0
8dc1a139 6890 /* This isn't how the IRIX6 linker behaves. */
b49e97c9
TS
6891 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
6892#endif
6893 }
6894 else if (strcmp (name, ".got") == 0
6895 || strcmp (name, ".srdata") == 0
6896 || strcmp (name, ".sdata") == 0
6897 || strcmp (name, ".sbss") == 0
6898 || strcmp (name, ".lit4") == 0
6899 || strcmp (name, ".lit8") == 0)
6900 hdr->sh_flags |= SHF_MIPS_GPREL;
6901 else if (strcmp (name, ".MIPS.interfaces") == 0)
6902 {
6903 hdr->sh_type = SHT_MIPS_IFACE;
6904 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6905 }
0112cd26 6906 else if (CONST_STRNEQ (name, ".MIPS.content"))
b49e97c9
TS
6907 {
6908 hdr->sh_type = SHT_MIPS_CONTENT;
6909 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6910 /* The sh_info field is set in final_write_processing. */
6911 }
cc2e31b9 6912 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b49e97c9
TS
6913 {
6914 hdr->sh_type = SHT_MIPS_OPTIONS;
6915 hdr->sh_entsize = 1;
6916 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6917 }
1b315056
CS
6918 else if (CONST_STRNEQ (name, ".debug_")
6919 || CONST_STRNEQ (name, ".zdebug_"))
b5482f21
NC
6920 {
6921 hdr->sh_type = SHT_MIPS_DWARF;
6922
6923 /* Irix facilities such as libexc expect a single .debug_frame
6924 per executable, the system ones have NOSTRIP set and the linker
6925 doesn't merge sections with different flags so ... */
6926 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
6927 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6928 }
b49e97c9
TS
6929 else if (strcmp (name, ".MIPS.symlib") == 0)
6930 {
6931 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
6932 /* The sh_link and sh_info fields are set in
6933 final_write_processing. */
6934 }
0112cd26
NC
6935 else if (CONST_STRNEQ (name, ".MIPS.events")
6936 || CONST_STRNEQ (name, ".MIPS.post_rel"))
b49e97c9
TS
6937 {
6938 hdr->sh_type = SHT_MIPS_EVENTS;
6939 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6940 /* The sh_link field is set in final_write_processing. */
6941 }
6942 else if (strcmp (name, ".msym") == 0)
6943 {
6944 hdr->sh_type = SHT_MIPS_MSYM;
6945 hdr->sh_flags |= SHF_ALLOC;
6946 hdr->sh_entsize = 8;
6947 }
6948
7a79a000
TS
6949 /* The generic elf_fake_sections will set up REL_HDR using the default
6950 kind of relocations. We used to set up a second header for the
6951 non-default kind of relocations here, but only NewABI would use
6952 these, and the IRIX ld doesn't like resulting empty RELA sections.
6953 Thus we create those header only on demand now. */
b49e97c9 6954
b34976b6 6955 return TRUE;
b49e97c9
TS
6956}
6957
6958/* Given a BFD section, try to locate the corresponding ELF section
6959 index. This is used by both the 32-bit and the 64-bit ABI.
6960 Actually, it's not clear to me that the 64-bit ABI supports these,
6961 but for non-PIC objects we will certainly want support for at least
6962 the .scommon section. */
6963
b34976b6 6964bfd_boolean
9719ad41
RS
6965_bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
6966 asection *sec, int *retval)
b49e97c9
TS
6967{
6968 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
6969 {
6970 *retval = SHN_MIPS_SCOMMON;
b34976b6 6971 return TRUE;
b49e97c9
TS
6972 }
6973 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
6974 {
6975 *retval = SHN_MIPS_ACOMMON;
b34976b6 6976 return TRUE;
b49e97c9 6977 }
b34976b6 6978 return FALSE;
b49e97c9
TS
6979}
6980\f
6981/* Hook called by the linker routine which adds symbols from an object
6982 file. We must handle the special MIPS section numbers here. */
6983
b34976b6 6984bfd_boolean
9719ad41 6985_bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
555cd476 6986 Elf_Internal_Sym *sym, const char **namep,
9719ad41
RS
6987 flagword *flagsp ATTRIBUTE_UNUSED,
6988 asection **secp, bfd_vma *valp)
b49e97c9
TS
6989{
6990 if (SGI_COMPAT (abfd)
6991 && (abfd->flags & DYNAMIC) != 0
6992 && strcmp (*namep, "_rld_new_interface") == 0)
6993 {
8dc1a139 6994 /* Skip IRIX5 rld entry name. */
b49e97c9 6995 *namep = NULL;
b34976b6 6996 return TRUE;
b49e97c9
TS
6997 }
6998
eedecc07
DD
6999 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7000 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7001 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7002 a magic symbol resolved by the linker, we ignore this bogus definition
7003 of _gp_disp. New ABI objects do not suffer from this problem so this
7004 is not done for them. */
7005 if (!NEWABI_P(abfd)
7006 && (sym->st_shndx == SHN_ABS)
7007 && (strcmp (*namep, "_gp_disp") == 0))
7008 {
7009 *namep = NULL;
7010 return TRUE;
7011 }
7012
b49e97c9
TS
7013 switch (sym->st_shndx)
7014 {
7015 case SHN_COMMON:
7016 /* Common symbols less than the GP size are automatically
7017 treated as SHN_MIPS_SCOMMON symbols. */
7018 if (sym->st_size > elf_gp_size (abfd)
b59eed79 7019 || ELF_ST_TYPE (sym->st_info) == STT_TLS
b49e97c9
TS
7020 || IRIX_COMPAT (abfd) == ict_irix6)
7021 break;
7022 /* Fall through. */
7023 case SHN_MIPS_SCOMMON:
7024 *secp = bfd_make_section_old_way (abfd, ".scommon");
7025 (*secp)->flags |= SEC_IS_COMMON;
7026 *valp = sym->st_size;
7027 break;
7028
7029 case SHN_MIPS_TEXT:
7030 /* This section is used in a shared object. */
7031 if (elf_tdata (abfd)->elf_text_section == NULL)
7032 {
7033 asymbol *elf_text_symbol;
7034 asection *elf_text_section;
7035 bfd_size_type amt = sizeof (asection);
7036
7037 elf_text_section = bfd_zalloc (abfd, amt);
7038 if (elf_text_section == NULL)
b34976b6 7039 return FALSE;
b49e97c9
TS
7040
7041 amt = sizeof (asymbol);
7042 elf_text_symbol = bfd_zalloc (abfd, amt);
7043 if (elf_text_symbol == NULL)
b34976b6 7044 return FALSE;
b49e97c9
TS
7045
7046 /* Initialize the section. */
7047
7048 elf_tdata (abfd)->elf_text_section = elf_text_section;
7049 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7050
7051 elf_text_section->symbol = elf_text_symbol;
7052 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
7053
7054 elf_text_section->name = ".text";
7055 elf_text_section->flags = SEC_NO_FLAGS;
7056 elf_text_section->output_section = NULL;
7057 elf_text_section->owner = abfd;
7058 elf_text_symbol->name = ".text";
7059 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7060 elf_text_symbol->section = elf_text_section;
7061 }
7062 /* This code used to do *secp = bfd_und_section_ptr if
7063 info->shared. I don't know why, and that doesn't make sense,
7064 so I took it out. */
7065 *secp = elf_tdata (abfd)->elf_text_section;
7066 break;
7067
7068 case SHN_MIPS_ACOMMON:
7069 /* Fall through. XXX Can we treat this as allocated data? */
7070 case SHN_MIPS_DATA:
7071 /* This section is used in a shared object. */
7072 if (elf_tdata (abfd)->elf_data_section == NULL)
7073 {
7074 asymbol *elf_data_symbol;
7075 asection *elf_data_section;
7076 bfd_size_type amt = sizeof (asection);
7077
7078 elf_data_section = bfd_zalloc (abfd, amt);
7079 if (elf_data_section == NULL)
b34976b6 7080 return FALSE;
b49e97c9
TS
7081
7082 amt = sizeof (asymbol);
7083 elf_data_symbol = bfd_zalloc (abfd, amt);
7084 if (elf_data_symbol == NULL)
b34976b6 7085 return FALSE;
b49e97c9
TS
7086
7087 /* Initialize the section. */
7088
7089 elf_tdata (abfd)->elf_data_section = elf_data_section;
7090 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7091
7092 elf_data_section->symbol = elf_data_symbol;
7093 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
7094
7095 elf_data_section->name = ".data";
7096 elf_data_section->flags = SEC_NO_FLAGS;
7097 elf_data_section->output_section = NULL;
7098 elf_data_section->owner = abfd;
7099 elf_data_symbol->name = ".data";
7100 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7101 elf_data_symbol->section = elf_data_section;
7102 }
7103 /* This code used to do *secp = bfd_und_section_ptr if
7104 info->shared. I don't know why, and that doesn't make sense,
7105 so I took it out. */
7106 *secp = elf_tdata (abfd)->elf_data_section;
7107 break;
7108
7109 case SHN_MIPS_SUNDEFINED:
7110 *secp = bfd_und_section_ptr;
7111 break;
7112 }
7113
7114 if (SGI_COMPAT (abfd)
7115 && ! info->shared
f13a99db 7116 && info->output_bfd->xvec == abfd->xvec
b49e97c9
TS
7117 && strcmp (*namep, "__rld_obj_head") == 0)
7118 {
7119 struct elf_link_hash_entry *h;
14a793b2 7120 struct bfd_link_hash_entry *bh;
b49e97c9
TS
7121
7122 /* Mark __rld_obj_head as dynamic. */
14a793b2 7123 bh = NULL;
b49e97c9 7124 if (! (_bfd_generic_link_add_one_symbol
9719ad41 7125 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
14a793b2 7126 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 7127 return FALSE;
14a793b2
AM
7128
7129 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
7130 h->non_elf = 0;
7131 h->def_regular = 1;
b49e97c9
TS
7132 h->type = STT_OBJECT;
7133
c152c796 7134 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 7135 return FALSE;
b49e97c9 7136
b34976b6 7137 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
b4082c70 7138 mips_elf_hash_table (info)->rld_symbol = h;
b49e97c9
TS
7139 }
7140
7141 /* If this is a mips16 text symbol, add 1 to the value to make it
7142 odd. This will cause something like .word SYM to come up with
7143 the right value when it is loaded into the PC. */
df58fc94 7144 if (ELF_ST_IS_COMPRESSED (sym->st_other))
b49e97c9
TS
7145 ++*valp;
7146
b34976b6 7147 return TRUE;
b49e97c9
TS
7148}
7149
7150/* This hook function is called before the linker writes out a global
7151 symbol. We mark symbols as small common if appropriate. This is
7152 also where we undo the increment of the value for a mips16 symbol. */
7153
6e0b88f1 7154int
9719ad41
RS
7155_bfd_mips_elf_link_output_symbol_hook
7156 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7157 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7158 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
b49e97c9
TS
7159{
7160 /* If we see a common symbol, which implies a relocatable link, then
7161 if a symbol was small common in an input file, mark it as small
7162 common in the output file. */
7163 if (sym->st_shndx == SHN_COMMON
7164 && strcmp (input_sec->name, ".scommon") == 0)
7165 sym->st_shndx = SHN_MIPS_SCOMMON;
7166
df58fc94 7167 if (ELF_ST_IS_COMPRESSED (sym->st_other))
79cda7cf 7168 sym->st_value &= ~1;
b49e97c9 7169
6e0b88f1 7170 return 1;
b49e97c9
TS
7171}
7172\f
7173/* Functions for the dynamic linker. */
7174
7175/* Create dynamic sections when linking against a dynamic object. */
7176
b34976b6 7177bfd_boolean
9719ad41 7178_bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
7179{
7180 struct elf_link_hash_entry *h;
14a793b2 7181 struct bfd_link_hash_entry *bh;
b49e97c9
TS
7182 flagword flags;
7183 register asection *s;
7184 const char * const *namep;
0a44bf69 7185 struct mips_elf_link_hash_table *htab;
b49e97c9 7186
0a44bf69 7187 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
7188 BFD_ASSERT (htab != NULL);
7189
b49e97c9
TS
7190 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7191 | SEC_LINKER_CREATED | SEC_READONLY);
7192
0a44bf69
RS
7193 /* The psABI requires a read-only .dynamic section, but the VxWorks
7194 EABI doesn't. */
7195 if (!htab->is_vxworks)
b49e97c9 7196 {
3d4d4302 7197 s = bfd_get_linker_section (abfd, ".dynamic");
0a44bf69
RS
7198 if (s != NULL)
7199 {
7200 if (! bfd_set_section_flags (abfd, s, flags))
7201 return FALSE;
7202 }
b49e97c9
TS
7203 }
7204
7205 /* We need to create .got section. */
23cc69b6 7206 if (!mips_elf_create_got_section (abfd, info))
f4416af6
AO
7207 return FALSE;
7208
0a44bf69 7209 if (! mips_elf_rel_dyn_section (info, TRUE))
b34976b6 7210 return FALSE;
b49e97c9 7211
b49e97c9 7212 /* Create .stub section. */
3d4d4302
AM
7213 s = bfd_make_section_anyway_with_flags (abfd,
7214 MIPS_ELF_STUB_SECTION_NAME (abfd),
7215 flags | SEC_CODE);
4e41d0d7
RS
7216 if (s == NULL
7217 || ! bfd_set_section_alignment (abfd, s,
7218 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7219 return FALSE;
7220 htab->sstubs = s;
b49e97c9 7221
e6aea42d 7222 if (!mips_elf_hash_table (info)->use_rld_obj_head
b49e97c9 7223 && !info->shared
3d4d4302 7224 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
b49e97c9 7225 {
3d4d4302
AM
7226 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7227 flags &~ (flagword) SEC_READONLY);
b49e97c9 7228 if (s == NULL
b49e97c9
TS
7229 || ! bfd_set_section_alignment (abfd, s,
7230 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 7231 return FALSE;
b49e97c9
TS
7232 }
7233
7234 /* On IRIX5, we adjust add some additional symbols and change the
7235 alignments of several sections. There is no ABI documentation
7236 indicating that this is necessary on IRIX6, nor any evidence that
7237 the linker takes such action. */
7238 if (IRIX_COMPAT (abfd) == ict_irix5)
7239 {
7240 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7241 {
14a793b2 7242 bh = NULL;
b49e97c9 7243 if (! (_bfd_generic_link_add_one_symbol
9719ad41
RS
7244 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7245 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 7246 return FALSE;
14a793b2
AM
7247
7248 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
7249 h->non_elf = 0;
7250 h->def_regular = 1;
b49e97c9
TS
7251 h->type = STT_SECTION;
7252
c152c796 7253 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 7254 return FALSE;
b49e97c9
TS
7255 }
7256
7257 /* We need to create a .compact_rel section. */
7258 if (SGI_COMPAT (abfd))
7259 {
7260 if (!mips_elf_create_compact_rel_section (abfd, info))
b34976b6 7261 return FALSE;
b49e97c9
TS
7262 }
7263
44c410de 7264 /* Change alignments of some sections. */
3d4d4302 7265 s = bfd_get_linker_section (abfd, ".hash");
b49e97c9 7266 if (s != NULL)
d80dcc6a 7267 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
3d4d4302 7268 s = bfd_get_linker_section (abfd, ".dynsym");
b49e97c9 7269 if (s != NULL)
d80dcc6a 7270 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
3d4d4302 7271 s = bfd_get_linker_section (abfd, ".dynstr");
b49e97c9 7272 if (s != NULL)
d80dcc6a 7273 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
3d4d4302 7274 /* ??? */
b49e97c9
TS
7275 s = bfd_get_section_by_name (abfd, ".reginfo");
7276 if (s != NULL)
d80dcc6a 7277 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
3d4d4302 7278 s = bfd_get_linker_section (abfd, ".dynamic");
b49e97c9 7279 if (s != NULL)
d80dcc6a 7280 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
7281 }
7282
7283 if (!info->shared)
7284 {
14a793b2
AM
7285 const char *name;
7286
7287 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7288 bh = NULL;
7289 if (!(_bfd_generic_link_add_one_symbol
9719ad41
RS
7290 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7291 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 7292 return FALSE;
14a793b2
AM
7293
7294 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
7295 h->non_elf = 0;
7296 h->def_regular = 1;
b49e97c9
TS
7297 h->type = STT_SECTION;
7298
c152c796 7299 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 7300 return FALSE;
b49e97c9
TS
7301
7302 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7303 {
7304 /* __rld_map is a four byte word located in the .data section
7305 and is filled in by the rtld to contain a pointer to
7306 the _r_debug structure. Its symbol value will be set in
7307 _bfd_mips_elf_finish_dynamic_symbol. */
3d4d4302 7308 s = bfd_get_linker_section (abfd, ".rld_map");
0abfb97a 7309 BFD_ASSERT (s != NULL);
14a793b2 7310
0abfb97a
L
7311 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7312 bh = NULL;
7313 if (!(_bfd_generic_link_add_one_symbol
7314 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7315 get_elf_backend_data (abfd)->collect, &bh)))
7316 return FALSE;
b49e97c9 7317
0abfb97a
L
7318 h = (struct elf_link_hash_entry *) bh;
7319 h->non_elf = 0;
7320 h->def_regular = 1;
7321 h->type = STT_OBJECT;
7322
7323 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7324 return FALSE;
b4082c70 7325 mips_elf_hash_table (info)->rld_symbol = h;
b49e97c9
TS
7326 }
7327 }
7328
861fb55a
DJ
7329 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7330 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
7331 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7332 return FALSE;
7333
7334 /* Cache the sections created above. */
3d4d4302
AM
7335 htab->splt = bfd_get_linker_section (abfd, ".plt");
7336 htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
0a44bf69
RS
7337 if (htab->is_vxworks)
7338 {
3d4d4302
AM
7339 htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
7340 htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt");
861fb55a
DJ
7341 }
7342 else
3d4d4302 7343 htab->srelplt = bfd_get_linker_section (abfd, ".rel.plt");
861fb55a
DJ
7344 if (!htab->sdynbss
7345 || (htab->is_vxworks && !htab->srelbss && !info->shared)
7346 || !htab->srelplt
7347 || !htab->splt)
7348 abort ();
0a44bf69 7349
861fb55a
DJ
7350 if (htab->is_vxworks)
7351 {
0a44bf69
RS
7352 /* Do the usual VxWorks handling. */
7353 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7354 return FALSE;
7355
7356 /* Work out the PLT sizes. */
7357 if (info->shared)
7358 {
7359 htab->plt_header_size
7360 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
7361 htab->plt_entry_size
7362 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
7363 }
7364 else
7365 {
7366 htab->plt_header_size
7367 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
7368 htab->plt_entry_size
7369 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
7370 }
7371 }
861fb55a
DJ
7372 else if (!info->shared)
7373 {
7374 /* All variants of the plt0 entry are the same size. */
7375 htab->plt_header_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
7376 htab->plt_entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
7377 }
0a44bf69 7378
b34976b6 7379 return TRUE;
b49e97c9
TS
7380}
7381\f
c224138d
RS
7382/* Return true if relocation REL against section SEC is a REL rather than
7383 RELA relocation. RELOCS is the first relocation in the section and
7384 ABFD is the bfd that contains SEC. */
7385
7386static bfd_boolean
7387mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7388 const Elf_Internal_Rela *relocs,
7389 const Elf_Internal_Rela *rel)
7390{
7391 Elf_Internal_Shdr *rel_hdr;
7392 const struct elf_backend_data *bed;
7393
d4730f92
BS
7394 /* To determine which flavor of relocation this is, we depend on the
7395 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7396 rel_hdr = elf_section_data (sec)->rel.hdr;
7397 if (rel_hdr == NULL)
7398 return FALSE;
c224138d 7399 bed = get_elf_backend_data (abfd);
d4730f92
BS
7400 return ((size_t) (rel - relocs)
7401 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
c224138d
RS
7402}
7403
7404/* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7405 HOWTO is the relocation's howto and CONTENTS points to the contents
7406 of the section that REL is against. */
7407
7408static bfd_vma
7409mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7410 reloc_howto_type *howto, bfd_byte *contents)
7411{
7412 bfd_byte *location;
7413 unsigned int r_type;
7414 bfd_vma addend;
7415
7416 r_type = ELF_R_TYPE (abfd, rel->r_info);
7417 location = contents + rel->r_offset;
7418
7419 /* Get the addend, which is stored in the input file. */
df58fc94 7420 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
c224138d 7421 addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
df58fc94 7422 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
c224138d
RS
7423
7424 return addend & howto->src_mask;
7425}
7426
7427/* REL is a relocation in ABFD that needs a partnering LO16 relocation
7428 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7429 and update *ADDEND with the final addend. Return true on success
7430 or false if the LO16 could not be found. RELEND is the exclusive
7431 upper bound on the relocations for REL's section. */
7432
7433static bfd_boolean
7434mips_elf_add_lo16_rel_addend (bfd *abfd,
7435 const Elf_Internal_Rela *rel,
7436 const Elf_Internal_Rela *relend,
7437 bfd_byte *contents, bfd_vma *addend)
7438{
7439 unsigned int r_type, lo16_type;
7440 const Elf_Internal_Rela *lo16_relocation;
7441 reloc_howto_type *lo16_howto;
7442 bfd_vma l;
7443
7444 r_type = ELF_R_TYPE (abfd, rel->r_info);
738e5348 7445 if (mips16_reloc_p (r_type))
c224138d 7446 lo16_type = R_MIPS16_LO16;
df58fc94
RS
7447 else if (micromips_reloc_p (r_type))
7448 lo16_type = R_MICROMIPS_LO16;
c224138d
RS
7449 else
7450 lo16_type = R_MIPS_LO16;
7451
7452 /* The combined value is the sum of the HI16 addend, left-shifted by
7453 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7454 code does a `lui' of the HI16 value, and then an `addiu' of the
7455 LO16 value.)
7456
7457 Scan ahead to find a matching LO16 relocation.
7458
7459 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7460 be immediately following. However, for the IRIX6 ABI, the next
7461 relocation may be a composed relocation consisting of several
7462 relocations for the same address. In that case, the R_MIPS_LO16
7463 relocation may occur as one of these. We permit a similar
7464 extension in general, as that is useful for GCC.
7465
7466 In some cases GCC dead code elimination removes the LO16 but keeps
7467 the corresponding HI16. This is strictly speaking a violation of
7468 the ABI but not immediately harmful. */
7469 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7470 if (lo16_relocation == NULL)
7471 return FALSE;
7472
7473 /* Obtain the addend kept there. */
7474 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7475 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7476
7477 l <<= lo16_howto->rightshift;
7478 l = _bfd_mips_elf_sign_extend (l, 16);
7479
7480 *addend <<= 16;
7481 *addend += l;
7482 return TRUE;
7483}
7484
7485/* Try to read the contents of section SEC in bfd ABFD. Return true and
7486 store the contents in *CONTENTS on success. Assume that *CONTENTS
7487 already holds the contents if it is nonull on entry. */
7488
7489static bfd_boolean
7490mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7491{
7492 if (*contents)
7493 return TRUE;
7494
7495 /* Get cached copy if it exists. */
7496 if (elf_section_data (sec)->this_hdr.contents != NULL)
7497 {
7498 *contents = elf_section_data (sec)->this_hdr.contents;
7499 return TRUE;
7500 }
7501
7502 return bfd_malloc_and_get_section (abfd, sec, contents);
7503}
7504
b49e97c9
TS
7505/* Look through the relocs for a section during the first phase, and
7506 allocate space in the global offset table. */
7507
b34976b6 7508bfd_boolean
9719ad41
RS
7509_bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7510 asection *sec, const Elf_Internal_Rela *relocs)
b49e97c9
TS
7511{
7512 const char *name;
7513 bfd *dynobj;
7514 Elf_Internal_Shdr *symtab_hdr;
7515 struct elf_link_hash_entry **sym_hashes;
b49e97c9
TS
7516 size_t extsymoff;
7517 const Elf_Internal_Rela *rel;
7518 const Elf_Internal_Rela *rel_end;
b49e97c9 7519 asection *sreloc;
9c5bfbb7 7520 const struct elf_backend_data *bed;
0a44bf69 7521 struct mips_elf_link_hash_table *htab;
c224138d
RS
7522 bfd_byte *contents;
7523 bfd_vma addend;
7524 reloc_howto_type *howto;
b49e97c9 7525
1049f94e 7526 if (info->relocatable)
b34976b6 7527 return TRUE;
b49e97c9 7528
0a44bf69 7529 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
7530 BFD_ASSERT (htab != NULL);
7531
b49e97c9
TS
7532 dynobj = elf_hash_table (info)->dynobj;
7533 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7534 sym_hashes = elf_sym_hashes (abfd);
7535 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7536
738e5348
RS
7537 bed = get_elf_backend_data (abfd);
7538 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7539
b49e97c9
TS
7540 /* Check for the mips16 stub sections. */
7541
7542 name = bfd_get_section_name (abfd, sec);
b9d58d71 7543 if (FN_STUB_P (name))
b49e97c9
TS
7544 {
7545 unsigned long r_symndx;
7546
7547 /* Look at the relocation information to figure out which symbol
7548 this is for. */
7549
cb4437b8 7550 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
738e5348
RS
7551 if (r_symndx == 0)
7552 {
7553 (*_bfd_error_handler)
7554 (_("%B: Warning: cannot determine the target function for"
7555 " stub section `%s'"),
7556 abfd, name);
7557 bfd_set_error (bfd_error_bad_value);
7558 return FALSE;
7559 }
b49e97c9
TS
7560
7561 if (r_symndx < extsymoff
7562 || sym_hashes[r_symndx - extsymoff] == NULL)
7563 {
7564 asection *o;
7565
7566 /* This stub is for a local symbol. This stub will only be
7567 needed if there is some relocation in this BFD, other
7568 than a 16 bit function call, which refers to this symbol. */
7569 for (o = abfd->sections; o != NULL; o = o->next)
7570 {
7571 Elf_Internal_Rela *sec_relocs;
7572 const Elf_Internal_Rela *r, *rend;
7573
7574 /* We can ignore stub sections when looking for relocs. */
7575 if ((o->flags & SEC_RELOC) == 0
7576 || o->reloc_count == 0
738e5348 7577 || section_allows_mips16_refs_p (o))
b49e97c9
TS
7578 continue;
7579
45d6a902 7580 sec_relocs
9719ad41 7581 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 7582 info->keep_memory);
b49e97c9 7583 if (sec_relocs == NULL)
b34976b6 7584 return FALSE;
b49e97c9
TS
7585
7586 rend = sec_relocs + o->reloc_count;
7587 for (r = sec_relocs; r < rend; r++)
7588 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
738e5348 7589 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
b49e97c9
TS
7590 break;
7591
6cdc0ccc 7592 if (elf_section_data (o)->relocs != sec_relocs)
b49e97c9
TS
7593 free (sec_relocs);
7594
7595 if (r < rend)
7596 break;
7597 }
7598
7599 if (o == NULL)
7600 {
7601 /* There is no non-call reloc for this stub, so we do
7602 not need it. Since this function is called before
7603 the linker maps input sections to output sections, we
7604 can easily discard it by setting the SEC_EXCLUDE
7605 flag. */
7606 sec->flags |= SEC_EXCLUDE;
b34976b6 7607 return TRUE;
b49e97c9
TS
7608 }
7609
7610 /* Record this stub in an array of local symbol stubs for
7611 this BFD. */
7612 if (elf_tdata (abfd)->local_stubs == NULL)
7613 {
7614 unsigned long symcount;
7615 asection **n;
7616 bfd_size_type amt;
7617
7618 if (elf_bad_symtab (abfd))
7619 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7620 else
7621 symcount = symtab_hdr->sh_info;
7622 amt = symcount * sizeof (asection *);
9719ad41 7623 n = bfd_zalloc (abfd, amt);
b49e97c9 7624 if (n == NULL)
b34976b6 7625 return FALSE;
b49e97c9
TS
7626 elf_tdata (abfd)->local_stubs = n;
7627 }
7628
b9d58d71 7629 sec->flags |= SEC_KEEP;
b49e97c9
TS
7630 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
7631
7632 /* We don't need to set mips16_stubs_seen in this case.
7633 That flag is used to see whether we need to look through
7634 the global symbol table for stubs. We don't need to set
7635 it here, because we just have a local stub. */
7636 }
7637 else
7638 {
7639 struct mips_elf_link_hash_entry *h;
7640
7641 h = ((struct mips_elf_link_hash_entry *)
7642 sym_hashes[r_symndx - extsymoff]);
7643
973a3492
L
7644 while (h->root.root.type == bfd_link_hash_indirect
7645 || h->root.root.type == bfd_link_hash_warning)
7646 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
7647
b49e97c9
TS
7648 /* H is the symbol this stub is for. */
7649
b9d58d71
TS
7650 /* If we already have an appropriate stub for this function, we
7651 don't need another one, so we can discard this one. Since
7652 this function is called before the linker maps input sections
7653 to output sections, we can easily discard it by setting the
7654 SEC_EXCLUDE flag. */
7655 if (h->fn_stub != NULL)
7656 {
7657 sec->flags |= SEC_EXCLUDE;
7658 return TRUE;
7659 }
7660
7661 sec->flags |= SEC_KEEP;
b49e97c9 7662 h->fn_stub = sec;
b34976b6 7663 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
7664 }
7665 }
b9d58d71 7666 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
b49e97c9
TS
7667 {
7668 unsigned long r_symndx;
7669 struct mips_elf_link_hash_entry *h;
7670 asection **loc;
7671
7672 /* Look at the relocation information to figure out which symbol
7673 this is for. */
7674
cb4437b8 7675 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
738e5348
RS
7676 if (r_symndx == 0)
7677 {
7678 (*_bfd_error_handler)
7679 (_("%B: Warning: cannot determine the target function for"
7680 " stub section `%s'"),
7681 abfd, name);
7682 bfd_set_error (bfd_error_bad_value);
7683 return FALSE;
7684 }
b49e97c9
TS
7685
7686 if (r_symndx < extsymoff
7687 || sym_hashes[r_symndx - extsymoff] == NULL)
7688 {
b9d58d71 7689 asection *o;
b49e97c9 7690
b9d58d71
TS
7691 /* This stub is for a local symbol. This stub will only be
7692 needed if there is some relocation (R_MIPS16_26) in this BFD
7693 that refers to this symbol. */
7694 for (o = abfd->sections; o != NULL; o = o->next)
7695 {
7696 Elf_Internal_Rela *sec_relocs;
7697 const Elf_Internal_Rela *r, *rend;
7698
7699 /* We can ignore stub sections when looking for relocs. */
7700 if ((o->flags & SEC_RELOC) == 0
7701 || o->reloc_count == 0
738e5348 7702 || section_allows_mips16_refs_p (o))
b9d58d71
TS
7703 continue;
7704
7705 sec_relocs
7706 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7707 info->keep_memory);
7708 if (sec_relocs == NULL)
7709 return FALSE;
7710
7711 rend = sec_relocs + o->reloc_count;
7712 for (r = sec_relocs; r < rend; r++)
7713 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7714 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
7715 break;
7716
7717 if (elf_section_data (o)->relocs != sec_relocs)
7718 free (sec_relocs);
7719
7720 if (r < rend)
7721 break;
7722 }
7723
7724 if (o == NULL)
7725 {
7726 /* There is no non-call reloc for this stub, so we do
7727 not need it. Since this function is called before
7728 the linker maps input sections to output sections, we
7729 can easily discard it by setting the SEC_EXCLUDE
7730 flag. */
7731 sec->flags |= SEC_EXCLUDE;
7732 return TRUE;
7733 }
7734
7735 /* Record this stub in an array of local symbol call_stubs for
7736 this BFD. */
7737 if (elf_tdata (abfd)->local_call_stubs == NULL)
7738 {
7739 unsigned long symcount;
7740 asection **n;
7741 bfd_size_type amt;
7742
7743 if (elf_bad_symtab (abfd))
7744 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7745 else
7746 symcount = symtab_hdr->sh_info;
7747 amt = symcount * sizeof (asection *);
7748 n = bfd_zalloc (abfd, amt);
7749 if (n == NULL)
7750 return FALSE;
7751 elf_tdata (abfd)->local_call_stubs = n;
7752 }
b49e97c9 7753
b9d58d71
TS
7754 sec->flags |= SEC_KEEP;
7755 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
b49e97c9 7756
b9d58d71
TS
7757 /* We don't need to set mips16_stubs_seen in this case.
7758 That flag is used to see whether we need to look through
7759 the global symbol table for stubs. We don't need to set
7760 it here, because we just have a local stub. */
7761 }
b49e97c9 7762 else
b49e97c9 7763 {
b9d58d71
TS
7764 h = ((struct mips_elf_link_hash_entry *)
7765 sym_hashes[r_symndx - extsymoff]);
68ffbac6 7766
b9d58d71 7767 /* H is the symbol this stub is for. */
68ffbac6 7768
b9d58d71
TS
7769 if (CALL_FP_STUB_P (name))
7770 loc = &h->call_fp_stub;
7771 else
7772 loc = &h->call_stub;
68ffbac6 7773
b9d58d71
TS
7774 /* If we already have an appropriate stub for this function, we
7775 don't need another one, so we can discard this one. Since
7776 this function is called before the linker maps input sections
7777 to output sections, we can easily discard it by setting the
7778 SEC_EXCLUDE flag. */
7779 if (*loc != NULL)
7780 {
7781 sec->flags |= SEC_EXCLUDE;
7782 return TRUE;
7783 }
b49e97c9 7784
b9d58d71
TS
7785 sec->flags |= SEC_KEEP;
7786 *loc = sec;
7787 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7788 }
b49e97c9
TS
7789 }
7790
b49e97c9 7791 sreloc = NULL;
c224138d 7792 contents = NULL;
b49e97c9
TS
7793 for (rel = relocs; rel < rel_end; ++rel)
7794 {
7795 unsigned long r_symndx;
7796 unsigned int r_type;
7797 struct elf_link_hash_entry *h;
861fb55a 7798 bfd_boolean can_make_dynamic_p;
b49e97c9
TS
7799
7800 r_symndx = ELF_R_SYM (abfd, rel->r_info);
7801 r_type = ELF_R_TYPE (abfd, rel->r_info);
7802
7803 if (r_symndx < extsymoff)
7804 h = NULL;
7805 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
7806 {
7807 (*_bfd_error_handler)
d003868e
AM
7808 (_("%B: Malformed reloc detected for section %s"),
7809 abfd, name);
b49e97c9 7810 bfd_set_error (bfd_error_bad_value);
b34976b6 7811 return FALSE;
b49e97c9
TS
7812 }
7813 else
7814 {
7815 h = sym_hashes[r_symndx - extsymoff];
3e08fb72
NC
7816 while (h != NULL
7817 && (h->root.type == bfd_link_hash_indirect
7818 || h->root.type == bfd_link_hash_warning))
861fb55a
DJ
7819 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7820 }
b49e97c9 7821
861fb55a
DJ
7822 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
7823 relocation into a dynamic one. */
7824 can_make_dynamic_p = FALSE;
7825 switch (r_type)
7826 {
861fb55a
DJ
7827 case R_MIPS_GOT16:
7828 case R_MIPS_CALL16:
7829 case R_MIPS_CALL_HI16:
7830 case R_MIPS_CALL_LO16:
7831 case R_MIPS_GOT_HI16:
7832 case R_MIPS_GOT_LO16:
7833 case R_MIPS_GOT_PAGE:
7834 case R_MIPS_GOT_OFST:
7835 case R_MIPS_GOT_DISP:
7836 case R_MIPS_TLS_GOTTPREL:
7837 case R_MIPS_TLS_GD:
7838 case R_MIPS_TLS_LDM:
d0f13682
CLT
7839 case R_MIPS16_GOT16:
7840 case R_MIPS16_CALL16:
7841 case R_MIPS16_TLS_GOTTPREL:
7842 case R_MIPS16_TLS_GD:
7843 case R_MIPS16_TLS_LDM:
df58fc94
RS
7844 case R_MICROMIPS_GOT16:
7845 case R_MICROMIPS_CALL16:
7846 case R_MICROMIPS_CALL_HI16:
7847 case R_MICROMIPS_CALL_LO16:
7848 case R_MICROMIPS_GOT_HI16:
7849 case R_MICROMIPS_GOT_LO16:
7850 case R_MICROMIPS_GOT_PAGE:
7851 case R_MICROMIPS_GOT_OFST:
7852 case R_MICROMIPS_GOT_DISP:
7853 case R_MICROMIPS_TLS_GOTTPREL:
7854 case R_MICROMIPS_TLS_GD:
7855 case R_MICROMIPS_TLS_LDM:
861fb55a
DJ
7856 if (dynobj == NULL)
7857 elf_hash_table (info)->dynobj = dynobj = abfd;
7858 if (!mips_elf_create_got_section (dynobj, info))
7859 return FALSE;
7860 if (htab->is_vxworks && !info->shared)
b49e97c9 7861 {
861fb55a
DJ
7862 (*_bfd_error_handler)
7863 (_("%B: GOT reloc at 0x%lx not expected in executables"),
7864 abfd, (unsigned long) rel->r_offset);
7865 bfd_set_error (bfd_error_bad_value);
7866 return FALSE;
b49e97c9 7867 }
861fb55a 7868 break;
b49e97c9 7869
99da6b5f
AN
7870 /* This is just a hint; it can safely be ignored. Don't set
7871 has_static_relocs for the corresponding symbol. */
7872 case R_MIPS_JALR:
df58fc94 7873 case R_MICROMIPS_JALR:
99da6b5f
AN
7874 break;
7875
861fb55a
DJ
7876 case R_MIPS_32:
7877 case R_MIPS_REL32:
7878 case R_MIPS_64:
7879 /* In VxWorks executables, references to external symbols
7880 must be handled using copy relocs or PLT entries; it is not
7881 possible to convert this relocation into a dynamic one.
7882
7883 For executables that use PLTs and copy-relocs, we have a
7884 choice between converting the relocation into a dynamic
7885 one or using copy relocations or PLT entries. It is
7886 usually better to do the former, unless the relocation is
7887 against a read-only section. */
7888 if ((info->shared
7889 || (h != NULL
7890 && !htab->is_vxworks
7891 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
7892 && !(!info->nocopyreloc
7893 && !PIC_OBJECT_P (abfd)
7894 && MIPS_ELF_READONLY_SECTION (sec))))
7895 && (sec->flags & SEC_ALLOC) != 0)
b49e97c9 7896 {
861fb55a 7897 can_make_dynamic_p = TRUE;
b49e97c9
TS
7898 if (dynobj == NULL)
7899 elf_hash_table (info)->dynobj = dynobj = abfd;
b49e97c9 7900 break;
861fb55a 7901 }
21d790b9
MR
7902 /* For sections that are not SEC_ALLOC a copy reloc would be
7903 output if possible (implying questionable semantics for
7904 read-only data objects) or otherwise the final link would
7905 fail as ld.so will not process them and could not therefore
7906 handle any outstanding dynamic relocations.
7907
7908 For such sections that are also SEC_DEBUGGING, we can avoid
7909 these problems by simply ignoring any relocs as these
7910 sections have a predefined use and we know it is safe to do
7911 so.
7912
7913 This is needed in cases such as a global symbol definition
7914 in a shared library causing a common symbol from an object
7915 file to be converted to an undefined reference. If that
7916 happens, then all the relocations against this symbol from
7917 SEC_DEBUGGING sections in the object file will resolve to
7918 nil. */
7919 if ((sec->flags & SEC_DEBUGGING) != 0)
7920 break;
861fb55a 7921 /* Fall through. */
b49e97c9 7922
861fb55a
DJ
7923 default:
7924 /* Most static relocations require pointer equality, except
7925 for branches. */
7926 if (h)
7927 h->pointer_equality_needed = TRUE;
7928 /* Fall through. */
b49e97c9 7929
861fb55a
DJ
7930 case R_MIPS_26:
7931 case R_MIPS_PC16:
7932 case R_MIPS16_26:
df58fc94
RS
7933 case R_MICROMIPS_26_S1:
7934 case R_MICROMIPS_PC7_S1:
7935 case R_MICROMIPS_PC10_S1:
7936 case R_MICROMIPS_PC16_S1:
7937 case R_MICROMIPS_PC23_S2:
861fb55a
DJ
7938 if (h)
7939 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = TRUE;
7940 break;
b49e97c9
TS
7941 }
7942
0a44bf69
RS
7943 if (h)
7944 {
0a44bf69
RS
7945 /* Relocations against the special VxWorks __GOTT_BASE__ and
7946 __GOTT_INDEX__ symbols must be left to the loader. Allocate
7947 room for them in .rela.dyn. */
7948 if (is_gott_symbol (info, h))
7949 {
7950 if (sreloc == NULL)
7951 {
7952 sreloc = mips_elf_rel_dyn_section (info, TRUE);
7953 if (sreloc == NULL)
7954 return FALSE;
7955 }
7956 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9e3313ae
RS
7957 if (MIPS_ELF_READONLY_SECTION (sec))
7958 /* We tell the dynamic linker that there are
7959 relocations against the text segment. */
7960 info->flags |= DF_TEXTREL;
0a44bf69
RS
7961 }
7962 }
df58fc94
RS
7963 else if (call_lo16_reloc_p (r_type)
7964 || got_lo16_reloc_p (r_type)
7965 || got_disp_reloc_p (r_type)
738e5348 7966 || (got16_reloc_p (r_type) && htab->is_vxworks))
b49e97c9
TS
7967 {
7968 /* We may need a local GOT entry for this relocation. We
7969 don't count R_MIPS_GOT_PAGE because we can estimate the
7970 maximum number of pages needed by looking at the size of
738e5348
RS
7971 the segment. Similar comments apply to R_MIPS*_GOT16 and
7972 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
0a44bf69 7973 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
b49e97c9 7974 R_MIPS_CALL_HI16 because these are always followed by an
b15e6682 7975 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
a8028dd0 7976 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
e641e783 7977 rel->r_addend, info, r_type))
f4416af6 7978 return FALSE;
b49e97c9
TS
7979 }
7980
8f0c309a
CLT
7981 if (h != NULL
7982 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
7983 ELF_ST_IS_MIPS16 (h->other)))
861fb55a
DJ
7984 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
7985
b49e97c9
TS
7986 switch (r_type)
7987 {
7988 case R_MIPS_CALL16:
738e5348 7989 case R_MIPS16_CALL16:
df58fc94 7990 case R_MICROMIPS_CALL16:
b49e97c9
TS
7991 if (h == NULL)
7992 {
7993 (*_bfd_error_handler)
d003868e
AM
7994 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
7995 abfd, (unsigned long) rel->r_offset);
b49e97c9 7996 bfd_set_error (bfd_error_bad_value);
b34976b6 7997 return FALSE;
b49e97c9
TS
7998 }
7999 /* Fall through. */
8000
8001 case R_MIPS_CALL_HI16:
8002 case R_MIPS_CALL_LO16:
df58fc94
RS
8003 case R_MICROMIPS_CALL_HI16:
8004 case R_MICROMIPS_CALL_LO16:
b49e97c9
TS
8005 if (h != NULL)
8006 {
6ccf4795
RS
8007 /* Make sure there is room in the regular GOT to hold the
8008 function's address. We may eliminate it in favour of
8009 a .got.plt entry later; see mips_elf_count_got_symbols. */
e641e783
RS
8010 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8011 r_type))
b34976b6 8012 return FALSE;
b49e97c9
TS
8013
8014 /* We need a stub, not a plt entry for the undefined
8015 function. But we record it as if it needs plt. See
c152c796 8016 _bfd_elf_adjust_dynamic_symbol. */
f5385ebf 8017 h->needs_plt = 1;
b49e97c9
TS
8018 h->type = STT_FUNC;
8019 }
8020 break;
8021
0fdc1bf1 8022 case R_MIPS_GOT_PAGE:
df58fc94 8023 case R_MICROMIPS_GOT_PAGE:
0fdc1bf1
AO
8024 /* If this is a global, overridable symbol, GOT_PAGE will
8025 decay to GOT_DISP, so we'll need a GOT entry for it. */
c224138d 8026 if (h)
0fdc1bf1
AO
8027 {
8028 struct mips_elf_link_hash_entry *hmips =
8029 (struct mips_elf_link_hash_entry *) h;
143d77c5 8030
3a3b6725 8031 /* This symbol is definitely not overridable. */
f5385ebf 8032 if (hmips->root.def_regular
0fdc1bf1 8033 && ! (info->shared && ! info->symbolic
f5385ebf 8034 && ! hmips->root.forced_local))
c224138d 8035 h = NULL;
0fdc1bf1
AO
8036 }
8037 /* Fall through. */
8038
738e5348 8039 case R_MIPS16_GOT16:
b49e97c9
TS
8040 case R_MIPS_GOT16:
8041 case R_MIPS_GOT_HI16:
8042 case R_MIPS_GOT_LO16:
df58fc94
RS
8043 case R_MICROMIPS_GOT16:
8044 case R_MICROMIPS_GOT_HI16:
8045 case R_MICROMIPS_GOT_LO16:
8046 if (!h || got_page_reloc_p (r_type))
c224138d 8047 {
3a3b6725
DJ
8048 /* This relocation needs (or may need, if h != NULL) a
8049 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8050 know for sure until we know whether the symbol is
8051 preemptible. */
c224138d
RS
8052 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8053 {
8054 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8055 return FALSE;
8056 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8057 addend = mips_elf_read_rel_addend (abfd, rel,
8058 howto, contents);
9684f078 8059 if (got16_reloc_p (r_type))
c224138d
RS
8060 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8061 contents, &addend);
8062 else
8063 addend <<= howto->rightshift;
8064 }
8065 else
8066 addend = rel->r_addend;
a8028dd0
RS
8067 if (!mips_elf_record_got_page_entry (info, abfd, r_symndx,
8068 addend))
c224138d 8069 return FALSE;
c224138d
RS
8070 }
8071 /* Fall through. */
8072
b49e97c9 8073 case R_MIPS_GOT_DISP:
df58fc94 8074 case R_MICROMIPS_GOT_DISP:
6ccf4795 8075 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
e641e783 8076 FALSE, r_type))
b34976b6 8077 return FALSE;
b49e97c9
TS
8078 break;
8079
0f20cc35 8080 case R_MIPS_TLS_GOTTPREL:
d0f13682 8081 case R_MIPS16_TLS_GOTTPREL:
df58fc94 8082 case R_MICROMIPS_TLS_GOTTPREL:
0f20cc35
DJ
8083 if (info->shared)
8084 info->flags |= DF_STATIC_TLS;
8085 /* Fall through */
8086
8087 case R_MIPS_TLS_LDM:
d0f13682 8088 case R_MIPS16_TLS_LDM:
df58fc94
RS
8089 case R_MICROMIPS_TLS_LDM:
8090 if (tls_ldm_reloc_p (r_type))
0f20cc35 8091 {
cf35638d 8092 r_symndx = STN_UNDEF;
0f20cc35
DJ
8093 h = NULL;
8094 }
8095 /* Fall through */
8096
8097 case R_MIPS_TLS_GD:
d0f13682 8098 case R_MIPS16_TLS_GD:
df58fc94 8099 case R_MICROMIPS_TLS_GD:
0f20cc35
DJ
8100 /* This symbol requires a global offset table entry, or two
8101 for TLS GD relocations. */
e641e783
RS
8102 if (h != NULL)
8103 {
8104 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8105 FALSE, r_type))
8106 return FALSE;
8107 }
8108 else
8109 {
8110 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8111 rel->r_addend,
8112 info, r_type))
8113 return FALSE;
8114 }
0f20cc35
DJ
8115 break;
8116
b49e97c9
TS
8117 case R_MIPS_32:
8118 case R_MIPS_REL32:
8119 case R_MIPS_64:
0a44bf69
RS
8120 /* In VxWorks executables, references to external symbols
8121 are handled using copy relocs or PLT stubs, so there's
8122 no need to add a .rela.dyn entry for this relocation. */
861fb55a 8123 if (can_make_dynamic_p)
b49e97c9
TS
8124 {
8125 if (sreloc == NULL)
8126 {
0a44bf69 8127 sreloc = mips_elf_rel_dyn_section (info, TRUE);
b49e97c9 8128 if (sreloc == NULL)
f4416af6 8129 return FALSE;
b49e97c9 8130 }
9a59ad6b 8131 if (info->shared && h == NULL)
82f0cfbd
EC
8132 {
8133 /* When creating a shared object, we must copy these
8134 reloc types into the output file as R_MIPS_REL32
0a44bf69
RS
8135 relocs. Make room for this reloc in .rel(a).dyn. */
8136 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
943284cc 8137 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
8138 /* We tell the dynamic linker that there are
8139 relocations against the text segment. */
8140 info->flags |= DF_TEXTREL;
8141 }
b49e97c9
TS
8142 else
8143 {
8144 struct mips_elf_link_hash_entry *hmips;
82f0cfbd 8145
9a59ad6b
DJ
8146 /* For a shared object, we must copy this relocation
8147 unless the symbol turns out to be undefined and
8148 weak with non-default visibility, in which case
8149 it will be left as zero.
8150
8151 We could elide R_MIPS_REL32 for locally binding symbols
8152 in shared libraries, but do not yet do so.
8153
8154 For an executable, we only need to copy this
8155 reloc if the symbol is defined in a dynamic
8156 object. */
b49e97c9
TS
8157 hmips = (struct mips_elf_link_hash_entry *) h;
8158 ++hmips->possibly_dynamic_relocs;
943284cc 8159 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
8160 /* We need it to tell the dynamic linker if there
8161 are relocations against the text segment. */
8162 hmips->readonly_reloc = TRUE;
b49e97c9 8163 }
b49e97c9
TS
8164 }
8165
8166 if (SGI_COMPAT (abfd))
8167 mips_elf_hash_table (info)->compact_rel_size +=
8168 sizeof (Elf32_External_crinfo);
8169 break;
8170
8171 case R_MIPS_26:
8172 case R_MIPS_GPREL16:
8173 case R_MIPS_LITERAL:
8174 case R_MIPS_GPREL32:
df58fc94
RS
8175 case R_MICROMIPS_26_S1:
8176 case R_MICROMIPS_GPREL16:
8177 case R_MICROMIPS_LITERAL:
8178 case R_MICROMIPS_GPREL7_S2:
b49e97c9
TS
8179 if (SGI_COMPAT (abfd))
8180 mips_elf_hash_table (info)->compact_rel_size +=
8181 sizeof (Elf32_External_crinfo);
8182 break;
8183
8184 /* This relocation describes the C++ object vtable hierarchy.
8185 Reconstruct it for later use during GC. */
8186 case R_MIPS_GNU_VTINHERIT:
c152c796 8187 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 8188 return FALSE;
b49e97c9
TS
8189 break;
8190
8191 /* This relocation describes which C++ vtable entries are actually
8192 used. Record for later use during GC. */
8193 case R_MIPS_GNU_VTENTRY:
d17e0c6e
JB
8194 BFD_ASSERT (h != NULL);
8195 if (h != NULL
8196 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
b34976b6 8197 return FALSE;
b49e97c9
TS
8198 break;
8199
8200 default:
8201 break;
8202 }
8203
8204 /* We must not create a stub for a symbol that has relocations
0a44bf69
RS
8205 related to taking the function's address. This doesn't apply to
8206 VxWorks, where CALL relocs refer to a .got.plt entry instead of
8207 a normal .got entry. */
8208 if (!htab->is_vxworks && h != NULL)
8209 switch (r_type)
8210 {
8211 default:
8212 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8213 break;
738e5348 8214 case R_MIPS16_CALL16:
0a44bf69
RS
8215 case R_MIPS_CALL16:
8216 case R_MIPS_CALL_HI16:
8217 case R_MIPS_CALL_LO16:
8218 case R_MIPS_JALR:
df58fc94
RS
8219 case R_MICROMIPS_CALL16:
8220 case R_MICROMIPS_CALL_HI16:
8221 case R_MICROMIPS_CALL_LO16:
8222 case R_MICROMIPS_JALR:
0a44bf69
RS
8223 break;
8224 }
b49e97c9 8225
738e5348
RS
8226 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8227 if there is one. We only need to handle global symbols here;
8228 we decide whether to keep or delete stubs for local symbols
8229 when processing the stub's relocations. */
b49e97c9 8230 if (h != NULL
738e5348
RS
8231 && !mips16_call_reloc_p (r_type)
8232 && !section_allows_mips16_refs_p (sec))
b49e97c9
TS
8233 {
8234 struct mips_elf_link_hash_entry *mh;
8235
8236 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 8237 mh->need_fn_stub = TRUE;
b49e97c9 8238 }
861fb55a
DJ
8239
8240 /* Refuse some position-dependent relocations when creating a
8241 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8242 not PIC, but we can create dynamic relocations and the result
8243 will be fine. Also do not refuse R_MIPS_LO16, which can be
8244 combined with R_MIPS_GOT16. */
8245 if (info->shared)
8246 {
8247 switch (r_type)
8248 {
8249 case R_MIPS16_HI16:
8250 case R_MIPS_HI16:
8251 case R_MIPS_HIGHER:
8252 case R_MIPS_HIGHEST:
df58fc94
RS
8253 case R_MICROMIPS_HI16:
8254 case R_MICROMIPS_HIGHER:
8255 case R_MICROMIPS_HIGHEST:
861fb55a
DJ
8256 /* Don't refuse a high part relocation if it's against
8257 no symbol (e.g. part of a compound relocation). */
cf35638d 8258 if (r_symndx == STN_UNDEF)
861fb55a
DJ
8259 break;
8260
8261 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8262 and has a special meaning. */
8263 if (!NEWABI_P (abfd) && h != NULL
8264 && strcmp (h->root.root.string, "_gp_disp") == 0)
8265 break;
8266
0fc1eb3c
RS
8267 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8268 if (is_gott_symbol (info, h))
8269 break;
8270
861fb55a
DJ
8271 /* FALLTHROUGH */
8272
8273 case R_MIPS16_26:
8274 case R_MIPS_26:
df58fc94 8275 case R_MICROMIPS_26_S1:
861fb55a
DJ
8276 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8277 (*_bfd_error_handler)
8278 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8279 abfd, howto->name,
8280 (h) ? h->root.root.string : "a local symbol");
8281 bfd_set_error (bfd_error_bad_value);
8282 return FALSE;
8283 default:
8284 break;
8285 }
8286 }
b49e97c9
TS
8287 }
8288
b34976b6 8289 return TRUE;
b49e97c9
TS
8290}
8291\f
d0647110 8292bfd_boolean
9719ad41
RS
8293_bfd_mips_relax_section (bfd *abfd, asection *sec,
8294 struct bfd_link_info *link_info,
8295 bfd_boolean *again)
d0647110
AO
8296{
8297 Elf_Internal_Rela *internal_relocs;
8298 Elf_Internal_Rela *irel, *irelend;
8299 Elf_Internal_Shdr *symtab_hdr;
8300 bfd_byte *contents = NULL;
d0647110
AO
8301 size_t extsymoff;
8302 bfd_boolean changed_contents = FALSE;
8303 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8304 Elf_Internal_Sym *isymbuf = NULL;
8305
8306 /* We are not currently changing any sizes, so only one pass. */
8307 *again = FALSE;
8308
1049f94e 8309 if (link_info->relocatable)
d0647110
AO
8310 return TRUE;
8311
9719ad41 8312 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
45d6a902 8313 link_info->keep_memory);
d0647110
AO
8314 if (internal_relocs == NULL)
8315 return TRUE;
8316
8317 irelend = internal_relocs + sec->reloc_count
8318 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8319 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8320 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8321
8322 for (irel = internal_relocs; irel < irelend; irel++)
8323 {
8324 bfd_vma symval;
8325 bfd_signed_vma sym_offset;
8326 unsigned int r_type;
8327 unsigned long r_symndx;
8328 asection *sym_sec;
8329 unsigned long instruction;
8330
8331 /* Turn jalr into bgezal, and jr into beq, if they're marked
8332 with a JALR relocation, that indicate where they jump to.
8333 This saves some pipeline bubbles. */
8334 r_type = ELF_R_TYPE (abfd, irel->r_info);
8335 if (r_type != R_MIPS_JALR)
8336 continue;
8337
8338 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8339 /* Compute the address of the jump target. */
8340 if (r_symndx >= extsymoff)
8341 {
8342 struct mips_elf_link_hash_entry *h
8343 = ((struct mips_elf_link_hash_entry *)
8344 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8345
8346 while (h->root.root.type == bfd_link_hash_indirect
8347 || h->root.root.type == bfd_link_hash_warning)
8348 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
143d77c5 8349
d0647110
AO
8350 /* If a symbol is undefined, or if it may be overridden,
8351 skip it. */
8352 if (! ((h->root.root.type == bfd_link_hash_defined
8353 || h->root.root.type == bfd_link_hash_defweak)
8354 && h->root.root.u.def.section)
8355 || (link_info->shared && ! link_info->symbolic
f5385ebf 8356 && !h->root.forced_local))
d0647110
AO
8357 continue;
8358
8359 sym_sec = h->root.root.u.def.section;
8360 if (sym_sec->output_section)
8361 symval = (h->root.root.u.def.value
8362 + sym_sec->output_section->vma
8363 + sym_sec->output_offset);
8364 else
8365 symval = h->root.root.u.def.value;
8366 }
8367 else
8368 {
8369 Elf_Internal_Sym *isym;
8370
8371 /* Read this BFD's symbols if we haven't done so already. */
8372 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8373 {
8374 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8375 if (isymbuf == NULL)
8376 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8377 symtab_hdr->sh_info, 0,
8378 NULL, NULL, NULL);
8379 if (isymbuf == NULL)
8380 goto relax_return;
8381 }
8382
8383 isym = isymbuf + r_symndx;
8384 if (isym->st_shndx == SHN_UNDEF)
8385 continue;
8386 else if (isym->st_shndx == SHN_ABS)
8387 sym_sec = bfd_abs_section_ptr;
8388 else if (isym->st_shndx == SHN_COMMON)
8389 sym_sec = bfd_com_section_ptr;
8390 else
8391 sym_sec
8392 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8393 symval = isym->st_value
8394 + sym_sec->output_section->vma
8395 + sym_sec->output_offset;
8396 }
8397
8398 /* Compute branch offset, from delay slot of the jump to the
8399 branch target. */
8400 sym_offset = (symval + irel->r_addend)
8401 - (sec_start + irel->r_offset + 4);
8402
8403 /* Branch offset must be properly aligned. */
8404 if ((sym_offset & 3) != 0)
8405 continue;
8406
8407 sym_offset >>= 2;
8408
8409 /* Check that it's in range. */
8410 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8411 continue;
143d77c5 8412
d0647110 8413 /* Get the section contents if we haven't done so already. */
c224138d
RS
8414 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8415 goto relax_return;
d0647110
AO
8416
8417 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8418
8419 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
8420 if ((instruction & 0xfc1fffff) == 0x0000f809)
8421 instruction = 0x04110000;
8422 /* If it was jr <reg>, turn it into b <target>. */
8423 else if ((instruction & 0xfc1fffff) == 0x00000008)
8424 instruction = 0x10000000;
8425 else
8426 continue;
8427
8428 instruction |= (sym_offset & 0xffff);
8429 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8430 changed_contents = TRUE;
8431 }
8432
8433 if (contents != NULL
8434 && elf_section_data (sec)->this_hdr.contents != contents)
8435 {
8436 if (!changed_contents && !link_info->keep_memory)
8437 free (contents);
8438 else
8439 {
8440 /* Cache the section contents for elf_link_input_bfd. */
8441 elf_section_data (sec)->this_hdr.contents = contents;
8442 }
8443 }
8444 return TRUE;
8445
143d77c5 8446 relax_return:
eea6121a
AM
8447 if (contents != NULL
8448 && elf_section_data (sec)->this_hdr.contents != contents)
8449 free (contents);
d0647110
AO
8450 return FALSE;
8451}
8452\f
9a59ad6b
DJ
8453/* Allocate space for global sym dynamic relocs. */
8454
8455static bfd_boolean
8456allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8457{
8458 struct bfd_link_info *info = inf;
8459 bfd *dynobj;
8460 struct mips_elf_link_hash_entry *hmips;
8461 struct mips_elf_link_hash_table *htab;
8462
8463 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
8464 BFD_ASSERT (htab != NULL);
8465
9a59ad6b
DJ
8466 dynobj = elf_hash_table (info)->dynobj;
8467 hmips = (struct mips_elf_link_hash_entry *) h;
8468
8469 /* VxWorks executables are handled elsewhere; we only need to
8470 allocate relocations in shared objects. */
8471 if (htab->is_vxworks && !info->shared)
8472 return TRUE;
8473
7686d77d
AM
8474 /* Ignore indirect symbols. All relocations against such symbols
8475 will be redirected to the target symbol. */
8476 if (h->root.type == bfd_link_hash_indirect)
63897e2c
RS
8477 return TRUE;
8478
9a59ad6b
DJ
8479 /* If this symbol is defined in a dynamic object, or we are creating
8480 a shared library, we will need to copy any R_MIPS_32 or
8481 R_MIPS_REL32 relocs against it into the output file. */
8482 if (! info->relocatable
8483 && hmips->possibly_dynamic_relocs != 0
8484 && (h->root.type == bfd_link_hash_defweak
625ef6dc 8485 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
9a59ad6b
DJ
8486 || info->shared))
8487 {
8488 bfd_boolean do_copy = TRUE;
8489
8490 if (h->root.type == bfd_link_hash_undefweak)
8491 {
8492 /* Do not copy relocations for undefined weak symbols with
8493 non-default visibility. */
8494 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8495 do_copy = FALSE;
8496
8497 /* Make sure undefined weak symbols are output as a dynamic
8498 symbol in PIEs. */
8499 else if (h->dynindx == -1 && !h->forced_local)
8500 {
8501 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8502 return FALSE;
8503 }
8504 }
8505
8506 if (do_copy)
8507 {
aff469fa 8508 /* Even though we don't directly need a GOT entry for this symbol,
f7ff1106
RS
8509 the SVR4 psABI requires it to have a dynamic symbol table
8510 index greater that DT_MIPS_GOTSYM if there are dynamic
8511 relocations against it.
8512
8513 VxWorks does not enforce the same mapping between the GOT
8514 and the symbol table, so the same requirement does not
8515 apply there. */
6ccf4795
RS
8516 if (!htab->is_vxworks)
8517 {
8518 if (hmips->global_got_area > GGA_RELOC_ONLY)
8519 hmips->global_got_area = GGA_RELOC_ONLY;
8520 hmips->got_only_for_calls = FALSE;
8521 }
aff469fa 8522
9a59ad6b
DJ
8523 mips_elf_allocate_dynamic_relocations
8524 (dynobj, info, hmips->possibly_dynamic_relocs);
8525 if (hmips->readonly_reloc)
8526 /* We tell the dynamic linker that there are relocations
8527 against the text segment. */
8528 info->flags |= DF_TEXTREL;
8529 }
8530 }
8531
8532 return TRUE;
8533}
8534
b49e97c9
TS
8535/* Adjust a symbol defined by a dynamic object and referenced by a
8536 regular object. The current definition is in some section of the
8537 dynamic object, but we're not including those sections. We have to
8538 change the definition to something the rest of the link can
8539 understand. */
8540
b34976b6 8541bfd_boolean
9719ad41
RS
8542_bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8543 struct elf_link_hash_entry *h)
b49e97c9
TS
8544{
8545 bfd *dynobj;
8546 struct mips_elf_link_hash_entry *hmips;
5108fc1b 8547 struct mips_elf_link_hash_table *htab;
b49e97c9 8548
5108fc1b 8549 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
8550 BFD_ASSERT (htab != NULL);
8551
b49e97c9 8552 dynobj = elf_hash_table (info)->dynobj;
861fb55a 8553 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9
TS
8554
8555 /* Make sure we know what is going on here. */
8556 BFD_ASSERT (dynobj != NULL
f5385ebf 8557 && (h->needs_plt
f6e332e6 8558 || h->u.weakdef != NULL
f5385ebf
AM
8559 || (h->def_dynamic
8560 && h->ref_regular
8561 && !h->def_regular)));
b49e97c9 8562
b49e97c9 8563 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9 8564
861fb55a
DJ
8565 /* If there are call relocations against an externally-defined symbol,
8566 see whether we can create a MIPS lazy-binding stub for it. We can
8567 only do this if all references to the function are through call
8568 relocations, and in that case, the traditional lazy-binding stubs
8569 are much more efficient than PLT entries.
8570
8571 Traditional stubs are only available on SVR4 psABI-based systems;
8572 VxWorks always uses PLTs instead. */
8573 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
b49e97c9
TS
8574 {
8575 if (! elf_hash_table (info)->dynamic_sections_created)
b34976b6 8576 return TRUE;
b49e97c9
TS
8577
8578 /* If this symbol is not defined in a regular file, then set
8579 the symbol to the stub location. This is required to make
8580 function pointers compare as equal between the normal
8581 executable and the shared library. */
f5385ebf 8582 if (!h->def_regular)
b49e97c9 8583 {
33bb52fb
RS
8584 hmips->needs_lazy_stub = TRUE;
8585 htab->lazy_stub_count++;
b34976b6 8586 return TRUE;
b49e97c9
TS
8587 }
8588 }
861fb55a
DJ
8589 /* As above, VxWorks requires PLT entries for externally-defined
8590 functions that are only accessed through call relocations.
b49e97c9 8591
861fb55a
DJ
8592 Both VxWorks and non-VxWorks targets also need PLT entries if there
8593 are static-only relocations against an externally-defined function.
8594 This can technically occur for shared libraries if there are
8595 branches to the symbol, although it is unlikely that this will be
8596 used in practice due to the short ranges involved. It can occur
8597 for any relative or absolute relocation in executables; in that
8598 case, the PLT entry becomes the function's canonical address. */
8599 else if (((h->needs_plt && !hmips->no_fn_stub)
8600 || (h->type == STT_FUNC && hmips->has_static_relocs))
8601 && htab->use_plts_and_copy_relocs
8602 && !SYMBOL_CALLS_LOCAL (info, h)
8603 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8604 && h->root.type == bfd_link_hash_undefweak))
b49e97c9 8605 {
861fb55a
DJ
8606 /* If this is the first symbol to need a PLT entry, allocate room
8607 for the header. */
8608 if (htab->splt->size == 0)
8609 {
8610 BFD_ASSERT (htab->sgotplt->size == 0);
0a44bf69 8611
861fb55a
DJ
8612 /* If we're using the PLT additions to the psABI, each PLT
8613 entry is 16 bytes and the PLT0 entry is 32 bytes.
8614 Encourage better cache usage by aligning. We do this
8615 lazily to avoid pessimizing traditional objects. */
8616 if (!htab->is_vxworks
8617 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
8618 return FALSE;
0a44bf69 8619
861fb55a
DJ
8620 /* Make sure that .got.plt is word-aligned. We do this lazily
8621 for the same reason as above. */
8622 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
8623 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
8624 return FALSE;
0a44bf69 8625
861fb55a 8626 htab->splt->size += htab->plt_header_size;
0a44bf69 8627
861fb55a
DJ
8628 /* On non-VxWorks targets, the first two entries in .got.plt
8629 are reserved. */
8630 if (!htab->is_vxworks)
a44acb1e
MR
8631 htab->sgotplt->size
8632 += get_elf_backend_data (dynobj)->got_header_size;
0a44bf69 8633
861fb55a
DJ
8634 /* On VxWorks, also allocate room for the header's
8635 .rela.plt.unloaded entries. */
8636 if (htab->is_vxworks && !info->shared)
0a44bf69
RS
8637 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
8638 }
8639
8640 /* Assign the next .plt entry to this symbol. */
8641 h->plt.offset = htab->splt->size;
8642 htab->splt->size += htab->plt_entry_size;
8643
8644 /* If the output file has no definition of the symbol, set the
861fb55a 8645 symbol's value to the address of the stub. */
131eb6b7 8646 if (!info->shared && !h->def_regular)
0a44bf69
RS
8647 {
8648 h->root.u.def.section = htab->splt;
8649 h->root.u.def.value = h->plt.offset;
861fb55a
DJ
8650 /* For VxWorks, point at the PLT load stub rather than the
8651 lazy resolution stub; this stub will become the canonical
8652 function address. */
8653 if (htab->is_vxworks)
8654 h->root.u.def.value += 8;
0a44bf69
RS
8655 }
8656
861fb55a
DJ
8657 /* Make room for the .got.plt entry and the R_MIPS_JUMP_SLOT
8658 relocation. */
8659 htab->sgotplt->size += MIPS_ELF_GOT_SIZE (dynobj);
8660 htab->srelplt->size += (htab->is_vxworks
8661 ? MIPS_ELF_RELA_SIZE (dynobj)
8662 : MIPS_ELF_REL_SIZE (dynobj));
0a44bf69
RS
8663
8664 /* Make room for the .rela.plt.unloaded relocations. */
861fb55a 8665 if (htab->is_vxworks && !info->shared)
0a44bf69
RS
8666 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
8667
861fb55a
DJ
8668 /* All relocations against this symbol that could have been made
8669 dynamic will now refer to the PLT entry instead. */
8670 hmips->possibly_dynamic_relocs = 0;
0a44bf69 8671
0a44bf69
RS
8672 return TRUE;
8673 }
8674
8675 /* If this is a weak symbol, and there is a real definition, the
8676 processor independent code will have arranged for us to see the
8677 real definition first, and we can just use the same value. */
8678 if (h->u.weakdef != NULL)
8679 {
8680 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
8681 || h->u.weakdef->root.type == bfd_link_hash_defweak);
8682 h->root.u.def.section = h->u.weakdef->root.u.def.section;
8683 h->root.u.def.value = h->u.weakdef->root.u.def.value;
8684 return TRUE;
8685 }
8686
861fb55a
DJ
8687 /* Otherwise, there is nothing further to do for symbols defined
8688 in regular objects. */
8689 if (h->def_regular)
0a44bf69
RS
8690 return TRUE;
8691
861fb55a
DJ
8692 /* There's also nothing more to do if we'll convert all relocations
8693 against this symbol into dynamic relocations. */
8694 if (!hmips->has_static_relocs)
8695 return TRUE;
8696
8697 /* We're now relying on copy relocations. Complain if we have
8698 some that we can't convert. */
8699 if (!htab->use_plts_and_copy_relocs || info->shared)
8700 {
8701 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
8702 "dynamic symbol %s"),
8703 h->root.root.string);
8704 bfd_set_error (bfd_error_bad_value);
8705 return FALSE;
8706 }
8707
0a44bf69
RS
8708 /* We must allocate the symbol in our .dynbss section, which will
8709 become part of the .bss section of the executable. There will be
8710 an entry for this symbol in the .dynsym section. The dynamic
8711 object will contain position independent code, so all references
8712 from the dynamic object to this symbol will go through the global
8713 offset table. The dynamic linker will use the .dynsym entry to
8714 determine the address it must put in the global offset table, so
8715 both the dynamic object and the regular object will refer to the
8716 same memory location for the variable. */
8717
8718 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
8719 {
861fb55a
DJ
8720 if (htab->is_vxworks)
8721 htab->srelbss->size += sizeof (Elf32_External_Rela);
8722 else
8723 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
0a44bf69
RS
8724 h->needs_copy = 1;
8725 }
8726
861fb55a
DJ
8727 /* All relocations against this symbol that could have been made
8728 dynamic will now refer to the local copy instead. */
8729 hmips->possibly_dynamic_relocs = 0;
8730
027297b7 8731 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
0a44bf69 8732}
b49e97c9
TS
8733\f
8734/* This function is called after all the input files have been read,
8735 and the input sections have been assigned to output sections. We
8736 check for any mips16 stub sections that we can discard. */
8737
b34976b6 8738bfd_boolean
9719ad41
RS
8739_bfd_mips_elf_always_size_sections (bfd *output_bfd,
8740 struct bfd_link_info *info)
b49e97c9
TS
8741{
8742 asection *ri;
0a44bf69 8743 struct mips_elf_link_hash_table *htab;
861fb55a 8744 struct mips_htab_traverse_info hti;
0a44bf69
RS
8745
8746 htab = mips_elf_hash_table (info);
4dfe6ac6 8747 BFD_ASSERT (htab != NULL);
f4416af6 8748
b49e97c9
TS
8749 /* The .reginfo section has a fixed size. */
8750 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
8751 if (ri != NULL)
9719ad41 8752 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
b49e97c9 8753
861fb55a
DJ
8754 hti.info = info;
8755 hti.output_bfd = output_bfd;
8756 hti.error = FALSE;
8757 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8758 mips_elf_check_symbols, &hti);
8759 if (hti.error)
8760 return FALSE;
f4416af6 8761
33bb52fb
RS
8762 return TRUE;
8763}
8764
8765/* If the link uses a GOT, lay it out and work out its size. */
8766
8767static bfd_boolean
8768mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
8769{
8770 bfd *dynobj;
8771 asection *s;
8772 struct mips_got_info *g;
33bb52fb
RS
8773 bfd_size_type loadable_size = 0;
8774 bfd_size_type page_gotno;
8775 bfd *sub;
8776 struct mips_elf_count_tls_arg count_tls_arg;
8777 struct mips_elf_link_hash_table *htab;
8778
8779 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
8780 BFD_ASSERT (htab != NULL);
8781
a8028dd0 8782 s = htab->sgot;
f4416af6 8783 if (s == NULL)
b34976b6 8784 return TRUE;
b49e97c9 8785
33bb52fb 8786 dynobj = elf_hash_table (info)->dynobj;
a8028dd0
RS
8787 g = htab->got_info;
8788
861fb55a
DJ
8789 /* Allocate room for the reserved entries. VxWorks always reserves
8790 3 entries; other objects only reserve 2 entries. */
8791 BFD_ASSERT (g->assigned_gotno == 0);
8792 if (htab->is_vxworks)
8793 htab->reserved_gotno = 3;
8794 else
8795 htab->reserved_gotno = 2;
8796 g->local_gotno += htab->reserved_gotno;
8797 g->assigned_gotno = htab->reserved_gotno;
8798
33bb52fb
RS
8799 /* Replace entries for indirect and warning symbols with entries for
8800 the target symbol. */
8801 if (!mips_elf_resolve_final_got_entries (g))
8802 return FALSE;
f4416af6 8803
d4596a51 8804 /* Count the number of GOT symbols. */
020d7251 8805 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
f4416af6 8806
33bb52fb
RS
8807 /* Calculate the total loadable size of the output. That
8808 will give us the maximum number of GOT_PAGE entries
8809 required. */
8810 for (sub = info->input_bfds; sub; sub = sub->link_next)
8811 {
8812 asection *subsection;
5108fc1b 8813
33bb52fb
RS
8814 for (subsection = sub->sections;
8815 subsection;
8816 subsection = subsection->next)
8817 {
8818 if ((subsection->flags & SEC_ALLOC) == 0)
8819 continue;
8820 loadable_size += ((subsection->size + 0xf)
8821 &~ (bfd_size_type) 0xf);
8822 }
8823 }
f4416af6 8824
0a44bf69 8825 if (htab->is_vxworks)
738e5348 8826 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
0a44bf69
RS
8827 relocations against local symbols evaluate to "G", and the EABI does
8828 not include R_MIPS_GOT_PAGE. */
c224138d 8829 page_gotno = 0;
0a44bf69
RS
8830 else
8831 /* Assume there are two loadable segments consisting of contiguous
8832 sections. Is 5 enough? */
c224138d
RS
8833 page_gotno = (loadable_size >> 16) + 5;
8834
8835 /* Choose the smaller of the two estimates; both are intended to be
8836 conservative. */
8837 if (page_gotno > g->page_gotno)
8838 page_gotno = g->page_gotno;
f4416af6 8839
c224138d 8840 g->local_gotno += page_gotno;
eea6121a 8841 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
d4596a51 8842 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6 8843
0f20cc35
DJ
8844 /* We need to calculate tls_gotno for global symbols at this point
8845 instead of building it up earlier, to avoid doublecounting
8846 entries for one global symbol from multiple input files. */
8847 count_tls_arg.info = info;
8848 count_tls_arg.needed = 0;
8849 elf_link_hash_traverse (elf_hash_table (info),
8850 mips_elf_count_global_tls_entries,
8851 &count_tls_arg);
8852 g->tls_gotno += count_tls_arg.needed;
8853 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8854
0a44bf69
RS
8855 /* VxWorks does not support multiple GOTs. It initializes $gp to
8856 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
8857 dynamic loader. */
33bb52fb
RS
8858 if (htab->is_vxworks)
8859 {
8860 /* VxWorks executables do not need a GOT. */
8861 if (info->shared)
8862 {
8863 /* Each VxWorks GOT entry needs an explicit relocation. */
8864 unsigned int count;
8865
861fb55a 8866 count = g->global_gotno + g->local_gotno - htab->reserved_gotno;
33bb52fb
RS
8867 if (count)
8868 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
8869 }
8870 }
8871 else if (s->size > MIPS_ELF_GOT_MAX_SIZE (info))
0f20cc35 8872 {
a8028dd0 8873 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
0f20cc35
DJ
8874 return FALSE;
8875 }
8876 else
8877 {
33bb52fb
RS
8878 struct mips_elf_count_tls_arg arg;
8879
8880 /* Set up TLS entries. */
0f20cc35
DJ
8881 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
8882 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
1fd20d70
RS
8883 BFD_ASSERT (g->tls_assigned_gotno
8884 == g->global_gotno + g->local_gotno + g->tls_gotno);
33bb52fb
RS
8885
8886 /* Allocate room for the TLS relocations. */
8887 arg.info = info;
8888 arg.needed = 0;
8889 htab_traverse (g->got_entries, mips_elf_count_local_tls_relocs, &arg);
8890 elf_link_hash_traverse (elf_hash_table (info),
8891 mips_elf_count_global_tls_relocs,
8892 &arg);
8893 if (arg.needed)
8894 mips_elf_allocate_dynamic_relocations (dynobj, info, arg.needed);
0f20cc35 8895 }
b49e97c9 8896
b34976b6 8897 return TRUE;
b49e97c9
TS
8898}
8899
33bb52fb
RS
8900/* Estimate the size of the .MIPS.stubs section. */
8901
8902static void
8903mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
8904{
8905 struct mips_elf_link_hash_table *htab;
8906 bfd_size_type dynsymcount;
8907
8908 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
8909 BFD_ASSERT (htab != NULL);
8910
33bb52fb
RS
8911 if (htab->lazy_stub_count == 0)
8912 return;
8913
8914 /* IRIX rld assumes that a function stub isn't at the end of the .text
8915 section, so add a dummy entry to the end. */
8916 htab->lazy_stub_count++;
8917
8918 /* Get a worst-case estimate of the number of dynamic symbols needed.
8919 At this point, dynsymcount does not account for section symbols
8920 and count_section_dynsyms may overestimate the number that will
8921 be needed. */
8922 dynsymcount = (elf_hash_table (info)->dynsymcount
8923 + count_section_dynsyms (output_bfd, info));
8924
8925 /* Determine the size of one stub entry. */
8926 htab->function_stub_size = (dynsymcount > 0x10000
8927 ? MIPS_FUNCTION_STUB_BIG_SIZE
8928 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
8929
8930 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
8931}
8932
8933/* A mips_elf_link_hash_traverse callback for which DATA points to the
8934 MIPS hash table. If H needs a traditional MIPS lazy-binding stub,
8935 allocate an entry in the stubs section. */
8936
8937static bfd_boolean
8938mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void **data)
8939{
8940 struct mips_elf_link_hash_table *htab;
8941
8942 htab = (struct mips_elf_link_hash_table *) data;
8943 if (h->needs_lazy_stub)
8944 {
8945 h->root.root.u.def.section = htab->sstubs;
8946 h->root.root.u.def.value = htab->sstubs->size;
8947 h->root.plt.offset = htab->sstubs->size;
8948 htab->sstubs->size += htab->function_stub_size;
8949 }
8950 return TRUE;
8951}
8952
8953/* Allocate offsets in the stubs section to each symbol that needs one.
8954 Set the final size of the .MIPS.stub section. */
8955
8956static void
8957mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
8958{
8959 struct mips_elf_link_hash_table *htab;
8960
8961 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
8962 BFD_ASSERT (htab != NULL);
8963
33bb52fb
RS
8964 if (htab->lazy_stub_count == 0)
8965 return;
8966
8967 htab->sstubs->size = 0;
4dfe6ac6 8968 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, htab);
33bb52fb
RS
8969 htab->sstubs->size += htab->function_stub_size;
8970 BFD_ASSERT (htab->sstubs->size
8971 == htab->lazy_stub_count * htab->function_stub_size);
8972}
8973
b49e97c9
TS
8974/* Set the sizes of the dynamic sections. */
8975
b34976b6 8976bfd_boolean
9719ad41
RS
8977_bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
8978 struct bfd_link_info *info)
b49e97c9
TS
8979{
8980 bfd *dynobj;
861fb55a 8981 asection *s, *sreldyn;
b34976b6 8982 bfd_boolean reltext;
0a44bf69 8983 struct mips_elf_link_hash_table *htab;
b49e97c9 8984
0a44bf69 8985 htab = mips_elf_hash_table (info);
4dfe6ac6 8986 BFD_ASSERT (htab != NULL);
b49e97c9
TS
8987 dynobj = elf_hash_table (info)->dynobj;
8988 BFD_ASSERT (dynobj != NULL);
8989
8990 if (elf_hash_table (info)->dynamic_sections_created)
8991 {
8992 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 8993 if (info->executable)
b49e97c9 8994 {
3d4d4302 8995 s = bfd_get_linker_section (dynobj, ".interp");
b49e97c9 8996 BFD_ASSERT (s != NULL);
eea6121a 8997 s->size
b49e97c9
TS
8998 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
8999 s->contents
9000 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9001 }
861fb55a
DJ
9002
9003 /* Create a symbol for the PLT, if we know that we are using it. */
9004 if (htab->splt && htab->splt->size > 0 && htab->root.hplt == NULL)
9005 {
9006 struct elf_link_hash_entry *h;
9007
9008 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9009
9010 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
9011 "_PROCEDURE_LINKAGE_TABLE_");
9012 htab->root.hplt = h;
9013 if (h == NULL)
9014 return FALSE;
9015 h->type = STT_FUNC;
9016 }
9017 }
4e41d0d7 9018
9a59ad6b 9019 /* Allocate space for global sym dynamic relocs. */
2c3fc389 9020 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9a59ad6b 9021
33bb52fb
RS
9022 mips_elf_estimate_stub_size (output_bfd, info);
9023
9024 if (!mips_elf_lay_out_got (output_bfd, info))
9025 return FALSE;
9026
9027 mips_elf_lay_out_lazy_stubs (info);
9028
b49e97c9
TS
9029 /* The check_relocs and adjust_dynamic_symbol entry points have
9030 determined the sizes of the various dynamic sections. Allocate
9031 memory for them. */
b34976b6 9032 reltext = FALSE;
b49e97c9
TS
9033 for (s = dynobj->sections; s != NULL; s = s->next)
9034 {
9035 const char *name;
b49e97c9
TS
9036
9037 /* It's OK to base decisions on the section name, because none
9038 of the dynobj section names depend upon the input files. */
9039 name = bfd_get_section_name (dynobj, s);
9040
9041 if ((s->flags & SEC_LINKER_CREATED) == 0)
9042 continue;
9043
0112cd26 9044 if (CONST_STRNEQ (name, ".rel"))
b49e97c9 9045 {
c456f082 9046 if (s->size != 0)
b49e97c9
TS
9047 {
9048 const char *outname;
9049 asection *target;
9050
9051 /* If this relocation section applies to a read only
9052 section, then we probably need a DT_TEXTREL entry.
0a44bf69 9053 If the relocation section is .rel(a).dyn, we always
b49e97c9
TS
9054 assert a DT_TEXTREL entry rather than testing whether
9055 there exists a relocation to a read only section or
9056 not. */
9057 outname = bfd_get_section_name (output_bfd,
9058 s->output_section);
9059 target = bfd_get_section_by_name (output_bfd, outname + 4);
9060 if ((target != NULL
9061 && (target->flags & SEC_READONLY) != 0
9062 && (target->flags & SEC_ALLOC) != 0)
0a44bf69 9063 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
b34976b6 9064 reltext = TRUE;
b49e97c9
TS
9065
9066 /* We use the reloc_count field as a counter if we need
9067 to copy relocs into the output file. */
0a44bf69 9068 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
b49e97c9 9069 s->reloc_count = 0;
f4416af6
AO
9070
9071 /* If combreloc is enabled, elf_link_sort_relocs() will
9072 sort relocations, but in a different way than we do,
9073 and before we're done creating relocations. Also, it
9074 will move them around between input sections'
9075 relocation's contents, so our sorting would be
9076 broken, so don't let it run. */
9077 info->combreloc = 0;
b49e97c9
TS
9078 }
9079 }
b49e97c9
TS
9080 else if (! info->shared
9081 && ! mips_elf_hash_table (info)->use_rld_obj_head
0112cd26 9082 && CONST_STRNEQ (name, ".rld_map"))
b49e97c9 9083 {
5108fc1b 9084 /* We add a room for __rld_map. It will be filled in by the
b49e97c9 9085 rtld to contain a pointer to the _r_debug structure. */
b4082c70 9086 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
b49e97c9
TS
9087 }
9088 else if (SGI_COMPAT (output_bfd)
0112cd26 9089 && CONST_STRNEQ (name, ".compact_rel"))
eea6121a 9090 s->size += mips_elf_hash_table (info)->compact_rel_size;
861fb55a
DJ
9091 else if (s == htab->splt)
9092 {
9093 /* If the last PLT entry has a branch delay slot, allocate
6d30f5b2
NC
9094 room for an extra nop to fill the delay slot. This is
9095 for CPUs without load interlocking. */
9096 if (! LOAD_INTERLOCKS_P (output_bfd)
9097 && ! htab->is_vxworks && s->size > 0)
861fb55a
DJ
9098 s->size += 4;
9099 }
0112cd26 9100 else if (! CONST_STRNEQ (name, ".init")
33bb52fb 9101 && s != htab->sgot
0a44bf69 9102 && s != htab->sgotplt
861fb55a
DJ
9103 && s != htab->sstubs
9104 && s != htab->sdynbss)
b49e97c9
TS
9105 {
9106 /* It's not one of our sections, so don't allocate space. */
9107 continue;
9108 }
9109
c456f082 9110 if (s->size == 0)
b49e97c9 9111 {
8423293d 9112 s->flags |= SEC_EXCLUDE;
b49e97c9
TS
9113 continue;
9114 }
9115
c456f082
AM
9116 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9117 continue;
9118
b49e97c9 9119 /* Allocate memory for the section contents. */
eea6121a 9120 s->contents = bfd_zalloc (dynobj, s->size);
c456f082 9121 if (s->contents == NULL)
b49e97c9
TS
9122 {
9123 bfd_set_error (bfd_error_no_memory);
b34976b6 9124 return FALSE;
b49e97c9
TS
9125 }
9126 }
9127
9128 if (elf_hash_table (info)->dynamic_sections_created)
9129 {
9130 /* Add some entries to the .dynamic section. We fill in the
9131 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9132 must add the entries now so that we get the correct size for
5750dcec 9133 the .dynamic section. */
af5978fb
RS
9134
9135 /* SGI object has the equivalence of DT_DEBUG in the
5750dcec 9136 DT_MIPS_RLD_MAP entry. This must come first because glibc
6e6be592
MR
9137 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9138 may only look at the first one they see. */
af5978fb
RS
9139 if (!info->shared
9140 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9141 return FALSE;
b49e97c9 9142
5750dcec
DJ
9143 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9144 used by the debugger. */
9145 if (info->executable
9146 && !SGI_COMPAT (output_bfd)
9147 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9148 return FALSE;
9149
0a44bf69 9150 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
b49e97c9
TS
9151 info->flags |= DF_TEXTREL;
9152
9153 if ((info->flags & DF_TEXTREL) != 0)
9154 {
9155 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
b34976b6 9156 return FALSE;
943284cc
DJ
9157
9158 /* Clear the DF_TEXTREL flag. It will be set again if we
9159 write out an actual text relocation; we may not, because
9160 at this point we do not know whether e.g. any .eh_frame
9161 absolute relocations have been converted to PC-relative. */
9162 info->flags &= ~DF_TEXTREL;
b49e97c9
TS
9163 }
9164
9165 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
b34976b6 9166 return FALSE;
b49e97c9 9167
861fb55a 9168 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
0a44bf69 9169 if (htab->is_vxworks)
b49e97c9 9170 {
0a44bf69
RS
9171 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9172 use any of the DT_MIPS_* tags. */
861fb55a 9173 if (sreldyn && sreldyn->size > 0)
0a44bf69
RS
9174 {
9175 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9176 return FALSE;
b49e97c9 9177
0a44bf69
RS
9178 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9179 return FALSE;
b49e97c9 9180
0a44bf69
RS
9181 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9182 return FALSE;
9183 }
b49e97c9 9184 }
0a44bf69
RS
9185 else
9186 {
861fb55a 9187 if (sreldyn && sreldyn->size > 0)
0a44bf69
RS
9188 {
9189 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9190 return FALSE;
b49e97c9 9191
0a44bf69
RS
9192 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9193 return FALSE;
b49e97c9 9194
0a44bf69
RS
9195 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9196 return FALSE;
9197 }
b49e97c9 9198
0a44bf69
RS
9199 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9200 return FALSE;
b49e97c9 9201
0a44bf69
RS
9202 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9203 return FALSE;
b49e97c9 9204
0a44bf69
RS
9205 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9206 return FALSE;
b49e97c9 9207
0a44bf69
RS
9208 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9209 return FALSE;
b49e97c9 9210
0a44bf69
RS
9211 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9212 return FALSE;
b49e97c9 9213
0a44bf69
RS
9214 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9215 return FALSE;
b49e97c9 9216
0a44bf69
RS
9217 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9218 return FALSE;
9219
9220 if (IRIX_COMPAT (dynobj) == ict_irix5
9221 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9222 return FALSE;
9223
9224 if (IRIX_COMPAT (dynobj) == ict_irix6
9225 && (bfd_get_section_by_name
af0edeb8 9226 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
0a44bf69
RS
9227 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9228 return FALSE;
9229 }
861fb55a
DJ
9230 if (htab->splt->size > 0)
9231 {
9232 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9233 return FALSE;
9234
9235 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9236 return FALSE;
9237
9238 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9239 return FALSE;
9240
9241 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9242 return FALSE;
9243 }
7a2b07ff
NS
9244 if (htab->is_vxworks
9245 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9246 return FALSE;
b49e97c9
TS
9247 }
9248
b34976b6 9249 return TRUE;
b49e97c9
TS
9250}
9251\f
81d43bff
RS
9252/* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9253 Adjust its R_ADDEND field so that it is correct for the output file.
9254 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9255 and sections respectively; both use symbol indexes. */
9256
9257static void
9258mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9259 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9260 asection **local_sections, Elf_Internal_Rela *rel)
9261{
9262 unsigned int r_type, r_symndx;
9263 Elf_Internal_Sym *sym;
9264 asection *sec;
9265
020d7251 9266 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
81d43bff
RS
9267 {
9268 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
df58fc94 9269 if (gprel16_reloc_p (r_type)
81d43bff 9270 || r_type == R_MIPS_GPREL32
df58fc94 9271 || literal_reloc_p (r_type))
81d43bff
RS
9272 {
9273 rel->r_addend += _bfd_get_gp_value (input_bfd);
9274 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9275 }
9276
9277 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9278 sym = local_syms + r_symndx;
9279
9280 /* Adjust REL's addend to account for section merging. */
9281 if (!info->relocatable)
9282 {
9283 sec = local_sections[r_symndx];
9284 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9285 }
9286
9287 /* This would normally be done by the rela_normal code in elflink.c. */
9288 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9289 rel->r_addend += local_sections[r_symndx]->output_offset;
9290 }
9291}
9292
545fd46b
MR
9293/* Handle relocations against symbols from removed linkonce sections,
9294 or sections discarded by a linker script. We use this wrapper around
9295 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
9296 on 64-bit ELF targets. In this case for any relocation handled, which
9297 always be the first in a triplet, the remaining two have to be processed
9298 together with the first, even if they are R_MIPS_NONE. It is the symbol
9299 index referred by the first reloc that applies to all the three and the
9300 remaining two never refer to an object symbol. And it is the final
9301 relocation (the last non-null one) that determines the output field of
9302 the whole relocation so retrieve the corresponding howto structure for
9303 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
9304
9305 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
9306 and therefore requires to be pasted in a loop. It also defines a block
9307 and does not protect any of its arguments, hence the extra brackets. */
9308
9309static void
9310mips_reloc_against_discarded_section (bfd *output_bfd,
9311 struct bfd_link_info *info,
9312 bfd *input_bfd, asection *input_section,
9313 Elf_Internal_Rela **rel,
9314 const Elf_Internal_Rela **relend,
9315 bfd_boolean rel_reloc,
9316 reloc_howto_type *howto,
9317 bfd_byte *contents)
9318{
9319 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9320 int count = bed->s->int_rels_per_ext_rel;
9321 unsigned int r_type;
9322 int i;
9323
9324 for (i = count - 1; i > 0; i--)
9325 {
9326 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
9327 if (r_type != R_MIPS_NONE)
9328 {
9329 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9330 break;
9331 }
9332 }
9333 do
9334 {
9335 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
9336 (*rel), count, (*relend),
9337 howto, i, contents);
9338 }
9339 while (0);
9340}
9341
b49e97c9
TS
9342/* Relocate a MIPS ELF section. */
9343
b34976b6 9344bfd_boolean
9719ad41
RS
9345_bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
9346 bfd *input_bfd, asection *input_section,
9347 bfd_byte *contents, Elf_Internal_Rela *relocs,
9348 Elf_Internal_Sym *local_syms,
9349 asection **local_sections)
b49e97c9
TS
9350{
9351 Elf_Internal_Rela *rel;
9352 const Elf_Internal_Rela *relend;
9353 bfd_vma addend = 0;
b34976b6 9354 bfd_boolean use_saved_addend_p = FALSE;
9c5bfbb7 9355 const struct elf_backend_data *bed;
b49e97c9
TS
9356
9357 bed = get_elf_backend_data (output_bfd);
9358 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
9359 for (rel = relocs; rel < relend; ++rel)
9360 {
9361 const char *name;
c9adbffe 9362 bfd_vma value = 0;
b49e97c9 9363 reloc_howto_type *howto;
38a7df63 9364 bfd_boolean cross_mode_jump_p;
b34976b6 9365 /* TRUE if the relocation is a RELA relocation, rather than a
b49e97c9 9366 REL relocation. */
b34976b6 9367 bfd_boolean rela_relocation_p = TRUE;
b49e97c9 9368 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9719ad41 9369 const char *msg;
ab96bf03
AM
9370 unsigned long r_symndx;
9371 asection *sec;
749b8d9d
L
9372 Elf_Internal_Shdr *symtab_hdr;
9373 struct elf_link_hash_entry *h;
d4730f92 9374 bfd_boolean rel_reloc;
b49e97c9 9375
d4730f92
BS
9376 rel_reloc = (NEWABI_P (input_bfd)
9377 && mips_elf_rel_relocation_p (input_bfd, input_section,
9378 relocs, rel));
b49e97c9 9379 /* Find the relocation howto for this relocation. */
d4730f92 9380 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
ab96bf03
AM
9381
9382 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
749b8d9d 9383 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
020d7251 9384 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
749b8d9d
L
9385 {
9386 sec = local_sections[r_symndx];
9387 h = NULL;
9388 }
ab96bf03
AM
9389 else
9390 {
ab96bf03 9391 unsigned long extsymoff;
ab96bf03 9392
ab96bf03
AM
9393 extsymoff = 0;
9394 if (!elf_bad_symtab (input_bfd))
9395 extsymoff = symtab_hdr->sh_info;
9396 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
9397 while (h->root.type == bfd_link_hash_indirect
9398 || h->root.type == bfd_link_hash_warning)
9399 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9400
9401 sec = NULL;
9402 if (h->root.type == bfd_link_hash_defined
9403 || h->root.type == bfd_link_hash_defweak)
9404 sec = h->root.u.def.section;
9405 }
9406
dbaa2011 9407 if (sec != NULL && discarded_section (sec))
545fd46b
MR
9408 {
9409 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
9410 input_section, &rel, &relend,
9411 rel_reloc, howto, contents);
9412 continue;
9413 }
ab96bf03 9414
4a14403c 9415 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
b49e97c9
TS
9416 {
9417 /* Some 32-bit code uses R_MIPS_64. In particular, people use
9418 64-bit code, but make sure all their addresses are in the
9419 lowermost or uppermost 32-bit section of the 64-bit address
9420 space. Thus, when they use an R_MIPS_64 they mean what is
9421 usually meant by R_MIPS_32, with the exception that the
9422 stored value is sign-extended to 64 bits. */
b34976b6 9423 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
b49e97c9
TS
9424
9425 /* On big-endian systems, we need to lie about the position
9426 of the reloc. */
9427 if (bfd_big_endian (input_bfd))
9428 rel->r_offset += 4;
9429 }
b49e97c9
TS
9430
9431 if (!use_saved_addend_p)
9432 {
b49e97c9
TS
9433 /* If these relocations were originally of the REL variety,
9434 we must pull the addend out of the field that will be
9435 relocated. Otherwise, we simply use the contents of the
c224138d
RS
9436 RELA relocation. */
9437 if (mips_elf_rel_relocation_p (input_bfd, input_section,
9438 relocs, rel))
b49e97c9 9439 {
b34976b6 9440 rela_relocation_p = FALSE;
c224138d
RS
9441 addend = mips_elf_read_rel_addend (input_bfd, rel,
9442 howto, contents);
738e5348
RS
9443 if (hi16_reloc_p (r_type)
9444 || (got16_reloc_p (r_type)
b49e97c9 9445 && mips_elf_local_relocation_p (input_bfd, rel,
020d7251 9446 local_sections)))
b49e97c9 9447 {
c224138d
RS
9448 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
9449 contents, &addend))
749b8d9d 9450 {
749b8d9d
L
9451 if (h)
9452 name = h->root.root.string;
9453 else
9454 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9455 local_syms + r_symndx,
9456 sec);
9457 (*_bfd_error_handler)
9458 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
9459 input_bfd, input_section, name, howto->name,
9460 rel->r_offset);
749b8d9d 9461 }
b49e97c9 9462 }
30ac9238
RS
9463 else
9464 addend <<= howto->rightshift;
b49e97c9
TS
9465 }
9466 else
9467 addend = rel->r_addend;
81d43bff
RS
9468 mips_elf_adjust_addend (output_bfd, info, input_bfd,
9469 local_syms, local_sections, rel);
b49e97c9
TS
9470 }
9471
1049f94e 9472 if (info->relocatable)
b49e97c9 9473 {
4a14403c 9474 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
b49e97c9
TS
9475 && bfd_big_endian (input_bfd))
9476 rel->r_offset -= 4;
9477
81d43bff 9478 if (!rela_relocation_p && rel->r_addend)
5a659663 9479 {
81d43bff 9480 addend += rel->r_addend;
738e5348 9481 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
5a659663
TS
9482 addend = mips_elf_high (addend);
9483 else if (r_type == R_MIPS_HIGHER)
9484 addend = mips_elf_higher (addend);
9485 else if (r_type == R_MIPS_HIGHEST)
9486 addend = mips_elf_highest (addend);
30ac9238
RS
9487 else
9488 addend >>= howto->rightshift;
b49e97c9 9489
30ac9238
RS
9490 /* We use the source mask, rather than the destination
9491 mask because the place to which we are writing will be
9492 source of the addend in the final link. */
b49e97c9
TS
9493 addend &= howto->src_mask;
9494
5a659663 9495 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
9496 /* See the comment above about using R_MIPS_64 in the 32-bit
9497 ABI. Here, we need to update the addend. It would be
9498 possible to get away with just using the R_MIPS_32 reloc
9499 but for endianness. */
9500 {
9501 bfd_vma sign_bits;
9502 bfd_vma low_bits;
9503 bfd_vma high_bits;
9504
9505 if (addend & ((bfd_vma) 1 << 31))
9506#ifdef BFD64
9507 sign_bits = ((bfd_vma) 1 << 32) - 1;
9508#else
9509 sign_bits = -1;
9510#endif
9511 else
9512 sign_bits = 0;
9513
9514 /* If we don't know that we have a 64-bit type,
9515 do two separate stores. */
9516 if (bfd_big_endian (input_bfd))
9517 {
9518 /* Store the sign-bits (which are most significant)
9519 first. */
9520 low_bits = sign_bits;
9521 high_bits = addend;
9522 }
9523 else
9524 {
9525 low_bits = addend;
9526 high_bits = sign_bits;
9527 }
9528 bfd_put_32 (input_bfd, low_bits,
9529 contents + rel->r_offset);
9530 bfd_put_32 (input_bfd, high_bits,
9531 contents + rel->r_offset + 4);
9532 continue;
9533 }
9534
9535 if (! mips_elf_perform_relocation (info, howto, rel, addend,
9536 input_bfd, input_section,
b34976b6
AM
9537 contents, FALSE))
9538 return FALSE;
b49e97c9
TS
9539 }
9540
9541 /* Go on to the next relocation. */
9542 continue;
9543 }
9544
9545 /* In the N32 and 64-bit ABIs there may be multiple consecutive
9546 relocations for the same offset. In that case we are
9547 supposed to treat the output of each relocation as the addend
9548 for the next. */
9549 if (rel + 1 < relend
9550 && rel->r_offset == rel[1].r_offset
9551 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
b34976b6 9552 use_saved_addend_p = TRUE;
b49e97c9 9553 else
b34976b6 9554 use_saved_addend_p = FALSE;
b49e97c9
TS
9555
9556 /* Figure out what value we are supposed to relocate. */
9557 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
9558 input_section, info, rel,
9559 addend, howto, local_syms,
9560 local_sections, &value,
38a7df63 9561 &name, &cross_mode_jump_p,
bce03d3d 9562 use_saved_addend_p))
b49e97c9
TS
9563 {
9564 case bfd_reloc_continue:
9565 /* There's nothing to do. */
9566 continue;
9567
9568 case bfd_reloc_undefined:
9569 /* mips_elf_calculate_relocation already called the
9570 undefined_symbol callback. There's no real point in
9571 trying to perform the relocation at this point, so we
9572 just skip ahead to the next relocation. */
9573 continue;
9574
9575 case bfd_reloc_notsupported:
9576 msg = _("internal error: unsupported relocation error");
9577 info->callbacks->warning
9578 (info, msg, name, input_bfd, input_section, rel->r_offset);
b34976b6 9579 return FALSE;
b49e97c9
TS
9580
9581 case bfd_reloc_overflow:
9582 if (use_saved_addend_p)
9583 /* Ignore overflow until we reach the last relocation for
9584 a given location. */
9585 ;
9586 else
9587 {
0e53d9da
AN
9588 struct mips_elf_link_hash_table *htab;
9589
9590 htab = mips_elf_hash_table (info);
4dfe6ac6 9591 BFD_ASSERT (htab != NULL);
b49e97c9 9592 BFD_ASSERT (name != NULL);
0e53d9da 9593 if (!htab->small_data_overflow_reported
9684f078 9594 && (gprel16_reloc_p (howto->type)
df58fc94 9595 || literal_reloc_p (howto->type)))
0e53d9da 9596 {
91d6fa6a
NC
9597 msg = _("small-data section exceeds 64KB;"
9598 " lower small-data size limit (see option -G)");
0e53d9da
AN
9599
9600 htab->small_data_overflow_reported = TRUE;
9601 (*info->callbacks->einfo) ("%P: %s\n", msg);
9602 }
b49e97c9 9603 if (! ((*info->callbacks->reloc_overflow)
dfeffb9f 9604 (info, NULL, name, howto->name, (bfd_vma) 0,
b49e97c9 9605 input_bfd, input_section, rel->r_offset)))
b34976b6 9606 return FALSE;
b49e97c9
TS
9607 }
9608 break;
9609
9610 case bfd_reloc_ok:
9611 break;
9612
df58fc94
RS
9613 case bfd_reloc_outofrange:
9614 if (jal_reloc_p (howto->type))
9615 {
9616 msg = _("JALX to a non-word-aligned address");
9617 info->callbacks->warning
9618 (info, msg, name, input_bfd, input_section, rel->r_offset);
9619 return FALSE;
9620 }
9621 /* Fall through. */
9622
b49e97c9
TS
9623 default:
9624 abort ();
9625 break;
9626 }
9627
9628 /* If we've got another relocation for the address, keep going
9629 until we reach the last one. */
9630 if (use_saved_addend_p)
9631 {
9632 addend = value;
9633 continue;
9634 }
9635
4a14403c 9636 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
9637 /* See the comment above about using R_MIPS_64 in the 32-bit
9638 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
9639 that calculated the right value. Now, however, we
9640 sign-extend the 32-bit result to 64-bits, and store it as a
9641 64-bit value. We are especially generous here in that we
9642 go to extreme lengths to support this usage on systems with
9643 only a 32-bit VMA. */
9644 {
9645 bfd_vma sign_bits;
9646 bfd_vma low_bits;
9647 bfd_vma high_bits;
9648
9649 if (value & ((bfd_vma) 1 << 31))
9650#ifdef BFD64
9651 sign_bits = ((bfd_vma) 1 << 32) - 1;
9652#else
9653 sign_bits = -1;
9654#endif
9655 else
9656 sign_bits = 0;
9657
9658 /* If we don't know that we have a 64-bit type,
9659 do two separate stores. */
9660 if (bfd_big_endian (input_bfd))
9661 {
9662 /* Undo what we did above. */
9663 rel->r_offset -= 4;
9664 /* Store the sign-bits (which are most significant)
9665 first. */
9666 low_bits = sign_bits;
9667 high_bits = value;
9668 }
9669 else
9670 {
9671 low_bits = value;
9672 high_bits = sign_bits;
9673 }
9674 bfd_put_32 (input_bfd, low_bits,
9675 contents + rel->r_offset);
9676 bfd_put_32 (input_bfd, high_bits,
9677 contents + rel->r_offset + 4);
9678 continue;
9679 }
9680
9681 /* Actually perform the relocation. */
9682 if (! mips_elf_perform_relocation (info, howto, rel, value,
9683 input_bfd, input_section,
38a7df63 9684 contents, cross_mode_jump_p))
b34976b6 9685 return FALSE;
b49e97c9
TS
9686 }
9687
b34976b6 9688 return TRUE;
b49e97c9
TS
9689}
9690\f
861fb55a
DJ
9691/* A function that iterates over each entry in la25_stubs and fills
9692 in the code for each one. DATA points to a mips_htab_traverse_info. */
9693
9694static int
9695mips_elf_create_la25_stub (void **slot, void *data)
9696{
9697 struct mips_htab_traverse_info *hti;
9698 struct mips_elf_link_hash_table *htab;
9699 struct mips_elf_la25_stub *stub;
9700 asection *s;
9701 bfd_byte *loc;
9702 bfd_vma offset, target, target_high, target_low;
9703
9704 stub = (struct mips_elf_la25_stub *) *slot;
9705 hti = (struct mips_htab_traverse_info *) data;
9706 htab = mips_elf_hash_table (hti->info);
4dfe6ac6 9707 BFD_ASSERT (htab != NULL);
861fb55a
DJ
9708
9709 /* Create the section contents, if we haven't already. */
9710 s = stub->stub_section;
9711 loc = s->contents;
9712 if (loc == NULL)
9713 {
9714 loc = bfd_malloc (s->size);
9715 if (loc == NULL)
9716 {
9717 hti->error = TRUE;
9718 return FALSE;
9719 }
9720 s->contents = loc;
9721 }
9722
9723 /* Work out where in the section this stub should go. */
9724 offset = stub->offset;
9725
9726 /* Work out the target address. */
8f0c309a
CLT
9727 target = mips_elf_get_la25_target (stub, &s);
9728 target += s->output_section->vma + s->output_offset;
9729
861fb55a
DJ
9730 target_high = ((target + 0x8000) >> 16) & 0xffff;
9731 target_low = (target & 0xffff);
9732
9733 if (stub->stub_section != htab->strampoline)
9734 {
df58fc94 9735 /* This is a simple LUI/ADDIU stub. Zero out the beginning
861fb55a
DJ
9736 of the section and write the two instructions at the end. */
9737 memset (loc, 0, offset);
9738 loc += offset;
df58fc94
RS
9739 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9740 {
d21911ea
MR
9741 bfd_put_micromips_32 (hti->output_bfd,
9742 LA25_LUI_MICROMIPS (target_high),
9743 loc);
9744 bfd_put_micromips_32 (hti->output_bfd,
9745 LA25_ADDIU_MICROMIPS (target_low),
9746 loc + 4);
df58fc94
RS
9747 }
9748 else
9749 {
9750 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9751 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
9752 }
861fb55a
DJ
9753 }
9754 else
9755 {
9756 /* This is trampoline. */
9757 loc += offset;
df58fc94
RS
9758 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9759 {
d21911ea
MR
9760 bfd_put_micromips_32 (hti->output_bfd,
9761 LA25_LUI_MICROMIPS (target_high), loc);
9762 bfd_put_micromips_32 (hti->output_bfd,
9763 LA25_J_MICROMIPS (target), loc + 4);
9764 bfd_put_micromips_32 (hti->output_bfd,
9765 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
df58fc94
RS
9766 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9767 }
9768 else
9769 {
9770 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9771 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
9772 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
9773 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9774 }
861fb55a
DJ
9775 }
9776 return TRUE;
9777}
9778
b49e97c9
TS
9779/* If NAME is one of the special IRIX6 symbols defined by the linker,
9780 adjust it appropriately now. */
9781
9782static void
9719ad41
RS
9783mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
9784 const char *name, Elf_Internal_Sym *sym)
b49e97c9
TS
9785{
9786 /* The linker script takes care of providing names and values for
9787 these, but we must place them into the right sections. */
9788 static const char* const text_section_symbols[] = {
9789 "_ftext",
9790 "_etext",
9791 "__dso_displacement",
9792 "__elf_header",
9793 "__program_header_table",
9794 NULL
9795 };
9796
9797 static const char* const data_section_symbols[] = {
9798 "_fdata",
9799 "_edata",
9800 "_end",
9801 "_fbss",
9802 NULL
9803 };
9804
9805 const char* const *p;
9806 int i;
9807
9808 for (i = 0; i < 2; ++i)
9809 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
9810 *p;
9811 ++p)
9812 if (strcmp (*p, name) == 0)
9813 {
9814 /* All of these symbols are given type STT_SECTION by the
9815 IRIX6 linker. */
9816 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
e10609d3 9817 sym->st_other = STO_PROTECTED;
b49e97c9
TS
9818
9819 /* The IRIX linker puts these symbols in special sections. */
9820 if (i == 0)
9821 sym->st_shndx = SHN_MIPS_TEXT;
9822 else
9823 sym->st_shndx = SHN_MIPS_DATA;
9824
9825 break;
9826 }
9827}
9828
9829/* Finish up dynamic symbol handling. We set the contents of various
9830 dynamic sections here. */
9831
b34976b6 9832bfd_boolean
9719ad41
RS
9833_bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
9834 struct bfd_link_info *info,
9835 struct elf_link_hash_entry *h,
9836 Elf_Internal_Sym *sym)
b49e97c9
TS
9837{
9838 bfd *dynobj;
b49e97c9 9839 asection *sgot;
f4416af6 9840 struct mips_got_info *g, *gg;
b49e97c9 9841 const char *name;
3d6746ca 9842 int idx;
5108fc1b 9843 struct mips_elf_link_hash_table *htab;
738e5348 9844 struct mips_elf_link_hash_entry *hmips;
b49e97c9 9845
5108fc1b 9846 htab = mips_elf_hash_table (info);
4dfe6ac6 9847 BFD_ASSERT (htab != NULL);
b49e97c9 9848 dynobj = elf_hash_table (info)->dynobj;
738e5348 9849 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9 9850
861fb55a
DJ
9851 BFD_ASSERT (!htab->is_vxworks);
9852
9853 if (h->plt.offset != MINUS_ONE && hmips->no_fn_stub)
9854 {
9855 /* We've decided to create a PLT entry for this symbol. */
9856 bfd_byte *loc;
9857 bfd_vma header_address, plt_index, got_address;
9858 bfd_vma got_address_high, got_address_low, load;
9859 const bfd_vma *plt_entry;
9860
9861 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9862 BFD_ASSERT (h->dynindx != -1);
9863 BFD_ASSERT (htab->splt != NULL);
9864 BFD_ASSERT (h->plt.offset <= htab->splt->size);
9865 BFD_ASSERT (!h->def_regular);
9866
9867 /* Calculate the address of the PLT header. */
9868 header_address = (htab->splt->output_section->vma
9869 + htab->splt->output_offset);
9870
9871 /* Calculate the index of the entry. */
9872 plt_index = ((h->plt.offset - htab->plt_header_size)
9873 / htab->plt_entry_size);
9874
9875 /* Calculate the address of the .got.plt entry. */
9876 got_address = (htab->sgotplt->output_section->vma
9877 + htab->sgotplt->output_offset
9878 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9879 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
9880 got_address_low = got_address & 0xffff;
9881
9882 /* Initially point the .got.plt entry at the PLT header. */
9883 loc = (htab->sgotplt->contents
9884 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9885 if (ABI_64_P (output_bfd))
9886 bfd_put_64 (output_bfd, header_address, loc);
9887 else
9888 bfd_put_32 (output_bfd, header_address, loc);
9889
9890 /* Find out where the .plt entry should go. */
9891 loc = htab->splt->contents + h->plt.offset;
9892
9893 /* Pick the load opcode. */
9894 load = MIPS_ELF_LOAD_WORD (output_bfd);
9895
9896 /* Fill in the PLT entry itself. */
9897 plt_entry = mips_exec_plt_entry;
9898 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
9899 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load, loc + 4);
6d30f5b2
NC
9900
9901 if (! LOAD_INTERLOCKS_P (output_bfd))
9902 {
9903 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
9904 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9905 }
9906 else
9907 {
9908 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
9909 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 12);
9910 }
861fb55a
DJ
9911
9912 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9913 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
9914 plt_index, h->dynindx,
9915 R_MIPS_JUMP_SLOT, got_address);
9916
9917 /* We distinguish between PLT entries and lazy-binding stubs by
9918 giving the former an st_other value of STO_MIPS_PLT. Set the
9919 flag and leave the value if there are any relocations in the
9920 binary where pointer equality matters. */
9921 sym->st_shndx = SHN_UNDEF;
9922 if (h->pointer_equality_needed)
9923 sym->st_other = STO_MIPS_PLT;
9924 else
9925 sym->st_value = 0;
9926 }
9927 else if (h->plt.offset != MINUS_ONE)
b49e97c9 9928 {
861fb55a 9929 /* We've decided to create a lazy-binding stub. */
5108fc1b 9930 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
b49e97c9
TS
9931
9932 /* This symbol has a stub. Set it up. */
9933
9934 BFD_ASSERT (h->dynindx != -1);
9935
5108fc1b
RS
9936 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9937 || (h->dynindx <= 0xffff));
3d6746ca
DD
9938
9939 /* Values up to 2^31 - 1 are allowed. Larger values would cause
5108fc1b
RS
9940 sign extension at runtime in the stub, resulting in a negative
9941 index value. */
9942 if (h->dynindx & ~0x7fffffff)
b34976b6 9943 return FALSE;
b49e97c9
TS
9944
9945 /* Fill the stub. */
3d6746ca
DD
9946 idx = 0;
9947 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
9948 idx += 4;
9949 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
9950 idx += 4;
5108fc1b 9951 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
3d6746ca 9952 {
5108fc1b 9953 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
3d6746ca
DD
9954 stub + idx);
9955 idx += 4;
9956 }
9957 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
9958 idx += 4;
b49e97c9 9959
3d6746ca
DD
9960 /* If a large stub is not required and sign extension is not a
9961 problem, then use legacy code in the stub. */
5108fc1b
RS
9962 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9963 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
9964 else if (h->dynindx & ~0x7fff)
3d6746ca
DD
9965 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
9966 else
5108fc1b
RS
9967 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
9968 stub + idx);
9969
4e41d0d7
RS
9970 BFD_ASSERT (h->plt.offset <= htab->sstubs->size);
9971 memcpy (htab->sstubs->contents + h->plt.offset,
9972 stub, htab->function_stub_size);
b49e97c9
TS
9973
9974 /* Mark the symbol as undefined. plt.offset != -1 occurs
9975 only for the referenced symbol. */
9976 sym->st_shndx = SHN_UNDEF;
9977
9978 /* The run-time linker uses the st_value field of the symbol
9979 to reset the global offset table entry for this external
9980 to its stub address when unlinking a shared object. */
4e41d0d7
RS
9981 sym->st_value = (htab->sstubs->output_section->vma
9982 + htab->sstubs->output_offset
c5ae1840 9983 + h->plt.offset);
b49e97c9
TS
9984 }
9985
738e5348
RS
9986 /* If we have a MIPS16 function with a stub, the dynamic symbol must
9987 refer to the stub, since only the stub uses the standard calling
9988 conventions. */
9989 if (h->dynindx != -1 && hmips->fn_stub != NULL)
9990 {
9991 BFD_ASSERT (hmips->need_fn_stub);
9992 sym->st_value = (hmips->fn_stub->output_section->vma
9993 + hmips->fn_stub->output_offset);
9994 sym->st_size = hmips->fn_stub->size;
9995 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
9996 }
9997
b49e97c9 9998 BFD_ASSERT (h->dynindx != -1
f5385ebf 9999 || h->forced_local);
b49e97c9 10000
23cc69b6 10001 sgot = htab->sgot;
a8028dd0 10002 g = htab->got_info;
b49e97c9
TS
10003 BFD_ASSERT (g != NULL);
10004
10005 /* Run through the global symbol table, creating GOT entries for all
10006 the symbols that need them. */
020d7251 10007 if (hmips->global_got_area != GGA_NONE)
b49e97c9
TS
10008 {
10009 bfd_vma offset;
10010 bfd_vma value;
10011
6eaa6adc 10012 value = sym->st_value;
738e5348
RS
10013 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
10014 R_MIPS_GOT16, info);
b49e97c9
TS
10015 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10016 }
10017
e641e783 10018 if (hmips->global_got_area != GGA_NONE && g->next)
f4416af6
AO
10019 {
10020 struct mips_got_entry e, *p;
0626d451 10021 bfd_vma entry;
f4416af6 10022 bfd_vma offset;
f4416af6
AO
10023
10024 gg = g;
10025
10026 e.abfd = output_bfd;
10027 e.symndx = -1;
738e5348 10028 e.d.h = hmips;
0f20cc35 10029 e.tls_type = 0;
143d77c5 10030
f4416af6
AO
10031 for (g = g->next; g->next != gg; g = g->next)
10032 {
10033 if (g->got_entries
10034 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10035 &e)))
10036 {
10037 offset = p->gotidx;
0626d451
RS
10038 if (info->shared
10039 || (elf_hash_table (info)->dynamic_sections_created
10040 && p->d.h != NULL
f5385ebf
AM
10041 && p->d.h->root.def_dynamic
10042 && !p->d.h->root.def_regular))
0626d451
RS
10043 {
10044 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10045 the various compatibility problems, it's easier to mock
10046 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10047 mips_elf_create_dynamic_relocation to calculate the
10048 appropriate addend. */
10049 Elf_Internal_Rela rel[3];
10050
10051 memset (rel, 0, sizeof (rel));
10052 if (ABI_64_P (output_bfd))
10053 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10054 else
10055 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10056 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10057
10058 entry = 0;
10059 if (! (mips_elf_create_dynamic_relocation
10060 (output_bfd, info, rel,
10061 e.d.h, NULL, sym->st_value, &entry, sgot)))
10062 return FALSE;
10063 }
10064 else
10065 entry = sym->st_value;
10066 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
f4416af6
AO
10067 }
10068 }
10069 }
10070
b49e97c9
TS
10071 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10072 name = h->root.root.string;
9637f6ef 10073 if (h == elf_hash_table (info)->hdynamic
22edb2f1 10074 || h == elf_hash_table (info)->hgot)
b49e97c9
TS
10075 sym->st_shndx = SHN_ABS;
10076 else if (strcmp (name, "_DYNAMIC_LINK") == 0
10077 || strcmp (name, "_DYNAMIC_LINKING") == 0)
10078 {
10079 sym->st_shndx = SHN_ABS;
10080 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10081 sym->st_value = 1;
10082 }
4a14403c 10083 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
b49e97c9
TS
10084 {
10085 sym->st_shndx = SHN_ABS;
10086 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10087 sym->st_value = elf_gp (output_bfd);
10088 }
10089 else if (SGI_COMPAT (output_bfd))
10090 {
10091 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10092 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10093 {
10094 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10095 sym->st_other = STO_PROTECTED;
10096 sym->st_value = 0;
10097 sym->st_shndx = SHN_MIPS_DATA;
10098 }
10099 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
10100 {
10101 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10102 sym->st_other = STO_PROTECTED;
10103 sym->st_value = mips_elf_hash_table (info)->procedure_count;
10104 sym->st_shndx = SHN_ABS;
10105 }
10106 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10107 {
10108 if (h->type == STT_FUNC)
10109 sym->st_shndx = SHN_MIPS_TEXT;
10110 else if (h->type == STT_OBJECT)
10111 sym->st_shndx = SHN_MIPS_DATA;
10112 }
10113 }
10114
861fb55a
DJ
10115 /* Emit a copy reloc, if needed. */
10116 if (h->needs_copy)
10117 {
10118 asection *s;
10119 bfd_vma symval;
10120
10121 BFD_ASSERT (h->dynindx != -1);
10122 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10123
10124 s = mips_elf_rel_dyn_section (info, FALSE);
10125 symval = (h->root.u.def.section->output_section->vma
10126 + h->root.u.def.section->output_offset
10127 + h->root.u.def.value);
10128 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
10129 h->dynindx, R_MIPS_COPY, symval);
10130 }
10131
b49e97c9
TS
10132 /* Handle the IRIX6-specific symbols. */
10133 if (IRIX_COMPAT (output_bfd) == ict_irix6)
10134 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
10135
738e5348
RS
10136 /* Keep dynamic MIPS16 symbols odd. This allows the dynamic linker to
10137 treat MIPS16 symbols like any other. */
30c09090 10138 if (ELF_ST_IS_MIPS16 (sym->st_other))
738e5348
RS
10139 {
10140 BFD_ASSERT (sym->st_value & 1);
10141 sym->st_other -= STO_MIPS16;
10142 }
b49e97c9 10143
b34976b6 10144 return TRUE;
b49e97c9
TS
10145}
10146
0a44bf69
RS
10147/* Likewise, for VxWorks. */
10148
10149bfd_boolean
10150_bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
10151 struct bfd_link_info *info,
10152 struct elf_link_hash_entry *h,
10153 Elf_Internal_Sym *sym)
10154{
10155 bfd *dynobj;
10156 asection *sgot;
10157 struct mips_got_info *g;
10158 struct mips_elf_link_hash_table *htab;
020d7251 10159 struct mips_elf_link_hash_entry *hmips;
0a44bf69
RS
10160
10161 htab = mips_elf_hash_table (info);
4dfe6ac6 10162 BFD_ASSERT (htab != NULL);
0a44bf69 10163 dynobj = elf_hash_table (info)->dynobj;
020d7251 10164 hmips = (struct mips_elf_link_hash_entry *) h;
0a44bf69
RS
10165
10166 if (h->plt.offset != (bfd_vma) -1)
10167 {
6d79d2ed 10168 bfd_byte *loc;
0a44bf69
RS
10169 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
10170 Elf_Internal_Rela rel;
10171 static const bfd_vma *plt_entry;
10172
10173 BFD_ASSERT (h->dynindx != -1);
10174 BFD_ASSERT (htab->splt != NULL);
10175 BFD_ASSERT (h->plt.offset <= htab->splt->size);
10176
10177 /* Calculate the address of the .plt entry. */
10178 plt_address = (htab->splt->output_section->vma
10179 + htab->splt->output_offset
10180 + h->plt.offset);
10181
10182 /* Calculate the index of the entry. */
10183 plt_index = ((h->plt.offset - htab->plt_header_size)
10184 / htab->plt_entry_size);
10185
10186 /* Calculate the address of the .got.plt entry. */
10187 got_address = (htab->sgotplt->output_section->vma
10188 + htab->sgotplt->output_offset
10189 + plt_index * 4);
10190
10191 /* Calculate the offset of the .got.plt entry from
10192 _GLOBAL_OFFSET_TABLE_. */
10193 got_offset = mips_elf_gotplt_index (info, h);
10194
10195 /* Calculate the offset for the branch at the start of the PLT
10196 entry. The branch jumps to the beginning of .plt. */
10197 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
10198
10199 /* Fill in the initial value of the .got.plt entry. */
10200 bfd_put_32 (output_bfd, plt_address,
10201 htab->sgotplt->contents + plt_index * 4);
10202
10203 /* Find out where the .plt entry should go. */
10204 loc = htab->splt->contents + h->plt.offset;
10205
10206 if (info->shared)
10207 {
10208 plt_entry = mips_vxworks_shared_plt_entry;
10209 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10210 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10211 }
10212 else
10213 {
10214 bfd_vma got_address_high, got_address_low;
10215
10216 plt_entry = mips_vxworks_exec_plt_entry;
10217 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10218 got_address_low = got_address & 0xffff;
10219
10220 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10221 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10222 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
10223 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
10224 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10225 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10226 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10227 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10228
10229 loc = (htab->srelplt2->contents
10230 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
10231
10232 /* Emit a relocation for the .got.plt entry. */
10233 rel.r_offset = got_address;
10234 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10235 rel.r_addend = h->plt.offset;
10236 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10237
10238 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
10239 loc += sizeof (Elf32_External_Rela);
10240 rel.r_offset = plt_address + 8;
10241 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10242 rel.r_addend = got_offset;
10243 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10244
10245 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
10246 loc += sizeof (Elf32_External_Rela);
10247 rel.r_offset += 4;
10248 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10249 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10250 }
10251
10252 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10253 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
10254 rel.r_offset = got_address;
10255 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
10256 rel.r_addend = 0;
10257 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10258
10259 if (!h->def_regular)
10260 sym->st_shndx = SHN_UNDEF;
10261 }
10262
10263 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
10264
23cc69b6 10265 sgot = htab->sgot;
a8028dd0 10266 g = htab->got_info;
0a44bf69
RS
10267 BFD_ASSERT (g != NULL);
10268
10269 /* See if this symbol has an entry in the GOT. */
020d7251 10270 if (hmips->global_got_area != GGA_NONE)
0a44bf69
RS
10271 {
10272 bfd_vma offset;
10273 Elf_Internal_Rela outrel;
10274 bfd_byte *loc;
10275 asection *s;
10276
10277 /* Install the symbol value in the GOT. */
10278 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
10279 R_MIPS_GOT16, info);
10280 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
10281
10282 /* Add a dynamic relocation for it. */
10283 s = mips_elf_rel_dyn_section (info, FALSE);
10284 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
10285 outrel.r_offset = (sgot->output_section->vma
10286 + sgot->output_offset
10287 + offset);
10288 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
10289 outrel.r_addend = 0;
10290 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
10291 }
10292
10293 /* Emit a copy reloc, if needed. */
10294 if (h->needs_copy)
10295 {
10296 Elf_Internal_Rela rel;
10297
10298 BFD_ASSERT (h->dynindx != -1);
10299
10300 rel.r_offset = (h->root.u.def.section->output_section->vma
10301 + h->root.u.def.section->output_offset
10302 + h->root.u.def.value);
10303 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
10304 rel.r_addend = 0;
10305 bfd_elf32_swap_reloca_out (output_bfd, &rel,
10306 htab->srelbss->contents
10307 + (htab->srelbss->reloc_count
10308 * sizeof (Elf32_External_Rela)));
10309 ++htab->srelbss->reloc_count;
10310 }
10311
df58fc94
RS
10312 /* If this is a mips16/microMIPS symbol, force the value to be even. */
10313 if (ELF_ST_IS_COMPRESSED (sym->st_other))
0a44bf69
RS
10314 sym->st_value &= ~1;
10315
10316 return TRUE;
10317}
10318
861fb55a
DJ
10319/* Write out a plt0 entry to the beginning of .plt. */
10320
10321static void
10322mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10323{
10324 bfd_byte *loc;
10325 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
10326 static const bfd_vma *plt_entry;
10327 struct mips_elf_link_hash_table *htab;
10328
10329 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
10330 BFD_ASSERT (htab != NULL);
10331
861fb55a
DJ
10332 if (ABI_64_P (output_bfd))
10333 plt_entry = mips_n64_exec_plt0_entry;
10334 else if (ABI_N32_P (output_bfd))
10335 plt_entry = mips_n32_exec_plt0_entry;
10336 else
10337 plt_entry = mips_o32_exec_plt0_entry;
10338
10339 /* Calculate the value of .got.plt. */
10340 gotplt_value = (htab->sgotplt->output_section->vma
10341 + htab->sgotplt->output_offset);
10342 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
10343 gotplt_value_low = gotplt_value & 0xffff;
10344
10345 /* The PLT sequence is not safe for N64 if .got.plt's address can
10346 not be loaded in two instructions. */
10347 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
10348 || ~(gotplt_value | 0x7fffffff) == 0);
10349
10350 /* Install the PLT header. */
10351 loc = htab->splt->contents;
10352 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
10353 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
10354 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
10355 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10356 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10357 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10358 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10359 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10360}
10361
0a44bf69
RS
10362/* Install the PLT header for a VxWorks executable and finalize the
10363 contents of .rela.plt.unloaded. */
10364
10365static void
10366mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10367{
10368 Elf_Internal_Rela rela;
10369 bfd_byte *loc;
10370 bfd_vma got_value, got_value_high, got_value_low, plt_address;
10371 static const bfd_vma *plt_entry;
10372 struct mips_elf_link_hash_table *htab;
10373
10374 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
10375 BFD_ASSERT (htab != NULL);
10376
0a44bf69
RS
10377 plt_entry = mips_vxworks_exec_plt0_entry;
10378
10379 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
10380 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
10381 + htab->root.hgot->root.u.def.section->output_offset
10382 + htab->root.hgot->root.u.def.value);
10383
10384 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
10385 got_value_low = got_value & 0xffff;
10386
10387 /* Calculate the address of the PLT header. */
10388 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
10389
10390 /* Install the PLT header. */
10391 loc = htab->splt->contents;
10392 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
10393 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
10394 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
10395 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10396 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10397 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10398
10399 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
10400 loc = htab->srelplt2->contents;
10401 rela.r_offset = plt_address;
10402 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10403 rela.r_addend = 0;
10404 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10405 loc += sizeof (Elf32_External_Rela);
10406
10407 /* Output the relocation for the following addiu of
10408 %lo(_GLOBAL_OFFSET_TABLE_). */
10409 rela.r_offset += 4;
10410 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10411 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10412 loc += sizeof (Elf32_External_Rela);
10413
10414 /* Fix up the remaining relocations. They may have the wrong
10415 symbol index for _G_O_T_ or _P_L_T_ depending on the order
10416 in which symbols were output. */
10417 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
10418 {
10419 Elf_Internal_Rela rel;
10420
10421 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10422 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10423 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10424 loc += sizeof (Elf32_External_Rela);
10425
10426 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10427 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10428 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10429 loc += sizeof (Elf32_External_Rela);
10430
10431 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10432 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10433 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10434 loc += sizeof (Elf32_External_Rela);
10435 }
10436}
10437
10438/* Install the PLT header for a VxWorks shared library. */
10439
10440static void
10441mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
10442{
10443 unsigned int i;
10444 struct mips_elf_link_hash_table *htab;
10445
10446 htab = mips_elf_hash_table (info);
4dfe6ac6 10447 BFD_ASSERT (htab != NULL);
0a44bf69
RS
10448
10449 /* We just need to copy the entry byte-by-byte. */
10450 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
10451 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
10452 htab->splt->contents + i * 4);
10453}
10454
b49e97c9
TS
10455/* Finish up the dynamic sections. */
10456
b34976b6 10457bfd_boolean
9719ad41
RS
10458_bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
10459 struct bfd_link_info *info)
b49e97c9
TS
10460{
10461 bfd *dynobj;
10462 asection *sdyn;
10463 asection *sgot;
f4416af6 10464 struct mips_got_info *gg, *g;
0a44bf69 10465 struct mips_elf_link_hash_table *htab;
b49e97c9 10466
0a44bf69 10467 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
10468 BFD_ASSERT (htab != NULL);
10469
b49e97c9
TS
10470 dynobj = elf_hash_table (info)->dynobj;
10471
3d4d4302 10472 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
b49e97c9 10473
23cc69b6
RS
10474 sgot = htab->sgot;
10475 gg = htab->got_info;
b49e97c9
TS
10476
10477 if (elf_hash_table (info)->dynamic_sections_created)
10478 {
10479 bfd_byte *b;
943284cc 10480 int dyn_to_skip = 0, dyn_skipped = 0;
b49e97c9
TS
10481
10482 BFD_ASSERT (sdyn != NULL);
23cc69b6
RS
10483 BFD_ASSERT (gg != NULL);
10484
10485 g = mips_elf_got_for_ibfd (gg, output_bfd);
b49e97c9
TS
10486 BFD_ASSERT (g != NULL);
10487
10488 for (b = sdyn->contents;
eea6121a 10489 b < sdyn->contents + sdyn->size;
b49e97c9
TS
10490 b += MIPS_ELF_DYN_SIZE (dynobj))
10491 {
10492 Elf_Internal_Dyn dyn;
10493 const char *name;
10494 size_t elemsize;
10495 asection *s;
b34976b6 10496 bfd_boolean swap_out_p;
b49e97c9
TS
10497
10498 /* Read in the current dynamic entry. */
10499 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10500
10501 /* Assume that we're going to modify it and write it out. */
b34976b6 10502 swap_out_p = TRUE;
b49e97c9
TS
10503
10504 switch (dyn.d_tag)
10505 {
10506 case DT_RELENT:
b49e97c9
TS
10507 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
10508 break;
10509
0a44bf69
RS
10510 case DT_RELAENT:
10511 BFD_ASSERT (htab->is_vxworks);
10512 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
10513 break;
10514
b49e97c9
TS
10515 case DT_STRSZ:
10516 /* Rewrite DT_STRSZ. */
10517 dyn.d_un.d_val =
10518 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
10519 break;
10520
10521 case DT_PLTGOT:
861fb55a
DJ
10522 s = htab->sgot;
10523 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10524 break;
10525
10526 case DT_MIPS_PLTGOT:
10527 s = htab->sgotplt;
10528 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
b49e97c9
TS
10529 break;
10530
10531 case DT_MIPS_RLD_VERSION:
10532 dyn.d_un.d_val = 1; /* XXX */
10533 break;
10534
10535 case DT_MIPS_FLAGS:
10536 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
10537 break;
10538
b49e97c9 10539 case DT_MIPS_TIME_STAMP:
6edfbbad
DJ
10540 {
10541 time_t t;
10542 time (&t);
10543 dyn.d_un.d_val = t;
10544 }
b49e97c9
TS
10545 break;
10546
10547 case DT_MIPS_ICHECKSUM:
10548 /* XXX FIXME: */
b34976b6 10549 swap_out_p = FALSE;
b49e97c9
TS
10550 break;
10551
10552 case DT_MIPS_IVERSION:
10553 /* XXX FIXME: */
b34976b6 10554 swap_out_p = FALSE;
b49e97c9
TS
10555 break;
10556
10557 case DT_MIPS_BASE_ADDRESS:
10558 s = output_bfd->sections;
10559 BFD_ASSERT (s != NULL);
10560 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
10561 break;
10562
10563 case DT_MIPS_LOCAL_GOTNO:
10564 dyn.d_un.d_val = g->local_gotno;
10565 break;
10566
10567 case DT_MIPS_UNREFEXTNO:
10568 /* The index into the dynamic symbol table which is the
10569 entry of the first external symbol that is not
10570 referenced within the same object. */
10571 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
10572 break;
10573
10574 case DT_MIPS_GOTSYM:
d222d210 10575 if (htab->global_gotsym)
b49e97c9 10576 {
d222d210 10577 dyn.d_un.d_val = htab->global_gotsym->dynindx;
b49e97c9
TS
10578 break;
10579 }
10580 /* In case if we don't have global got symbols we default
10581 to setting DT_MIPS_GOTSYM to the same value as
10582 DT_MIPS_SYMTABNO, so we just fall through. */
10583
10584 case DT_MIPS_SYMTABNO:
10585 name = ".dynsym";
10586 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
10587 s = bfd_get_section_by_name (output_bfd, name);
10588 BFD_ASSERT (s != NULL);
10589
eea6121a 10590 dyn.d_un.d_val = s->size / elemsize;
b49e97c9
TS
10591 break;
10592
10593 case DT_MIPS_HIPAGENO:
861fb55a 10594 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
b49e97c9
TS
10595 break;
10596
10597 case DT_MIPS_RLD_MAP:
b4082c70
DD
10598 {
10599 struct elf_link_hash_entry *h;
10600 h = mips_elf_hash_table (info)->rld_symbol;
10601 if (!h)
10602 {
10603 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10604 swap_out_p = FALSE;
10605 break;
10606 }
10607 s = h->root.u.def.section;
10608 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
10609 + h->root.u.def.value);
10610 }
b49e97c9
TS
10611 break;
10612
10613 case DT_MIPS_OPTIONS:
10614 s = (bfd_get_section_by_name
10615 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
10616 dyn.d_un.d_ptr = s->vma;
10617 break;
10618
0a44bf69
RS
10619 case DT_RELASZ:
10620 BFD_ASSERT (htab->is_vxworks);
10621 /* The count does not include the JUMP_SLOT relocations. */
10622 if (htab->srelplt)
10623 dyn.d_un.d_val -= htab->srelplt->size;
10624 break;
10625
10626 case DT_PLTREL:
861fb55a
DJ
10627 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10628 if (htab->is_vxworks)
10629 dyn.d_un.d_val = DT_RELA;
10630 else
10631 dyn.d_un.d_val = DT_REL;
0a44bf69
RS
10632 break;
10633
10634 case DT_PLTRELSZ:
861fb55a 10635 BFD_ASSERT (htab->use_plts_and_copy_relocs);
0a44bf69
RS
10636 dyn.d_un.d_val = htab->srelplt->size;
10637 break;
10638
10639 case DT_JMPREL:
861fb55a
DJ
10640 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10641 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
0a44bf69
RS
10642 + htab->srelplt->output_offset);
10643 break;
10644
943284cc
DJ
10645 case DT_TEXTREL:
10646 /* If we didn't need any text relocations after all, delete
10647 the dynamic tag. */
10648 if (!(info->flags & DF_TEXTREL))
10649 {
10650 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10651 swap_out_p = FALSE;
10652 }
10653 break;
10654
10655 case DT_FLAGS:
10656 /* If we didn't need any text relocations after all, clear
10657 DF_TEXTREL from DT_FLAGS. */
10658 if (!(info->flags & DF_TEXTREL))
10659 dyn.d_un.d_val &= ~DF_TEXTREL;
10660 else
10661 swap_out_p = FALSE;
10662 break;
10663
b49e97c9 10664 default:
b34976b6 10665 swap_out_p = FALSE;
7a2b07ff
NS
10666 if (htab->is_vxworks
10667 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
10668 swap_out_p = TRUE;
b49e97c9
TS
10669 break;
10670 }
10671
943284cc 10672 if (swap_out_p || dyn_skipped)
b49e97c9 10673 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
943284cc
DJ
10674 (dynobj, &dyn, b - dyn_skipped);
10675
10676 if (dyn_to_skip)
10677 {
10678 dyn_skipped += dyn_to_skip;
10679 dyn_to_skip = 0;
10680 }
b49e97c9 10681 }
943284cc
DJ
10682
10683 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
10684 if (dyn_skipped > 0)
10685 memset (b - dyn_skipped, 0, dyn_skipped);
b49e97c9
TS
10686 }
10687
b55fd4d4
DJ
10688 if (sgot != NULL && sgot->size > 0
10689 && !bfd_is_abs_section (sgot->output_section))
b49e97c9 10690 {
0a44bf69
RS
10691 if (htab->is_vxworks)
10692 {
10693 /* The first entry of the global offset table points to the
10694 ".dynamic" section. The second is initialized by the
10695 loader and contains the shared library identifier.
10696 The third is also initialized by the loader and points
10697 to the lazy resolution stub. */
10698 MIPS_ELF_PUT_WORD (output_bfd,
10699 sdyn->output_offset + sdyn->output_section->vma,
10700 sgot->contents);
10701 MIPS_ELF_PUT_WORD (output_bfd, 0,
10702 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10703 MIPS_ELF_PUT_WORD (output_bfd, 0,
10704 sgot->contents
10705 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
10706 }
10707 else
10708 {
10709 /* The first entry of the global offset table will be filled at
10710 runtime. The second entry will be used by some runtime loaders.
10711 This isn't the case of IRIX rld. */
10712 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
51e38d68 10713 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
0a44bf69
RS
10714 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10715 }
b49e97c9 10716
54938e2a
TS
10717 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
10718 = MIPS_ELF_GOT_SIZE (output_bfd);
10719 }
b49e97c9 10720
f4416af6
AO
10721 /* Generate dynamic relocations for the non-primary gots. */
10722 if (gg != NULL && gg->next)
10723 {
10724 Elf_Internal_Rela rel[3];
10725 bfd_vma addend = 0;
10726
10727 memset (rel, 0, sizeof (rel));
10728 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
10729
10730 for (g = gg->next; g->next != gg; g = g->next)
10731 {
91d6fa6a 10732 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
0f20cc35 10733 + g->next->tls_gotno;
f4416af6 10734
9719ad41 10735 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
91d6fa6a 10736 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
51e38d68
RS
10737 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10738 sgot->contents
91d6fa6a 10739 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
f4416af6
AO
10740
10741 if (! info->shared)
10742 continue;
10743
91d6fa6a 10744 while (got_index < g->assigned_gotno)
f4416af6
AO
10745 {
10746 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
91d6fa6a 10747 = got_index++ * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6
AO
10748 if (!(mips_elf_create_dynamic_relocation
10749 (output_bfd, info, rel, NULL,
10750 bfd_abs_section_ptr,
10751 0, &addend, sgot)))
10752 return FALSE;
10753 BFD_ASSERT (addend == 0);
10754 }
10755 }
10756 }
10757
3133ddbf
DJ
10758 /* The generation of dynamic relocations for the non-primary gots
10759 adds more dynamic relocations. We cannot count them until
10760 here. */
10761
10762 if (elf_hash_table (info)->dynamic_sections_created)
10763 {
10764 bfd_byte *b;
10765 bfd_boolean swap_out_p;
10766
10767 BFD_ASSERT (sdyn != NULL);
10768
10769 for (b = sdyn->contents;
10770 b < sdyn->contents + sdyn->size;
10771 b += MIPS_ELF_DYN_SIZE (dynobj))
10772 {
10773 Elf_Internal_Dyn dyn;
10774 asection *s;
10775
10776 /* Read in the current dynamic entry. */
10777 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10778
10779 /* Assume that we're going to modify it and write it out. */
10780 swap_out_p = TRUE;
10781
10782 switch (dyn.d_tag)
10783 {
10784 case DT_RELSZ:
10785 /* Reduce DT_RELSZ to account for any relocations we
10786 decided not to make. This is for the n64 irix rld,
10787 which doesn't seem to apply any relocations if there
10788 are trailing null entries. */
0a44bf69 10789 s = mips_elf_rel_dyn_section (info, FALSE);
3133ddbf
DJ
10790 dyn.d_un.d_val = (s->reloc_count
10791 * (ABI_64_P (output_bfd)
10792 ? sizeof (Elf64_Mips_External_Rel)
10793 : sizeof (Elf32_External_Rel)));
bcfdf036
RS
10794 /* Adjust the section size too. Tools like the prelinker
10795 can reasonably expect the values to the same. */
10796 elf_section_data (s->output_section)->this_hdr.sh_size
10797 = dyn.d_un.d_val;
3133ddbf
DJ
10798 break;
10799
10800 default:
10801 swap_out_p = FALSE;
10802 break;
10803 }
10804
10805 if (swap_out_p)
10806 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10807 (dynobj, &dyn, b);
10808 }
10809 }
10810
b49e97c9 10811 {
b49e97c9
TS
10812 asection *s;
10813 Elf32_compact_rel cpt;
10814
b49e97c9
TS
10815 if (SGI_COMPAT (output_bfd))
10816 {
10817 /* Write .compact_rel section out. */
3d4d4302 10818 s = bfd_get_linker_section (dynobj, ".compact_rel");
b49e97c9
TS
10819 if (s != NULL)
10820 {
10821 cpt.id1 = 1;
10822 cpt.num = s->reloc_count;
10823 cpt.id2 = 2;
10824 cpt.offset = (s->output_section->filepos
10825 + sizeof (Elf32_External_compact_rel));
10826 cpt.reserved0 = 0;
10827 cpt.reserved1 = 0;
10828 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
10829 ((Elf32_External_compact_rel *)
10830 s->contents));
10831
10832 /* Clean up a dummy stub function entry in .text. */
4e41d0d7 10833 if (htab->sstubs != NULL)
b49e97c9
TS
10834 {
10835 file_ptr dummy_offset;
10836
4e41d0d7
RS
10837 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
10838 dummy_offset = htab->sstubs->size - htab->function_stub_size;
10839 memset (htab->sstubs->contents + dummy_offset, 0,
5108fc1b 10840 htab->function_stub_size);
b49e97c9
TS
10841 }
10842 }
10843 }
10844
0a44bf69
RS
10845 /* The psABI says that the dynamic relocations must be sorted in
10846 increasing order of r_symndx. The VxWorks EABI doesn't require
10847 this, and because the code below handles REL rather than RELA
10848 relocations, using it for VxWorks would be outright harmful. */
10849 if (!htab->is_vxworks)
b49e97c9 10850 {
0a44bf69
RS
10851 s = mips_elf_rel_dyn_section (info, FALSE);
10852 if (s != NULL
10853 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
10854 {
10855 reldyn_sorting_bfd = output_bfd;
b49e97c9 10856
0a44bf69
RS
10857 if (ABI_64_P (output_bfd))
10858 qsort ((Elf64_External_Rel *) s->contents + 1,
10859 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
10860 sort_dynamic_relocs_64);
10861 else
10862 qsort ((Elf32_External_Rel *) s->contents + 1,
10863 s->reloc_count - 1, sizeof (Elf32_External_Rel),
10864 sort_dynamic_relocs);
10865 }
b49e97c9 10866 }
b49e97c9
TS
10867 }
10868
861fb55a 10869 if (htab->splt && htab->splt->size > 0)
0a44bf69 10870 {
861fb55a
DJ
10871 if (htab->is_vxworks)
10872 {
10873 if (info->shared)
10874 mips_vxworks_finish_shared_plt (output_bfd, info);
10875 else
10876 mips_vxworks_finish_exec_plt (output_bfd, info);
10877 }
0a44bf69 10878 else
861fb55a
DJ
10879 {
10880 BFD_ASSERT (!info->shared);
10881 mips_finish_exec_plt (output_bfd, info);
10882 }
0a44bf69 10883 }
b34976b6 10884 return TRUE;
b49e97c9
TS
10885}
10886
b49e97c9 10887
64543e1a
RS
10888/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
10889
10890static void
9719ad41 10891mips_set_isa_flags (bfd *abfd)
b49e97c9 10892{
64543e1a 10893 flagword val;
b49e97c9
TS
10894
10895 switch (bfd_get_mach (abfd))
10896 {
10897 default:
10898 case bfd_mach_mips3000:
10899 val = E_MIPS_ARCH_1;
10900 break;
10901
10902 case bfd_mach_mips3900:
10903 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
10904 break;
10905
10906 case bfd_mach_mips6000:
10907 val = E_MIPS_ARCH_2;
10908 break;
10909
10910 case bfd_mach_mips4000:
10911 case bfd_mach_mips4300:
10912 case bfd_mach_mips4400:
10913 case bfd_mach_mips4600:
10914 val = E_MIPS_ARCH_3;
10915 break;
10916
10917 case bfd_mach_mips4010:
10918 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
10919 break;
10920
10921 case bfd_mach_mips4100:
10922 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
10923 break;
10924
10925 case bfd_mach_mips4111:
10926 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
10927 break;
10928
00707a0e
RS
10929 case bfd_mach_mips4120:
10930 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
10931 break;
10932
b49e97c9
TS
10933 case bfd_mach_mips4650:
10934 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
10935 break;
10936
00707a0e
RS
10937 case bfd_mach_mips5400:
10938 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
10939 break;
10940
10941 case bfd_mach_mips5500:
10942 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
10943 break;
10944
e407c74b
NC
10945 case bfd_mach_mips5900:
10946 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
10947 break;
10948
0d2e43ed
ILT
10949 case bfd_mach_mips9000:
10950 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
10951 break;
10952
b49e97c9 10953 case bfd_mach_mips5000:
5a7ea749 10954 case bfd_mach_mips7000:
b49e97c9
TS
10955 case bfd_mach_mips8000:
10956 case bfd_mach_mips10000:
10957 case bfd_mach_mips12000:
3aa3176b
TS
10958 case bfd_mach_mips14000:
10959 case bfd_mach_mips16000:
b49e97c9
TS
10960 val = E_MIPS_ARCH_4;
10961 break;
10962
10963 case bfd_mach_mips5:
10964 val = E_MIPS_ARCH_5;
10965 break;
10966
350cc38d
MS
10967 case bfd_mach_mips_loongson_2e:
10968 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
10969 break;
10970
10971 case bfd_mach_mips_loongson_2f:
10972 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
10973 break;
10974
b49e97c9
TS
10975 case bfd_mach_mips_sb1:
10976 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
10977 break;
10978
d051516a
NC
10979 case bfd_mach_mips_loongson_3a:
10980 val = E_MIPS_ARCH_64 | E_MIPS_MACH_LS3A;
10981 break;
10982
6f179bd0 10983 case bfd_mach_mips_octeon:
dd6a37e7 10984 case bfd_mach_mips_octeonp:
6f179bd0
AN
10985 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
10986 break;
10987
52b6b6b9
JM
10988 case bfd_mach_mips_xlr:
10989 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
10990 break;
10991
432233b3
AP
10992 case bfd_mach_mips_octeon2:
10993 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
10994 break;
10995
b49e97c9
TS
10996 case bfd_mach_mipsisa32:
10997 val = E_MIPS_ARCH_32;
10998 break;
10999
11000 case bfd_mach_mipsisa64:
11001 val = E_MIPS_ARCH_64;
af7ee8bf
CD
11002 break;
11003
11004 case bfd_mach_mipsisa32r2:
11005 val = E_MIPS_ARCH_32R2;
11006 break;
5f74bc13
CD
11007
11008 case bfd_mach_mipsisa64r2:
11009 val = E_MIPS_ARCH_64R2;
11010 break;
b49e97c9 11011 }
b49e97c9
TS
11012 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11013 elf_elfheader (abfd)->e_flags |= val;
11014
64543e1a
RS
11015}
11016
11017
11018/* The final processing done just before writing out a MIPS ELF object
11019 file. This gets the MIPS architecture right based on the machine
11020 number. This is used by both the 32-bit and the 64-bit ABI. */
11021
11022void
9719ad41
RS
11023_bfd_mips_elf_final_write_processing (bfd *abfd,
11024 bfd_boolean linker ATTRIBUTE_UNUSED)
64543e1a
RS
11025{
11026 unsigned int i;
11027 Elf_Internal_Shdr **hdrpp;
11028 const char *name;
11029 asection *sec;
11030
11031 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
11032 is nonzero. This is for compatibility with old objects, which used
11033 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
11034 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
11035 mips_set_isa_flags (abfd);
11036
b49e97c9
TS
11037 /* Set the sh_info field for .gptab sections and other appropriate
11038 info for each special section. */
11039 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
11040 i < elf_numsections (abfd);
11041 i++, hdrpp++)
11042 {
11043 switch ((*hdrpp)->sh_type)
11044 {
11045 case SHT_MIPS_MSYM:
11046 case SHT_MIPS_LIBLIST:
11047 sec = bfd_get_section_by_name (abfd, ".dynstr");
11048 if (sec != NULL)
11049 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11050 break;
11051
11052 case SHT_MIPS_GPTAB:
11053 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11054 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11055 BFD_ASSERT (name != NULL
0112cd26 11056 && CONST_STRNEQ (name, ".gptab."));
b49e97c9
TS
11057 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
11058 BFD_ASSERT (sec != NULL);
11059 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11060 break;
11061
11062 case SHT_MIPS_CONTENT:
11063 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11064 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11065 BFD_ASSERT (name != NULL
0112cd26 11066 && CONST_STRNEQ (name, ".MIPS.content"));
b49e97c9
TS
11067 sec = bfd_get_section_by_name (abfd,
11068 name + sizeof ".MIPS.content" - 1);
11069 BFD_ASSERT (sec != NULL);
11070 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11071 break;
11072
11073 case SHT_MIPS_SYMBOL_LIB:
11074 sec = bfd_get_section_by_name (abfd, ".dynsym");
11075 if (sec != NULL)
11076 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11077 sec = bfd_get_section_by_name (abfd, ".liblist");
11078 if (sec != NULL)
11079 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11080 break;
11081
11082 case SHT_MIPS_EVENTS:
11083 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11084 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11085 BFD_ASSERT (name != NULL);
0112cd26 11086 if (CONST_STRNEQ (name, ".MIPS.events"))
b49e97c9
TS
11087 sec = bfd_get_section_by_name (abfd,
11088 name + sizeof ".MIPS.events" - 1);
11089 else
11090 {
0112cd26 11091 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
b49e97c9
TS
11092 sec = bfd_get_section_by_name (abfd,
11093 (name
11094 + sizeof ".MIPS.post_rel" - 1));
11095 }
11096 BFD_ASSERT (sec != NULL);
11097 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11098 break;
11099
11100 }
11101 }
11102}
11103\f
8dc1a139 11104/* When creating an IRIX5 executable, we need REGINFO and RTPROC
b49e97c9
TS
11105 segments. */
11106
11107int
a6b96beb
AM
11108_bfd_mips_elf_additional_program_headers (bfd *abfd,
11109 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
11110{
11111 asection *s;
11112 int ret = 0;
11113
11114 /* See if we need a PT_MIPS_REGINFO segment. */
11115 s = bfd_get_section_by_name (abfd, ".reginfo");
11116 if (s && (s->flags & SEC_LOAD))
11117 ++ret;
11118
11119 /* See if we need a PT_MIPS_OPTIONS segment. */
11120 if (IRIX_COMPAT (abfd) == ict_irix6
11121 && bfd_get_section_by_name (abfd,
11122 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
11123 ++ret;
11124
11125 /* See if we need a PT_MIPS_RTPROC segment. */
11126 if (IRIX_COMPAT (abfd) == ict_irix5
11127 && bfd_get_section_by_name (abfd, ".dynamic")
11128 && bfd_get_section_by_name (abfd, ".mdebug"))
11129 ++ret;
11130
98c904a8
RS
11131 /* Allocate a PT_NULL header in dynamic objects. See
11132 _bfd_mips_elf_modify_segment_map for details. */
11133 if (!SGI_COMPAT (abfd)
11134 && bfd_get_section_by_name (abfd, ".dynamic"))
11135 ++ret;
11136
b49e97c9
TS
11137 return ret;
11138}
11139
8dc1a139 11140/* Modify the segment map for an IRIX5 executable. */
b49e97c9 11141
b34976b6 11142bfd_boolean
9719ad41 11143_bfd_mips_elf_modify_segment_map (bfd *abfd,
7c8b76cc 11144 struct bfd_link_info *info)
b49e97c9
TS
11145{
11146 asection *s;
11147 struct elf_segment_map *m, **pm;
11148 bfd_size_type amt;
11149
11150 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
11151 segment. */
11152 s = bfd_get_section_by_name (abfd, ".reginfo");
11153 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11154 {
11155 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
11156 if (m->p_type == PT_MIPS_REGINFO)
11157 break;
11158 if (m == NULL)
11159 {
11160 amt = sizeof *m;
9719ad41 11161 m = bfd_zalloc (abfd, amt);
b49e97c9 11162 if (m == NULL)
b34976b6 11163 return FALSE;
b49e97c9
TS
11164
11165 m->p_type = PT_MIPS_REGINFO;
11166 m->count = 1;
11167 m->sections[0] = s;
11168
11169 /* We want to put it after the PHDR and INTERP segments. */
11170 pm = &elf_tdata (abfd)->segment_map;
11171 while (*pm != NULL
11172 && ((*pm)->p_type == PT_PHDR
11173 || (*pm)->p_type == PT_INTERP))
11174 pm = &(*pm)->next;
11175
11176 m->next = *pm;
11177 *pm = m;
11178 }
11179 }
11180
11181 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
11182 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
98a8deaf 11183 PT_MIPS_OPTIONS segment immediately following the program header
b49e97c9 11184 table. */
c1fd6598
AO
11185 if (NEWABI_P (abfd)
11186 /* On non-IRIX6 new abi, we'll have already created a segment
11187 for this section, so don't create another. I'm not sure this
11188 is not also the case for IRIX 6, but I can't test it right
11189 now. */
11190 && IRIX_COMPAT (abfd) == ict_irix6)
b49e97c9
TS
11191 {
11192 for (s = abfd->sections; s; s = s->next)
11193 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
11194 break;
11195
11196 if (s)
11197 {
11198 struct elf_segment_map *options_segment;
11199
98a8deaf
RS
11200 pm = &elf_tdata (abfd)->segment_map;
11201 while (*pm != NULL
11202 && ((*pm)->p_type == PT_PHDR
11203 || (*pm)->p_type == PT_INTERP))
11204 pm = &(*pm)->next;
b49e97c9 11205
8ded5a0f
AM
11206 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
11207 {
11208 amt = sizeof (struct elf_segment_map);
11209 options_segment = bfd_zalloc (abfd, amt);
11210 options_segment->next = *pm;
11211 options_segment->p_type = PT_MIPS_OPTIONS;
11212 options_segment->p_flags = PF_R;
11213 options_segment->p_flags_valid = TRUE;
11214 options_segment->count = 1;
11215 options_segment->sections[0] = s;
11216 *pm = options_segment;
11217 }
b49e97c9
TS
11218 }
11219 }
11220 else
11221 {
11222 if (IRIX_COMPAT (abfd) == ict_irix5)
11223 {
11224 /* If there are .dynamic and .mdebug sections, we make a room
11225 for the RTPROC header. FIXME: Rewrite without section names. */
11226 if (bfd_get_section_by_name (abfd, ".interp") == NULL
11227 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
11228 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
11229 {
11230 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
11231 if (m->p_type == PT_MIPS_RTPROC)
11232 break;
11233 if (m == NULL)
11234 {
11235 amt = sizeof *m;
9719ad41 11236 m = bfd_zalloc (abfd, amt);
b49e97c9 11237 if (m == NULL)
b34976b6 11238 return FALSE;
b49e97c9
TS
11239
11240 m->p_type = PT_MIPS_RTPROC;
11241
11242 s = bfd_get_section_by_name (abfd, ".rtproc");
11243 if (s == NULL)
11244 {
11245 m->count = 0;
11246 m->p_flags = 0;
11247 m->p_flags_valid = 1;
11248 }
11249 else
11250 {
11251 m->count = 1;
11252 m->sections[0] = s;
11253 }
11254
11255 /* We want to put it after the DYNAMIC segment. */
11256 pm = &elf_tdata (abfd)->segment_map;
11257 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
11258 pm = &(*pm)->next;
11259 if (*pm != NULL)
11260 pm = &(*pm)->next;
11261
11262 m->next = *pm;
11263 *pm = m;
11264 }
11265 }
11266 }
8dc1a139 11267 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
b49e97c9
TS
11268 .dynstr, .dynsym, and .hash sections, and everything in
11269 between. */
11270 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
11271 pm = &(*pm)->next)
11272 if ((*pm)->p_type == PT_DYNAMIC)
11273 break;
11274 m = *pm;
11275 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
11276 {
11277 /* For a normal mips executable the permissions for the PT_DYNAMIC
11278 segment are read, write and execute. We do that here since
11279 the code in elf.c sets only the read permission. This matters
11280 sometimes for the dynamic linker. */
11281 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
11282 {
11283 m->p_flags = PF_R | PF_W | PF_X;
11284 m->p_flags_valid = 1;
11285 }
11286 }
f6f62d6f
RS
11287 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
11288 glibc's dynamic linker has traditionally derived the number of
11289 tags from the p_filesz field, and sometimes allocates stack
11290 arrays of that size. An overly-big PT_DYNAMIC segment can
11291 be actively harmful in such cases. Making PT_DYNAMIC contain
11292 other sections can also make life hard for the prelinker,
11293 which might move one of the other sections to a different
11294 PT_LOAD segment. */
11295 if (SGI_COMPAT (abfd)
11296 && m != NULL
11297 && m->count == 1
11298 && strcmp (m->sections[0]->name, ".dynamic") == 0)
b49e97c9
TS
11299 {
11300 static const char *sec_names[] =
11301 {
11302 ".dynamic", ".dynstr", ".dynsym", ".hash"
11303 };
11304 bfd_vma low, high;
11305 unsigned int i, c;
11306 struct elf_segment_map *n;
11307
792b4a53 11308 low = ~(bfd_vma) 0;
b49e97c9
TS
11309 high = 0;
11310 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
11311 {
11312 s = bfd_get_section_by_name (abfd, sec_names[i]);
11313 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11314 {
11315 bfd_size_type sz;
11316
11317 if (low > s->vma)
11318 low = s->vma;
eea6121a 11319 sz = s->size;
b49e97c9
TS
11320 if (high < s->vma + sz)
11321 high = s->vma + sz;
11322 }
11323 }
11324
11325 c = 0;
11326 for (s = abfd->sections; s != NULL; s = s->next)
11327 if ((s->flags & SEC_LOAD) != 0
11328 && s->vma >= low
eea6121a 11329 && s->vma + s->size <= high)
b49e97c9
TS
11330 ++c;
11331
11332 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9719ad41 11333 n = bfd_zalloc (abfd, amt);
b49e97c9 11334 if (n == NULL)
b34976b6 11335 return FALSE;
b49e97c9
TS
11336 *n = *m;
11337 n->count = c;
11338
11339 i = 0;
11340 for (s = abfd->sections; s != NULL; s = s->next)
11341 {
11342 if ((s->flags & SEC_LOAD) != 0
11343 && s->vma >= low
eea6121a 11344 && s->vma + s->size <= high)
b49e97c9
TS
11345 {
11346 n->sections[i] = s;
11347 ++i;
11348 }
11349 }
11350
11351 *pm = n;
11352 }
11353 }
11354
98c904a8
RS
11355 /* Allocate a spare program header in dynamic objects so that tools
11356 like the prelinker can add an extra PT_LOAD entry.
11357
11358 If the prelinker needs to make room for a new PT_LOAD entry, its
11359 standard procedure is to move the first (read-only) sections into
11360 the new (writable) segment. However, the MIPS ABI requires
11361 .dynamic to be in a read-only segment, and the section will often
11362 start within sizeof (ElfNN_Phdr) bytes of the last program header.
11363
11364 Although the prelinker could in principle move .dynamic to a
11365 writable segment, it seems better to allocate a spare program
11366 header instead, and avoid the need to move any sections.
11367 There is a long tradition of allocating spare dynamic tags,
11368 so allocating a spare program header seems like a natural
7c8b76cc
JM
11369 extension.
11370
11371 If INFO is NULL, we may be copying an already prelinked binary
11372 with objcopy or strip, so do not add this header. */
11373 if (info != NULL
11374 && !SGI_COMPAT (abfd)
98c904a8
RS
11375 && bfd_get_section_by_name (abfd, ".dynamic"))
11376 {
11377 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
11378 if ((*pm)->p_type == PT_NULL)
11379 break;
11380 if (*pm == NULL)
11381 {
11382 m = bfd_zalloc (abfd, sizeof (*m));
11383 if (m == NULL)
11384 return FALSE;
11385
11386 m->p_type = PT_NULL;
11387 *pm = m;
11388 }
11389 }
11390
b34976b6 11391 return TRUE;
b49e97c9
TS
11392}
11393\f
11394/* Return the section that should be marked against GC for a given
11395 relocation. */
11396
11397asection *
9719ad41 11398_bfd_mips_elf_gc_mark_hook (asection *sec,
07adf181 11399 struct bfd_link_info *info,
9719ad41
RS
11400 Elf_Internal_Rela *rel,
11401 struct elf_link_hash_entry *h,
11402 Elf_Internal_Sym *sym)
b49e97c9
TS
11403{
11404 /* ??? Do mips16 stub sections need to be handled special? */
11405
11406 if (h != NULL)
07adf181
AM
11407 switch (ELF_R_TYPE (sec->owner, rel->r_info))
11408 {
11409 case R_MIPS_GNU_VTINHERIT:
11410 case R_MIPS_GNU_VTENTRY:
11411 return NULL;
11412 }
b49e97c9 11413
07adf181 11414 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
b49e97c9
TS
11415}
11416
11417/* Update the got entry reference counts for the section being removed. */
11418
b34976b6 11419bfd_boolean
9719ad41
RS
11420_bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
11421 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11422 asection *sec ATTRIBUTE_UNUSED,
11423 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
b49e97c9
TS
11424{
11425#if 0
11426 Elf_Internal_Shdr *symtab_hdr;
11427 struct elf_link_hash_entry **sym_hashes;
11428 bfd_signed_vma *local_got_refcounts;
11429 const Elf_Internal_Rela *rel, *relend;
11430 unsigned long r_symndx;
11431 struct elf_link_hash_entry *h;
11432
7dda2462
TG
11433 if (info->relocatable)
11434 return TRUE;
11435
b49e97c9
TS
11436 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11437 sym_hashes = elf_sym_hashes (abfd);
11438 local_got_refcounts = elf_local_got_refcounts (abfd);
11439
11440 relend = relocs + sec->reloc_count;
11441 for (rel = relocs; rel < relend; rel++)
11442 switch (ELF_R_TYPE (abfd, rel->r_info))
11443 {
738e5348
RS
11444 case R_MIPS16_GOT16:
11445 case R_MIPS16_CALL16:
b49e97c9
TS
11446 case R_MIPS_GOT16:
11447 case R_MIPS_CALL16:
11448 case R_MIPS_CALL_HI16:
11449 case R_MIPS_CALL_LO16:
11450 case R_MIPS_GOT_HI16:
11451 case R_MIPS_GOT_LO16:
4a14403c
TS
11452 case R_MIPS_GOT_DISP:
11453 case R_MIPS_GOT_PAGE:
11454 case R_MIPS_GOT_OFST:
df58fc94
RS
11455 case R_MICROMIPS_GOT16:
11456 case R_MICROMIPS_CALL16:
11457 case R_MICROMIPS_CALL_HI16:
11458 case R_MICROMIPS_CALL_LO16:
11459 case R_MICROMIPS_GOT_HI16:
11460 case R_MICROMIPS_GOT_LO16:
11461 case R_MICROMIPS_GOT_DISP:
11462 case R_MICROMIPS_GOT_PAGE:
11463 case R_MICROMIPS_GOT_OFST:
b49e97c9
TS
11464 /* ??? It would seem that the existing MIPS code does no sort
11465 of reference counting or whatnot on its GOT and PLT entries,
11466 so it is not possible to garbage collect them at this time. */
11467 break;
11468
11469 default:
11470 break;
11471 }
11472#endif
11473
b34976b6 11474 return TRUE;
b49e97c9
TS
11475}
11476\f
11477/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
11478 hiding the old indirect symbol. Process additional relocation
11479 information. Also called for weakdefs, in which case we just let
11480 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
11481
11482void
fcfa13d2 11483_bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9719ad41
RS
11484 struct elf_link_hash_entry *dir,
11485 struct elf_link_hash_entry *ind)
b49e97c9
TS
11486{
11487 struct mips_elf_link_hash_entry *dirmips, *indmips;
11488
fcfa13d2 11489 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
b49e97c9 11490
861fb55a
DJ
11491 dirmips = (struct mips_elf_link_hash_entry *) dir;
11492 indmips = (struct mips_elf_link_hash_entry *) ind;
11493 /* Any absolute non-dynamic relocations against an indirect or weak
11494 definition will be against the target symbol. */
11495 if (indmips->has_static_relocs)
11496 dirmips->has_static_relocs = TRUE;
11497
b49e97c9
TS
11498 if (ind->root.type != bfd_link_hash_indirect)
11499 return;
11500
b49e97c9
TS
11501 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
11502 if (indmips->readonly_reloc)
b34976b6 11503 dirmips->readonly_reloc = TRUE;
b49e97c9 11504 if (indmips->no_fn_stub)
b34976b6 11505 dirmips->no_fn_stub = TRUE;
61b0a4af
RS
11506 if (indmips->fn_stub)
11507 {
11508 dirmips->fn_stub = indmips->fn_stub;
11509 indmips->fn_stub = NULL;
11510 }
11511 if (indmips->need_fn_stub)
11512 {
11513 dirmips->need_fn_stub = TRUE;
11514 indmips->need_fn_stub = FALSE;
11515 }
11516 if (indmips->call_stub)
11517 {
11518 dirmips->call_stub = indmips->call_stub;
11519 indmips->call_stub = NULL;
11520 }
11521 if (indmips->call_fp_stub)
11522 {
11523 dirmips->call_fp_stub = indmips->call_fp_stub;
11524 indmips->call_fp_stub = NULL;
11525 }
634835ae
RS
11526 if (indmips->global_got_area < dirmips->global_got_area)
11527 dirmips->global_got_area = indmips->global_got_area;
11528 if (indmips->global_got_area < GGA_NONE)
11529 indmips->global_got_area = GGA_NONE;
861fb55a
DJ
11530 if (indmips->has_nonpic_branches)
11531 dirmips->has_nonpic_branches = TRUE;
0f20cc35 11532
e641e783
RS
11533 if (dirmips->tls_ie_type == 0)
11534 dirmips->tls_ie_type = indmips->tls_ie_type;
11535 if (dirmips->tls_gd_type == 0)
11536 dirmips->tls_gd_type = indmips->tls_gd_type;
b49e97c9 11537}
b49e97c9 11538\f
d01414a5
TS
11539#define PDR_SIZE 32
11540
b34976b6 11541bfd_boolean
9719ad41
RS
11542_bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
11543 struct bfd_link_info *info)
d01414a5
TS
11544{
11545 asection *o;
b34976b6 11546 bfd_boolean ret = FALSE;
d01414a5
TS
11547 unsigned char *tdata;
11548 size_t i, skip;
11549
11550 o = bfd_get_section_by_name (abfd, ".pdr");
11551 if (! o)
b34976b6 11552 return FALSE;
eea6121a 11553 if (o->size == 0)
b34976b6 11554 return FALSE;
eea6121a 11555 if (o->size % PDR_SIZE != 0)
b34976b6 11556 return FALSE;
d01414a5
TS
11557 if (o->output_section != NULL
11558 && bfd_is_abs_section (o->output_section))
b34976b6 11559 return FALSE;
d01414a5 11560
eea6121a 11561 tdata = bfd_zmalloc (o->size / PDR_SIZE);
d01414a5 11562 if (! tdata)
b34976b6 11563 return FALSE;
d01414a5 11564
9719ad41 11565 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 11566 info->keep_memory);
d01414a5
TS
11567 if (!cookie->rels)
11568 {
11569 free (tdata);
b34976b6 11570 return FALSE;
d01414a5
TS
11571 }
11572
11573 cookie->rel = cookie->rels;
11574 cookie->relend = cookie->rels + o->reloc_count;
11575
eea6121a 11576 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
d01414a5 11577 {
c152c796 11578 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
d01414a5
TS
11579 {
11580 tdata[i] = 1;
11581 skip ++;
11582 }
11583 }
11584
11585 if (skip != 0)
11586 {
f0abc2a1 11587 mips_elf_section_data (o)->u.tdata = tdata;
eea6121a 11588 o->size -= skip * PDR_SIZE;
b34976b6 11589 ret = TRUE;
d01414a5
TS
11590 }
11591 else
11592 free (tdata);
11593
11594 if (! info->keep_memory)
11595 free (cookie->rels);
11596
11597 return ret;
11598}
11599
b34976b6 11600bfd_boolean
9719ad41 11601_bfd_mips_elf_ignore_discarded_relocs (asection *sec)
53bfd6b4
MR
11602{
11603 if (strcmp (sec->name, ".pdr") == 0)
b34976b6
AM
11604 return TRUE;
11605 return FALSE;
53bfd6b4 11606}
d01414a5 11607
b34976b6 11608bfd_boolean
c7b8f16e
JB
11609_bfd_mips_elf_write_section (bfd *output_bfd,
11610 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
11611 asection *sec, bfd_byte *contents)
d01414a5
TS
11612{
11613 bfd_byte *to, *from, *end;
11614 int i;
11615
11616 if (strcmp (sec->name, ".pdr") != 0)
b34976b6 11617 return FALSE;
d01414a5 11618
f0abc2a1 11619 if (mips_elf_section_data (sec)->u.tdata == NULL)
b34976b6 11620 return FALSE;
d01414a5
TS
11621
11622 to = contents;
eea6121a 11623 end = contents + sec->size;
d01414a5
TS
11624 for (from = contents, i = 0;
11625 from < end;
11626 from += PDR_SIZE, i++)
11627 {
f0abc2a1 11628 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
d01414a5
TS
11629 continue;
11630 if (to != from)
11631 memcpy (to, from, PDR_SIZE);
11632 to += PDR_SIZE;
11633 }
11634 bfd_set_section_contents (output_bfd, sec->output_section, contents,
eea6121a 11635 sec->output_offset, sec->size);
b34976b6 11636 return TRUE;
d01414a5 11637}
53bfd6b4 11638\f
df58fc94
RS
11639/* microMIPS code retains local labels for linker relaxation. Omit them
11640 from output by default for clarity. */
11641
11642bfd_boolean
11643_bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
11644{
11645 return _bfd_elf_is_local_label_name (abfd, sym->name);
11646}
11647
b49e97c9
TS
11648/* MIPS ELF uses a special find_nearest_line routine in order the
11649 handle the ECOFF debugging information. */
11650
11651struct mips_elf_find_line
11652{
11653 struct ecoff_debug_info d;
11654 struct ecoff_find_line i;
11655};
11656
b34976b6 11657bfd_boolean
9719ad41
RS
11658_bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
11659 asymbol **symbols, bfd_vma offset,
11660 const char **filename_ptr,
11661 const char **functionname_ptr,
11662 unsigned int *line_ptr)
b49e97c9
TS
11663{
11664 asection *msec;
11665
11666 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
11667 filename_ptr, functionname_ptr,
11668 line_ptr))
b34976b6 11669 return TRUE;
b49e97c9 11670
fc28f9aa
TG
11671 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
11672 section, symbols, offset,
b49e97c9 11673 filename_ptr, functionname_ptr,
9b8d1a36 11674 line_ptr, NULL, ABI_64_P (abfd) ? 8 : 0,
b49e97c9 11675 &elf_tdata (abfd)->dwarf2_find_line_info))
b34976b6 11676 return TRUE;
b49e97c9
TS
11677
11678 msec = bfd_get_section_by_name (abfd, ".mdebug");
11679 if (msec != NULL)
11680 {
11681 flagword origflags;
11682 struct mips_elf_find_line *fi;
11683 const struct ecoff_debug_swap * const swap =
11684 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
11685
11686 /* If we are called during a link, mips_elf_final_link may have
11687 cleared the SEC_HAS_CONTENTS field. We force it back on here
11688 if appropriate (which it normally will be). */
11689 origflags = msec->flags;
11690 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
11691 msec->flags |= SEC_HAS_CONTENTS;
11692
11693 fi = elf_tdata (abfd)->find_line_info;
11694 if (fi == NULL)
11695 {
11696 bfd_size_type external_fdr_size;
11697 char *fraw_src;
11698 char *fraw_end;
11699 struct fdr *fdr_ptr;
11700 bfd_size_type amt = sizeof (struct mips_elf_find_line);
11701
9719ad41 11702 fi = bfd_zalloc (abfd, amt);
b49e97c9
TS
11703 if (fi == NULL)
11704 {
11705 msec->flags = origflags;
b34976b6 11706 return FALSE;
b49e97c9
TS
11707 }
11708
11709 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
11710 {
11711 msec->flags = origflags;
b34976b6 11712 return FALSE;
b49e97c9
TS
11713 }
11714
11715 /* Swap in the FDR information. */
11716 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9719ad41 11717 fi->d.fdr = bfd_alloc (abfd, amt);
b49e97c9
TS
11718 if (fi->d.fdr == NULL)
11719 {
11720 msec->flags = origflags;
b34976b6 11721 return FALSE;
b49e97c9
TS
11722 }
11723 external_fdr_size = swap->external_fdr_size;
11724 fdr_ptr = fi->d.fdr;
11725 fraw_src = (char *) fi->d.external_fdr;
11726 fraw_end = (fraw_src
11727 + fi->d.symbolic_header.ifdMax * external_fdr_size);
11728 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9719ad41 11729 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
b49e97c9
TS
11730
11731 elf_tdata (abfd)->find_line_info = fi;
11732
11733 /* Note that we don't bother to ever free this information.
11734 find_nearest_line is either called all the time, as in
11735 objdump -l, so the information should be saved, or it is
11736 rarely called, as in ld error messages, so the memory
11737 wasted is unimportant. Still, it would probably be a
11738 good idea for free_cached_info to throw it away. */
11739 }
11740
11741 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
11742 &fi->i, filename_ptr, functionname_ptr,
11743 line_ptr))
11744 {
11745 msec->flags = origflags;
b34976b6 11746 return TRUE;
b49e97c9
TS
11747 }
11748
11749 msec->flags = origflags;
11750 }
11751
11752 /* Fall back on the generic ELF find_nearest_line routine. */
11753
11754 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
11755 filename_ptr, functionname_ptr,
11756 line_ptr);
11757}
4ab527b0
FF
11758
11759bfd_boolean
11760_bfd_mips_elf_find_inliner_info (bfd *abfd,
11761 const char **filename_ptr,
11762 const char **functionname_ptr,
11763 unsigned int *line_ptr)
11764{
11765 bfd_boolean found;
11766 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
11767 functionname_ptr, line_ptr,
11768 & elf_tdata (abfd)->dwarf2_find_line_info);
11769 return found;
11770}
11771
b49e97c9
TS
11772\f
11773/* When are writing out the .options or .MIPS.options section,
11774 remember the bytes we are writing out, so that we can install the
11775 GP value in the section_processing routine. */
11776
b34976b6 11777bfd_boolean
9719ad41
RS
11778_bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
11779 const void *location,
11780 file_ptr offset, bfd_size_type count)
b49e97c9 11781{
cc2e31b9 11782 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
b49e97c9
TS
11783 {
11784 bfd_byte *c;
11785
11786 if (elf_section_data (section) == NULL)
11787 {
11788 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9719ad41 11789 section->used_by_bfd = bfd_zalloc (abfd, amt);
b49e97c9 11790 if (elf_section_data (section) == NULL)
b34976b6 11791 return FALSE;
b49e97c9 11792 }
f0abc2a1 11793 c = mips_elf_section_data (section)->u.tdata;
b49e97c9
TS
11794 if (c == NULL)
11795 {
eea6121a 11796 c = bfd_zalloc (abfd, section->size);
b49e97c9 11797 if (c == NULL)
b34976b6 11798 return FALSE;
f0abc2a1 11799 mips_elf_section_data (section)->u.tdata = c;
b49e97c9
TS
11800 }
11801
9719ad41 11802 memcpy (c + offset, location, count);
b49e97c9
TS
11803 }
11804
11805 return _bfd_elf_set_section_contents (abfd, section, location, offset,
11806 count);
11807}
11808
11809/* This is almost identical to bfd_generic_get_... except that some
11810 MIPS relocations need to be handled specially. Sigh. */
11811
11812bfd_byte *
9719ad41
RS
11813_bfd_elf_mips_get_relocated_section_contents
11814 (bfd *abfd,
11815 struct bfd_link_info *link_info,
11816 struct bfd_link_order *link_order,
11817 bfd_byte *data,
11818 bfd_boolean relocatable,
11819 asymbol **symbols)
b49e97c9
TS
11820{
11821 /* Get enough memory to hold the stuff */
11822 bfd *input_bfd = link_order->u.indirect.section->owner;
11823 asection *input_section = link_order->u.indirect.section;
eea6121a 11824 bfd_size_type sz;
b49e97c9
TS
11825
11826 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
11827 arelent **reloc_vector = NULL;
11828 long reloc_count;
11829
11830 if (reloc_size < 0)
11831 goto error_return;
11832
9719ad41 11833 reloc_vector = bfd_malloc (reloc_size);
b49e97c9
TS
11834 if (reloc_vector == NULL && reloc_size != 0)
11835 goto error_return;
11836
11837 /* read in the section */
eea6121a
AM
11838 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
11839 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
b49e97c9
TS
11840 goto error_return;
11841
b49e97c9
TS
11842 reloc_count = bfd_canonicalize_reloc (input_bfd,
11843 input_section,
11844 reloc_vector,
11845 symbols);
11846 if (reloc_count < 0)
11847 goto error_return;
11848
11849 if (reloc_count > 0)
11850 {
11851 arelent **parent;
11852 /* for mips */
11853 int gp_found;
11854 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
11855
11856 {
11857 struct bfd_hash_entry *h;
11858 struct bfd_link_hash_entry *lh;
11859 /* Skip all this stuff if we aren't mixing formats. */
11860 if (abfd && input_bfd
11861 && abfd->xvec == input_bfd->xvec)
11862 lh = 0;
11863 else
11864 {
b34976b6 11865 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
b49e97c9
TS
11866 lh = (struct bfd_link_hash_entry *) h;
11867 }
11868 lookup:
11869 if (lh)
11870 {
11871 switch (lh->type)
11872 {
11873 case bfd_link_hash_undefined:
11874 case bfd_link_hash_undefweak:
11875 case bfd_link_hash_common:
11876 gp_found = 0;
11877 break;
11878 case bfd_link_hash_defined:
11879 case bfd_link_hash_defweak:
11880 gp_found = 1;
11881 gp = lh->u.def.value;
11882 break;
11883 case bfd_link_hash_indirect:
11884 case bfd_link_hash_warning:
11885 lh = lh->u.i.link;
11886 /* @@FIXME ignoring warning for now */
11887 goto lookup;
11888 case bfd_link_hash_new:
11889 default:
11890 abort ();
11891 }
11892 }
11893 else
11894 gp_found = 0;
11895 }
11896 /* end mips */
9719ad41 11897 for (parent = reloc_vector; *parent != NULL; parent++)
b49e97c9 11898 {
9719ad41 11899 char *error_message = NULL;
b49e97c9
TS
11900 bfd_reloc_status_type r;
11901
11902 /* Specific to MIPS: Deal with relocation types that require
11903 knowing the gp of the output bfd. */
11904 asymbol *sym = *(*parent)->sym_ptr_ptr;
b49e97c9 11905
8236346f
EC
11906 /* If we've managed to find the gp and have a special
11907 function for the relocation then go ahead, else default
11908 to the generic handling. */
11909 if (gp_found
11910 && (*parent)->howto->special_function
11911 == _bfd_mips_elf32_gprel16_reloc)
11912 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
11913 input_section, relocatable,
11914 data, gp);
11915 else
86324f90 11916 r = bfd_perform_relocation (input_bfd, *parent, data,
8236346f
EC
11917 input_section,
11918 relocatable ? abfd : NULL,
11919 &error_message);
b49e97c9 11920
1049f94e 11921 if (relocatable)
b49e97c9
TS
11922 {
11923 asection *os = input_section->output_section;
11924
11925 /* A partial link, so keep the relocs */
11926 os->orelocation[os->reloc_count] = *parent;
11927 os->reloc_count++;
11928 }
11929
11930 if (r != bfd_reloc_ok)
11931 {
11932 switch (r)
11933 {
11934 case bfd_reloc_undefined:
11935 if (!((*link_info->callbacks->undefined_symbol)
11936 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
5e2b0d47 11937 input_bfd, input_section, (*parent)->address, TRUE)))
b49e97c9
TS
11938 goto error_return;
11939 break;
11940 case bfd_reloc_dangerous:
9719ad41 11941 BFD_ASSERT (error_message != NULL);
b49e97c9
TS
11942 if (!((*link_info->callbacks->reloc_dangerous)
11943 (link_info, error_message, input_bfd, input_section,
11944 (*parent)->address)))
11945 goto error_return;
11946 break;
11947 case bfd_reloc_overflow:
11948 if (!((*link_info->callbacks->reloc_overflow)
dfeffb9f
L
11949 (link_info, NULL,
11950 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
b49e97c9
TS
11951 (*parent)->howto->name, (*parent)->addend,
11952 input_bfd, input_section, (*parent)->address)))
11953 goto error_return;
11954 break;
11955 case bfd_reloc_outofrange:
11956 default:
11957 abort ();
11958 break;
11959 }
11960
11961 }
11962 }
11963 }
11964 if (reloc_vector != NULL)
11965 free (reloc_vector);
11966 return data;
11967
11968error_return:
11969 if (reloc_vector != NULL)
11970 free (reloc_vector);
11971 return NULL;
11972}
11973\f
df58fc94
RS
11974static bfd_boolean
11975mips_elf_relax_delete_bytes (bfd *abfd,
11976 asection *sec, bfd_vma addr, int count)
11977{
11978 Elf_Internal_Shdr *symtab_hdr;
11979 unsigned int sec_shndx;
11980 bfd_byte *contents;
11981 Elf_Internal_Rela *irel, *irelend;
11982 Elf_Internal_Sym *isym;
11983 Elf_Internal_Sym *isymend;
11984 struct elf_link_hash_entry **sym_hashes;
11985 struct elf_link_hash_entry **end_hashes;
11986 struct elf_link_hash_entry **start_hashes;
11987 unsigned int symcount;
11988
11989 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
11990 contents = elf_section_data (sec)->this_hdr.contents;
11991
11992 irel = elf_section_data (sec)->relocs;
11993 irelend = irel + sec->reloc_count;
11994
11995 /* Actually delete the bytes. */
11996 memmove (contents + addr, contents + addr + count,
11997 (size_t) (sec->size - addr - count));
11998 sec->size -= count;
11999
12000 /* Adjust all the relocs. */
12001 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
12002 {
12003 /* Get the new reloc address. */
12004 if (irel->r_offset > addr)
12005 irel->r_offset -= count;
12006 }
12007
12008 BFD_ASSERT (addr % 2 == 0);
12009 BFD_ASSERT (count % 2 == 0);
12010
12011 /* Adjust the local symbols defined in this section. */
12012 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12013 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
12014 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
2309ddf2 12015 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
df58fc94
RS
12016 isym->st_value -= count;
12017
12018 /* Now adjust the global symbols defined in this section. */
12019 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
12020 - symtab_hdr->sh_info);
12021 sym_hashes = start_hashes = elf_sym_hashes (abfd);
12022 end_hashes = sym_hashes + symcount;
12023
12024 for (; sym_hashes < end_hashes; sym_hashes++)
12025 {
12026 struct elf_link_hash_entry *sym_hash = *sym_hashes;
12027
12028 if ((sym_hash->root.type == bfd_link_hash_defined
12029 || sym_hash->root.type == bfd_link_hash_defweak)
12030 && sym_hash->root.u.def.section == sec)
12031 {
2309ddf2 12032 bfd_vma value = sym_hash->root.u.def.value;
df58fc94 12033
df58fc94
RS
12034 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
12035 value &= MINUS_TWO;
12036 if (value > addr)
12037 sym_hash->root.u.def.value -= count;
12038 }
12039 }
12040
12041 return TRUE;
12042}
12043
12044
12045/* Opcodes needed for microMIPS relaxation as found in
12046 opcodes/micromips-opc.c. */
12047
12048struct opcode_descriptor {
12049 unsigned long match;
12050 unsigned long mask;
12051};
12052
12053/* The $ra register aka $31. */
12054
12055#define RA 31
12056
12057/* 32-bit instruction format register fields. */
12058
12059#define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
12060#define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
12061
12062/* Check if a 5-bit register index can be abbreviated to 3 bits. */
12063
12064#define OP16_VALID_REG(r) \
12065 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
12066
12067
12068/* 32-bit and 16-bit branches. */
12069
12070static const struct opcode_descriptor b_insns_32[] = {
12071 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
12072 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
12073 { 0, 0 } /* End marker for find_match(). */
12074};
12075
12076static const struct opcode_descriptor bc_insn_32 =
12077 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
12078
12079static const struct opcode_descriptor bz_insn_32 =
12080 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
12081
12082static const struct opcode_descriptor bzal_insn_32 =
12083 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
12084
12085static const struct opcode_descriptor beq_insn_32 =
12086 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
12087
12088static const struct opcode_descriptor b_insn_16 =
12089 { /* "b", "mD", */ 0xcc00, 0xfc00 };
12090
12091static const struct opcode_descriptor bz_insn_16 =
c088dedf 12092 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
df58fc94
RS
12093
12094
12095/* 32-bit and 16-bit branch EQ and NE zero. */
12096
12097/* NOTE: All opcode tables have BEQ/BNE in the same order: first the
12098 eq and second the ne. This convention is used when replacing a
12099 32-bit BEQ/BNE with the 16-bit version. */
12100
12101#define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
12102
12103static const struct opcode_descriptor bz_rs_insns_32[] = {
12104 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
12105 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
12106 { 0, 0 } /* End marker for find_match(). */
12107};
12108
12109static const struct opcode_descriptor bz_rt_insns_32[] = {
12110 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
12111 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
12112 { 0, 0 } /* End marker for find_match(). */
12113};
12114
12115static const struct opcode_descriptor bzc_insns_32[] = {
12116 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
12117 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
12118 { 0, 0 } /* End marker for find_match(). */
12119};
12120
12121static const struct opcode_descriptor bz_insns_16[] = {
12122 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
12123 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
12124 { 0, 0 } /* End marker for find_match(). */
12125};
12126
12127/* Switch between a 5-bit register index and its 3-bit shorthand. */
12128
12129#define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0x17) + 2)
12130#define BZ16_REG_FIELD(r) \
12131 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 7)
12132
12133
12134/* 32-bit instructions with a delay slot. */
12135
12136static const struct opcode_descriptor jal_insn_32_bd16 =
12137 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
12138
12139static const struct opcode_descriptor jal_insn_32_bd32 =
12140 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
12141
12142static const struct opcode_descriptor jal_x_insn_32_bd32 =
12143 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
12144
12145static const struct opcode_descriptor j_insn_32 =
12146 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
12147
12148static const struct opcode_descriptor jalr_insn_32 =
12149 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
12150
12151/* This table can be compacted, because no opcode replacement is made. */
12152
12153static const struct opcode_descriptor ds_insns_32_bd16[] = {
12154 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
12155
12156 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
12157 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
12158
12159 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
12160 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
12161 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
12162 { 0, 0 } /* End marker for find_match(). */
12163};
12164
12165/* This table can be compacted, because no opcode replacement is made. */
12166
12167static const struct opcode_descriptor ds_insns_32_bd32[] = {
12168 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
12169
12170 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
12171 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
12172 { 0, 0 } /* End marker for find_match(). */
12173};
12174
12175
12176/* 16-bit instructions with a delay slot. */
12177
12178static const struct opcode_descriptor jalr_insn_16_bd16 =
12179 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
12180
12181static const struct opcode_descriptor jalr_insn_16_bd32 =
12182 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
12183
12184static const struct opcode_descriptor jr_insn_16 =
12185 { /* "jr", "mj", */ 0x4580, 0xffe0 };
12186
12187#define JR16_REG(opcode) ((opcode) & 0x1f)
12188
12189/* This table can be compacted, because no opcode replacement is made. */
12190
12191static const struct opcode_descriptor ds_insns_16_bd16[] = {
12192 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
12193
12194 { /* "b", "mD", */ 0xcc00, 0xfc00 },
12195 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
12196 { /* "jr", "mj", */ 0x4580, 0xffe0 },
12197 { 0, 0 } /* End marker for find_match(). */
12198};
12199
12200
12201/* LUI instruction. */
12202
12203static const struct opcode_descriptor lui_insn =
12204 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
12205
12206
12207/* ADDIU instruction. */
12208
12209static const struct opcode_descriptor addiu_insn =
12210 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
12211
12212static const struct opcode_descriptor addiupc_insn =
12213 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
12214
12215#define ADDIUPC_REG_FIELD(r) \
12216 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
12217
12218
12219/* Relaxable instructions in a JAL delay slot: MOVE. */
12220
12221/* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
12222 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
12223#define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
12224#define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
12225
12226#define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
12227#define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
12228
12229static const struct opcode_descriptor move_insns_32[] = {
12230 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
12231 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
12232 { 0, 0 } /* End marker for find_match(). */
12233};
12234
12235static const struct opcode_descriptor move_insn_16 =
12236 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
12237
12238
12239/* NOP instructions. */
12240
12241static const struct opcode_descriptor nop_insn_32 =
12242 { /* "nop", "", */ 0x00000000, 0xffffffff };
12243
12244static const struct opcode_descriptor nop_insn_16 =
12245 { /* "nop", "", */ 0x0c00, 0xffff };
12246
12247
12248/* Instruction match support. */
12249
12250#define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
12251
12252static int
12253find_match (unsigned long opcode, const struct opcode_descriptor insn[])
12254{
12255 unsigned long indx;
12256
12257 for (indx = 0; insn[indx].mask != 0; indx++)
12258 if (MATCH (opcode, insn[indx]))
12259 return indx;
12260
12261 return -1;
12262}
12263
12264
12265/* Branch and delay slot decoding support. */
12266
12267/* If PTR points to what *might* be a 16-bit branch or jump, then
12268 return the minimum length of its delay slot, otherwise return 0.
12269 Non-zero results are not definitive as we might be checking against
12270 the second half of another instruction. */
12271
12272static int
12273check_br16_dslot (bfd *abfd, bfd_byte *ptr)
12274{
12275 unsigned long opcode;
12276 int bdsize;
12277
12278 opcode = bfd_get_16 (abfd, ptr);
12279 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
12280 /* 16-bit branch/jump with a 32-bit delay slot. */
12281 bdsize = 4;
12282 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
12283 || find_match (opcode, ds_insns_16_bd16) >= 0)
12284 /* 16-bit branch/jump with a 16-bit delay slot. */
12285 bdsize = 2;
12286 else
12287 /* No delay slot. */
12288 bdsize = 0;
12289
12290 return bdsize;
12291}
12292
12293/* If PTR points to what *might* be a 32-bit branch or jump, then
12294 return the minimum length of its delay slot, otherwise return 0.
12295 Non-zero results are not definitive as we might be checking against
12296 the second half of another instruction. */
12297
12298static int
12299check_br32_dslot (bfd *abfd, bfd_byte *ptr)
12300{
12301 unsigned long opcode;
12302 int bdsize;
12303
d21911ea 12304 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
12305 if (find_match (opcode, ds_insns_32_bd32) >= 0)
12306 /* 32-bit branch/jump with a 32-bit delay slot. */
12307 bdsize = 4;
12308 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
12309 /* 32-bit branch/jump with a 16-bit delay slot. */
12310 bdsize = 2;
12311 else
12312 /* No delay slot. */
12313 bdsize = 0;
12314
12315 return bdsize;
12316}
12317
12318/* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
12319 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
12320
12321static bfd_boolean
12322check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12323{
12324 unsigned long opcode;
12325
12326 opcode = bfd_get_16 (abfd, ptr);
12327 if (MATCH (opcode, b_insn_16)
12328 /* B16 */
12329 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
12330 /* JR16 */
12331 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
12332 /* BEQZ16, BNEZ16 */
12333 || (MATCH (opcode, jalr_insn_16_bd32)
12334 /* JALR16 */
12335 && reg != JR16_REG (opcode) && reg != RA))
12336 return TRUE;
12337
12338 return FALSE;
12339}
12340
12341/* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
12342 then return TRUE, otherwise FALSE. */
12343
f41e5fcc 12344static bfd_boolean
df58fc94
RS
12345check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12346{
12347 unsigned long opcode;
12348
d21911ea 12349 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
12350 if (MATCH (opcode, j_insn_32)
12351 /* J */
12352 || MATCH (opcode, bc_insn_32)
12353 /* BC1F, BC1T, BC2F, BC2T */
12354 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
12355 /* JAL, JALX */
12356 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
12357 /* BGEZ, BGTZ, BLEZ, BLTZ */
12358 || (MATCH (opcode, bzal_insn_32)
12359 /* BGEZAL, BLTZAL */
12360 && reg != OP32_SREG (opcode) && reg != RA)
12361 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
12362 /* JALR, JALR.HB, BEQ, BNE */
12363 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
12364 return TRUE;
12365
12366 return FALSE;
12367}
12368
80cab405
MR
12369/* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
12370 IRELEND) at OFFSET indicate that there must be a compact branch there,
12371 then return TRUE, otherwise FALSE. */
df58fc94
RS
12372
12373static bfd_boolean
80cab405
MR
12374check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
12375 const Elf_Internal_Rela *internal_relocs,
12376 const Elf_Internal_Rela *irelend)
df58fc94 12377{
80cab405
MR
12378 const Elf_Internal_Rela *irel;
12379 unsigned long opcode;
12380
d21911ea 12381 opcode = bfd_get_micromips_32 (abfd, ptr);
80cab405
MR
12382 if (find_match (opcode, bzc_insns_32) < 0)
12383 return FALSE;
df58fc94
RS
12384
12385 for (irel = internal_relocs; irel < irelend; irel++)
80cab405
MR
12386 if (irel->r_offset == offset
12387 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
12388 return TRUE;
12389
df58fc94
RS
12390 return FALSE;
12391}
80cab405
MR
12392
12393/* Bitsize checking. */
12394#define IS_BITSIZE(val, N) \
12395 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
12396 - (1ULL << ((N) - 1))) == (val))
12397
df58fc94
RS
12398\f
12399bfd_boolean
12400_bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
12401 struct bfd_link_info *link_info,
12402 bfd_boolean *again)
12403{
12404 Elf_Internal_Shdr *symtab_hdr;
12405 Elf_Internal_Rela *internal_relocs;
12406 Elf_Internal_Rela *irel, *irelend;
12407 bfd_byte *contents = NULL;
12408 Elf_Internal_Sym *isymbuf = NULL;
12409
12410 /* Assume nothing changes. */
12411 *again = FALSE;
12412
12413 /* We don't have to do anything for a relocatable link, if
12414 this section does not have relocs, or if this is not a
12415 code section. */
12416
12417 if (link_info->relocatable
12418 || (sec->flags & SEC_RELOC) == 0
12419 || sec->reloc_count == 0
12420 || (sec->flags & SEC_CODE) == 0)
12421 return TRUE;
12422
12423 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12424
12425 /* Get a copy of the native relocations. */
12426 internal_relocs = (_bfd_elf_link_read_relocs
2c3fc389 12427 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
df58fc94
RS
12428 link_info->keep_memory));
12429 if (internal_relocs == NULL)
12430 goto error_return;
12431
12432 /* Walk through them looking for relaxing opportunities. */
12433 irelend = internal_relocs + sec->reloc_count;
12434 for (irel = internal_relocs; irel < irelend; irel++)
12435 {
12436 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
12437 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
12438 bfd_boolean target_is_micromips_code_p;
12439 unsigned long opcode;
12440 bfd_vma symval;
12441 bfd_vma pcrval;
2309ddf2 12442 bfd_byte *ptr;
df58fc94
RS
12443 int fndopc;
12444
12445 /* The number of bytes to delete for relaxation and from where
12446 to delete these bytes starting at irel->r_offset. */
12447 int delcnt = 0;
12448 int deloff = 0;
12449
12450 /* If this isn't something that can be relaxed, then ignore
12451 this reloc. */
12452 if (r_type != R_MICROMIPS_HI16
12453 && r_type != R_MICROMIPS_PC16_S1
2309ddf2 12454 && r_type != R_MICROMIPS_26_S1)
df58fc94
RS
12455 continue;
12456
12457 /* Get the section contents if we haven't done so already. */
12458 if (contents == NULL)
12459 {
12460 /* Get cached copy if it exists. */
12461 if (elf_section_data (sec)->this_hdr.contents != NULL)
12462 contents = elf_section_data (sec)->this_hdr.contents;
12463 /* Go get them off disk. */
12464 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
12465 goto error_return;
12466 }
2309ddf2 12467 ptr = contents + irel->r_offset;
df58fc94
RS
12468
12469 /* Read this BFD's local symbols if we haven't done so already. */
12470 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
12471 {
12472 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
12473 if (isymbuf == NULL)
12474 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12475 symtab_hdr->sh_info, 0,
12476 NULL, NULL, NULL);
12477 if (isymbuf == NULL)
12478 goto error_return;
12479 }
12480
12481 /* Get the value of the symbol referred to by the reloc. */
12482 if (r_symndx < symtab_hdr->sh_info)
12483 {
12484 /* A local symbol. */
12485 Elf_Internal_Sym *isym;
12486 asection *sym_sec;
12487
12488 isym = isymbuf + r_symndx;
12489 if (isym->st_shndx == SHN_UNDEF)
12490 sym_sec = bfd_und_section_ptr;
12491 else if (isym->st_shndx == SHN_ABS)
12492 sym_sec = bfd_abs_section_ptr;
12493 else if (isym->st_shndx == SHN_COMMON)
12494 sym_sec = bfd_com_section_ptr;
12495 else
12496 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
12497 symval = (isym->st_value
12498 + sym_sec->output_section->vma
12499 + sym_sec->output_offset);
12500 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
12501 }
12502 else
12503 {
12504 unsigned long indx;
12505 struct elf_link_hash_entry *h;
12506
12507 /* An external symbol. */
12508 indx = r_symndx - symtab_hdr->sh_info;
12509 h = elf_sym_hashes (abfd)[indx];
12510 BFD_ASSERT (h != NULL);
12511
12512 if (h->root.type != bfd_link_hash_defined
12513 && h->root.type != bfd_link_hash_defweak)
12514 /* This appears to be a reference to an undefined
12515 symbol. Just ignore it -- it will be caught by the
12516 regular reloc processing. */
12517 continue;
12518
12519 symval = (h->root.u.def.value
12520 + h->root.u.def.section->output_section->vma
12521 + h->root.u.def.section->output_offset);
12522 target_is_micromips_code_p = (!h->needs_plt
12523 && ELF_ST_IS_MICROMIPS (h->other));
12524 }
12525
12526
12527 /* For simplicity of coding, we are going to modify the
12528 section contents, the section relocs, and the BFD symbol
12529 table. We must tell the rest of the code not to free up this
12530 information. It would be possible to instead create a table
12531 of changes which have to be made, as is done in coff-mips.c;
12532 that would be more work, but would require less memory when
12533 the linker is run. */
12534
12535 /* Only 32-bit instructions relaxed. */
12536 if (irel->r_offset + 4 > sec->size)
12537 continue;
12538
d21911ea 12539 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
12540
12541 /* This is the pc-relative distance from the instruction the
12542 relocation is applied to, to the symbol referred. */
12543 pcrval = (symval
12544 - (sec->output_section->vma + sec->output_offset)
12545 - irel->r_offset);
12546
12547 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
12548 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
12549 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
12550
12551 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
12552
12553 where pcrval has first to be adjusted to apply against the LO16
12554 location (we make the adjustment later on, when we have figured
12555 out the offset). */
12556 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
12557 {
80cab405 12558 bfd_boolean bzc = FALSE;
df58fc94
RS
12559 unsigned long nextopc;
12560 unsigned long reg;
12561 bfd_vma offset;
12562
12563 /* Give up if the previous reloc was a HI16 against this symbol
12564 too. */
12565 if (irel > internal_relocs
12566 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
12567 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
12568 continue;
12569
12570 /* Or if the next reloc is not a LO16 against this symbol. */
12571 if (irel + 1 >= irelend
12572 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
12573 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
12574 continue;
12575
12576 /* Or if the second next reloc is a LO16 against this symbol too. */
12577 if (irel + 2 >= irelend
12578 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
12579 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
12580 continue;
12581
80cab405
MR
12582 /* See if the LUI instruction *might* be in a branch delay slot.
12583 We check whether what looks like a 16-bit branch or jump is
12584 actually an immediate argument to a compact branch, and let
12585 it through if so. */
df58fc94 12586 if (irel->r_offset >= 2
2309ddf2 12587 && check_br16_dslot (abfd, ptr - 2)
df58fc94 12588 && !(irel->r_offset >= 4
80cab405
MR
12589 && (bzc = check_relocated_bzc (abfd,
12590 ptr - 4, irel->r_offset - 4,
12591 internal_relocs, irelend))))
df58fc94
RS
12592 continue;
12593 if (irel->r_offset >= 4
80cab405 12594 && !bzc
2309ddf2 12595 && check_br32_dslot (abfd, ptr - 4))
df58fc94
RS
12596 continue;
12597
12598 reg = OP32_SREG (opcode);
12599
12600 /* We only relax adjacent instructions or ones separated with
12601 a branch or jump that has a delay slot. The branch or jump
12602 must not fiddle with the register used to hold the address.
12603 Subtract 4 for the LUI itself. */
12604 offset = irel[1].r_offset - irel[0].r_offset;
12605 switch (offset - 4)
12606 {
12607 case 0:
12608 break;
12609 case 2:
2309ddf2 12610 if (check_br16 (abfd, ptr + 4, reg))
df58fc94
RS
12611 break;
12612 continue;
12613 case 4:
2309ddf2 12614 if (check_br32 (abfd, ptr + 4, reg))
df58fc94
RS
12615 break;
12616 continue;
12617 default:
12618 continue;
12619 }
12620
d21911ea 12621 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
df58fc94
RS
12622
12623 /* Give up unless the same register is used with both
12624 relocations. */
12625 if (OP32_SREG (nextopc) != reg)
12626 continue;
12627
12628 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
12629 and rounding up to take masking of the two LSBs into account. */
12630 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
12631
12632 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
12633 if (IS_BITSIZE (symval, 16))
12634 {
12635 /* Fix the relocation's type. */
12636 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
12637
12638 /* Instructions using R_MICROMIPS_LO16 have the base or
12639 source register in bits 20:16. This register becomes $0
12640 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
12641 nextopc &= ~0x001f0000;
12642 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
12643 contents + irel[1].r_offset);
12644 }
12645
12646 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
12647 We add 4 to take LUI deletion into account while checking
12648 the PC-relative distance. */
12649 else if (symval % 4 == 0
12650 && IS_BITSIZE (pcrval + 4, 25)
12651 && MATCH (nextopc, addiu_insn)
12652 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
12653 && OP16_VALID_REG (OP32_TREG (nextopc)))
12654 {
12655 /* Fix the relocation's type. */
12656 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
12657
12658 /* Replace ADDIU with the ADDIUPC version. */
12659 nextopc = (addiupc_insn.match
12660 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
12661
d21911ea
MR
12662 bfd_put_micromips_32 (abfd, nextopc,
12663 contents + irel[1].r_offset);
df58fc94
RS
12664 }
12665
12666 /* Can't do anything, give up, sigh... */
12667 else
12668 continue;
12669
12670 /* Fix the relocation's type. */
12671 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
12672
12673 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
12674 delcnt = 4;
12675 deloff = 0;
12676 }
12677
12678 /* Compact branch relaxation -- due to the multitude of macros
12679 employed by the compiler/assembler, compact branches are not
12680 always generated. Obviously, this can/will be fixed elsewhere,
12681 but there is no drawback in double checking it here. */
12682 else if (r_type == R_MICROMIPS_PC16_S1
12683 && irel->r_offset + 5 < sec->size
12684 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12685 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
2309ddf2 12686 && MATCH (bfd_get_16 (abfd, ptr + 4), nop_insn_16))
df58fc94
RS
12687 {
12688 unsigned long reg;
12689
12690 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12691
12692 /* Replace BEQZ/BNEZ with the compact version. */
12693 opcode = (bzc_insns_32[fndopc].match
12694 | BZC32_REG_FIELD (reg)
12695 | (opcode & 0xffff)); /* Addend value. */
12696
d21911ea 12697 bfd_put_micromips_32 (abfd, opcode, ptr);
df58fc94
RS
12698
12699 /* Delete the 16-bit delay slot NOP: two bytes from
12700 irel->offset + 4. */
12701 delcnt = 2;
12702 deloff = 4;
12703 }
12704
12705 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
12706 to check the distance from the next instruction, so subtract 2. */
12707 else if (r_type == R_MICROMIPS_PC16_S1
12708 && IS_BITSIZE (pcrval - 2, 11)
12709 && find_match (opcode, b_insns_32) >= 0)
12710 {
12711 /* Fix the relocation's type. */
12712 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
12713
a8685210 12714 /* Replace the 32-bit opcode with a 16-bit opcode. */
df58fc94
RS
12715 bfd_put_16 (abfd,
12716 (b_insn_16.match
12717 | (opcode & 0x3ff)), /* Addend value. */
2309ddf2 12718 ptr);
df58fc94
RS
12719
12720 /* Delete 2 bytes from irel->r_offset + 2. */
12721 delcnt = 2;
12722 deloff = 2;
12723 }
12724
12725 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
12726 to check the distance from the next instruction, so subtract 2. */
12727 else if (r_type == R_MICROMIPS_PC16_S1
12728 && IS_BITSIZE (pcrval - 2, 8)
12729 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12730 && OP16_VALID_REG (OP32_SREG (opcode)))
12731 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
12732 && OP16_VALID_REG (OP32_TREG (opcode)))))
12733 {
12734 unsigned long reg;
12735
12736 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12737
12738 /* Fix the relocation's type. */
12739 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
12740
a8685210 12741 /* Replace the 32-bit opcode with a 16-bit opcode. */
df58fc94
RS
12742 bfd_put_16 (abfd,
12743 (bz_insns_16[fndopc].match
12744 | BZ16_REG_FIELD (reg)
12745 | (opcode & 0x7f)), /* Addend value. */
2309ddf2 12746 ptr);
df58fc94
RS
12747
12748 /* Delete 2 bytes from irel->r_offset + 2. */
12749 delcnt = 2;
12750 deloff = 2;
12751 }
12752
12753 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
12754 else if (r_type == R_MICROMIPS_26_S1
12755 && target_is_micromips_code_p
12756 && irel->r_offset + 7 < sec->size
12757 && MATCH (opcode, jal_insn_32_bd32))
12758 {
12759 unsigned long n32opc;
12760 bfd_boolean relaxed = FALSE;
12761
d21911ea 12762 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
df58fc94
RS
12763
12764 if (MATCH (n32opc, nop_insn_32))
12765 {
12766 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
2309ddf2 12767 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
df58fc94
RS
12768
12769 relaxed = TRUE;
12770 }
12771 else if (find_match (n32opc, move_insns_32) >= 0)
12772 {
12773 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
12774 bfd_put_16 (abfd,
12775 (move_insn_16.match
12776 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
12777 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
2309ddf2 12778 ptr + 4);
df58fc94
RS
12779
12780 relaxed = TRUE;
12781 }
12782 /* Other 32-bit instructions relaxable to 16-bit
12783 instructions will be handled here later. */
12784
12785 if (relaxed)
12786 {
12787 /* JAL with 32-bit delay slot that is changed to a JALS
12788 with 16-bit delay slot. */
d21911ea 12789 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
df58fc94
RS
12790
12791 /* Delete 2 bytes from irel->r_offset + 6. */
12792 delcnt = 2;
12793 deloff = 6;
12794 }
12795 }
12796
12797 if (delcnt != 0)
12798 {
12799 /* Note that we've changed the relocs, section contents, etc. */
12800 elf_section_data (sec)->relocs = internal_relocs;
12801 elf_section_data (sec)->this_hdr.contents = contents;
12802 symtab_hdr->contents = (unsigned char *) isymbuf;
12803
12804 /* Delete bytes depending on the delcnt and deloff. */
12805 if (!mips_elf_relax_delete_bytes (abfd, sec,
12806 irel->r_offset + deloff, delcnt))
12807 goto error_return;
12808
12809 /* That will change things, so we should relax again.
12810 Note that this is not required, and it may be slow. */
12811 *again = TRUE;
12812 }
12813 }
12814
12815 if (isymbuf != NULL
12816 && symtab_hdr->contents != (unsigned char *) isymbuf)
12817 {
12818 if (! link_info->keep_memory)
12819 free (isymbuf);
12820 else
12821 {
12822 /* Cache the symbols for elf_link_input_bfd. */
12823 symtab_hdr->contents = (unsigned char *) isymbuf;
12824 }
12825 }
12826
12827 if (contents != NULL
12828 && elf_section_data (sec)->this_hdr.contents != contents)
12829 {
12830 if (! link_info->keep_memory)
12831 free (contents);
12832 else
12833 {
12834 /* Cache the section contents for elf_link_input_bfd. */
12835 elf_section_data (sec)->this_hdr.contents = contents;
12836 }
12837 }
12838
12839 if (internal_relocs != NULL
12840 && elf_section_data (sec)->relocs != internal_relocs)
12841 free (internal_relocs);
12842
12843 return TRUE;
12844
12845 error_return:
12846 if (isymbuf != NULL
12847 && symtab_hdr->contents != (unsigned char *) isymbuf)
12848 free (isymbuf);
12849 if (contents != NULL
12850 && elf_section_data (sec)->this_hdr.contents != contents)
12851 free (contents);
12852 if (internal_relocs != NULL
12853 && elf_section_data (sec)->relocs != internal_relocs)
12854 free (internal_relocs);
12855
12856 return FALSE;
12857}
12858\f
b49e97c9
TS
12859/* Create a MIPS ELF linker hash table. */
12860
12861struct bfd_link_hash_table *
9719ad41 12862_bfd_mips_elf_link_hash_table_create (bfd *abfd)
b49e97c9
TS
12863{
12864 struct mips_elf_link_hash_table *ret;
12865 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
12866
7bf52ea2 12867 ret = bfd_zmalloc (amt);
9719ad41 12868 if (ret == NULL)
b49e97c9
TS
12869 return NULL;
12870
66eb6687
AM
12871 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
12872 mips_elf_link_hash_newfunc,
4dfe6ac6
NC
12873 sizeof (struct mips_elf_link_hash_entry),
12874 MIPS_ELF_DATA))
b49e97c9 12875 {
e2d34d7d 12876 free (ret);
b49e97c9
TS
12877 return NULL;
12878 }
12879
b49e97c9
TS
12880 return &ret->root.root;
12881}
0a44bf69
RS
12882
12883/* Likewise, but indicate that the target is VxWorks. */
12884
12885struct bfd_link_hash_table *
12886_bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
12887{
12888 struct bfd_link_hash_table *ret;
12889
12890 ret = _bfd_mips_elf_link_hash_table_create (abfd);
12891 if (ret)
12892 {
12893 struct mips_elf_link_hash_table *htab;
12894
12895 htab = (struct mips_elf_link_hash_table *) ret;
861fb55a
DJ
12896 htab->use_plts_and_copy_relocs = TRUE;
12897 htab->is_vxworks = TRUE;
0a44bf69
RS
12898 }
12899 return ret;
12900}
861fb55a
DJ
12901
12902/* A function that the linker calls if we are allowed to use PLTs
12903 and copy relocs. */
12904
12905void
12906_bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
12907{
12908 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
12909}
b49e97c9
TS
12910\f
12911/* We need to use a special link routine to handle the .reginfo and
12912 the .mdebug sections. We need to merge all instances of these
12913 sections together, not write them all out sequentially. */
12914
b34976b6 12915bfd_boolean
9719ad41 12916_bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
b49e97c9 12917{
b49e97c9
TS
12918 asection *o;
12919 struct bfd_link_order *p;
12920 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
12921 asection *rtproc_sec;
12922 Elf32_RegInfo reginfo;
12923 struct ecoff_debug_info debug;
861fb55a 12924 struct mips_htab_traverse_info hti;
7a2a6943
NC
12925 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12926 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
b49e97c9 12927 HDRR *symhdr = &debug.symbolic_header;
9719ad41 12928 void *mdebug_handle = NULL;
b49e97c9
TS
12929 asection *s;
12930 EXTR esym;
12931 unsigned int i;
12932 bfd_size_type amt;
0a44bf69 12933 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
12934
12935 static const char * const secname[] =
12936 {
12937 ".text", ".init", ".fini", ".data",
12938 ".rodata", ".sdata", ".sbss", ".bss"
12939 };
12940 static const int sc[] =
12941 {
12942 scText, scInit, scFini, scData,
12943 scRData, scSData, scSBss, scBss
12944 };
12945
d4596a51
RS
12946 /* Sort the dynamic symbols so that those with GOT entries come after
12947 those without. */
0a44bf69 12948 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
12949 BFD_ASSERT (htab != NULL);
12950
d4596a51
RS
12951 if (!mips_elf_sort_hash_table (abfd, info))
12952 return FALSE;
b49e97c9 12953
861fb55a
DJ
12954 /* Create any scheduled LA25 stubs. */
12955 hti.info = info;
12956 hti.output_bfd = abfd;
12957 hti.error = FALSE;
12958 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
12959 if (hti.error)
12960 return FALSE;
12961
b49e97c9
TS
12962 /* Get a value for the GP register. */
12963 if (elf_gp (abfd) == 0)
12964 {
12965 struct bfd_link_hash_entry *h;
12966
b34976b6 12967 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
9719ad41 12968 if (h != NULL && h->type == bfd_link_hash_defined)
b49e97c9
TS
12969 elf_gp (abfd) = (h->u.def.value
12970 + h->u.def.section->output_section->vma
12971 + h->u.def.section->output_offset);
0a44bf69
RS
12972 else if (htab->is_vxworks
12973 && (h = bfd_link_hash_lookup (info->hash,
12974 "_GLOBAL_OFFSET_TABLE_",
12975 FALSE, FALSE, TRUE))
12976 && h->type == bfd_link_hash_defined)
12977 elf_gp (abfd) = (h->u.def.section->output_section->vma
12978 + h->u.def.section->output_offset
12979 + h->u.def.value);
1049f94e 12980 else if (info->relocatable)
b49e97c9
TS
12981 {
12982 bfd_vma lo = MINUS_ONE;
12983
12984 /* Find the GP-relative section with the lowest offset. */
9719ad41 12985 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
12986 if (o->vma < lo
12987 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
12988 lo = o->vma;
12989
12990 /* And calculate GP relative to that. */
0a44bf69 12991 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
b49e97c9
TS
12992 }
12993 else
12994 {
12995 /* If the relocate_section function needs to do a reloc
12996 involving the GP value, it should make a reloc_dangerous
12997 callback to warn that GP is not defined. */
12998 }
12999 }
13000
13001 /* Go through the sections and collect the .reginfo and .mdebug
13002 information. */
13003 reginfo_sec = NULL;
13004 mdebug_sec = NULL;
13005 gptab_data_sec = NULL;
13006 gptab_bss_sec = NULL;
9719ad41 13007 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
13008 {
13009 if (strcmp (o->name, ".reginfo") == 0)
13010 {
13011 memset (&reginfo, 0, sizeof reginfo);
13012
13013 /* We have found the .reginfo section in the output file.
13014 Look through all the link_orders comprising it and merge
13015 the information together. */
8423293d 13016 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
13017 {
13018 asection *input_section;
13019 bfd *input_bfd;
13020 Elf32_External_RegInfo ext;
13021 Elf32_RegInfo sub;
13022
13023 if (p->type != bfd_indirect_link_order)
13024 {
13025 if (p->type == bfd_data_link_order)
13026 continue;
13027 abort ();
13028 }
13029
13030 input_section = p->u.indirect.section;
13031 input_bfd = input_section->owner;
13032
b49e97c9 13033 if (! bfd_get_section_contents (input_bfd, input_section,
9719ad41 13034 &ext, 0, sizeof ext))
b34976b6 13035 return FALSE;
b49e97c9
TS
13036
13037 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
13038
13039 reginfo.ri_gprmask |= sub.ri_gprmask;
13040 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
13041 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
13042 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
13043 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
13044
13045 /* ri_gp_value is set by the function
13046 mips_elf32_section_processing when the section is
13047 finally written out. */
13048
13049 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13050 elf_link_input_bfd ignores this section. */
13051 input_section->flags &= ~SEC_HAS_CONTENTS;
13052 }
13053
13054 /* Size has been set in _bfd_mips_elf_always_size_sections. */
eea6121a 13055 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
b49e97c9
TS
13056
13057 /* Skip this section later on (I don't think this currently
13058 matters, but someday it might). */
8423293d 13059 o->map_head.link_order = NULL;
b49e97c9
TS
13060
13061 reginfo_sec = o;
13062 }
13063
13064 if (strcmp (o->name, ".mdebug") == 0)
13065 {
13066 struct extsym_info einfo;
13067 bfd_vma last;
13068
13069 /* We have found the .mdebug section in the output file.
13070 Look through all the link_orders comprising it and merge
13071 the information together. */
13072 symhdr->magic = swap->sym_magic;
13073 /* FIXME: What should the version stamp be? */
13074 symhdr->vstamp = 0;
13075 symhdr->ilineMax = 0;
13076 symhdr->cbLine = 0;
13077 symhdr->idnMax = 0;
13078 symhdr->ipdMax = 0;
13079 symhdr->isymMax = 0;
13080 symhdr->ioptMax = 0;
13081 symhdr->iauxMax = 0;
13082 symhdr->issMax = 0;
13083 symhdr->issExtMax = 0;
13084 symhdr->ifdMax = 0;
13085 symhdr->crfd = 0;
13086 symhdr->iextMax = 0;
13087
13088 /* We accumulate the debugging information itself in the
13089 debug_info structure. */
13090 debug.line = NULL;
13091 debug.external_dnr = NULL;
13092 debug.external_pdr = NULL;
13093 debug.external_sym = NULL;
13094 debug.external_opt = NULL;
13095 debug.external_aux = NULL;
13096 debug.ss = NULL;
13097 debug.ssext = debug.ssext_end = NULL;
13098 debug.external_fdr = NULL;
13099 debug.external_rfd = NULL;
13100 debug.external_ext = debug.external_ext_end = NULL;
13101
13102 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
9719ad41 13103 if (mdebug_handle == NULL)
b34976b6 13104 return FALSE;
b49e97c9
TS
13105
13106 esym.jmptbl = 0;
13107 esym.cobol_main = 0;
13108 esym.weakext = 0;
13109 esym.reserved = 0;
13110 esym.ifd = ifdNil;
13111 esym.asym.iss = issNil;
13112 esym.asym.st = stLocal;
13113 esym.asym.reserved = 0;
13114 esym.asym.index = indexNil;
13115 last = 0;
13116 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
13117 {
13118 esym.asym.sc = sc[i];
13119 s = bfd_get_section_by_name (abfd, secname[i]);
13120 if (s != NULL)
13121 {
13122 esym.asym.value = s->vma;
eea6121a 13123 last = s->vma + s->size;
b49e97c9
TS
13124 }
13125 else
13126 esym.asym.value = last;
13127 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
13128 secname[i], &esym))
b34976b6 13129 return FALSE;
b49e97c9
TS
13130 }
13131
8423293d 13132 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
13133 {
13134 asection *input_section;
13135 bfd *input_bfd;
13136 const struct ecoff_debug_swap *input_swap;
13137 struct ecoff_debug_info input_debug;
13138 char *eraw_src;
13139 char *eraw_end;
13140
13141 if (p->type != bfd_indirect_link_order)
13142 {
13143 if (p->type == bfd_data_link_order)
13144 continue;
13145 abort ();
13146 }
13147
13148 input_section = p->u.indirect.section;
13149 input_bfd = input_section->owner;
13150
d5eaccd7 13151 if (!is_mips_elf (input_bfd))
b49e97c9
TS
13152 {
13153 /* I don't know what a non MIPS ELF bfd would be
13154 doing with a .mdebug section, but I don't really
13155 want to deal with it. */
13156 continue;
13157 }
13158
13159 input_swap = (get_elf_backend_data (input_bfd)
13160 ->elf_backend_ecoff_debug_swap);
13161
eea6121a 13162 BFD_ASSERT (p->size == input_section->size);
b49e97c9
TS
13163
13164 /* The ECOFF linking code expects that we have already
13165 read in the debugging information and set up an
13166 ecoff_debug_info structure, so we do that now. */
13167 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
13168 &input_debug))
b34976b6 13169 return FALSE;
b49e97c9
TS
13170
13171 if (! (bfd_ecoff_debug_accumulate
13172 (mdebug_handle, abfd, &debug, swap, input_bfd,
13173 &input_debug, input_swap, info)))
b34976b6 13174 return FALSE;
b49e97c9
TS
13175
13176 /* Loop through the external symbols. For each one with
13177 interesting information, try to find the symbol in
13178 the linker global hash table and save the information
13179 for the output external symbols. */
13180 eraw_src = input_debug.external_ext;
13181 eraw_end = (eraw_src
13182 + (input_debug.symbolic_header.iextMax
13183 * input_swap->external_ext_size));
13184 for (;
13185 eraw_src < eraw_end;
13186 eraw_src += input_swap->external_ext_size)
13187 {
13188 EXTR ext;
13189 const char *name;
13190 struct mips_elf_link_hash_entry *h;
13191
9719ad41 13192 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
b49e97c9
TS
13193 if (ext.asym.sc == scNil
13194 || ext.asym.sc == scUndefined
13195 || ext.asym.sc == scSUndefined)
13196 continue;
13197
13198 name = input_debug.ssext + ext.asym.iss;
13199 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
b34976b6 13200 name, FALSE, FALSE, TRUE);
b49e97c9
TS
13201 if (h == NULL || h->esym.ifd != -2)
13202 continue;
13203
13204 if (ext.ifd != -1)
13205 {
13206 BFD_ASSERT (ext.ifd
13207 < input_debug.symbolic_header.ifdMax);
13208 ext.ifd = input_debug.ifdmap[ext.ifd];
13209 }
13210
13211 h->esym = ext;
13212 }
13213
13214 /* Free up the information we just read. */
13215 free (input_debug.line);
13216 free (input_debug.external_dnr);
13217 free (input_debug.external_pdr);
13218 free (input_debug.external_sym);
13219 free (input_debug.external_opt);
13220 free (input_debug.external_aux);
13221 free (input_debug.ss);
13222 free (input_debug.ssext);
13223 free (input_debug.external_fdr);
13224 free (input_debug.external_rfd);
13225 free (input_debug.external_ext);
13226
13227 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13228 elf_link_input_bfd ignores this section. */
13229 input_section->flags &= ~SEC_HAS_CONTENTS;
13230 }
13231
13232 if (SGI_COMPAT (abfd) && info->shared)
13233 {
13234 /* Create .rtproc section. */
87e0a731 13235 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
b49e97c9
TS
13236 if (rtproc_sec == NULL)
13237 {
13238 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
13239 | SEC_LINKER_CREATED | SEC_READONLY);
13240
87e0a731
AM
13241 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
13242 ".rtproc",
13243 flags);
b49e97c9 13244 if (rtproc_sec == NULL
b49e97c9 13245 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
b34976b6 13246 return FALSE;
b49e97c9
TS
13247 }
13248
13249 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
13250 info, rtproc_sec,
13251 &debug))
b34976b6 13252 return FALSE;
b49e97c9
TS
13253 }
13254
13255 /* Build the external symbol information. */
13256 einfo.abfd = abfd;
13257 einfo.info = info;
13258 einfo.debug = &debug;
13259 einfo.swap = swap;
b34976b6 13260 einfo.failed = FALSE;
b49e97c9 13261 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 13262 mips_elf_output_extsym, &einfo);
b49e97c9 13263 if (einfo.failed)
b34976b6 13264 return FALSE;
b49e97c9
TS
13265
13266 /* Set the size of the .mdebug section. */
eea6121a 13267 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
b49e97c9
TS
13268
13269 /* Skip this section later on (I don't think this currently
13270 matters, but someday it might). */
8423293d 13271 o->map_head.link_order = NULL;
b49e97c9
TS
13272
13273 mdebug_sec = o;
13274 }
13275
0112cd26 13276 if (CONST_STRNEQ (o->name, ".gptab."))
b49e97c9
TS
13277 {
13278 const char *subname;
13279 unsigned int c;
13280 Elf32_gptab *tab;
13281 Elf32_External_gptab *ext_tab;
13282 unsigned int j;
13283
13284 /* The .gptab.sdata and .gptab.sbss sections hold
13285 information describing how the small data area would
13286 change depending upon the -G switch. These sections
13287 not used in executables files. */
1049f94e 13288 if (! info->relocatable)
b49e97c9 13289 {
8423293d 13290 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
13291 {
13292 asection *input_section;
13293
13294 if (p->type != bfd_indirect_link_order)
13295 {
13296 if (p->type == bfd_data_link_order)
13297 continue;
13298 abort ();
13299 }
13300
13301 input_section = p->u.indirect.section;
13302
13303 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13304 elf_link_input_bfd ignores this section. */
13305 input_section->flags &= ~SEC_HAS_CONTENTS;
13306 }
13307
13308 /* Skip this section later on (I don't think this
13309 currently matters, but someday it might). */
8423293d 13310 o->map_head.link_order = NULL;
b49e97c9
TS
13311
13312 /* Really remove the section. */
5daa8fe7 13313 bfd_section_list_remove (abfd, o);
b49e97c9
TS
13314 --abfd->section_count;
13315
13316 continue;
13317 }
13318
13319 /* There is one gptab for initialized data, and one for
13320 uninitialized data. */
13321 if (strcmp (o->name, ".gptab.sdata") == 0)
13322 gptab_data_sec = o;
13323 else if (strcmp (o->name, ".gptab.sbss") == 0)
13324 gptab_bss_sec = o;
13325 else
13326 {
13327 (*_bfd_error_handler)
13328 (_("%s: illegal section name `%s'"),
13329 bfd_get_filename (abfd), o->name);
13330 bfd_set_error (bfd_error_nonrepresentable_section);
b34976b6 13331 return FALSE;
b49e97c9
TS
13332 }
13333
13334 /* The linker script always combines .gptab.data and
13335 .gptab.sdata into .gptab.sdata, and likewise for
13336 .gptab.bss and .gptab.sbss. It is possible that there is
13337 no .sdata or .sbss section in the output file, in which
13338 case we must change the name of the output section. */
13339 subname = o->name + sizeof ".gptab" - 1;
13340 if (bfd_get_section_by_name (abfd, subname) == NULL)
13341 {
13342 if (o == gptab_data_sec)
13343 o->name = ".gptab.data";
13344 else
13345 o->name = ".gptab.bss";
13346 subname = o->name + sizeof ".gptab" - 1;
13347 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
13348 }
13349
13350 /* Set up the first entry. */
13351 c = 1;
13352 amt = c * sizeof (Elf32_gptab);
9719ad41 13353 tab = bfd_malloc (amt);
b49e97c9 13354 if (tab == NULL)
b34976b6 13355 return FALSE;
b49e97c9
TS
13356 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
13357 tab[0].gt_header.gt_unused = 0;
13358
13359 /* Combine the input sections. */
8423293d 13360 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
13361 {
13362 asection *input_section;
13363 bfd *input_bfd;
13364 bfd_size_type size;
13365 unsigned long last;
13366 bfd_size_type gpentry;
13367
13368 if (p->type != bfd_indirect_link_order)
13369 {
13370 if (p->type == bfd_data_link_order)
13371 continue;
13372 abort ();
13373 }
13374
13375 input_section = p->u.indirect.section;
13376 input_bfd = input_section->owner;
13377
13378 /* Combine the gptab entries for this input section one
13379 by one. We know that the input gptab entries are
13380 sorted by ascending -G value. */
eea6121a 13381 size = input_section->size;
b49e97c9
TS
13382 last = 0;
13383 for (gpentry = sizeof (Elf32_External_gptab);
13384 gpentry < size;
13385 gpentry += sizeof (Elf32_External_gptab))
13386 {
13387 Elf32_External_gptab ext_gptab;
13388 Elf32_gptab int_gptab;
13389 unsigned long val;
13390 unsigned long add;
b34976b6 13391 bfd_boolean exact;
b49e97c9
TS
13392 unsigned int look;
13393
13394 if (! (bfd_get_section_contents
9719ad41
RS
13395 (input_bfd, input_section, &ext_gptab, gpentry,
13396 sizeof (Elf32_External_gptab))))
b49e97c9
TS
13397 {
13398 free (tab);
b34976b6 13399 return FALSE;
b49e97c9
TS
13400 }
13401
13402 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
13403 &int_gptab);
13404 val = int_gptab.gt_entry.gt_g_value;
13405 add = int_gptab.gt_entry.gt_bytes - last;
13406
b34976b6 13407 exact = FALSE;
b49e97c9
TS
13408 for (look = 1; look < c; look++)
13409 {
13410 if (tab[look].gt_entry.gt_g_value >= val)
13411 tab[look].gt_entry.gt_bytes += add;
13412
13413 if (tab[look].gt_entry.gt_g_value == val)
b34976b6 13414 exact = TRUE;
b49e97c9
TS
13415 }
13416
13417 if (! exact)
13418 {
13419 Elf32_gptab *new_tab;
13420 unsigned int max;
13421
13422 /* We need a new table entry. */
13423 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
9719ad41 13424 new_tab = bfd_realloc (tab, amt);
b49e97c9
TS
13425 if (new_tab == NULL)
13426 {
13427 free (tab);
b34976b6 13428 return FALSE;
b49e97c9
TS
13429 }
13430 tab = new_tab;
13431 tab[c].gt_entry.gt_g_value = val;
13432 tab[c].gt_entry.gt_bytes = add;
13433
13434 /* Merge in the size for the next smallest -G
13435 value, since that will be implied by this new
13436 value. */
13437 max = 0;
13438 for (look = 1; look < c; look++)
13439 {
13440 if (tab[look].gt_entry.gt_g_value < val
13441 && (max == 0
13442 || (tab[look].gt_entry.gt_g_value
13443 > tab[max].gt_entry.gt_g_value)))
13444 max = look;
13445 }
13446 if (max != 0)
13447 tab[c].gt_entry.gt_bytes +=
13448 tab[max].gt_entry.gt_bytes;
13449
13450 ++c;
13451 }
13452
13453 last = int_gptab.gt_entry.gt_bytes;
13454 }
13455
13456 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13457 elf_link_input_bfd ignores this section. */
13458 input_section->flags &= ~SEC_HAS_CONTENTS;
13459 }
13460
13461 /* The table must be sorted by -G value. */
13462 if (c > 2)
13463 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
13464
13465 /* Swap out the table. */
13466 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
9719ad41 13467 ext_tab = bfd_alloc (abfd, amt);
b49e97c9
TS
13468 if (ext_tab == NULL)
13469 {
13470 free (tab);
b34976b6 13471 return FALSE;
b49e97c9
TS
13472 }
13473
13474 for (j = 0; j < c; j++)
13475 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
13476 free (tab);
13477
eea6121a 13478 o->size = c * sizeof (Elf32_External_gptab);
b49e97c9
TS
13479 o->contents = (bfd_byte *) ext_tab;
13480
13481 /* Skip this section later on (I don't think this currently
13482 matters, but someday it might). */
8423293d 13483 o->map_head.link_order = NULL;
b49e97c9
TS
13484 }
13485 }
13486
13487 /* Invoke the regular ELF backend linker to do all the work. */
c152c796 13488 if (!bfd_elf_final_link (abfd, info))
b34976b6 13489 return FALSE;
b49e97c9
TS
13490
13491 /* Now write out the computed sections. */
13492
9719ad41 13493 if (reginfo_sec != NULL)
b49e97c9
TS
13494 {
13495 Elf32_External_RegInfo ext;
13496
13497 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
9719ad41 13498 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
b34976b6 13499 return FALSE;
b49e97c9
TS
13500 }
13501
9719ad41 13502 if (mdebug_sec != NULL)
b49e97c9
TS
13503 {
13504 BFD_ASSERT (abfd->output_has_begun);
13505 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
13506 swap, info,
13507 mdebug_sec->filepos))
b34976b6 13508 return FALSE;
b49e97c9
TS
13509
13510 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
13511 }
13512
9719ad41 13513 if (gptab_data_sec != NULL)
b49e97c9
TS
13514 {
13515 if (! bfd_set_section_contents (abfd, gptab_data_sec,
13516 gptab_data_sec->contents,
eea6121a 13517 0, gptab_data_sec->size))
b34976b6 13518 return FALSE;
b49e97c9
TS
13519 }
13520
9719ad41 13521 if (gptab_bss_sec != NULL)
b49e97c9
TS
13522 {
13523 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
13524 gptab_bss_sec->contents,
eea6121a 13525 0, gptab_bss_sec->size))
b34976b6 13526 return FALSE;
b49e97c9
TS
13527 }
13528
13529 if (SGI_COMPAT (abfd))
13530 {
13531 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
13532 if (rtproc_sec != NULL)
13533 {
13534 if (! bfd_set_section_contents (abfd, rtproc_sec,
13535 rtproc_sec->contents,
eea6121a 13536 0, rtproc_sec->size))
b34976b6 13537 return FALSE;
b49e97c9
TS
13538 }
13539 }
13540
b34976b6 13541 return TRUE;
b49e97c9
TS
13542}
13543\f
64543e1a
RS
13544/* Structure for saying that BFD machine EXTENSION extends BASE. */
13545
13546struct mips_mach_extension {
13547 unsigned long extension, base;
13548};
13549
13550
13551/* An array describing how BFD machines relate to one another. The entries
13552 are ordered topologically with MIPS I extensions listed last. */
13553
13554static const struct mips_mach_extension mips_mach_extensions[] = {
6f179bd0 13555 /* MIPS64r2 extensions. */
432233b3 13556 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
dd6a37e7 13557 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
6f179bd0
AN
13558 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
13559
64543e1a 13560 /* MIPS64 extensions. */
5f74bc13 13561 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
64543e1a 13562 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
52b6b6b9 13563 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
fd503541 13564 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64 },
64543e1a
RS
13565
13566 /* MIPS V extensions. */
13567 { bfd_mach_mipsisa64, bfd_mach_mips5 },
13568
13569 /* R10000 extensions. */
13570 { bfd_mach_mips12000, bfd_mach_mips10000 },
3aa3176b
TS
13571 { bfd_mach_mips14000, bfd_mach_mips10000 },
13572 { bfd_mach_mips16000, bfd_mach_mips10000 },
64543e1a
RS
13573
13574 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
13575 vr5400 ISA, but doesn't include the multimedia stuff. It seems
13576 better to allow vr5400 and vr5500 code to be merged anyway, since
13577 many libraries will just use the core ISA. Perhaps we could add
13578 some sort of ASE flag if this ever proves a problem. */
13579 { bfd_mach_mips5500, bfd_mach_mips5400 },
13580 { bfd_mach_mips5400, bfd_mach_mips5000 },
13581
13582 /* MIPS IV extensions. */
13583 { bfd_mach_mips5, bfd_mach_mips8000 },
13584 { bfd_mach_mips10000, bfd_mach_mips8000 },
13585 { bfd_mach_mips5000, bfd_mach_mips8000 },
5a7ea749 13586 { bfd_mach_mips7000, bfd_mach_mips8000 },
0d2e43ed 13587 { bfd_mach_mips9000, bfd_mach_mips8000 },
64543e1a
RS
13588
13589 /* VR4100 extensions. */
13590 { bfd_mach_mips4120, bfd_mach_mips4100 },
13591 { bfd_mach_mips4111, bfd_mach_mips4100 },
13592
13593 /* MIPS III extensions. */
350cc38d
MS
13594 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
13595 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
64543e1a
RS
13596 { bfd_mach_mips8000, bfd_mach_mips4000 },
13597 { bfd_mach_mips4650, bfd_mach_mips4000 },
13598 { bfd_mach_mips4600, bfd_mach_mips4000 },
13599 { bfd_mach_mips4400, bfd_mach_mips4000 },
13600 { bfd_mach_mips4300, bfd_mach_mips4000 },
13601 { bfd_mach_mips4100, bfd_mach_mips4000 },
13602 { bfd_mach_mips4010, bfd_mach_mips4000 },
e407c74b 13603 { bfd_mach_mips5900, bfd_mach_mips4000 },
64543e1a
RS
13604
13605 /* MIPS32 extensions. */
13606 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
13607
13608 /* MIPS II extensions. */
13609 { bfd_mach_mips4000, bfd_mach_mips6000 },
13610 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
13611
13612 /* MIPS I extensions. */
13613 { bfd_mach_mips6000, bfd_mach_mips3000 },
13614 { bfd_mach_mips3900, bfd_mach_mips3000 }
13615};
13616
13617
13618/* Return true if bfd machine EXTENSION is an extension of machine BASE. */
13619
13620static bfd_boolean
9719ad41 13621mips_mach_extends_p (unsigned long base, unsigned long extension)
64543e1a
RS
13622{
13623 size_t i;
13624
c5211a54
RS
13625 if (extension == base)
13626 return TRUE;
13627
13628 if (base == bfd_mach_mipsisa32
13629 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
13630 return TRUE;
13631
13632 if (base == bfd_mach_mipsisa32r2
13633 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
13634 return TRUE;
13635
13636 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
64543e1a 13637 if (extension == mips_mach_extensions[i].extension)
c5211a54
RS
13638 {
13639 extension = mips_mach_extensions[i].base;
13640 if (extension == base)
13641 return TRUE;
13642 }
64543e1a 13643
c5211a54 13644 return FALSE;
64543e1a
RS
13645}
13646
13647
13648/* Return true if the given ELF header flags describe a 32-bit binary. */
00707a0e 13649
b34976b6 13650static bfd_boolean
9719ad41 13651mips_32bit_flags_p (flagword flags)
00707a0e 13652{
64543e1a
RS
13653 return ((flags & EF_MIPS_32BITMODE) != 0
13654 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
13655 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
13656 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
13657 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
13658 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
13659 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
00707a0e
RS
13660}
13661
64543e1a 13662
2cf19d5c
JM
13663/* Merge object attributes from IBFD into OBFD. Raise an error if
13664 there are conflicting attributes. */
13665static bfd_boolean
13666mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
13667{
13668 obj_attribute *in_attr;
13669 obj_attribute *out_attr;
6ae68ba3
MR
13670 bfd *abi_fp_bfd;
13671
13672 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
13673 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
13674 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != 0)
13675 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
2cf19d5c
JM
13676
13677 if (!elf_known_obj_attributes_proc (obfd)[0].i)
13678 {
13679 /* This is the first object. Copy the attributes. */
13680 _bfd_elf_copy_obj_attributes (ibfd, obfd);
13681
13682 /* Use the Tag_null value to indicate the attributes have been
13683 initialized. */
13684 elf_known_obj_attributes_proc (obfd)[0].i = 1;
13685
13686 return TRUE;
13687 }
13688
13689 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
13690 non-conflicting ones. */
2cf19d5c
JM
13691 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
13692 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
13693 {
13694 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
13695 if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
13696 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
6ae68ba3 13697 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i != 0)
2cf19d5c
JM
13698 switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
13699 {
13700 case 1:
13701 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13702 {
13703 case 2:
13704 _bfd_error_handler
6ae68ba3
MR
13705 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13706 obfd, abi_fp_bfd, ibfd, "-mdouble-float", "-msingle-float");
51a0dd31 13707 break;
2cf19d5c
JM
13708
13709 case 3:
13710 _bfd_error_handler
6ae68ba3
MR
13711 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13712 obfd, abi_fp_bfd, ibfd, "-mhard-float", "-msoft-float");
2cf19d5c
JM
13713 break;
13714
42554f6a
TS
13715 case 4:
13716 _bfd_error_handler
6ae68ba3
MR
13717 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13718 obfd, abi_fp_bfd, ibfd,
13719 "-mdouble-float", "-mips32r2 -mfp64");
42554f6a
TS
13720 break;
13721
2cf19d5c 13722 default:
6ae68ba3
MR
13723 _bfd_error_handler
13724 (_("Warning: %B uses %s (set by %B), "
13725 "%B uses unknown floating point ABI %d"),
13726 obfd, abi_fp_bfd, ibfd,
13727 "-mdouble-float", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13728 break;
2cf19d5c
JM
13729 }
13730 break;
13731
13732 case 2:
13733 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13734 {
13735 case 1:
13736 _bfd_error_handler
6ae68ba3
MR
13737 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13738 obfd, abi_fp_bfd, ibfd, "-msingle-float", "-mdouble-float");
51a0dd31 13739 break;
2cf19d5c
JM
13740
13741 case 3:
13742 _bfd_error_handler
6ae68ba3
MR
13743 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13744 obfd, abi_fp_bfd, ibfd, "-mhard-float", "-msoft-float");
2cf19d5c
JM
13745 break;
13746
42554f6a
TS
13747 case 4:
13748 _bfd_error_handler
6ae68ba3
MR
13749 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13750 obfd, abi_fp_bfd, ibfd,
13751 "-msingle-float", "-mips32r2 -mfp64");
42554f6a
TS
13752 break;
13753
2cf19d5c 13754 default:
6ae68ba3
MR
13755 _bfd_error_handler
13756 (_("Warning: %B uses %s (set by %B), "
13757 "%B uses unknown floating point ABI %d"),
13758 obfd, abi_fp_bfd, ibfd,
13759 "-msingle-float", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13760 break;
2cf19d5c
JM
13761 }
13762 break;
13763
13764 case 3:
13765 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13766 {
13767 case 1:
13768 case 2:
42554f6a 13769 case 4:
2cf19d5c 13770 _bfd_error_handler
6ae68ba3
MR
13771 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13772 obfd, abi_fp_bfd, ibfd, "-msoft-float", "-mhard-float");
2cf19d5c
JM
13773 break;
13774
13775 default:
6ae68ba3
MR
13776 _bfd_error_handler
13777 (_("Warning: %B uses %s (set by %B), "
13778 "%B uses unknown floating point ABI %d"),
13779 obfd, abi_fp_bfd, ibfd,
13780 "-msoft-float", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13781 break;
2cf19d5c
JM
13782 }
13783 break;
13784
42554f6a
TS
13785 case 4:
13786 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13787 {
13788 case 1:
13789 _bfd_error_handler
6ae68ba3
MR
13790 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13791 obfd, abi_fp_bfd, ibfd,
13792 "-mips32r2 -mfp64", "-mdouble-float");
42554f6a
TS
13793 break;
13794
13795 case 2:
13796 _bfd_error_handler
6ae68ba3
MR
13797 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13798 obfd, abi_fp_bfd, ibfd,
13799 "-mips32r2 -mfp64", "-msingle-float");
42554f6a
TS
13800 break;
13801
13802 case 3:
13803 _bfd_error_handler
6ae68ba3
MR
13804 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13805 obfd, abi_fp_bfd, ibfd, "-mhard-float", "-msoft-float");
42554f6a
TS
13806 break;
13807
13808 default:
6ae68ba3
MR
13809 _bfd_error_handler
13810 (_("Warning: %B uses %s (set by %B), "
13811 "%B uses unknown floating point ABI %d"),
13812 obfd, abi_fp_bfd, ibfd,
13813 "-mips32r2 -mfp64", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13814 break;
42554f6a
TS
13815 }
13816 break;
13817
2cf19d5c 13818 default:
6ae68ba3
MR
13819 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13820 {
13821 case 1:
13822 _bfd_error_handler
13823 (_("Warning: %B uses unknown floating point ABI %d "
13824 "(set by %B), %B uses %s"),
13825 obfd, abi_fp_bfd, ibfd,
13826 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-mdouble-float");
13827 break;
13828
13829 case 2:
13830 _bfd_error_handler
13831 (_("Warning: %B uses unknown floating point ABI %d "
13832 "(set by %B), %B uses %s"),
13833 obfd, abi_fp_bfd, ibfd,
13834 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-msingle-float");
13835 break;
13836
13837 case 3:
13838 _bfd_error_handler
13839 (_("Warning: %B uses unknown floating point ABI %d "
13840 "(set by %B), %B uses %s"),
13841 obfd, abi_fp_bfd, ibfd,
13842 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-msoft-float");
13843 break;
13844
13845 case 4:
13846 _bfd_error_handler
13847 (_("Warning: %B uses unknown floating point ABI %d "
13848 "(set by %B), %B uses %s"),
13849 obfd, abi_fp_bfd, ibfd,
13850 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-mips32r2 -mfp64");
13851 break;
13852
13853 default:
13854 _bfd_error_handler
13855 (_("Warning: %B uses unknown floating point ABI %d "
13856 "(set by %B), %B uses unknown floating point ABI %d"),
13857 obfd, abi_fp_bfd, ibfd,
13858 out_attr[Tag_GNU_MIPS_ABI_FP].i,
13859 in_attr[Tag_GNU_MIPS_ABI_FP].i);
13860 break;
13861 }
13862 break;
2cf19d5c
JM
13863 }
13864 }
13865
13866 /* Merge Tag_compatibility attributes and any common GNU ones. */
13867 _bfd_elf_merge_object_attributes (ibfd, obfd);
13868
13869 return TRUE;
13870}
13871
b49e97c9
TS
13872/* Merge backend specific data from an object file to the output
13873 object file when linking. */
13874
b34976b6 13875bfd_boolean
9719ad41 13876_bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
b49e97c9
TS
13877{
13878 flagword old_flags;
13879 flagword new_flags;
b34976b6
AM
13880 bfd_boolean ok;
13881 bfd_boolean null_input_bfd = TRUE;
b49e97c9
TS
13882 asection *sec;
13883
58238693 13884 /* Check if we have the same endianness. */
82e51918 13885 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
aa701218
AO
13886 {
13887 (*_bfd_error_handler)
d003868e
AM
13888 (_("%B: endianness incompatible with that of the selected emulation"),
13889 ibfd);
aa701218
AO
13890 return FALSE;
13891 }
b49e97c9 13892
d5eaccd7 13893 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
b34976b6 13894 return TRUE;
b49e97c9 13895
aa701218
AO
13896 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
13897 {
13898 (*_bfd_error_handler)
d003868e
AM
13899 (_("%B: ABI is incompatible with that of the selected emulation"),
13900 ibfd);
aa701218
AO
13901 return FALSE;
13902 }
13903
2cf19d5c
JM
13904 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
13905 return FALSE;
13906
b49e97c9
TS
13907 new_flags = elf_elfheader (ibfd)->e_flags;
13908 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
13909 old_flags = elf_elfheader (obfd)->e_flags;
13910
13911 if (! elf_flags_init (obfd))
13912 {
b34976b6 13913 elf_flags_init (obfd) = TRUE;
b49e97c9
TS
13914 elf_elfheader (obfd)->e_flags = new_flags;
13915 elf_elfheader (obfd)->e_ident[EI_CLASS]
13916 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
13917
13918 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2907b861 13919 && (bfd_get_arch_info (obfd)->the_default
68ffbac6 13920 || mips_mach_extends_p (bfd_get_mach (obfd),
2907b861 13921 bfd_get_mach (ibfd))))
b49e97c9
TS
13922 {
13923 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
13924 bfd_get_mach (ibfd)))
b34976b6 13925 return FALSE;
b49e97c9
TS
13926 }
13927
b34976b6 13928 return TRUE;
b49e97c9
TS
13929 }
13930
13931 /* Check flag compatibility. */
13932
13933 new_flags &= ~EF_MIPS_NOREORDER;
13934 old_flags &= ~EF_MIPS_NOREORDER;
13935
f4416af6
AO
13936 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
13937 doesn't seem to matter. */
13938 new_flags &= ~EF_MIPS_XGOT;
13939 old_flags &= ~EF_MIPS_XGOT;
13940
98a8deaf
RS
13941 /* MIPSpro generates ucode info in n64 objects. Again, we should
13942 just be able to ignore this. */
13943 new_flags &= ~EF_MIPS_UCODE;
13944 old_flags &= ~EF_MIPS_UCODE;
13945
861fb55a
DJ
13946 /* DSOs should only be linked with CPIC code. */
13947 if ((ibfd->flags & DYNAMIC) != 0)
13948 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
0a44bf69 13949
b49e97c9 13950 if (new_flags == old_flags)
b34976b6 13951 return TRUE;
b49e97c9
TS
13952
13953 /* Check to see if the input BFD actually contains any sections.
13954 If not, its flags may not have been initialised either, but it cannot
13955 actually cause any incompatibility. */
13956 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
13957 {
13958 /* Ignore synthetic sections and empty .text, .data and .bss sections
ed88c97e
RS
13959 which are automatically generated by gas. Also ignore fake
13960 (s)common sections, since merely defining a common symbol does
13961 not affect compatibility. */
13962 if ((sec->flags & SEC_IS_COMMON) == 0
13963 && strcmp (sec->name, ".reginfo")
b49e97c9 13964 && strcmp (sec->name, ".mdebug")
eea6121a 13965 && (sec->size != 0
d13d89fa
NS
13966 || (strcmp (sec->name, ".text")
13967 && strcmp (sec->name, ".data")
13968 && strcmp (sec->name, ".bss"))))
b49e97c9 13969 {
b34976b6 13970 null_input_bfd = FALSE;
b49e97c9
TS
13971 break;
13972 }
13973 }
13974 if (null_input_bfd)
b34976b6 13975 return TRUE;
b49e97c9 13976
b34976b6 13977 ok = TRUE;
b49e97c9 13978
143d77c5
EC
13979 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
13980 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
b49e97c9 13981 {
b49e97c9 13982 (*_bfd_error_handler)
861fb55a 13983 (_("%B: warning: linking abicalls files with non-abicalls files"),
d003868e 13984 ibfd);
143d77c5 13985 ok = TRUE;
b49e97c9
TS
13986 }
13987
143d77c5
EC
13988 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
13989 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
13990 if (! (new_flags & EF_MIPS_PIC))
13991 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
13992
13993 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
13994 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
b49e97c9 13995
64543e1a
RS
13996 /* Compare the ISAs. */
13997 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
b49e97c9 13998 {
64543e1a 13999 (*_bfd_error_handler)
d003868e
AM
14000 (_("%B: linking 32-bit code with 64-bit code"),
14001 ibfd);
64543e1a
RS
14002 ok = FALSE;
14003 }
14004 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
14005 {
14006 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
14007 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
b49e97c9 14008 {
64543e1a
RS
14009 /* Copy the architecture info from IBFD to OBFD. Also copy
14010 the 32-bit flag (if set) so that we continue to recognise
14011 OBFD as a 32-bit binary. */
14012 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
14013 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
14014 elf_elfheader (obfd)->e_flags
14015 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14016
14017 /* Copy across the ABI flags if OBFD doesn't use them
14018 and if that was what caused us to treat IBFD as 32-bit. */
14019 if ((old_flags & EF_MIPS_ABI) == 0
14020 && mips_32bit_flags_p (new_flags)
14021 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
14022 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
b49e97c9
TS
14023 }
14024 else
14025 {
64543e1a 14026 /* The ISAs aren't compatible. */
b49e97c9 14027 (*_bfd_error_handler)
d003868e
AM
14028 (_("%B: linking %s module with previous %s modules"),
14029 ibfd,
64543e1a
RS
14030 bfd_printable_name (ibfd),
14031 bfd_printable_name (obfd));
b34976b6 14032 ok = FALSE;
b49e97c9 14033 }
b49e97c9
TS
14034 }
14035
64543e1a
RS
14036 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14037 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14038
14039 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
b49e97c9
TS
14040 does set EI_CLASS differently from any 32-bit ABI. */
14041 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
14042 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14043 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14044 {
14045 /* Only error if both are set (to different values). */
14046 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
14047 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14048 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14049 {
14050 (*_bfd_error_handler)
d003868e
AM
14051 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
14052 ibfd,
b49e97c9
TS
14053 elf_mips_abi_name (ibfd),
14054 elf_mips_abi_name (obfd));
b34976b6 14055 ok = FALSE;
b49e97c9
TS
14056 }
14057 new_flags &= ~EF_MIPS_ABI;
14058 old_flags &= ~EF_MIPS_ABI;
14059 }
14060
df58fc94
RS
14061 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
14062 and allow arbitrary mixing of the remaining ASEs (retain the union). */
fb39dac1
RS
14063 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
14064 {
df58fc94
RS
14065 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
14066 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
14067 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
14068 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
14069 int micro_mis = old_m16 && new_micro;
14070 int m16_mis = old_micro && new_m16;
14071
14072 if (m16_mis || micro_mis)
14073 {
14074 (*_bfd_error_handler)
14075 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
14076 ibfd,
14077 m16_mis ? "MIPS16" : "microMIPS",
14078 m16_mis ? "microMIPS" : "MIPS16");
14079 ok = FALSE;
14080 }
14081
fb39dac1
RS
14082 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
14083
14084 new_flags &= ~ EF_MIPS_ARCH_ASE;
14085 old_flags &= ~ EF_MIPS_ARCH_ASE;
14086 }
14087
b49e97c9
TS
14088 /* Warn about any other mismatches */
14089 if (new_flags != old_flags)
14090 {
14091 (*_bfd_error_handler)
d003868e
AM
14092 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
14093 ibfd, (unsigned long) new_flags,
b49e97c9 14094 (unsigned long) old_flags);
b34976b6 14095 ok = FALSE;
b49e97c9
TS
14096 }
14097
14098 if (! ok)
14099 {
14100 bfd_set_error (bfd_error_bad_value);
b34976b6 14101 return FALSE;
b49e97c9
TS
14102 }
14103
b34976b6 14104 return TRUE;
b49e97c9
TS
14105}
14106
14107/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
14108
b34976b6 14109bfd_boolean
9719ad41 14110_bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
b49e97c9
TS
14111{
14112 BFD_ASSERT (!elf_flags_init (abfd)
14113 || elf_elfheader (abfd)->e_flags == flags);
14114
14115 elf_elfheader (abfd)->e_flags = flags;
b34976b6
AM
14116 elf_flags_init (abfd) = TRUE;
14117 return TRUE;
b49e97c9
TS
14118}
14119
ad9563d6
CM
14120char *
14121_bfd_mips_elf_get_target_dtag (bfd_vma dtag)
14122{
14123 switch (dtag)
14124 {
14125 default: return "";
14126 case DT_MIPS_RLD_VERSION:
14127 return "MIPS_RLD_VERSION";
14128 case DT_MIPS_TIME_STAMP:
14129 return "MIPS_TIME_STAMP";
14130 case DT_MIPS_ICHECKSUM:
14131 return "MIPS_ICHECKSUM";
14132 case DT_MIPS_IVERSION:
14133 return "MIPS_IVERSION";
14134 case DT_MIPS_FLAGS:
14135 return "MIPS_FLAGS";
14136 case DT_MIPS_BASE_ADDRESS:
14137 return "MIPS_BASE_ADDRESS";
14138 case DT_MIPS_MSYM:
14139 return "MIPS_MSYM";
14140 case DT_MIPS_CONFLICT:
14141 return "MIPS_CONFLICT";
14142 case DT_MIPS_LIBLIST:
14143 return "MIPS_LIBLIST";
14144 case DT_MIPS_LOCAL_GOTNO:
14145 return "MIPS_LOCAL_GOTNO";
14146 case DT_MIPS_CONFLICTNO:
14147 return "MIPS_CONFLICTNO";
14148 case DT_MIPS_LIBLISTNO:
14149 return "MIPS_LIBLISTNO";
14150 case DT_MIPS_SYMTABNO:
14151 return "MIPS_SYMTABNO";
14152 case DT_MIPS_UNREFEXTNO:
14153 return "MIPS_UNREFEXTNO";
14154 case DT_MIPS_GOTSYM:
14155 return "MIPS_GOTSYM";
14156 case DT_MIPS_HIPAGENO:
14157 return "MIPS_HIPAGENO";
14158 case DT_MIPS_RLD_MAP:
14159 return "MIPS_RLD_MAP";
14160 case DT_MIPS_DELTA_CLASS:
14161 return "MIPS_DELTA_CLASS";
14162 case DT_MIPS_DELTA_CLASS_NO:
14163 return "MIPS_DELTA_CLASS_NO";
14164 case DT_MIPS_DELTA_INSTANCE:
14165 return "MIPS_DELTA_INSTANCE";
14166 case DT_MIPS_DELTA_INSTANCE_NO:
14167 return "MIPS_DELTA_INSTANCE_NO";
14168 case DT_MIPS_DELTA_RELOC:
14169 return "MIPS_DELTA_RELOC";
14170 case DT_MIPS_DELTA_RELOC_NO:
14171 return "MIPS_DELTA_RELOC_NO";
14172 case DT_MIPS_DELTA_SYM:
14173 return "MIPS_DELTA_SYM";
14174 case DT_MIPS_DELTA_SYM_NO:
14175 return "MIPS_DELTA_SYM_NO";
14176 case DT_MIPS_DELTA_CLASSSYM:
14177 return "MIPS_DELTA_CLASSSYM";
14178 case DT_MIPS_DELTA_CLASSSYM_NO:
14179 return "MIPS_DELTA_CLASSSYM_NO";
14180 case DT_MIPS_CXX_FLAGS:
14181 return "MIPS_CXX_FLAGS";
14182 case DT_MIPS_PIXIE_INIT:
14183 return "MIPS_PIXIE_INIT";
14184 case DT_MIPS_SYMBOL_LIB:
14185 return "MIPS_SYMBOL_LIB";
14186 case DT_MIPS_LOCALPAGE_GOTIDX:
14187 return "MIPS_LOCALPAGE_GOTIDX";
14188 case DT_MIPS_LOCAL_GOTIDX:
14189 return "MIPS_LOCAL_GOTIDX";
14190 case DT_MIPS_HIDDEN_GOTIDX:
14191 return "MIPS_HIDDEN_GOTIDX";
14192 case DT_MIPS_PROTECTED_GOTIDX:
14193 return "MIPS_PROTECTED_GOT_IDX";
14194 case DT_MIPS_OPTIONS:
14195 return "MIPS_OPTIONS";
14196 case DT_MIPS_INTERFACE:
14197 return "MIPS_INTERFACE";
14198 case DT_MIPS_DYNSTR_ALIGN:
14199 return "DT_MIPS_DYNSTR_ALIGN";
14200 case DT_MIPS_INTERFACE_SIZE:
14201 return "DT_MIPS_INTERFACE_SIZE";
14202 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
14203 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
14204 case DT_MIPS_PERF_SUFFIX:
14205 return "DT_MIPS_PERF_SUFFIX";
14206 case DT_MIPS_COMPACT_SIZE:
14207 return "DT_MIPS_COMPACT_SIZE";
14208 case DT_MIPS_GP_VALUE:
14209 return "DT_MIPS_GP_VALUE";
14210 case DT_MIPS_AUX_DYNAMIC:
14211 return "DT_MIPS_AUX_DYNAMIC";
861fb55a
DJ
14212 case DT_MIPS_PLTGOT:
14213 return "DT_MIPS_PLTGOT";
14214 case DT_MIPS_RWPLT:
14215 return "DT_MIPS_RWPLT";
ad9563d6
CM
14216 }
14217}
14218
b34976b6 14219bfd_boolean
9719ad41 14220_bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
b49e97c9 14221{
9719ad41 14222 FILE *file = ptr;
b49e97c9
TS
14223
14224 BFD_ASSERT (abfd != NULL && ptr != NULL);
14225
14226 /* Print normal ELF private data. */
14227 _bfd_elf_print_private_bfd_data (abfd, ptr);
14228
14229 /* xgettext:c-format */
14230 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
14231
14232 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
14233 fprintf (file, _(" [abi=O32]"));
14234 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
14235 fprintf (file, _(" [abi=O64]"));
14236 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
14237 fprintf (file, _(" [abi=EABI32]"));
14238 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
14239 fprintf (file, _(" [abi=EABI64]"));
14240 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
14241 fprintf (file, _(" [abi unknown]"));
14242 else if (ABI_N32_P (abfd))
14243 fprintf (file, _(" [abi=N32]"));
14244 else if (ABI_64_P (abfd))
14245 fprintf (file, _(" [abi=64]"));
14246 else
14247 fprintf (file, _(" [no abi set]"));
14248
14249 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
ae0d2616 14250 fprintf (file, " [mips1]");
b49e97c9 14251 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
ae0d2616 14252 fprintf (file, " [mips2]");
b49e97c9 14253 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
ae0d2616 14254 fprintf (file, " [mips3]");
b49e97c9 14255 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
ae0d2616 14256 fprintf (file, " [mips4]");
b49e97c9 14257 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
ae0d2616 14258 fprintf (file, " [mips5]");
b49e97c9 14259 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
ae0d2616 14260 fprintf (file, " [mips32]");
b49e97c9 14261 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
ae0d2616 14262 fprintf (file, " [mips64]");
af7ee8bf 14263 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
ae0d2616 14264 fprintf (file, " [mips32r2]");
5f74bc13 14265 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
ae0d2616 14266 fprintf (file, " [mips64r2]");
b49e97c9
TS
14267 else
14268 fprintf (file, _(" [unknown ISA]"));
14269
40d32fc6 14270 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
ae0d2616 14271 fprintf (file, " [mdmx]");
40d32fc6
CD
14272
14273 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
ae0d2616 14274 fprintf (file, " [mips16]");
40d32fc6 14275
df58fc94
RS
14276 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14277 fprintf (file, " [micromips]");
14278
b49e97c9 14279 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
ae0d2616 14280 fprintf (file, " [32bitmode]");
b49e97c9
TS
14281 else
14282 fprintf (file, _(" [not 32bitmode]"));
14283
c0e3f241 14284 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
ae0d2616 14285 fprintf (file, " [noreorder]");
c0e3f241
CD
14286
14287 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
ae0d2616 14288 fprintf (file, " [PIC]");
c0e3f241
CD
14289
14290 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
ae0d2616 14291 fprintf (file, " [CPIC]");
c0e3f241
CD
14292
14293 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
ae0d2616 14294 fprintf (file, " [XGOT]");
c0e3f241
CD
14295
14296 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
ae0d2616 14297 fprintf (file, " [UCODE]");
c0e3f241 14298
b49e97c9
TS
14299 fputc ('\n', file);
14300
b34976b6 14301 return TRUE;
b49e97c9 14302}
2f89ff8d 14303
b35d266b 14304const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
2f89ff8d 14305{
0112cd26
NC
14306 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14307 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14308 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
14309 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14310 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14311 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
14312 { NULL, 0, 0, 0, 0 }
2f89ff8d 14313};
5e2b0d47 14314
8992f0d7
TS
14315/* Merge non visibility st_other attributes. Ensure that the
14316 STO_OPTIONAL flag is copied into h->other, even if this is not a
14317 definiton of the symbol. */
5e2b0d47
NC
14318void
14319_bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
14320 const Elf_Internal_Sym *isym,
14321 bfd_boolean definition,
14322 bfd_boolean dynamic ATTRIBUTE_UNUSED)
14323{
8992f0d7
TS
14324 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
14325 {
14326 unsigned char other;
14327
14328 other = (definition ? isym->st_other : h->other);
14329 other &= ~ELF_ST_VISIBILITY (-1);
14330 h->other = other | ELF_ST_VISIBILITY (h->other);
14331 }
14332
14333 if (!definition
5e2b0d47
NC
14334 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
14335 h->other |= STO_OPTIONAL;
14336}
12ac1cf5
NC
14337
14338/* Decide whether an undefined symbol is special and can be ignored.
14339 This is the case for OPTIONAL symbols on IRIX. */
14340bfd_boolean
14341_bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
14342{
14343 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
14344}
e0764319
NC
14345
14346bfd_boolean
14347_bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
14348{
14349 return (sym->st_shndx == SHN_COMMON
14350 || sym->st_shndx == SHN_MIPS_ACOMMON
14351 || sym->st_shndx == SHN_MIPS_SCOMMON);
14352}
861fb55a
DJ
14353
14354/* Return address for Ith PLT stub in section PLT, for relocation REL
14355 or (bfd_vma) -1 if it should not be included. */
14356
14357bfd_vma
14358_bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
14359 const arelent *rel ATTRIBUTE_UNUSED)
14360{
14361 return (plt->vma
14362 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
14363 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
14364}
14365
14366void
14367_bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
14368{
14369 struct mips_elf_link_hash_table *htab;
14370 Elf_Internal_Ehdr *i_ehdrp;
14371
14372 i_ehdrp = elf_elfheader (abfd);
14373 if (link_info)
14374 {
14375 htab = mips_elf_hash_table (link_info);
4dfe6ac6
NC
14376 BFD_ASSERT (htab != NULL);
14377
861fb55a
DJ
14378 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
14379 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
14380 }
14381}
This page took 1.612581 seconds and 4 git commands to generate.