2011-05-09 Paul Brook <paul@codesourcery.com>
[deliverable/binutils-gdb.git] / bfd / hash.c
CommitLineData
252b5132 1/* hash.c -- hash table routines for BFD
66eb6687 2 Copyright 1993, 1994, 1995, 1997, 1999, 2001, 2002, 2003, 2004, 2005,
8ad17b3a 3 2006, 2007, 2009, 2010, 2011 Free Software Foundation, Inc.
252b5132
RH
4 Written by Steve Chamberlain <sac@cygnus.com>
5
2d643429 6 This file is part of BFD, the Binary File Descriptor library.
252b5132 7
2d643429
NC
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
cd123cb7 10 the Free Software Foundation; either version 3 of the License, or
2d643429 11 (at your option) any later version.
252b5132 12
2d643429
NC
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
252b5132 17
2d643429
NC
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
cd123cb7
NC
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
252b5132 22
252b5132 23#include "sysdep.h"
3db64b00 24#include "bfd.h"
252b5132
RH
25#include "libbfd.h"
26#include "objalloc.h"
2d643429 27#include "libiberty.h"
252b5132
RH
28
29/*
30SECTION
31 Hash Tables
32
33@cindex Hash tables
34 BFD provides a simple set of hash table functions. Routines
35 are provided to initialize a hash table, to free a hash table,
36 to look up a string in a hash table and optionally create an
37 entry for it, and to traverse a hash table. There is
38 currently no routine to delete an string from a hash table.
39
40 The basic hash table does not permit any data to be stored
41 with a string. However, a hash table is designed to present a
42 base class from which other types of hash tables may be
43 derived. These derived types may store additional information
44 with the string. Hash tables were implemented in this way,
45 rather than simply providing a data pointer in a hash table
46 entry, because they were designed for use by the linker back
47 ends. The linker may create thousands of hash table entries,
48 and the overhead of allocating private data and storing and
49 following pointers becomes noticeable.
50
51 The basic hash table code is in <<hash.c>>.
52
53@menu
54@* Creating and Freeing a Hash Table::
55@* Looking Up or Entering a String::
56@* Traversing a Hash Table::
57@* Deriving a New Hash Table Type::
58@end menu
59
60INODE
61Creating and Freeing a Hash Table, Looking Up or Entering a String, Hash Tables, Hash Tables
62SUBSECTION
63 Creating and freeing a hash table
64
65@findex bfd_hash_table_init
66@findex bfd_hash_table_init_n
67 To create a hash table, create an instance of a <<struct
68 bfd_hash_table>> (defined in <<bfd.h>>) and call
69 <<bfd_hash_table_init>> (if you know approximately how many
70 entries you will need, the function <<bfd_hash_table_init_n>>,
71 which takes a @var{size} argument, may be used).
b34976b6 72 <<bfd_hash_table_init>> returns <<FALSE>> if some sort of
252b5132
RH
73 error occurs.
74
75@findex bfd_hash_newfunc
76 The function <<bfd_hash_table_init>> take as an argument a
77 function to use to create new entries. For a basic hash
78 table, use the function <<bfd_hash_newfunc>>. @xref{Deriving
dc1bc0c9 79 a New Hash Table Type}, for why you would want to use a
252b5132
RH
80 different value for this argument.
81
82@findex bfd_hash_allocate
83 <<bfd_hash_table_init>> will create an objalloc which will be
84 used to allocate new entries. You may allocate memory on this
85 objalloc using <<bfd_hash_allocate>>.
86
87@findex bfd_hash_table_free
88 Use <<bfd_hash_table_free>> to free up all the memory that has
89 been allocated for a hash table. This will not free up the
90 <<struct bfd_hash_table>> itself, which you must provide.
91
2d643429
NC
92@findex bfd_hash_set_default_size
93 Use <<bfd_hash_set_default_size>> to set the default size of
94 hash table to use.
95
252b5132
RH
96INODE
97Looking Up or Entering a String, Traversing a Hash Table, Creating and Freeing a Hash Table, Hash Tables
98SUBSECTION
99 Looking up or entering a string
100
101@findex bfd_hash_lookup
102 The function <<bfd_hash_lookup>> is used both to look up a
103 string in the hash table and to create a new entry.
104
b34976b6 105 If the @var{create} argument is <<FALSE>>, <<bfd_hash_lookup>>
252b5132
RH
106 will look up a string. If the string is found, it will
107 returns a pointer to a <<struct bfd_hash_entry>>. If the
108 string is not found in the table <<bfd_hash_lookup>> will
109 return <<NULL>>. You should not modify any of the fields in
110 the returns <<struct bfd_hash_entry>>.
111
b34976b6 112 If the @var{create} argument is <<TRUE>>, the string will be
252b5132
RH
113 entered into the hash table if it is not already there.
114 Either way a pointer to a <<struct bfd_hash_entry>> will be
115 returned, either to the existing structure or to a newly
116 created one. In this case, a <<NULL>> return means that an
117 error occurred.
118
b34976b6 119 If the @var{create} argument is <<TRUE>>, and a new entry is
252b5132
RH
120 created, the @var{copy} argument is used to decide whether to
121 copy the string onto the hash table objalloc or not. If
b34976b6 122 @var{copy} is passed as <<FALSE>>, you must be careful not to
252b5132
RH
123 deallocate or modify the string as long as the hash table
124 exists.
125
126INODE
127Traversing a Hash Table, Deriving a New Hash Table Type, Looking Up or Entering a String, Hash Tables
128SUBSECTION
129 Traversing a hash table
130
131@findex bfd_hash_traverse
132 The function <<bfd_hash_traverse>> may be used to traverse a
133 hash table, calling a function on each element. The traversal
134 is done in a random order.
135
136 <<bfd_hash_traverse>> takes as arguments a function and a
137 generic <<void *>> pointer. The function is called with a
138 hash table entry (a <<struct bfd_hash_entry *>>) and the
139 generic pointer passed to <<bfd_hash_traverse>>. The function
140 must return a <<boolean>> value, which indicates whether to
141 continue traversing the hash table. If the function returns
b34976b6 142 <<FALSE>>, <<bfd_hash_traverse>> will stop the traversal and
252b5132
RH
143 return immediately.
144
145INODE
146Deriving a New Hash Table Type, , Traversing a Hash Table, Hash Tables
147SUBSECTION
148 Deriving a new hash table type
149
150 Many uses of hash tables want to store additional information
151 which each entry in the hash table. Some also find it
152 convenient to store additional information with the hash table
153 itself. This may be done using a derived hash table.
154
155 Since C is not an object oriented language, creating a derived
156 hash table requires sticking together some boilerplate
157 routines with a few differences specific to the type of hash
158 table you want to create.
159
160 An example of a derived hash table is the linker hash table.
161 The structures for this are defined in <<bfdlink.h>>. The
162 functions are in <<linker.c>>.
163
164 You may also derive a hash table from an already derived hash
165 table. For example, the a.out linker backend code uses a hash
166 table derived from the linker hash table.
167
168@menu
169@* Define the Derived Structures::
170@* Write the Derived Creation Routine::
171@* Write Other Derived Routines::
172@end menu
173
174INODE
175Define the Derived Structures, Write the Derived Creation Routine, Deriving a New Hash Table Type, Deriving a New Hash Table Type
176SUBSUBSECTION
177 Define the derived structures
178
179 You must define a structure for an entry in the hash table,
180 and a structure for the hash table itself.
181
182 The first field in the structure for an entry in the hash
183 table must be of the type used for an entry in the hash table
184 you are deriving from. If you are deriving from a basic hash
185 table this is <<struct bfd_hash_entry>>, which is defined in
186 <<bfd.h>>. The first field in the structure for the hash
187 table itself must be of the type of the hash table you are
188 deriving from itself. If you are deriving from a basic hash
189 table, this is <<struct bfd_hash_table>>.
190
191 For example, the linker hash table defines <<struct
192 bfd_link_hash_entry>> (in <<bfdlink.h>>). The first field,
193 <<root>>, is of type <<struct bfd_hash_entry>>. Similarly,
194 the first field in <<struct bfd_link_hash_table>>, <<table>>,
195 is of type <<struct bfd_hash_table>>.
196
197INODE
198Write the Derived Creation Routine, Write Other Derived Routines, Define the Derived Structures, Deriving a New Hash Table Type
199SUBSUBSECTION
200 Write the derived creation routine
201
202 You must write a routine which will create and initialize an
203 entry in the hash table. This routine is passed as the
204 function argument to <<bfd_hash_table_init>>.
205
206 In order to permit other hash tables to be derived from the
207 hash table you are creating, this routine must be written in a
208 standard way.
209
210 The first argument to the creation routine is a pointer to a
211 hash table entry. This may be <<NULL>>, in which case the
212 routine should allocate the right amount of space. Otherwise
213 the space has already been allocated by a hash table type
214 derived from this one.
215
216 After allocating space, the creation routine must call the
217 creation routine of the hash table type it is derived from,
218 passing in a pointer to the space it just allocated. This
219 will initialize any fields used by the base hash table.
220
221 Finally the creation routine must initialize any local fields
222 for the new hash table type.
223
224 Here is a boilerplate example of a creation routine.
225 @var{function_name} is the name of the routine.
226 @var{entry_type} is the type of an entry in the hash table you
227 are creating. @var{base_newfunc} is the name of the creation
228 routine of the hash table type your hash table is derived
229 from.
230
231EXAMPLE
232
233.struct bfd_hash_entry *
c8e7bf0d
NC
234.@var{function_name} (struct bfd_hash_entry *entry,
235. struct bfd_hash_table *table,
236. const char *string)
252b5132
RH
237.{
238. struct @var{entry_type} *ret = (@var{entry_type} *) entry;
239.
240. {* Allocate the structure if it has not already been allocated by a
241. derived class. *}
c8e7bf0d 242. if (ret == NULL)
252b5132 243. {
c8e7bf0d
NC
244. ret = bfd_hash_allocate (table, sizeof (* ret));
245. if (ret == NULL)
252b5132
RH
246. return NULL;
247. }
248.
249. {* Call the allocation method of the base class. *}
250. ret = ((@var{entry_type} *)
251. @var{base_newfunc} ((struct bfd_hash_entry *) ret, table, string));
252.
253. {* Initialize the local fields here. *}
254.
255. return (struct bfd_hash_entry *) ret;
256.}
257
258DESCRIPTION
259 The creation routine for the linker hash table, which is in
260 <<linker.c>>, looks just like this example.
261 @var{function_name} is <<_bfd_link_hash_newfunc>>.
262 @var{entry_type} is <<struct bfd_link_hash_entry>>.
263 @var{base_newfunc} is <<bfd_hash_newfunc>>, the creation
264 routine for a basic hash table.
265
266 <<_bfd_link_hash_newfunc>> also initializes the local fields
267 in a linker hash table entry: <<type>>, <<written>> and
268 <<next>>.
269
270INODE
271Write Other Derived Routines, , Write the Derived Creation Routine, Deriving a New Hash Table Type
272SUBSUBSECTION
273 Write other derived routines
274
275 You will want to write other routines for your new hash table,
3fde5a36 276 as well.
252b5132
RH
277
278 You will want an initialization routine which calls the
279 initialization routine of the hash table you are deriving from
280 and initializes any other local fields. For the linker hash
281 table, this is <<_bfd_link_hash_table_init>> in <<linker.c>>.
282
283 You will want a lookup routine which calls the lookup routine
284 of the hash table you are deriving from and casts the result.
285 The linker hash table uses <<bfd_link_hash_lookup>> in
286 <<linker.c>> (this actually takes an additional argument which
287 it uses to decide how to return the looked up value).
288
289 You may want a traversal routine. This should just call the
290 traversal routine of the hash table you are deriving from with
291 appropriate casts. The linker hash table uses
292 <<bfd_link_hash_traverse>> in <<linker.c>>.
293
294 These routines may simply be defined as macros. For example,
295 the a.out backend linker hash table, which is derived from the
296 linker hash table, uses macros for the lookup and traversal
297 routines. These are <<aout_link_hash_lookup>> and
298 <<aout_link_hash_traverse>> in aoutx.h.
299*/
300
301/* The default number of entries to use when creating a hash table. */
bd75c995 302#define DEFAULT_SIZE 4051
aa149cf7
DD
303
304/* The following function returns a nearest prime number which is
bd75c995
AM
305 greater than N, and near a power of two. Copied from libiberty.
306 Returns zero for ridiculously large N to signify an error. */
aa149cf7
DD
307
308static unsigned long
309higher_prime_number (unsigned long n)
310{
311 /* These are primes that are near, but slightly smaller than, a
312 power of two. */
313 static const unsigned long primes[] = {
aa149cf7 314 (unsigned long) 127,
aa149cf7 315 (unsigned long) 2039,
aa149cf7
DD
316 (unsigned long) 32749,
317 (unsigned long) 65521,
318 (unsigned long) 131071,
319 (unsigned long) 262139,
320 (unsigned long) 524287,
321 (unsigned long) 1048573,
322 (unsigned long) 2097143,
323 (unsigned long) 4194301,
324 (unsigned long) 8388593,
325 (unsigned long) 16777213,
326 (unsigned long) 33554393,
327 (unsigned long) 67108859,
328 (unsigned long) 134217689,
329 (unsigned long) 268435399,
330 (unsigned long) 536870909,
331 (unsigned long) 1073741789,
332 (unsigned long) 2147483647,
333 /* 4294967291L */
334 ((unsigned long) 2147483647) + ((unsigned long) 2147483644),
335 };
336
337 const unsigned long *low = &primes[0];
bd75c995 338 const unsigned long *high = &primes[sizeof (primes) / sizeof (primes[0])];
aa149cf7
DD
339
340 while (low != high)
341 {
342 const unsigned long *mid = low + (high - low) / 2;
343 if (n >= *mid)
344 low = mid + 1;
345 else
346 high = mid;
347 }
348
bd75c995
AM
349 if (n >= *low)
350 return 0;
aa149cf7
DD
351
352 return *low;
353}
354
8ad17b3a 355static unsigned long bfd_default_hash_table_size = DEFAULT_SIZE;
252b5132
RH
356
357/* Create a new hash table, given a number of entries. */
358
b34976b6 359bfd_boolean
c8e7bf0d
NC
360bfd_hash_table_init_n (struct bfd_hash_table *table,
361 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
362 struct bfd_hash_table *,
363 const char *),
66eb6687 364 unsigned int entsize,
c8e7bf0d 365 unsigned int size)
252b5132 366{
8ad17b3a 367 unsigned long alloc;
252b5132 368
8ad17b3a
AM
369 alloc = size;
370 alloc *= sizeof (struct bfd_hash_entry *);
371 if (alloc / sizeof (struct bfd_hash_entry *) != size)
372 {
373 bfd_set_error (bfd_error_no_memory);
374 return FALSE;
375 }
252b5132 376
c8e7bf0d 377 table->memory = (void *) objalloc_create ();
252b5132
RH
378 if (table->memory == NULL)
379 {
380 bfd_set_error (bfd_error_no_memory);
b34976b6 381 return FALSE;
252b5132 382 }
a50b1753
NC
383 table->table = (struct bfd_hash_entry **)
384 objalloc_alloc ((struct objalloc *) table->memory, alloc);
252b5132
RH
385 if (table->table == NULL)
386 {
387 bfd_set_error (bfd_error_no_memory);
b34976b6 388 return FALSE;
252b5132 389 }
c8e7bf0d 390 memset ((void *) table->table, 0, alloc);
252b5132 391 table->size = size;
66eb6687 392 table->entsize = entsize;
aa149cf7 393 table->count = 0;
98f0b6ab 394 table->frozen = 0;
252b5132 395 table->newfunc = newfunc;
b34976b6 396 return TRUE;
252b5132
RH
397}
398
399/* Create a new hash table with the default number of entries. */
400
b34976b6 401bfd_boolean
c8e7bf0d
NC
402bfd_hash_table_init (struct bfd_hash_table *table,
403 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
404 struct bfd_hash_table *,
66eb6687
AM
405 const char *),
406 unsigned int entsize)
252b5132 407{
66eb6687
AM
408 return bfd_hash_table_init_n (table, newfunc, entsize,
409 bfd_default_hash_table_size);
252b5132
RH
410}
411
412/* Free a hash table. */
413
414void
c8e7bf0d 415bfd_hash_table_free (struct bfd_hash_table *table)
252b5132 416{
a50b1753 417 objalloc_free ((struct objalloc *) table->memory);
252b5132
RH
418 table->memory = NULL;
419}
420
4e011fb5
AM
421static inline unsigned long
422bfd_hash_hash (const char *string, unsigned int *lenp)
252b5132 423{
c8e7bf0d
NC
424 const unsigned char *s;
425 unsigned long hash;
252b5132 426 unsigned int len;
4e011fb5 427 unsigned int c;
3fde5a36 428
252b5132
RH
429 hash = 0;
430 len = 0;
431 s = (const unsigned char *) string;
432 while ((c = *s++) != '\0')
433 {
434 hash += c + (c << 17);
435 hash ^= hash >> 2;
252b5132 436 }
2c13d98b 437 len = (s - (const unsigned char *) string) - 1;
252b5132
RH
438 hash += len + (len << 17);
439 hash ^= hash >> 2;
4e011fb5
AM
440 if (lenp != NULL)
441 *lenp = len;
442 return hash;
443}
444
445/* Look up a string in a hash table. */
446
447struct bfd_hash_entry *
448bfd_hash_lookup (struct bfd_hash_table *table,
449 const char *string,
450 bfd_boolean create,
451 bfd_boolean copy)
452{
453 unsigned long hash;
454 struct bfd_hash_entry *hashp;
455 unsigned int len;
456 unsigned int _index;
252b5132 457
4e011fb5 458 hash = bfd_hash_hash (string, &len);
91d6fa6a
NC
459 _index = hash % table->size;
460 for (hashp = table->table[_index];
c8e7bf0d 461 hashp != NULL;
252b5132
RH
462 hashp = hashp->next)
463 {
464 if (hashp->hash == hash
465 && strcmp (hashp->string, string) == 0)
466 return hashp;
467 }
468
469 if (! create)
c8e7bf0d 470 return NULL;
252b5132 471
252b5132
RH
472 if (copy)
473 {
d3ce72d0 474 char *new_string;
252b5132 475
d3ce72d0
NC
476 new_string = (char *) objalloc_alloc ((struct objalloc *) table->memory,
477 len + 1);
478 if (!new_string)
252b5132
RH
479 {
480 bfd_set_error (bfd_error_no_memory);
c8e7bf0d 481 return NULL;
252b5132 482 }
d3ce72d0
NC
483 memcpy (new_string, string, len + 1);
484 string = new_string;
252b5132 485 }
a69898aa
AM
486
487 return bfd_hash_insert (table, string, hash);
488}
489
490/* Insert an entry in a hash table. */
491
492struct bfd_hash_entry *
493bfd_hash_insert (struct bfd_hash_table *table,
494 const char *string,
495 unsigned long hash)
496{
497 struct bfd_hash_entry *hashp;
91d6fa6a 498 unsigned int _index;
a69898aa
AM
499
500 hashp = (*table->newfunc) (NULL, table, string);
501 if (hashp == NULL)
502 return NULL;
252b5132
RH
503 hashp->string = string;
504 hashp->hash = hash;
91d6fa6a
NC
505 _index = hash % table->size;
506 hashp->next = table->table[_index];
507 table->table[_index] = hashp;
0bef4ce5 508 table->count++;
252b5132 509
98f0b6ab 510 if (!table->frozen && table->count > table->size * 3 / 4)
aa149cf7 511 {
bd75c995 512 unsigned long newsize = higher_prime_number (table->size);
aa149cf7
DD
513 struct bfd_hash_entry **newtable;
514 unsigned int hi;
bd75c995 515 unsigned long alloc = newsize * sizeof (struct bfd_hash_entry *);
aa149cf7 516
bd75c995
AM
517 /* If we can't find a higher prime, or we can't possibly alloc
518 that much memory, don't try to grow the table. */
519 if (newsize == 0 || alloc / sizeof (struct bfd_hash_entry *) != newsize)
520 {
98f0b6ab 521 table->frozen = 1;
bd75c995
AM
522 return hashp;
523 }
aa149cf7
DD
524
525 newtable = ((struct bfd_hash_entry **)
526 objalloc_alloc ((struct objalloc *) table->memory, alloc));
a69898aa
AM
527 if (newtable == NULL)
528 {
529 table->frozen = 1;
530 return hashp;
531 }
aa149cf7
DD
532 memset ((PTR) newtable, 0, alloc);
533
534 for (hi = 0; hi < table->size; hi ++)
535 while (table->table[hi])
536 {
537 struct bfd_hash_entry *chain = table->table[hi];
538 struct bfd_hash_entry *chain_end = chain;
aa149cf7
DD
539
540 while (chain_end->next && chain_end->next->hash == chain->hash)
bd75c995 541 chain_end = chain_end->next;
aa149cf7
DD
542
543 table->table[hi] = chain_end->next;
91d6fa6a
NC
544 _index = chain->hash % newsize;
545 chain_end->next = newtable[_index];
546 newtable[_index] = chain;
aa149cf7
DD
547 }
548 table->table = newtable;
549 table->size = newsize;
550 }
551
252b5132
RH
552 return hashp;
553}
554
4e011fb5
AM
555/* Rename an entry in a hash table. */
556
557void
558bfd_hash_rename (struct bfd_hash_table *table,
559 const char *string,
560 struct bfd_hash_entry *ent)
561{
562 unsigned int _index;
563 struct bfd_hash_entry **pph;
564
565 _index = ent->hash % table->size;
566 for (pph = &table->table[_index]; *pph != NULL; pph = &(*pph)->next)
567 if (*pph == ent)
568 break;
569 if (*pph == NULL)
570 abort ();
571
572 *pph = ent->next;
573 ent->string = string;
574 ent->hash = bfd_hash_hash (string, NULL);
575 _index = ent->hash % table->size;
576 ent->next = table->table[_index];
577 table->table[_index] = ent;
578}
579
252b5132
RH
580/* Replace an entry in a hash table. */
581
582void
c8e7bf0d
NC
583bfd_hash_replace (struct bfd_hash_table *table,
584 struct bfd_hash_entry *old,
585 struct bfd_hash_entry *nw)
252b5132 586{
91d6fa6a 587 unsigned int _index;
252b5132
RH
588 struct bfd_hash_entry **pph;
589
91d6fa6a
NC
590 _index = old->hash % table->size;
591 for (pph = &table->table[_index];
c8e7bf0d 592 (*pph) != NULL;
252b5132
RH
593 pph = &(*pph)->next)
594 {
595 if (*pph == old)
596 {
597 *pph = nw;
598 return;
599 }
600 }
601
602 abort ();
603}
604
252b5132
RH
605/* Allocate space in a hash table. */
606
c8e7bf0d
NC
607void *
608bfd_hash_allocate (struct bfd_hash_table *table,
609 unsigned int size)
252b5132 610{
c8e7bf0d 611 void * ret;
252b5132
RH
612
613 ret = objalloc_alloc ((struct objalloc *) table->memory, size);
614 if (ret == NULL && size != 0)
615 bfd_set_error (bfd_error_no_memory);
616 return ret;
617}
618
c8e7bf0d
NC
619/* Base method for creating a new hash table entry. */
620
621struct bfd_hash_entry *
622bfd_hash_newfunc (struct bfd_hash_entry *entry,
623 struct bfd_hash_table *table,
624 const char *string ATTRIBUTE_UNUSED)
625{
626 if (entry == NULL)
a50b1753
NC
627 entry = (struct bfd_hash_entry *) bfd_hash_allocate (table,
628 sizeof (* entry));
c8e7bf0d
NC
629 return entry;
630}
631
252b5132
RH
632/* Traverse a hash table. */
633
634void
c8e7bf0d
NC
635bfd_hash_traverse (struct bfd_hash_table *table,
636 bfd_boolean (*func) (struct bfd_hash_entry *, void *),
637 void * info)
252b5132
RH
638{
639 unsigned int i;
640
98f0b6ab 641 table->frozen = 1;
252b5132
RH
642 for (i = 0; i < table->size; i++)
643 {
644 struct bfd_hash_entry *p;
645
646 for (p = table->table[i]; p != NULL; p = p->next)
c8e7bf0d 647 if (! (*func) (p, info))
98f0b6ab 648 goto out;
252b5132 649 }
98f0b6ab
AM
650 out:
651 table->frozen = 0;
252b5132
RH
652}
653\f
8ad17b3a
AM
654unsigned long
655bfd_hash_set_default_size (unsigned long hash_size)
2d643429 656{
2d643429 657 /* Extend this prime list if you want more granularity of hash table size. */
8ad17b3a 658 static const unsigned long hash_size_primes[] =
2d643429 659 {
8ad17b3a 660 251, 509, 1021, 2039, 4051, 8599, 16699, 32749, 65537
2d643429 661 };
8ad17b3a 662 unsigned int _index;
2d643429
NC
663
664 /* Work out best prime number near the hash_size. */
91d6fa6a
NC
665 for (_index = 0; _index < ARRAY_SIZE (hash_size_primes) - 1; ++_index)
666 if (hash_size <= hash_size_primes[_index])
2d643429
NC
667 break;
668
91d6fa6a 669 bfd_default_hash_table_size = hash_size_primes[_index];
8ad17b3a 670 return bfd_default_hash_table_size;
2d643429
NC
671}
672\f
252b5132
RH
673/* A few different object file formats (a.out, COFF, ELF) use a string
674 table. These functions support adding strings to a string table,
675 returning the byte offset, and writing out the table.
676
677 Possible improvements:
678 + look for strings matching trailing substrings of other strings
679 + better data structures? balanced trees?
680 + look at reducing memory use elsewhere -- maybe if we didn't have
681 to construct the entire symbol table at once, we could get by
682 with smaller amounts of VM? (What effect does that have on the
683 string table reductions?) */
684
685/* An entry in the strtab hash table. */
686
687struct strtab_hash_entry
688{
689 struct bfd_hash_entry root;
690 /* Index in string table. */
691 bfd_size_type index;
692 /* Next string in strtab. */
693 struct strtab_hash_entry *next;
694};
695
696/* The strtab hash table. */
697
698struct bfd_strtab_hash
699{
700 struct bfd_hash_table table;
701 /* Size of strtab--also next available index. */
702 bfd_size_type size;
703 /* First string in strtab. */
704 struct strtab_hash_entry *first;
705 /* Last string in strtab. */
706 struct strtab_hash_entry *last;
707 /* Whether to precede strings with a two byte length, as in the
708 XCOFF .debug section. */
b34976b6 709 bfd_boolean xcoff;
252b5132
RH
710};
711
252b5132
RH
712/* Routine to create an entry in a strtab. */
713
714static struct bfd_hash_entry *
c8e7bf0d
NC
715strtab_hash_newfunc (struct bfd_hash_entry *entry,
716 struct bfd_hash_table *table,
717 const char *string)
252b5132
RH
718{
719 struct strtab_hash_entry *ret = (struct strtab_hash_entry *) entry;
720
721 /* Allocate the structure if it has not already been allocated by a
722 subclass. */
c8e7bf0d 723 if (ret == NULL)
a50b1753
NC
724 ret = (struct strtab_hash_entry *) bfd_hash_allocate (table,
725 sizeof (* ret));
c8e7bf0d 726 if (ret == NULL)
252b5132
RH
727 return NULL;
728
729 /* Call the allocation method of the superclass. */
c8e7bf0d
NC
730 ret = (struct strtab_hash_entry *)
731 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string);
252b5132
RH
732
733 if (ret)
734 {
735 /* Initialize the local fields. */
736 ret->index = (bfd_size_type) -1;
737 ret->next = NULL;
738 }
739
740 return (struct bfd_hash_entry *) ret;
741}
742
743/* Look up an entry in an strtab. */
744
745#define strtab_hash_lookup(t, string, create, copy) \
746 ((struct strtab_hash_entry *) \
747 bfd_hash_lookup (&(t)->table, (string), (create), (copy)))
748
749/* Create a new strtab. */
750
751struct bfd_strtab_hash *
c8e7bf0d 752_bfd_stringtab_init (void)
252b5132
RH
753{
754 struct bfd_strtab_hash *table;
c8e7bf0d 755 bfd_size_type amt = sizeof (* table);
252b5132 756
a50b1753 757 table = (struct bfd_strtab_hash *) bfd_malloc (amt);
252b5132
RH
758 if (table == NULL)
759 return NULL;
760
66eb6687
AM
761 if (!bfd_hash_table_init (&table->table, strtab_hash_newfunc,
762 sizeof (struct strtab_hash_entry)))
252b5132
RH
763 {
764 free (table);
765 return NULL;
766 }
767
768 table->size = 0;
769 table->first = NULL;
770 table->last = NULL;
b34976b6 771 table->xcoff = FALSE;
252b5132
RH
772
773 return table;
774}
775
776/* Create a new strtab in which the strings are output in the format
777 used in the XCOFF .debug section: a two byte length precedes each
778 string. */
779
780struct bfd_strtab_hash *
c8e7bf0d 781_bfd_xcoff_stringtab_init (void)
252b5132
RH
782{
783 struct bfd_strtab_hash *ret;
784
785 ret = _bfd_stringtab_init ();
786 if (ret != NULL)
b34976b6 787 ret->xcoff = TRUE;
252b5132
RH
788 return ret;
789}
790
791/* Free a strtab. */
792
793void
c8e7bf0d 794_bfd_stringtab_free (struct bfd_strtab_hash *table)
252b5132
RH
795{
796 bfd_hash_table_free (&table->table);
797 free (table);
798}
799
800/* Get the index of a string in a strtab, adding it if it is not
b34976b6 801 already present. If HASH is FALSE, we don't really use the hash
252b5132
RH
802 table, and we don't eliminate duplicate strings. */
803
804bfd_size_type
c8e7bf0d
NC
805_bfd_stringtab_add (struct bfd_strtab_hash *tab,
806 const char *str,
807 bfd_boolean hash,
808 bfd_boolean copy)
252b5132 809{
c8e7bf0d 810 struct strtab_hash_entry *entry;
252b5132
RH
811
812 if (hash)
813 {
b34976b6 814 entry = strtab_hash_lookup (tab, str, TRUE, copy);
252b5132
RH
815 if (entry == NULL)
816 return (bfd_size_type) -1;
817 }
818 else
819 {
a50b1753
NC
820 entry = (struct strtab_hash_entry *) bfd_hash_allocate (&tab->table,
821 sizeof (* entry));
252b5132
RH
822 if (entry == NULL)
823 return (bfd_size_type) -1;
824 if (! copy)
825 entry->root.string = str;
826 else
827 {
828 char *n;
829
a50b1753 830 n = (char *) bfd_hash_allocate (&tab->table, strlen (str) + 1);
252b5132
RH
831 if (n == NULL)
832 return (bfd_size_type) -1;
833 entry->root.string = n;
834 }
835 entry->index = (bfd_size_type) -1;
836 entry->next = NULL;
837 }
838
839 if (entry->index == (bfd_size_type) -1)
840 {
841 entry->index = tab->size;
842 tab->size += strlen (str) + 1;
843 if (tab->xcoff)
844 {
845 entry->index += 2;
846 tab->size += 2;
847 }
848 if (tab->first == NULL)
849 tab->first = entry;
850 else
851 tab->last->next = entry;
852 tab->last = entry;
853 }
854
855 return entry->index;
856}
857
858/* Get the number of bytes in a strtab. */
859
860bfd_size_type
c8e7bf0d 861_bfd_stringtab_size (struct bfd_strtab_hash *tab)
252b5132
RH
862{
863 return tab->size;
864}
865
866/* Write out a strtab. ABFD must already be at the right location in
867 the file. */
868
b34976b6 869bfd_boolean
c8e7bf0d 870_bfd_stringtab_emit (bfd *abfd, struct bfd_strtab_hash *tab)
252b5132 871{
c8e7bf0d
NC
872 bfd_boolean xcoff;
873 struct strtab_hash_entry *entry;
252b5132
RH
874
875 xcoff = tab->xcoff;
876
877 for (entry = tab->first; entry != NULL; entry = entry->next)
878 {
dc810e39
AM
879 const char *str;
880 size_t len;
252b5132
RH
881
882 str = entry->root.string;
883 len = strlen (str) + 1;
884
885 if (xcoff)
886 {
887 bfd_byte buf[2];
888
889 /* The output length includes the null byte. */
dc810e39 890 bfd_put_16 (abfd, (bfd_vma) len, buf);
c8e7bf0d 891 if (bfd_bwrite ((void *) buf, (bfd_size_type) 2, abfd) != 2)
b34976b6 892 return FALSE;
252b5132
RH
893 }
894
c8e7bf0d 895 if (bfd_bwrite ((void *) str, (bfd_size_type) len, abfd) != len)
b34976b6 896 return FALSE;
252b5132
RH
897 }
898
b34976b6 899 return TRUE;
252b5132 900}
This page took 0.611314 seconds and 4 git commands to generate.