sync toplevel with gcc
[deliverable/binutils-gdb.git] / bfd / hash.c
CommitLineData
252b5132 1/* hash.c -- hash table routines for BFD
66eb6687 2 Copyright 1993, 1994, 1995, 1997, 1999, 2001, 2002, 2003, 2004, 2005,
4e011fb5 3 2006, 2007, 2009, 2010 Free Software Foundation, Inc.
252b5132
RH
4 Written by Steve Chamberlain <sac@cygnus.com>
5
2d643429 6 This file is part of BFD, the Binary File Descriptor library.
252b5132 7
2d643429
NC
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
cd123cb7 10 the Free Software Foundation; either version 3 of the License, or
2d643429 11 (at your option) any later version.
252b5132 12
2d643429
NC
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
252b5132 17
2d643429
NC
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
cd123cb7
NC
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
252b5132 22
252b5132 23#include "sysdep.h"
3db64b00 24#include "bfd.h"
252b5132
RH
25#include "libbfd.h"
26#include "objalloc.h"
2d643429 27#include "libiberty.h"
252b5132
RH
28
29/*
30SECTION
31 Hash Tables
32
33@cindex Hash tables
34 BFD provides a simple set of hash table functions. Routines
35 are provided to initialize a hash table, to free a hash table,
36 to look up a string in a hash table and optionally create an
37 entry for it, and to traverse a hash table. There is
38 currently no routine to delete an string from a hash table.
39
40 The basic hash table does not permit any data to be stored
41 with a string. However, a hash table is designed to present a
42 base class from which other types of hash tables may be
43 derived. These derived types may store additional information
44 with the string. Hash tables were implemented in this way,
45 rather than simply providing a data pointer in a hash table
46 entry, because they were designed for use by the linker back
47 ends. The linker may create thousands of hash table entries,
48 and the overhead of allocating private data and storing and
49 following pointers becomes noticeable.
50
51 The basic hash table code is in <<hash.c>>.
52
53@menu
54@* Creating and Freeing a Hash Table::
55@* Looking Up or Entering a String::
56@* Traversing a Hash Table::
57@* Deriving a New Hash Table Type::
58@end menu
59
60INODE
61Creating and Freeing a Hash Table, Looking Up or Entering a String, Hash Tables, Hash Tables
62SUBSECTION
63 Creating and freeing a hash table
64
65@findex bfd_hash_table_init
66@findex bfd_hash_table_init_n
67 To create a hash table, create an instance of a <<struct
68 bfd_hash_table>> (defined in <<bfd.h>>) and call
69 <<bfd_hash_table_init>> (if you know approximately how many
70 entries you will need, the function <<bfd_hash_table_init_n>>,
71 which takes a @var{size} argument, may be used).
b34976b6 72 <<bfd_hash_table_init>> returns <<FALSE>> if some sort of
252b5132
RH
73 error occurs.
74
75@findex bfd_hash_newfunc
76 The function <<bfd_hash_table_init>> take as an argument a
77 function to use to create new entries. For a basic hash
78 table, use the function <<bfd_hash_newfunc>>. @xref{Deriving
dc1bc0c9 79 a New Hash Table Type}, for why you would want to use a
252b5132
RH
80 different value for this argument.
81
82@findex bfd_hash_allocate
83 <<bfd_hash_table_init>> will create an objalloc which will be
84 used to allocate new entries. You may allocate memory on this
85 objalloc using <<bfd_hash_allocate>>.
86
87@findex bfd_hash_table_free
88 Use <<bfd_hash_table_free>> to free up all the memory that has
89 been allocated for a hash table. This will not free up the
90 <<struct bfd_hash_table>> itself, which you must provide.
91
2d643429
NC
92@findex bfd_hash_set_default_size
93 Use <<bfd_hash_set_default_size>> to set the default size of
94 hash table to use.
95
252b5132
RH
96INODE
97Looking Up or Entering a String, Traversing a Hash Table, Creating and Freeing a Hash Table, Hash Tables
98SUBSECTION
99 Looking up or entering a string
100
101@findex bfd_hash_lookup
102 The function <<bfd_hash_lookup>> is used both to look up a
103 string in the hash table and to create a new entry.
104
b34976b6 105 If the @var{create} argument is <<FALSE>>, <<bfd_hash_lookup>>
252b5132
RH
106 will look up a string. If the string is found, it will
107 returns a pointer to a <<struct bfd_hash_entry>>. If the
108 string is not found in the table <<bfd_hash_lookup>> will
109 return <<NULL>>. You should not modify any of the fields in
110 the returns <<struct bfd_hash_entry>>.
111
b34976b6 112 If the @var{create} argument is <<TRUE>>, the string will be
252b5132
RH
113 entered into the hash table if it is not already there.
114 Either way a pointer to a <<struct bfd_hash_entry>> will be
115 returned, either to the existing structure or to a newly
116 created one. In this case, a <<NULL>> return means that an
117 error occurred.
118
b34976b6 119 If the @var{create} argument is <<TRUE>>, and a new entry is
252b5132
RH
120 created, the @var{copy} argument is used to decide whether to
121 copy the string onto the hash table objalloc or not. If
b34976b6 122 @var{copy} is passed as <<FALSE>>, you must be careful not to
252b5132
RH
123 deallocate or modify the string as long as the hash table
124 exists.
125
126INODE
127Traversing a Hash Table, Deriving a New Hash Table Type, Looking Up or Entering a String, Hash Tables
128SUBSECTION
129 Traversing a hash table
130
131@findex bfd_hash_traverse
132 The function <<bfd_hash_traverse>> may be used to traverse a
133 hash table, calling a function on each element. The traversal
134 is done in a random order.
135
136 <<bfd_hash_traverse>> takes as arguments a function and a
137 generic <<void *>> pointer. The function is called with a
138 hash table entry (a <<struct bfd_hash_entry *>>) and the
139 generic pointer passed to <<bfd_hash_traverse>>. The function
140 must return a <<boolean>> value, which indicates whether to
141 continue traversing the hash table. If the function returns
b34976b6 142 <<FALSE>>, <<bfd_hash_traverse>> will stop the traversal and
252b5132
RH
143 return immediately.
144
145INODE
146Deriving a New Hash Table Type, , Traversing a Hash Table, Hash Tables
147SUBSECTION
148 Deriving a new hash table type
149
150 Many uses of hash tables want to store additional information
151 which each entry in the hash table. Some also find it
152 convenient to store additional information with the hash table
153 itself. This may be done using a derived hash table.
154
155 Since C is not an object oriented language, creating a derived
156 hash table requires sticking together some boilerplate
157 routines with a few differences specific to the type of hash
158 table you want to create.
159
160 An example of a derived hash table is the linker hash table.
161 The structures for this are defined in <<bfdlink.h>>. The
162 functions are in <<linker.c>>.
163
164 You may also derive a hash table from an already derived hash
165 table. For example, the a.out linker backend code uses a hash
166 table derived from the linker hash table.
167
168@menu
169@* Define the Derived Structures::
170@* Write the Derived Creation Routine::
171@* Write Other Derived Routines::
172@end menu
173
174INODE
175Define the Derived Structures, Write the Derived Creation Routine, Deriving a New Hash Table Type, Deriving a New Hash Table Type
176SUBSUBSECTION
177 Define the derived structures
178
179 You must define a structure for an entry in the hash table,
180 and a structure for the hash table itself.
181
182 The first field in the structure for an entry in the hash
183 table must be of the type used for an entry in the hash table
184 you are deriving from. If you are deriving from a basic hash
185 table this is <<struct bfd_hash_entry>>, which is defined in
186 <<bfd.h>>. The first field in the structure for the hash
187 table itself must be of the type of the hash table you are
188 deriving from itself. If you are deriving from a basic hash
189 table, this is <<struct bfd_hash_table>>.
190
191 For example, the linker hash table defines <<struct
192 bfd_link_hash_entry>> (in <<bfdlink.h>>). The first field,
193 <<root>>, is of type <<struct bfd_hash_entry>>. Similarly,
194 the first field in <<struct bfd_link_hash_table>>, <<table>>,
195 is of type <<struct bfd_hash_table>>.
196
197INODE
198Write the Derived Creation Routine, Write Other Derived Routines, Define the Derived Structures, Deriving a New Hash Table Type
199SUBSUBSECTION
200 Write the derived creation routine
201
202 You must write a routine which will create and initialize an
203 entry in the hash table. This routine is passed as the
204 function argument to <<bfd_hash_table_init>>.
205
206 In order to permit other hash tables to be derived from the
207 hash table you are creating, this routine must be written in a
208 standard way.
209
210 The first argument to the creation routine is a pointer to a
211 hash table entry. This may be <<NULL>>, in which case the
212 routine should allocate the right amount of space. Otherwise
213 the space has already been allocated by a hash table type
214 derived from this one.
215
216 After allocating space, the creation routine must call the
217 creation routine of the hash table type it is derived from,
218 passing in a pointer to the space it just allocated. This
219 will initialize any fields used by the base hash table.
220
221 Finally the creation routine must initialize any local fields
222 for the new hash table type.
223
224 Here is a boilerplate example of a creation routine.
225 @var{function_name} is the name of the routine.
226 @var{entry_type} is the type of an entry in the hash table you
227 are creating. @var{base_newfunc} is the name of the creation
228 routine of the hash table type your hash table is derived
229 from.
230
231EXAMPLE
232
233.struct bfd_hash_entry *
c8e7bf0d
NC
234.@var{function_name} (struct bfd_hash_entry *entry,
235. struct bfd_hash_table *table,
236. const char *string)
252b5132
RH
237.{
238. struct @var{entry_type} *ret = (@var{entry_type} *) entry;
239.
240. {* Allocate the structure if it has not already been allocated by a
241. derived class. *}
c8e7bf0d 242. if (ret == NULL)
252b5132 243. {
c8e7bf0d
NC
244. ret = bfd_hash_allocate (table, sizeof (* ret));
245. if (ret == NULL)
252b5132
RH
246. return NULL;
247. }
248.
249. {* Call the allocation method of the base class. *}
250. ret = ((@var{entry_type} *)
251. @var{base_newfunc} ((struct bfd_hash_entry *) ret, table, string));
252.
253. {* Initialize the local fields here. *}
254.
255. return (struct bfd_hash_entry *) ret;
256.}
257
258DESCRIPTION
259 The creation routine for the linker hash table, which is in
260 <<linker.c>>, looks just like this example.
261 @var{function_name} is <<_bfd_link_hash_newfunc>>.
262 @var{entry_type} is <<struct bfd_link_hash_entry>>.
263 @var{base_newfunc} is <<bfd_hash_newfunc>>, the creation
264 routine for a basic hash table.
265
266 <<_bfd_link_hash_newfunc>> also initializes the local fields
267 in a linker hash table entry: <<type>>, <<written>> and
268 <<next>>.
269
270INODE
271Write Other Derived Routines, , Write the Derived Creation Routine, Deriving a New Hash Table Type
272SUBSUBSECTION
273 Write other derived routines
274
275 You will want to write other routines for your new hash table,
3fde5a36 276 as well.
252b5132
RH
277
278 You will want an initialization routine which calls the
279 initialization routine of the hash table you are deriving from
280 and initializes any other local fields. For the linker hash
281 table, this is <<_bfd_link_hash_table_init>> in <<linker.c>>.
282
283 You will want a lookup routine which calls the lookup routine
284 of the hash table you are deriving from and casts the result.
285 The linker hash table uses <<bfd_link_hash_lookup>> in
286 <<linker.c>> (this actually takes an additional argument which
287 it uses to decide how to return the looked up value).
288
289 You may want a traversal routine. This should just call the
290 traversal routine of the hash table you are deriving from with
291 appropriate casts. The linker hash table uses
292 <<bfd_link_hash_traverse>> in <<linker.c>>.
293
294 These routines may simply be defined as macros. For example,
295 the a.out backend linker hash table, which is derived from the
296 linker hash table, uses macros for the lookup and traversal
297 routines. These are <<aout_link_hash_lookup>> and
298 <<aout_link_hash_traverse>> in aoutx.h.
299*/
300
301/* The default number of entries to use when creating a hash table. */
bd75c995 302#define DEFAULT_SIZE 4051
aa149cf7
DD
303
304/* The following function returns a nearest prime number which is
bd75c995
AM
305 greater than N, and near a power of two. Copied from libiberty.
306 Returns zero for ridiculously large N to signify an error. */
aa149cf7
DD
307
308static unsigned long
309higher_prime_number (unsigned long n)
310{
311 /* These are primes that are near, but slightly smaller than, a
312 power of two. */
313 static const unsigned long primes[] = {
aa149cf7 314 (unsigned long) 127,
aa149cf7 315 (unsigned long) 2039,
aa149cf7
DD
316 (unsigned long) 32749,
317 (unsigned long) 65521,
318 (unsigned long) 131071,
319 (unsigned long) 262139,
320 (unsigned long) 524287,
321 (unsigned long) 1048573,
322 (unsigned long) 2097143,
323 (unsigned long) 4194301,
324 (unsigned long) 8388593,
325 (unsigned long) 16777213,
326 (unsigned long) 33554393,
327 (unsigned long) 67108859,
328 (unsigned long) 134217689,
329 (unsigned long) 268435399,
330 (unsigned long) 536870909,
331 (unsigned long) 1073741789,
332 (unsigned long) 2147483647,
333 /* 4294967291L */
334 ((unsigned long) 2147483647) + ((unsigned long) 2147483644),
335 };
336
337 const unsigned long *low = &primes[0];
bd75c995 338 const unsigned long *high = &primes[sizeof (primes) / sizeof (primes[0])];
aa149cf7
DD
339
340 while (low != high)
341 {
342 const unsigned long *mid = low + (high - low) / 2;
343 if (n >= *mid)
344 low = mid + 1;
345 else
346 high = mid;
347 }
348
bd75c995
AM
349 if (n >= *low)
350 return 0;
aa149cf7
DD
351
352 return *low;
353}
354
2d643429 355static size_t bfd_default_hash_table_size = DEFAULT_SIZE;
252b5132
RH
356
357/* Create a new hash table, given a number of entries. */
358
b34976b6 359bfd_boolean
c8e7bf0d
NC
360bfd_hash_table_init_n (struct bfd_hash_table *table,
361 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
362 struct bfd_hash_table *,
363 const char *),
66eb6687 364 unsigned int entsize,
c8e7bf0d 365 unsigned int size)
252b5132
RH
366{
367 unsigned int alloc;
368
369 alloc = size * sizeof (struct bfd_hash_entry *);
370
c8e7bf0d 371 table->memory = (void *) objalloc_create ();
252b5132
RH
372 if (table->memory == NULL)
373 {
374 bfd_set_error (bfd_error_no_memory);
b34976b6 375 return FALSE;
252b5132 376 }
a50b1753
NC
377 table->table = (struct bfd_hash_entry **)
378 objalloc_alloc ((struct objalloc *) table->memory, alloc);
252b5132
RH
379 if (table->table == NULL)
380 {
381 bfd_set_error (bfd_error_no_memory);
b34976b6 382 return FALSE;
252b5132 383 }
c8e7bf0d 384 memset ((void *) table->table, 0, alloc);
252b5132 385 table->size = size;
66eb6687 386 table->entsize = entsize;
aa149cf7 387 table->count = 0;
98f0b6ab 388 table->frozen = 0;
252b5132 389 table->newfunc = newfunc;
b34976b6 390 return TRUE;
252b5132
RH
391}
392
393/* Create a new hash table with the default number of entries. */
394
b34976b6 395bfd_boolean
c8e7bf0d
NC
396bfd_hash_table_init (struct bfd_hash_table *table,
397 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
398 struct bfd_hash_table *,
66eb6687
AM
399 const char *),
400 unsigned int entsize)
252b5132 401{
66eb6687
AM
402 return bfd_hash_table_init_n (table, newfunc, entsize,
403 bfd_default_hash_table_size);
252b5132
RH
404}
405
406/* Free a hash table. */
407
408void
c8e7bf0d 409bfd_hash_table_free (struct bfd_hash_table *table)
252b5132 410{
a50b1753 411 objalloc_free ((struct objalloc *) table->memory);
252b5132
RH
412 table->memory = NULL;
413}
414
4e011fb5
AM
415static inline unsigned long
416bfd_hash_hash (const char *string, unsigned int *lenp)
252b5132 417{
c8e7bf0d
NC
418 const unsigned char *s;
419 unsigned long hash;
252b5132 420 unsigned int len;
4e011fb5 421 unsigned int c;
3fde5a36 422
252b5132
RH
423 hash = 0;
424 len = 0;
425 s = (const unsigned char *) string;
426 while ((c = *s++) != '\0')
427 {
428 hash += c + (c << 17);
429 hash ^= hash >> 2;
252b5132 430 }
2c13d98b 431 len = (s - (const unsigned char *) string) - 1;
252b5132
RH
432 hash += len + (len << 17);
433 hash ^= hash >> 2;
4e011fb5
AM
434 if (lenp != NULL)
435 *lenp = len;
436 return hash;
437}
438
439/* Look up a string in a hash table. */
440
441struct bfd_hash_entry *
442bfd_hash_lookup (struct bfd_hash_table *table,
443 const char *string,
444 bfd_boolean create,
445 bfd_boolean copy)
446{
447 unsigned long hash;
448 struct bfd_hash_entry *hashp;
449 unsigned int len;
450 unsigned int _index;
252b5132 451
4e011fb5 452 hash = bfd_hash_hash (string, &len);
91d6fa6a
NC
453 _index = hash % table->size;
454 for (hashp = table->table[_index];
c8e7bf0d 455 hashp != NULL;
252b5132
RH
456 hashp = hashp->next)
457 {
458 if (hashp->hash == hash
459 && strcmp (hashp->string, string) == 0)
460 return hashp;
461 }
462
463 if (! create)
c8e7bf0d 464 return NULL;
252b5132 465
252b5132
RH
466 if (copy)
467 {
d3ce72d0 468 char *new_string;
252b5132 469
d3ce72d0
NC
470 new_string = (char *) objalloc_alloc ((struct objalloc *) table->memory,
471 len + 1);
472 if (!new_string)
252b5132
RH
473 {
474 bfd_set_error (bfd_error_no_memory);
c8e7bf0d 475 return NULL;
252b5132 476 }
d3ce72d0
NC
477 memcpy (new_string, string, len + 1);
478 string = new_string;
252b5132 479 }
a69898aa
AM
480
481 return bfd_hash_insert (table, string, hash);
482}
483
484/* Insert an entry in a hash table. */
485
486struct bfd_hash_entry *
487bfd_hash_insert (struct bfd_hash_table *table,
488 const char *string,
489 unsigned long hash)
490{
491 struct bfd_hash_entry *hashp;
91d6fa6a 492 unsigned int _index;
a69898aa
AM
493
494 hashp = (*table->newfunc) (NULL, table, string);
495 if (hashp == NULL)
496 return NULL;
252b5132
RH
497 hashp->string = string;
498 hashp->hash = hash;
91d6fa6a
NC
499 _index = hash % table->size;
500 hashp->next = table->table[_index];
501 table->table[_index] = hashp;
0bef4ce5 502 table->count++;
252b5132 503
98f0b6ab 504 if (!table->frozen && table->count > table->size * 3 / 4)
aa149cf7 505 {
bd75c995 506 unsigned long newsize = higher_prime_number (table->size);
aa149cf7
DD
507 struct bfd_hash_entry **newtable;
508 unsigned int hi;
bd75c995 509 unsigned long alloc = newsize * sizeof (struct bfd_hash_entry *);
aa149cf7 510
bd75c995
AM
511 /* If we can't find a higher prime, or we can't possibly alloc
512 that much memory, don't try to grow the table. */
513 if (newsize == 0 || alloc / sizeof (struct bfd_hash_entry *) != newsize)
514 {
98f0b6ab 515 table->frozen = 1;
bd75c995
AM
516 return hashp;
517 }
aa149cf7
DD
518
519 newtable = ((struct bfd_hash_entry **)
520 objalloc_alloc ((struct objalloc *) table->memory, alloc));
a69898aa
AM
521 if (newtable == NULL)
522 {
523 table->frozen = 1;
524 return hashp;
525 }
aa149cf7
DD
526 memset ((PTR) newtable, 0, alloc);
527
528 for (hi = 0; hi < table->size; hi ++)
529 while (table->table[hi])
530 {
531 struct bfd_hash_entry *chain = table->table[hi];
532 struct bfd_hash_entry *chain_end = chain;
aa149cf7
DD
533
534 while (chain_end->next && chain_end->next->hash == chain->hash)
bd75c995 535 chain_end = chain_end->next;
aa149cf7
DD
536
537 table->table[hi] = chain_end->next;
91d6fa6a
NC
538 _index = chain->hash % newsize;
539 chain_end->next = newtable[_index];
540 newtable[_index] = chain;
aa149cf7
DD
541 }
542 table->table = newtable;
543 table->size = newsize;
544 }
545
252b5132
RH
546 return hashp;
547}
548
4e011fb5
AM
549/* Rename an entry in a hash table. */
550
551void
552bfd_hash_rename (struct bfd_hash_table *table,
553 const char *string,
554 struct bfd_hash_entry *ent)
555{
556 unsigned int _index;
557 struct bfd_hash_entry **pph;
558
559 _index = ent->hash % table->size;
560 for (pph = &table->table[_index]; *pph != NULL; pph = &(*pph)->next)
561 if (*pph == ent)
562 break;
563 if (*pph == NULL)
564 abort ();
565
566 *pph = ent->next;
567 ent->string = string;
568 ent->hash = bfd_hash_hash (string, NULL);
569 _index = ent->hash % table->size;
570 ent->next = table->table[_index];
571 table->table[_index] = ent;
572}
573
252b5132
RH
574/* Replace an entry in a hash table. */
575
576void
c8e7bf0d
NC
577bfd_hash_replace (struct bfd_hash_table *table,
578 struct bfd_hash_entry *old,
579 struct bfd_hash_entry *nw)
252b5132 580{
91d6fa6a 581 unsigned int _index;
252b5132
RH
582 struct bfd_hash_entry **pph;
583
91d6fa6a
NC
584 _index = old->hash % table->size;
585 for (pph = &table->table[_index];
c8e7bf0d 586 (*pph) != NULL;
252b5132
RH
587 pph = &(*pph)->next)
588 {
589 if (*pph == old)
590 {
591 *pph = nw;
592 return;
593 }
594 }
595
596 abort ();
597}
598
252b5132
RH
599/* Allocate space in a hash table. */
600
c8e7bf0d
NC
601void *
602bfd_hash_allocate (struct bfd_hash_table *table,
603 unsigned int size)
252b5132 604{
c8e7bf0d 605 void * ret;
252b5132
RH
606
607 ret = objalloc_alloc ((struct objalloc *) table->memory, size);
608 if (ret == NULL && size != 0)
609 bfd_set_error (bfd_error_no_memory);
610 return ret;
611}
612
c8e7bf0d
NC
613/* Base method for creating a new hash table entry. */
614
615struct bfd_hash_entry *
616bfd_hash_newfunc (struct bfd_hash_entry *entry,
617 struct bfd_hash_table *table,
618 const char *string ATTRIBUTE_UNUSED)
619{
620 if (entry == NULL)
a50b1753
NC
621 entry = (struct bfd_hash_entry *) bfd_hash_allocate (table,
622 sizeof (* entry));
c8e7bf0d
NC
623 return entry;
624}
625
252b5132
RH
626/* Traverse a hash table. */
627
628void
c8e7bf0d
NC
629bfd_hash_traverse (struct bfd_hash_table *table,
630 bfd_boolean (*func) (struct bfd_hash_entry *, void *),
631 void * info)
252b5132
RH
632{
633 unsigned int i;
634
98f0b6ab 635 table->frozen = 1;
252b5132
RH
636 for (i = 0; i < table->size; i++)
637 {
638 struct bfd_hash_entry *p;
639
640 for (p = table->table[i]; p != NULL; p = p->next)
c8e7bf0d 641 if (! (*func) (p, info))
98f0b6ab 642 goto out;
252b5132 643 }
98f0b6ab
AM
644 out:
645 table->frozen = 0;
252b5132
RH
646}
647\f
2d643429
NC
648void
649bfd_hash_set_default_size (bfd_size_type hash_size)
650{
2d643429 651 /* Extend this prime list if you want more granularity of hash table size. */
724b3ea9 652 static const bfd_size_type hash_size_primes[] =
2d643429 653 {
faaad84b 654 251, 509, 1021, 2039, 4051, 8599, 16699, 32749
2d643429 655 };
91d6fa6a 656 size_t _index;
2d643429
NC
657
658 /* Work out best prime number near the hash_size. */
91d6fa6a
NC
659 for (_index = 0; _index < ARRAY_SIZE (hash_size_primes) - 1; ++_index)
660 if (hash_size <= hash_size_primes[_index])
2d643429
NC
661 break;
662
91d6fa6a 663 bfd_default_hash_table_size = hash_size_primes[_index];
2d643429
NC
664}
665\f
252b5132
RH
666/* A few different object file formats (a.out, COFF, ELF) use a string
667 table. These functions support adding strings to a string table,
668 returning the byte offset, and writing out the table.
669
670 Possible improvements:
671 + look for strings matching trailing substrings of other strings
672 + better data structures? balanced trees?
673 + look at reducing memory use elsewhere -- maybe if we didn't have
674 to construct the entire symbol table at once, we could get by
675 with smaller amounts of VM? (What effect does that have on the
676 string table reductions?) */
677
678/* An entry in the strtab hash table. */
679
680struct strtab_hash_entry
681{
682 struct bfd_hash_entry root;
683 /* Index in string table. */
684 bfd_size_type index;
685 /* Next string in strtab. */
686 struct strtab_hash_entry *next;
687};
688
689/* The strtab hash table. */
690
691struct bfd_strtab_hash
692{
693 struct bfd_hash_table table;
694 /* Size of strtab--also next available index. */
695 bfd_size_type size;
696 /* First string in strtab. */
697 struct strtab_hash_entry *first;
698 /* Last string in strtab. */
699 struct strtab_hash_entry *last;
700 /* Whether to precede strings with a two byte length, as in the
701 XCOFF .debug section. */
b34976b6 702 bfd_boolean xcoff;
252b5132
RH
703};
704
252b5132
RH
705/* Routine to create an entry in a strtab. */
706
707static struct bfd_hash_entry *
c8e7bf0d
NC
708strtab_hash_newfunc (struct bfd_hash_entry *entry,
709 struct bfd_hash_table *table,
710 const char *string)
252b5132
RH
711{
712 struct strtab_hash_entry *ret = (struct strtab_hash_entry *) entry;
713
714 /* Allocate the structure if it has not already been allocated by a
715 subclass. */
c8e7bf0d 716 if (ret == NULL)
a50b1753
NC
717 ret = (struct strtab_hash_entry *) bfd_hash_allocate (table,
718 sizeof (* ret));
c8e7bf0d 719 if (ret == NULL)
252b5132
RH
720 return NULL;
721
722 /* Call the allocation method of the superclass. */
c8e7bf0d
NC
723 ret = (struct strtab_hash_entry *)
724 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string);
252b5132
RH
725
726 if (ret)
727 {
728 /* Initialize the local fields. */
729 ret->index = (bfd_size_type) -1;
730 ret->next = NULL;
731 }
732
733 return (struct bfd_hash_entry *) ret;
734}
735
736/* Look up an entry in an strtab. */
737
738#define strtab_hash_lookup(t, string, create, copy) \
739 ((struct strtab_hash_entry *) \
740 bfd_hash_lookup (&(t)->table, (string), (create), (copy)))
741
742/* Create a new strtab. */
743
744struct bfd_strtab_hash *
c8e7bf0d 745_bfd_stringtab_init (void)
252b5132
RH
746{
747 struct bfd_strtab_hash *table;
c8e7bf0d 748 bfd_size_type amt = sizeof (* table);
252b5132 749
a50b1753 750 table = (struct bfd_strtab_hash *) bfd_malloc (amt);
252b5132
RH
751 if (table == NULL)
752 return NULL;
753
66eb6687
AM
754 if (!bfd_hash_table_init (&table->table, strtab_hash_newfunc,
755 sizeof (struct strtab_hash_entry)))
252b5132
RH
756 {
757 free (table);
758 return NULL;
759 }
760
761 table->size = 0;
762 table->first = NULL;
763 table->last = NULL;
b34976b6 764 table->xcoff = FALSE;
252b5132
RH
765
766 return table;
767}
768
769/* Create a new strtab in which the strings are output in the format
770 used in the XCOFF .debug section: a two byte length precedes each
771 string. */
772
773struct bfd_strtab_hash *
c8e7bf0d 774_bfd_xcoff_stringtab_init (void)
252b5132
RH
775{
776 struct bfd_strtab_hash *ret;
777
778 ret = _bfd_stringtab_init ();
779 if (ret != NULL)
b34976b6 780 ret->xcoff = TRUE;
252b5132
RH
781 return ret;
782}
783
784/* Free a strtab. */
785
786void
c8e7bf0d 787_bfd_stringtab_free (struct bfd_strtab_hash *table)
252b5132
RH
788{
789 bfd_hash_table_free (&table->table);
790 free (table);
791}
792
793/* Get the index of a string in a strtab, adding it if it is not
b34976b6 794 already present. If HASH is FALSE, we don't really use the hash
252b5132
RH
795 table, and we don't eliminate duplicate strings. */
796
797bfd_size_type
c8e7bf0d
NC
798_bfd_stringtab_add (struct bfd_strtab_hash *tab,
799 const char *str,
800 bfd_boolean hash,
801 bfd_boolean copy)
252b5132 802{
c8e7bf0d 803 struct strtab_hash_entry *entry;
252b5132
RH
804
805 if (hash)
806 {
b34976b6 807 entry = strtab_hash_lookup (tab, str, TRUE, copy);
252b5132
RH
808 if (entry == NULL)
809 return (bfd_size_type) -1;
810 }
811 else
812 {
a50b1753
NC
813 entry = (struct strtab_hash_entry *) bfd_hash_allocate (&tab->table,
814 sizeof (* entry));
252b5132
RH
815 if (entry == NULL)
816 return (bfd_size_type) -1;
817 if (! copy)
818 entry->root.string = str;
819 else
820 {
821 char *n;
822
a50b1753 823 n = (char *) bfd_hash_allocate (&tab->table, strlen (str) + 1);
252b5132
RH
824 if (n == NULL)
825 return (bfd_size_type) -1;
826 entry->root.string = n;
827 }
828 entry->index = (bfd_size_type) -1;
829 entry->next = NULL;
830 }
831
832 if (entry->index == (bfd_size_type) -1)
833 {
834 entry->index = tab->size;
835 tab->size += strlen (str) + 1;
836 if (tab->xcoff)
837 {
838 entry->index += 2;
839 tab->size += 2;
840 }
841 if (tab->first == NULL)
842 tab->first = entry;
843 else
844 tab->last->next = entry;
845 tab->last = entry;
846 }
847
848 return entry->index;
849}
850
851/* Get the number of bytes in a strtab. */
852
853bfd_size_type
c8e7bf0d 854_bfd_stringtab_size (struct bfd_strtab_hash *tab)
252b5132
RH
855{
856 return tab->size;
857}
858
859/* Write out a strtab. ABFD must already be at the right location in
860 the file. */
861
b34976b6 862bfd_boolean
c8e7bf0d 863_bfd_stringtab_emit (bfd *abfd, struct bfd_strtab_hash *tab)
252b5132 864{
c8e7bf0d
NC
865 bfd_boolean xcoff;
866 struct strtab_hash_entry *entry;
252b5132
RH
867
868 xcoff = tab->xcoff;
869
870 for (entry = tab->first; entry != NULL; entry = entry->next)
871 {
dc810e39
AM
872 const char *str;
873 size_t len;
252b5132
RH
874
875 str = entry->root.string;
876 len = strlen (str) + 1;
877
878 if (xcoff)
879 {
880 bfd_byte buf[2];
881
882 /* The output length includes the null byte. */
dc810e39 883 bfd_put_16 (abfd, (bfd_vma) len, buf);
c8e7bf0d 884 if (bfd_bwrite ((void *) buf, (bfd_size_type) 2, abfd) != 2)
b34976b6 885 return FALSE;
252b5132
RH
886 }
887
c8e7bf0d 888 if (bfd_bwrite ((void *) str, (bfd_size_type) len, abfd) != len)
b34976b6 889 return FALSE;
252b5132
RH
890 }
891
b34976b6 892 return TRUE;
252b5132 893}
This page took 0.637385 seconds and 4 git commands to generate.