* elf32-mips.c (elf_mips_howto_table): Add R_MIPS_JALR.
[deliverable/binutils-gdb.git] / bfd / linker.c
CommitLineData
252b5132
RH
1/* linker.c -- BFD linker routines
2 Copyright (C) 1993, 94, 95, 96, 97, 1998 Free Software Foundation, Inc.
3 Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support
4
5This file is part of BFD, the Binary File Descriptor library.
6
7This program is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2 of the License, or
10(at your option) any later version.
11
12This program is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with this program; if not, write to the Free Software
19Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21#include "bfd.h"
22#include "sysdep.h"
23#include "libbfd.h"
24#include "bfdlink.h"
25#include "genlink.h"
26
27/*
28SECTION
29 Linker Functions
30
31@cindex Linker
32 The linker uses three special entry points in the BFD target
33 vector. It is not necessary to write special routines for
34 these entry points when creating a new BFD back end, since
35 generic versions are provided. However, writing them can
36 speed up linking and make it use significantly less runtime
37 memory.
38
39 The first routine creates a hash table used by the other
40 routines. The second routine adds the symbols from an object
41 file to the hash table. The third routine takes all the
42 object files and links them together to create the output
43 file. These routines are designed so that the linker proper
44 does not need to know anything about the symbols in the object
45 files that it is linking. The linker merely arranges the
46 sections as directed by the linker script and lets BFD handle
47 the details of symbols and relocs.
48
49 The second routine and third routines are passed a pointer to
50 a <<struct bfd_link_info>> structure (defined in
51 <<bfdlink.h>>) which holds information relevant to the link,
52 including the linker hash table (which was created by the
53 first routine) and a set of callback functions to the linker
54 proper.
55
56 The generic linker routines are in <<linker.c>>, and use the
57 header file <<genlink.h>>. As of this writing, the only back
58 ends which have implemented versions of these routines are
59 a.out (in <<aoutx.h>>) and ECOFF (in <<ecoff.c>>). The a.out
60 routines are used as examples throughout this section.
61
62@menu
63@* Creating a Linker Hash Table::
64@* Adding Symbols to the Hash Table::
65@* Performing the Final Link::
66@end menu
67
68INODE
69Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions
70SUBSECTION
71 Creating a linker hash table
72
73@cindex _bfd_link_hash_table_create in target vector
74@cindex target vector (_bfd_link_hash_table_create)
75 The linker routines must create a hash table, which must be
76 derived from <<struct bfd_link_hash_table>> described in
77 <<bfdlink.c>>. @xref{Hash Tables} for information on how to
78 create a derived hash table. This entry point is called using
79 the target vector of the linker output file.
80
81 The <<_bfd_link_hash_table_create>> entry point must allocate
82 and initialize an instance of the desired hash table. If the
83 back end does not require any additional information to be
84 stored with the entries in the hash table, the entry point may
85 simply create a <<struct bfd_link_hash_table>>. Most likely,
86 however, some additional information will be needed.
87
88 For example, with each entry in the hash table the a.out
89 linker keeps the index the symbol has in the final output file
90 (this index number is used so that when doing a relocateable
91 link the symbol index used in the output file can be quickly
92 filled in when copying over a reloc). The a.out linker code
93 defines the required structures and functions for a hash table
94 derived from <<struct bfd_link_hash_table>>. The a.out linker
95 hash table is created by the function
96 <<NAME(aout,link_hash_table_create)>>; it simply allocates
97 space for the hash table, initializes it, and returns a
98 pointer to it.
99
100 When writing the linker routines for a new back end, you will
101 generally not know exactly which fields will be required until
102 you have finished. You should simply create a new hash table
103 which defines no additional fields, and then simply add fields
104 as they become necessary.
105
106INODE
107Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions
108SUBSECTION
109 Adding symbols to the hash table
110
111@cindex _bfd_link_add_symbols in target vector
112@cindex target vector (_bfd_link_add_symbols)
113 The linker proper will call the <<_bfd_link_add_symbols>>
114 entry point for each object file or archive which is to be
115 linked (typically these are the files named on the command
116 line, but some may also come from the linker script). The
117 entry point is responsible for examining the file. For an
118 object file, BFD must add any relevant symbol information to
119 the hash table. For an archive, BFD must determine which
120 elements of the archive should be used and adding them to the
121 link.
122
123 The a.out version of this entry point is
124 <<NAME(aout,link_add_symbols)>>.
125
126@menu
127@* Differing file formats::
128@* Adding symbols from an object file::
129@* Adding symbols from an archive::
130@end menu
131
132INODE
133Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table
134SUBSUBSECTION
135 Differing file formats
136
137 Normally all the files involved in a link will be of the same
138 format, but it is also possible to link together different
139 format object files, and the back end must support that. The
140 <<_bfd_link_add_symbols>> entry point is called via the target
141 vector of the file to be added. This has an important
142 consequence: the function may not assume that the hash table
143 is the type created by the corresponding
144 <<_bfd_link_hash_table_create>> vector. All the
145 <<_bfd_link_add_symbols>> function can assume about the hash
146 table is that it is derived from <<struct
147 bfd_link_hash_table>>.
148
149 Sometimes the <<_bfd_link_add_symbols>> function must store
150 some information in the hash table entry to be used by the
151 <<_bfd_final_link>> function. In such a case the <<creator>>
152 field of the hash table must be checked to make sure that the
153 hash table was created by an object file of the same format.
154
155 The <<_bfd_final_link>> routine must be prepared to handle a
156 hash entry without any extra information added by the
157 <<_bfd_link_add_symbols>> function. A hash entry without
158 extra information will also occur when the linker script
159 directs the linker to create a symbol. Note that, regardless
160 of how a hash table entry is added, all the fields will be
161 initialized to some sort of null value by the hash table entry
162 initialization function.
163
164 See <<ecoff_link_add_externals>> for an example of how to
165 check the <<creator>> field before saving information (in this
166 case, the ECOFF external symbol debugging information) in a
167 hash table entry.
168
169INODE
170Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table
171SUBSUBSECTION
172 Adding symbols from an object file
173
174 When the <<_bfd_link_add_symbols>> routine is passed an object
175 file, it must add all externally visible symbols in that
176 object file to the hash table. The actual work of adding the
177 symbol to the hash table is normally handled by the function
178 <<_bfd_generic_link_add_one_symbol>>. The
179 <<_bfd_link_add_symbols>> routine is responsible for reading
180 all the symbols from the object file and passing the correct
181 information to <<_bfd_generic_link_add_one_symbol>>.
182
183 The <<_bfd_link_add_symbols>> routine should not use
184 <<bfd_canonicalize_symtab>> to read the symbols. The point of
185 providing this routine is to avoid the overhead of converting
186 the symbols into generic <<asymbol>> structures.
187
188@findex _bfd_generic_link_add_one_symbol
189 <<_bfd_generic_link_add_one_symbol>> handles the details of
190 combining common symbols, warning about multiple definitions,
191 and so forth. It takes arguments which describe the symbol to
192 add, notably symbol flags, a section, and an offset. The
193 symbol flags include such things as <<BSF_WEAK>> or
194 <<BSF_INDIRECT>>. The section is a section in the object
195 file, or something like <<bfd_und_section_ptr>> for an undefined
196 symbol or <<bfd_com_section_ptr>> for a common symbol.
197
198 If the <<_bfd_final_link>> routine is also going to need to
199 read the symbol information, the <<_bfd_link_add_symbols>>
200 routine should save it somewhere attached to the object file
201 BFD. However, the information should only be saved if the
202 <<keep_memory>> field of the <<info>> argument is true, so
203 that the <<-no-keep-memory>> linker switch is effective.
204
205 The a.out function which adds symbols from an object file is
206 <<aout_link_add_object_symbols>>, and most of the interesting
207 work is in <<aout_link_add_symbols>>. The latter saves
208 pointers to the hash tables entries created by
209 <<_bfd_generic_link_add_one_symbol>> indexed by symbol number,
210 so that the <<_bfd_final_link>> routine does not have to call
211 the hash table lookup routine to locate the entry.
212
213INODE
214Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table
215SUBSUBSECTION
216 Adding symbols from an archive
217
218 When the <<_bfd_link_add_symbols>> routine is passed an
219 archive, it must look through the symbols defined by the
220 archive and decide which elements of the archive should be
221 included in the link. For each such element it must call the
222 <<add_archive_element>> linker callback, and it must add the
223 symbols from the object file to the linker hash table.
224
225@findex _bfd_generic_link_add_archive_symbols
226 In most cases the work of looking through the symbols in the
227 archive should be done by the
228 <<_bfd_generic_link_add_archive_symbols>> function. This
229 function builds a hash table from the archive symbol table and
230 looks through the list of undefined symbols to see which
231 elements should be included.
232 <<_bfd_generic_link_add_archive_symbols>> is passed a function
233 to call to make the final decision about adding an archive
234 element to the link and to do the actual work of adding the
235 symbols to the linker hash table.
236
237 The function passed to
238 <<_bfd_generic_link_add_archive_symbols>> must read the
239 symbols of the archive element and decide whether the archive
240 element should be included in the link. If the element is to
241 be included, the <<add_archive_element>> linker callback
242 routine must be called with the element as an argument, and
243 the elements symbols must be added to the linker hash table
244 just as though the element had itself been passed to the
245 <<_bfd_link_add_symbols>> function.
246
247 When the a.out <<_bfd_link_add_symbols>> function receives an
248 archive, it calls <<_bfd_generic_link_add_archive_symbols>>
249 passing <<aout_link_check_archive_element>> as the function
250 argument. <<aout_link_check_archive_element>> calls
251 <<aout_link_check_ar_symbols>>. If the latter decides to add
252 the element (an element is only added if it provides a real,
253 non-common, definition for a previously undefined or common
254 symbol) it calls the <<add_archive_element>> callback and then
255 <<aout_link_check_archive_element>> calls
256 <<aout_link_add_symbols>> to actually add the symbols to the
257 linker hash table.
258
259 The ECOFF back end is unusual in that it does not normally
260 call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF
261 archives already contain a hash table of symbols. The ECOFF
262 back end searches the archive itself to avoid the overhead of
263 creating a new hash table.
264
265INODE
266Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions
267SUBSECTION
268 Performing the final link
269
270@cindex _bfd_link_final_link in target vector
271@cindex target vector (_bfd_final_link)
272 When all the input files have been processed, the linker calls
273 the <<_bfd_final_link>> entry point of the output BFD. This
274 routine is responsible for producing the final output file,
275 which has several aspects. It must relocate the contents of
276 the input sections and copy the data into the output sections.
277 It must build an output symbol table including any local
278 symbols from the input files and the global symbols from the
279 hash table. When producing relocateable output, it must
280 modify the input relocs and write them into the output file.
281 There may also be object format dependent work to be done.
282
283 The linker will also call the <<write_object_contents>> entry
284 point when the BFD is closed. The two entry points must work
285 together in order to produce the correct output file.
286
287 The details of how this works are inevitably dependent upon
288 the specific object file format. The a.out
289 <<_bfd_final_link>> routine is <<NAME(aout,final_link)>>.
290
291@menu
292@* Information provided by the linker::
293@* Relocating the section contents::
294@* Writing the symbol table::
295@end menu
296
297INODE
298Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link
299SUBSUBSECTION
300 Information provided by the linker
301
302 Before the linker calls the <<_bfd_final_link>> entry point,
303 it sets up some data structures for the function to use.
304
305 The <<input_bfds>> field of the <<bfd_link_info>> structure
306 will point to a list of all the input files included in the
307 link. These files are linked through the <<link_next>> field
308 of the <<bfd>> structure.
309
310 Each section in the output file will have a list of
311 <<link_order>> structures attached to the <<link_order_head>>
312 field (the <<link_order>> structure is defined in
313 <<bfdlink.h>>). These structures describe how to create the
314 contents of the output section in terms of the contents of
315 various input sections, fill constants, and, eventually, other
316 types of information. They also describe relocs that must be
317 created by the BFD backend, but do not correspond to any input
318 file; this is used to support -Ur, which builds constructors
319 while generating a relocateable object file.
320
321INODE
322Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link
323SUBSUBSECTION
324 Relocating the section contents
325
326 The <<_bfd_final_link>> function should look through the
327 <<link_order>> structures attached to each section of the
328 output file. Each <<link_order>> structure should either be
329 handled specially, or it should be passed to the function
330 <<_bfd_default_link_order>> which will do the right thing
331 (<<_bfd_default_link_order>> is defined in <<linker.c>>).
332
333 For efficiency, a <<link_order>> of type
334 <<bfd_indirect_link_order>> whose associated section belongs
335 to a BFD of the same format as the output BFD must be handled
336 specially. This type of <<link_order>> describes part of an
337 output section in terms of a section belonging to one of the
338 input files. The <<_bfd_final_link>> function should read the
339 contents of the section and any associated relocs, apply the
340 relocs to the section contents, and write out the modified
341 section contents. If performing a relocateable link, the
342 relocs themselves must also be modified and written out.
343
344@findex _bfd_relocate_contents
345@findex _bfd_final_link_relocate
346 The functions <<_bfd_relocate_contents>> and
347 <<_bfd_final_link_relocate>> provide some general support for
348 performing the actual relocations, notably overflow checking.
349 Their arguments include information about the symbol the
350 relocation is against and a <<reloc_howto_type>> argument
351 which describes the relocation to perform. These functions
352 are defined in <<reloc.c>>.
353
354 The a.out function which handles reading, relocating, and
355 writing section contents is <<aout_link_input_section>>. The
356 actual relocation is done in <<aout_link_input_section_std>>
357 and <<aout_link_input_section_ext>>.
358
359INODE
360Writing the symbol table, , Relocating the section contents, Performing the Final Link
361SUBSUBSECTION
362 Writing the symbol table
363
364 The <<_bfd_final_link>> function must gather all the symbols
365 in the input files and write them out. It must also write out
366 all the symbols in the global hash table. This must be
367 controlled by the <<strip>> and <<discard>> fields of the
368 <<bfd_link_info>> structure.
369
370 The local symbols of the input files will not have been
371 entered into the linker hash table. The <<_bfd_final_link>>
372 routine must consider each input file and include the symbols
373 in the output file. It may be convenient to do this when
374 looking through the <<link_order>> structures, or it may be
375 done by stepping through the <<input_bfds>> list.
376
377 The <<_bfd_final_link>> routine must also traverse the global
378 hash table to gather all the externally visible symbols. It
379 is possible that most of the externally visible symbols may be
380 written out when considering the symbols of each input file,
381 but it is still necessary to traverse the hash table since the
382 linker script may have defined some symbols that are not in
383 any of the input files.
384
385 The <<strip>> field of the <<bfd_link_info>> structure
386 controls which symbols are written out. The possible values
387 are listed in <<bfdlink.h>>. If the value is <<strip_some>>,
388 then the <<keep_hash>> field of the <<bfd_link_info>>
389 structure is a hash table of symbols to keep; each symbol
390 should be looked up in this hash table, and only symbols which
391 are present should be included in the output file.
392
393 If the <<strip>> field of the <<bfd_link_info>> structure
394 permits local symbols to be written out, the <<discard>> field
395 is used to further controls which local symbols are included
396 in the output file. If the value is <<discard_l>>, then all
397 local symbols which begin with a certain prefix are discarded;
398 this is controlled by the <<bfd_is_local_label_name>> entry point.
399
400 The a.out backend handles symbols by calling
401 <<aout_link_write_symbols>> on each input BFD and then
402 traversing the global hash table with the function
403 <<aout_link_write_other_symbol>>. It builds a string table
404 while writing out the symbols, which is written to the output
405 file at the end of <<NAME(aout,final_link)>>.
406*/
407
408static boolean generic_link_read_symbols
409 PARAMS ((bfd *));
410static boolean generic_link_add_symbols
411 PARAMS ((bfd *, struct bfd_link_info *, boolean collect));
412static boolean generic_link_add_object_symbols
413 PARAMS ((bfd *, struct bfd_link_info *, boolean collect));
414static boolean generic_link_check_archive_element_no_collect
415 PARAMS ((bfd *, struct bfd_link_info *, boolean *pneeded));
416static boolean generic_link_check_archive_element_collect
417 PARAMS ((bfd *, struct bfd_link_info *, boolean *pneeded));
418static boolean generic_link_check_archive_element
419 PARAMS ((bfd *, struct bfd_link_info *, boolean *pneeded, boolean collect));
420static boolean generic_link_add_symbol_list
421 PARAMS ((bfd *, struct bfd_link_info *, bfd_size_type count, asymbol **,
422 boolean collect));
423static bfd *hash_entry_bfd PARAMS ((struct bfd_link_hash_entry *));
424static void set_symbol_from_hash
425 PARAMS ((asymbol *, struct bfd_link_hash_entry *));
426static boolean generic_add_output_symbol
427 PARAMS ((bfd *, size_t *psymalloc, asymbol *));
428static boolean default_fill_link_order
429 PARAMS ((bfd *, struct bfd_link_info *, asection *,
430 struct bfd_link_order *));
431static boolean default_indirect_link_order
432 PARAMS ((bfd *, struct bfd_link_info *, asection *,
433 struct bfd_link_order *, boolean));
434
435/* The link hash table structure is defined in bfdlink.h. It provides
436 a base hash table which the backend specific hash tables are built
437 upon. */
438
439/* Routine to create an entry in the link hash table. */
440
441struct bfd_hash_entry *
442_bfd_link_hash_newfunc (entry, table, string)
443 struct bfd_hash_entry *entry;
444 struct bfd_hash_table *table;
445 const char *string;
446{
447 struct bfd_link_hash_entry *ret = (struct bfd_link_hash_entry *) entry;
448
449 /* Allocate the structure if it has not already been allocated by a
450 subclass. */
451 if (ret == (struct bfd_link_hash_entry *) NULL)
452 ret = ((struct bfd_link_hash_entry *)
453 bfd_hash_allocate (table, sizeof (struct bfd_link_hash_entry)));
454 if (ret == (struct bfd_link_hash_entry *) NULL)
455 return NULL;
456
457 /* Call the allocation method of the superclass. */
458 ret = ((struct bfd_link_hash_entry *)
459 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
460
461 if (ret)
462 {
463 /* Initialize the local fields. */
464 ret->type = bfd_link_hash_new;
465 ret->next = NULL;
466 }
467
468 return (struct bfd_hash_entry *) ret;
469}
470
471/* Initialize a link hash table. The BFD argument is the one
472 responsible for creating this table. */
473
474boolean
475_bfd_link_hash_table_init (table, abfd, newfunc)
476 struct bfd_link_hash_table *table;
477 bfd *abfd;
478 struct bfd_hash_entry *(*newfunc) PARAMS ((struct bfd_hash_entry *,
479 struct bfd_hash_table *,
480 const char *));
481{
482 table->creator = abfd->xvec;
483 table->undefs = NULL;
484 table->undefs_tail = NULL;
485 return bfd_hash_table_init (&table->table, newfunc);
486}
487
488/* Look up a symbol in a link hash table. If follow is true, we
489 follow bfd_link_hash_indirect and bfd_link_hash_warning links to
490 the real symbol. */
491
492struct bfd_link_hash_entry *
493bfd_link_hash_lookup (table, string, create, copy, follow)
494 struct bfd_link_hash_table *table;
495 const char *string;
496 boolean create;
497 boolean copy;
498 boolean follow;
499{
500 struct bfd_link_hash_entry *ret;
501
502 ret = ((struct bfd_link_hash_entry *)
503 bfd_hash_lookup (&table->table, string, create, copy));
504
505 if (follow && ret != (struct bfd_link_hash_entry *) NULL)
506 {
507 while (ret->type == bfd_link_hash_indirect
508 || ret->type == bfd_link_hash_warning)
509 ret = ret->u.i.link;
510 }
511
512 return ret;
513}
514
515/* Look up a symbol in the main linker hash table if the symbol might
516 be wrapped. This should only be used for references to an
517 undefined symbol, not for definitions of a symbol. */
518
519struct bfd_link_hash_entry *
520bfd_wrapped_link_hash_lookup (abfd, info, string, create, copy, follow)
521 bfd *abfd;
522 struct bfd_link_info *info;
523 const char *string;
524 boolean create;
525 boolean copy;
526 boolean follow;
527{
528 if (info->wrap_hash != NULL)
529 {
530 const char *l;
531
532 l = string;
533 if (*l == bfd_get_symbol_leading_char (abfd))
534 ++l;
535
536#undef WRAP
537#define WRAP "__wrap_"
538
539 if (bfd_hash_lookup (info->wrap_hash, l, false, false) != NULL)
540 {
541 char *n;
542 struct bfd_link_hash_entry *h;
543
544 /* This symbol is being wrapped. We want to replace all
545 references to SYM with references to __wrap_SYM. */
546
547 n = (char *) bfd_malloc (strlen (l) + sizeof WRAP + 1);
548 if (n == NULL)
549 return NULL;
550
551 /* Note that symbol_leading_char may be '\0'. */
552 n[0] = bfd_get_symbol_leading_char (abfd);
553 n[1] = '\0';
554 strcat (n, WRAP);
555 strcat (n, l);
556 h = bfd_link_hash_lookup (info->hash, n, create, true, follow);
557 free (n);
558 return h;
559 }
560
561#undef WRAP
562
563#undef REAL
564#define REAL "__real_"
565
566 if (*l == '_'
567 && strncmp (l, REAL, sizeof REAL - 1) == 0
568 && bfd_hash_lookup (info->wrap_hash, l + sizeof REAL - 1,
569 false, false) != NULL)
570 {
571 char *n;
572 struct bfd_link_hash_entry *h;
573
574 /* This is a reference to __real_SYM, where SYM is being
575 wrapped. We want to replace all references to __real_SYM
576 with references to SYM. */
577
578 n = (char *) bfd_malloc (strlen (l + sizeof REAL - 1) + 2);
579 if (n == NULL)
580 return NULL;
581
582 /* Note that symbol_leading_char may be '\0'. */
583 n[0] = bfd_get_symbol_leading_char (abfd);
584 n[1] = '\0';
585 strcat (n, l + sizeof REAL - 1);
586 h = bfd_link_hash_lookup (info->hash, n, create, true, follow);
587 free (n);
588 return h;
589 }
590
591#undef REAL
592 }
593
594 return bfd_link_hash_lookup (info->hash, string, create, copy, follow);
595}
596
597/* Traverse a generic link hash table. The only reason this is not a
598 macro is to do better type checking. This code presumes that an
599 argument passed as a struct bfd_hash_entry * may be caught as a
600 struct bfd_link_hash_entry * with no explicit cast required on the
601 call. */
602
603void
604bfd_link_hash_traverse (table, func, info)
605 struct bfd_link_hash_table *table;
606 boolean (*func) PARAMS ((struct bfd_link_hash_entry *, PTR));
607 PTR info;
608{
609 bfd_hash_traverse (&table->table,
610 ((boolean (*) PARAMS ((struct bfd_hash_entry *, PTR)))
611 func),
612 info);
613}
614
615/* Add a symbol to the linker hash table undefs list. */
616
617INLINE void
618bfd_link_add_undef (table, h)
619 struct bfd_link_hash_table *table;
620 struct bfd_link_hash_entry *h;
621{
622 BFD_ASSERT (h->next == NULL);
623 if (table->undefs_tail != (struct bfd_link_hash_entry *) NULL)
624 table->undefs_tail->next = h;
625 if (table->undefs == (struct bfd_link_hash_entry *) NULL)
626 table->undefs = h;
627 table->undefs_tail = h;
628}
629\f
630/* Routine to create an entry in an generic link hash table. */
631
632struct bfd_hash_entry *
633_bfd_generic_link_hash_newfunc (entry, table, string)
634 struct bfd_hash_entry *entry;
635 struct bfd_hash_table *table;
636 const char *string;
637{
638 struct generic_link_hash_entry *ret =
639 (struct generic_link_hash_entry *) entry;
640
641 /* Allocate the structure if it has not already been allocated by a
642 subclass. */
643 if (ret == (struct generic_link_hash_entry *) NULL)
644 ret = ((struct generic_link_hash_entry *)
645 bfd_hash_allocate (table, sizeof (struct generic_link_hash_entry)));
646 if (ret == (struct generic_link_hash_entry *) NULL)
647 return NULL;
648
649 /* Call the allocation method of the superclass. */
650 ret = ((struct generic_link_hash_entry *)
651 _bfd_link_hash_newfunc ((struct bfd_hash_entry *) ret,
652 table, string));
653
654 if (ret)
655 {
656 /* Set local fields. */
657 ret->written = false;
658 ret->sym = NULL;
659 }
660
661 return (struct bfd_hash_entry *) ret;
662}
663
664/* Create an generic link hash table. */
665
666struct bfd_link_hash_table *
667_bfd_generic_link_hash_table_create (abfd)
668 bfd *abfd;
669{
670 struct generic_link_hash_table *ret;
671
672 ret = ((struct generic_link_hash_table *)
673 bfd_alloc (abfd, sizeof (struct generic_link_hash_table)));
674 if (ret == NULL)
675 return (struct bfd_link_hash_table *) NULL;
676 if (! _bfd_link_hash_table_init (&ret->root, abfd,
677 _bfd_generic_link_hash_newfunc))
678 {
679 free (ret);
680 return (struct bfd_link_hash_table *) NULL;
681 }
682 return &ret->root;
683}
684
685/* Grab the symbols for an object file when doing a generic link. We
686 store the symbols in the outsymbols field. We need to keep them
687 around for the entire link to ensure that we only read them once.
688 If we read them multiple times, we might wind up with relocs and
689 the hash table pointing to different instances of the symbol
690 structure. */
691
692static boolean
693generic_link_read_symbols (abfd)
694 bfd *abfd;
695{
696 if (bfd_get_outsymbols (abfd) == (asymbol **) NULL)
697 {
698 long symsize;
699 long symcount;
700
701 symsize = bfd_get_symtab_upper_bound (abfd);
702 if (symsize < 0)
703 return false;
704 bfd_get_outsymbols (abfd) = (asymbol **) bfd_alloc (abfd, symsize);
705 if (bfd_get_outsymbols (abfd) == NULL && symsize != 0)
706 return false;
707 symcount = bfd_canonicalize_symtab (abfd, bfd_get_outsymbols (abfd));
708 if (symcount < 0)
709 return false;
710 bfd_get_symcount (abfd) = symcount;
711 }
712
713 return true;
714}
715\f
716/* Generic function to add symbols to from an object file to the
717 global hash table. This version does not automatically collect
718 constructors by name. */
719
720boolean
721_bfd_generic_link_add_symbols (abfd, info)
722 bfd *abfd;
723 struct bfd_link_info *info;
724{
725 return generic_link_add_symbols (abfd, info, false);
726}
727
728/* Generic function to add symbols from an object file to the global
729 hash table. This version automatically collects constructors by
730 name, as the collect2 program does. It should be used for any
731 target which does not provide some other mechanism for setting up
732 constructors and destructors; these are approximately those targets
733 for which gcc uses collect2 and do not support stabs. */
734
735boolean
736_bfd_generic_link_add_symbols_collect (abfd, info)
737 bfd *abfd;
738 struct bfd_link_info *info;
739{
740 return generic_link_add_symbols (abfd, info, true);
741}
742
743/* Add symbols from an object file to the global hash table. */
744
745static boolean
746generic_link_add_symbols (abfd, info, collect)
747 bfd *abfd;
748 struct bfd_link_info *info;
749 boolean collect;
750{
751 boolean ret;
752
753 switch (bfd_get_format (abfd))
754 {
755 case bfd_object:
756 ret = generic_link_add_object_symbols (abfd, info, collect);
757 break;
758 case bfd_archive:
759 ret = (_bfd_generic_link_add_archive_symbols
760 (abfd, info,
761 (collect
762 ? generic_link_check_archive_element_collect
763 : generic_link_check_archive_element_no_collect)));
764 break;
765 default:
766 bfd_set_error (bfd_error_wrong_format);
767 ret = false;
768 }
769
770 return ret;
771}
772
773/* Add symbols from an object file to the global hash table. */
774
775static boolean
776generic_link_add_object_symbols (abfd, info, collect)
777 bfd *abfd;
778 struct bfd_link_info *info;
779 boolean collect;
780{
781 if (! generic_link_read_symbols (abfd))
782 return false;
783 return generic_link_add_symbol_list (abfd, info,
784 _bfd_generic_link_get_symcount (abfd),
785 _bfd_generic_link_get_symbols (abfd),
786 collect);
787}
788\f
789/* We build a hash table of all symbols defined in an archive. */
790
791/* An archive symbol may be defined by multiple archive elements.
792 This linked list is used to hold the elements. */
793
794struct archive_list
795{
796 struct archive_list *next;
797 int indx;
798};
799
800/* An entry in an archive hash table. */
801
802struct archive_hash_entry
803{
804 struct bfd_hash_entry root;
805 /* Where the symbol is defined. */
806 struct archive_list *defs;
807};
808
809/* An archive hash table itself. */
810
811struct archive_hash_table
812{
813 struct bfd_hash_table table;
814};
815
816static struct bfd_hash_entry *archive_hash_newfunc
817 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
818static boolean archive_hash_table_init
819 PARAMS ((struct archive_hash_table *,
820 struct bfd_hash_entry *(*) (struct bfd_hash_entry *,
821 struct bfd_hash_table *,
822 const char *)));
823
824/* Create a new entry for an archive hash table. */
825
826static struct bfd_hash_entry *
827archive_hash_newfunc (entry, table, string)
828 struct bfd_hash_entry *entry;
829 struct bfd_hash_table *table;
830 const char *string;
831{
832 struct archive_hash_entry *ret = (struct archive_hash_entry *) entry;
833
834 /* Allocate the structure if it has not already been allocated by a
835 subclass. */
836 if (ret == (struct archive_hash_entry *) NULL)
837 ret = ((struct archive_hash_entry *)
838 bfd_hash_allocate (table, sizeof (struct archive_hash_entry)));
839 if (ret == (struct archive_hash_entry *) NULL)
840 return NULL;
841
842 /* Call the allocation method of the superclass. */
843 ret = ((struct archive_hash_entry *)
844 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
845
846 if (ret)
847 {
848 /* Initialize the local fields. */
849 ret->defs = (struct archive_list *) NULL;
850 }
851
852 return (struct bfd_hash_entry *) ret;
853}
854
855/* Initialize an archive hash table. */
856
857static boolean
858archive_hash_table_init (table, newfunc)
859 struct archive_hash_table *table;
860 struct bfd_hash_entry *(*newfunc) PARAMS ((struct bfd_hash_entry *,
861 struct bfd_hash_table *,
862 const char *));
863{
864 return bfd_hash_table_init (&table->table, newfunc);
865}
866
867/* Look up an entry in an archive hash table. */
868
869#define archive_hash_lookup(t, string, create, copy) \
870 ((struct archive_hash_entry *) \
871 bfd_hash_lookup (&(t)->table, (string), (create), (copy)))
872
873/* Allocate space in an archive hash table. */
874
875#define archive_hash_allocate(t, size) bfd_hash_allocate (&(t)->table, (size))
876
877/* Free an archive hash table. */
878
879#define archive_hash_table_free(t) bfd_hash_table_free (&(t)->table)
880
881/* Generic function to add symbols from an archive file to the global
882 hash file. This function presumes that the archive symbol table
883 has already been read in (this is normally done by the
884 bfd_check_format entry point). It looks through the undefined and
885 common symbols and searches the archive symbol table for them. If
886 it finds an entry, it includes the associated object file in the
887 link.
888
889 The old linker looked through the archive symbol table for
890 undefined symbols. We do it the other way around, looking through
891 undefined symbols for symbols defined in the archive. The
892 advantage of the newer scheme is that we only have to look through
893 the list of undefined symbols once, whereas the old method had to
894 re-search the symbol table each time a new object file was added.
895
896 The CHECKFN argument is used to see if an object file should be
897 included. CHECKFN should set *PNEEDED to true if the object file
898 should be included, and must also call the bfd_link_info
899 add_archive_element callback function and handle adding the symbols
900 to the global hash table. CHECKFN should only return false if some
901 sort of error occurs.
902
903 For some formats, such as a.out, it is possible to look through an
904 object file but not actually include it in the link. The
905 archive_pass field in a BFD is used to avoid checking the symbols
906 of an object files too many times. When an object is included in
907 the link, archive_pass is set to -1. If an object is scanned but
908 not included, archive_pass is set to the pass number. The pass
909 number is incremented each time a new object file is included. The
910 pass number is used because when a new object file is included it
911 may create new undefined symbols which cause a previously examined
912 object file to be included. */
913
914boolean
915_bfd_generic_link_add_archive_symbols (abfd, info, checkfn)
916 bfd *abfd;
917 struct bfd_link_info *info;
918 boolean (*checkfn) PARAMS ((bfd *, struct bfd_link_info *,
919 boolean *pneeded));
920{
921 carsym *arsyms;
922 carsym *arsym_end;
923 register carsym *arsym;
924 int pass;
925 struct archive_hash_table arsym_hash;
926 int indx;
927 struct bfd_link_hash_entry **pundef;
928
929 if (! bfd_has_map (abfd))
930 {
931 /* An empty archive is a special case. */
932 if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL)
933 return true;
934 bfd_set_error (bfd_error_no_armap);
935 return false;
936 }
937
938 arsyms = bfd_ardata (abfd)->symdefs;
939 arsym_end = arsyms + bfd_ardata (abfd)->symdef_count;
940
941 /* In order to quickly determine whether an symbol is defined in
942 this archive, we build a hash table of the symbols. */
943 if (! archive_hash_table_init (&arsym_hash, archive_hash_newfunc))
944 return false;
945 for (arsym = arsyms, indx = 0; arsym < arsym_end; arsym++, indx++)
946 {
947 struct archive_hash_entry *arh;
948 struct archive_list *l, **pp;
949
950 arh = archive_hash_lookup (&arsym_hash, arsym->name, true, false);
951 if (arh == (struct archive_hash_entry *) NULL)
952 goto error_return;
953 l = ((struct archive_list *)
954 archive_hash_allocate (&arsym_hash, sizeof (struct archive_list)));
955 if (l == NULL)
956 goto error_return;
957 l->indx = indx;
958 for (pp = &arh->defs;
959 *pp != (struct archive_list *) NULL;
960 pp = &(*pp)->next)
961 ;
962 *pp = l;
963 l->next = NULL;
964 }
965
966 /* The archive_pass field in the archive itself is used to
967 initialize PASS, sine we may search the same archive multiple
968 times. */
969 pass = abfd->archive_pass + 1;
970
971 /* New undefined symbols are added to the end of the list, so we
972 only need to look through it once. */
973 pundef = &info->hash->undefs;
974 while (*pundef != (struct bfd_link_hash_entry *) NULL)
975 {
976 struct bfd_link_hash_entry *h;
977 struct archive_hash_entry *arh;
978 struct archive_list *l;
979
980 h = *pundef;
981
982 /* When a symbol is defined, it is not necessarily removed from
983 the list. */
984 if (h->type != bfd_link_hash_undefined
985 && h->type != bfd_link_hash_common)
986 {
987 /* Remove this entry from the list, for general cleanliness
988 and because we are going to look through the list again
989 if we search any more libraries. We can't remove the
990 entry if it is the tail, because that would lose any
991 entries we add to the list later on (it would also cause
992 us to lose track of whether the symbol has been
993 referenced). */
994 if (*pundef != info->hash->undefs_tail)
995 *pundef = (*pundef)->next;
996 else
997 pundef = &(*pundef)->next;
998 continue;
999 }
1000
1001 /* Look for this symbol in the archive symbol map. */
1002 arh = archive_hash_lookup (&arsym_hash, h->root.string, false, false);
1003 if (arh == (struct archive_hash_entry *) NULL)
1004 {
1005 pundef = &(*pundef)->next;
1006 continue;
1007 }
1008
1009 /* Look at all the objects which define this symbol. */
1010 for (l = arh->defs; l != (struct archive_list *) NULL; l = l->next)
1011 {
1012 bfd *element;
1013 boolean needed;
1014
1015 /* If the symbol has gotten defined along the way, quit. */
1016 if (h->type != bfd_link_hash_undefined
1017 && h->type != bfd_link_hash_common)
1018 break;
1019
1020 element = bfd_get_elt_at_index (abfd, l->indx);
1021 if (element == (bfd *) NULL)
1022 goto error_return;
1023
1024 /* If we've already included this element, or if we've
1025 already checked it on this pass, continue. */
1026 if (element->archive_pass == -1
1027 || element->archive_pass == pass)
1028 continue;
1029
1030 /* If we can't figure this element out, just ignore it. */
1031 if (! bfd_check_format (element, bfd_object))
1032 {
1033 element->archive_pass = -1;
1034 continue;
1035 }
1036
1037 /* CHECKFN will see if this element should be included, and
1038 go ahead and include it if appropriate. */
1039 if (! (*checkfn) (element, info, &needed))
1040 goto error_return;
1041
1042 if (! needed)
1043 element->archive_pass = pass;
1044 else
1045 {
1046 element->archive_pass = -1;
1047
1048 /* Increment the pass count to show that we may need to
1049 recheck object files which were already checked. */
1050 ++pass;
1051 }
1052 }
1053
1054 pundef = &(*pundef)->next;
1055 }
1056
1057 archive_hash_table_free (&arsym_hash);
1058
1059 /* Save PASS in case we are called again. */
1060 abfd->archive_pass = pass;
1061
1062 return true;
1063
1064 error_return:
1065 archive_hash_table_free (&arsym_hash);
1066 return false;
1067}
1068\f
1069/* See if we should include an archive element. This version is used
1070 when we do not want to automatically collect constructors based on
1071 the symbol name, presumably because we have some other mechanism
1072 for finding them. */
1073
1074static boolean
1075generic_link_check_archive_element_no_collect (abfd, info, pneeded)
1076 bfd *abfd;
1077 struct bfd_link_info *info;
1078 boolean *pneeded;
1079{
1080 return generic_link_check_archive_element (abfd, info, pneeded, false);
1081}
1082
1083/* See if we should include an archive element. This version is used
1084 when we want to automatically collect constructors based on the
1085 symbol name, as collect2 does. */
1086
1087static boolean
1088generic_link_check_archive_element_collect (abfd, info, pneeded)
1089 bfd *abfd;
1090 struct bfd_link_info *info;
1091 boolean *pneeded;
1092{
1093 return generic_link_check_archive_element (abfd, info, pneeded, true);
1094}
1095
1096/* See if we should include an archive element. Optionally collect
1097 constructors. */
1098
1099static boolean
1100generic_link_check_archive_element (abfd, info, pneeded, collect)
1101 bfd *abfd;
1102 struct bfd_link_info *info;
1103 boolean *pneeded;
1104 boolean collect;
1105{
1106 asymbol **pp, **ppend;
1107
1108 *pneeded = false;
1109
1110 if (! generic_link_read_symbols (abfd))
1111 return false;
1112
1113 pp = _bfd_generic_link_get_symbols (abfd);
1114 ppend = pp + _bfd_generic_link_get_symcount (abfd);
1115 for (; pp < ppend; pp++)
1116 {
1117 asymbol *p;
1118 struct bfd_link_hash_entry *h;
1119
1120 p = *pp;
1121
1122 /* We are only interested in globally visible symbols. */
1123 if (! bfd_is_com_section (p->section)
1124 && (p->flags & (BSF_GLOBAL | BSF_INDIRECT | BSF_WEAK)) == 0)
1125 continue;
1126
1127 /* We are only interested if we know something about this
1128 symbol, and it is undefined or common. An undefined weak
1129 symbol (type bfd_link_hash_undefweak) is not considered to be
1130 a reference when pulling files out of an archive. See the
1131 SVR4 ABI, p. 4-27. */
1132 h = bfd_link_hash_lookup (info->hash, bfd_asymbol_name (p), false,
1133 false, true);
1134 if (h == (struct bfd_link_hash_entry *) NULL
1135 || (h->type != bfd_link_hash_undefined
1136 && h->type != bfd_link_hash_common))
1137 continue;
1138
1139 /* P is a symbol we are looking for. */
1140
1141 if (! bfd_is_com_section (p->section))
1142 {
1143 bfd_size_type symcount;
1144 asymbol **symbols;
1145
1146 /* This object file defines this symbol, so pull it in. */
1147 if (! (*info->callbacks->add_archive_element) (info, abfd,
1148 bfd_asymbol_name (p)))
1149 return false;
1150 symcount = _bfd_generic_link_get_symcount (abfd);
1151 symbols = _bfd_generic_link_get_symbols (abfd);
1152 if (! generic_link_add_symbol_list (abfd, info, symcount,
1153 symbols, collect))
1154 return false;
1155 *pneeded = true;
1156 return true;
1157 }
1158
1159 /* P is a common symbol. */
1160
1161 if (h->type == bfd_link_hash_undefined)
1162 {
1163 bfd *symbfd;
1164 bfd_vma size;
1165 unsigned int power;
1166
1167 symbfd = h->u.undef.abfd;
1168 if (symbfd == (bfd *) NULL)
1169 {
1170 /* This symbol was created as undefined from outside
1171 BFD. We assume that we should link in the object
1172 file. This is for the -u option in the linker. */
1173 if (! (*info->callbacks->add_archive_element)
1174 (info, abfd, bfd_asymbol_name (p)))
1175 return false;
1176 *pneeded = true;
1177 return true;
1178 }
1179
1180 /* Turn the symbol into a common symbol but do not link in
1181 the object file. This is how a.out works. Object
1182 formats that require different semantics must implement
1183 this function differently. This symbol is already on the
1184 undefs list. We add the section to a common section
1185 attached to symbfd to ensure that it is in a BFD which
1186 will be linked in. */
1187 h->type = bfd_link_hash_common;
1188 h->u.c.p =
1189 ((struct bfd_link_hash_common_entry *)
1190 bfd_hash_allocate (&info->hash->table,
1191 sizeof (struct bfd_link_hash_common_entry)));
1192 if (h->u.c.p == NULL)
1193 return false;
1194
1195 size = bfd_asymbol_value (p);
1196 h->u.c.size = size;
1197
1198 power = bfd_log2 (size);
1199 if (power > 4)
1200 power = 4;
1201 h->u.c.p->alignment_power = power;
1202
1203 if (p->section == bfd_com_section_ptr)
1204 h->u.c.p->section = bfd_make_section_old_way (symbfd, "COMMON");
1205 else
1206 h->u.c.p->section = bfd_make_section_old_way (symbfd,
1207 p->section->name);
1208 h->u.c.p->section->flags = SEC_ALLOC;
1209 }
1210 else
1211 {
1212 /* Adjust the size of the common symbol if necessary. This
1213 is how a.out works. Object formats that require
1214 different semantics must implement this function
1215 differently. */
1216 if (bfd_asymbol_value (p) > h->u.c.size)
1217 h->u.c.size = bfd_asymbol_value (p);
1218 }
1219 }
1220
1221 /* This archive element is not needed. */
1222 return true;
1223}
1224
1225/* Add the symbols from an object file to the global hash table. ABFD
1226 is the object file. INFO is the linker information. SYMBOL_COUNT
1227 is the number of symbols. SYMBOLS is the list of symbols. COLLECT
1228 is true if constructors should be automatically collected by name
1229 as is done by collect2. */
1230
1231static boolean
1232generic_link_add_symbol_list (abfd, info, symbol_count, symbols, collect)
1233 bfd *abfd;
1234 struct bfd_link_info *info;
1235 bfd_size_type symbol_count;
1236 asymbol **symbols;
1237 boolean collect;
1238{
1239 asymbol **pp, **ppend;
1240
1241 pp = symbols;
1242 ppend = symbols + symbol_count;
1243 for (; pp < ppend; pp++)
1244 {
1245 asymbol *p;
1246
1247 p = *pp;
1248
1249 if ((p->flags & (BSF_INDIRECT
1250 | BSF_WARNING
1251 | BSF_GLOBAL
1252 | BSF_CONSTRUCTOR
1253 | BSF_WEAK)) != 0
1254 || bfd_is_und_section (bfd_get_section (p))
1255 || bfd_is_com_section (bfd_get_section (p))
1256 || bfd_is_ind_section (bfd_get_section (p)))
1257 {
1258 const char *name;
1259 const char *string;
1260 struct generic_link_hash_entry *h;
1261
1262 name = bfd_asymbol_name (p);
1263 if (((p->flags & BSF_INDIRECT) != 0
1264 || bfd_is_ind_section (p->section))
1265 && pp + 1 < ppend)
1266 {
1267 pp++;
1268 string = bfd_asymbol_name (*pp);
1269 }
1270 else if ((p->flags & BSF_WARNING) != 0
1271 && pp + 1 < ppend)
1272 {
1273 /* The name of P is actually the warning string, and the
1274 next symbol is the one to warn about. */
1275 string = name;
1276 pp++;
1277 name = bfd_asymbol_name (*pp);
1278 }
1279 else
1280 string = NULL;
1281
1282 h = NULL;
1283 if (! (_bfd_generic_link_add_one_symbol
1284 (info, abfd, name, p->flags, bfd_get_section (p),
1285 p->value, string, false, collect,
1286 (struct bfd_link_hash_entry **) &h)))
1287 return false;
1288
1289 /* If this is a constructor symbol, and the linker didn't do
1290 anything with it, then we want to just pass the symbol
1291 through to the output file. This will happen when
1292 linking with -r. */
1293 if ((p->flags & BSF_CONSTRUCTOR) != 0
1294 && (h == NULL || h->root.type == bfd_link_hash_new))
1295 {
1296 p->udata.p = NULL;
1297 continue;
1298 }
1299
1300 /* Save the BFD symbol so that we don't lose any backend
1301 specific information that may be attached to it. We only
1302 want this one if it gives more information than the
1303 existing one; we don't want to replace a defined symbol
1304 with an undefined one. This routine may be called with a
1305 hash table other than the generic hash table, so we only
1306 do this if we are certain that the hash table is a
1307 generic one. */
1308 if (info->hash->creator == abfd->xvec)
1309 {
1310 if (h->sym == (asymbol *) NULL
1311 || (! bfd_is_und_section (bfd_get_section (p))
1312 && (! bfd_is_com_section (bfd_get_section (p))
1313 || bfd_is_und_section (bfd_get_section (h->sym)))))
1314 {
1315 h->sym = p;
1316 /* BSF_OLD_COMMON is a hack to support COFF reloc
1317 reading, and it should go away when the COFF
1318 linker is switched to the new version. */
1319 if (bfd_is_com_section (bfd_get_section (p)))
1320 p->flags |= BSF_OLD_COMMON;
1321 }
1322 }
1323
1324 /* Store a back pointer from the symbol to the hash
1325 table entry for the benefit of relaxation code until
1326 it gets rewritten to not use asymbol structures.
1327 Setting this is also used to check whether these
1328 symbols were set up by the generic linker. */
1329 p->udata.p = (PTR) h;
1330 }
1331 }
1332
1333 return true;
1334}
1335\f
1336/* We use a state table to deal with adding symbols from an object
1337 file. The first index into the state table describes the symbol
1338 from the object file. The second index into the state table is the
1339 type of the symbol in the hash table. */
1340
1341/* The symbol from the object file is turned into one of these row
1342 values. */
1343
1344enum link_row
1345{
1346 UNDEF_ROW, /* Undefined. */
1347 UNDEFW_ROW, /* Weak undefined. */
1348 DEF_ROW, /* Defined. */
1349 DEFW_ROW, /* Weak defined. */
1350 COMMON_ROW, /* Common. */
1351 INDR_ROW, /* Indirect. */
1352 WARN_ROW, /* Warning. */
1353 SET_ROW /* Member of set. */
1354};
1355
1356/* apparently needed for Hitachi 3050R(HI-UX/WE2)? */
1357#undef FAIL
1358
1359/* The actions to take in the state table. */
1360
1361enum link_action
1362{
1363 FAIL, /* Abort. */
1364 UND, /* Mark symbol undefined. */
1365 WEAK, /* Mark symbol weak undefined. */
1366 DEF, /* Mark symbol defined. */
1367 DEFW, /* Mark symbol weak defined. */
1368 COM, /* Mark symbol common. */
1369 REF, /* Mark defined symbol referenced. */
1370 CREF, /* Possibly warn about common reference to defined symbol. */
1371 CDEF, /* Define existing common symbol. */
1372 NOACT, /* No action. */
1373 BIG, /* Mark symbol common using largest size. */
1374 MDEF, /* Multiple definition error. */
1375 MIND, /* Multiple indirect symbols. */
1376 IND, /* Make indirect symbol. */
1377 CIND, /* Make indirect symbol from existing common symbol. */
1378 SET, /* Add value to set. */
1379 MWARN, /* Make warning symbol. */
1380 WARN, /* Issue warning. */
1381 CWARN, /* Warn if referenced, else MWARN. */
1382 CYCLE, /* Repeat with symbol pointed to. */
1383 REFC, /* Mark indirect symbol referenced and then CYCLE. */
1384 WARNC /* Issue warning and then CYCLE. */
1385};
1386
1387/* The state table itself. The first index is a link_row and the
1388 second index is a bfd_link_hash_type. */
1389
1390static const enum link_action link_action[8][8] =
1391{
1392 /* current\prev new undef undefw def defw com indr warn */
1393 /* UNDEF_ROW */ {UND, NOACT, UND, REF, REF, NOACT, REFC, WARNC },
1394 /* UNDEFW_ROW */ {WEAK, NOACT, NOACT, REF, REF, NOACT, REFC, WARNC },
1395 /* DEF_ROW */ {DEF, DEF, DEF, MDEF, DEF, CDEF, MDEF, CYCLE },
1396 /* DEFW_ROW */ {DEFW, DEFW, DEFW, NOACT, NOACT, NOACT, NOACT, CYCLE },
1397 /* COMMON_ROW */ {COM, COM, COM, CREF, CREF, BIG, REFC, WARNC },
1398 /* INDR_ROW */ {IND, IND, IND, MDEF, IND, CIND, MIND, CYCLE },
1399 /* WARN_ROW */ {MWARN, WARN, WARN, CWARN, CWARN, WARN, CWARN, MWARN },
1400 /* SET_ROW */ {SET, SET, SET, SET, SET, SET, CYCLE, CYCLE }
1401};
1402
1403/* Most of the entries in the LINK_ACTION table are straightforward,
1404 but a few are somewhat subtle.
1405
1406 A reference to an indirect symbol (UNDEF_ROW/indr or
1407 UNDEFW_ROW/indr) is counted as a reference both to the indirect
1408 symbol and to the symbol the indirect symbol points to.
1409
1410 A reference to a warning symbol (UNDEF_ROW/warn or UNDEFW_ROW/warn)
1411 causes the warning to be issued.
1412
1413 A common definition of an indirect symbol (COMMON_ROW/indr) is
1414 treated as a multiple definition error. Likewise for an indirect
1415 definition of a common symbol (INDR_ROW/com).
1416
1417 An indirect definition of a warning (INDR_ROW/warn) does not cause
1418 the warning to be issued.
1419
1420 If a warning is created for an indirect symbol (WARN_ROW/indr) no
1421 warning is created for the symbol the indirect symbol points to.
1422
1423 Adding an entry to a set does not count as a reference to a set,
1424 and no warning is issued (SET_ROW/warn). */
1425
1426/* Return the BFD in which a hash entry has been defined, if known. */
1427
1428static bfd *
1429hash_entry_bfd (h)
1430 struct bfd_link_hash_entry *h;
1431{
1432 while (h->type == bfd_link_hash_warning)
1433 h = h->u.i.link;
1434 switch (h->type)
1435 {
1436 default:
1437 return NULL;
1438 case bfd_link_hash_undefined:
1439 case bfd_link_hash_undefweak:
1440 return h->u.undef.abfd;
1441 case bfd_link_hash_defined:
1442 case bfd_link_hash_defweak:
1443 return h->u.def.section->owner;
1444 case bfd_link_hash_common:
1445 return h->u.c.p->section->owner;
1446 }
1447 /*NOTREACHED*/
1448}
1449
1450/* Add a symbol to the global hash table.
1451 ABFD is the BFD the symbol comes from.
1452 NAME is the name of the symbol.
1453 FLAGS is the BSF_* bits associated with the symbol.
1454 SECTION is the section in which the symbol is defined; this may be
1455 bfd_und_section_ptr or bfd_com_section_ptr.
1456 VALUE is the value of the symbol, relative to the section.
1457 STRING is used for either an indirect symbol, in which case it is
1458 the name of the symbol to indirect to, or a warning symbol, in
1459 which case it is the warning string.
1460 COPY is true if NAME or STRING must be copied into locally
1461 allocated memory if they need to be saved.
1462 COLLECT is true if we should automatically collect gcc constructor
1463 or destructor names as collect2 does.
1464 HASHP, if not NULL, is a place to store the created hash table
1465 entry; if *HASHP is not NULL, the caller has already looked up
1466 the hash table entry, and stored it in *HASHP. */
1467
1468boolean
1469_bfd_generic_link_add_one_symbol (info, abfd, name, flags, section, value,
1470 string, copy, collect, hashp)
1471 struct bfd_link_info *info;
1472 bfd *abfd;
1473 const char *name;
1474 flagword flags;
1475 asection *section;
1476 bfd_vma value;
1477 const char *string;
1478 boolean copy;
1479 boolean collect;
1480 struct bfd_link_hash_entry **hashp;
1481{
1482 enum link_row row;
1483 struct bfd_link_hash_entry *h;
1484 boolean cycle;
1485
1486 if (bfd_is_ind_section (section)
1487 || (flags & BSF_INDIRECT) != 0)
1488 row = INDR_ROW;
1489 else if ((flags & BSF_WARNING) != 0)
1490 row = WARN_ROW;
1491 else if ((flags & BSF_CONSTRUCTOR) != 0)
1492 row = SET_ROW;
1493 else if (bfd_is_und_section (section))
1494 {
1495 if ((flags & BSF_WEAK) != 0)
1496 row = UNDEFW_ROW;
1497 else
1498 row = UNDEF_ROW;
1499 }
1500 else if ((flags & BSF_WEAK) != 0)
1501 row = DEFW_ROW;
1502 else if (bfd_is_com_section (section))
1503 row = COMMON_ROW;
1504 else
1505 row = DEF_ROW;
1506
1507 if (hashp != NULL && *hashp != NULL)
1508 h = *hashp;
1509 else
1510 {
1511 if (row == UNDEF_ROW || row == UNDEFW_ROW)
1512 h = bfd_wrapped_link_hash_lookup (abfd, info, name, true, copy, false);
1513 else
1514 h = bfd_link_hash_lookup (info->hash, name, true, copy, false);
1515 if (h == NULL)
1516 {
1517 if (hashp != NULL)
1518 *hashp = NULL;
1519 return false;
1520 }
1521 }
1522
1523 if (info->notice_all
1524 || (info->notice_hash != (struct bfd_hash_table *) NULL
1525 && (bfd_hash_lookup (info->notice_hash, name, false, false)
1526 != (struct bfd_hash_entry *) NULL)))
1527 {
1528 if (! (*info->callbacks->notice) (info, h->root.string, abfd, section,
1529 value))
1530 return false;
1531 }
1532
1533 if (hashp != (struct bfd_link_hash_entry **) NULL)
1534 *hashp = h;
1535
1536 do
1537 {
1538 enum link_action action;
1539
1540 cycle = false;
1541 action = link_action[(int) row][(int) h->type];
1542 switch (action)
1543 {
1544 case FAIL:
1545 abort ();
1546
1547 case NOACT:
1548 /* Do nothing. */
1549 break;
1550
1551 case UND:
1552 /* Make a new undefined symbol. */
1553 h->type = bfd_link_hash_undefined;
1554 h->u.undef.abfd = abfd;
1555 bfd_link_add_undef (info->hash, h);
1556 break;
1557
1558 case WEAK:
1559 /* Make a new weak undefined symbol. */
1560 h->type = bfd_link_hash_undefweak;
1561 h->u.undef.abfd = abfd;
1562 break;
1563
1564 case CDEF:
1565 /* We have found a definition for a symbol which was
1566 previously common. */
1567 BFD_ASSERT (h->type == bfd_link_hash_common);
1568 if (! ((*info->callbacks->multiple_common)
1569 (info, h->root.string,
1570 h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1571 abfd, bfd_link_hash_defined, (bfd_vma) 0)))
1572 return false;
1573 /* Fall through. */
1574 case DEF:
1575 case DEFW:
1576 {
1577 enum bfd_link_hash_type oldtype;
1578
1579 /* Define a symbol. */
1580 oldtype = h->type;
1581 if (action == DEFW)
1582 h->type = bfd_link_hash_defweak;
1583 else
1584 h->type = bfd_link_hash_defined;
1585 h->u.def.section = section;
1586 h->u.def.value = value;
1587
1588 /* If we have been asked to, we act like collect2 and
1589 identify all functions that might be global
1590 constructors and destructors and pass them up in a
1591 callback. We only do this for certain object file
1592 types, since many object file types can handle this
1593 automatically. */
1594 if (collect && name[0] == '_')
1595 {
1596 const char *s;
1597
1598 /* A constructor or destructor name starts like this:
1599 _+GLOBAL_[_.$][ID][_.$] where the first [_.$] and
1600 the second are the same character (we accept any
1601 character there, in case a new object file format
1602 comes along with even worse naming restrictions). */
1603
1604#define CONS_PREFIX "GLOBAL_"
1605#define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1)
1606
1607 s = name + 1;
1608 while (*s == '_')
1609 ++s;
1610 if (s[0] == 'G'
1611 && strncmp (s, CONS_PREFIX, CONS_PREFIX_LEN - 1) == 0)
1612 {
1613 char c;
1614
1615 c = s[CONS_PREFIX_LEN + 1];
1616 if ((c == 'I' || c == 'D')
1617 && s[CONS_PREFIX_LEN] == s[CONS_PREFIX_LEN + 2])
1618 {
1619 /* If this is a definition of a symbol which
1620 was previously weakly defined, we are in
1621 trouble. We have already added a
1622 constructor entry for the weak defined
1623 symbol, and now we are trying to add one
1624 for the new symbol. Fortunately, this case
1625 should never arise in practice. */
1626 if (oldtype == bfd_link_hash_defweak)
1627 abort ();
1628
1629 if (! ((*info->callbacks->constructor)
1630 (info,
1631 c == 'I' ? true : false,
1632 h->root.string, abfd, section, value)))
1633 return false;
1634 }
1635 }
1636 }
1637 }
1638
1639 break;
1640
1641 case COM:
1642 /* We have found a common definition for a symbol. */
1643 if (h->type == bfd_link_hash_new)
1644 bfd_link_add_undef (info->hash, h);
1645 h->type = bfd_link_hash_common;
1646 h->u.c.p =
1647 ((struct bfd_link_hash_common_entry *)
1648 bfd_hash_allocate (&info->hash->table,
1649 sizeof (struct bfd_link_hash_common_entry)));
1650 if (h->u.c.p == NULL)
1651 return false;
1652
1653 h->u.c.size = value;
1654
1655 /* Select a default alignment based on the size. This may
1656 be overridden by the caller. */
1657 {
1658 unsigned int power;
1659
1660 power = bfd_log2 (value);
1661 if (power > 4)
1662 power = 4;
1663 h->u.c.p->alignment_power = power;
1664 }
1665
1666 /* The section of a common symbol is only used if the common
1667 symbol is actually allocated. It basically provides a
1668 hook for the linker script to decide which output section
1669 the common symbols should be put in. In most cases, the
1670 section of a common symbol will be bfd_com_section_ptr,
1671 the code here will choose a common symbol section named
1672 "COMMON", and the linker script will contain *(COMMON) in
1673 the appropriate place. A few targets use separate common
1674 sections for small symbols, and they require special
1675 handling. */
1676 if (section == bfd_com_section_ptr)
1677 {
1678 h->u.c.p->section = bfd_make_section_old_way (abfd, "COMMON");
1679 h->u.c.p->section->flags = SEC_ALLOC;
1680 }
1681 else if (section->owner != abfd)
1682 {
1683 h->u.c.p->section = bfd_make_section_old_way (abfd,
1684 section->name);
1685 h->u.c.p->section->flags = SEC_ALLOC;
1686 }
1687 else
1688 h->u.c.p->section = section;
1689 break;
1690
1691 case REF:
1692 /* A reference to a defined symbol. */
1693 if (h->next == NULL && info->hash->undefs_tail != h)
1694 h->next = h;
1695 break;
1696
1697 case BIG:
1698 /* We have found a common definition for a symbol which
1699 already had a common definition. Use the maximum of the
1700 two sizes. */
1701 BFD_ASSERT (h->type == bfd_link_hash_common);
1702 if (! ((*info->callbacks->multiple_common)
1703 (info, h->root.string,
1704 h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1705 abfd, bfd_link_hash_common, value)))
1706 return false;
1707 if (value > h->u.c.size)
1708 {
1709 unsigned int power;
1710
1711 h->u.c.size = value;
1712
1713 /* Select a default alignment based on the size. This may
1714 be overridden by the caller. */
1715 power = bfd_log2 (value);
1716 if (power > 4)
1717 power = 4;
1718 h->u.c.p->alignment_power = power;
1719 }
1720 break;
1721
1722 case CREF:
1723 {
1724 bfd *obfd;
1725
1726 /* We have found a common definition for a symbol which
1727 was already defined. FIXME: It would nice if we could
1728 report the BFD which defined an indirect symbol, but we
1729 don't have anywhere to store the information. */
1730 if (h->type == bfd_link_hash_defined
1731 || h->type == bfd_link_hash_defweak)
1732 obfd = h->u.def.section->owner;
1733 else
1734 obfd = NULL;
1735 if (! ((*info->callbacks->multiple_common)
1736 (info, h->root.string, obfd, h->type, (bfd_vma) 0,
1737 abfd, bfd_link_hash_common, value)))
1738 return false;
1739 }
1740 break;
1741
1742 case MIND:
1743 /* Multiple indirect symbols. This is OK if they both point
1744 to the same symbol. */
1745 if (strcmp (h->u.i.link->root.string, string) == 0)
1746 break;
1747 /* Fall through. */
1748 case MDEF:
1749 /* Handle a multiple definition. */
1750 {
1751 asection *msec;
1752 bfd_vma mval;
1753
1754 switch (h->type)
1755 {
1756 case bfd_link_hash_defined:
1757 msec = h->u.def.section;
1758 mval = h->u.def.value;
1759 break;
1760 case bfd_link_hash_indirect:
1761 msec = bfd_ind_section_ptr;
1762 mval = 0;
1763 break;
1764 default:
1765 abort ();
1766 }
1767
1768 /* Ignore a redefinition of an absolute symbol to the same
1769 value; it's harmless. */
1770 if (h->type == bfd_link_hash_defined
1771 && bfd_is_abs_section (msec)
1772 && bfd_is_abs_section (section)
1773 && value == mval)
1774 break;
1775
1776 if (! ((*info->callbacks->multiple_definition)
1777 (info, h->root.string, msec->owner, msec, mval, abfd,
1778 section, value)))
1779 return false;
1780 }
1781 break;
1782
1783 case CIND:
1784 /* Create an indirect symbol from an existing common symbol. */
1785 BFD_ASSERT (h->type == bfd_link_hash_common);
1786 if (! ((*info->callbacks->multiple_common)
1787 (info, h->root.string,
1788 h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1789 abfd, bfd_link_hash_indirect, (bfd_vma) 0)))
1790 return false;
1791 /* Fall through. */
1792 case IND:
1793 /* Create an indirect symbol. */
1794 {
1795 struct bfd_link_hash_entry *inh;
1796
1797 /* STRING is the name of the symbol we want to indirect
1798 to. */
1799 inh = bfd_wrapped_link_hash_lookup (abfd, info, string, true,
1800 copy, false);
1801 if (inh == (struct bfd_link_hash_entry *) NULL)
1802 return false;
1803 if (inh->type == bfd_link_hash_new)
1804 {
1805 inh->type = bfd_link_hash_undefined;
1806 inh->u.undef.abfd = abfd;
1807 bfd_link_add_undef (info->hash, inh);
1808 }
1809
1810 /* If the indirect symbol has been referenced, we need to
1811 push the reference down to the symbol we are
1812 referencing. */
1813 if (h->type != bfd_link_hash_new)
1814 {
1815 row = UNDEF_ROW;
1816 cycle = true;
1817 }
1818
1819 h->type = bfd_link_hash_indirect;
1820 h->u.i.link = inh;
1821 }
1822 break;
1823
1824 case SET:
1825 /* Add an entry to a set. */
1826 if (! (*info->callbacks->add_to_set) (info, h, BFD_RELOC_CTOR,
1827 abfd, section, value))
1828 return false;
1829 break;
1830
1831 case WARNC:
1832 /* Issue a warning and cycle. */
1833 if (h->u.i.warning != NULL)
1834 {
1835 if (! (*info->callbacks->warning) (info, h->u.i.warning,
1836 h->root.string, abfd,
1837 (asection *) NULL,
1838 (bfd_vma) 0))
1839 return false;
1840 /* Only issue a warning once. */
1841 h->u.i.warning = NULL;
1842 }
1843 /* Fall through. */
1844 case CYCLE:
1845 /* Try again with the referenced symbol. */
1846 h = h->u.i.link;
1847 cycle = true;
1848 break;
1849
1850 case REFC:
1851 /* A reference to an indirect symbol. */
1852 if (h->next == NULL && info->hash->undefs_tail != h)
1853 h->next = h;
1854 h = h->u.i.link;
1855 cycle = true;
1856 break;
1857
1858 case WARN:
1859 /* Issue a warning. */
1860 if (! (*info->callbacks->warning) (info, string, h->root.string,
1861 hash_entry_bfd (h),
1862 (asection *) NULL, (bfd_vma) 0))
1863 return false;
1864 break;
1865
1866 case CWARN:
1867 /* Warn if this symbol has been referenced already,
1868 otherwise add a warning. A symbol has been referenced if
1869 the next field is not NULL, or it is the tail of the
1870 undefined symbol list. The REF case above helps to
1871 ensure this. */
1872 if (h->next != NULL || info->hash->undefs_tail == h)
1873 {
1874 if (! (*info->callbacks->warning) (info, string, h->root.string,
1875 hash_entry_bfd (h),
1876 (asection *) NULL,
1877 (bfd_vma) 0))
1878 return false;
1879 break;
1880 }
1881 /* Fall through. */
1882 case MWARN:
1883 /* Make a warning symbol. */
1884 {
1885 struct bfd_link_hash_entry *sub;
1886
1887 /* STRING is the warning to give. */
1888 sub = ((struct bfd_link_hash_entry *)
1889 ((*info->hash->table.newfunc)
1890 ((struct bfd_hash_entry *) NULL, &info->hash->table,
1891 h->root.string)));
1892 if (sub == NULL)
1893 return false;
1894 *sub = *h;
1895 sub->type = bfd_link_hash_warning;
1896 sub->u.i.link = h;
1897 if (! copy)
1898 sub->u.i.warning = string;
1899 else
1900 {
1901 char *w;
1902
1903 w = bfd_hash_allocate (&info->hash->table,
1904 strlen (string) + 1);
1905 if (w == NULL)
1906 return false;
1907 strcpy (w, string);
1908 sub->u.i.warning = w;
1909 }
1910
1911 bfd_hash_replace (&info->hash->table,
1912 (struct bfd_hash_entry *) h,
1913 (struct bfd_hash_entry *) sub);
1914 if (hashp != NULL)
1915 *hashp = sub;
1916 }
1917 break;
1918 }
1919 }
1920 while (cycle);
1921
1922 return true;
1923}
1924\f
1925/* Generic final link routine. */
1926
1927boolean
1928_bfd_generic_final_link (abfd, info)
1929 bfd *abfd;
1930 struct bfd_link_info *info;
1931{
1932 bfd *sub;
1933 asection *o;
1934 struct bfd_link_order *p;
1935 size_t outsymalloc;
1936 struct generic_write_global_symbol_info wginfo;
1937
1938 bfd_get_outsymbols (abfd) = (asymbol **) NULL;
1939 bfd_get_symcount (abfd) = 0;
1940 outsymalloc = 0;
1941
1942 /* Mark all sections which will be included in the output file. */
1943 for (o = abfd->sections; o != NULL; o = o->next)
1944 for (p = o->link_order_head; p != NULL; p = p->next)
1945 if (p->type == bfd_indirect_link_order)
1946 p->u.indirect.section->linker_mark = true;
1947
1948 /* Build the output symbol table. */
1949 for (sub = info->input_bfds; sub != (bfd *) NULL; sub = sub->link_next)
1950 if (! _bfd_generic_link_output_symbols (abfd, sub, info, &outsymalloc))
1951 return false;
1952
1953 /* Accumulate the global symbols. */
1954 wginfo.info = info;
1955 wginfo.output_bfd = abfd;
1956 wginfo.psymalloc = &outsymalloc;
1957 _bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info),
1958 _bfd_generic_link_write_global_symbol,
1959 (PTR) &wginfo);
1960
1961 /* Make sure we have a trailing NULL pointer on OUTSYMBOLS. We
1962 shouldn't really need one, since we have SYMCOUNT, but some old
1963 code still expects one. */
1964 if (! generic_add_output_symbol (abfd, &outsymalloc, NULL))
1965 return false;
1966
1967 if (info->relocateable)
1968 {
1969 /* Allocate space for the output relocs for each section. */
1970 for (o = abfd->sections;
1971 o != (asection *) NULL;
1972 o = o->next)
1973 {
1974 o->reloc_count = 0;
1975 for (p = o->link_order_head;
1976 p != (struct bfd_link_order *) NULL;
1977 p = p->next)
1978 {
1979 if (p->type == bfd_section_reloc_link_order
1980 || p->type == bfd_symbol_reloc_link_order)
1981 ++o->reloc_count;
1982 else if (p->type == bfd_indirect_link_order)
1983 {
1984 asection *input_section;
1985 bfd *input_bfd;
1986 long relsize;
1987 arelent **relocs;
1988 asymbol **symbols;
1989 long reloc_count;
1990
1991 input_section = p->u.indirect.section;
1992 input_bfd = input_section->owner;
1993 relsize = bfd_get_reloc_upper_bound (input_bfd,
1994 input_section);
1995 if (relsize < 0)
1996 return false;
1997 relocs = (arelent **) bfd_malloc ((size_t) relsize);
1998 if (!relocs && relsize != 0)
1999 return false;
2000 symbols = _bfd_generic_link_get_symbols (input_bfd);
2001 reloc_count = bfd_canonicalize_reloc (input_bfd,
2002 input_section,
2003 relocs,
2004 symbols);
2005 if (reloc_count < 0)
2006 return false;
2007 BFD_ASSERT ((unsigned long) reloc_count
2008 == input_section->reloc_count);
2009 o->reloc_count += reloc_count;
2010 free (relocs);
2011 }
2012 }
2013 if (o->reloc_count > 0)
2014 {
2015 o->orelocation = ((arelent **)
2016 bfd_alloc (abfd,
2017 (o->reloc_count
2018 * sizeof (arelent *))));
2019 if (!o->orelocation)
2020 return false;
2021 o->flags |= SEC_RELOC;
2022 /* Reset the count so that it can be used as an index
2023 when putting in the output relocs. */
2024 o->reloc_count = 0;
2025 }
2026 }
2027 }
2028
2029 /* Handle all the link order information for the sections. */
2030 for (o = abfd->sections;
2031 o != (asection *) NULL;
2032 o = o->next)
2033 {
2034 for (p = o->link_order_head;
2035 p != (struct bfd_link_order *) NULL;
2036 p = p->next)
2037 {
2038 switch (p->type)
2039 {
2040 case bfd_section_reloc_link_order:
2041 case bfd_symbol_reloc_link_order:
2042 if (! _bfd_generic_reloc_link_order (abfd, info, o, p))
2043 return false;
2044 break;
2045 case bfd_indirect_link_order:
2046 if (! default_indirect_link_order (abfd, info, o, p, true))
2047 return false;
2048 break;
2049 default:
2050 if (! _bfd_default_link_order (abfd, info, o, p))
2051 return false;
2052 break;
2053 }
2054 }
2055 }
2056
2057 return true;
2058}
2059
2060/* Add an output symbol to the output BFD. */
2061
2062static boolean
2063generic_add_output_symbol (output_bfd, psymalloc, sym)
2064 bfd *output_bfd;
2065 size_t *psymalloc;
2066 asymbol *sym;
2067{
2068 if (bfd_get_symcount (output_bfd) >= *psymalloc)
2069 {
2070 asymbol **newsyms;
2071
2072 if (*psymalloc == 0)
2073 *psymalloc = 124;
2074 else
2075 *psymalloc *= 2;
2076 newsyms = (asymbol **) bfd_realloc (bfd_get_outsymbols (output_bfd),
2077 *psymalloc * sizeof (asymbol *));
2078 if (newsyms == (asymbol **) NULL)
2079 return false;
2080 bfd_get_outsymbols (output_bfd) = newsyms;
2081 }
2082
2083 bfd_get_outsymbols (output_bfd) [bfd_get_symcount (output_bfd)] = sym;
2084 if (sym != NULL)
2085 ++ bfd_get_symcount (output_bfd);
2086
2087 return true;
2088}
2089
2090/* Handle the symbols for an input BFD. */
2091
2092boolean
2093_bfd_generic_link_output_symbols (output_bfd, input_bfd, info, psymalloc)
2094 bfd *output_bfd;
2095 bfd *input_bfd;
2096 struct bfd_link_info *info;
2097 size_t *psymalloc;
2098{
2099 asymbol **sym_ptr;
2100 asymbol **sym_end;
2101
2102 if (! generic_link_read_symbols (input_bfd))
2103 return false;
2104
2105 /* Create a filename symbol if we are supposed to. */
2106 if (info->create_object_symbols_section != (asection *) NULL)
2107 {
2108 asection *sec;
2109
2110 for (sec = input_bfd->sections;
2111 sec != (asection *) NULL;
2112 sec = sec->next)
2113 {
2114 if (sec->output_section == info->create_object_symbols_section)
2115 {
2116 asymbol *newsym;
2117
2118 newsym = bfd_make_empty_symbol (input_bfd);
2119 if (!newsym)
2120 return false;
2121 newsym->name = input_bfd->filename;
2122 newsym->value = 0;
2123 newsym->flags = BSF_LOCAL | BSF_FILE;
2124 newsym->section = sec;
2125
2126 if (! generic_add_output_symbol (output_bfd, psymalloc,
2127 newsym))
2128 return false;
2129
2130 break;
2131 }
2132 }
2133 }
2134
2135 /* Adjust the values of the globally visible symbols, and write out
2136 local symbols. */
2137 sym_ptr = _bfd_generic_link_get_symbols (input_bfd);
2138 sym_end = sym_ptr + _bfd_generic_link_get_symcount (input_bfd);
2139 for (; sym_ptr < sym_end; sym_ptr++)
2140 {
2141 asymbol *sym;
2142 struct generic_link_hash_entry *h;
2143 boolean output;
2144
2145 h = (struct generic_link_hash_entry *) NULL;
2146 sym = *sym_ptr;
2147 if ((sym->flags & (BSF_INDIRECT
2148 | BSF_WARNING
2149 | BSF_GLOBAL
2150 | BSF_CONSTRUCTOR
2151 | BSF_WEAK)) != 0
2152 || bfd_is_und_section (bfd_get_section (sym))
2153 || bfd_is_com_section (bfd_get_section (sym))
2154 || bfd_is_ind_section (bfd_get_section (sym)))
2155 {
2156 if (sym->udata.p != NULL)
2157 h = (struct generic_link_hash_entry *) sym->udata.p;
2158 else if ((sym->flags & BSF_CONSTRUCTOR) != 0)
2159 {
2160 /* This case normally means that the main linker code
2161 deliberately ignored this constructor symbol. We
2162 should just pass it through. This will screw up if
2163 the constructor symbol is from a different,
2164 non-generic, object file format, but the case will
2165 only arise when linking with -r, which will probably
2166 fail anyhow, since there will be no way to represent
2167 the relocs in the output format being used. */
2168 h = NULL;
2169 }
2170 else if (bfd_is_und_section (bfd_get_section (sym)))
2171 h = ((struct generic_link_hash_entry *)
2172 bfd_wrapped_link_hash_lookup (output_bfd, info,
2173 bfd_asymbol_name (sym),
2174 false, false, true));
2175 else
2176 h = _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info),
2177 bfd_asymbol_name (sym),
2178 false, false, true);
2179
2180 if (h != (struct generic_link_hash_entry *) NULL)
2181 {
2182 /* Force all references to this symbol to point to
2183 the same area in memory. It is possible that
2184 this routine will be called with a hash table
2185 other than a generic hash table, so we double
2186 check that. */
2187 if (info->hash->creator == input_bfd->xvec)
2188 {
2189 if (h->sym != (asymbol *) NULL)
2190 *sym_ptr = sym = h->sym;
2191 }
2192
2193 switch (h->root.type)
2194 {
2195 default:
2196 case bfd_link_hash_new:
2197 abort ();
2198 case bfd_link_hash_undefined:
2199 break;
2200 case bfd_link_hash_undefweak:
2201 sym->flags |= BSF_WEAK;
2202 break;
2203 case bfd_link_hash_indirect:
2204 h = (struct generic_link_hash_entry *) h->root.u.i.link;
2205 /* fall through */
2206 case bfd_link_hash_defined:
2207 sym->flags |= BSF_GLOBAL;
2208 sym->flags &=~ BSF_CONSTRUCTOR;
2209 sym->value = h->root.u.def.value;
2210 sym->section = h->root.u.def.section;
2211 break;
2212 case bfd_link_hash_defweak:
2213 sym->flags |= BSF_WEAK;
2214 sym->flags &=~ BSF_CONSTRUCTOR;
2215 sym->value = h->root.u.def.value;
2216 sym->section = h->root.u.def.section;
2217 break;
2218 case bfd_link_hash_common:
2219 sym->value = h->root.u.c.size;
2220 sym->flags |= BSF_GLOBAL;
2221 if (! bfd_is_com_section (sym->section))
2222 {
2223 BFD_ASSERT (bfd_is_und_section (sym->section));
2224 sym->section = bfd_com_section_ptr;
2225 }
2226 /* We do not set the section of the symbol to
2227 h->root.u.c.p->section. That value was saved so
2228 that we would know where to allocate the symbol
2229 if it was defined. In this case the type is
2230 still bfd_link_hash_common, so we did not define
2231 it, so we do not want to use that section. */
2232 break;
2233 }
2234 }
2235 }
2236
2237 /* This switch is straight from the old code in
2238 write_file_locals in ldsym.c. */
2239 if (info->strip == strip_all
2240 || (info->strip == strip_some
2241 && (bfd_hash_lookup (info->keep_hash, bfd_asymbol_name (sym),
2242 false, false)
2243 == (struct bfd_hash_entry *) NULL)))
2244 output = false;
2245 else if ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0)
2246 {
2247 /* If this symbol is marked as occurring now, rather
2248 than at the end, output it now. This is used for
2249 COFF C_EXT FCN symbols. FIXME: There must be a
2250 better way. */
2251 if (bfd_asymbol_bfd (sym) == input_bfd
2252 && (sym->flags & BSF_NOT_AT_END) != 0)
2253 output = true;
2254 else
2255 output = false;
2256 }
2257 else if (bfd_is_ind_section (sym->section))
2258 output = false;
2259 else if ((sym->flags & BSF_DEBUGGING) != 0)
2260 {
2261 if (info->strip == strip_none)
2262 output = true;
2263 else
2264 output = false;
2265 }
2266 else if (bfd_is_und_section (sym->section)
2267 || bfd_is_com_section (sym->section))
2268 output = false;
2269 else if ((sym->flags & BSF_LOCAL) != 0)
2270 {
2271 if ((sym->flags & BSF_WARNING) != 0)
2272 output = false;
2273 else
2274 {
2275 switch (info->discard)
2276 {
2277 default:
2278 case discard_all:
2279 output = false;
2280 break;
2281 case discard_l:
2282 if (bfd_is_local_label (input_bfd, sym))
2283 output = false;
2284 else
2285 output = true;
2286 break;
2287 case discard_none:
2288 output = true;
2289 break;
2290 }
2291 }
2292 }
2293 else if ((sym->flags & BSF_CONSTRUCTOR))
2294 {
2295 if (info->strip != strip_all)
2296 output = true;
2297 else
2298 output = false;
2299 }
2300 else
2301 abort ();
2302
2303 /* If this symbol is in a section which is not being included
2304 in the output file, then we don't want to output the symbol.
2305
2306 Gross. .bss and similar sections won't have the linker_mark
2307 field set. */
2308 if ((sym->section->flags & SEC_HAS_CONTENTS) != 0
2309 && sym->section->linker_mark == false)
2310 output = false;
2311
2312 if (output)
2313 {
2314 if (! generic_add_output_symbol (output_bfd, psymalloc, sym))
2315 return false;
2316 if (h != (struct generic_link_hash_entry *) NULL)
2317 h->written = true;
2318 }
2319 }
2320
2321 return true;
2322}
2323
2324/* Set the section and value of a generic BFD symbol based on a linker
2325 hash table entry. */
2326
2327static void
2328set_symbol_from_hash (sym, h)
2329 asymbol *sym;
2330 struct bfd_link_hash_entry *h;
2331{
2332 switch (h->type)
2333 {
2334 default:
2335 abort ();
2336 break;
2337 case bfd_link_hash_new:
2338 /* This can happen when a constructor symbol is seen but we are
2339 not building constructors. */
2340 if (sym->section != NULL)
2341 {
2342 BFD_ASSERT ((sym->flags & BSF_CONSTRUCTOR) != 0);
2343 }
2344 else
2345 {
2346 sym->flags |= BSF_CONSTRUCTOR;
2347 sym->section = bfd_abs_section_ptr;
2348 sym->value = 0;
2349 }
2350 break;
2351 case bfd_link_hash_undefined:
2352 sym->section = bfd_und_section_ptr;
2353 sym->value = 0;
2354 break;
2355 case bfd_link_hash_undefweak:
2356 sym->section = bfd_und_section_ptr;
2357 sym->value = 0;
2358 sym->flags |= BSF_WEAK;
2359 break;
2360 case bfd_link_hash_defined:
2361 sym->section = h->u.def.section;
2362 sym->value = h->u.def.value;
2363 break;
2364 case bfd_link_hash_defweak:
2365 sym->flags |= BSF_WEAK;
2366 sym->section = h->u.def.section;
2367 sym->value = h->u.def.value;
2368 break;
2369 case bfd_link_hash_common:
2370 sym->value = h->u.c.size;
2371 if (sym->section == NULL)
2372 sym->section = bfd_com_section_ptr;
2373 else if (! bfd_is_com_section (sym->section))
2374 {
2375 BFD_ASSERT (bfd_is_und_section (sym->section));
2376 sym->section = bfd_com_section_ptr;
2377 }
2378 /* Do not set the section; see _bfd_generic_link_output_symbols. */
2379 break;
2380 case bfd_link_hash_indirect:
2381 case bfd_link_hash_warning:
2382 /* FIXME: What should we do here? */
2383 break;
2384 }
2385}
2386
2387/* Write out a global symbol, if it hasn't already been written out.
2388 This is called for each symbol in the hash table. */
2389
2390boolean
2391_bfd_generic_link_write_global_symbol (h, data)
2392 struct generic_link_hash_entry *h;
2393 PTR data;
2394{
2395 struct generic_write_global_symbol_info *wginfo =
2396 (struct generic_write_global_symbol_info *) data;
2397 asymbol *sym;
2398
2399 if (h->written)
2400 return true;
2401
2402 h->written = true;
2403
2404 if (wginfo->info->strip == strip_all
2405 || (wginfo->info->strip == strip_some
2406 && bfd_hash_lookup (wginfo->info->keep_hash, h->root.root.string,
2407 false, false) == NULL))
2408 return true;
2409
2410 if (h->sym != (asymbol *) NULL)
2411 sym = h->sym;
2412 else
2413 {
2414 sym = bfd_make_empty_symbol (wginfo->output_bfd);
2415 if (!sym)
2416 return false;
2417 sym->name = h->root.root.string;
2418 sym->flags = 0;
2419 }
2420
2421 set_symbol_from_hash (sym, &h->root);
2422
2423 sym->flags |= BSF_GLOBAL;
2424
2425 if (! generic_add_output_symbol (wginfo->output_bfd, wginfo->psymalloc,
2426 sym))
2427 {
2428 /* FIXME: No way to return failure. */
2429 abort ();
2430 }
2431
2432 return true;
2433}
2434
2435/* Create a relocation. */
2436
2437boolean
2438_bfd_generic_reloc_link_order (abfd, info, sec, link_order)
2439 bfd *abfd;
2440 struct bfd_link_info *info;
2441 asection *sec;
2442 struct bfd_link_order *link_order;
2443{
2444 arelent *r;
2445
2446 if (! info->relocateable)
2447 abort ();
2448 if (sec->orelocation == (arelent **) NULL)
2449 abort ();
2450
2451 r = (arelent *) bfd_alloc (abfd, sizeof (arelent));
2452 if (r == (arelent *) NULL)
2453 return false;
2454
2455 r->address = link_order->offset;
2456 r->howto = bfd_reloc_type_lookup (abfd, link_order->u.reloc.p->reloc);
2457 if (r->howto == 0)
2458 {
2459 bfd_set_error (bfd_error_bad_value);
2460 return false;
2461 }
2462
2463 /* Get the symbol to use for the relocation. */
2464 if (link_order->type == bfd_section_reloc_link_order)
2465 r->sym_ptr_ptr = link_order->u.reloc.p->u.section->symbol_ptr_ptr;
2466 else
2467 {
2468 struct generic_link_hash_entry *h;
2469
2470 h = ((struct generic_link_hash_entry *)
2471 bfd_wrapped_link_hash_lookup (abfd, info,
2472 link_order->u.reloc.p->u.name,
2473 false, false, true));
2474 if (h == (struct generic_link_hash_entry *) NULL
2475 || ! h->written)
2476 {
2477 if (! ((*info->callbacks->unattached_reloc)
2478 (info, link_order->u.reloc.p->u.name,
2479 (bfd *) NULL, (asection *) NULL, (bfd_vma) 0)))
2480 return false;
2481 bfd_set_error (bfd_error_bad_value);
2482 return false;
2483 }
2484 r->sym_ptr_ptr = &h->sym;
2485 }
2486
2487 /* If this is an inplace reloc, write the addend to the object file.
2488 Otherwise, store it in the reloc addend. */
2489 if (! r->howto->partial_inplace)
2490 r->addend = link_order->u.reloc.p->addend;
2491 else
2492 {
2493 bfd_size_type size;
2494 bfd_reloc_status_type rstat;
2495 bfd_byte *buf;
2496 boolean ok;
2497
2498 size = bfd_get_reloc_size (r->howto);
2499 buf = (bfd_byte *) bfd_zmalloc (size);
2500 if (buf == (bfd_byte *) NULL)
2501 return false;
2502 rstat = _bfd_relocate_contents (r->howto, abfd,
2503 link_order->u.reloc.p->addend, buf);
2504 switch (rstat)
2505 {
2506 case bfd_reloc_ok:
2507 break;
2508 default:
2509 case bfd_reloc_outofrange:
2510 abort ();
2511 case bfd_reloc_overflow:
2512 if (! ((*info->callbacks->reloc_overflow)
2513 (info,
2514 (link_order->type == bfd_section_reloc_link_order
2515 ? bfd_section_name (abfd, link_order->u.reloc.p->u.section)
2516 : link_order->u.reloc.p->u.name),
2517 r->howto->name, link_order->u.reloc.p->addend,
2518 (bfd *) NULL, (asection *) NULL, (bfd_vma) 0)))
2519 {
2520 free (buf);
2521 return false;
2522 }
2523 break;
2524 }
2525 ok = bfd_set_section_contents (abfd, sec, (PTR) buf,
2526 (file_ptr) link_order->offset, size);
2527 free (buf);
2528 if (! ok)
2529 return false;
2530
2531 r->addend = 0;
2532 }
2533
2534 sec->orelocation[sec->reloc_count] = r;
2535 ++sec->reloc_count;
2536
2537 return true;
2538}
2539\f
2540/* Allocate a new link_order for a section. */
2541
2542struct bfd_link_order *
2543bfd_new_link_order (abfd, section)
2544 bfd *abfd;
2545 asection *section;
2546{
2547 struct bfd_link_order *new;
2548
2549 new = ((struct bfd_link_order *)
2550 bfd_alloc (abfd, sizeof (struct bfd_link_order)));
2551 if (!new)
2552 return NULL;
2553
2554 new->type = bfd_undefined_link_order;
2555 new->offset = 0;
2556 new->size = 0;
2557 new->next = (struct bfd_link_order *) NULL;
2558
2559 if (section->link_order_tail != (struct bfd_link_order *) NULL)
2560 section->link_order_tail->next = new;
2561 else
2562 section->link_order_head = new;
2563 section->link_order_tail = new;
2564
2565 return new;
2566}
2567
2568/* Default link order processing routine. Note that we can not handle
2569 the reloc_link_order types here, since they depend upon the details
2570 of how the particular backends generates relocs. */
2571
2572boolean
2573_bfd_default_link_order (abfd, info, sec, link_order)
2574 bfd *abfd;
2575 struct bfd_link_info *info;
2576 asection *sec;
2577 struct bfd_link_order *link_order;
2578{
2579 switch (link_order->type)
2580 {
2581 case bfd_undefined_link_order:
2582 case bfd_section_reloc_link_order:
2583 case bfd_symbol_reloc_link_order:
2584 default:
2585 abort ();
2586 case bfd_indirect_link_order:
2587 return default_indirect_link_order (abfd, info, sec, link_order,
2588 false);
2589 case bfd_fill_link_order:
2590 return default_fill_link_order (abfd, info, sec, link_order);
2591 case bfd_data_link_order:
2592 return bfd_set_section_contents (abfd, sec,
2593 (PTR) link_order->u.data.contents,
2594 (file_ptr) link_order->offset,
2595 link_order->size);
2596 }
2597}
2598
2599/* Default routine to handle a bfd_fill_link_order. */
2600
2601/*ARGSUSED*/
2602static boolean
2603default_fill_link_order (abfd, info, sec, link_order)
2604 bfd *abfd;
2605 struct bfd_link_info *info;
2606 asection *sec;
2607 struct bfd_link_order *link_order;
2608{
2609 size_t size;
2610 char *space;
2611 size_t i;
2612 int fill;
2613 boolean result;
2614
2615 BFD_ASSERT ((sec->flags & SEC_HAS_CONTENTS) != 0);
2616
2617 size = (size_t) link_order->size;
2618 space = (char *) bfd_malloc (size);
2619 if (space == NULL && size != 0)
2620 return false;
2621
2622 fill = link_order->u.fill.value;
2623 for (i = 0; i < size; i += 2)
2624 space[i] = fill >> 8;
2625 for (i = 1; i < size; i += 2)
2626 space[i] = fill;
2627 result = bfd_set_section_contents (abfd, sec, space,
2628 (file_ptr) link_order->offset,
2629 link_order->size);
2630 free (space);
2631 return result;
2632}
2633
2634/* Default routine to handle a bfd_indirect_link_order. */
2635
2636static boolean
2637default_indirect_link_order (output_bfd, info, output_section, link_order,
2638 generic_linker)
2639 bfd *output_bfd;
2640 struct bfd_link_info *info;
2641 asection *output_section;
2642 struct bfd_link_order *link_order;
2643 boolean generic_linker;
2644{
2645 asection *input_section;
2646 bfd *input_bfd;
2647 bfd_byte *contents = NULL;
2648 bfd_byte *new_contents;
2649
2650 BFD_ASSERT ((output_section->flags & SEC_HAS_CONTENTS) != 0);
2651
2652 if (link_order->size == 0)
2653 return true;
2654
2655 input_section = link_order->u.indirect.section;
2656 input_bfd = input_section->owner;
2657
2658 BFD_ASSERT (input_section->output_section == output_section);
2659 BFD_ASSERT (input_section->output_offset == link_order->offset);
2660 BFD_ASSERT (input_section->_cooked_size == link_order->size);
2661
2662 if (info->relocateable
2663 && input_section->reloc_count > 0
2664 && output_section->orelocation == (arelent **) NULL)
2665 {
2666 /* Space has not been allocated for the output relocations.
2667 This can happen when we are called by a specific backend
2668 because somebody is attempting to link together different
2669 types of object files. Handling this case correctly is
2670 difficult, and sometimes impossible. */
2671 (*_bfd_error_handler)
2672 (_("Attempt to do relocateable link with %s input and %s output"),
2673 bfd_get_target (input_bfd), bfd_get_target (output_bfd));
2674 bfd_set_error (bfd_error_wrong_format);
2675 return false;
2676 }
2677
2678 if (! generic_linker)
2679 {
2680 asymbol **sympp;
2681 asymbol **symppend;
2682
2683 /* Get the canonical symbols. The generic linker will always
2684 have retrieved them by this point, but we are being called by
2685 a specific linker, presumably because we are linking
2686 different types of object files together. */
2687 if (! generic_link_read_symbols (input_bfd))
2688 return false;
2689
2690 /* Since we have been called by a specific linker, rather than
2691 the generic linker, the values of the symbols will not be
2692 right. They will be the values as seen in the input file,
2693 not the values of the final link. We need to fix them up
2694 before we can relocate the section. */
2695 sympp = _bfd_generic_link_get_symbols (input_bfd);
2696 symppend = sympp + _bfd_generic_link_get_symcount (input_bfd);
2697 for (; sympp < symppend; sympp++)
2698 {
2699 asymbol *sym;
2700 struct bfd_link_hash_entry *h;
2701
2702 sym = *sympp;
2703
2704 if ((sym->flags & (BSF_INDIRECT
2705 | BSF_WARNING
2706 | BSF_GLOBAL
2707 | BSF_CONSTRUCTOR
2708 | BSF_WEAK)) != 0
2709 || bfd_is_und_section (bfd_get_section (sym))
2710 || bfd_is_com_section (bfd_get_section (sym))
2711 || bfd_is_ind_section (bfd_get_section (sym)))
2712 {
2713 /* sym->udata may have been set by
2714 generic_link_add_symbol_list. */
2715 if (sym->udata.p != NULL)
2716 h = (struct bfd_link_hash_entry *) sym->udata.p;
2717 else if (bfd_is_und_section (bfd_get_section (sym)))
2718 h = bfd_wrapped_link_hash_lookup (output_bfd, info,
2719 bfd_asymbol_name (sym),
2720 false, false, true);
2721 else
2722 h = bfd_link_hash_lookup (info->hash,
2723 bfd_asymbol_name (sym),
2724 false, false, true);
2725 if (h != NULL)
2726 set_symbol_from_hash (sym, h);
2727 }
2728 }
2729 }
2730
2731 /* Get and relocate the section contents. */
2732 contents = ((bfd_byte *)
2733 bfd_malloc (bfd_section_size (input_bfd, input_section)));
2734 if (contents == NULL && bfd_section_size (input_bfd, input_section) != 0)
2735 goto error_return;
2736 new_contents = (bfd_get_relocated_section_contents
2737 (output_bfd, info, link_order, contents, info->relocateable,
2738 _bfd_generic_link_get_symbols (input_bfd)));
2739 if (!new_contents)
2740 goto error_return;
2741
2742 /* Output the section contents. */
2743 if (! bfd_set_section_contents (output_bfd, output_section,
2744 (PTR) new_contents,
2745 link_order->offset, link_order->size))
2746 goto error_return;
2747
2748 if (contents != NULL)
2749 free (contents);
2750 return true;
2751
2752 error_return:
2753 if (contents != NULL)
2754 free (contents);
2755 return false;
2756}
2757
2758/* A little routine to count the number of relocs in a link_order
2759 list. */
2760
2761unsigned int
2762_bfd_count_link_order_relocs (link_order)
2763 struct bfd_link_order *link_order;
2764{
2765 register unsigned int c;
2766 register struct bfd_link_order *l;
2767
2768 c = 0;
2769 for (l = link_order; l != (struct bfd_link_order *) NULL; l = l->next)
2770 {
2771 if (l->type == bfd_section_reloc_link_order
2772 || l->type == bfd_symbol_reloc_link_order)
2773 ++c;
2774 }
2775
2776 return c;
2777}
2778
2779/*
2780FUNCTION
2781 bfd_link_split_section
2782
2783SYNOPSIS
2784 boolean bfd_link_split_section(bfd *abfd, asection *sec);
2785
2786DESCRIPTION
2787 Return nonzero if @var{sec} should be split during a
2788 reloceatable or final link.
2789
2790.#define bfd_link_split_section(abfd, sec) \
2791. BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))
2792.
2793
2794*/
2795
2796
2797
2798boolean
2799_bfd_generic_link_split_section (abfd, sec)
2800 bfd *abfd;
2801 asection *sec;
2802{
2803 return false;
2804}
This page took 0.124094 seconds and 4 git commands to generate.