daily update
[deliverable/binutils-gdb.git] / bfd / reloc.c
CommitLineData
252b5132 1/* BFD support for handling relocation entries.
7898deda 2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
fbca6ad9 3 2000, 2001, 2002
252b5132
RH
4 Free Software Foundation, Inc.
5 Written by Cygnus Support.
6
7This file is part of BFD, the Binary File Descriptor library.
8
9This program is free software; you can redistribute it and/or modify
10it under the terms of the GNU General Public License as published by
11the Free Software Foundation; either version 2 of the License, or
12(at your option) any later version.
13
14This program is distributed in the hope that it will be useful,
15but WITHOUT ANY WARRANTY; without even the implied warranty of
16MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17GNU General Public License for more details.
18
19You should have received a copy of the GNU General Public License
20along with this program; if not, write to the Free Software
21Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
22
23/*
24SECTION
25 Relocations
26
27 BFD maintains relocations in much the same way it maintains
28 symbols: they are left alone until required, then read in
3f9b03b5 29 en-masse and translated into an internal form. A common
252b5132
RH
30 routine <<bfd_perform_relocation>> acts upon the
31 canonical form to do the fixup.
32
33 Relocations are maintained on a per section basis,
34 while symbols are maintained on a per BFD basis.
35
36 All that a back end has to do to fit the BFD interface is to create
37 a <<struct reloc_cache_entry>> for each relocation
38 in a particular section, and fill in the right bits of the structures.
39
40@menu
41@* typedef arelent::
42@* howto manager::
43@end menu
44
45*/
46
47/* DO compile in the reloc_code name table from libbfd.h. */
48#define _BFD_MAKE_TABLE_bfd_reloc_code_real
49
50#include "bfd.h"
51#include "sysdep.h"
52#include "bfdlink.h"
53#include "libbfd.h"
54/*
55DOCDD
56INODE
57 typedef arelent, howto manager, Relocations, Relocations
58
59SUBSECTION
60 typedef arelent
61
62 This is the structure of a relocation entry:
63
64CODE_FRAGMENT
65.
66.typedef enum bfd_reloc_status
67.{
b5f79c76 68. {* No errors detected. *}
252b5132
RH
69. bfd_reloc_ok,
70.
b5f79c76 71. {* The relocation was performed, but there was an overflow. *}
252b5132
RH
72. bfd_reloc_overflow,
73.
b5f79c76 74. {* The address to relocate was not within the section supplied. *}
252b5132
RH
75. bfd_reloc_outofrange,
76.
b5f79c76 77. {* Used by special functions. *}
252b5132
RH
78. bfd_reloc_continue,
79.
b5f79c76 80. {* Unsupported relocation size requested. *}
252b5132
RH
81. bfd_reloc_notsupported,
82.
b5f79c76 83. {* Unused. *}
252b5132
RH
84. bfd_reloc_other,
85.
b5f79c76 86. {* The symbol to relocate against was undefined. *}
252b5132
RH
87. bfd_reloc_undefined,
88.
dc810e39
AM
89. {* The relocation was performed, but may not be ok - presently
90. generated only when linking i960 coff files with i960 b.out
91. symbols. If this type is returned, the error_message argument
92. to bfd_perform_relocation will be set. *}
252b5132
RH
93. bfd_reloc_dangerous
94. }
95. bfd_reloc_status_type;
96.
97.
98.typedef struct reloc_cache_entry
99.{
b5f79c76 100. {* A pointer into the canonical table of pointers. *}
252b5132
RH
101. struct symbol_cache_entry **sym_ptr_ptr;
102.
b5f79c76 103. {* offset in section. *}
252b5132
RH
104. bfd_size_type address;
105.
b5f79c76 106. {* addend for relocation value. *}
252b5132
RH
107. bfd_vma addend;
108.
b5f79c76 109. {* Pointer to how to perform the required relocation. *}
252b5132
RH
110. reloc_howto_type *howto;
111.
b5f79c76
NC
112.}
113.arelent;
114.
252b5132
RH
115*/
116
117/*
118DESCRIPTION
119
120 Here is a description of each of the fields within an <<arelent>>:
121
122 o <<sym_ptr_ptr>>
123
124 The symbol table pointer points to a pointer to the symbol
125 associated with the relocation request. It is
126 the pointer into the table returned by the back end's
127 <<get_symtab>> action. @xref{Symbols}. The symbol is referenced
128 through a pointer to a pointer so that tools like the linker
129 can fix up all the symbols of the same name by modifying only
130 one pointer. The relocation routine looks in the symbol and
131 uses the base of the section the symbol is attached to and the
132 value of the symbol as the initial relocation offset. If the
133 symbol pointer is zero, then the section provided is looked up.
134
135 o <<address>>
136
137 The <<address>> field gives the offset in bytes from the base of
138 the section data which owns the relocation record to the first
139 byte of relocatable information. The actual data relocated
140 will be relative to this point; for example, a relocation
141 type which modifies the bottom two bytes of a four byte word
142 would not touch the first byte pointed to in a big endian
143 world.
144
145 o <<addend>>
146
147 The <<addend>> is a value provided by the back end to be added (!)
148 to the relocation offset. Its interpretation is dependent upon
149 the howto. For example, on the 68k the code:
150
252b5132
RH
151| char foo[];
152| main()
153| {
154| return foo[0x12345678];
155| }
156
157 Could be compiled into:
158
159| linkw fp,#-4
160| moveb @@#12345678,d0
161| extbl d0
162| unlk fp
163| rts
164
252b5132
RH
165 This could create a reloc pointing to <<foo>>, but leave the
166 offset in the data, something like:
167
252b5132
RH
168|RELOCATION RECORDS FOR [.text]:
169|offset type value
170|00000006 32 _foo
171|
172|00000000 4e56 fffc ; linkw fp,#-4
173|00000004 1039 1234 5678 ; moveb @@#12345678,d0
174|0000000a 49c0 ; extbl d0
175|0000000c 4e5e ; unlk fp
176|0000000e 4e75 ; rts
177
252b5132
RH
178 Using coff and an 88k, some instructions don't have enough
179 space in them to represent the full address range, and
180 pointers have to be loaded in two parts. So you'd get something like:
181
252b5132
RH
182| or.u r13,r0,hi16(_foo+0x12345678)
183| ld.b r2,r13,lo16(_foo+0x12345678)
184| jmp r1
185
252b5132
RH
186 This should create two relocs, both pointing to <<_foo>>, and with
187 0x12340000 in their addend field. The data would consist of:
188
252b5132
RH
189|RELOCATION RECORDS FOR [.text]:
190|offset type value
191|00000002 HVRT16 _foo+0x12340000
192|00000006 LVRT16 _foo+0x12340000
193|
194|00000000 5da05678 ; or.u r13,r0,0x5678
195|00000004 1c4d5678 ; ld.b r2,r13,0x5678
196|00000008 f400c001 ; jmp r1
197
252b5132
RH
198 The relocation routine digs out the value from the data, adds
199 it to the addend to get the original offset, and then adds the
200 value of <<_foo>>. Note that all 32 bits have to be kept around
201 somewhere, to cope with carry from bit 15 to bit 16.
202
203 One further example is the sparc and the a.out format. The
204 sparc has a similar problem to the 88k, in that some
205 instructions don't have room for an entire offset, but on the
206 sparc the parts are created in odd sized lumps. The designers of
207 the a.out format chose to not use the data within the section
208 for storing part of the offset; all the offset is kept within
209 the reloc. Anything in the data should be ignored.
210
211| save %sp,-112,%sp
212| sethi %hi(_foo+0x12345678),%g2
213| ldsb [%g2+%lo(_foo+0x12345678)],%i0
214| ret
215| restore
216
217 Both relocs contain a pointer to <<foo>>, and the offsets
218 contain junk.
219
252b5132
RH
220|RELOCATION RECORDS FOR [.text]:
221|offset type value
222|00000004 HI22 _foo+0x12345678
223|00000008 LO10 _foo+0x12345678
224|
225|00000000 9de3bf90 ; save %sp,-112,%sp
226|00000004 05000000 ; sethi %hi(_foo+0),%g2
227|00000008 f048a000 ; ldsb [%g2+%lo(_foo+0)],%i0
228|0000000c 81c7e008 ; ret
229|00000010 81e80000 ; restore
230
252b5132
RH
231 o <<howto>>
232
233 The <<howto>> field can be imagined as a
234 relocation instruction. It is a pointer to a structure which
235 contains information on what to do with all of the other
236 information in the reloc record and data section. A back end
237 would normally have a relocation instruction set and turn
238 relocations into pointers to the correct structure on input -
239 but it would be possible to create each howto field on demand.
240
241*/
242
243/*
244SUBSUBSECTION
245 <<enum complain_overflow>>
246
247 Indicates what sort of overflow checking should be done when
248 performing a relocation.
249
250CODE_FRAGMENT
251.
252.enum complain_overflow
253.{
b5f79c76 254. {* Do not complain on overflow. *}
252b5132
RH
255. complain_overflow_dont,
256.
dc810e39 257. {* Complain if the bitfield overflows, whether it is considered
b5f79c76 258. as signed or unsigned. *}
252b5132
RH
259. complain_overflow_bitfield,
260.
dc810e39 261. {* Complain if the value overflows when considered as signed
b5f79c76 262. number. *}
252b5132
RH
263. complain_overflow_signed,
264.
dc810e39 265. {* Complain if the value overflows when considered as an
b5f79c76 266. unsigned number. *}
252b5132
RH
267. complain_overflow_unsigned
268.};
269
270*/
271
272/*
273SUBSUBSECTION
274 <<reloc_howto_type>>
275
276 The <<reloc_howto_type>> is a structure which contains all the
277 information that libbfd needs to know to tie up a back end's data.
278
279CODE_FRAGMENT
b5f79c76 280.struct symbol_cache_entry; {* Forward declaration. *}
252b5132
RH
281.
282.struct reloc_howto_struct
283.{
dc810e39
AM
284. {* The type field has mainly a documentary use - the back end can
285. do what it wants with it, though normally the back end's
286. external idea of what a reloc number is stored
287. in this field. For example, a PC relative word relocation
288. in a coff environment has the type 023 - because that's
289. what the outside world calls a R_PCRWORD reloc. *}
252b5132
RH
290. unsigned int type;
291.
dc810e39
AM
292. {* The value the final relocation is shifted right by. This drops
293. unwanted data from the relocation. *}
252b5132
RH
294. unsigned int rightshift;
295.
dc810e39
AM
296. {* The size of the item to be relocated. This is *not* a
297. power-of-two measure. To get the number of bytes operated
298. on by a type of relocation, use bfd_get_reloc_size. *}
252b5132
RH
299. int size;
300.
dc810e39
AM
301. {* The number of bits in the item to be relocated. This is used
302. when doing overflow checking. *}
252b5132
RH
303. unsigned int bitsize;
304.
dc810e39
AM
305. {* Notes that the relocation is relative to the location in the
306. data section of the addend. The relocation function will
307. subtract from the relocation value the address of the location
308. being relocated. *}
252b5132
RH
309. boolean pc_relative;
310.
dc810e39
AM
311. {* The bit position of the reloc value in the destination.
312. The relocated value is left shifted by this amount. *}
252b5132
RH
313. unsigned int bitpos;
314.
dc810e39
AM
315. {* What type of overflow error should be checked for when
316. relocating. *}
252b5132
RH
317. enum complain_overflow complain_on_overflow;
318.
dc810e39
AM
319. {* If this field is non null, then the supplied function is
320. called rather than the normal function. This allows really
321. strange relocation methods to be accomodated (e.g., i960 callj
322. instructions). *}
252b5132 323. bfd_reloc_status_type (*special_function)
dc810e39
AM
324. PARAMS ((bfd *, arelent *, struct symbol_cache_entry *, PTR, asection *,
325. bfd *, char **));
252b5132 326.
dc810e39 327. {* The textual name of the relocation type. *}
252b5132
RH
328. char *name;
329.
dc810e39
AM
330. {* Some formats record a relocation addend in the section contents
331. rather than with the relocation. For ELF formats this is the
332. distinction between USE_REL and USE_RELA (though the code checks
333. for USE_REL == 1/0). The value of this field is TRUE if the
334. addend is recorded with the section contents; when performing a
335. partial link (ld -r) the section contents (the data) will be
336. modified. The value of this field is FALSE if addends are
337. recorded with the relocation (in arelent.addend); when performing
338. a partial link the relocation will be modified.
339. All relocations for all ELF USE_RELA targets should set this field
340. to FALSE (values of TRUE should be looked on with suspicion).
341. However, the converse is not true: not all relocations of all ELF
342. USE_REL targets set this field to TRUE. Why this is so is peculiar
343. to each particular target. For relocs that aren't used in partial
344. links (e.g. GOT stuff) it doesn't matter what this is set to. *}
252b5132
RH
345. boolean partial_inplace;
346.
dc810e39
AM
347. {* The src_mask selects which parts of the read in data
348. are to be used in the relocation sum. E.g., if this was an 8 bit
349. byte of data which we read and relocated, this would be
350. 0x000000ff. When we have relocs which have an addend, such as
351. sun4 extended relocs, the value in the offset part of a
352. relocating field is garbage so we never use it. In this case
353. the mask would be 0x00000000. *}
252b5132
RH
354. bfd_vma src_mask;
355.
dc810e39
AM
356. {* The dst_mask selects which parts of the instruction are replaced
357. into the instruction. In most cases src_mask == dst_mask,
358. except in the above special case, where dst_mask would be
359. 0x000000ff, and src_mask would be 0x00000000. *}
252b5132
RH
360. bfd_vma dst_mask;
361.
dc810e39
AM
362. {* When some formats create PC relative instructions, they leave
363. the value of the pc of the place being relocated in the offset
364. slot of the instruction, so that a PC relative relocation can
365. be made just by adding in an ordinary offset (e.g., sun3 a.out).
366. Some formats leave the displacement part of an instruction
367. empty (e.g., m88k bcs); this flag signals the fact. *}
252b5132 368. boolean pcrel_offset;
252b5132 369.};
b5f79c76 370.
252b5132
RH
371*/
372
373/*
374FUNCTION
375 The HOWTO Macro
376
377DESCRIPTION
378 The HOWTO define is horrible and will go away.
379
dc810e39
AM
380.#define HOWTO(C, R, S, B, P, BI, O, SF, NAME, INPLACE, MASKSRC, MASKDST, PC) \
381. { (unsigned) C, R, S, B, P, BI, O, SF, NAME, INPLACE, MASKSRC, MASKDST, PC }
252b5132
RH
382
383DESCRIPTION
384 And will be replaced with the totally magic way. But for the
385 moment, we are compatible, so do it this way.
386
dc810e39
AM
387.#define NEWHOWTO(FUNCTION, NAME, SIZE, REL, IN) \
388. HOWTO (0, 0, SIZE, 0, REL, 0, complain_overflow_dont, FUNCTION, \
389. NAME, false, 0, 0, IN)
252b5132 390.
5f771d47
ILT
391
392DESCRIPTION
393 This is used to fill in an empty howto entry in an array.
394
395.#define EMPTY_HOWTO(C) \
dc810e39
AM
396. HOWTO ((C), 0, 0, 0, false, 0, complain_overflow_dont, NULL, \
397. NULL, false, 0, 0, false)
5f771d47
ILT
398.
399
252b5132
RH
400DESCRIPTION
401 Helper routine to turn a symbol into a relocation value.
402
dc810e39
AM
403.#define HOWTO_PREPARE(relocation, symbol) \
404. { \
405. if (symbol != (asymbol *) NULL) \
406. { \
407. if (bfd_is_com_section (symbol->section)) \
408. { \
409. relocation = 0; \
410. } \
411. else \
412. { \
413. relocation = symbol->value; \
414. } \
415. } \
416. }
b5f79c76 417.
252b5132
RH
418*/
419
420/*
421FUNCTION
422 bfd_get_reloc_size
423
424SYNOPSIS
425 unsigned int bfd_get_reloc_size (reloc_howto_type *);
426
427DESCRIPTION
428 For a reloc_howto_type that operates on a fixed number of bytes,
429 this returns the number of bytes operated on.
430 */
431
432unsigned int
433bfd_get_reloc_size (howto)
434 reloc_howto_type *howto;
435{
436 switch (howto->size)
437 {
438 case 0: return 1;
439 case 1: return 2;
440 case 2: return 4;
441 case 3: return 0;
442 case 4: return 8;
443 case 8: return 16;
444 case -2: return 4;
445 default: abort ();
446 }
447}
448
449/*
450TYPEDEF
451 arelent_chain
452
453DESCRIPTION
454
455 How relocs are tied together in an <<asection>>:
456
dc810e39
AM
457.typedef struct relent_chain
458.{
252b5132 459. arelent relent;
dc810e39 460. struct relent_chain *next;
b5f79c76
NC
461.}
462.arelent_chain;
463.
252b5132
RH
464*/
465
466/* N_ONES produces N one bits, without overflowing machine arithmetic. */
467#define N_ONES(n) (((((bfd_vma) 1 << ((n) - 1)) - 1) << 1) | 1)
468
469/*
470FUNCTION
471 bfd_check_overflow
472
473SYNOPSIS
474 bfd_reloc_status_type
475 bfd_check_overflow
476 (enum complain_overflow how,
477 unsigned int bitsize,
478 unsigned int rightshift,
479 unsigned int addrsize,
480 bfd_vma relocation);
481
482DESCRIPTION
483 Perform overflow checking on @var{relocation} which has
484 @var{bitsize} significant bits and will be shifted right by
485 @var{rightshift} bits, on a machine with addresses containing
486 @var{addrsize} significant bits. The result is either of
487 @code{bfd_reloc_ok} or @code{bfd_reloc_overflow}.
488
489*/
490
491bfd_reloc_status_type
492bfd_check_overflow (how, bitsize, rightshift, addrsize, relocation)
493 enum complain_overflow how;
494 unsigned int bitsize;
495 unsigned int rightshift;
496 unsigned int addrsize;
497 bfd_vma relocation;
498{
499 bfd_vma fieldmask, addrmask, signmask, ss, a;
500 bfd_reloc_status_type flag = bfd_reloc_ok;
501
502 a = relocation;
503
504 /* Note: BITSIZE should always be <= ADDRSIZE, but in case it's not,
505 we'll be permissive: extra bits in the field mask will
506 automatically extend the address mask for purposes of the
507 overflow check. */
508 fieldmask = N_ONES (bitsize);
509 addrmask = N_ONES (addrsize) | fieldmask;
510
511 switch (how)
512 {
513 case complain_overflow_dont:
514 break;
515
516 case complain_overflow_signed:
517 /* If any sign bits are set, all sign bits must be set. That
518 is, A must be a valid negative address after shifting. */
519 a = (a & addrmask) >> rightshift;
520 signmask = ~ (fieldmask >> 1);
521 ss = a & signmask;
522 if (ss != 0 && ss != ((addrmask >> rightshift) & signmask))
523 flag = bfd_reloc_overflow;
524 break;
525
526 case complain_overflow_unsigned:
527 /* We have an overflow if the address does not fit in the field. */
528 a = (a & addrmask) >> rightshift;
529 if ((a & ~ fieldmask) != 0)
530 flag = bfd_reloc_overflow;
531 break;
532
533 case complain_overflow_bitfield:
534 /* Bitfields are sometimes signed, sometimes unsigned. We
d5afc56e
AM
535 explicitly allow an address wrap too, which means a bitfield
536 of n bits is allowed to store -2**n to 2**n-1. Thus overflow
537 if the value has some, but not all, bits set outside the
538 field. */
252b5132 539 a >>= rightshift;
d5afc56e
AM
540 ss = a & ~ fieldmask;
541 if (ss != 0 && ss != (((bfd_vma) -1 >> rightshift) & ~ fieldmask))
542 flag = bfd_reloc_overflow;
252b5132
RH
543 break;
544
545 default:
546 abort ();
547 }
548
549 return flag;
550}
551
552/*
553FUNCTION
554 bfd_perform_relocation
555
556SYNOPSIS
557 bfd_reloc_status_type
558 bfd_perform_relocation
559 (bfd *abfd,
560 arelent *reloc_entry,
561 PTR data,
562 asection *input_section,
563 bfd *output_bfd,
564 char **error_message);
565
566DESCRIPTION
567 If @var{output_bfd} is supplied to this function, the
568 generated image will be relocatable; the relocations are
569 copied to the output file after they have been changed to
570 reflect the new state of the world. There are two ways of
571 reflecting the results of partial linkage in an output file:
572 by modifying the output data in place, and by modifying the
573 relocation record. Some native formats (e.g., basic a.out and
574 basic coff) have no way of specifying an addend in the
575 relocation type, so the addend has to go in the output data.
576 This is no big deal since in these formats the output data
577 slot will always be big enough for the addend. Complex reloc
578 types with addends were invented to solve just this problem.
579 The @var{error_message} argument is set to an error message if
580 this return @code{bfd_reloc_dangerous}.
581
582*/
583
252b5132
RH
584bfd_reloc_status_type
585bfd_perform_relocation (abfd, reloc_entry, data, input_section, output_bfd,
586 error_message)
587 bfd *abfd;
588 arelent *reloc_entry;
589 PTR data;
590 asection *input_section;
591 bfd *output_bfd;
592 char **error_message;
593{
594 bfd_vma relocation;
595 bfd_reloc_status_type flag = bfd_reloc_ok;
9a968f43 596 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
252b5132
RH
597 bfd_vma output_base = 0;
598 reloc_howto_type *howto = reloc_entry->howto;
599 asection *reloc_target_output_section;
600 asymbol *symbol;
601
602 symbol = *(reloc_entry->sym_ptr_ptr);
603 if (bfd_is_abs_section (symbol->section)
604 && output_bfd != (bfd *) NULL)
605 {
606 reloc_entry->address += input_section->output_offset;
607 return bfd_reloc_ok;
608 }
609
610 /* If we are not producing relocateable output, return an error if
611 the symbol is not defined. An undefined weak symbol is
612 considered to have a value of zero (SVR4 ABI, p. 4-27). */
613 if (bfd_is_und_section (symbol->section)
614 && (symbol->flags & BSF_WEAK) == 0
615 && output_bfd == (bfd *) NULL)
616 flag = bfd_reloc_undefined;
617
618 /* If there is a function supplied to handle this relocation type,
619 call it. It'll return `bfd_reloc_continue' if further processing
620 can be done. */
621 if (howto->special_function)
622 {
623 bfd_reloc_status_type cont;
624 cont = howto->special_function (abfd, reloc_entry, symbol, data,
625 input_section, output_bfd,
626 error_message);
627 if (cont != bfd_reloc_continue)
628 return cont;
629 }
630
631 /* Is the address of the relocation really within the section? */
e207c4fa
AM
632 if (reloc_entry->address > (input_section->_cooked_size
633 / bfd_octets_per_byte (abfd)))
252b5132
RH
634 return bfd_reloc_outofrange;
635
636 /* Work out which section the relocation is targetted at and the
637 initial relocation command value. */
638
639 /* Get symbol value. (Common symbols are special.) */
640 if (bfd_is_com_section (symbol->section))
641 relocation = 0;
642 else
643 relocation = symbol->value;
644
252b5132
RH
645 reloc_target_output_section = symbol->section->output_section;
646
647 /* Convert input-section-relative symbol value to absolute. */
82e51918 648 if (output_bfd && ! howto->partial_inplace)
252b5132
RH
649 output_base = 0;
650 else
651 output_base = reloc_target_output_section->vma;
652
653 relocation += output_base + symbol->section->output_offset;
654
655 /* Add in supplied addend. */
656 relocation += reloc_entry->addend;
657
658 /* Here the variable relocation holds the final address of the
659 symbol we are relocating against, plus any addend. */
660
82e51918 661 if (howto->pc_relative)
252b5132
RH
662 {
663 /* This is a PC relative relocation. We want to set RELOCATION
664 to the distance between the address of the symbol and the
665 location. RELOCATION is already the address of the symbol.
666
667 We start by subtracting the address of the section containing
668 the location.
669
670 If pcrel_offset is set, we must further subtract the position
671 of the location within the section. Some targets arrange for
672 the addend to be the negative of the position of the location
673 within the section; for example, i386-aout does this. For
674 i386-aout, pcrel_offset is false. Some other targets do not
675 include the position of the location; for example, m88kbcs,
676 or ELF. For those targets, pcrel_offset is true.
677
678 If we are producing relocateable output, then we must ensure
679 that this reloc will be correctly computed when the final
680 relocation is done. If pcrel_offset is false we want to wind
681 up with the negative of the location within the section,
682 which means we must adjust the existing addend by the change
683 in the location within the section. If pcrel_offset is true
684 we do not want to adjust the existing addend at all.
685
686 FIXME: This seems logical to me, but for the case of
687 producing relocateable output it is not what the code
688 actually does. I don't want to change it, because it seems
689 far too likely that something will break. */
690
691 relocation -=
692 input_section->output_section->vma + input_section->output_offset;
693
82e51918 694 if (howto->pcrel_offset)
252b5132
RH
695 relocation -= reloc_entry->address;
696 }
697
698 if (output_bfd != (bfd *) NULL)
699 {
82e51918 700 if (! howto->partial_inplace)
252b5132
RH
701 {
702 /* This is a partial relocation, and we want to apply the relocation
703 to the reloc entry rather than the raw data. Modify the reloc
704 inplace to reflect what we now know. */
705 reloc_entry->addend = relocation;
706 reloc_entry->address += input_section->output_offset;
707 return flag;
708 }
709 else
710 {
711 /* This is a partial relocation, but inplace, so modify the
712 reloc record a bit.
713
714 If we've relocated with a symbol with a section, change
715 into a ref to the section belonging to the symbol. */
716
717 reloc_entry->address += input_section->output_offset;
718
719 /* WTF?? */
720 if (abfd->xvec->flavour == bfd_target_coff_flavour
252b5132
RH
721 && strcmp (abfd->xvec->name, "coff-Intel-little") != 0
722 && strcmp (abfd->xvec->name, "coff-Intel-big") != 0)
723 {
724#if 1
725 /* For m68k-coff, the addend was being subtracted twice during
726 relocation with -r. Removing the line below this comment
727 fixes that problem; see PR 2953.
728
729However, Ian wrote the following, regarding removing the line below,
730which explains why it is still enabled: --djm
731
732If you put a patch like that into BFD you need to check all the COFF
733linkers. I am fairly certain that patch will break coff-i386 (e.g.,
734SCO); see coff_i386_reloc in coff-i386.c where I worked around the
735problem in a different way. There may very well be a reason that the
736code works as it does.
737
738Hmmm. The first obvious point is that bfd_perform_relocation should
739not have any tests that depend upon the flavour. It's seem like
740entirely the wrong place for such a thing. The second obvious point
741is that the current code ignores the reloc addend when producing
742relocateable output for COFF. That's peculiar. In fact, I really
743have no idea what the point of the line you want to remove is.
744
745A typical COFF reloc subtracts the old value of the symbol and adds in
746the new value to the location in the object file (if it's a pc
747relative reloc it adds the difference between the symbol value and the
748location). When relocating we need to preserve that property.
749
750BFD handles this by setting the addend to the negative of the old
751value of the symbol. Unfortunately it handles common symbols in a
752non-standard way (it doesn't subtract the old value) but that's a
753different story (we can't change it without losing backward
754compatibility with old object files) (coff-i386 does subtract the old
755value, to be compatible with existing coff-i386 targets, like SCO).
756
757So everything works fine when not producing relocateable output. When
758we are producing relocateable output, logically we should do exactly
759what we do when not producing relocateable output. Therefore, your
760patch is correct. In fact, it should probably always just set
761reloc_entry->addend to 0 for all cases, since it is, in fact, going to
762add the value into the object file. This won't hurt the COFF code,
763which doesn't use the addend; I'm not sure what it will do to other
764formats (the thing to check for would be whether any formats both use
765the addend and set partial_inplace).
766
767When I wanted to make coff-i386 produce relocateable output, I ran
768into the problem that you are running into: I wanted to remove that
769line. Rather than risk it, I made the coff-i386 relocs use a special
770function; it's coff_i386_reloc in coff-i386.c. The function
771specifically adds the addend field into the object file, knowing that
772bfd_perform_relocation is not going to. If you remove that line, then
773coff-i386.c will wind up adding the addend field in twice. It's
774trivial to fix; it just needs to be done.
775
776The problem with removing the line is just that it may break some
777working code. With BFD it's hard to be sure of anything. The right
778way to deal with this is simply to build and test at least all the
779supported COFF targets. It should be straightforward if time and disk
780space consuming. For each target:
781 1) build the linker
782 2) generate some executable, and link it using -r (I would
783 probably use paranoia.o and link against newlib/libc.a, which
784 for all the supported targets would be available in
785 /usr/cygnus/progressive/H-host/target/lib/libc.a).
786 3) make the change to reloc.c
787 4) rebuild the linker
788 5) repeat step 2
789 6) if the resulting object files are the same, you have at least
790 made it no worse
791 7) if they are different you have to figure out which version is
792 right
793*/
794 relocation -= reloc_entry->addend;
795#endif
796 reloc_entry->addend = 0;
797 }
798 else
799 {
800 reloc_entry->addend = relocation;
801 }
802 }
803 }
804 else
805 {
806 reloc_entry->addend = 0;
807 }
808
809 /* FIXME: This overflow checking is incomplete, because the value
810 might have overflowed before we get here. For a correct check we
811 need to compute the value in a size larger than bitsize, but we
812 can't reasonably do that for a reloc the same size as a host
813 machine word.
814 FIXME: We should also do overflow checking on the result after
815 adding in the value contained in the object file. */
816 if (howto->complain_on_overflow != complain_overflow_dont
817 && flag == bfd_reloc_ok)
818 flag = bfd_check_overflow (howto->complain_on_overflow,
819 howto->bitsize,
820 howto->rightshift,
821 bfd_arch_bits_per_address (abfd),
822 relocation);
823
b5f79c76
NC
824 /* Either we are relocating all the way, or we don't want to apply
825 the relocation to the reloc entry (probably because there isn't
826 any room in the output format to describe addends to relocs). */
252b5132
RH
827
828 /* The cast to bfd_vma avoids a bug in the Alpha OSF/1 C compiler
829 (OSF version 1.3, compiler version 3.11). It miscompiles the
830 following program:
831
832 struct str
833 {
834 unsigned int i0;
835 } s = { 0 };
836
837 int
838 main ()
839 {
840 unsigned long x;
841
842 x = 0x100000000;
843 x <<= (unsigned long) s.i0;
844 if (x == 0)
845 printf ("failed\n");
846 else
847 printf ("succeeded (%lx)\n", x);
848 }
849 */
850
851 relocation >>= (bfd_vma) howto->rightshift;
852
b5f79c76 853 /* Shift everything up to where it's going to be used. */
252b5132
RH
854 relocation <<= (bfd_vma) howto->bitpos;
855
b5f79c76 856 /* Wait for the day when all have the mask in them. */
252b5132
RH
857
858 /* What we do:
859 i instruction to be left alone
860 o offset within instruction
861 r relocation offset to apply
862 S src mask
863 D dst mask
864 N ~dst mask
865 A part 1
866 B part 2
867 R result
868
869 Do this:
88b6bae0
AM
870 (( i i i i i o o o o o from bfd_get<size>
871 and S S S S S) to get the size offset we want
872 + r r r r r r r r r r) to get the final value to place
252b5132
RH
873 and D D D D D to chop to right size
874 -----------------------
88b6bae0 875 = A A A A A
252b5132 876 And this:
88b6bae0
AM
877 ( i i i i i o o o o o from bfd_get<size>
878 and N N N N N ) get instruction
252b5132 879 -----------------------
88b6bae0 880 = B B B B B
252b5132
RH
881
882 And then:
88b6bae0
AM
883 ( B B B B B
884 or A A A A A)
252b5132 885 -----------------------
88b6bae0 886 = R R R R R R R R R R put into bfd_put<size>
252b5132
RH
887 */
888
889#define DOIT(x) \
890 x = ( (x & ~howto->dst_mask) | (((x & howto->src_mask) + relocation) & howto->dst_mask))
891
892 switch (howto->size)
893 {
894 case 0:
895 {
9a968f43 896 char x = bfd_get_8 (abfd, (char *) data + octets);
252b5132 897 DOIT (x);
9a968f43 898 bfd_put_8 (abfd, x, (unsigned char *) data + octets);
252b5132
RH
899 }
900 break;
901
902 case 1:
903 {
9a968f43 904 short x = bfd_get_16 (abfd, (bfd_byte *) data + octets);
252b5132 905 DOIT (x);
dc810e39 906 bfd_put_16 (abfd, (bfd_vma) x, (unsigned char *) data + octets);
252b5132
RH
907 }
908 break;
909 case 2:
910 {
9a968f43 911 long x = bfd_get_32 (abfd, (bfd_byte *) data + octets);
252b5132 912 DOIT (x);
dc810e39 913 bfd_put_32 (abfd, (bfd_vma) x, (bfd_byte *) data + octets);
252b5132
RH
914 }
915 break;
916 case -2:
917 {
9a968f43 918 long x = bfd_get_32 (abfd, (bfd_byte *) data + octets);
252b5132
RH
919 relocation = -relocation;
920 DOIT (x);
dc810e39 921 bfd_put_32 (abfd, (bfd_vma) x, (bfd_byte *) data + octets);
252b5132
RH
922 }
923 break;
924
925 case -1:
926 {
9a968f43 927 long x = bfd_get_16 (abfd, (bfd_byte *) data + octets);
252b5132
RH
928 relocation = -relocation;
929 DOIT (x);
dc810e39 930 bfd_put_16 (abfd, (bfd_vma) x, (bfd_byte *) data + octets);
252b5132
RH
931 }
932 break;
933
934 case 3:
935 /* Do nothing */
936 break;
937
938 case 4:
939#ifdef BFD64
940 {
9a968f43 941 bfd_vma x = bfd_get_64 (abfd, (bfd_byte *) data + octets);
252b5132 942 DOIT (x);
9a968f43 943 bfd_put_64 (abfd, x, (bfd_byte *) data + octets);
252b5132
RH
944 }
945#else
946 abort ();
947#endif
948 break;
949 default:
950 return bfd_reloc_other;
951 }
952
953 return flag;
954}
955
956/*
957FUNCTION
958 bfd_install_relocation
959
960SYNOPSIS
961 bfd_reloc_status_type
962 bfd_install_relocation
963 (bfd *abfd,
964 arelent *reloc_entry,
965 PTR data, bfd_vma data_start,
966 asection *input_section,
967 char **error_message);
968
969DESCRIPTION
970 This looks remarkably like <<bfd_perform_relocation>>, except it
971 does not expect that the section contents have been filled in.
972 I.e., it's suitable for use when creating, rather than applying
973 a relocation.
974
975 For now, this function should be considered reserved for the
976 assembler.
252b5132
RH
977*/
978
252b5132
RH
979bfd_reloc_status_type
980bfd_install_relocation (abfd, reloc_entry, data_start, data_start_offset,
981 input_section, error_message)
982 bfd *abfd;
983 arelent *reloc_entry;
984 PTR data_start;
985 bfd_vma data_start_offset;
986 asection *input_section;
987 char **error_message;
988{
989 bfd_vma relocation;
990 bfd_reloc_status_type flag = bfd_reloc_ok;
9a968f43 991 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
252b5132
RH
992 bfd_vma output_base = 0;
993 reloc_howto_type *howto = reloc_entry->howto;
994 asection *reloc_target_output_section;
995 asymbol *symbol;
996 bfd_byte *data;
997
998 symbol = *(reloc_entry->sym_ptr_ptr);
999 if (bfd_is_abs_section (symbol->section))
1000 {
1001 reloc_entry->address += input_section->output_offset;
1002 return bfd_reloc_ok;
1003 }
1004
1005 /* If there is a function supplied to handle this relocation type,
1006 call it. It'll return `bfd_reloc_continue' if further processing
1007 can be done. */
1008 if (howto->special_function)
1009 {
1010 bfd_reloc_status_type cont;
88b6bae0 1011
252b5132
RH
1012 /* XXX - The special_function calls haven't been fixed up to deal
1013 with creating new relocations and section contents. */
1014 cont = howto->special_function (abfd, reloc_entry, symbol,
1015 /* XXX - Non-portable! */
1016 ((bfd_byte *) data_start
1017 - data_start_offset),
1018 input_section, abfd, error_message);
1019 if (cont != bfd_reloc_continue)
1020 return cont;
1021 }
1022
1023 /* Is the address of the relocation really within the section? */
e207c4fa
AM
1024 if (reloc_entry->address > (input_section->_cooked_size
1025 / bfd_octets_per_byte (abfd)))
252b5132
RH
1026 return bfd_reloc_outofrange;
1027
1028 /* Work out which section the relocation is targetted at and the
1029 initial relocation command value. */
1030
1031 /* Get symbol value. (Common symbols are special.) */
1032 if (bfd_is_com_section (symbol->section))
1033 relocation = 0;
1034 else
1035 relocation = symbol->value;
1036
1037 reloc_target_output_section = symbol->section->output_section;
1038
1039 /* Convert input-section-relative symbol value to absolute. */
82e51918 1040 if (! howto->partial_inplace)
252b5132
RH
1041 output_base = 0;
1042 else
1043 output_base = reloc_target_output_section->vma;
1044
1045 relocation += output_base + symbol->section->output_offset;
1046
1047 /* Add in supplied addend. */
1048 relocation += reloc_entry->addend;
1049
1050 /* Here the variable relocation holds the final address of the
1051 symbol we are relocating against, plus any addend. */
1052
82e51918 1053 if (howto->pc_relative)
252b5132
RH
1054 {
1055 /* This is a PC relative relocation. We want to set RELOCATION
1056 to the distance between the address of the symbol and the
1057 location. RELOCATION is already the address of the symbol.
1058
1059 We start by subtracting the address of the section containing
1060 the location.
1061
1062 If pcrel_offset is set, we must further subtract the position
1063 of the location within the section. Some targets arrange for
1064 the addend to be the negative of the position of the location
1065 within the section; for example, i386-aout does this. For
1066 i386-aout, pcrel_offset is false. Some other targets do not
1067 include the position of the location; for example, m88kbcs,
1068 or ELF. For those targets, pcrel_offset is true.
1069
1070 If we are producing relocateable output, then we must ensure
1071 that this reloc will be correctly computed when the final
1072 relocation is done. If pcrel_offset is false we want to wind
1073 up with the negative of the location within the section,
1074 which means we must adjust the existing addend by the change
1075 in the location within the section. If pcrel_offset is true
1076 we do not want to adjust the existing addend at all.
1077
1078 FIXME: This seems logical to me, but for the case of
1079 producing relocateable output it is not what the code
1080 actually does. I don't want to change it, because it seems
1081 far too likely that something will break. */
1082
1083 relocation -=
1084 input_section->output_section->vma + input_section->output_offset;
1085
82e51918 1086 if (howto->pcrel_offset && howto->partial_inplace)
252b5132
RH
1087 relocation -= reloc_entry->address;
1088 }
1089
82e51918 1090 if (! howto->partial_inplace)
252b5132
RH
1091 {
1092 /* This is a partial relocation, and we want to apply the relocation
1093 to the reloc entry rather than the raw data. Modify the reloc
1094 inplace to reflect what we now know. */
1095 reloc_entry->addend = relocation;
1096 reloc_entry->address += input_section->output_offset;
1097 return flag;
1098 }
1099 else
1100 {
1101 /* This is a partial relocation, but inplace, so modify the
1102 reloc record a bit.
1103
1104 If we've relocated with a symbol with a section, change
1105 into a ref to the section belonging to the symbol. */
252b5132
RH
1106 reloc_entry->address += input_section->output_offset;
1107
1108 /* WTF?? */
1109 if (abfd->xvec->flavour == bfd_target_coff_flavour
252b5132
RH
1110 && strcmp (abfd->xvec->name, "coff-Intel-little") != 0
1111 && strcmp (abfd->xvec->name, "coff-Intel-big") != 0)
1112 {
1113#if 1
1114/* For m68k-coff, the addend was being subtracted twice during
1115 relocation with -r. Removing the line below this comment
1116 fixes that problem; see PR 2953.
1117
1118However, Ian wrote the following, regarding removing the line below,
1119which explains why it is still enabled: --djm
1120
1121If you put a patch like that into BFD you need to check all the COFF
1122linkers. I am fairly certain that patch will break coff-i386 (e.g.,
1123SCO); see coff_i386_reloc in coff-i386.c where I worked around the
1124problem in a different way. There may very well be a reason that the
1125code works as it does.
1126
1127Hmmm. The first obvious point is that bfd_install_relocation should
1128not have any tests that depend upon the flavour. It's seem like
1129entirely the wrong place for such a thing. The second obvious point
1130is that the current code ignores the reloc addend when producing
1131relocateable output for COFF. That's peculiar. In fact, I really
1132have no idea what the point of the line you want to remove is.
1133
1134A typical COFF reloc subtracts the old value of the symbol and adds in
1135the new value to the location in the object file (if it's a pc
1136relative reloc it adds the difference between the symbol value and the
1137location). When relocating we need to preserve that property.
1138
1139BFD handles this by setting the addend to the negative of the old
1140value of the symbol. Unfortunately it handles common symbols in a
1141non-standard way (it doesn't subtract the old value) but that's a
1142different story (we can't change it without losing backward
1143compatibility with old object files) (coff-i386 does subtract the old
1144value, to be compatible with existing coff-i386 targets, like SCO).
1145
1146So everything works fine when not producing relocateable output. When
1147we are producing relocateable output, logically we should do exactly
1148what we do when not producing relocateable output. Therefore, your
1149patch is correct. In fact, it should probably always just set
1150reloc_entry->addend to 0 for all cases, since it is, in fact, going to
1151add the value into the object file. This won't hurt the COFF code,
1152which doesn't use the addend; I'm not sure what it will do to other
1153formats (the thing to check for would be whether any formats both use
1154the addend and set partial_inplace).
1155
1156When I wanted to make coff-i386 produce relocateable output, I ran
1157into the problem that you are running into: I wanted to remove that
1158line. Rather than risk it, I made the coff-i386 relocs use a special
1159function; it's coff_i386_reloc in coff-i386.c. The function
1160specifically adds the addend field into the object file, knowing that
1161bfd_install_relocation is not going to. If you remove that line, then
1162coff-i386.c will wind up adding the addend field in twice. It's
1163trivial to fix; it just needs to be done.
1164
1165The problem with removing the line is just that it may break some
1166working code. With BFD it's hard to be sure of anything. The right
1167way to deal with this is simply to build and test at least all the
1168supported COFF targets. It should be straightforward if time and disk
1169space consuming. For each target:
1170 1) build the linker
1171 2) generate some executable, and link it using -r (I would
1172 probably use paranoia.o and link against newlib/libc.a, which
1173 for all the supported targets would be available in
1174 /usr/cygnus/progressive/H-host/target/lib/libc.a).
1175 3) make the change to reloc.c
1176 4) rebuild the linker
1177 5) repeat step 2
1178 6) if the resulting object files are the same, you have at least
1179 made it no worse
1180 7) if they are different you have to figure out which version is
b5f79c76 1181 right. */
252b5132
RH
1182 relocation -= reloc_entry->addend;
1183#endif
1184 reloc_entry->addend = 0;
1185 }
1186 else
1187 {
1188 reloc_entry->addend = relocation;
1189 }
1190 }
1191
1192 /* FIXME: This overflow checking is incomplete, because the value
1193 might have overflowed before we get here. For a correct check we
1194 need to compute the value in a size larger than bitsize, but we
1195 can't reasonably do that for a reloc the same size as a host
1196 machine word.
1197 FIXME: We should also do overflow checking on the result after
1198 adding in the value contained in the object file. */
1199 if (howto->complain_on_overflow != complain_overflow_dont)
1200 flag = bfd_check_overflow (howto->complain_on_overflow,
1201 howto->bitsize,
1202 howto->rightshift,
1203 bfd_arch_bits_per_address (abfd),
1204 relocation);
1205
b5f79c76
NC
1206 /* Either we are relocating all the way, or we don't want to apply
1207 the relocation to the reloc entry (probably because there isn't
1208 any room in the output format to describe addends to relocs). */
252b5132
RH
1209
1210 /* The cast to bfd_vma avoids a bug in the Alpha OSF/1 C compiler
1211 (OSF version 1.3, compiler version 3.11). It miscompiles the
1212 following program:
1213
1214 struct str
1215 {
1216 unsigned int i0;
1217 } s = { 0 };
1218
1219 int
1220 main ()
1221 {
1222 unsigned long x;
1223
1224 x = 0x100000000;
1225 x <<= (unsigned long) s.i0;
1226 if (x == 0)
1227 printf ("failed\n");
1228 else
1229 printf ("succeeded (%lx)\n", x);
1230 }
1231 */
1232
1233 relocation >>= (bfd_vma) howto->rightshift;
1234
b5f79c76 1235 /* Shift everything up to where it's going to be used. */
252b5132
RH
1236 relocation <<= (bfd_vma) howto->bitpos;
1237
b5f79c76 1238 /* Wait for the day when all have the mask in them. */
252b5132
RH
1239
1240 /* What we do:
1241 i instruction to be left alone
1242 o offset within instruction
1243 r relocation offset to apply
1244 S src mask
1245 D dst mask
1246 N ~dst mask
1247 A part 1
1248 B part 2
1249 R result
1250
1251 Do this:
88b6bae0
AM
1252 (( i i i i i o o o o o from bfd_get<size>
1253 and S S S S S) to get the size offset we want
1254 + r r r r r r r r r r) to get the final value to place
252b5132
RH
1255 and D D D D D to chop to right size
1256 -----------------------
88b6bae0 1257 = A A A A A
252b5132 1258 And this:
88b6bae0
AM
1259 ( i i i i i o o o o o from bfd_get<size>
1260 and N N N N N ) get instruction
252b5132 1261 -----------------------
88b6bae0 1262 = B B B B B
252b5132
RH
1263
1264 And then:
88b6bae0
AM
1265 ( B B B B B
1266 or A A A A A)
252b5132 1267 -----------------------
88b6bae0 1268 = R R R R R R R R R R put into bfd_put<size>
252b5132
RH
1269 */
1270
1271#define DOIT(x) \
1272 x = ( (x & ~howto->dst_mask) | (((x & howto->src_mask) + relocation) & howto->dst_mask))
1273
9a968f43 1274 data = (bfd_byte *) data_start + (octets - data_start_offset);
252b5132
RH
1275
1276 switch (howto->size)
1277 {
1278 case 0:
1279 {
1280 char x = bfd_get_8 (abfd, (char *) data);
1281 DOIT (x);
1282 bfd_put_8 (abfd, x, (unsigned char *) data);
1283 }
1284 break;
1285
1286 case 1:
1287 {
1288 short x = bfd_get_16 (abfd, (bfd_byte *) data);
1289 DOIT (x);
dc810e39 1290 bfd_put_16 (abfd, (bfd_vma) x, (unsigned char *) data);
252b5132
RH
1291 }
1292 break;
1293 case 2:
1294 {
1295 long x = bfd_get_32 (abfd, (bfd_byte *) data);
1296 DOIT (x);
dc810e39 1297 bfd_put_32 (abfd, (bfd_vma) x, (bfd_byte *) data);
252b5132
RH
1298 }
1299 break;
1300 case -2:
1301 {
1302 long x = bfd_get_32 (abfd, (bfd_byte *) data);
1303 relocation = -relocation;
1304 DOIT (x);
dc810e39 1305 bfd_put_32 (abfd, (bfd_vma) x, (bfd_byte *) data);
252b5132
RH
1306 }
1307 break;
1308
1309 case 3:
1310 /* Do nothing */
1311 break;
1312
1313 case 4:
1314 {
1315 bfd_vma x = bfd_get_64 (abfd, (bfd_byte *) data);
1316 DOIT (x);
1317 bfd_put_64 (abfd, x, (bfd_byte *) data);
1318 }
1319 break;
1320 default:
1321 return bfd_reloc_other;
1322 }
1323
1324 return flag;
1325}
1326
1327/* This relocation routine is used by some of the backend linkers.
1328 They do not construct asymbol or arelent structures, so there is no
1329 reason for them to use bfd_perform_relocation. Also,
1330 bfd_perform_relocation is so hacked up it is easier to write a new
1331 function than to try to deal with it.
1332
1333 This routine does a final relocation. Whether it is useful for a
1334 relocateable link depends upon how the object format defines
1335 relocations.
1336
1337 FIXME: This routine ignores any special_function in the HOWTO,
1338 since the existing special_function values have been written for
1339 bfd_perform_relocation.
1340
1341 HOWTO is the reloc howto information.
1342 INPUT_BFD is the BFD which the reloc applies to.
1343 INPUT_SECTION is the section which the reloc applies to.
1344 CONTENTS is the contents of the section.
1345 ADDRESS is the address of the reloc within INPUT_SECTION.
1346 VALUE is the value of the symbol the reloc refers to.
1347 ADDEND is the addend of the reloc. */
1348
1349bfd_reloc_status_type
1350_bfd_final_link_relocate (howto, input_bfd, input_section, contents, address,
1351 value, addend)
1352 reloc_howto_type *howto;
1353 bfd *input_bfd;
1354 asection *input_section;
1355 bfd_byte *contents;
1356 bfd_vma address;
1357 bfd_vma value;
1358 bfd_vma addend;
1359{
1360 bfd_vma relocation;
1361
1362 /* Sanity check the address. */
1363 if (address > input_section->_raw_size)
1364 return bfd_reloc_outofrange;
1365
1366 /* This function assumes that we are dealing with a basic relocation
1367 against a symbol. We want to compute the value of the symbol to
1368 relocate to. This is just VALUE, the value of the symbol, plus
1369 ADDEND, any addend associated with the reloc. */
1370 relocation = value + addend;
1371
1372 /* If the relocation is PC relative, we want to set RELOCATION to
1373 the distance between the symbol (currently in RELOCATION) and the
1374 location we are relocating. Some targets (e.g., i386-aout)
1375 arrange for the contents of the section to be the negative of the
1376 offset of the location within the section; for such targets
1377 pcrel_offset is false. Other targets (e.g., m88kbcs or ELF)
1378 simply leave the contents of the section as zero; for such
1379 targets pcrel_offset is true. If pcrel_offset is false we do not
1380 need to subtract out the offset of the location within the
1381 section (which is just ADDRESS). */
1382 if (howto->pc_relative)
1383 {
1384 relocation -= (input_section->output_section->vma
1385 + input_section->output_offset);
1386 if (howto->pcrel_offset)
1387 relocation -= address;
1388 }
1389
1390 return _bfd_relocate_contents (howto, input_bfd, relocation,
1391 contents + address);
1392}
1393
1394/* Relocate a given location using a given value and howto. */
1395
1396bfd_reloc_status_type
1397_bfd_relocate_contents (howto, input_bfd, relocation, location)
1398 reloc_howto_type *howto;
1399 bfd *input_bfd;
1400 bfd_vma relocation;
1401 bfd_byte *location;
1402{
1403 int size;
7442e600 1404 bfd_vma x = 0;
d5afc56e 1405 bfd_reloc_status_type flag;
252b5132
RH
1406 unsigned int rightshift = howto->rightshift;
1407 unsigned int bitpos = howto->bitpos;
1408
1409 /* If the size is negative, negate RELOCATION. This isn't very
1410 general. */
1411 if (howto->size < 0)
1412 relocation = -relocation;
1413
1414 /* Get the value we are going to relocate. */
1415 size = bfd_get_reloc_size (howto);
1416 switch (size)
1417 {
1418 default:
1419 case 0:
1420 abort ();
1421 case 1:
1422 x = bfd_get_8 (input_bfd, location);
1423 break;
1424 case 2:
1425 x = bfd_get_16 (input_bfd, location);
1426 break;
1427 case 4:
1428 x = bfd_get_32 (input_bfd, location);
1429 break;
1430 case 8:
1431#ifdef BFD64
1432 x = bfd_get_64 (input_bfd, location);
1433#else
1434 abort ();
1435#endif
1436 break;
1437 }
1438
1439 /* Check for overflow. FIXME: We may drop bits during the addition
1440 which we don't check for. We must either check at every single
1441 operation, which would be tedious, or we must do the computations
1442 in a type larger than bfd_vma, which would be inefficient. */
d5afc56e 1443 flag = bfd_reloc_ok;
252b5132
RH
1444 if (howto->complain_on_overflow != complain_overflow_dont)
1445 {
1446 bfd_vma addrmask, fieldmask, signmask, ss;
1447 bfd_vma a, b, sum;
1448
1449 /* Get the values to be added together. For signed and unsigned
1450 relocations, we assume that all values should be truncated to
1451 the size of an address. For bitfields, all the bits matter.
1452 See also bfd_check_overflow. */
1453 fieldmask = N_ONES (howto->bitsize);
1454 addrmask = N_ONES (bfd_arch_bits_per_address (input_bfd)) | fieldmask;
1455 a = relocation;
1456 b = x & howto->src_mask;
1457
1458 switch (howto->complain_on_overflow)
1459 {
1460 case complain_overflow_signed:
1461 a = (a & addrmask) >> rightshift;
1462
1463 /* If any sign bits are set, all sign bits must be set.
1464 That is, A must be a valid negative address after
1465 shifting. */
1466 signmask = ~ (fieldmask >> 1);
1467 ss = a & signmask;
1468 if (ss != 0 && ss != ((addrmask >> rightshift) & signmask))
d5afc56e 1469 flag = bfd_reloc_overflow;
252b5132
RH
1470
1471 /* We only need this next bit of code if the sign bit of B
1472 is below the sign bit of A. This would only happen if
1473 SRC_MASK had fewer bits than BITSIZE. Note that if
1474 SRC_MASK has more bits than BITSIZE, we can get into
1475 trouble; we would need to verify that B is in range, as
1476 we do for A above. */
1477 signmask = ((~ howto->src_mask) >> 1) & howto->src_mask;
8a4ac871
AM
1478
1479 /* Set all the bits above the sign bit. */
1480 b = (b ^ signmask) - signmask;
252b5132
RH
1481
1482 b = (b & addrmask) >> bitpos;
1483
1484 /* Now we can do the addition. */
1485 sum = a + b;
1486
1487 /* See if the result has the correct sign. Bits above the
1488 sign bit are junk now; ignore them. If the sum is
1489 positive, make sure we did not have all negative inputs;
1490 if the sum is negative, make sure we did not have all
1491 positive inputs. The test below looks only at the sign
1492 bits, and it really just
1493 SIGN (A) == SIGN (B) && SIGN (A) != SIGN (SUM)
1494 */
1495 signmask = (fieldmask >> 1) + 1;
1496 if (((~ (a ^ b)) & (a ^ sum)) & signmask)
d5afc56e 1497 flag = bfd_reloc_overflow;
252b5132
RH
1498
1499 break;
1500
1501 case complain_overflow_unsigned:
1502 /* Checking for an unsigned overflow is relatively easy:
1503 trim the addresses and add, and trim the result as well.
1504 Overflow is normally indicated when the result does not
1505 fit in the field. However, we also need to consider the
1506 case when, e.g., fieldmask is 0x7fffffff or smaller, an
1507 input is 0x80000000, and bfd_vma is only 32 bits; then we
1508 will get sum == 0, but there is an overflow, since the
1509 inputs did not fit in the field. Instead of doing a
1510 separate test, we can check for this by or-ing in the
1511 operands when testing for the sum overflowing its final
1512 field. */
1513 a = (a & addrmask) >> rightshift;
1514 b = (b & addrmask) >> bitpos;
1515 sum = (a + b) & addrmask;
1516 if ((a | b | sum) & ~ fieldmask)
d5afc56e 1517 flag = bfd_reloc_overflow;
252b5132
RH
1518
1519 break;
1520
1521 case complain_overflow_bitfield:
d5afc56e 1522 /* Much like the signed check, but for a field one bit
8a4ac871 1523 wider, and no trimming inputs with addrmask. We allow a
d5afc56e
AM
1524 bitfield to represent numbers in the range -2**n to
1525 2**n-1, where n is the number of bits in the field.
1526 Note that when bfd_vma is 32 bits, a 32-bit reloc can't
1527 overflow, which is exactly what we want. */
252b5132 1528 a >>= rightshift;
252b5132 1529
d5afc56e
AM
1530 signmask = ~ fieldmask;
1531 ss = a & signmask;
1532 if (ss != 0 && ss != (((bfd_vma) -1 >> rightshift) & signmask))
1533 flag = bfd_reloc_overflow;
252b5132 1534
d5afc56e 1535 signmask = ((~ howto->src_mask) >> 1) & howto->src_mask;
8a4ac871 1536 b = (b ^ signmask) - signmask;
252b5132 1537
d5afc56e 1538 b >>= bitpos;
44257b8b 1539
252b5132 1540 sum = a + b;
d5afc56e 1541
8a4ac871
AM
1542 /* We mask with addrmask here to explicitly allow an address
1543 wrap-around. The Linux kernel relies on it, and it is
1544 the only way to write assembler code which can run when
1545 loaded at a location 0x80000000 away from the location at
1546 which it is linked. */
d5afc56e 1547 signmask = fieldmask + 1;
8a4ac871 1548 if (((~ (a ^ b)) & (a ^ sum)) & signmask & addrmask)
d5afc56e 1549 flag = bfd_reloc_overflow;
252b5132
RH
1550
1551 break;
1552
1553 default:
1554 abort ();
1555 }
1556 }
1557
1558 /* Put RELOCATION in the right bits. */
1559 relocation >>= (bfd_vma) rightshift;
1560 relocation <<= (bfd_vma) bitpos;
1561
1562 /* Add RELOCATION to the right bits of X. */
1563 x = ((x & ~howto->dst_mask)
1564 | (((x & howto->src_mask) + relocation) & howto->dst_mask));
1565
1566 /* Put the relocated value back in the object file. */
1567 switch (size)
1568 {
1569 default:
1570 case 0:
1571 abort ();
1572 case 1:
1573 bfd_put_8 (input_bfd, x, location);
1574 break;
1575 case 2:
1576 bfd_put_16 (input_bfd, x, location);
1577 break;
1578 case 4:
1579 bfd_put_32 (input_bfd, x, location);
1580 break;
1581 case 8:
1582#ifdef BFD64
1583 bfd_put_64 (input_bfd, x, location);
1584#else
1585 abort ();
1586#endif
1587 break;
1588 }
1589
d5afc56e 1590 return flag;
252b5132
RH
1591}
1592
1593/*
1594DOCDD
1595INODE
1596 howto manager, , typedef arelent, Relocations
1597
1598SECTION
1599 The howto manager
1600
1601 When an application wants to create a relocation, but doesn't
1602 know what the target machine might call it, it can find out by
1603 using this bit of code.
1604
1605*/
1606
1607/*
1608TYPEDEF
1609 bfd_reloc_code_type
1610
1611DESCRIPTION
1612 The insides of a reloc code. The idea is that, eventually, there
1613 will be one enumerator for every type of relocation we ever do.
1614 Pass one of these values to <<bfd_reloc_type_lookup>>, and it'll
1615 return a howto pointer.
1616
1617 This does mean that the application must determine the correct
1618 enumerator value; you can't get a howto pointer from a random set
1619 of attributes.
1620
1621SENUM
1622 bfd_reloc_code_real
1623
1624ENUM
1625 BFD_RELOC_64
1626ENUMX
1627 BFD_RELOC_32
1628ENUMX
1629 BFD_RELOC_26
1630ENUMX
1631 BFD_RELOC_24
1632ENUMX
1633 BFD_RELOC_16
1634ENUMX
1635 BFD_RELOC_14
1636ENUMX
1637 BFD_RELOC_8
1638ENUMDOC
1639 Basic absolute relocations of N bits.
1640
1641ENUM
1642 BFD_RELOC_64_PCREL
1643ENUMX
1644 BFD_RELOC_32_PCREL
1645ENUMX
1646 BFD_RELOC_24_PCREL
1647ENUMX
1648 BFD_RELOC_16_PCREL
1649ENUMX
1650 BFD_RELOC_12_PCREL
1651ENUMX
1652 BFD_RELOC_8_PCREL
1653ENUMDOC
1654 PC-relative relocations. Sometimes these are relative to the address
1655of the relocation itself; sometimes they are relative to the start of
1656the section containing the relocation. It depends on the specific target.
1657
1658The 24-bit relocation is used in some Intel 960 configurations.
1659
1660ENUM
1661 BFD_RELOC_32_GOT_PCREL
1662ENUMX
1663 BFD_RELOC_16_GOT_PCREL
1664ENUMX
1665 BFD_RELOC_8_GOT_PCREL
1666ENUMX
1667 BFD_RELOC_32_GOTOFF
1668ENUMX
1669 BFD_RELOC_16_GOTOFF
1670ENUMX
1671 BFD_RELOC_LO16_GOTOFF
1672ENUMX
1673 BFD_RELOC_HI16_GOTOFF
1674ENUMX
1675 BFD_RELOC_HI16_S_GOTOFF
1676ENUMX
1677 BFD_RELOC_8_GOTOFF
5bd4f169
AM
1678ENUMX
1679 BFD_RELOC_64_PLT_PCREL
252b5132
RH
1680ENUMX
1681 BFD_RELOC_32_PLT_PCREL
1682ENUMX
1683 BFD_RELOC_24_PLT_PCREL
1684ENUMX
1685 BFD_RELOC_16_PLT_PCREL
1686ENUMX
1687 BFD_RELOC_8_PLT_PCREL
5bd4f169
AM
1688ENUMX
1689 BFD_RELOC_64_PLTOFF
252b5132
RH
1690ENUMX
1691 BFD_RELOC_32_PLTOFF
1692ENUMX
1693 BFD_RELOC_16_PLTOFF
1694ENUMX
1695 BFD_RELOC_LO16_PLTOFF
1696ENUMX
1697 BFD_RELOC_HI16_PLTOFF
1698ENUMX
1699 BFD_RELOC_HI16_S_PLTOFF
1700ENUMX
1701 BFD_RELOC_8_PLTOFF
1702ENUMDOC
1703 For ELF.
1704
1705ENUM
1706 BFD_RELOC_68K_GLOB_DAT
1707ENUMX
1708 BFD_RELOC_68K_JMP_SLOT
1709ENUMX
1710 BFD_RELOC_68K_RELATIVE
1711ENUMDOC
1712 Relocations used by 68K ELF.
1713
1714ENUM
1715 BFD_RELOC_32_BASEREL
1716ENUMX
1717 BFD_RELOC_16_BASEREL
1718ENUMX
1719 BFD_RELOC_LO16_BASEREL
1720ENUMX
1721 BFD_RELOC_HI16_BASEREL
1722ENUMX
1723 BFD_RELOC_HI16_S_BASEREL
1724ENUMX
1725 BFD_RELOC_8_BASEREL
1726ENUMX
1727 BFD_RELOC_RVA
1728ENUMDOC
1729 Linkage-table relative.
1730
1731ENUM
1732 BFD_RELOC_8_FFnn
1733ENUMDOC
1734 Absolute 8-bit relocation, but used to form an address like 0xFFnn.
1735
1736ENUM
1737 BFD_RELOC_32_PCREL_S2
1738ENUMX
1739 BFD_RELOC_16_PCREL_S2
1740ENUMX
1741 BFD_RELOC_23_PCREL_S2
1742ENUMDOC
1743 These PC-relative relocations are stored as word displacements --
1744i.e., byte displacements shifted right two bits. The 30-bit word
1745displacement (<<32_PCREL_S2>> -- 32 bits, shifted 2) is used on the
1746SPARC. (SPARC tools generally refer to this as <<WDISP30>>.) The
1747signed 16-bit displacement is used on the MIPS, and the 23-bit
1748displacement is used on the Alpha.
1749
1750ENUM
1751 BFD_RELOC_HI22
1752ENUMX
1753 BFD_RELOC_LO10
1754ENUMDOC
1755 High 22 bits and low 10 bits of 32-bit value, placed into lower bits of
1756the target word. These are used on the SPARC.
1757
1758ENUM
1759 BFD_RELOC_GPREL16
1760ENUMX
1761 BFD_RELOC_GPREL32
1762ENUMDOC
1763 For systems that allocate a Global Pointer register, these are
1764displacements off that register. These relocation types are
1765handled specially, because the value the register will have is
1766decided relatively late.
1767
252b5132
RH
1768ENUM
1769 BFD_RELOC_I960_CALLJ
1770ENUMDOC
1771 Reloc types used for i960/b.out.
1772
1773ENUM
1774 BFD_RELOC_NONE
1775ENUMX
1776 BFD_RELOC_SPARC_WDISP22
1777ENUMX
1778 BFD_RELOC_SPARC22
1779ENUMX
1780 BFD_RELOC_SPARC13
1781ENUMX
1782 BFD_RELOC_SPARC_GOT10
1783ENUMX
1784 BFD_RELOC_SPARC_GOT13
1785ENUMX
1786 BFD_RELOC_SPARC_GOT22
1787ENUMX
1788 BFD_RELOC_SPARC_PC10
1789ENUMX
1790 BFD_RELOC_SPARC_PC22
1791ENUMX
1792 BFD_RELOC_SPARC_WPLT30
1793ENUMX
1794 BFD_RELOC_SPARC_COPY
1795ENUMX
1796 BFD_RELOC_SPARC_GLOB_DAT
1797ENUMX
1798 BFD_RELOC_SPARC_JMP_SLOT
1799ENUMX
1800 BFD_RELOC_SPARC_RELATIVE
0f2712ed
NC
1801ENUMX
1802 BFD_RELOC_SPARC_UA16
252b5132
RH
1803ENUMX
1804 BFD_RELOC_SPARC_UA32
0f2712ed
NC
1805ENUMX
1806 BFD_RELOC_SPARC_UA64
252b5132
RH
1807ENUMDOC
1808 SPARC ELF relocations. There is probably some overlap with other
1809 relocation types already defined.
1810
1811ENUM
1812 BFD_RELOC_SPARC_BASE13
1813ENUMX
1814 BFD_RELOC_SPARC_BASE22
1815ENUMDOC
1816 I think these are specific to SPARC a.out (e.g., Sun 4).
1817
1818ENUMEQ
1819 BFD_RELOC_SPARC_64
1820 BFD_RELOC_64
1821ENUMX
1822 BFD_RELOC_SPARC_10
1823ENUMX
1824 BFD_RELOC_SPARC_11
1825ENUMX
1826 BFD_RELOC_SPARC_OLO10
1827ENUMX
1828 BFD_RELOC_SPARC_HH22
1829ENUMX
1830 BFD_RELOC_SPARC_HM10
1831ENUMX
1832 BFD_RELOC_SPARC_LM22
1833ENUMX
1834 BFD_RELOC_SPARC_PC_HH22
1835ENUMX
1836 BFD_RELOC_SPARC_PC_HM10
1837ENUMX
1838 BFD_RELOC_SPARC_PC_LM22
1839ENUMX
1840 BFD_RELOC_SPARC_WDISP16
1841ENUMX
1842 BFD_RELOC_SPARC_WDISP19
1843ENUMX
1844 BFD_RELOC_SPARC_7
1845ENUMX
1846 BFD_RELOC_SPARC_6
1847ENUMX
1848 BFD_RELOC_SPARC_5
1849ENUMEQX
1850 BFD_RELOC_SPARC_DISP64
1851 BFD_RELOC_64_PCREL
bd5e6e7e
JJ
1852ENUMX
1853 BFD_RELOC_SPARC_PLT32
252b5132
RH
1854ENUMX
1855 BFD_RELOC_SPARC_PLT64
1856ENUMX
1857 BFD_RELOC_SPARC_HIX22
1858ENUMX
1859 BFD_RELOC_SPARC_LOX10
1860ENUMX
1861 BFD_RELOC_SPARC_H44
1862ENUMX
1863 BFD_RELOC_SPARC_M44
1864ENUMX
1865 BFD_RELOC_SPARC_L44
1866ENUMX
1867 BFD_RELOC_SPARC_REGISTER
1868ENUMDOC
1869 SPARC64 relocations
1870
1871ENUM
1872 BFD_RELOC_SPARC_REV32
1873ENUMDOC
1874 SPARC little endian relocation
1875
1876ENUM
1877 BFD_RELOC_ALPHA_GPDISP_HI16
1878ENUMDOC
1879 Alpha ECOFF and ELF relocations. Some of these treat the symbol or
1880 "addend" in some special way.
1881 For GPDISP_HI16 ("gpdisp") relocations, the symbol is ignored when
1882 writing; when reading, it will be the absolute section symbol. The
1883 addend is the displacement in bytes of the "lda" instruction from
1884 the "ldah" instruction (which is at the address of this reloc).
1885ENUM
1886 BFD_RELOC_ALPHA_GPDISP_LO16
1887ENUMDOC
1888 For GPDISP_LO16 ("ignore") relocations, the symbol is handled as
1889 with GPDISP_HI16 relocs. The addend is ignored when writing the
1890 relocations out, and is filled in with the file's GP value on
1891 reading, for convenience.
1892
1893ENUM
1894 BFD_RELOC_ALPHA_GPDISP
1895ENUMDOC
1896 The ELF GPDISP relocation is exactly the same as the GPDISP_HI16
1897 relocation except that there is no accompanying GPDISP_LO16
1898 relocation.
1899
1900ENUM
1901 BFD_RELOC_ALPHA_LITERAL
1902ENUMX
1903 BFD_RELOC_ALPHA_ELF_LITERAL
1904ENUMX
1905 BFD_RELOC_ALPHA_LITUSE
1906ENUMDOC
1907 The Alpha LITERAL/LITUSE relocs are produced by a symbol reference;
1908 the assembler turns it into a LDQ instruction to load the address of
1909 the symbol, and then fills in a register in the real instruction.
1910
1911 The LITERAL reloc, at the LDQ instruction, refers to the .lita
1912 section symbol. The addend is ignored when writing, but is filled
1913 in with the file's GP value on reading, for convenience, as with the
1914 GPDISP_LO16 reloc.
1915
1916 The ELF_LITERAL reloc is somewhere between 16_GOTOFF and GPDISP_LO16.
1917 It should refer to the symbol to be referenced, as with 16_GOTOFF,
1918 but it generates output not based on the position within the .got
1919 section, but relative to the GP value chosen for the file during the
1920 final link stage.
1921
1922 The LITUSE reloc, on the instruction using the loaded address, gives
1923 information to the linker that it might be able to use to optimize
1924 away some literal section references. The symbol is ignored (read
1925 as the absolute section symbol), and the "addend" indicates the type
1926 of instruction using the register:
1927 1 - "memory" fmt insn
1928 2 - byte-manipulation (byte offset reg)
1929 3 - jsr (target of branch)
1930
252b5132
RH
1931ENUM
1932 BFD_RELOC_ALPHA_HINT
1933ENUMDOC
1934 The HINT relocation indicates a value that should be filled into the
1935 "hint" field of a jmp/jsr/ret instruction, for possible branch-
1936 prediction logic which may be provided on some processors.
1937
1938ENUM
1939 BFD_RELOC_ALPHA_LINKAGE
1940ENUMDOC
1941 The LINKAGE relocation outputs a linkage pair in the object file,
1942 which is filled by the linker.
1943
1944ENUM
1945 BFD_RELOC_ALPHA_CODEADDR
1946ENUMDOC
1947 The CODEADDR relocation outputs a STO_CA in the object file,
1948 which is filled by the linker.
1949
dfe57ca0
RH
1950ENUM
1951 BFD_RELOC_ALPHA_GPREL_HI16
1952ENUMX
1953 BFD_RELOC_ALPHA_GPREL_LO16
1954ENUMDOC
dc810e39
AM
1955 The GPREL_HI/LO relocations together form a 32-bit offset from the
1956 GP register.
dfe57ca0 1957
7793f4d0
RH
1958ENUM
1959 BFD_RELOC_ALPHA_BRSGP
1960ENUMDOC
1961 Like BFD_RELOC_23_PCREL_S2, except that the source and target must
1962 share a common GP, and the target address is adjusted for
1963 STO_ALPHA_STD_GPLOAD.
1964
3765b1be
RH
1965ENUM
1966 BFD_RELOC_ALPHA_TLSGD
1967ENUMX
1968 BFD_RELOC_ALPHA_TLSLDM
1969ENUMX
1970 BFD_RELOC_ALPHA_DTPMOD64
1971ENUMX
1972 BFD_RELOC_ALPHA_GOTDTPREL16
1973ENUMX
1974 BFD_RELOC_ALPHA_DTPREL64
1975ENUMX
1976 BFD_RELOC_ALPHA_DTPREL_HI16
1977ENUMX
1978 BFD_RELOC_ALPHA_DTPREL_LO16
1979ENUMX
1980 BFD_RELOC_ALPHA_DTPREL16
1981ENUMX
1982 BFD_RELOC_ALPHA_GOTTPREL16
1983ENUMX
1984 BFD_RELOC_ALPHA_TPREL64
1985ENUMX
1986 BFD_RELOC_ALPHA_TPREL_HI16
1987ENUMX
1988 BFD_RELOC_ALPHA_TPREL_LO16
1989ENUMX
1990 BFD_RELOC_ALPHA_TPREL16
1991ENUMDOC
1992 Alpha thread-local storage relocations.
1993
252b5132
RH
1994ENUM
1995 BFD_RELOC_MIPS_JMP
1996ENUMDOC
1997 Bits 27..2 of the relocation address shifted right 2 bits;
1998 simple reloc otherwise.
1999
2000ENUM
2001 BFD_RELOC_MIPS16_JMP
2002ENUMDOC
2003 The MIPS16 jump instruction.
2004
2005ENUM
2006 BFD_RELOC_MIPS16_GPREL
2007ENUMDOC
2008 MIPS16 GP relative reloc.
2009
2010ENUM
2011 BFD_RELOC_HI16
2012ENUMDOC
2013 High 16 bits of 32-bit value; simple reloc.
2014ENUM
2015 BFD_RELOC_HI16_S
2016ENUMDOC
2017 High 16 bits of 32-bit value but the low 16 bits will be sign
2018 extended and added to form the final result. If the low 16
2019 bits form a negative number, we need to add one to the high value
2020 to compensate for the borrow when the low bits are added.
2021ENUM
2022 BFD_RELOC_LO16
2023ENUMDOC
2024 Low 16 bits.
2025ENUM
2026 BFD_RELOC_PCREL_HI16_S
2027ENUMDOC
2028 Like BFD_RELOC_HI16_S, but PC relative.
2029ENUM
2030 BFD_RELOC_PCREL_LO16
2031ENUMDOC
2032 Like BFD_RELOC_LO16, but PC relative.
2033
252b5132
RH
2034ENUM
2035 BFD_RELOC_MIPS_LITERAL
2036ENUMDOC
2037 Relocation against a MIPS literal section.
2038
2039ENUM
2040 BFD_RELOC_MIPS_GOT16
2041ENUMX
2042 BFD_RELOC_MIPS_CALL16
252b5132
RH
2043ENUMX
2044 BFD_RELOC_MIPS_GOT_HI16
2045ENUMX
2046 BFD_RELOC_MIPS_GOT_LO16
2047ENUMX
2048 BFD_RELOC_MIPS_CALL_HI16
2049ENUMX
2050 BFD_RELOC_MIPS_CALL_LO16
3f830999
MM
2051ENUMX
2052 BFD_RELOC_MIPS_SUB
2053ENUMX
2054 BFD_RELOC_MIPS_GOT_PAGE
2055ENUMX
2056 BFD_RELOC_MIPS_GOT_OFST
2057ENUMX
2058 BFD_RELOC_MIPS_GOT_DISP
c2feb664
NC
2059ENUMX
2060 BFD_RELOC_MIPS_SHIFT5
2061ENUMX
2062 BFD_RELOC_MIPS_SHIFT6
2063ENUMX
2064 BFD_RELOC_MIPS_INSERT_A
2065ENUMX
2066 BFD_RELOC_MIPS_INSERT_B
2067ENUMX
2068 BFD_RELOC_MIPS_DELETE
2069ENUMX
2070 BFD_RELOC_MIPS_HIGHEST
2071ENUMX
2072 BFD_RELOC_MIPS_HIGHER
2073ENUMX
2074 BFD_RELOC_MIPS_SCN_DISP
2075ENUMX
2076 BFD_RELOC_MIPS_REL16
2077ENUMX
2078 BFD_RELOC_MIPS_RELGOT
2079ENUMX
2080 BFD_RELOC_MIPS_JALR
252b5132 2081COMMENT
4e5ba5b7
DB
2082ENUM
2083 BFD_RELOC_FRV_LABEL16
2084ENUMX
2085 BFD_RELOC_FRV_LABEL24
2086ENUMX
2087 BFD_RELOC_FRV_LO16
2088ENUMX
2089 BFD_RELOC_FRV_HI16
2090ENUMX
2091 BFD_RELOC_FRV_GPREL12
2092ENUMX
2093 BFD_RELOC_FRV_GPRELU12
2094ENUMX
2095 BFD_RELOC_FRV_GPREL32
2096ENUMX
2097 BFD_RELOC_FRV_GPRELHI
2098ENUMX
2099 BFD_RELOC_FRV_GPRELLO
2100ENUMDOC
2101 Fujitsu Frv Relocations.
2102COMMENT
fbca6ad9 2103COMMENT
252b5132
RH
2104ENUMDOC
2105 MIPS ELF relocations.
2106
2107COMMENT
2108
2109ENUM
2110 BFD_RELOC_386_GOT32
2111ENUMX
2112 BFD_RELOC_386_PLT32
2113ENUMX
2114 BFD_RELOC_386_COPY
2115ENUMX
2116 BFD_RELOC_386_GLOB_DAT
2117ENUMX
2118 BFD_RELOC_386_JUMP_SLOT
2119ENUMX
2120 BFD_RELOC_386_RELATIVE
2121ENUMX
2122 BFD_RELOC_386_GOTOFF
2123ENUMX
2124 BFD_RELOC_386_GOTPC
13ae64f3
JJ
2125ENUMX
2126 BFD_RELOC_386_TLS_LE
2127ENUMX
2128 BFD_RELOC_386_TLS_GD
2129ENUMX
2130 BFD_RELOC_386_TLS_LDM
2131ENUMX
2132 BFD_RELOC_386_TLS_LDO_32
2133ENUMX
2134 BFD_RELOC_386_TLS_IE_32
2135ENUMX
2136 BFD_RELOC_386_TLS_LE_32
2137ENUMX
2138 BFD_RELOC_386_TLS_DTPMOD32
2139ENUMX
2140 BFD_RELOC_386_TLS_DTPOFF32
2141ENUMX
2142 BFD_RELOC_386_TLS_TPOFF32
252b5132
RH
2143ENUMDOC
2144 i386/elf relocations
2145
8d88c4ca
NC
2146ENUM
2147 BFD_RELOC_X86_64_GOT32
2148ENUMX
2149 BFD_RELOC_X86_64_PLT32
2150ENUMX
2151 BFD_RELOC_X86_64_COPY
2152ENUMX
2153 BFD_RELOC_X86_64_GLOB_DAT
2154ENUMX
2155 BFD_RELOC_X86_64_JUMP_SLOT
2156ENUMX
2157 BFD_RELOC_X86_64_RELATIVE
2158ENUMX
2159 BFD_RELOC_X86_64_GOTPCREL
2160ENUMX
2161 BFD_RELOC_X86_64_32S
2162ENUMDOC
2163 x86-64/elf relocations
2164
252b5132
RH
2165ENUM
2166 BFD_RELOC_NS32K_IMM_8
2167ENUMX
2168 BFD_RELOC_NS32K_IMM_16
2169ENUMX
2170 BFD_RELOC_NS32K_IMM_32
2171ENUMX
2172 BFD_RELOC_NS32K_IMM_8_PCREL
2173ENUMX
2174 BFD_RELOC_NS32K_IMM_16_PCREL
2175ENUMX
2176 BFD_RELOC_NS32K_IMM_32_PCREL
2177ENUMX
2178 BFD_RELOC_NS32K_DISP_8
2179ENUMX
2180 BFD_RELOC_NS32K_DISP_16
2181ENUMX
2182 BFD_RELOC_NS32K_DISP_32
2183ENUMX
2184 BFD_RELOC_NS32K_DISP_8_PCREL
2185ENUMX
2186 BFD_RELOC_NS32K_DISP_16_PCREL
2187ENUMX
2188 BFD_RELOC_NS32K_DISP_32_PCREL
2189ENUMDOC
2190 ns32k relocations
2191
e135f41b
NC
2192ENUM
2193 BFD_RELOC_PDP11_DISP_8_PCREL
2194ENUMX
2195 BFD_RELOC_PDP11_DISP_6_PCREL
2196ENUMDOC
2197 PDP11 relocations
2198
0bcb993b
ILT
2199ENUM
2200 BFD_RELOC_PJ_CODE_HI16
2201ENUMX
2202 BFD_RELOC_PJ_CODE_LO16
2203ENUMX
2204 BFD_RELOC_PJ_CODE_DIR16
2205ENUMX
2206 BFD_RELOC_PJ_CODE_DIR32
2207ENUMX
2208 BFD_RELOC_PJ_CODE_REL16
2209ENUMX
2210 BFD_RELOC_PJ_CODE_REL32
2211ENUMDOC
2212 Picojava relocs. Not all of these appear in object files.
88b6bae0 2213
252b5132
RH
2214ENUM
2215 BFD_RELOC_PPC_B26
2216ENUMX
2217 BFD_RELOC_PPC_BA26
2218ENUMX
2219 BFD_RELOC_PPC_TOC16
2220ENUMX
2221 BFD_RELOC_PPC_B16
2222ENUMX
2223 BFD_RELOC_PPC_B16_BRTAKEN
2224ENUMX
2225 BFD_RELOC_PPC_B16_BRNTAKEN
2226ENUMX
2227 BFD_RELOC_PPC_BA16
2228ENUMX
2229 BFD_RELOC_PPC_BA16_BRTAKEN
2230ENUMX
2231 BFD_RELOC_PPC_BA16_BRNTAKEN
2232ENUMX
2233 BFD_RELOC_PPC_COPY
2234ENUMX
2235 BFD_RELOC_PPC_GLOB_DAT
2236ENUMX
2237 BFD_RELOC_PPC_JMP_SLOT
2238ENUMX
2239 BFD_RELOC_PPC_RELATIVE
2240ENUMX
2241 BFD_RELOC_PPC_LOCAL24PC
2242ENUMX
2243 BFD_RELOC_PPC_EMB_NADDR32
2244ENUMX
2245 BFD_RELOC_PPC_EMB_NADDR16
2246ENUMX
2247 BFD_RELOC_PPC_EMB_NADDR16_LO
2248ENUMX
2249 BFD_RELOC_PPC_EMB_NADDR16_HI
2250ENUMX
2251 BFD_RELOC_PPC_EMB_NADDR16_HA
2252ENUMX
2253 BFD_RELOC_PPC_EMB_SDAI16
2254ENUMX
2255 BFD_RELOC_PPC_EMB_SDA2I16
2256ENUMX
2257 BFD_RELOC_PPC_EMB_SDA2REL
2258ENUMX
2259 BFD_RELOC_PPC_EMB_SDA21
2260ENUMX
2261 BFD_RELOC_PPC_EMB_MRKREF
2262ENUMX
2263 BFD_RELOC_PPC_EMB_RELSEC16
2264ENUMX
2265 BFD_RELOC_PPC_EMB_RELST_LO
2266ENUMX
2267 BFD_RELOC_PPC_EMB_RELST_HI
2268ENUMX
2269 BFD_RELOC_PPC_EMB_RELST_HA
2270ENUMX
2271 BFD_RELOC_PPC_EMB_BIT_FLD
2272ENUMX
2273 BFD_RELOC_PPC_EMB_RELSDA
5bd4f169
AM
2274ENUMX
2275 BFD_RELOC_PPC64_HIGHER
2276ENUMX
2277 BFD_RELOC_PPC64_HIGHER_S
2278ENUMX
2279 BFD_RELOC_PPC64_HIGHEST
2280ENUMX
2281 BFD_RELOC_PPC64_HIGHEST_S
2282ENUMX
2283 BFD_RELOC_PPC64_TOC16_LO
2284ENUMX
2285 BFD_RELOC_PPC64_TOC16_HI
2286ENUMX
2287 BFD_RELOC_PPC64_TOC16_HA
2288ENUMX
2289 BFD_RELOC_PPC64_TOC
2290ENUMX
dc810e39 2291 BFD_RELOC_PPC64_PLTGOT16
5bd4f169
AM
2292ENUMX
2293 BFD_RELOC_PPC64_PLTGOT16_LO
2294ENUMX
2295 BFD_RELOC_PPC64_PLTGOT16_HI
2296ENUMX
2297 BFD_RELOC_PPC64_PLTGOT16_HA
2298ENUMX
2299 BFD_RELOC_PPC64_ADDR16_DS
2300ENUMX
2301 BFD_RELOC_PPC64_ADDR16_LO_DS
2302ENUMX
2303 BFD_RELOC_PPC64_GOT16_DS
2304ENUMX
2305 BFD_RELOC_PPC64_GOT16_LO_DS
2306ENUMX
2307 BFD_RELOC_PPC64_PLT16_LO_DS
2308ENUMX
2309 BFD_RELOC_PPC64_SECTOFF_DS
2310ENUMX
2311 BFD_RELOC_PPC64_SECTOFF_LO_DS
2312ENUMX
2313 BFD_RELOC_PPC64_TOC16_DS
2314ENUMX
2315 BFD_RELOC_PPC64_TOC16_LO_DS
2316ENUMX
2317 BFD_RELOC_PPC64_PLTGOT16_DS
2318ENUMX
2319 BFD_RELOC_PPC64_PLTGOT16_LO_DS
252b5132
RH
2320ENUMDOC
2321 Power(rs6000) and PowerPC relocations.
2322
5b93d8bb
AM
2323ENUM
2324 BFD_RELOC_I370_D12
2325ENUMDOC
2326 IBM 370/390 relocations
2327
252b5132
RH
2328ENUM
2329 BFD_RELOC_CTOR
2330ENUMDOC
2331 The type of reloc used to build a contructor table - at the moment
2332 probably a 32 bit wide absolute relocation, but the target can choose.
2333 It generally does map to one of the other relocation types.
2334
2335ENUM
2336 BFD_RELOC_ARM_PCREL_BRANCH
2337ENUMDOC
2338 ARM 26 bit pc-relative branch. The lowest two bits must be zero and are
2339 not stored in the instruction.
dfc5f959
NC
2340ENUM
2341 BFD_RELOC_ARM_PCREL_BLX
2342ENUMDOC
2343 ARM 26 bit pc-relative branch. The lowest bit must be zero and is
2344 not stored in the instruction. The 2nd lowest bit comes from a 1 bit
2345 field in the instruction.
2346ENUM
2347 BFD_RELOC_THUMB_PCREL_BLX
2348ENUMDOC
2349 Thumb 22 bit pc-relative branch. The lowest bit must be zero and is
2350 not stored in the instruction. The 2nd lowest bit comes from a 1 bit
2351 field in the instruction.
252b5132
RH
2352ENUM
2353 BFD_RELOC_ARM_IMMEDIATE
752149a0
NC
2354ENUMX
2355 BFD_RELOC_ARM_ADRL_IMMEDIATE
252b5132
RH
2356ENUMX
2357 BFD_RELOC_ARM_OFFSET_IMM
2358ENUMX
2359 BFD_RELOC_ARM_SHIFT_IMM
2360ENUMX
2361 BFD_RELOC_ARM_SWI
2362ENUMX
2363 BFD_RELOC_ARM_MULTI
2364ENUMX
2365 BFD_RELOC_ARM_CP_OFF_IMM
2366ENUMX
2367 BFD_RELOC_ARM_ADR_IMM
2368ENUMX
2369 BFD_RELOC_ARM_LDR_IMM
2370ENUMX
2371 BFD_RELOC_ARM_LITERAL
2372ENUMX
2373 BFD_RELOC_ARM_IN_POOL
2374ENUMX
2375 BFD_RELOC_ARM_OFFSET_IMM8
2376ENUMX
2377 BFD_RELOC_ARM_HWLITERAL
2378ENUMX
2379 BFD_RELOC_ARM_THUMB_ADD
2380ENUMX
2381 BFD_RELOC_ARM_THUMB_IMM
2382ENUMX
2383 BFD_RELOC_ARM_THUMB_SHIFT
2384ENUMX
2385 BFD_RELOC_ARM_THUMB_OFFSET
2386ENUMX
2387 BFD_RELOC_ARM_GOT12
2388ENUMX
2389 BFD_RELOC_ARM_GOT32
2390ENUMX
2391 BFD_RELOC_ARM_JUMP_SLOT
2392ENUMX
2393 BFD_RELOC_ARM_COPY
2394ENUMX
2395 BFD_RELOC_ARM_GLOB_DAT
2396ENUMX
2397 BFD_RELOC_ARM_PLT32
2398ENUMX
2399 BFD_RELOC_ARM_RELATIVE
2400ENUMX
2401 BFD_RELOC_ARM_GOTOFF
2402ENUMX
2403 BFD_RELOC_ARM_GOTPC
2404ENUMDOC
2405 These relocs are only used within the ARM assembler. They are not
2406 (at present) written to any object files.
2407
2408ENUM
2409 BFD_RELOC_SH_PCDISP8BY2
2410ENUMX
2411 BFD_RELOC_SH_PCDISP12BY2
2412ENUMX
2413 BFD_RELOC_SH_IMM4
2414ENUMX
2415 BFD_RELOC_SH_IMM4BY2
2416ENUMX
2417 BFD_RELOC_SH_IMM4BY4
2418ENUMX
2419 BFD_RELOC_SH_IMM8
2420ENUMX
2421 BFD_RELOC_SH_IMM8BY2
2422ENUMX
2423 BFD_RELOC_SH_IMM8BY4
2424ENUMX
2425 BFD_RELOC_SH_PCRELIMM8BY2
2426ENUMX
2427 BFD_RELOC_SH_PCRELIMM8BY4
2428ENUMX
2429 BFD_RELOC_SH_SWITCH16
2430ENUMX
2431 BFD_RELOC_SH_SWITCH32
2432ENUMX
2433 BFD_RELOC_SH_USES
2434ENUMX
2435 BFD_RELOC_SH_COUNT
2436ENUMX
2437 BFD_RELOC_SH_ALIGN
2438ENUMX
2439 BFD_RELOC_SH_CODE
2440ENUMX
2441 BFD_RELOC_SH_DATA
2442ENUMX
2443 BFD_RELOC_SH_LABEL
015551fc
JR
2444ENUMX
2445 BFD_RELOC_SH_LOOP_START
2446ENUMX
2447 BFD_RELOC_SH_LOOP_END
3d96075c
L
2448ENUMX
2449 BFD_RELOC_SH_COPY
2450ENUMX
2451 BFD_RELOC_SH_GLOB_DAT
2452ENUMX
2453 BFD_RELOC_SH_JMP_SLOT
2454ENUMX
2455 BFD_RELOC_SH_RELATIVE
2456ENUMX
2457 BFD_RELOC_SH_GOTPC
eb1e0e80
NC
2458ENUMX
2459 BFD_RELOC_SH_GOT_LOW16
2460ENUMX
2461 BFD_RELOC_SH_GOT_MEDLOW16
2462ENUMX
2463 BFD_RELOC_SH_GOT_MEDHI16
2464ENUMX
2465 BFD_RELOC_SH_GOT_HI16
2466ENUMX
2467 BFD_RELOC_SH_GOTPLT_LOW16
2468ENUMX
2469 BFD_RELOC_SH_GOTPLT_MEDLOW16
2470ENUMX
2471 BFD_RELOC_SH_GOTPLT_MEDHI16
2472ENUMX
2473 BFD_RELOC_SH_GOTPLT_HI16
2474ENUMX
2475 BFD_RELOC_SH_PLT_LOW16
2476ENUMX
2477 BFD_RELOC_SH_PLT_MEDLOW16
2478ENUMX
2479 BFD_RELOC_SH_PLT_MEDHI16
2480ENUMX
2481 BFD_RELOC_SH_PLT_HI16
2482ENUMX
2483 BFD_RELOC_SH_GOTOFF_LOW16
2484ENUMX
2485 BFD_RELOC_SH_GOTOFF_MEDLOW16
2486ENUMX
2487 BFD_RELOC_SH_GOTOFF_MEDHI16
2488ENUMX
2489 BFD_RELOC_SH_GOTOFF_HI16
2490ENUMX
2491 BFD_RELOC_SH_GOTPC_LOW16
2492ENUMX
2493 BFD_RELOC_SH_GOTPC_MEDLOW16
2494ENUMX
2495 BFD_RELOC_SH_GOTPC_MEDHI16
2496ENUMX
2497 BFD_RELOC_SH_GOTPC_HI16
2498ENUMX
2499 BFD_RELOC_SH_COPY64
2500ENUMX
2501 BFD_RELOC_SH_GLOB_DAT64
2502ENUMX
2503 BFD_RELOC_SH_JMP_SLOT64
2504ENUMX
2505 BFD_RELOC_SH_RELATIVE64
2506ENUMX
2507 BFD_RELOC_SH_GOT10BY4
2508ENUMX
2509 BFD_RELOC_SH_GOT10BY8
2510ENUMX
2511 BFD_RELOC_SH_GOTPLT10BY4
2512ENUMX
2513 BFD_RELOC_SH_GOTPLT10BY8
2514ENUMX
2515 BFD_RELOC_SH_GOTPLT32
2516ENUMX
2517 BFD_RELOC_SH_SHMEDIA_CODE
2518ENUMX
2519 BFD_RELOC_SH_IMMU5
2520ENUMX
2521 BFD_RELOC_SH_IMMS6
2522ENUMX
2523 BFD_RELOC_SH_IMMS6BY32
2524ENUMX
2525 BFD_RELOC_SH_IMMU6
2526ENUMX
2527 BFD_RELOC_SH_IMMS10
2528ENUMX
2529 BFD_RELOC_SH_IMMS10BY2
2530ENUMX
2531 BFD_RELOC_SH_IMMS10BY4
2532ENUMX
2533 BFD_RELOC_SH_IMMS10BY8
2534ENUMX
2535 BFD_RELOC_SH_IMMS16
2536ENUMX
2537 BFD_RELOC_SH_IMMU16
2538ENUMX
2539 BFD_RELOC_SH_IMM_LOW16
2540ENUMX
2541 BFD_RELOC_SH_IMM_LOW16_PCREL
2542ENUMX
2543 BFD_RELOC_SH_IMM_MEDLOW16
2544ENUMX
2545 BFD_RELOC_SH_IMM_MEDLOW16_PCREL
2546ENUMX
2547 BFD_RELOC_SH_IMM_MEDHI16
2548ENUMX
2549 BFD_RELOC_SH_IMM_MEDHI16_PCREL
2550ENUMX
2551 BFD_RELOC_SH_IMM_HI16
2552ENUMX
2553 BFD_RELOC_SH_IMM_HI16_PCREL
2554ENUMX
2555 BFD_RELOC_SH_PT_16
252b5132
RH
2556ENUMDOC
2557 Hitachi SH relocs. Not all of these appear in object files.
2558
2559ENUM
2560 BFD_RELOC_THUMB_PCREL_BRANCH9
2561ENUMX
2562 BFD_RELOC_THUMB_PCREL_BRANCH12
2563ENUMX
2564 BFD_RELOC_THUMB_PCREL_BRANCH23
2565ENUMDOC
2566 Thumb 23-, 12- and 9-bit pc-relative branches. The lowest bit must
2567 be zero and is not stored in the instruction.
2568
2569ENUM
2570 BFD_RELOC_ARC_B22_PCREL
2571ENUMDOC
0d2bcfaf 2572 ARC Cores relocs.
252b5132
RH
2573 ARC 22 bit pc-relative branch. The lowest two bits must be zero and are
2574 not stored in the instruction. The high 20 bits are installed in bits 26
2575 through 7 of the instruction.
2576ENUM
2577 BFD_RELOC_ARC_B26
2578ENUMDOC
2579 ARC 26 bit absolute branch. The lowest two bits must be zero and are not
2580 stored in the instruction. The high 24 bits are installed in bits 23
2581 through 0.
2582
2583ENUM
2584 BFD_RELOC_D10V_10_PCREL_R
2585ENUMDOC
2586 Mitsubishi D10V relocs.
2587 This is a 10-bit reloc with the right 2 bits
2588 assumed to be 0.
2589ENUM
2590 BFD_RELOC_D10V_10_PCREL_L
2591ENUMDOC
2592 Mitsubishi D10V relocs.
2593 This is a 10-bit reloc with the right 2 bits
2594 assumed to be 0. This is the same as the previous reloc
2595 except it is in the left container, i.e.,
2596 shifted left 15 bits.
2597ENUM
2598 BFD_RELOC_D10V_18
2599ENUMDOC
2600 This is an 18-bit reloc with the right 2 bits
2601 assumed to be 0.
2602ENUM
2603 BFD_RELOC_D10V_18_PCREL
2604ENUMDOC
2605 This is an 18-bit reloc with the right 2 bits
2606 assumed to be 0.
2607
2608ENUM
2609 BFD_RELOC_D30V_6
2610ENUMDOC
2611 Mitsubishi D30V relocs.
2612 This is a 6-bit absolute reloc.
2613ENUM
2614 BFD_RELOC_D30V_9_PCREL
2615ENUMDOC
88b6bae0
AM
2616 This is a 6-bit pc-relative reloc with
2617 the right 3 bits assumed to be 0.
252b5132
RH
2618ENUM
2619 BFD_RELOC_D30V_9_PCREL_R
2620ENUMDOC
88b6bae0 2621 This is a 6-bit pc-relative reloc with
252b5132
RH
2622 the right 3 bits assumed to be 0. Same
2623 as the previous reloc but on the right side
88b6bae0 2624 of the container.
252b5132
RH
2625ENUM
2626 BFD_RELOC_D30V_15
2627ENUMDOC
88b6bae0
AM
2628 This is a 12-bit absolute reloc with the
2629 right 3 bitsassumed to be 0.
252b5132
RH
2630ENUM
2631 BFD_RELOC_D30V_15_PCREL
2632ENUMDOC
88b6bae0
AM
2633 This is a 12-bit pc-relative reloc with
2634 the right 3 bits assumed to be 0.
252b5132
RH
2635ENUM
2636 BFD_RELOC_D30V_15_PCREL_R
2637ENUMDOC
88b6bae0 2638 This is a 12-bit pc-relative reloc with
252b5132
RH
2639 the right 3 bits assumed to be 0. Same
2640 as the previous reloc but on the right side
88b6bae0 2641 of the container.
252b5132
RH
2642ENUM
2643 BFD_RELOC_D30V_21
2644ENUMDOC
88b6bae0 2645 This is an 18-bit absolute reloc with
252b5132
RH
2646 the right 3 bits assumed to be 0.
2647ENUM
2648 BFD_RELOC_D30V_21_PCREL
2649ENUMDOC
88b6bae0 2650 This is an 18-bit pc-relative reloc with
252b5132
RH
2651 the right 3 bits assumed to be 0.
2652ENUM
2653 BFD_RELOC_D30V_21_PCREL_R
2654ENUMDOC
88b6bae0 2655 This is an 18-bit pc-relative reloc with
252b5132
RH
2656 the right 3 bits assumed to be 0. Same
2657 as the previous reloc but on the right side
2658 of the container.
2659ENUM
2660 BFD_RELOC_D30V_32
2661ENUMDOC
2662 This is a 32-bit absolute reloc.
2663ENUM
2664 BFD_RELOC_D30V_32_PCREL
2665ENUMDOC
2666 This is a 32-bit pc-relative reloc.
2667
d172d4ba
NC
2668ENUM
2669 BFD_RELOC_DLX_HI16_S
2670ENUMDOC
2671 DLX relocs
2672ENUM
2673 BFD_RELOC_DLX_LO16
2674ENUMDOC
2675 DLX relocs
2676ENUM
2677 BFD_RELOC_DLX_JMP26
2678ENUMDOC
2679 DLX relocs
2680
252b5132
RH
2681ENUM
2682 BFD_RELOC_M32R_24
2683ENUMDOC
2684 Mitsubishi M32R relocs.
2685 This is a 24 bit absolute address.
2686ENUM
2687 BFD_RELOC_M32R_10_PCREL
2688ENUMDOC
2689 This is a 10-bit pc-relative reloc with the right 2 bits assumed to be 0.
2690ENUM
2691 BFD_RELOC_M32R_18_PCREL
2692ENUMDOC
2693 This is an 18-bit reloc with the right 2 bits assumed to be 0.
2694ENUM
2695 BFD_RELOC_M32R_26_PCREL
2696ENUMDOC
2697 This is a 26-bit reloc with the right 2 bits assumed to be 0.
2698ENUM
2699 BFD_RELOC_M32R_HI16_ULO
2700ENUMDOC
2701 This is a 16-bit reloc containing the high 16 bits of an address
2702 used when the lower 16 bits are treated as unsigned.
2703ENUM
2704 BFD_RELOC_M32R_HI16_SLO
2705ENUMDOC
2706 This is a 16-bit reloc containing the high 16 bits of an address
2707 used when the lower 16 bits are treated as signed.
2708ENUM
2709 BFD_RELOC_M32R_LO16
2710ENUMDOC
2711 This is a 16-bit reloc containing the lower 16 bits of an address.
2712ENUM
2713 BFD_RELOC_M32R_SDA16
2714ENUMDOC
2715 This is a 16-bit reloc containing the small data area offset for use in
2716 add3, load, and store instructions.
2717
2718ENUM
2719 BFD_RELOC_V850_9_PCREL
2720ENUMDOC
2721 This is a 9-bit reloc
2722ENUM
2723 BFD_RELOC_V850_22_PCREL
2724ENUMDOC
2725 This is a 22-bit reloc
2726
2727ENUM
2728 BFD_RELOC_V850_SDA_16_16_OFFSET
2729ENUMDOC
2730 This is a 16 bit offset from the short data area pointer.
2731ENUM
2732 BFD_RELOC_V850_SDA_15_16_OFFSET
2733ENUMDOC
2734 This is a 16 bit offset (of which only 15 bits are used) from the
2735 short data area pointer.
2736ENUM
2737 BFD_RELOC_V850_ZDA_16_16_OFFSET
2738ENUMDOC
2739 This is a 16 bit offset from the zero data area pointer.
2740ENUM
2741 BFD_RELOC_V850_ZDA_15_16_OFFSET
2742ENUMDOC
2743 This is a 16 bit offset (of which only 15 bits are used) from the
2744 zero data area pointer.
2745ENUM
2746 BFD_RELOC_V850_TDA_6_8_OFFSET
2747ENUMDOC
2748 This is an 8 bit offset (of which only 6 bits are used) from the
2749 tiny data area pointer.
2750ENUM
2751 BFD_RELOC_V850_TDA_7_8_OFFSET
2752ENUMDOC
2753 This is an 8bit offset (of which only 7 bits are used) from the tiny
2754 data area pointer.
2755ENUM
2756 BFD_RELOC_V850_TDA_7_7_OFFSET
2757ENUMDOC
2758 This is a 7 bit offset from the tiny data area pointer.
2759ENUM
2760 BFD_RELOC_V850_TDA_16_16_OFFSET
2761ENUMDOC
2762 This is a 16 bit offset from the tiny data area pointer.
2763COMMENT
2764ENUM
2765 BFD_RELOC_V850_TDA_4_5_OFFSET
2766ENUMDOC
2767 This is a 5 bit offset (of which only 4 bits are used) from the tiny
2768 data area pointer.
2769ENUM
2770 BFD_RELOC_V850_TDA_4_4_OFFSET
2771ENUMDOC
2772 This is a 4 bit offset from the tiny data area pointer.
2773ENUM
2774 BFD_RELOC_V850_SDA_16_16_SPLIT_OFFSET
2775ENUMDOC
2776 This is a 16 bit offset from the short data area pointer, with the
2777 bits placed non-contigously in the instruction.
2778ENUM
2779 BFD_RELOC_V850_ZDA_16_16_SPLIT_OFFSET
2780ENUMDOC
2781 This is a 16 bit offset from the zero data area pointer, with the
2782 bits placed non-contigously in the instruction.
2783ENUM
2784 BFD_RELOC_V850_CALLT_6_7_OFFSET
2785ENUMDOC
2786 This is a 6 bit offset from the call table base pointer.
2787ENUM
2788 BFD_RELOC_V850_CALLT_16_16_OFFSET
2789ENUMDOC
2790 This is a 16 bit offset from the call table base pointer.
2791COMMENT
2792
2793ENUM
2794 BFD_RELOC_MN10300_32_PCREL
2795ENUMDOC
2796 This is a 32bit pcrel reloc for the mn10300, offset by two bytes in the
2797 instruction.
2798ENUM
2799 BFD_RELOC_MN10300_16_PCREL
2800ENUMDOC
2801 This is a 16bit pcrel reloc for the mn10300, offset by two bytes in the
2802 instruction.
2803
2804ENUM
2805 BFD_RELOC_TIC30_LDP
2806ENUMDOC
2807 This is a 8bit DP reloc for the tms320c30, where the most
2808 significant 8 bits of a 24 bit word are placed into the least
2809 significant 8 bits of the opcode.
2810
81635ce4
TW
2811ENUM
2812 BFD_RELOC_TIC54X_PARTLS7
2813ENUMDOC
2814 This is a 7bit reloc for the tms320c54x, where the least
2815 significant 7 bits of a 16 bit word are placed into the least
2816 significant 7 bits of the opcode.
2817
2818ENUM
2819 BFD_RELOC_TIC54X_PARTMS9
2820ENUMDOC
2821 This is a 9bit DP reloc for the tms320c54x, where the most
2822 significant 9 bits of a 16 bit word are placed into the least
2823 significant 9 bits of the opcode.
2824
2825ENUM
2826 BFD_RELOC_TIC54X_23
2827ENUMDOC
2828 This is an extended address 23-bit reloc for the tms320c54x.
2829
2830ENUM
2831 BFD_RELOC_TIC54X_16_OF_23
2832ENUMDOC
3d855632
KH
2833 This is a 16-bit reloc for the tms320c54x, where the least
2834 significant 16 bits of a 23-bit extended address are placed into
81635ce4
TW
2835 the opcode.
2836
2837ENUM
2838 BFD_RELOC_TIC54X_MS7_OF_23
2839ENUMDOC
2840 This is a reloc for the tms320c54x, where the most
3d855632 2841 significant 7 bits of a 23-bit extended address are placed into
81635ce4 2842 the opcode.
81635ce4 2843
252b5132
RH
2844ENUM
2845 BFD_RELOC_FR30_48
2846ENUMDOC
2847 This is a 48 bit reloc for the FR30 that stores 32 bits.
2848ENUM
2849 BFD_RELOC_FR30_20
2850ENUMDOC
2851 This is a 32 bit reloc for the FR30 that stores 20 bits split up into
2852 two sections.
2853ENUM
2854 BFD_RELOC_FR30_6_IN_4
2855ENUMDOC
2856 This is a 16 bit reloc for the FR30 that stores a 6 bit word offset in
2857 4 bits.
2858ENUM
2859 BFD_RELOC_FR30_8_IN_8
2860ENUMDOC
2861 This is a 16 bit reloc for the FR30 that stores an 8 bit byte offset
2862 into 8 bits.
2863ENUM
2864 BFD_RELOC_FR30_9_IN_8
2865ENUMDOC
2866 This is a 16 bit reloc for the FR30 that stores a 9 bit short offset
2867 into 8 bits.
2868ENUM
2869 BFD_RELOC_FR30_10_IN_8
2870ENUMDOC
2871 This is a 16 bit reloc for the FR30 that stores a 10 bit word offset
2872 into 8 bits.
2873ENUM
2874 BFD_RELOC_FR30_9_PCREL
2875ENUMDOC
2876 This is a 16 bit reloc for the FR30 that stores a 9 bit pc relative
2877 short offset into 8 bits.
2878ENUM
2879 BFD_RELOC_FR30_12_PCREL
2880ENUMDOC
2881 This is a 16 bit reloc for the FR30 that stores a 12 bit pc relative
2882 short offset into 11 bits.
88b6bae0 2883
252b5132
RH
2884ENUM
2885 BFD_RELOC_MCORE_PCREL_IMM8BY4
2886ENUMX
2887 BFD_RELOC_MCORE_PCREL_IMM11BY2
2888ENUMX
2889 BFD_RELOC_MCORE_PCREL_IMM4BY2
2890ENUMX
2891 BFD_RELOC_MCORE_PCREL_32
2892ENUMX
2893 BFD_RELOC_MCORE_PCREL_JSR_IMM11BY2
36797d47
NC
2894ENUMX
2895 BFD_RELOC_MCORE_RVA
252b5132
RH
2896ENUMDOC
2897 Motorola Mcore relocations.
88b6bae0 2898
3c3bdf30
NC
2899ENUM
2900 BFD_RELOC_MMIX_GETA
2901ENUMX
2902 BFD_RELOC_MMIX_GETA_1
2903ENUMX
2904 BFD_RELOC_MMIX_GETA_2
2905ENUMX
2906 BFD_RELOC_MMIX_GETA_3
2907ENUMDOC
2908 These are relocations for the GETA instruction.
2909ENUM
2910 BFD_RELOC_MMIX_CBRANCH
2911ENUMX
2912 BFD_RELOC_MMIX_CBRANCH_J
2913ENUMX
2914 BFD_RELOC_MMIX_CBRANCH_1
2915ENUMX
2916 BFD_RELOC_MMIX_CBRANCH_2
2917ENUMX
2918 BFD_RELOC_MMIX_CBRANCH_3
2919ENUMDOC
2920 These are relocations for a conditional branch instruction.
2921ENUM
2922 BFD_RELOC_MMIX_PUSHJ
2923ENUMX
2924 BFD_RELOC_MMIX_PUSHJ_1
2925ENUMX
2926 BFD_RELOC_MMIX_PUSHJ_2
2927ENUMX
2928 BFD_RELOC_MMIX_PUSHJ_3
2929ENUMDOC
2930 These are relocations for the PUSHJ instruction.
2931ENUM
2932 BFD_RELOC_MMIX_JMP
2933ENUMX
2934 BFD_RELOC_MMIX_JMP_1
2935ENUMX
2936 BFD_RELOC_MMIX_JMP_2
2937ENUMX
2938 BFD_RELOC_MMIX_JMP_3
2939ENUMDOC
2940 These are relocations for the JMP instruction.
2941ENUM
2942 BFD_RELOC_MMIX_ADDR19
2943ENUMDOC
2944 This is a relocation for a relative address as in a GETA instruction or
2945 a branch.
2946ENUM
2947 BFD_RELOC_MMIX_ADDR27
2948ENUMDOC
2949 This is a relocation for a relative address as in a JMP instruction.
2950ENUM
2951 BFD_RELOC_MMIX_REG_OR_BYTE
2952ENUMDOC
2953 This is a relocation for an instruction field that may be a general
2954 register or a value 0..255.
2955ENUM
2956 BFD_RELOC_MMIX_REG
2957ENUMDOC
2958 This is a relocation for an instruction field that may be a general
2959 register.
2960ENUM
2961 BFD_RELOC_MMIX_BASE_PLUS_OFFSET
2962ENUMDOC
2963 This is a relocation for two instruction fields holding a register and
2964 an offset, the equivalent of the relocation.
2965ENUM
2966 BFD_RELOC_MMIX_LOCAL
2967ENUMDOC
2968 This relocation is an assertion that the expression is not allocated as
2969 a global register. It does not modify contents.
2970
adde6300
AM
2971ENUM
2972 BFD_RELOC_AVR_7_PCREL
2973ENUMDOC
2974 This is a 16 bit reloc for the AVR that stores 8 bit pc relative
2975 short offset into 7 bits.
2976ENUM
2977 BFD_RELOC_AVR_13_PCREL
2978ENUMDOC
2979 This is a 16 bit reloc for the AVR that stores 13 bit pc relative
2980 short offset into 12 bits.
2981ENUM
2982 BFD_RELOC_AVR_16_PM
2983ENUMDOC
2984 This is a 16 bit reloc for the AVR that stores 17 bit value (usually
3d855632 2985 program memory address) into 16 bits.
adde6300
AM
2986ENUM
2987 BFD_RELOC_AVR_LO8_LDI
2988ENUMDOC
2989 This is a 16 bit reloc for the AVR that stores 8 bit value (usually
2990 data memory address) into 8 bit immediate value of LDI insn.
2991ENUM
2992 BFD_RELOC_AVR_HI8_LDI
2993ENUMDOC
2994 This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 bit
2995 of data memory address) into 8 bit immediate value of LDI insn.
2996ENUM
2997 BFD_RELOC_AVR_HH8_LDI
2998ENUMDOC
2999 This is a 16 bit reloc for the AVR that stores 8 bit value (most high 8 bit
3000 of program memory address) into 8 bit immediate value of LDI insn.
3001ENUM
3002 BFD_RELOC_AVR_LO8_LDI_NEG
3003ENUMDOC
3004 This is a 16 bit reloc for the AVR that stores negated 8 bit value
3005 (usually data memory address) into 8 bit immediate value of SUBI insn.
3006ENUM
3007 BFD_RELOC_AVR_HI8_LDI_NEG
3008ENUMDOC
3009 This is a 16 bit reloc for the AVR that stores negated 8 bit value
3010 (high 8 bit of data memory address) into 8 bit immediate value of
3011 SUBI insn.
3012ENUM
3013 BFD_RELOC_AVR_HH8_LDI_NEG
3014ENUMDOC
3015 This is a 16 bit reloc for the AVR that stores negated 8 bit value
3016 (most high 8 bit of program memory address) into 8 bit immediate value
3017 of LDI or SUBI insn.
3018ENUM
3019 BFD_RELOC_AVR_LO8_LDI_PM
3020ENUMDOC
3021 This is a 16 bit reloc for the AVR that stores 8 bit value (usually
3022 command address) into 8 bit immediate value of LDI insn.
3023ENUM
3024 BFD_RELOC_AVR_HI8_LDI_PM
3025ENUMDOC
3026 This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 bit
3027 of command address) into 8 bit immediate value of LDI insn.
3028ENUM
3029 BFD_RELOC_AVR_HH8_LDI_PM
3030ENUMDOC
3031 This is a 16 bit reloc for the AVR that stores 8 bit value (most high 8 bit
3032 of command address) into 8 bit immediate value of LDI insn.
3033ENUM
3034 BFD_RELOC_AVR_LO8_LDI_PM_NEG
3035ENUMDOC
3036 This is a 16 bit reloc for the AVR that stores negated 8 bit value
3037 (usually command address) into 8 bit immediate value of SUBI insn.
3038ENUM
3039 BFD_RELOC_AVR_HI8_LDI_PM_NEG
3040ENUMDOC
3041 This is a 16 bit reloc for the AVR that stores negated 8 bit value
3042 (high 8 bit of 16 bit command address) into 8 bit immediate value
3043 of SUBI insn.
3044ENUM
3045 BFD_RELOC_AVR_HH8_LDI_PM_NEG
3046ENUMDOC
3047 This is a 16 bit reloc for the AVR that stores negated 8 bit value
3048 (high 6 bit of 22 bit command address) into 8 bit immediate
3049 value of SUBI insn.
3050ENUM
3051 BFD_RELOC_AVR_CALL
3052ENUMDOC
3053 This is a 32 bit reloc for the AVR that stores 23 bit value
3054 into 22 bits.
3055
a85d7ed0
NC
3056ENUM
3057 BFD_RELOC_390_12
3058ENUMDOC
3059 Direct 12 bit.
3060ENUM
3061 BFD_RELOC_390_GOT12
3062ENUMDOC
3063 12 bit GOT offset.
3064ENUM
3065 BFD_RELOC_390_PLT32
3066ENUMDOC
3067 32 bit PC relative PLT address.
3068ENUM
3069 BFD_RELOC_390_COPY
3070ENUMDOC
3071 Copy symbol at runtime.
3072ENUM
3073 BFD_RELOC_390_GLOB_DAT
3074ENUMDOC
3075 Create GOT entry.
3076ENUM
3077 BFD_RELOC_390_JMP_SLOT
3078ENUMDOC
3079 Create PLT entry.
3080ENUM
3081 BFD_RELOC_390_RELATIVE
3082ENUMDOC
3083 Adjust by program base.
3084ENUM
3085 BFD_RELOC_390_GOTPC
3086ENUMDOC
3087 32 bit PC relative offset to GOT.
3088ENUM
3089 BFD_RELOC_390_GOT16
3090ENUMDOC
3091 16 bit GOT offset.
3092ENUM
3093 BFD_RELOC_390_PC16DBL
3094ENUMDOC
3095 PC relative 16 bit shifted by 1.
3096ENUM
3097 BFD_RELOC_390_PLT16DBL
3098ENUMDOC
3099 16 bit PC rel. PLT shifted by 1.
3100ENUM
3101 BFD_RELOC_390_PC32DBL
3102ENUMDOC
3103 PC relative 32 bit shifted by 1.
3104ENUM
3105 BFD_RELOC_390_PLT32DBL
3106ENUMDOC
3107 32 bit PC rel. PLT shifted by 1.
3108ENUM
3109 BFD_RELOC_390_GOTPCDBL
3110ENUMDOC
3111 32 bit PC rel. GOT shifted by 1.
3112ENUM
3113 BFD_RELOC_390_GOT64
3114ENUMDOC
3115 64 bit GOT offset.
3116ENUM
3117 BFD_RELOC_390_PLT64
3118ENUMDOC
3119 64 bit PC relative PLT address.
3120ENUM
3121 BFD_RELOC_390_GOTENT
3122ENUMDOC
3123 32 bit rel. offset to GOT entry.
dc810e39 3124
252b5132
RH
3125ENUM
3126 BFD_RELOC_VTABLE_INHERIT
3127ENUMX
3128 BFD_RELOC_VTABLE_ENTRY
3129ENUMDOC
88b6bae0 3130 These two relocations are used by the linker to determine which of
252b5132
RH
3131 the entries in a C++ virtual function table are actually used. When
3132 the --gc-sections option is given, the linker will zero out the entries
3133 that are not used, so that the code for those functions need not be
3134 included in the output.
3135
3136 VTABLE_INHERIT is a zero-space relocation used to describe to the
3137 linker the inheritence tree of a C++ virtual function table. The
3138 relocation's symbol should be the parent class' vtable, and the
3139 relocation should be located at the child vtable.
3140
3141 VTABLE_ENTRY is a zero-space relocation that describes the use of a
3142 virtual function table entry. The reloc's symbol should refer to the
3143 table of the class mentioned in the code. Off of that base, an offset
88b6bae0 3144 describes the entry that is being used. For Rela hosts, this offset
252b5132
RH
3145 is stored in the reloc's addend. For Rel hosts, we are forced to put
3146 this offset in the reloc's section offset.
3147
800eeca4
JW
3148ENUM
3149 BFD_RELOC_IA64_IMM14
3150ENUMX
3151 BFD_RELOC_IA64_IMM22
3152ENUMX
3153 BFD_RELOC_IA64_IMM64
3154ENUMX
3155 BFD_RELOC_IA64_DIR32MSB
3156ENUMX
3157 BFD_RELOC_IA64_DIR32LSB
3158ENUMX
3159 BFD_RELOC_IA64_DIR64MSB
3160ENUMX
3161 BFD_RELOC_IA64_DIR64LSB
3162ENUMX
3163 BFD_RELOC_IA64_GPREL22
3164ENUMX
3165 BFD_RELOC_IA64_GPREL64I
3166ENUMX
3167 BFD_RELOC_IA64_GPREL32MSB
3168ENUMX
3169 BFD_RELOC_IA64_GPREL32LSB
3170ENUMX
3171 BFD_RELOC_IA64_GPREL64MSB
3172ENUMX
3173 BFD_RELOC_IA64_GPREL64LSB
3174ENUMX
3175 BFD_RELOC_IA64_LTOFF22
3176ENUMX
3177 BFD_RELOC_IA64_LTOFF64I
3178ENUMX
3179 BFD_RELOC_IA64_PLTOFF22
3180ENUMX
3181 BFD_RELOC_IA64_PLTOFF64I
3182ENUMX
3183 BFD_RELOC_IA64_PLTOFF64MSB
3184ENUMX
3185 BFD_RELOC_IA64_PLTOFF64LSB
3186ENUMX
3187 BFD_RELOC_IA64_FPTR64I
3188ENUMX
3189 BFD_RELOC_IA64_FPTR32MSB
3190ENUMX
3191 BFD_RELOC_IA64_FPTR32LSB
3192ENUMX
3193 BFD_RELOC_IA64_FPTR64MSB
3194ENUMX
3195 BFD_RELOC_IA64_FPTR64LSB
3196ENUMX
3197 BFD_RELOC_IA64_PCREL21B
748abff6
RH
3198ENUMX
3199 BFD_RELOC_IA64_PCREL21BI
800eeca4
JW
3200ENUMX
3201 BFD_RELOC_IA64_PCREL21M
3202ENUMX
3203 BFD_RELOC_IA64_PCREL21F
748abff6
RH
3204ENUMX
3205 BFD_RELOC_IA64_PCREL22
3206ENUMX
3207 BFD_RELOC_IA64_PCREL60B
3208ENUMX
3209 BFD_RELOC_IA64_PCREL64I
800eeca4
JW
3210ENUMX
3211 BFD_RELOC_IA64_PCREL32MSB
3212ENUMX
3213 BFD_RELOC_IA64_PCREL32LSB
3214ENUMX
3215 BFD_RELOC_IA64_PCREL64MSB
3216ENUMX
3217 BFD_RELOC_IA64_PCREL64LSB
3218ENUMX
3219 BFD_RELOC_IA64_LTOFF_FPTR22
3220ENUMX
3221 BFD_RELOC_IA64_LTOFF_FPTR64I
a4bd8390
JW
3222ENUMX
3223 BFD_RELOC_IA64_LTOFF_FPTR32MSB
3224ENUMX
3225 BFD_RELOC_IA64_LTOFF_FPTR32LSB
800eeca4
JW
3226ENUMX
3227 BFD_RELOC_IA64_LTOFF_FPTR64MSB
3228ENUMX
3229 BFD_RELOC_IA64_LTOFF_FPTR64LSB
800eeca4
JW
3230ENUMX
3231 BFD_RELOC_IA64_SEGREL32MSB
3232ENUMX
3233 BFD_RELOC_IA64_SEGREL32LSB
3234ENUMX
3235 BFD_RELOC_IA64_SEGREL64MSB
3236ENUMX
3237 BFD_RELOC_IA64_SEGREL64LSB
3238ENUMX
3239 BFD_RELOC_IA64_SECREL32MSB
3240ENUMX
3241 BFD_RELOC_IA64_SECREL32LSB
3242ENUMX
3243 BFD_RELOC_IA64_SECREL64MSB
3244ENUMX
3245 BFD_RELOC_IA64_SECREL64LSB
3246ENUMX
3247 BFD_RELOC_IA64_REL32MSB
3248ENUMX
3249 BFD_RELOC_IA64_REL32LSB
3250ENUMX
3251 BFD_RELOC_IA64_REL64MSB
3252ENUMX
3253 BFD_RELOC_IA64_REL64LSB
3254ENUMX
3255 BFD_RELOC_IA64_LTV32MSB
3256ENUMX
3257 BFD_RELOC_IA64_LTV32LSB
3258ENUMX
3259 BFD_RELOC_IA64_LTV64MSB
3260ENUMX
3261 BFD_RELOC_IA64_LTV64LSB
3262ENUMX
3263 BFD_RELOC_IA64_IPLTMSB
3264ENUMX
3265 BFD_RELOC_IA64_IPLTLSB
800eeca4
JW
3266ENUMX
3267 BFD_RELOC_IA64_COPY
13ae64f3
JJ
3268ENUMX
3269 BFD_RELOC_IA64_LTOFF22X
3270ENUMX
3271 BFD_RELOC_IA64_LDXMOV
3272ENUMX
3273 BFD_RELOC_IA64_TPREL14
800eeca4
JW
3274ENUMX
3275 BFD_RELOC_IA64_TPREL22
13ae64f3
JJ
3276ENUMX
3277 BFD_RELOC_IA64_TPREL64I
800eeca4
JW
3278ENUMX
3279 BFD_RELOC_IA64_TPREL64MSB
3280ENUMX
3281 BFD_RELOC_IA64_TPREL64LSB
3282ENUMX
13ae64f3 3283 BFD_RELOC_IA64_LTOFF_TPREL22
800eeca4 3284ENUMX
13ae64f3 3285 BFD_RELOC_IA64_DTPMOD64MSB
800eeca4 3286ENUMX
13ae64f3
JJ
3287 BFD_RELOC_IA64_DTPMOD64LSB
3288ENUMX
3289 BFD_RELOC_IA64_LTOFF_DTPMOD22
3290ENUMX
3291 BFD_RELOC_IA64_DTPREL14
3292ENUMX
3293 BFD_RELOC_IA64_DTPREL22
3294ENUMX
3295 BFD_RELOC_IA64_DTPREL64I
3296ENUMX
3297 BFD_RELOC_IA64_DTPREL32MSB
3298ENUMX
3299 BFD_RELOC_IA64_DTPREL32LSB
3300ENUMX
3301 BFD_RELOC_IA64_DTPREL64MSB
3302ENUMX
3303 BFD_RELOC_IA64_DTPREL64LSB
3304ENUMX
3305 BFD_RELOC_IA64_LTOFF_DTPREL22
800eeca4
JW
3306ENUMDOC
3307 Intel IA64 Relocations.
60bcf0fa
NC
3308
3309ENUM
3310 BFD_RELOC_M68HC11_HI8
3311ENUMDOC
3312 Motorola 68HC11 reloc.
3313 This is the 8 bits high part of an absolute address.
3314ENUM
3315 BFD_RELOC_M68HC11_LO8
3316ENUMDOC
3317 Motorola 68HC11 reloc.
3318 This is the 8 bits low part of an absolute address.
3319ENUM
3320 BFD_RELOC_M68HC11_3B
3321ENUMDOC
3322 Motorola 68HC11 reloc.
3323 This is the 3 bits of a value.
3324
06c15ad7
HPN
3325ENUM
3326 BFD_RELOC_CRIS_BDISP8
3327ENUMX
3328 BFD_RELOC_CRIS_UNSIGNED_5
3329ENUMX
3330 BFD_RELOC_CRIS_SIGNED_6
3331ENUMX
3332 BFD_RELOC_CRIS_UNSIGNED_6
3333ENUMX
3334 BFD_RELOC_CRIS_UNSIGNED_4
3335ENUMDOC
3336 These relocs are only used within the CRIS assembler. They are not
3337 (at present) written to any object files.
58d29fc3
HPN
3338ENUM
3339 BFD_RELOC_CRIS_COPY
3340ENUMX
3341 BFD_RELOC_CRIS_GLOB_DAT
3342ENUMX
3343 BFD_RELOC_CRIS_JUMP_SLOT
3344ENUMX
3345 BFD_RELOC_CRIS_RELATIVE
3346ENUMDOC
3347 Relocs used in ELF shared libraries for CRIS.
3348ENUM
3349 BFD_RELOC_CRIS_32_GOT
3350ENUMDOC
3351 32-bit offset to symbol-entry within GOT.
3352ENUM
3353 BFD_RELOC_CRIS_16_GOT
3354ENUMDOC
3355 16-bit offset to symbol-entry within GOT.
3356ENUM
3357 BFD_RELOC_CRIS_32_GOTPLT
3358ENUMDOC
3359 32-bit offset to symbol-entry within GOT, with PLT handling.
3360ENUM
3361 BFD_RELOC_CRIS_16_GOTPLT
3362ENUMDOC
3363 16-bit offset to symbol-entry within GOT, with PLT handling.
3364ENUM
3365 BFD_RELOC_CRIS_32_GOTREL
3366ENUMDOC
3367 32-bit offset to symbol, relative to GOT.
3368ENUM
3369 BFD_RELOC_CRIS_32_PLT_GOTREL
3370ENUMDOC
3371 32-bit offset to symbol with PLT entry, relative to GOT.
3372ENUM
3373 BFD_RELOC_CRIS_32_PLT_PCREL
3374ENUMDOC
3375 32-bit offset to symbol with PLT entry, relative to this relocation.
06c15ad7 3376
a87fdb8d
JE
3377ENUM
3378 BFD_RELOC_860_COPY
3379ENUMX
3380 BFD_RELOC_860_GLOB_DAT
3381ENUMX
3382 BFD_RELOC_860_JUMP_SLOT
3383ENUMX
3384 BFD_RELOC_860_RELATIVE
3385ENUMX
3386 BFD_RELOC_860_PC26
3387ENUMX
3388 BFD_RELOC_860_PLT26
3389ENUMX
3390 BFD_RELOC_860_PC16
3391ENUMX
3392 BFD_RELOC_860_LOW0
3393ENUMX
3394 BFD_RELOC_860_SPLIT0
3395ENUMX
3396 BFD_RELOC_860_LOW1
3397ENUMX
3398 BFD_RELOC_860_SPLIT1
3399ENUMX
3400 BFD_RELOC_860_LOW2
3401ENUMX
3402 BFD_RELOC_860_SPLIT2
3403ENUMX
3404 BFD_RELOC_860_LOW3
3405ENUMX
3406 BFD_RELOC_860_LOGOT0
3407ENUMX
3408 BFD_RELOC_860_SPGOT0
3409ENUMX
3410 BFD_RELOC_860_LOGOT1
3411ENUMX
3412 BFD_RELOC_860_SPGOT1
3413ENUMX
3414 BFD_RELOC_860_LOGOTOFF0
3415ENUMX
3416 BFD_RELOC_860_SPGOTOFF0
3417ENUMX
3418 BFD_RELOC_860_LOGOTOFF1
3419ENUMX
3420 BFD_RELOC_860_SPGOTOFF1
3421ENUMX
3422 BFD_RELOC_860_LOGOTOFF2
3423ENUMX
3424 BFD_RELOC_860_LOGOTOFF3
3425ENUMX
3426 BFD_RELOC_860_LOPC
3427ENUMX
3428 BFD_RELOC_860_HIGHADJ
3429ENUMX
3430 BFD_RELOC_860_HAGOT
3431ENUMX
3432 BFD_RELOC_860_HAGOTOFF
3433ENUMX
3434 BFD_RELOC_860_HAPC
3435ENUMX
3436 BFD_RELOC_860_HIGH
3437ENUMX
3438 BFD_RELOC_860_HIGOT
3439ENUMX
3440 BFD_RELOC_860_HIGOTOFF
3441ENUMDOC
3442 Intel i860 Relocations.
3443
b3baf5d0
NC
3444ENUM
3445 BFD_RELOC_OPENRISC_ABS_26
3446ENUMX
3447 BFD_RELOC_OPENRISC_REL_26
3448ENUMDOC
3449 OpenRISC Relocations.
3450
e01b0e69
JR
3451ENUM
3452 BFD_RELOC_H8_DIR16A8
3453ENUMX
3454 BFD_RELOC_H8_DIR16R8
3455ENUMX
3456 BFD_RELOC_H8_DIR24A8
3457ENUMX
3458 BFD_RELOC_H8_DIR24R8
3459ENUMX
3460 BFD_RELOC_H8_DIR32A16
3461ENUMDOC
3462 H8 elf Relocations.
3463
93fbbb04
GK
3464ENUM
3465 BFD_RELOC_XSTORMY16_REL_12
3466ENUMX
3467 BFD_RELOC_XSTORMY16_24
3468ENUMX
3469 BFD_RELOC_XSTORMY16_FPTR16
3470ENUMDOC
3471 Sony Xstormy16 Relocations.
3472
90ace9e9
JT
3473ENUM
3474 BFD_RELOC_VAX_GLOB_DAT
3475ENUMX
3476 BFD_RELOC_VAX_JMP_SLOT
3477ENUMX
3478 BFD_RELOC_VAX_RELATIVE
3479ENUMDOC
3480 Relocations used by VAX ELF.
3481
252b5132
RH
3482ENDSENUM
3483 BFD_RELOC_UNUSED
3484CODE_FRAGMENT
3485.
3486.typedef enum bfd_reloc_code_real bfd_reloc_code_real_type;
3487*/
3488
252b5132
RH
3489/*
3490FUNCTION
3491 bfd_reloc_type_lookup
3492
3493SYNOPSIS
3494 reloc_howto_type *
3495 bfd_reloc_type_lookup (bfd *abfd, bfd_reloc_code_real_type code);
3496
3497DESCRIPTION
3498 Return a pointer to a howto structure which, when
3499 invoked, will perform the relocation @var{code} on data from the
3500 architecture noted.
3501
3502*/
3503
252b5132
RH
3504reloc_howto_type *
3505bfd_reloc_type_lookup (abfd, code)
3506 bfd *abfd;
3507 bfd_reloc_code_real_type code;
3508{
3509 return BFD_SEND (abfd, reloc_type_lookup, (abfd, code));
3510}
3511
3512static reloc_howto_type bfd_howto_32 =
3513HOWTO (0, 00, 2, 32, false, 0, complain_overflow_bitfield, 0, "VRT32", false, 0xffffffff, 0xffffffff, true);
3514
252b5132
RH
3515/*
3516INTERNAL_FUNCTION
3517 bfd_default_reloc_type_lookup
3518
3519SYNOPSIS
3520 reloc_howto_type *bfd_default_reloc_type_lookup
3521 (bfd *abfd, bfd_reloc_code_real_type code);
3522
3523DESCRIPTION
3524 Provides a default relocation lookup routine for any architecture.
3525
252b5132
RH
3526*/
3527
3528reloc_howto_type *
3529bfd_default_reloc_type_lookup (abfd, code)
3530 bfd *abfd;
3531 bfd_reloc_code_real_type code;
3532{
3533 switch (code)
3534 {
3535 case BFD_RELOC_CTOR:
3536 /* The type of reloc used in a ctor, which will be as wide as the
3537 address - so either a 64, 32, or 16 bitter. */
3538 switch (bfd_get_arch_info (abfd)->bits_per_address)
3539 {
3540 case 64:
3541 BFD_FAIL ();
3542 case 32:
3543 return &bfd_howto_32;
3544 case 16:
3545 BFD_FAIL ();
3546 default:
3547 BFD_FAIL ();
3548 }
3549 default:
3550 BFD_FAIL ();
3551 }
3552 return (reloc_howto_type *) NULL;
3553}
3554
3555/*
3556FUNCTION
3557 bfd_get_reloc_code_name
3558
3559SYNOPSIS
3560 const char *bfd_get_reloc_code_name (bfd_reloc_code_real_type code);
3561
3562DESCRIPTION
3563 Provides a printable name for the supplied relocation code.
3564 Useful mainly for printing error messages.
3565*/
3566
3567const char *
3568bfd_get_reloc_code_name (code)
3569 bfd_reloc_code_real_type code;
3570{
3571 if (code > BFD_RELOC_UNUSED)
3572 return 0;
3573 return bfd_reloc_code_real_names[(int)code];
3574}
3575
3576/*
3577INTERNAL_FUNCTION
3578 bfd_generic_relax_section
3579
3580SYNOPSIS
3581 boolean bfd_generic_relax_section
3582 (bfd *abfd,
3583 asection *section,
3584 struct bfd_link_info *,
3585 boolean *);
3586
3587DESCRIPTION
3588 Provides default handling for relaxing for back ends which
3589 don't do relaxing -- i.e., does nothing.
3590*/
3591
252b5132
RH
3592boolean
3593bfd_generic_relax_section (abfd, section, link_info, again)
7442e600
ILT
3594 bfd *abfd ATTRIBUTE_UNUSED;
3595 asection *section ATTRIBUTE_UNUSED;
3596 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
252b5132
RH
3597 boolean *again;
3598{
3599 *again = false;
3600 return true;
3601}
3602
3603/*
3604INTERNAL_FUNCTION
3605 bfd_generic_gc_sections
3606
3607SYNOPSIS
3608 boolean bfd_generic_gc_sections
3609 (bfd *, struct bfd_link_info *);
3610
3611DESCRIPTION
3612 Provides default handling for relaxing for back ends which
3613 don't do section gc -- i.e., does nothing.
3614*/
3615
252b5132
RH
3616boolean
3617bfd_generic_gc_sections (abfd, link_info)
7442e600
ILT
3618 bfd *abfd ATTRIBUTE_UNUSED;
3619 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
252b5132
RH
3620{
3621 return true;
3622}
3623
8550eb6e
JJ
3624/*
3625INTERNAL_FUNCTION
3626 bfd_generic_merge_sections
3627
3628SYNOPSIS
3629 boolean bfd_generic_merge_sections
3630 (bfd *, struct bfd_link_info *);
3631
3632DESCRIPTION
3633 Provides default handling for SEC_MERGE section merging for back ends
3634 which don't have SEC_MERGE support -- i.e., does nothing.
3635*/
3636
8550eb6e
JJ
3637boolean
3638bfd_generic_merge_sections (abfd, link_info)
3639 bfd *abfd ATTRIBUTE_UNUSED;
3640 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
3641{
3642 return true;
3643}
3644
252b5132
RH
3645/*
3646INTERNAL_FUNCTION
3647 bfd_generic_get_relocated_section_contents
3648
3649SYNOPSIS
3650 bfd_byte *
3651 bfd_generic_get_relocated_section_contents (bfd *abfd,
3652 struct bfd_link_info *link_info,
3653 struct bfd_link_order *link_order,
3654 bfd_byte *data,
3655 boolean relocateable,
3656 asymbol **symbols);
3657
3658DESCRIPTION
3659 Provides default handling of relocation effort for back ends
3660 which can't be bothered to do it efficiently.
3661
3662*/
3663
3664bfd_byte *
3665bfd_generic_get_relocated_section_contents (abfd, link_info, link_order, data,
3666 relocateable, symbols)
3667 bfd *abfd;
3668 struct bfd_link_info *link_info;
3669 struct bfd_link_order *link_order;
3670 bfd_byte *data;
3671 boolean relocateable;
3672 asymbol **symbols;
3673{
b5f79c76 3674 /* Get enough memory to hold the stuff. */
252b5132
RH
3675 bfd *input_bfd = link_order->u.indirect.section->owner;
3676 asection *input_section = link_order->u.indirect.section;
3677
3678 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
3679 arelent **reloc_vector = NULL;
3680 long reloc_count;
3681
3682 if (reloc_size < 0)
3683 goto error_return;
3684
dc810e39 3685 reloc_vector = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
252b5132
RH
3686 if (reloc_vector == NULL && reloc_size != 0)
3687 goto error_return;
3688
b5f79c76 3689 /* Read in the section. */
252b5132
RH
3690 if (!bfd_get_section_contents (input_bfd,
3691 input_section,
3692 (PTR) data,
dc810e39 3693 (bfd_vma) 0,
252b5132
RH
3694 input_section->_raw_size))
3695 goto error_return;
3696
b5f79c76 3697 /* We're not relaxing the section, so just copy the size info. */
252b5132
RH
3698 input_section->_cooked_size = input_section->_raw_size;
3699 input_section->reloc_done = true;
3700
3701 reloc_count = bfd_canonicalize_reloc (input_bfd,
3702 input_section,
3703 reloc_vector,
3704 symbols);
3705 if (reloc_count < 0)
3706 goto error_return;
3707
3708 if (reloc_count > 0)
3709 {
3710 arelent **parent;
3711 for (parent = reloc_vector; *parent != (arelent *) NULL;
3712 parent++)
3713 {
3714 char *error_message = (char *) NULL;
3715 bfd_reloc_status_type r =
3716 bfd_perform_relocation (input_bfd,
3717 *parent,
3718 (PTR) data,
3719 input_section,
3720 relocateable ? abfd : (bfd *) NULL,
3721 &error_message);
3722
3723 if (relocateable)
3724 {
3725 asection *os = input_section->output_section;
3726
b5f79c76 3727 /* A partial link, so keep the relocs. */
252b5132
RH
3728 os->orelocation[os->reloc_count] = *parent;
3729 os->reloc_count++;
3730 }
3731
3732 if (r != bfd_reloc_ok)
3733 {
3734 switch (r)
3735 {
3736 case bfd_reloc_undefined:
3737 if (!((*link_info->callbacks->undefined_symbol)
3738 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
5cc7c785
L
3739 input_bfd, input_section, (*parent)->address,
3740 true)))
252b5132
RH
3741 goto error_return;
3742 break;
3743 case bfd_reloc_dangerous:
3744 BFD_ASSERT (error_message != (char *) NULL);
3745 if (!((*link_info->callbacks->reloc_dangerous)
3746 (link_info, error_message, input_bfd, input_section,
3747 (*parent)->address)))
3748 goto error_return;
3749 break;
3750 case bfd_reloc_overflow:
3751 if (!((*link_info->callbacks->reloc_overflow)
3752 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
3753 (*parent)->howto->name, (*parent)->addend,
3754 input_bfd, input_section, (*parent)->address)))
3755 goto error_return;
3756 break;
3757 case bfd_reloc_outofrange:
3758 default:
3759 abort ();
3760 break;
3761 }
3762
3763 }
3764 }
3765 }
3766 if (reloc_vector != NULL)
3767 free (reloc_vector);
3768 return data;
3769
3770error_return:
3771 if (reloc_vector != NULL)
3772 free (reloc_vector);
3773 return NULL;
3774}
This page took 0.311195 seconds and 4 git commands to generate.