Thu Nov 19 16:02:46 1998 Dave Brolley <brolley@cygnus.com>
[deliverable/binutils-gdb.git] / bfd / reloc.c
CommitLineData
c618de01 1/* BFD support for handling relocation entries.
71842815 2 Copyright (C) 1990, 91, 92, 93, 94, 95, 96, 97, 1998
1d5c6cfd 3 Free Software Foundation, Inc.
c618de01
SC
4 Written by Cygnus Support.
5
6This file is part of BFD, the Binary File Descriptor library.
7
8This program is free software; you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
10the Free Software Foundation; either version 2 of the License, or
11(at your option) any later version.
12
13This program is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
19along with this program; if not, write to the Free Software
e9f03cd4 20Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
c618de01 21
0cda46cf
SC
22/*
23SECTION
24 Relocations
985fca12 25
c188b0be
DM
26 BFD maintains relocations in much the same way it maintains
27 symbols: they are left alone until required, then read in
28 en-mass and translated into an internal form. A common
29 routine <<bfd_perform_relocation>> acts upon the
30 canonical form to do the fixup.
985fca12 31
c188b0be
DM
32 Relocations are maintained on a per section basis,
33 while symbols are maintained on a per BFD basis.
985fca12 34
c188b0be
DM
35 All that a back end has to do to fit the BFD interface is to create
36 a <<struct reloc_cache_entry>> for each relocation
37 in a particular section, and fill in the right bits of the structures.
985fca12
SC
38
39@menu
e98e6ec1
SC
40@* typedef arelent::
41@* howto manager::
985fca12
SC
42@end menu
43
44*/
0443af31
KR
45
46/* DO compile in the reloc_code name table from libbfd.h. */
47#define _BFD_MAKE_TABLE_bfd_reloc_code_real
48
985fca12 49#include "bfd.h"
0cda46cf 50#include "sysdep.h"
4c3721d5 51#include "bfdlink.h"
985fca12 52#include "libbfd.h"
c26d7d17
SC
53/*
54DOCDD
e98e6ec1
SC
55INODE
56 typedef arelent, howto manager, Relocations, Relocations
985fca12 57
0cda46cf
SC
58SUBSECTION
59 typedef arelent
985fca12 60
e98e6ec1 61 This is the structure of a relocation entry:
985fca12 62
e98e6ec1
SC
63CODE_FRAGMENT
64.
326e32d7 65.typedef enum bfd_reloc_status
e98e6ec1
SC
66.{
67. {* No errors detected *}
0cda46cf 68. bfd_reloc_ok,
e98e6ec1
SC
69.
70. {* The relocation was performed, but there was an overflow. *}
0cda46cf 71. bfd_reloc_overflow,
e98e6ec1 72.
65cab589 73. {* The address to relocate was not within the section supplied. *}
0cda46cf 74. bfd_reloc_outofrange,
e98e6ec1
SC
75.
76. {* Used by special functions *}
0cda46cf 77. bfd_reloc_continue,
e98e6ec1 78.
c188b0be 79. {* Unsupported relocation size requested. *}
0cda46cf 80. bfd_reloc_notsupported,
e98e6ec1 81.
c188b0be 82. {* Unused *}
0cda46cf 83. bfd_reloc_other,
e98e6ec1 84.
65cab589 85. {* The symbol to relocate against was undefined. *}
0cda46cf 86. bfd_reloc_undefined,
e98e6ec1
SC
87.
88. {* The relocation was performed, but may not be ok - presently
89. generated only when linking i960 coff files with i960 b.out
4c3721d5
ILT
90. symbols. If this type is returned, the error_message argument
91. to bfd_perform_relocation will be set. *}
0cda46cf 92. bfd_reloc_dangerous
e98e6ec1 93. }
0cda46cf 94. bfd_reloc_status_type;
e98e6ec1
SC
95.
96.
326e32d7 97.typedef struct reloc_cache_entry
0cda46cf 98.{
e98e6ec1
SC
99. {* A pointer into the canonical table of pointers *}
100. struct symbol_cache_entry **sym_ptr_ptr;
101.
102. {* offset in section *}
65cab589 103. bfd_size_type address;
e98e6ec1
SC
104.
105. {* addend for relocation value *}
326e32d7 106. bfd_vma addend;
e98e6ec1
SC
107.
108. {* Pointer to how to perform the required relocation *}
e9f03cd4 109. reloc_howto_type *howto;
e98e6ec1
SC
110.
111.} arelent;
985fca12 112
e98e6ec1 113*/
985fca12 114
e98e6ec1
SC
115/*
116DESCRIPTION
985fca12 117
c188b0be 118 Here is a description of each of the fields within an <<arelent>>:
985fca12 119
c188b0be 120 o <<sym_ptr_ptr>>
985fca12 121
e98e6ec1 122 The symbol table pointer points to a pointer to the symbol
c188b0be
DM
123 associated with the relocation request. It is
124 the pointer into the table returned by the back end's
125 <<get_symtab>> action. @xref{Symbols}. The symbol is referenced
e98e6ec1
SC
126 through a pointer to a pointer so that tools like the linker
127 can fix up all the symbols of the same name by modifying only
128 one pointer. The relocation routine looks in the symbol and
129 uses the base of the section the symbol is attached to and the
130 value of the symbol as the initial relocation offset. If the
131 symbol pointer is zero, then the section provided is looked up.
985fca12 132
c188b0be 133 o <<address>>
985fca12 134
c188b0be 135 The <<address>> field gives the offset in bytes from the base of
e98e6ec1
SC
136 the section data which owns the relocation record to the first
137 byte of relocatable information. The actual data relocated
c188b0be 138 will be relative to this point; for example, a relocation
e98e6ec1
SC
139 type which modifies the bottom two bytes of a four byte word
140 would not touch the first byte pointed to in a big endian
c26d7d17 141 world.
6b31fd3a 142
c188b0be 143 o <<addend>>
c26d7d17 144
c188b0be 145 The <<addend>> is a value provided by the back end to be added (!)
c26d7d17
SC
146 to the relocation offset. Its interpretation is dependent upon
147 the howto. For example, on the 68k the code:
985fca12 148
985fca12 149
e98e6ec1
SC
150| char foo[];
151| main()
152| {
153| return foo[0x12345678];
154| }
985fca12 155
e98e6ec1 156 Could be compiled into:
985fca12 157
e98e6ec1
SC
158| linkw fp,#-4
159| moveb @@#12345678,d0
160| extbl d0
161| unlk fp
162| rts
985fca12 163
985fca12 164
c188b0be
DM
165 This could create a reloc pointing to <<foo>>, but leave the
166 offset in the data, something like:
0cda46cf 167
985fca12 168
e98e6ec1 169|RELOCATION RECORDS FOR [.text]:
326e32d7 170|offset type value
e98e6ec1
SC
171|00000006 32 _foo
172|
173|00000000 4e56 fffc ; linkw fp,#-4
174|00000004 1039 1234 5678 ; moveb @@#12345678,d0
175|0000000a 49c0 ; extbl d0
176|0000000c 4e5e ; unlk fp
177|0000000e 4e75 ; rts
0cda46cf 178
985fca12 179
e98e6ec1
SC
180 Using coff and an 88k, some instructions don't have enough
181 space in them to represent the full address range, and
182 pointers have to be loaded in two parts. So you'd get something like:
0cda46cf 183
985fca12 184
e98e6ec1
SC
185| or.u r13,r0,hi16(_foo+0x12345678)
186| ld.b r2,r13,lo16(_foo+0x12345678)
187| jmp r1
985fca12 188
985fca12 189
c188b0be 190 This should create two relocs, both pointing to <<_foo>>, and with
e98e6ec1 191 0x12340000 in their addend field. The data would consist of:
0cda46cf 192
985fca12 193
e98e6ec1 194|RELOCATION RECORDS FOR [.text]:
326e32d7 195|offset type value
e98e6ec1
SC
196|00000002 HVRT16 _foo+0x12340000
197|00000006 LVRT16 _foo+0x12340000
4c3721d5 198|
e98e6ec1
SC
199|00000000 5da05678 ; or.u r13,r0,0x5678
200|00000004 1c4d5678 ; ld.b r2,r13,0x5678
201|00000008 f400c001 ; jmp r1
985fca12 202
0cda46cf 203
e98e6ec1 204 The relocation routine digs out the value from the data, adds
c188b0be
DM
205 it to the addend to get the original offset, and then adds the
206 value of <<_foo>>. Note that all 32 bits have to be kept around
e98e6ec1 207 somewhere, to cope with carry from bit 15 to bit 16.
985fca12 208
65cab589 209 One further example is the sparc and the a.out format. The
e98e6ec1
SC
210 sparc has a similar problem to the 88k, in that some
211 instructions don't have room for an entire offset, but on the
c188b0be
DM
212 sparc the parts are created in odd sized lumps. The designers of
213 the a.out format chose to not use the data within the section
e98e6ec1 214 for storing part of the offset; all the offset is kept within
326e32d7 215 the reloc. Anything in the data should be ignored.
0cda46cf 216
e98e6ec1
SC
217| save %sp,-112,%sp
218| sethi %hi(_foo+0x12345678),%g2
219| ldsb [%g2+%lo(_foo+0x12345678)],%i0
220| ret
221| restore
0cda46cf 222
4c3721d5 223 Both relocs contain a pointer to <<foo>>, and the offsets
e98e6ec1 224 contain junk.
985fca12 225
0cda46cf 226
e98e6ec1 227|RELOCATION RECORDS FOR [.text]:
326e32d7 228|offset type value
e98e6ec1
SC
229|00000004 HI22 _foo+0x12345678
230|00000008 LO10 _foo+0x12345678
4c3721d5 231|
e98e6ec1
SC
232|00000000 9de3bf90 ; save %sp,-112,%sp
233|00000004 05000000 ; sethi %hi(_foo+0),%g2
234|00000008 f048a000 ; ldsb [%g2+%lo(_foo+0)],%i0
235|0000000c 81c7e008 ; ret
236|00000010 81e80000 ; restore
237
0cda46cf 238
c188b0be 239 o <<howto>>
e98e6ec1 240
c188b0be
DM
241 The <<howto>> field can be imagined as a
242 relocation instruction. It is a pointer to a structure which
243 contains information on what to do with all of the other
e98e6ec1
SC
244 information in the reloc record and data section. A back end
245 would normally have a relocation instruction set and turn
246 relocations into pointers to the correct structure on input -
247 but it would be possible to create each howto field on demand.
326e32d7 248
985fca12
SC
249*/
250
66a277ab
ILT
251/*
252SUBSUBSECTION
253 <<enum complain_overflow>>
254
255 Indicates what sort of overflow checking should be done when
256 performing a relocation.
257
258CODE_FRAGMENT
259.
260.enum complain_overflow
261.{
262. {* Do not complain on overflow. *}
263. complain_overflow_dont,
264.
265. {* Complain if the bitfield overflows, whether it is considered
266. as signed or unsigned. *}
267. complain_overflow_bitfield,
268.
269. {* Complain if the value overflows when considered as signed
270. number. *}
271. complain_overflow_signed,
272.
273. {* Complain if the value overflows when considered as an
274. unsigned number. *}
275. complain_overflow_unsigned
276.};
277
278*/
985fca12 279
0cda46cf 280/*
326e32d7 281SUBSUBSECTION
e98e6ec1 282 <<reloc_howto_type>>
985fca12 283
e98e6ec1 284 The <<reloc_howto_type>> is a structure which contains all the
c188b0be 285 information that libbfd needs to know to tie up a back end's data.
985fca12 286
e98e6ec1 287CODE_FRAGMENT
5022aea5 288.struct symbol_cache_entry; {* Forward declaration *}
e98e6ec1 289.
1fb83be6 290.struct reloc_howto_struct
326e32d7 291.{
92a956e8 292. {* The type field has mainly a documentary use - the back end can
c188b0be
DM
293. do what it wants with it, though normally the back end's
294. external idea of what a reloc number is stored
295. in this field. For example, a PC relative word relocation
296. in a coff environment has the type 023 - because that's
e98e6ec1 297. what the outside world calls a R_PCRWORD reloc. *}
0cda46cf 298. unsigned int type;
e98e6ec1
SC
299.
300. {* The value the final relocation is shifted right by. This drops
301. unwanted data from the relocation. *}
0cda46cf 302. unsigned int rightshift;
e98e6ec1 303.
fb32909a 304. {* The size of the item to be relocated. This is *not* a
4c3721d5
ILT
305. power-of-two measure. To get the number of bytes operated
306. on by a type of relocation, use bfd_get_reloc_size. *}
c26d7d17 307. int size;
e98e6ec1 308.
66a277ab
ILT
309. {* The number of bits in the item to be relocated. This is used
310. when doing overflow checking. *}
0cda46cf 311. unsigned int bitsize;
e98e6ec1
SC
312.
313. {* Notes that the relocation is relative to the location in the
314. data section of the addend. The relocation function will
315. subtract from the relocation value the address of the location
316. being relocated. *}
0cda46cf 317. boolean pc_relative;
e98e6ec1 318.
66a277ab
ILT
319. {* The bit position of the reloc value in the destination.
320. The relocated value is left shifted by this amount. *}
0cda46cf 321. unsigned int bitpos;
e98e6ec1 322.
66a277ab
ILT
323. {* What type of overflow error should be checked for when
324. relocating. *}
325. enum complain_overflow complain_on_overflow;
e98e6ec1
SC
326.
327. {* If this field is non null, then the supplied function is
328. called rather than the normal function. This allows really
65cab589 329. strange relocation methods to be accomodated (e.g., i960 callj
e98e6ec1 330. instructions). *}
326e32d7 331. bfd_reloc_status_type (*special_function)
fefb4b30 332. PARAMS ((bfd *abfd,
5022aea5
SC
333. arelent *reloc_entry,
334. struct symbol_cache_entry *symbol,
335. PTR data,
326e32d7 336. asection *input_section,
4c3721d5
ILT
337. bfd *output_bfd,
338. char **error_message));
e98e6ec1
SC
339.
340. {* The textual name of the relocation type. *}
0cda46cf 341. char *name;
e98e6ec1
SC
342.
343. {* When performing a partial link, some formats must modify the
344. relocations rather than the data - this flag signals this.*}
0cda46cf 345. boolean partial_inplace;
e98e6ec1 346.
c188b0be 347. {* The src_mask selects which parts of the read in data
65cab589 348. are to be used in the relocation sum. E.g., if this was an 8 bit
e98e6ec1
SC
349. bit of data which we read and relocated, this would be
350. 0x000000ff. When we have relocs which have an addend, such as
351. sun4 extended relocs, the value in the offset part of a
352. relocating field is garbage so we never use it. In this case
353. the mask would be 0x00000000. *}
65cab589 354. bfd_vma src_mask;
e98e6ec1 355.
c188b0be 356. {* The dst_mask selects which parts of the instruction are replaced
e98e6ec1
SC
357. into the instruction. In most cases src_mask == dst_mask,
358. except in the above special case, where dst_mask would be
359. 0x000000ff, and src_mask would be 0x00000000. *}
326e32d7 360. bfd_vma dst_mask;
e98e6ec1
SC
361.
362. {* When some formats create PC relative instructions, they leave
363. the value of the pc of the place being relocated in the offset
364. slot of the instruction, so that a PC relative relocation can
65cab589 365. be made just by adding in an ordinary offset (e.g., sun3 a.out).
e98e6ec1 366. Some formats leave the displacement part of an instruction
c188b0be 367. empty (e.g., m88k bcs); this flag signals the fact.*}
0cda46cf 368. boolean pcrel_offset;
e98e6ec1 369.
1fb83be6 370.};
985fca12 371
0cda46cf 372*/
985fca12 373
0cda46cf
SC
374/*
375FUNCTION
c188b0be 376 The HOWTO Macro
e98e6ec1 377
0cda46cf
SC
378DESCRIPTION
379 The HOWTO define is horrible and will go away.
380
381
66a277ab 382.#define HOWTO(C, R,S,B, P, BI, O, SF, NAME, INPLACE, MASKSRC, MASKDST, PC) \
0443af31 383. {(unsigned)C,R,S,B, P, BI, O,SF,NAME,INPLACE,MASKSRC,MASKDST,PC}
0cda46cf
SC
384
385DESCRIPTION
386 And will be replaced with the totally magic way. But for the
c188b0be 387 moment, we are compatible, so do it this way.
0cda46cf
SC
388
389
66a277ab 390.#define NEWHOWTO( FUNCTION, NAME,SIZE,REL,IN) HOWTO(0,0,SIZE,0,REL,0,complain_overflow_dont,FUNCTION, NAME,false,0,0,IN)
0cda46cf
SC
391.
392DESCRIPTION
393 Helper routine to turn a symbol into a relocation value.
394
e98e6ec1
SC
395.#define HOWTO_PREPARE(relocation, symbol) \
396. { \
397. if (symbol != (asymbol *)NULL) { \
65cab589 398. if (bfd_is_com_section (symbol->section)) { \
e98e6ec1
SC
399. relocation = 0; \
400. } \
401. else { \
402. relocation = symbol->value; \
403. } \
404. } \
326e32d7 405.}
985fca12
SC
406
407*/
408
4c3721d5
ILT
409/*
410FUNCTION
411 bfd_get_reloc_size
412
413SYNOPSIS
71842815 414 unsigned int bfd_get_reloc_size (reloc_howto_type *);
4c3721d5
ILT
415
416DESCRIPTION
417 For a reloc_howto_type that operates on a fixed number of bytes,
418 this returns the number of bytes operated on.
419 */
420
71842815 421unsigned int
4c3721d5 422bfd_get_reloc_size (howto)
82b1edf7 423 reloc_howto_type *howto;
4c3721d5 424{
326e32d7
ILT
425 switch (howto->size)
426 {
427 case 0: return 1;
428 case 1: return 2;
429 case 2: return 4;
430 case 3: return 0;
431 case 4: return 8;
8612a388 432 case 8: return 16;
326e32d7
ILT
433 case -2: return 4;
434 default: abort ();
435 }
4c3721d5
ILT
436}
437
0cda46cf
SC
438/*
439TYPEDEF
c188b0be 440 arelent_chain
985fca12 441
0cda46cf 442DESCRIPTION
985fca12 443
c188b0be 444 How relocs are tied together in an <<asection>>:
985fca12 445
0cda46cf
SC
446.typedef struct relent_chain {
447. arelent relent;
448. struct relent_chain *next;
449.} arelent_chain;
985fca12
SC
450
451*/
452
453
d707219d
DE
454/*
455FUNCTION
456 bfd_check_overflow
457
458SYNOPSIS
459 bfd_reloc_status_type
460 bfd_check_overflow
461 (enum complain_overflow how,
462 unsigned int bitsize,
463 unsigned int rightshift,
464 bfd_vma relocation);
465
466DESCRIPTION
467 Perform overflow checking on @var{relocation} which has @var{bitsize}
468 significant bits and will be shifted right by @var{rightshift} bits.
469 The result is either of @code{bfd_reloc_ok} or
470 @code{bfd_reloc_overflow}.
471
472*/
473
474bfd_reloc_status_type
475bfd_check_overflow (how, bitsize, rightshift, relocation)
476 enum complain_overflow how;
477 unsigned int bitsize, rightshift;
478 bfd_vma relocation;
479{
480 bfd_vma check;
481 bfd_reloc_status_type flag = bfd_reloc_ok;
482
483 /* Get the value that will be used for the relocation, but
484 starting at bit position zero. */
485 check = relocation >> rightshift;
486
487 switch (how)
488 {
489 case complain_overflow_dont:
490 break;
491
492 case complain_overflow_signed:
493 {
494 /* Assumes two's complement. */
71842815
ILT
495 bfd_signed_vma reloc_signed_max =
496 ((bfd_signed_vma) 1 << (bitsize - 1)) - 1;
d707219d
DE
497 bfd_signed_vma reloc_signed_min = ~reloc_signed_max;
498
499 /* The above right shift is incorrect for a signed value.
500 Fix it up by forcing on the upper bits. */
501 if (rightshift > 0
502 && (bfd_signed_vma) relocation < 0)
503 check |= ((bfd_vma) - 1
504 & ~((bfd_vma) - 1
505 >> rightshift));
506 if ((bfd_signed_vma) check > reloc_signed_max
507 || (bfd_signed_vma) check < reloc_signed_min)
508 flag = bfd_reloc_overflow;
509 }
510 break;
511
512 case complain_overflow_unsigned:
513 {
514 /* Assumes two's complement. This expression avoids
515 overflow if `bitsize' is the number of bits in
516 bfd_vma. */
71842815
ILT
517 bfd_vma reloc_unsigned_max =
518 ((((bfd_vma) 1 << (bitsize - 1)) - 1) << 1) | 1;
d707219d
DE
519
520 if ((bfd_vma) check > reloc_unsigned_max)
521 flag = bfd_reloc_overflow;
522 }
523 break;
524
525 case complain_overflow_bitfield:
526 {
527 /* Assumes two's complement. This expression avoids
528 overflow if `bitsize' is the number of bits in
529 bfd_vma. */
530 bfd_vma reloc_bits = (((1 << (bitsize - 1)) - 1) << 1) | 1;
531
532 if (((bfd_vma) check & ~reloc_bits) != 0
533 && ((bfd_vma) check & ~reloc_bits) != (-1 & ~reloc_bits))
534 {
535 /* The above right shift is incorrect for a signed
536 value. See if turning on the upper bits fixes the
537 overflow. */
538 if (rightshift > 0
539 && (bfd_signed_vma) relocation < 0)
540 {
541 check |= ((bfd_vma) - 1
542 & ~((bfd_vma) - 1
543 >> rightshift));
544 if (((bfd_vma) check & ~reloc_bits) != (-1 & ~reloc_bits))
545 flag = bfd_reloc_overflow;
546 }
547 else
548 flag = bfd_reloc_overflow;
549 }
550 }
551 break;
552
553 default:
554 abort ();
555 }
556
557 return flag;
558}
559
985fca12 560
0cda46cf 561/*
326e32d7 562FUNCTION
0cda46cf
SC
563 bfd_perform_relocation
564
e98e6ec1
SC
565SYNOPSIS
566 bfd_reloc_status_type
567 bfd_perform_relocation
c188b0be 568 (bfd *abfd,
4c3721d5
ILT
569 arelent *reloc_entry,
570 PTR data,
571 asection *input_section,
572 bfd *output_bfd,
573 char **error_message);
e98e6ec1 574
0cda46cf 575DESCRIPTION
4c3721d5
ILT
576 If @var{output_bfd} is supplied to this function, the
577 generated image will be relocatable; the relocations are
578 copied to the output file after they have been changed to
579 reflect the new state of the world. There are two ways of
580 reflecting the results of partial linkage in an output file:
581 by modifying the output data in place, and by modifying the
582 relocation record. Some native formats (e.g., basic a.out and
583 basic coff) have no way of specifying an addend in the
584 relocation type, so the addend has to go in the output data.
585 This is no big deal since in these formats the output data
586 slot will always be big enough for the addend. Complex reloc
587 types with addends were invented to solve just this problem.
588 The @var{error_message} argument is set to an error message if
589 this return @code{bfd_reloc_dangerous}.
0cda46cf 590
985fca12
SC
591*/
592
593
0cda46cf 594bfd_reloc_status_type
4c3721d5
ILT
595bfd_perform_relocation (abfd, reloc_entry, data, input_section, output_bfd,
596 error_message)
597 bfd *abfd;
598 arelent *reloc_entry;
599 PTR data;
600 asection *input_section;
601 bfd *output_bfd;
602 char **error_message;
985fca12
SC
603{
604 bfd_vma relocation;
0cda46cf 605 bfd_reloc_status_type flag = bfd_reloc_ok;
326e32d7 606 bfd_size_type addr = reloc_entry->address;
985fca12 607 bfd_vma output_base = 0;
82b1edf7 608 reloc_howto_type *howto = reloc_entry->howto;
4c3721d5 609 asection *reloc_target_output_section;
985fca12
SC
610 asymbol *symbol;
611
4c3721d5 612 symbol = *(reloc_entry->sym_ptr_ptr);
1fb83be6 613 if (bfd_is_abs_section (symbol->section)
326e32d7 614 && output_bfd != (bfd *) NULL)
58acdbd7
KR
615 {
616 reloc_entry->address += input_section->output_offset;
617 return bfd_reloc_ok;
618 }
619
fb32909a
KR
620 /* If we are not producing relocateable output, return an error if
621 the symbol is not defined. An undefined weak symbol is
622 considered to have a value of zero (SVR4 ABI, p. 4-27). */
1fb83be6 623 if (bfd_is_und_section (symbol->section)
fb32909a
KR
624 && (symbol->flags & BSF_WEAK) == 0
625 && output_bfd == (bfd *) NULL)
5022aea5 626 flag = bfd_reloc_undefined;
985fca12 627
58acdbd7
KR
628 /* If there is a function supplied to handle this relocation type,
629 call it. It'll return `bfd_reloc_continue' if further processing
630 can be done. */
631 if (howto->special_function)
632 {
633 bfd_reloc_status_type cont;
634 cont = howto->special_function (abfd, reloc_entry, symbol, data,
4c3721d5
ILT
635 input_section, output_bfd,
636 error_message);
58acdbd7
KR
637 if (cont != bfd_reloc_continue)
638 return cont;
639 }
985fca12 640
58acdbd7
KR
641 /* Is the address of the relocation really within the section? */
642 if (reloc_entry->address > input_section->_cooked_size)
643 return bfd_reloc_outofrange;
985fca12 644
58acdbd7
KR
645 /* Work out which section the relocation is targetted at and the
646 initial relocation command value. */
647
648 /* Get symbol value. (Common symbols are special.) */
649 if (bfd_is_com_section (symbol->section))
5022aea5 650 relocation = 0;
58acdbd7 651 else
5022aea5 652 relocation = symbol->value;
985fca12 653
985fca12 654
e98e6ec1 655 reloc_target_output_section = symbol->section->output_section;
985fca12 656
58acdbd7 657 /* Convert input-section-relative symbol value to absolute. */
326e32d7 658 if (output_bfd && howto->partial_inplace == false)
5022aea5 659 output_base = 0;
58acdbd7 660 else
5022aea5 661 output_base = reloc_target_output_section->vma;
985fca12 662
65cab589 663 relocation += output_base + symbol->section->output_offset;
985fca12 664
58acdbd7 665 /* Add in supplied addend. */
65cab589 666 relocation += reloc_entry->addend;
985fca12 667
c188b0be
DM
668 /* Here the variable relocation holds the final address of the
669 symbol we are relocating against, plus any addend. */
670
985fca12 671 if (howto->pc_relative == true)
58acdbd7 672 {
c188b0be
DM
673 /* This is a PC relative relocation. We want to set RELOCATION
674 to the distance between the address of the symbol and the
675 location. RELOCATION is already the address of the symbol.
676
677 We start by subtracting the address of the section containing
678 the location.
679
680 If pcrel_offset is set, we must further subtract the position
681 of the location within the section. Some targets arrange for
682 the addend to be the negative of the position of the location
683 within the section; for example, i386-aout does this. For
684 i386-aout, pcrel_offset is false. Some other targets do not
685 include the position of the location; for example, m88kbcs,
686 or ELF. For those targets, pcrel_offset is true.
687
688 If we are producing relocateable output, then we must ensure
689 that this reloc will be correctly computed when the final
690 relocation is done. If pcrel_offset is false we want to wind
691 up with the negative of the location within the section,
692 which means we must adjust the existing addend by the change
693 in the location within the section. If pcrel_offset is true
694 we do not want to adjust the existing addend at all.
695
696 FIXME: This seems logical to me, but for the case of
697 producing relocateable output it is not what the code
698 actually does. I don't want to change it, because it seems
699 far too likely that something will break. */
985fca12 700
326e32d7 701 relocation -=
58acdbd7
KR
702 input_section->output_section->vma + input_section->output_offset;
703
704 if (howto->pcrel_offset == true)
705 relocation -= reloc_entry->address;
5022aea5 706 }
e98e6ec1 707
326e32d7 708 if (output_bfd != (bfd *) NULL)
5022aea5 709 {
326e32d7 710 if (howto->partial_inplace == false)
58acdbd7
KR
711 {
712 /* This is a partial relocation, and we want to apply the relocation
713 to the reloc entry rather than the raw data. Modify the reloc
714 inplace to reflect what we now know. */
715 reloc_entry->addend = relocation;
326e32d7 716 reloc_entry->address += input_section->output_offset;
58acdbd7
KR
717 return flag;
718 }
c26d7d17 719 else
58acdbd7
KR
720 {
721 /* This is a partial relocation, but inplace, so modify the
326e32d7 722 reloc record a bit.
58acdbd7
KR
723
724 If we've relocated with a symbol with a section, change
725 into a ref to the section belonging to the symbol. */
726
727 reloc_entry->address += input_section->output_offset;
728
729 /* WTF?? */
3d51f02f 730 if (abfd->xvec->flavour == bfd_target_coff_flavour
1fb83be6 731 && strcmp (abfd->xvec->name, "aixcoff-rs6000") != 0
50bd50d4 732 && strcmp (abfd->xvec->name, "xcoff-powermac") != 0
1fb83be6
KR
733 && strcmp (abfd->xvec->name, "coff-Intel-little") != 0
734 && strcmp (abfd->xvec->name, "coff-Intel-big") != 0)
58acdbd7 735 {
c188b0be
DM
736#if 1
737 /* For m68k-coff, the addend was being subtracted twice during
738 relocation with -r. Removing the line below this comment
739 fixes that problem; see PR 2953.
740
741However, Ian wrote the following, regarding removing the line below,
742which explains why it is still enabled: --djm
743
744If you put a patch like that into BFD you need to check all the COFF
745linkers. I am fairly certain that patch will break coff-i386 (e.g.,
746SCO); see coff_i386_reloc in coff-i386.c where I worked around the
747problem in a different way. There may very well be a reason that the
748code works as it does.
749
750Hmmm. The first obvious point is that bfd_perform_relocation should
751not have any tests that depend upon the flavour. It's seem like
752entirely the wrong place for such a thing. The second obvious point
753is that the current code ignores the reloc addend when producing
754relocateable output for COFF. That's peculiar. In fact, I really
755have no idea what the point of the line you want to remove is.
756
757A typical COFF reloc subtracts the old value of the symbol and adds in
758the new value to the location in the object file (if it's a pc
759relative reloc it adds the difference between the symbol value and the
760location). When relocating we need to preserve that property.
761
762BFD handles this by setting the addend to the negative of the old
763value of the symbol. Unfortunately it handles common symbols in a
764non-standard way (it doesn't subtract the old value) but that's a
765different story (we can't change it without losing backward
766compatibility with old object files) (coff-i386 does subtract the old
767value, to be compatible with existing coff-i386 targets, like SCO).
768
769So everything works fine when not producing relocateable output. When
770we are producing relocateable output, logically we should do exactly
771what we do when not producing relocateable output. Therefore, your
772patch is correct. In fact, it should probably always just set
773reloc_entry->addend to 0 for all cases, since it is, in fact, going to
774add the value into the object file. This won't hurt the COFF code,
775which doesn't use the addend; I'm not sure what it will do to other
776formats (the thing to check for would be whether any formats both use
777the addend and set partial_inplace).
778
779When I wanted to make coff-i386 produce relocateable output, I ran
780into the problem that you are running into: I wanted to remove that
781line. Rather than risk it, I made the coff-i386 relocs use a special
782function; it's coff_i386_reloc in coff-i386.c. The function
783specifically adds the addend field into the object file, knowing that
784bfd_perform_relocation is not going to. If you remove that line, then
785coff-i386.c will wind up adding the addend field in twice. It's
786trivial to fix; it just needs to be done.
787
788The problem with removing the line is just that it may break some
789working code. With BFD it's hard to be sure of anything. The right
790way to deal with this is simply to build and test at least all the
791supported COFF targets. It should be straightforward if time and disk
792space consuming. For each target:
793 1) build the linker
794 2) generate some executable, and link it using -r (I would
795 probably use paranoia.o and link against newlib/libc.a, which
796 for all the supported targets would be available in
797 /usr/cygnus/progressive/H-host/target/lib/libc.a).
798 3) make the change to reloc.c
799 4) rebuild the linker
800 5) repeat step 2
801 6) if the resulting object files are the same, you have at least
802 made it no worse
803 7) if they are different you have to figure out which version is
804 right
805*/
58acdbd7 806 relocation -= reloc_entry->addend;
c188b0be 807#endif
58acdbd7
KR
808 reloc_entry->addend = 0;
809 }
810 else
811 {
812 reloc_entry->addend = relocation;
813 }
814 }
985fca12 815 }
326e32d7 816 else
58acdbd7
KR
817 {
818 reloc_entry->addend = 0;
819 }
985fca12 820
66a277ab
ILT
821 /* FIXME: This overflow checking is incomplete, because the value
822 might have overflowed before we get here. For a correct check we
823 need to compute the value in a size larger than bitsize, but we
824 can't reasonably do that for a reloc the same size as a host
a49880c8
KR
825 machine word.
826 FIXME: We should also do overflow checking on the result after
827 adding in the value contained in the object file. */
e9f03cd4
ILT
828 if (howto->complain_on_overflow != complain_overflow_dont
829 && flag == bfd_reloc_ok)
d707219d
DE
830 flag = bfd_check_overflow (howto->complain_on_overflow, howto->bitsize,
831 howto->rightshift, relocation);
326e32d7
ILT
832
833 /*
985fca12
SC
834 Either we are relocating all the way, or we don't want to apply
835 the relocation to the reloc entry (probably because there isn't
836 any room in the output format to describe addends to relocs)
837 */
c188b0be
DM
838
839 /* The cast to bfd_vma avoids a bug in the Alpha OSF/1 C compiler
840 (OSF version 1.3, compiler version 3.11). It miscompiles the
841 following program:
842
843 struct str
844 {
845 unsigned int i0;
846 } s = { 0 };
847
848 int
849 main ()
850 {
851 unsigned long x;
852
853 x = 0x100000000;
854 x <<= (unsigned long) s.i0;
855 if (x == 0)
856 printf ("failed\n");
857 else
858 printf ("succeeded (%lx)\n", x);
859 }
860 */
861
862 relocation >>= (bfd_vma) howto->rightshift;
985fca12
SC
863
864 /* Shift everything up to where it's going to be used */
326e32d7 865
c188b0be 866 relocation <<= (bfd_vma) howto->bitpos;
985fca12
SC
867
868 /* Wait for the day when all have the mask in them */
869
870 /* What we do:
871 i instruction to be left alone
872 o offset within instruction
873 r relocation offset to apply
874 S src mask
875 D dst mask
876 N ~dst mask
877 A part 1
878 B part 2
879 R result
326e32d7 880
985fca12
SC
881 Do this:
882 i i i i i o o o o o from bfd_get<size>
883 and S S S S S to get the size offset we want
884 + r r r r r r r r r r to get the final value to place
885 and D D D D D to chop to right size
886 -----------------------
326e32d7 887 A A A A A
985fca12
SC
888 And this:
889 ... i i i i i o o o o o from bfd_get<size>
890 and N N N N N get instruction
891 -----------------------
892 ... B B B B B
326e32d7
ILT
893
894 And then:
895 B B B B B
896 or A A A A A
985fca12
SC
897 -----------------------
898 R R R R R R R R R R put into bfd_put<size>
899 */
900
901#define DOIT(x) \
902 x = ( (x & ~howto->dst_mask) | (((x & howto->src_mask) + relocation) & howto->dst_mask))
903
326e32d7
ILT
904 switch (howto->size)
905 {
906 case 0:
907 {
908 char x = bfd_get_8 (abfd, (char *) data + addr);
909 DOIT (x);
910 bfd_put_8 (abfd, x, (unsigned char *) data + addr);
911 }
912 break;
913
914 case 1:
a5a43df1
ILT
915 {
916 short x = bfd_get_16 (abfd, (bfd_byte *) data + addr);
917 DOIT (x);
918 bfd_put_16 (abfd, x, (unsigned char *) data + addr);
919 }
326e32d7
ILT
920 break;
921 case 2:
a5a43df1
ILT
922 {
923 long x = bfd_get_32 (abfd, (bfd_byte *) data + addr);
924 DOIT (x);
925 bfd_put_32 (abfd, x, (bfd_byte *) data + addr);
926 }
326e32d7
ILT
927 break;
928 case -2:
929 {
930 long x = bfd_get_32 (abfd, (bfd_byte *) data + addr);
931 relocation = -relocation;
932 DOIT (x);
933 bfd_put_32 (abfd, x, (bfd_byte *) data + addr);
934 }
935 break;
936
e9f03cd4
ILT
937 case -1:
938 {
939 long x = bfd_get_16 (abfd, (bfd_byte *) data + addr);
940 relocation = -relocation;
941 DOIT (x);
942 bfd_put_16 (abfd, x, (bfd_byte *) data + addr);
943 }
944 break;
945
326e32d7
ILT
946 case 3:
947 /* Do nothing */
948 break;
949
950 case 4:
109a640b 951#ifdef BFD64
a5a43df1
ILT
952 {
953 bfd_vma x = bfd_get_64 (abfd, (bfd_byte *) data + addr);
954 DOIT (x);
955 bfd_put_64 (abfd, x, (bfd_byte *) data + addr);
956 }
109a640b 957#else
326e32d7 958 abort ();
109a640b 959#endif
326e32d7
ILT
960 break;
961 default:
962 return bfd_reloc_other;
963 }
985fca12
SC
964
965 return flag;
966}
c618de01 967
094e8be3
ILT
968/*
969FUNCTION
970 bfd_install_relocation
971
972SYNOPSIS
973 bfd_reloc_status_type
974 bfd_install_relocation
975 (bfd *abfd,
976 arelent *reloc_entry,
977 PTR data, bfd_vma data_start,
978 asection *input_section,
979 char **error_message);
980
981DESCRIPTION
982 This looks remarkably like <<bfd_perform_relocation>>, except it
983 does not expect that the section contents have been filled in.
984 I.e., it's suitable for use when creating, rather than applying
985 a relocation.
986
987 For now, this function should be considered reserved for the
988 assembler.
989
990*/
991
992
993bfd_reloc_status_type
994bfd_install_relocation (abfd, reloc_entry, data_start, data_start_offset,
995 input_section, error_message)
996 bfd *abfd;
997 arelent *reloc_entry;
998 PTR data_start;
999 bfd_vma data_start_offset;
1000 asection *input_section;
1001 char **error_message;
1002{
1003 bfd_vma relocation;
1004 bfd_reloc_status_type flag = bfd_reloc_ok;
1005 bfd_size_type addr = reloc_entry->address;
1006 bfd_vma output_base = 0;
82b1edf7 1007 reloc_howto_type *howto = reloc_entry->howto;
094e8be3
ILT
1008 asection *reloc_target_output_section;
1009 asymbol *symbol;
fca2b81b 1010 bfd_byte *data;
094e8be3
ILT
1011
1012 symbol = *(reloc_entry->sym_ptr_ptr);
1013 if (bfd_is_abs_section (symbol->section))
1014 {
1015 reloc_entry->address += input_section->output_offset;
1016 return bfd_reloc_ok;
1017 }
1018
1019 /* If there is a function supplied to handle this relocation type,
1020 call it. It'll return `bfd_reloc_continue' if further processing
1021 can be done. */
1022 if (howto->special_function)
1023 {
1024 bfd_reloc_status_type cont;
def31039 1025
094e8be3
ILT
1026 /* XXX - The special_function calls haven't been fixed up to deal
1027 with creating new relocations and section contents. */
1028 cont = howto->special_function (abfd, reloc_entry, symbol,
1029 /* XXX - Non-portable! */
1030 ((bfd_byte *) data_start
1031 - data_start_offset),
1032 input_section, abfd, error_message);
1033 if (cont != bfd_reloc_continue)
1034 return cont;
1035 }
1036
1037 /* Is the address of the relocation really within the section? */
1038 if (reloc_entry->address > input_section->_cooked_size)
1039 return bfd_reloc_outofrange;
1040
1041 /* Work out which section the relocation is targetted at and the
1042 initial relocation command value. */
1043
1044 /* Get symbol value. (Common symbols are special.) */
1045 if (bfd_is_com_section (symbol->section))
1046 relocation = 0;
1047 else
1048 relocation = symbol->value;
1049
094e8be3
ILT
1050 reloc_target_output_section = symbol->section->output_section;
1051
1052 /* Convert input-section-relative symbol value to absolute. */
1053 if (howto->partial_inplace == false)
1054 output_base = 0;
1055 else
1056 output_base = reloc_target_output_section->vma;
1057
1058 relocation += output_base + symbol->section->output_offset;
1059
1060 /* Add in supplied addend. */
1061 relocation += reloc_entry->addend;
1062
1063 /* Here the variable relocation holds the final address of the
1064 symbol we are relocating against, plus any addend. */
1065
1066 if (howto->pc_relative == true)
1067 {
1068 /* This is a PC relative relocation. We want to set RELOCATION
1069 to the distance between the address of the symbol and the
1070 location. RELOCATION is already the address of the symbol.
1071
1072 We start by subtracting the address of the section containing
1073 the location.
1074
1075 If pcrel_offset is set, we must further subtract the position
1076 of the location within the section. Some targets arrange for
1077 the addend to be the negative of the position of the location
1078 within the section; for example, i386-aout does this. For
1079 i386-aout, pcrel_offset is false. Some other targets do not
1080 include the position of the location; for example, m88kbcs,
1081 or ELF. For those targets, pcrel_offset is true.
1082
1083 If we are producing relocateable output, then we must ensure
1084 that this reloc will be correctly computed when the final
1085 relocation is done. If pcrel_offset is false we want to wind
1086 up with the negative of the location within the section,
1087 which means we must adjust the existing addend by the change
1088 in the location within the section. If pcrel_offset is true
1089 we do not want to adjust the existing addend at all.
1090
1091 FIXME: This seems logical to me, but for the case of
1092 producing relocateable output it is not what the code
1093 actually does. I don't want to change it, because it seems
1094 far too likely that something will break. */
1095
1096 relocation -=
1097 input_section->output_section->vma + input_section->output_offset;
1098
1099 if (howto->pcrel_offset == true && howto->partial_inplace == true)
1100 relocation -= reloc_entry->address;
1101 }
1102
1103 if (howto->partial_inplace == false)
1104 {
1105 /* This is a partial relocation, and we want to apply the relocation
1106 to the reloc entry rather than the raw data. Modify the reloc
1107 inplace to reflect what we now know. */
1108 reloc_entry->addend = relocation;
1109 reloc_entry->address += input_section->output_offset;
1110 return flag;
1111 }
1112 else
1113 {
1114 /* This is a partial relocation, but inplace, so modify the
1115 reloc record a bit.
6b31fd3a 1116
094e8be3
ILT
1117 If we've relocated with a symbol with a section, change
1118 into a ref to the section belonging to the symbol. */
6b31fd3a 1119
094e8be3 1120 reloc_entry->address += input_section->output_offset;
6b31fd3a 1121
094e8be3
ILT
1122 /* WTF?? */
1123 if (abfd->xvec->flavour == bfd_target_coff_flavour
1124 && strcmp (abfd->xvec->name, "aixcoff-rs6000") != 0
50bd50d4 1125 && strcmp (abfd->xvec->name, "xcoff-powermac") != 0
094e8be3
ILT
1126 && strcmp (abfd->xvec->name, "coff-Intel-little") != 0
1127 && strcmp (abfd->xvec->name, "coff-Intel-big") != 0)
1128 {
1129#if 1
1130/* For m68k-coff, the addend was being subtracted twice during
1131 relocation with -r. Removing the line below this comment
1132 fixes that problem; see PR 2953.
6b31fd3a 1133
094e8be3
ILT
1134However, Ian wrote the following, regarding removing the line below,
1135which explains why it is still enabled: --djm
6b31fd3a 1136
094e8be3
ILT
1137If you put a patch like that into BFD you need to check all the COFF
1138linkers. I am fairly certain that patch will break coff-i386 (e.g.,
1139SCO); see coff_i386_reloc in coff-i386.c where I worked around the
1140problem in a different way. There may very well be a reason that the
1141code works as it does.
1142
1143Hmmm. The first obvious point is that bfd_install_relocation should
1144not have any tests that depend upon the flavour. It's seem like
1145entirely the wrong place for such a thing. The second obvious point
1146is that the current code ignores the reloc addend when producing
1147relocateable output for COFF. That's peculiar. In fact, I really
1148have no idea what the point of the line you want to remove is.
1149
1150A typical COFF reloc subtracts the old value of the symbol and adds in
1151the new value to the location in the object file (if it's a pc
1152relative reloc it adds the difference between the symbol value and the
1153location). When relocating we need to preserve that property.
1154
1155BFD handles this by setting the addend to the negative of the old
1156value of the symbol. Unfortunately it handles common symbols in a
1157non-standard way (it doesn't subtract the old value) but that's a
1158different story (we can't change it without losing backward
1159compatibility with old object files) (coff-i386 does subtract the old
1160value, to be compatible with existing coff-i386 targets, like SCO).
1161
1162So everything works fine when not producing relocateable output. When
1163we are producing relocateable output, logically we should do exactly
1164what we do when not producing relocateable output. Therefore, your
1165patch is correct. In fact, it should probably always just set
1166reloc_entry->addend to 0 for all cases, since it is, in fact, going to
1167add the value into the object file. This won't hurt the COFF code,
1168which doesn't use the addend; I'm not sure what it will do to other
1169formats (the thing to check for would be whether any formats both use
1170the addend and set partial_inplace).
1171
1172When I wanted to make coff-i386 produce relocateable output, I ran
1173into the problem that you are running into: I wanted to remove that
1174line. Rather than risk it, I made the coff-i386 relocs use a special
1175function; it's coff_i386_reloc in coff-i386.c. The function
1176specifically adds the addend field into the object file, knowing that
1177bfd_install_relocation is not going to. If you remove that line, then
1178coff-i386.c will wind up adding the addend field in twice. It's
1179trivial to fix; it just needs to be done.
1180
1181The problem with removing the line is just that it may break some
1182working code. With BFD it's hard to be sure of anything. The right
1183way to deal with this is simply to build and test at least all the
1184supported COFF targets. It should be straightforward if time and disk
1185space consuming. For each target:
1186 1) build the linker
1187 2) generate some executable, and link it using -r (I would
1188 probably use paranoia.o and link against newlib/libc.a, which
1189 for all the supported targets would be available in
1190 /usr/cygnus/progressive/H-host/target/lib/libc.a).
1191 3) make the change to reloc.c
1192 4) rebuild the linker
1193 5) repeat step 2
1194 6) if the resulting object files are the same, you have at least
1195 made it no worse
1196 7) if they are different you have to figure out which version is
1197 right
1198*/
1199 relocation -= reloc_entry->addend;
1200#endif
1201 reloc_entry->addend = 0;
1202 }
1203 else
1204 {
1205 reloc_entry->addend = relocation;
1206 }
1207 }
1208
1209 /* FIXME: This overflow checking is incomplete, because the value
1210 might have overflowed before we get here. For a correct check we
1211 need to compute the value in a size larger than bitsize, but we
1212 can't reasonably do that for a reloc the same size as a host
1213 machine word.
094e8be3
ILT
1214 FIXME: We should also do overflow checking on the result after
1215 adding in the value contained in the object file. */
1216 if (howto->complain_on_overflow != complain_overflow_dont)
d707219d
DE
1217 flag = bfd_check_overflow (howto->complain_on_overflow, howto->bitsize,
1218 howto->rightshift, relocation);
094e8be3
ILT
1219
1220 /*
1221 Either we are relocating all the way, or we don't want to apply
1222 the relocation to the reloc entry (probably because there isn't
1223 any room in the output format to describe addends to relocs)
1224 */
1225
1226 /* The cast to bfd_vma avoids a bug in the Alpha OSF/1 C compiler
1227 (OSF version 1.3, compiler version 3.11). It miscompiles the
1228 following program:
1229
1230 struct str
1231 {
1232 unsigned int i0;
1233 } s = { 0 };
1234
1235 int
1236 main ()
1237 {
1238 unsigned long x;
1239
1240 x = 0x100000000;
1241 x <<= (unsigned long) s.i0;
1242 if (x == 0)
1243 printf ("failed\n");
1244 else
1245 printf ("succeeded (%lx)\n", x);
1246 }
1247 */
1248
1249 relocation >>= (bfd_vma) howto->rightshift;
1250
1251 /* Shift everything up to where it's going to be used */
1252
1253 relocation <<= (bfd_vma) howto->bitpos;
1254
1255 /* Wait for the day when all have the mask in them */
1256
1257 /* What we do:
1258 i instruction to be left alone
1259 o offset within instruction
1260 r relocation offset to apply
1261 S src mask
1262 D dst mask
1263 N ~dst mask
1264 A part 1
1265 B part 2
1266 R result
1267
1268 Do this:
1269 i i i i i o o o o o from bfd_get<size>
1270 and S S S S S to get the size offset we want
1271 + r r r r r r r r r r to get the final value to place
1272 and D D D D D to chop to right size
1273 -----------------------
1274 A A A A A
1275 And this:
1276 ... i i i i i o o o o o from bfd_get<size>
1277 and N N N N N get instruction
1278 -----------------------
1279 ... B B B B B
1280
1281 And then:
1282 B B B B B
1283 or A A A A A
1284 -----------------------
1285 R R R R R R R R R R put into bfd_put<size>
1286 */
1287
1288#define DOIT(x) \
1289 x = ( (x & ~howto->dst_mask) | (((x & howto->src_mask) + relocation) & howto->dst_mask))
1290
1291 data = (bfd_byte *) data_start + (addr - data_start_offset);
1292
1293 switch (howto->size)
1294 {
1295 case 0:
1296 {
1297 char x = bfd_get_8 (abfd, (char *) data);
1298 DOIT (x);
1299 bfd_put_8 (abfd, x, (unsigned char *) data);
1300 }
1301 break;
1302
1303 case 1:
a5a43df1
ILT
1304 {
1305 short x = bfd_get_16 (abfd, (bfd_byte *) data);
1306 DOIT (x);
1307 bfd_put_16 (abfd, x, (unsigned char *) data);
1308 }
094e8be3
ILT
1309 break;
1310 case 2:
a5a43df1
ILT
1311 {
1312 long x = bfd_get_32 (abfd, (bfd_byte *) data);
1313 DOIT (x);
1314 bfd_put_32 (abfd, x, (bfd_byte *) data);
1315 }
094e8be3
ILT
1316 break;
1317 case -2:
1318 {
1319 long x = bfd_get_32 (abfd, (bfd_byte *) data);
1320 relocation = -relocation;
1321 DOIT (x);
1322 bfd_put_32 (abfd, x, (bfd_byte *) data);
1323 }
1324 break;
1325
1326 case 3:
1327 /* Do nothing */
1328 break;
1329
1330 case 4:
a5a43df1
ILT
1331 {
1332 bfd_vma x = bfd_get_64 (abfd, (bfd_byte *) data);
1333 DOIT (x);
1334 bfd_put_64 (abfd, x, (bfd_byte *) data);
1335 }
094e8be3
ILT
1336 break;
1337 default:
1338 return bfd_reloc_other;
1339 }
1340
1341 return flag;
1342}
1343
4c3721d5
ILT
1344/* This relocation routine is used by some of the backend linkers.
1345 They do not construct asymbol or arelent structures, so there is no
1346 reason for them to use bfd_perform_relocation. Also,
1347 bfd_perform_relocation is so hacked up it is easier to write a new
1348 function than to try to deal with it.
1349
f66ce2ff
ILT
1350 This routine does a final relocation. Whether it is useful for a
1351 relocateable link depends upon how the object format defines
1352 relocations.
4c3721d5
ILT
1353
1354 FIXME: This routine ignores any special_function in the HOWTO,
1355 since the existing special_function values have been written for
1356 bfd_perform_relocation.
1357
1358 HOWTO is the reloc howto information.
1359 INPUT_BFD is the BFD which the reloc applies to.
1360 INPUT_SECTION is the section which the reloc applies to.
1361 CONTENTS is the contents of the section.
1362 ADDRESS is the address of the reloc within INPUT_SECTION.
1363 VALUE is the value of the symbol the reloc refers to.
1364 ADDEND is the addend of the reloc. */
1365
1366bfd_reloc_status_type
1367_bfd_final_link_relocate (howto, input_bfd, input_section, contents, address,
326e32d7 1368 value, addend)
82b1edf7 1369 reloc_howto_type *howto;
4c3721d5
ILT
1370 bfd *input_bfd;
1371 asection *input_section;
1372 bfd_byte *contents;
1373 bfd_vma address;
1374 bfd_vma value;
1375 bfd_vma addend;
1376{
1377 bfd_vma relocation;
c618de01 1378
4c3721d5 1379 /* Sanity check the address. */
50bd50d4 1380 if (address > input_section->_raw_size)
4c3721d5
ILT
1381 return bfd_reloc_outofrange;
1382
1383 /* This function assumes that we are dealing with a basic relocation
1384 against a symbol. We want to compute the value of the symbol to
1385 relocate to. This is just VALUE, the value of the symbol, plus
1386 ADDEND, any addend associated with the reloc. */
1387 relocation = value + addend;
1388
1389 /* If the relocation is PC relative, we want to set RELOCATION to
1390 the distance between the symbol (currently in RELOCATION) and the
1391 location we are relocating. Some targets (e.g., i386-aout)
1392 arrange for the contents of the section to be the negative of the
1393 offset of the location within the section; for such targets
1394 pcrel_offset is false. Other targets (e.g., m88kbcs or ELF)
1395 simply leave the contents of the section as zero; for such
1396 targets pcrel_offset is true. If pcrel_offset is false we do not
1397 need to subtract out the offset of the location within the
1398 section (which is just ADDRESS). */
1399 if (howto->pc_relative)
1400 {
1401 relocation -= (input_section->output_section->vma
1402 + input_section->output_offset);
1403 if (howto->pcrel_offset)
1404 relocation -= address;
1405 }
326e32d7 1406
4c3721d5
ILT
1407 return _bfd_relocate_contents (howto, input_bfd, relocation,
1408 contents + address);
1409}
1410
1411/* Relocate a given location using a given value and howto. */
1412
1413bfd_reloc_status_type
1414_bfd_relocate_contents (howto, input_bfd, relocation, location)
82b1edf7 1415 reloc_howto_type *howto;
4c3721d5
ILT
1416 bfd *input_bfd;
1417 bfd_vma relocation;
1418 bfd_byte *location;
1419{
1420 int size;
1421 bfd_vma x;
1422 boolean overflow;
1423
1424 /* If the size is negative, negate RELOCATION. This isn't very
1425 general. */
1426 if (howto->size < 0)
326e32d7 1427 relocation = -relocation;
4c3721d5
ILT
1428
1429 /* Get the value we are going to relocate. */
1430 size = bfd_get_reloc_size (howto);
1431 switch (size)
1432 {
1433 default:
1434 case 0:
1435 abort ();
1436 case 1:
1437 x = bfd_get_8 (input_bfd, location);
1438 break;
1439 case 2:
1440 x = bfd_get_16 (input_bfd, location);
1441 break;
1442 case 4:
1443 x = bfd_get_32 (input_bfd, location);
1444 break;
1445 case 8:
1446#ifdef BFD64
1447 x = bfd_get_64 (input_bfd, location);
1448#else
1449 abort ();
1450#endif
1451 break;
1452 }
1453
1454 /* Check for overflow. FIXME: We may drop bits during the addition
1455 which we don't check for. We must either check at every single
1456 operation, which would be tedious, or we must do the computations
1457 in a type larger than bfd_vma, which would be inefficient. */
1458 overflow = false;
1459 if (howto->complain_on_overflow != complain_overflow_dont)
1460 {
1461 bfd_vma check;
1462 bfd_signed_vma signed_check;
1463 bfd_vma add;
563eb766 1464 bfd_signed_vma signed_add;
4c3721d5
ILT
1465
1466 if (howto->rightshift == 0)
1467 {
1468 check = relocation;
1469 signed_check = (bfd_signed_vma) relocation;
1470 }
1471 else
1472 {
1473 /* Drop unwanted bits from the value we are relocating to. */
1474 check = relocation >> howto->rightshift;
1475
1476 /* If this is a signed value, the rightshift just dropped
1477 leading 1 bits (assuming twos complement). */
1478 if ((bfd_signed_vma) relocation >= 0)
1479 signed_check = check;
1480 else
1481 signed_check = (check
326e32d7
ILT
1482 | ((bfd_vma) - 1
1483 & ~((bfd_vma) - 1 >> howto->rightshift)));
4c3721d5
ILT
1484 }
1485
3d51f02f 1486 /* Get the value from the object file. */
4c3721d5 1487 add = x & howto->src_mask;
3d51f02f
ILT
1488
1489 /* Get the value from the object file with an appropriate sign.
1490 The expression involving howto->src_mask isolates the upper
1491 bit of src_mask. If that bit is set in the value we are
1492 adding, it is negative, and we subtract out that number times
1493 two. If src_mask includes the highest possible bit, then we
1494 can not get the upper bit, but that does not matter since
1495 signed_add needs no adjustment to become negative in that
1496 case. */
1497 signed_add = add;
326e32d7
ILT
1498 if ((add & (((~howto->src_mask) >> 1) & howto->src_mask)) != 0)
1499 signed_add -= (((~howto->src_mask) >> 1) & howto->src_mask) << 1;
3d51f02f
ILT
1500
1501 /* Add the value from the object file, shifted so that it is a
1502 straight number. */
4c3721d5
ILT
1503 if (howto->bitpos == 0)
1504 {
1505 check += add;
563eb766 1506 signed_check += signed_add;
4c3721d5
ILT
1507 }
1508 else
1509 {
563eb766 1510 check += add >> howto->bitpos;
3d51f02f
ILT
1511
1512 /* For the signed case we use ADD, rather than SIGNED_ADD,
1513 to avoid warnings from SVR4 cc. This is OK since we
1514 explictly handle the sign bits. */
563eb766 1515 if (signed_add >= 0)
3d51f02f 1516 signed_check += add >> howto->bitpos;
563eb766 1517 else
3d51f02f 1518 signed_check += ((add >> howto->bitpos)
326e32d7
ILT
1519 | ((bfd_vma) - 1
1520 & ~((bfd_vma) - 1 >> howto->bitpos)));
4c3721d5
ILT
1521 }
1522
1523 switch (howto->complain_on_overflow)
1524 {
1525 case complain_overflow_signed:
1526 {
1527 /* Assumes two's complement. */
71842815
ILT
1528 bfd_signed_vma reloc_signed_max =
1529 ((bfd_signed_vma) 1 << (howto->bitsize - 1)) - 1;
326e32d7 1530 bfd_signed_vma reloc_signed_min = ~reloc_signed_max;
4c3721d5
ILT
1531
1532 if (signed_check > reloc_signed_max
1533 || signed_check < reloc_signed_min)
1534 overflow = true;
1535 }
1536 break;
1537 case complain_overflow_unsigned:
1538 {
1539 /* Assumes two's complement. This expression avoids
1540 overflow if howto->bitsize is the number of bits in
1541 bfd_vma. */
1542 bfd_vma reloc_unsigned_max =
71842815 1543 ((((bfd_vma) 1 << (howto->bitsize - 1)) - 1) << 1) | 1;
4c3721d5
ILT
1544
1545 if (check > reloc_unsigned_max)
1546 overflow = true;
1547 }
1548 break;
1549 case complain_overflow_bitfield:
1550 {
1551 /* Assumes two's complement. This expression avoids
1552 overflow if howto->bitsize is the number of bits in
1553 bfd_vma. */
1554 bfd_vma reloc_bits = (((1 << (howto->bitsize - 1)) - 1) << 1) | 1;
1555
326e32d7
ILT
1556 if ((check & ~reloc_bits) != 0
1557 && (((bfd_vma) signed_check & ~reloc_bits)
1558 != (-1 & ~reloc_bits)))
4c3721d5
ILT
1559 overflow = true;
1560 }
1561 break;
1562 default:
1563 abort ();
1564 }
1565 }
1566
1567 /* Put RELOCATION in the right bits. */
1568 relocation >>= (bfd_vma) howto->rightshift;
1569 relocation <<= (bfd_vma) howto->bitpos;
1570
1571 /* Add RELOCATION to the right bits of X. */
326e32d7 1572 x = ((x & ~howto->dst_mask)
4c3721d5
ILT
1573 | (((x & howto->src_mask) + relocation) & howto->dst_mask));
1574
1575 /* Put the relocated value back in the object file. */
1576 switch (size)
1577 {
1578 default:
1579 case 0:
1580 abort ();
1581 case 1:
1582 bfd_put_8 (input_bfd, x, location);
1583 break;
1584 case 2:
1585 bfd_put_16 (input_bfd, x, location);
1586 break;
1587 case 4:
1588 bfd_put_32 (input_bfd, x, location);
1589 break;
1590 case 8:
1591#ifdef BFD64
1592 bfd_put_64 (input_bfd, x, location);
1593#else
1594 abort ();
1595#endif
1596 break;
1597 }
1598
1599 return overflow ? bfd_reloc_overflow : bfd_reloc_ok;
1600}
2cf44d7b 1601
0cda46cf 1602/*
c26d7d17 1603DOCDD
e98e6ec1
SC
1604INODE
1605 howto manager, , typedef arelent, Relocations
1606
0cda46cf 1607SECTION
326e32d7 1608 The howto manager
2cf44d7b 1609
0cda46cf
SC
1610 When an application wants to create a relocation, but doesn't
1611 know what the target machine might call it, it can find out by
1612 using this bit of code.
2cf44d7b 1613
0cda46cf 1614*/
2cf44d7b 1615
0cda46cf
SC
1616/*
1617TYPEDEF
1618 bfd_reloc_code_type
2cf44d7b 1619
0cda46cf 1620DESCRIPTION
fb32909a
KR
1621 The insides of a reloc code. The idea is that, eventually, there
1622 will be one enumerator for every type of relocation we ever do.
1623 Pass one of these values to <<bfd_reloc_type_lookup>>, and it'll
1624 return a howto pointer.
1625
1626 This does mean that the application must determine the correct
1627 enumerator value; you can't get a howto pointer from a random set
1628 of attributes.
0cda46cf 1629
0443af31
KR
1630SENUM
1631 bfd_reloc_code_real
1632
1633ENUM
1634 BFD_RELOC_64
1635ENUMX
1636 BFD_RELOC_32
1637ENUMX
1638 BFD_RELOC_26
1d5c6cfd
DE
1639ENUMX
1640 BFD_RELOC_24
0443af31
KR
1641ENUMX
1642 BFD_RELOC_16
1643ENUMX
1644 BFD_RELOC_14
1645ENUMX
1646 BFD_RELOC_8
1647ENUMDOC
1648 Basic absolute relocations of N bits.
1649
1650ENUM
1651 BFD_RELOC_64_PCREL
1652ENUMX
1653 BFD_RELOC_32_PCREL
1654ENUMX
1655 BFD_RELOC_24_PCREL
1656ENUMX
1657 BFD_RELOC_16_PCREL
fca2b81b
KR
1658ENUMX
1659 BFD_RELOC_12_PCREL
0443af31
KR
1660ENUMX
1661 BFD_RELOC_8_PCREL
1662ENUMDOC
1663 PC-relative relocations. Sometimes these are relative to the address
1664of the relocation itself; sometimes they are relative to the start of
1665the section containing the relocation. It depends on the specific target.
1666
1667The 24-bit relocation is used in some Intel 960 configurations.
1668
e9f03cd4
ILT
1669ENUM
1670 BFD_RELOC_32_GOT_PCREL
1671ENUMX
1672 BFD_RELOC_16_GOT_PCREL
1673ENUMX
1674 BFD_RELOC_8_GOT_PCREL
1675ENUMX
1676 BFD_RELOC_32_GOTOFF
1677ENUMX
1678 BFD_RELOC_16_GOTOFF
1679ENUMX
1680 BFD_RELOC_LO16_GOTOFF
1681ENUMX
1682 BFD_RELOC_HI16_GOTOFF
1683ENUMX
1684 BFD_RELOC_HI16_S_GOTOFF
1685ENUMX
1686 BFD_RELOC_8_GOTOFF
1687ENUMX
1688 BFD_RELOC_32_PLT_PCREL
1689ENUMX
1690 BFD_RELOC_24_PLT_PCREL
1691ENUMX
1692 BFD_RELOC_16_PLT_PCREL
1693ENUMX
1694 BFD_RELOC_8_PLT_PCREL
1695ENUMX
1696 BFD_RELOC_32_PLTOFF
1697ENUMX
1698 BFD_RELOC_16_PLTOFF
1699ENUMX
1700 BFD_RELOC_LO16_PLTOFF
1701ENUMX
1702 BFD_RELOC_HI16_PLTOFF
1703ENUMX
1704 BFD_RELOC_HI16_S_PLTOFF
1705ENUMX
1706 BFD_RELOC_8_PLTOFF
1707ENUMDOC
1708 For ELF.
1709
1710ENUM
1711 BFD_RELOC_68K_GLOB_DAT
1712ENUMX
1713 BFD_RELOC_68K_JMP_SLOT
1714ENUMX
1715 BFD_RELOC_68K_RELATIVE
1716ENUMDOC
1717 Relocations used by 68K ELF.
1718
0443af31
KR
1719ENUM
1720 BFD_RELOC_32_BASEREL
1721ENUMX
1722 BFD_RELOC_16_BASEREL
e9f03cd4
ILT
1723ENUMX
1724 BFD_RELOC_LO16_BASEREL
1725ENUMX
1726 BFD_RELOC_HI16_BASEREL
1727ENUMX
1728 BFD_RELOC_HI16_S_BASEREL
0443af31
KR
1729ENUMX
1730 BFD_RELOC_8_BASEREL
e9f03cd4
ILT
1731ENUMX
1732 BFD_RELOC_RVA
0443af31
KR
1733ENUMDOC
1734 Linkage-table relative.
1735
1736ENUM
1737 BFD_RELOC_8_FFnn
1738ENUMDOC
1739 Absolute 8-bit relocation, but used to form an address like 0xFFnn.
1740
1741ENUM
1742 BFD_RELOC_32_PCREL_S2
1743ENUMX
1744 BFD_RELOC_16_PCREL_S2
1745ENUMX
1746 BFD_RELOC_23_PCREL_S2
1747ENUMDOC
fca2b81b
KR
1748 These PC-relative relocations are stored as word displacements --
1749i.e., byte displacements shifted right two bits. The 30-bit word
1750displacement (<<32_PCREL_S2>> -- 32 bits, shifted 2) is used on the
1751SPARC. (SPARC tools generally refer to this as <<WDISP30>>.) The
1752signed 16-bit displacement is used on the MIPS, and the 23-bit
1753displacement is used on the Alpha.
0443af31
KR
1754
1755ENUM
1756 BFD_RELOC_HI22
1757ENUMX
1758 BFD_RELOC_LO10
1759ENUMDOC
1760 High 22 bits and low 10 bits of 32-bit value, placed into lower bits of
1761the target word. These are used on the SPARC.
1762
1763ENUM
1764 BFD_RELOC_GPREL16
1765ENUMX
1766 BFD_RELOC_GPREL32
1767ENUMDOC
1768 For systems that allocate a Global Pointer register, these are
1769displacements off that register. These relocation types are
1770handled specially, because the value the register will have is
1771decided relatively late.
1772
1773
1774ENUM
1775 BFD_RELOC_I960_CALLJ
1776ENUMDOC
1777 Reloc types used for i960/b.out.
1778
1779ENUM
1780 BFD_RELOC_NONE
1781ENUMX
1782 BFD_RELOC_SPARC_WDISP22
1783ENUMX
1784 BFD_RELOC_SPARC22
1785ENUMX
1786 BFD_RELOC_SPARC13
1787ENUMX
1788 BFD_RELOC_SPARC_GOT10
1789ENUMX
1790 BFD_RELOC_SPARC_GOT13
1791ENUMX
1792 BFD_RELOC_SPARC_GOT22
1793ENUMX
1794 BFD_RELOC_SPARC_PC10
1795ENUMX
1796 BFD_RELOC_SPARC_PC22
1797ENUMX
1798 BFD_RELOC_SPARC_WPLT30
1799ENUMX
1800 BFD_RELOC_SPARC_COPY
1801ENUMX
1802 BFD_RELOC_SPARC_GLOB_DAT
1803ENUMX
1804 BFD_RELOC_SPARC_JMP_SLOT
1805ENUMX
1806 BFD_RELOC_SPARC_RELATIVE
1807ENUMX
1808 BFD_RELOC_SPARC_UA32
1809ENUMDOC
1810 SPARC ELF relocations. There is probably some overlap with other
1811 relocation types already defined.
1812
1813ENUM
1814 BFD_RELOC_SPARC_BASE13
1815ENUMX
1816 BFD_RELOC_SPARC_BASE22
1817ENUMDOC
1818 I think these are specific to SPARC a.out (e.g., Sun 4).
1819
1820ENUMEQ
1821 BFD_RELOC_SPARC_64
1822 BFD_RELOC_64
1823ENUMX
1824 BFD_RELOC_SPARC_10
1825ENUMX
1826 BFD_RELOC_SPARC_11
1827ENUMX
1828 BFD_RELOC_SPARC_OLO10
1829ENUMX
1830 BFD_RELOC_SPARC_HH22
1831ENUMX
1832 BFD_RELOC_SPARC_HM10
1833ENUMX
1834 BFD_RELOC_SPARC_LM22
1835ENUMX
1836 BFD_RELOC_SPARC_PC_HH22
1837ENUMX
1838 BFD_RELOC_SPARC_PC_HM10
1839ENUMX
1840 BFD_RELOC_SPARC_PC_LM22
1841ENUMX
1842 BFD_RELOC_SPARC_WDISP16
1843ENUMX
1844 BFD_RELOC_SPARC_WDISP19
0443af31 1845ENUMX
e9f03cd4
ILT
1846 BFD_RELOC_SPARC_7
1847ENUMX
1848 BFD_RELOC_SPARC_6
1849ENUMX
1850 BFD_RELOC_SPARC_5
d707219d
DE
1851ENUMEQX
1852 BFD_RELOC_SPARC_DISP64
1853 BFD_RELOC_64_PCREL
1854ENUMX
1855 BFD_RELOC_SPARC_PLT64
1856ENUMX
1857 BFD_RELOC_SPARC_HIX22
1858ENUMX
1859 BFD_RELOC_SPARC_LOX10
1860ENUMX
1861 BFD_RELOC_SPARC_H44
1862ENUMX
1863 BFD_RELOC_SPARC_M44
1864ENUMX
1865 BFD_RELOC_SPARC_L44
1866ENUMX
1867 BFD_RELOC_SPARC_REGISTER
0443af31 1868ENUMDOC
d707219d 1869 SPARC64 relocations
0443af31 1870
303b4cc6
RH
1871ENUM
1872 BFD_RELOC_SPARC_32LE
1873ENUMDOC
1874 SPARC little endian relocation
1875
0443af31
KR
1876ENUM
1877 BFD_RELOC_ALPHA_GPDISP_HI16
1878ENUMDOC
50bd50d4
MH
1879 Alpha ECOFF and ELF relocations. Some of these treat the symbol or
1880 "addend" in some special way.
0443af31
KR
1881 For GPDISP_HI16 ("gpdisp") relocations, the symbol is ignored when
1882 writing; when reading, it will be the absolute section symbol. The
1883 addend is the displacement in bytes of the "lda" instruction from
1884 the "ldah" instruction (which is at the address of this reloc).
1885ENUM
1886 BFD_RELOC_ALPHA_GPDISP_LO16
1887ENUMDOC
1888 For GPDISP_LO16 ("ignore") relocations, the symbol is handled as
1889 with GPDISP_HI16 relocs. The addend is ignored when writing the
1890 relocations out, and is filled in with the file's GP value on
1891 reading, for convenience.
1892
50bd50d4
MH
1893ENUM
1894 BFD_RELOC_ALPHA_GPDISP
1895ENUMDOC
1896 The ELF GPDISP relocation is exactly the same as the GPDISP_HI16
1897 relocation except that there is no accompanying GPDISP_LO16
1898 relocation.
1899
0443af31
KR
1900ENUM
1901 BFD_RELOC_ALPHA_LITERAL
6b31fd3a
ILT
1902ENUMX
1903 BFD_RELOC_ALPHA_ELF_LITERAL
0443af31
KR
1904ENUMX
1905 BFD_RELOC_ALPHA_LITUSE
1906ENUMDOC
1907 The Alpha LITERAL/LITUSE relocs are produced by a symbol reference;
1908 the assembler turns it into a LDQ instruction to load the address of
1909 the symbol, and then fills in a register in the real instruction.
1910
1911 The LITERAL reloc, at the LDQ instruction, refers to the .lita
1912 section symbol. The addend is ignored when writing, but is filled
1913 in with the file's GP value on reading, for convenience, as with the
1914 GPDISP_LO16 reloc.
1915
6b31fd3a
ILT
1916 The ELF_LITERAL reloc is somewhere between 16_GOTOFF and GPDISP_LO16.
1917 It should refer to the symbol to be referenced, as with 16_GOTOFF,
1918 but it generates output not based on the position within the .got
1919 section, but relative to the GP value chosen for the file during the
1920 final link stage.
1921
0443af31
KR
1922 The LITUSE reloc, on the instruction using the loaded address, gives
1923 information to the linker that it might be able to use to optimize
1924 away some literal section references. The symbol is ignored (read
1925 as the absolute section symbol), and the "addend" indicates the type
1926 of instruction using the register:
1927 1 - "memory" fmt insn
1928 2 - byte-manipulation (byte offset reg)
1929 3 - jsr (target of branch)
1930
1931 The GNU linker currently doesn't do any of this optimizing.
1932
1933ENUM
1934 BFD_RELOC_ALPHA_HINT
1935ENUMDOC
1936 The HINT relocation indicates a value that should be filled into the
1937 "hint" field of a jmp/jsr/ret instruction, for possible branch-
1938 prediction logic which may be provided on some processors.
1939
50bd50d4
MH
1940ENUM
1941 BFD_RELOC_ALPHA_LINKAGE
1942ENUMDOC
8612a388
ILT
1943 The LINKAGE relocation outputs a linkage pair in the object file,
1944 which is filled by the linker.
50bd50d4 1945
92a956e8
FF
1946ENUM
1947 BFD_RELOC_ALPHA_CODEADDR
1948ENUMDOC
1949 The CODEADDR relocation outputs a STO_CA in the object file,
1950 which is filled by the linker.
1951
0443af31
KR
1952ENUM
1953 BFD_RELOC_MIPS_JMP
1954ENUMDOC
1955 Bits 27..2 of the relocation address shifted right 2 bits;
1956 simple reloc otherwise.
1957
1d5c6cfd
DE
1958ENUM
1959 BFD_RELOC_MIPS16_JMP
1960ENUMDOC
1961 The MIPS16 jump instruction.
1962
a4183ba5
ILT
1963ENUM
1964 BFD_RELOC_MIPS16_GPREL
1965ENUMDOC
1966 MIPS16 GP relative reloc.
1967
0443af31
KR
1968ENUM
1969 BFD_RELOC_HI16
1970ENUMDOC
1971 High 16 bits of 32-bit value; simple reloc.
1972ENUM
1973 BFD_RELOC_HI16_S
1974ENUMDOC
1975 High 16 bits of 32-bit value but the low 16 bits will be sign
1976 extended and added to form the final result. If the low 16
1977 bits form a negative number, we need to add one to the high value
1978 to compensate for the borrow when the low bits are added.
1979ENUM
1980 BFD_RELOC_LO16
1981ENUMDOC
1982 Low 16 bits.
1983ENUM
1984 BFD_RELOC_PCREL_HI16_S
1985ENUMDOC
1986 Like BFD_RELOC_HI16_S, but PC relative.
1987ENUM
1988 BFD_RELOC_PCREL_LO16
1989ENUMDOC
1990 Like BFD_RELOC_LO16, but PC relative.
1991
1992ENUMEQ
1993 BFD_RELOC_MIPS_GPREL
1994 BFD_RELOC_GPREL16
1995ENUMDOC
1996 Relocation relative to the global pointer.
1997
1998ENUM
1999 BFD_RELOC_MIPS_LITERAL
2000ENUMDOC
2001 Relocation against a MIPS literal section.
2002
2003ENUM
2004 BFD_RELOC_MIPS_GOT16
2005ENUMX
2006 BFD_RELOC_MIPS_CALL16
2007ENUMEQX
2008 BFD_RELOC_MIPS_GPREL32
2009 BFD_RELOC_GPREL32
e9f03cd4
ILT
2010ENUMX
2011 BFD_RELOC_MIPS_GOT_HI16
2012ENUMX
2013 BFD_RELOC_MIPS_GOT_LO16
50bd50d4
MH
2014ENUMX
2015 BFD_RELOC_MIPS_CALL_HI16
2016ENUMX
2017 BFD_RELOC_MIPS_CALL_LO16
71842815
ILT
2018COMMENT
2019{* start-sanitize-r5900 *}
2020ENUMX
2021 BFD_RELOC_MIPS15_S3
2022COMMENT
2023{* end-sanitize-r5900 *}
0443af31
KR
2024ENUMDOC
2025 MIPS ELF relocations.
2026
36df40e0
DE
2027COMMENT
2028{* start-sanitize-sky *}
2029ENUM
2030 BFD_RELOC_MIPS_DVP_11_PCREL
2031ENUMDOC
2032 MIPS DVP Relocations.
2033 This is an 11-bit pc relative reloc. The recorded address is for the
2034 lower instruction word, and the value is in 128 bit units.
71842815
ILT
2035ENUM
2036 BFD_RELOC_MIPS_DVP_27_S4
2037ENUMDOC
2038 This is a 27 bit address left shifted by 4.
6767a3ab
ILT
2039ENUM
2040 BFD_RELOC_MIPS_DVP_11_S4
2041ENUMDOC
2042 This is the 11 bit offset operand of ilw/stw instructions
2043 left shifted by 4.
2044ENUM
2045 BFD_RELOC_MIPS_DVP_U15_S3
2046ENUMDOC
2047 This is the 15 bit unsigned immediate operand of the iaddiu instruction
2048 left shifted by 3.
36df40e0
DE
2049COMMENT
2050{* end-sanitize-sky *}
2051
0443af31
KR
2052ENUM
2053 BFD_RELOC_386_GOT32
2054ENUMX
2055 BFD_RELOC_386_PLT32
2056ENUMX
2057 BFD_RELOC_386_COPY
2058ENUMX
2059 BFD_RELOC_386_GLOB_DAT
2060ENUMX
2061 BFD_RELOC_386_JUMP_SLOT
2062ENUMX
2063 BFD_RELOC_386_RELATIVE
2064ENUMX
2065 BFD_RELOC_386_GOTOFF
2066ENUMX
2067 BFD_RELOC_386_GOTPC
2068ENUMDOC
2069 i386/elf relocations
2070
2071ENUM
2072 BFD_RELOC_NS32K_IMM_8
2073ENUMX
2074 BFD_RELOC_NS32K_IMM_16
2075ENUMX
2076 BFD_RELOC_NS32K_IMM_32
2077ENUMX
2078 BFD_RELOC_NS32K_IMM_8_PCREL
2079ENUMX
2080 BFD_RELOC_NS32K_IMM_16_PCREL
2081ENUMX
2082 BFD_RELOC_NS32K_IMM_32_PCREL
2083ENUMX
2084 BFD_RELOC_NS32K_DISP_8
2085ENUMX
2086 BFD_RELOC_NS32K_DISP_16
2087ENUMX
2088 BFD_RELOC_NS32K_DISP_32
2089ENUMX
2090 BFD_RELOC_NS32K_DISP_8_PCREL
2091ENUMX
2092 BFD_RELOC_NS32K_DISP_16_PCREL
2093ENUMX
2094 BFD_RELOC_NS32K_DISP_32_PCREL
2095ENUMDOC
2096 ns32k relocations
2097
2098ENUM
2099 BFD_RELOC_PPC_B26
e9f03cd4 2100ENUMX
0443af31 2101 BFD_RELOC_PPC_BA26
e9f03cd4 2102ENUMX
0443af31 2103 BFD_RELOC_PPC_TOC16
e9f03cd4
ILT
2104ENUMX
2105 BFD_RELOC_PPC_B16
2106ENUMX
2107 BFD_RELOC_PPC_B16_BRTAKEN
2108ENUMX
2109 BFD_RELOC_PPC_B16_BRNTAKEN
2110ENUMX
2111 BFD_RELOC_PPC_BA16
2112ENUMX
2113 BFD_RELOC_PPC_BA16_BRTAKEN
2114ENUMX
2115 BFD_RELOC_PPC_BA16_BRNTAKEN
2116ENUMX
2117 BFD_RELOC_PPC_COPY
2118ENUMX
2119 BFD_RELOC_PPC_GLOB_DAT
2120ENUMX
2121 BFD_RELOC_PPC_JMP_SLOT
2122ENUMX
2123 BFD_RELOC_PPC_RELATIVE
2124ENUMX
2125 BFD_RELOC_PPC_LOCAL24PC
2126ENUMX
2127 BFD_RELOC_PPC_EMB_NADDR32
2128ENUMX
2129 BFD_RELOC_PPC_EMB_NADDR16
2130ENUMX
2131 BFD_RELOC_PPC_EMB_NADDR16_LO
2132ENUMX
2133 BFD_RELOC_PPC_EMB_NADDR16_HI
2134ENUMX
2135 BFD_RELOC_PPC_EMB_NADDR16_HA
2136ENUMX
2137 BFD_RELOC_PPC_EMB_SDAI16
2138ENUMX
2139 BFD_RELOC_PPC_EMB_SDA2I16
2140ENUMX
2141 BFD_RELOC_PPC_EMB_SDA2REL
2142ENUMX
2143 BFD_RELOC_PPC_EMB_SDA21
2144ENUMX
2145 BFD_RELOC_PPC_EMB_MRKREF
2146ENUMX
2147 BFD_RELOC_PPC_EMB_RELSEC16
2148ENUMX
2149 BFD_RELOC_PPC_EMB_RELST_LO
2150ENUMX
2151 BFD_RELOC_PPC_EMB_RELST_HI
2152ENUMX
2153 BFD_RELOC_PPC_EMB_RELST_HA
2154ENUMX
2155 BFD_RELOC_PPC_EMB_BIT_FLD
2156ENUMX
2157 BFD_RELOC_PPC_EMB_RELSDA
0443af31 2158ENUMDOC
e9f03cd4 2159 Power(rs6000) and PowerPC relocations.
0443af31
KR
2160
2161ENUM
2162 BFD_RELOC_CTOR
2163ENUMDOC
2164 The type of reloc used to build a contructor table - at the moment
2165 probably a 32 bit wide absolute relocation, but the target can choose.
2166 It generally does map to one of the other relocation types.
2167
094e8be3
ILT
2168ENUM
2169 BFD_RELOC_ARM_PCREL_BRANCH
2170ENUMDOC
2171 ARM 26 bit pc-relative branch. The lowest two bits must be zero and are
2172 not stored in the instruction.
2173ENUM
2174 BFD_RELOC_ARM_IMMEDIATE
2175ENUMX
2176 BFD_RELOC_ARM_OFFSET_IMM
2177ENUMX
2178 BFD_RELOC_ARM_SHIFT_IMM
2179ENUMX
2180 BFD_RELOC_ARM_SWI
2181ENUMX
2182 BFD_RELOC_ARM_MULTI
2183ENUMX
2184 BFD_RELOC_ARM_CP_OFF_IMM
e9f03cd4
ILT
2185ENUMX
2186 BFD_RELOC_ARM_ADR_IMM
2187ENUMX
2188 BFD_RELOC_ARM_LDR_IMM
2189ENUMX
2190 BFD_RELOC_ARM_LITERAL
2191ENUMX
2192 BFD_RELOC_ARM_IN_POOL
d1b40d8e
JSC
2193ENUMX
2194 BFD_RELOC_ARM_OFFSET_IMM8
2195ENUMX
2196 BFD_RELOC_ARM_HWLITERAL
c86158e5
ILT
2197ENUMX
2198 BFD_RELOC_ARM_THUMB_ADD
2199ENUMX
2200 BFD_RELOC_ARM_THUMB_IMM
2201ENUMX
2202 BFD_RELOC_ARM_THUMB_SHIFT
2203ENUMX
2204 BFD_RELOC_ARM_THUMB_OFFSET
094e8be3
ILT
2205ENUMDOC
2206 These relocs are only used within the ARM assembler. They are not
2207 (at present) written to any object files.
2208
c86158e5
ILT
2209ENUM
2210 BFD_RELOC_SH_PCDISP8BY2
2211ENUMX
2212 BFD_RELOC_SH_PCDISP12BY2
2213ENUMX
2214 BFD_RELOC_SH_IMM4
2215ENUMX
2216 BFD_RELOC_SH_IMM4BY2
2217ENUMX
2218 BFD_RELOC_SH_IMM4BY4
2219ENUMX
2220 BFD_RELOC_SH_IMM8
2221ENUMX
2222 BFD_RELOC_SH_IMM8BY2
2223ENUMX
2224 BFD_RELOC_SH_IMM8BY4
2225ENUMX
2226 BFD_RELOC_SH_PCRELIMM8BY2
2227ENUMX
2228 BFD_RELOC_SH_PCRELIMM8BY4
2229ENUMX
2230 BFD_RELOC_SH_SWITCH16
2231ENUMX
2232 BFD_RELOC_SH_SWITCH32
2233ENUMX
2234 BFD_RELOC_SH_USES
2235ENUMX
2236 BFD_RELOC_SH_COUNT
2237ENUMX
2238 BFD_RELOC_SH_ALIGN
2239ENUMX
2240 BFD_RELOC_SH_CODE
2241ENUMX
2242 BFD_RELOC_SH_DATA
2243ENUMX
2244 BFD_RELOC_SH_LABEL
2245ENUMDOC
2246 Hitachi SH relocs. Not all of these appear in object files.
2247
76af94b9
DE
2248ENUM
2249 BFD_RELOC_THUMB_PCREL_BRANCH9
2250ENUMX
2251 BFD_RELOC_THUMB_PCREL_BRANCH12
2252ENUMX
2253 BFD_RELOC_THUMB_PCREL_BRANCH23
2254ENUMDOC
2255 Thumb 23-, 12- and 9-bit pc-relative branches. The lowest bit must
2256 be zero and is not stored in the instruction.
2257
82b1edf7
KR
2258ENUM
2259 BFD_RELOC_ARC_B22_PCREL
2260ENUMDOC
2261 Argonaut RISC Core (ARC) relocs.
2262 ARC 22 bit pc-relative branch. The lowest two bits must be zero and are
e9f03cd4
ILT
2263 not stored in the instruction. The high 20 bits are installed in bits 26
2264 through 7 of the instruction.
2265ENUM
2266 BFD_RELOC_ARC_B26
2267ENUMDOC
2268 ARC 26 bit absolute branch. The lowest two bits must be zero and are not
2269 stored in the instruction. The high 24 bits are installed in bits 23
2270 through 0.
50bd50d4 2271
50bd50d4
MH
2272ENUM
2273 BFD_RELOC_D10V_10_PCREL_R
2274ENUMDOC
2275 Mitsubishi D10V relocs.
2276 This is a 10-bit reloc with the right 2 bits
2277 assumed to be 0.
2278ENUM
2279 BFD_RELOC_D10V_10_PCREL_L
2280ENUMDOC
2281 Mitsubishi D10V relocs.
2282 This is a 10-bit reloc with the right 2 bits
2283 assumed to be 0. This is the same as the previous reloc
2284 except it is in the left container, i.e.,
2285 shifted left 15 bits.
2286ENUM
2287 BFD_RELOC_D10V_18
2288ENUMDOC
2289 This is an 18-bit reloc with the right 2 bits
2290 assumed to be 0.
2291ENUM
2292 BFD_RELOC_D10V_18_PCREL
2293ENUMDOC
2294 This is an 18-bit reloc with the right 2 bits
2295 assumed to be 0.
50bd50d4 2296
fd8d7c31
MH
2297ENUM
2298 BFD_RELOC_D30V_6
2299ENUMDOC
2300 Mitsubishi D30V relocs.
2301 This is a 6-bit absolute reloc.
2199f848
KR
2302ENUM
2303 BFD_RELOC_D30V_9_PCREL
2304ENUMDOC
2305 This is a 6-bit pc-relative reloc with
2306 the right 3 bits assumed to be 0.
2307ENUM
2308 BFD_RELOC_D30V_9_PCREL_R
2309ENUMDOC
2310 This is a 6-bit pc-relative reloc with
2311 the right 3 bits assumed to be 0. Same
2312 as the previous reloc but on the right side
2313 of the container.
fd8d7c31
MH
2314ENUM
2315 BFD_RELOC_D30V_15
2316ENUMDOC
fd8d7c31
MH
2317 This is a 12-bit absolute reloc with the
2318 right 3 bitsassumed to be 0.
2319ENUM
2320 BFD_RELOC_D30V_15_PCREL
2321ENUMDOC
fd8d7c31
MH
2322 This is a 12-bit pc-relative reloc with
2323 the right 3 bits assumed to be 0.
2199f848
KR
2324ENUM
2325 BFD_RELOC_D30V_15_PCREL_R
2326ENUMDOC
2327 This is a 12-bit pc-relative reloc with
2328 the right 3 bits assumed to be 0. Same
2329 as the previous reloc but on the right side
2330 of the container.
fd8d7c31
MH
2331ENUM
2332 BFD_RELOC_D30V_21
2333ENUMDOC
2334 This is an 18-bit absolute reloc with
2335 the right 3 bits assumed to be 0.
2336ENUM
2337 BFD_RELOC_D30V_21_PCREL
2338ENUMDOC
2339 This is an 18-bit pc-relative reloc with
2340 the right 3 bits assumed to be 0.
2199f848
KR
2341ENUM
2342 BFD_RELOC_D30V_21_PCREL_R
2343ENUMDOC
2344 This is an 18-bit pc-relative reloc with
2345 the right 3 bits assumed to be 0. Same
2346 as the previous reloc but on the right side
2347 of the container.
fd8d7c31
MH
2348ENUM
2349 BFD_RELOC_D30V_32
2350ENUMDOC
2351 This is a 32-bit absolute reloc.
2352ENUM
2353 BFD_RELOC_D30V_32_PCREL
2354ENUMDOC
2355 This is a 32-bit pc-relative reloc.
fd8d7c31 2356
a5a43df1 2357ENUM
1d5c6cfd 2358 BFD_RELOC_M32R_24
a5a43df1
ILT
2359ENUMDOC
2360 Mitsubishi M32R relocs.
1d5c6cfd 2361 This is a 24 bit absolute address.
6b31fd3a 2362ENUM
1d5c6cfd 2363 BFD_RELOC_M32R_10_PCREL
6b31fd3a 2364ENUMDOC
1d5c6cfd 2365 This is a 10-bit pc-relative reloc with the right 2 bits assumed to be 0.
a5a43df1 2366ENUM
1d5c6cfd 2367 BFD_RELOC_M32R_18_PCREL
a5a43df1
ILT
2368ENUMDOC
2369 This is an 18-bit reloc with the right 2 bits assumed to be 0.
2370ENUM
1d5c6cfd
DE
2371 BFD_RELOC_M32R_26_PCREL
2372ENUMDOC
2373 This is a 26-bit reloc with the right 2 bits assumed to be 0.
2374ENUM
2375 BFD_RELOC_M32R_HI16_ULO
2376ENUMDOC
2377 This is a 16-bit reloc containing the high 16 bits of an address
2378 used when the lower 16 bits are treated as unsigned.
2379ENUM
2380 BFD_RELOC_M32R_HI16_SLO
2381ENUMDOC
2382 This is a 16-bit reloc containing the high 16 bits of an address
2383 used when the lower 16 bits are treated as signed.
2384ENUM
2385 BFD_RELOC_M32R_LO16
a5a43df1 2386ENUMDOC
1d5c6cfd 2387 This is a 16-bit reloc containing the lower 16 bits of an address.
76af94b9
DE
2388ENUM
2389 BFD_RELOC_M32R_SDA16
2390ENUMDOC
2391 This is a 16-bit reloc containing the small data area offset for use in
2392 add3, load, and store instructions.
a5a43df1 2393
a5a43df1
ILT
2394ENUM
2395 BFD_RELOC_V850_9_PCREL
2396ENUMDOC
2397 This is a 9-bit reloc
2398ENUM
2399 BFD_RELOC_V850_22_PCREL
2400ENUMDOC
2401 This is a 22-bit reloc
def31039
NC
2402
2403ENUM
4878fa5b 2404 BFD_RELOC_V850_SDA_16_16_OFFSET
def31039 2405ENUMDOC
4878fa5b 2406 This is a 16 bit offset from the short data area pointer.
def31039 2407ENUM
4878fa5b 2408 BFD_RELOC_V850_SDA_15_16_OFFSET
def31039 2409ENUMDOC
4878fa5b
ILT
2410 This is a 16 bit offset (of which only 15 bits are used) from the
2411 short data area pointer.
def31039 2412ENUM
4878fa5b 2413 BFD_RELOC_V850_ZDA_16_16_OFFSET
def31039 2414ENUMDOC
4878fa5b 2415 This is a 16 bit offset from the zero data area pointer.
def31039 2416ENUM
4878fa5b 2417 BFD_RELOC_V850_ZDA_15_16_OFFSET
def31039 2418ENUMDOC
4878fa5b
ILT
2419 This is a 16 bit offset (of which only 15 bits are used) from the
2420 zero data area pointer.
def31039 2421ENUM
4878fa5b 2422 BFD_RELOC_V850_TDA_6_8_OFFSET
def31039 2423ENUMDOC
4878fa5b
ILT
2424 This is an 8 bit offset (of which only 6 bits are used) from the
2425 tiny data area pointer.
b6d08fce 2426ENUM
4878fa5b 2427 BFD_RELOC_V850_TDA_7_8_OFFSET
b6d08fce 2428ENUMDOC
4878fa5b
ILT
2429 This is an 8bit offset (of which only 7 bits are used) from the tiny
2430 data area pointer.
def31039 2431ENUM
4878fa5b 2432 BFD_RELOC_V850_TDA_7_7_OFFSET
def31039 2433ENUMDOC
4878fa5b 2434 This is a 7 bit offset from the tiny data area pointer.
5bb28764
NC
2435ENUM
2436 BFD_RELOC_V850_TDA_16_16_OFFSET
2437ENUMDOC
2438 This is a 16 bit offset from the tiny data area pointer.
def31039
NC
2439COMMENT
2440{* start-sanitize-v850e *}
b6d08fce 2441ENUM
4878fa5b 2442 BFD_RELOC_V850_TDA_4_5_OFFSET
b6d08fce 2443ENUMDOC
4878fa5b
ILT
2444 This is a 5 bit offset (of which only 4 bits are used) from the tiny
2445 data area pointer.
b6d08fce 2446ENUM
4878fa5b 2447 BFD_RELOC_V850_TDA_4_4_OFFSET
b6d08fce 2448ENUMDOC
4878fa5b 2449 This is a 4 bit offset from the tiny data area pointer.
def31039 2450ENUM
4878fa5b 2451 BFD_RELOC_V850_SDA_16_16_SPLIT_OFFSET
def31039 2452ENUMDOC
4878fa5b
ILT
2453 This is a 16 bit offset from the short data area pointer, with the
2454 bits placed non-contigously in the instruction.
def31039 2455ENUM
4878fa5b 2456 BFD_RELOC_V850_ZDA_16_16_SPLIT_OFFSET
def31039 2457ENUMDOC
4878fa5b
ILT
2458 This is a 16 bit offset from the zero data area pointer, with the
2459 bits placed non-contigously in the instruction.
3869b11f
DE
2460ENUM
2461 BFD_RELOC_V850_CALLT_6_7_OFFSET
2462ENUMDOC
2463 This is a 6 bit offset from the call table base pointer.
2464ENUM
2465 BFD_RELOC_V850_CALLT_16_16_OFFSET
2466ENUMDOC
2467 This is a 16 bit offset from the call table base pointer.
def31039 2468COMMENT
2cf9a0d0 2469{* end-sanitize-v850e *}
a5a43df1 2470
1d5c6cfd
DE
2471ENUM
2472 BFD_RELOC_MN10300_32_PCREL
2473ENUMDOC
2474 This is a 32bit pcrel reloc for the mn10300, offset by two bytes in the
2475 instruction.
2476ENUM
2477 BFD_RELOC_MN10300_16_PCREL
2478ENUMDOC
2479 This is a 16bit pcrel reloc for the mn10300, offset by two bytes in the
2480 instruction.
d707219d 2481
e8f2efef
ILT
2482ENUM
2483 BFD_RELOC_TIC30_LDP
2484ENUMDOC
2485 This is a 8bit DP reloc for the tms320c30, where the most
2486 significant 8 bits of a 24 bit word are placed into the least
2487 significant 8 bits of the opcode.
2488
303b4cc6
RH
2489ENUM
2490 BFD_RELOC_VTABLE_INHERIT
2491ENUMX
2492 BFD_RELOC_VTABLE_ENTRY
2493ENUMDOC
2494 These two relocations are used by the linker to determine which of
2495 the entries in a C++ virtual function table are actually used. When
2496 the --gc-sections option is given, the linker will zero out the entries
2497 that are not used, so that the code for those functions need not be
2498 included in the output.
2499
2500 VTABLE_INHERIT is a zero-space relocation used to describe to the
2501 linker the inheritence tree of a C++ virtual function table. The
2502 relocation's symbol should be the parent class' vtable, and the
2503 relocation should be located at the child vtable.
2504
2505 VTABLE_ENTRY is a zero-space relocation that describes the use of a
2506 virtual function table entry. The reloc's symbol should refer to the
2507 table of the class mentioned in the code. Off of that base, an offset
2508 describes the entry that is being used. For Rela hosts, this offset
2509 is stored in the reloc's addend. For Rel hosts, we are forced to put
2510 this offset in the reloc's section offset.
2511
0443af31
KR
2512ENDSENUM
2513 BFD_RELOC_UNUSED
e98e6ec1
SC
2514CODE_FRAGMENT
2515.
0443af31 2516.typedef enum bfd_reloc_code_real bfd_reloc_code_real_type;
2cf44d7b
SC
2517*/
2518
2519
0cda46cf 2520/*
c188b0be 2521FUNCTION
0cda46cf 2522 bfd_reloc_type_lookup
2cf44d7b 2523
e98e6ec1 2524SYNOPSIS
e9f03cd4 2525 reloc_howto_type *
3860075f 2526 bfd_reloc_type_lookup (bfd *abfd, bfd_reloc_code_real_type code);
e98e6ec1 2527
0cda46cf 2528DESCRIPTION
4c3721d5 2529 Return a pointer to a howto structure which, when
c188b0be 2530 invoked, will perform the relocation @var{code} on data from the
0cda46cf 2531 architecture noted.
2cf44d7b 2532
2cf44d7b
SC
2533*/
2534
2535
e9f03cd4 2536reloc_howto_type *
326e32d7
ILT
2537bfd_reloc_type_lookup (abfd, code)
2538 bfd *abfd;
2539 bfd_reloc_code_real_type code;
2cf44d7b 2540{
8070f29d 2541 return BFD_SEND (abfd, reloc_type_lookup, (abfd, code));
2cf44d7b
SC
2542}
2543
0cda46cf 2544static reloc_howto_type bfd_howto_32 =
326e32d7 2545HOWTO (0, 00, 2, 32, false, 0, complain_overflow_bitfield, 0, "VRT32", false, 0xffffffff, 0xffffffff, true);
2cf44d7b
SC
2546
2547
0cda46cf 2548/*
e98e6ec1 2549INTERNAL_FUNCTION
0cda46cf
SC
2550 bfd_default_reloc_type_lookup
2551
0cda46cf 2552SYNOPSIS
e9f03cd4 2553 reloc_howto_type *bfd_default_reloc_type_lookup
326e32d7 2554 (bfd *abfd, bfd_reloc_code_real_type code);
0cda46cf 2555
e98e6ec1 2556DESCRIPTION
65cab589 2557 Provides a default relocation lookup routine for any architecture.
e98e6ec1
SC
2558
2559
0cda46cf 2560*/
65cab589 2561
e9f03cd4 2562reloc_howto_type *
326e32d7
ILT
2563bfd_default_reloc_type_lookup (abfd, code)
2564 bfd *abfd;
2565 bfd_reloc_code_real_type code;
0cda46cf 2566{
326e32d7 2567 switch (code)
0cda46cf 2568 {
65cab589
DM
2569 case BFD_RELOC_CTOR:
2570 /* The type of reloc used in a ctor, which will be as wide as the
fb32909a 2571 address - so either a 64, 32, or 16 bitter. */
326e32d7
ILT
2572 switch (bfd_get_arch_info (abfd)->bits_per_address)
2573 {
2574 case 64:
2575 BFD_FAIL ();
2576 case 32:
2577 return &bfd_howto_32;
2578 case 16:
2579 BFD_FAIL ();
2580 default:
2581 BFD_FAIL ();
2582 }
65cab589 2583 default:
326e32d7 2584 BFD_FAIL ();
0cda46cf 2585 }
e9f03cd4 2586 return (reloc_howto_type *) NULL;
0cda46cf 2587}
e98e6ec1 2588
0443af31
KR
2589/*
2590FUNCTION
2591 bfd_get_reloc_code_name
2592
2593SYNOPSIS
2594 const char *bfd_get_reloc_code_name (bfd_reloc_code_real_type code);
2595
2596DESCRIPTION
2597 Provides a printable name for the supplied relocation code.
2598 Useful mainly for printing error messages.
2599*/
2600
2601const char *
2602bfd_get_reloc_code_name (code)
2603 bfd_reloc_code_real_type code;
2604{
2605 if (code > BFD_RELOC_UNUSED)
2606 return 0;
2607 return bfd_reloc_code_real_names[(int)code];
2608}
e98e6ec1 2609
d58b7049
SC
2610/*
2611INTERNAL_FUNCTION
2612 bfd_generic_relax_section
2613
2614SYNOPSIS
2615 boolean bfd_generic_relax_section
2616 (bfd *abfd,
2617 asection *section,
4c3721d5 2618 struct bfd_link_info *,
326e32d7 2619 boolean *);
d58b7049
SC
2620
2621DESCRIPTION
2622 Provides default handling for relaxing for back ends which
8070f29d 2623 don't do relaxing -- i.e., does nothing.
d58b7049
SC
2624*/
2625
563eb766 2626/*ARGSUSED*/
d58b7049 2627boolean
326e32d7 2628bfd_generic_relax_section (abfd, section, link_info, again)
4c3721d5
ILT
2629 bfd *abfd;
2630 asection *section;
2631 struct bfd_link_info *link_info;
326e32d7 2632 boolean *again;
d58b7049 2633{
326e32d7
ILT
2634 *again = false;
2635 return true;
d58b7049 2636}
326e32d7 2637
303b4cc6
RH
2638/*
2639INTERNAL_FUNCTION
2640 bfd_generic_gc_sections
2641
2642SYNOPSIS
2643 boolean bfd_generic_gc_sections
2644 (bfd *, struct bfd_link_info *);
2645
2646DESCRIPTION
2647 Provides default handling for relaxing for back ends which
2648 don't do section gc -- i.e., does nothing.
2649*/
2650
2651/*ARGSUSED*/
2652boolean
2653bfd_generic_gc_sections (abfd, link_info)
2654 bfd *abfd;
2655 struct bfd_link_info *link_info;
2656{
2657 return true;
2658}
2659
e98e6ec1
SC
2660/*
2661INTERNAL_FUNCTION
2662 bfd_generic_get_relocated_section_contents
2663
2664SYNOPSIS
2665 bfd_byte *
65cab589 2666 bfd_generic_get_relocated_section_contents (bfd *abfd,
4c3721d5
ILT
2667 struct bfd_link_info *link_info,
2668 struct bfd_link_order *link_order,
65cab589 2669 bfd_byte *data,
4c3721d5
ILT
2670 boolean relocateable,
2671 asymbol **symbols);
e98e6ec1
SC
2672
2673DESCRIPTION
2674 Provides default handling of relocation effort for back ends
2675 which can't be bothered to do it efficiently.
2676
2677*/
2678
2679bfd_byte *
4c3721d5
ILT
2680bfd_generic_get_relocated_section_contents (abfd, link_info, link_order, data,
2681 relocateable, symbols)
2682 bfd *abfd;
2683 struct bfd_link_info *link_info;
2684 struct bfd_link_order *link_order;
2685 bfd_byte *data;
2686 boolean relocateable;
2687 asymbol **symbols;
e98e6ec1 2688{
e98e6ec1 2689 /* Get enough memory to hold the stuff */
4c3721d5
ILT
2690 bfd *input_bfd = link_order->u.indirect.section->owner;
2691 asection *input_section = link_order->u.indirect.section;
e98e6ec1 2692
326e32d7 2693 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
80425e6c 2694 arelent **reloc_vector = NULL;
326e32d7
ILT
2695 long reloc_count;
2696
2697 if (reloc_size < 0)
2698 goto error_return;
80425e6c 2699
e9f03cd4 2700 reloc_vector = (arelent **) bfd_malloc ((size_t) reloc_size);
326e32d7 2701 if (reloc_vector == NULL && reloc_size != 0)
e9f03cd4 2702 goto error_return;
326e32d7 2703
e98e6ec1 2704 /* read in the section */
326e32d7
ILT
2705 if (!bfd_get_section_contents (input_bfd,
2706 input_section,
2707 (PTR) data,
2708 0,
2709 input_section->_raw_size))
80425e6c
JK
2710 goto error_return;
2711
2712 /* We're not relaxing the section, so just copy the size info */
e98e6ec1
SC
2713 input_section->_cooked_size = input_section->_raw_size;
2714 input_section->reloc_done = true;
e98e6ec1 2715
326e32d7
ILT
2716 reloc_count = bfd_canonicalize_reloc (input_bfd,
2717 input_section,
2718 reloc_vector,
2719 symbols);
2720 if (reloc_count < 0)
80425e6c
JK
2721 goto error_return;
2722
326e32d7
ILT
2723 if (reloc_count > 0)
2724 {
2725 arelent **parent;
2726 for (parent = reloc_vector; *parent != (arelent *) NULL;
2727 parent++)
65cab589 2728 {
326e32d7
ILT
2729 char *error_message = (char *) NULL;
2730 bfd_reloc_status_type r =
2731 bfd_perform_relocation (input_bfd,
2732 *parent,
2733 (PTR) data,
2734 input_section,
2735 relocateable ? abfd : (bfd *) NULL,
2736 &error_message);
2737
2738 if (relocateable)
2739 {
2740 asection *os = input_section->output_section;
65cab589 2741
326e32d7
ILT
2742 /* A partial link, so keep the relocs */
2743 os->orelocation[os->reloc_count] = *parent;
2744 os->reloc_count++;
2745 }
e98e6ec1 2746
326e32d7
ILT
2747 if (r != bfd_reloc_ok)
2748 {
2749 switch (r)
2750 {
2751 case bfd_reloc_undefined:
2752 if (!((*link_info->callbacks->undefined_symbol)
2753 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
2754 input_bfd, input_section, (*parent)->address)))
2755 goto error_return;
2756 break;
2757 case bfd_reloc_dangerous:
2758 BFD_ASSERT (error_message != (char *) NULL);
2759 if (!((*link_info->callbacks->reloc_dangerous)
2760 (link_info, error_message, input_bfd, input_section,
2761 (*parent)->address)))
2762 goto error_return;
2763 break;
2764 case bfd_reloc_overflow:
2765 if (!((*link_info->callbacks->reloc_overflow)
2766 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
2767 (*parent)->howto->name, (*parent)->addend,
2768 input_bfd, input_section, (*parent)->address)))
2769 goto error_return;
2770 break;
2771 case bfd_reloc_outofrange:
2772 default:
2773 abort ();
2774 break;
2775 }
e98e6ec1 2776
326e32d7
ILT
2777 }
2778 }
2779 }
80425e6c
JK
2780 if (reloc_vector != NULL)
2781 free (reloc_vector);
e98e6ec1
SC
2782 return data;
2783
326e32d7 2784error_return:
80425e6c
JK
2785 if (reloc_vector != NULL)
2786 free (reloc_vector);
2787 return NULL;
e98e6ec1 2788}
This page took 0.606697 seconds and 4 git commands to generate.