* elf.c (_bfd_elf_make_section_from_shdr): Set SEC_THREAD_LOCAL
[deliverable/binutils-gdb.git] / bfd / reloc.c
CommitLineData
252b5132 1/* BFD support for handling relocation entries.
7898deda 2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
fbca6ad9 3 2000, 2001, 2002
252b5132
RH
4 Free Software Foundation, Inc.
5 Written by Cygnus Support.
6
7This file is part of BFD, the Binary File Descriptor library.
8
9This program is free software; you can redistribute it and/or modify
10it under the terms of the GNU General Public License as published by
11the Free Software Foundation; either version 2 of the License, or
12(at your option) any later version.
13
14This program is distributed in the hope that it will be useful,
15but WITHOUT ANY WARRANTY; without even the implied warranty of
16MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17GNU General Public License for more details.
18
19You should have received a copy of the GNU General Public License
20along with this program; if not, write to the Free Software
21Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
22
23/*
24SECTION
25 Relocations
26
27 BFD maintains relocations in much the same way it maintains
28 symbols: they are left alone until required, then read in
3f9b03b5 29 en-masse and translated into an internal form. A common
252b5132
RH
30 routine <<bfd_perform_relocation>> acts upon the
31 canonical form to do the fixup.
32
33 Relocations are maintained on a per section basis,
34 while symbols are maintained on a per BFD basis.
35
36 All that a back end has to do to fit the BFD interface is to create
37 a <<struct reloc_cache_entry>> for each relocation
38 in a particular section, and fill in the right bits of the structures.
39
40@menu
41@* typedef arelent::
42@* howto manager::
43@end menu
44
45*/
46
47/* DO compile in the reloc_code name table from libbfd.h. */
48#define _BFD_MAKE_TABLE_bfd_reloc_code_real
49
50#include "bfd.h"
51#include "sysdep.h"
52#include "bfdlink.h"
53#include "libbfd.h"
54/*
55DOCDD
56INODE
57 typedef arelent, howto manager, Relocations, Relocations
58
59SUBSECTION
60 typedef arelent
61
62 This is the structure of a relocation entry:
63
64CODE_FRAGMENT
65.
66.typedef enum bfd_reloc_status
67.{
b5f79c76 68. {* No errors detected. *}
252b5132
RH
69. bfd_reloc_ok,
70.
b5f79c76 71. {* The relocation was performed, but there was an overflow. *}
252b5132
RH
72. bfd_reloc_overflow,
73.
b5f79c76 74. {* The address to relocate was not within the section supplied. *}
252b5132
RH
75. bfd_reloc_outofrange,
76.
b5f79c76 77. {* Used by special functions. *}
252b5132
RH
78. bfd_reloc_continue,
79.
b5f79c76 80. {* Unsupported relocation size requested. *}
252b5132
RH
81. bfd_reloc_notsupported,
82.
b5f79c76 83. {* Unused. *}
252b5132
RH
84. bfd_reloc_other,
85.
b5f79c76 86. {* The symbol to relocate against was undefined. *}
252b5132
RH
87. bfd_reloc_undefined,
88.
dc810e39
AM
89. {* The relocation was performed, but may not be ok - presently
90. generated only when linking i960 coff files with i960 b.out
91. symbols. If this type is returned, the error_message argument
92. to bfd_perform_relocation will be set. *}
252b5132
RH
93. bfd_reloc_dangerous
94. }
95. bfd_reloc_status_type;
96.
97.
98.typedef struct reloc_cache_entry
99.{
b5f79c76 100. {* A pointer into the canonical table of pointers. *}
252b5132
RH
101. struct symbol_cache_entry **sym_ptr_ptr;
102.
b5f79c76 103. {* offset in section. *}
252b5132
RH
104. bfd_size_type address;
105.
b5f79c76 106. {* addend for relocation value. *}
252b5132
RH
107. bfd_vma addend;
108.
b5f79c76 109. {* Pointer to how to perform the required relocation. *}
252b5132
RH
110. reloc_howto_type *howto;
111.
b5f79c76
NC
112.}
113.arelent;
114.
252b5132
RH
115*/
116
117/*
118DESCRIPTION
119
120 Here is a description of each of the fields within an <<arelent>>:
121
122 o <<sym_ptr_ptr>>
123
124 The symbol table pointer points to a pointer to the symbol
125 associated with the relocation request. It is
126 the pointer into the table returned by the back end's
127 <<get_symtab>> action. @xref{Symbols}. The symbol is referenced
128 through a pointer to a pointer so that tools like the linker
129 can fix up all the symbols of the same name by modifying only
130 one pointer. The relocation routine looks in the symbol and
131 uses the base of the section the symbol is attached to and the
132 value of the symbol as the initial relocation offset. If the
133 symbol pointer is zero, then the section provided is looked up.
134
135 o <<address>>
136
137 The <<address>> field gives the offset in bytes from the base of
138 the section data which owns the relocation record to the first
139 byte of relocatable information. The actual data relocated
140 will be relative to this point; for example, a relocation
141 type which modifies the bottom two bytes of a four byte word
142 would not touch the first byte pointed to in a big endian
143 world.
144
145 o <<addend>>
146
147 The <<addend>> is a value provided by the back end to be added (!)
148 to the relocation offset. Its interpretation is dependent upon
149 the howto. For example, on the 68k the code:
150
252b5132
RH
151| char foo[];
152| main()
153| {
154| return foo[0x12345678];
155| }
156
157 Could be compiled into:
158
159| linkw fp,#-4
160| moveb @@#12345678,d0
161| extbl d0
162| unlk fp
163| rts
164
252b5132
RH
165 This could create a reloc pointing to <<foo>>, but leave the
166 offset in the data, something like:
167
252b5132
RH
168|RELOCATION RECORDS FOR [.text]:
169|offset type value
170|00000006 32 _foo
171|
172|00000000 4e56 fffc ; linkw fp,#-4
173|00000004 1039 1234 5678 ; moveb @@#12345678,d0
174|0000000a 49c0 ; extbl d0
175|0000000c 4e5e ; unlk fp
176|0000000e 4e75 ; rts
177
252b5132
RH
178 Using coff and an 88k, some instructions don't have enough
179 space in them to represent the full address range, and
180 pointers have to be loaded in two parts. So you'd get something like:
181
252b5132
RH
182| or.u r13,r0,hi16(_foo+0x12345678)
183| ld.b r2,r13,lo16(_foo+0x12345678)
184| jmp r1
185
252b5132
RH
186 This should create two relocs, both pointing to <<_foo>>, and with
187 0x12340000 in their addend field. The data would consist of:
188
252b5132
RH
189|RELOCATION RECORDS FOR [.text]:
190|offset type value
191|00000002 HVRT16 _foo+0x12340000
192|00000006 LVRT16 _foo+0x12340000
193|
194|00000000 5da05678 ; or.u r13,r0,0x5678
195|00000004 1c4d5678 ; ld.b r2,r13,0x5678
196|00000008 f400c001 ; jmp r1
197
252b5132
RH
198 The relocation routine digs out the value from the data, adds
199 it to the addend to get the original offset, and then adds the
200 value of <<_foo>>. Note that all 32 bits have to be kept around
201 somewhere, to cope with carry from bit 15 to bit 16.
202
203 One further example is the sparc and the a.out format. The
204 sparc has a similar problem to the 88k, in that some
205 instructions don't have room for an entire offset, but on the
206 sparc the parts are created in odd sized lumps. The designers of
207 the a.out format chose to not use the data within the section
208 for storing part of the offset; all the offset is kept within
209 the reloc. Anything in the data should be ignored.
210
211| save %sp,-112,%sp
212| sethi %hi(_foo+0x12345678),%g2
213| ldsb [%g2+%lo(_foo+0x12345678)],%i0
214| ret
215| restore
216
217 Both relocs contain a pointer to <<foo>>, and the offsets
218 contain junk.
219
252b5132
RH
220|RELOCATION RECORDS FOR [.text]:
221|offset type value
222|00000004 HI22 _foo+0x12345678
223|00000008 LO10 _foo+0x12345678
224|
225|00000000 9de3bf90 ; save %sp,-112,%sp
226|00000004 05000000 ; sethi %hi(_foo+0),%g2
227|00000008 f048a000 ; ldsb [%g2+%lo(_foo+0)],%i0
228|0000000c 81c7e008 ; ret
229|00000010 81e80000 ; restore
230
252b5132
RH
231 o <<howto>>
232
233 The <<howto>> field can be imagined as a
234 relocation instruction. It is a pointer to a structure which
235 contains information on what to do with all of the other
236 information in the reloc record and data section. A back end
237 would normally have a relocation instruction set and turn
238 relocations into pointers to the correct structure on input -
239 but it would be possible to create each howto field on demand.
240
241*/
242
243/*
244SUBSUBSECTION
245 <<enum complain_overflow>>
246
247 Indicates what sort of overflow checking should be done when
248 performing a relocation.
249
250CODE_FRAGMENT
251.
252.enum complain_overflow
253.{
b5f79c76 254. {* Do not complain on overflow. *}
252b5132
RH
255. complain_overflow_dont,
256.
dc810e39 257. {* Complain if the bitfield overflows, whether it is considered
b5f79c76 258. as signed or unsigned. *}
252b5132
RH
259. complain_overflow_bitfield,
260.
dc810e39 261. {* Complain if the value overflows when considered as signed
b5f79c76 262. number. *}
252b5132
RH
263. complain_overflow_signed,
264.
dc810e39 265. {* Complain if the value overflows when considered as an
b5f79c76 266. unsigned number. *}
252b5132
RH
267. complain_overflow_unsigned
268.};
269
270*/
271
272/*
273SUBSUBSECTION
274 <<reloc_howto_type>>
275
276 The <<reloc_howto_type>> is a structure which contains all the
277 information that libbfd needs to know to tie up a back end's data.
278
279CODE_FRAGMENT
b5f79c76 280.struct symbol_cache_entry; {* Forward declaration. *}
252b5132
RH
281.
282.struct reloc_howto_struct
283.{
dc810e39
AM
284. {* The type field has mainly a documentary use - the back end can
285. do what it wants with it, though normally the back end's
286. external idea of what a reloc number is stored
287. in this field. For example, a PC relative word relocation
288. in a coff environment has the type 023 - because that's
289. what the outside world calls a R_PCRWORD reloc. *}
252b5132
RH
290. unsigned int type;
291.
dc810e39
AM
292. {* The value the final relocation is shifted right by. This drops
293. unwanted data from the relocation. *}
252b5132
RH
294. unsigned int rightshift;
295.
dc810e39
AM
296. {* The size of the item to be relocated. This is *not* a
297. power-of-two measure. To get the number of bytes operated
298. on by a type of relocation, use bfd_get_reloc_size. *}
252b5132
RH
299. int size;
300.
dc810e39
AM
301. {* The number of bits in the item to be relocated. This is used
302. when doing overflow checking. *}
252b5132
RH
303. unsigned int bitsize;
304.
dc810e39
AM
305. {* Notes that the relocation is relative to the location in the
306. data section of the addend. The relocation function will
307. subtract from the relocation value the address of the location
308. being relocated. *}
252b5132
RH
309. boolean pc_relative;
310.
dc810e39
AM
311. {* The bit position of the reloc value in the destination.
312. The relocated value is left shifted by this amount. *}
252b5132
RH
313. unsigned int bitpos;
314.
dc810e39
AM
315. {* What type of overflow error should be checked for when
316. relocating. *}
252b5132
RH
317. enum complain_overflow complain_on_overflow;
318.
dc810e39
AM
319. {* If this field is non null, then the supplied function is
320. called rather than the normal function. This allows really
321. strange relocation methods to be accomodated (e.g., i960 callj
322. instructions). *}
252b5132 323. bfd_reloc_status_type (*special_function)
dc810e39
AM
324. PARAMS ((bfd *, arelent *, struct symbol_cache_entry *, PTR, asection *,
325. bfd *, char **));
252b5132 326.
dc810e39 327. {* The textual name of the relocation type. *}
252b5132
RH
328. char *name;
329.
dc810e39
AM
330. {* Some formats record a relocation addend in the section contents
331. rather than with the relocation. For ELF formats this is the
332. distinction between USE_REL and USE_RELA (though the code checks
333. for USE_REL == 1/0). The value of this field is TRUE if the
334. addend is recorded with the section contents; when performing a
335. partial link (ld -r) the section contents (the data) will be
336. modified. The value of this field is FALSE if addends are
337. recorded with the relocation (in arelent.addend); when performing
338. a partial link the relocation will be modified.
339. All relocations for all ELF USE_RELA targets should set this field
340. to FALSE (values of TRUE should be looked on with suspicion).
341. However, the converse is not true: not all relocations of all ELF
342. USE_REL targets set this field to TRUE. Why this is so is peculiar
343. to each particular target. For relocs that aren't used in partial
344. links (e.g. GOT stuff) it doesn't matter what this is set to. *}
252b5132
RH
345. boolean partial_inplace;
346.
dc810e39
AM
347. {* The src_mask selects which parts of the read in data
348. are to be used in the relocation sum. E.g., if this was an 8 bit
349. byte of data which we read and relocated, this would be
350. 0x000000ff. When we have relocs which have an addend, such as
351. sun4 extended relocs, the value in the offset part of a
352. relocating field is garbage so we never use it. In this case
353. the mask would be 0x00000000. *}
252b5132
RH
354. bfd_vma src_mask;
355.
dc810e39
AM
356. {* The dst_mask selects which parts of the instruction are replaced
357. into the instruction. In most cases src_mask == dst_mask,
358. except in the above special case, where dst_mask would be
359. 0x000000ff, and src_mask would be 0x00000000. *}
252b5132
RH
360. bfd_vma dst_mask;
361.
dc810e39
AM
362. {* When some formats create PC relative instructions, they leave
363. the value of the pc of the place being relocated in the offset
364. slot of the instruction, so that a PC relative relocation can
365. be made just by adding in an ordinary offset (e.g., sun3 a.out).
366. Some formats leave the displacement part of an instruction
367. empty (e.g., m88k bcs); this flag signals the fact. *}
252b5132 368. boolean pcrel_offset;
252b5132 369.};
b5f79c76 370.
252b5132
RH
371*/
372
373/*
374FUNCTION
375 The HOWTO Macro
376
377DESCRIPTION
378 The HOWTO define is horrible and will go away.
379
dc810e39
AM
380.#define HOWTO(C, R, S, B, P, BI, O, SF, NAME, INPLACE, MASKSRC, MASKDST, PC) \
381. { (unsigned) C, R, S, B, P, BI, O, SF, NAME, INPLACE, MASKSRC, MASKDST, PC }
252b5132
RH
382
383DESCRIPTION
384 And will be replaced with the totally magic way. But for the
385 moment, we are compatible, so do it this way.
386
dc810e39
AM
387.#define NEWHOWTO(FUNCTION, NAME, SIZE, REL, IN) \
388. HOWTO (0, 0, SIZE, 0, REL, 0, complain_overflow_dont, FUNCTION, \
389. NAME, false, 0, 0, IN)
252b5132 390.
5f771d47
ILT
391
392DESCRIPTION
393 This is used to fill in an empty howto entry in an array.
394
395.#define EMPTY_HOWTO(C) \
dc810e39
AM
396. HOWTO ((C), 0, 0, 0, false, 0, complain_overflow_dont, NULL, \
397. NULL, false, 0, 0, false)
5f771d47
ILT
398.
399
252b5132
RH
400DESCRIPTION
401 Helper routine to turn a symbol into a relocation value.
402
dc810e39
AM
403.#define HOWTO_PREPARE(relocation, symbol) \
404. { \
405. if (symbol != (asymbol *) NULL) \
406. { \
407. if (bfd_is_com_section (symbol->section)) \
408. { \
409. relocation = 0; \
410. } \
411. else \
412. { \
413. relocation = symbol->value; \
414. } \
415. } \
416. }
b5f79c76 417.
252b5132
RH
418*/
419
420/*
421FUNCTION
422 bfd_get_reloc_size
423
424SYNOPSIS
425 unsigned int bfd_get_reloc_size (reloc_howto_type *);
426
427DESCRIPTION
428 For a reloc_howto_type that operates on a fixed number of bytes,
429 this returns the number of bytes operated on.
430 */
431
432unsigned int
433bfd_get_reloc_size (howto)
434 reloc_howto_type *howto;
435{
436 switch (howto->size)
437 {
438 case 0: return 1;
439 case 1: return 2;
440 case 2: return 4;
441 case 3: return 0;
442 case 4: return 8;
443 case 8: return 16;
444 case -2: return 4;
445 default: abort ();
446 }
447}
448
449/*
450TYPEDEF
451 arelent_chain
452
453DESCRIPTION
454
455 How relocs are tied together in an <<asection>>:
456
dc810e39
AM
457.typedef struct relent_chain
458.{
252b5132 459. arelent relent;
dc810e39 460. struct relent_chain *next;
b5f79c76
NC
461.}
462.arelent_chain;
463.
252b5132
RH
464*/
465
466/* N_ONES produces N one bits, without overflowing machine arithmetic. */
467#define N_ONES(n) (((((bfd_vma) 1 << ((n) - 1)) - 1) << 1) | 1)
468
469/*
470FUNCTION
471 bfd_check_overflow
472
473SYNOPSIS
474 bfd_reloc_status_type
475 bfd_check_overflow
476 (enum complain_overflow how,
477 unsigned int bitsize,
478 unsigned int rightshift,
479 unsigned int addrsize,
480 bfd_vma relocation);
481
482DESCRIPTION
483 Perform overflow checking on @var{relocation} which has
484 @var{bitsize} significant bits and will be shifted right by
485 @var{rightshift} bits, on a machine with addresses containing
486 @var{addrsize} significant bits. The result is either of
487 @code{bfd_reloc_ok} or @code{bfd_reloc_overflow}.
488
489*/
490
491bfd_reloc_status_type
492bfd_check_overflow (how, bitsize, rightshift, addrsize, relocation)
493 enum complain_overflow how;
494 unsigned int bitsize;
495 unsigned int rightshift;
496 unsigned int addrsize;
497 bfd_vma relocation;
498{
499 bfd_vma fieldmask, addrmask, signmask, ss, a;
500 bfd_reloc_status_type flag = bfd_reloc_ok;
501
502 a = relocation;
503
504 /* Note: BITSIZE should always be <= ADDRSIZE, but in case it's not,
505 we'll be permissive: extra bits in the field mask will
506 automatically extend the address mask for purposes of the
507 overflow check. */
508 fieldmask = N_ONES (bitsize);
509 addrmask = N_ONES (addrsize) | fieldmask;
510
511 switch (how)
512 {
513 case complain_overflow_dont:
514 break;
515
516 case complain_overflow_signed:
517 /* If any sign bits are set, all sign bits must be set. That
518 is, A must be a valid negative address after shifting. */
519 a = (a & addrmask) >> rightshift;
520 signmask = ~ (fieldmask >> 1);
521 ss = a & signmask;
522 if (ss != 0 && ss != ((addrmask >> rightshift) & signmask))
523 flag = bfd_reloc_overflow;
524 break;
525
526 case complain_overflow_unsigned:
527 /* We have an overflow if the address does not fit in the field. */
528 a = (a & addrmask) >> rightshift;
529 if ((a & ~ fieldmask) != 0)
530 flag = bfd_reloc_overflow;
531 break;
532
533 case complain_overflow_bitfield:
534 /* Bitfields are sometimes signed, sometimes unsigned. We
d5afc56e
AM
535 explicitly allow an address wrap too, which means a bitfield
536 of n bits is allowed to store -2**n to 2**n-1. Thus overflow
537 if the value has some, but not all, bits set outside the
538 field. */
252b5132 539 a >>= rightshift;
d5afc56e
AM
540 ss = a & ~ fieldmask;
541 if (ss != 0 && ss != (((bfd_vma) -1 >> rightshift) & ~ fieldmask))
542 flag = bfd_reloc_overflow;
252b5132
RH
543 break;
544
545 default:
546 abort ();
547 }
548
549 return flag;
550}
551
552/*
553FUNCTION
554 bfd_perform_relocation
555
556SYNOPSIS
557 bfd_reloc_status_type
558 bfd_perform_relocation
559 (bfd *abfd,
560 arelent *reloc_entry,
561 PTR data,
562 asection *input_section,
563 bfd *output_bfd,
564 char **error_message);
565
566DESCRIPTION
567 If @var{output_bfd} is supplied to this function, the
568 generated image will be relocatable; the relocations are
569 copied to the output file after they have been changed to
570 reflect the new state of the world. There are two ways of
571 reflecting the results of partial linkage in an output file:
572 by modifying the output data in place, and by modifying the
573 relocation record. Some native formats (e.g., basic a.out and
574 basic coff) have no way of specifying an addend in the
575 relocation type, so the addend has to go in the output data.
576 This is no big deal since in these formats the output data
577 slot will always be big enough for the addend. Complex reloc
578 types with addends were invented to solve just this problem.
579 The @var{error_message} argument is set to an error message if
580 this return @code{bfd_reloc_dangerous}.
581
582*/
583
252b5132
RH
584bfd_reloc_status_type
585bfd_perform_relocation (abfd, reloc_entry, data, input_section, output_bfd,
586 error_message)
587 bfd *abfd;
588 arelent *reloc_entry;
589 PTR data;
590 asection *input_section;
591 bfd *output_bfd;
592 char **error_message;
593{
594 bfd_vma relocation;
595 bfd_reloc_status_type flag = bfd_reloc_ok;
9a968f43 596 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
252b5132
RH
597 bfd_vma output_base = 0;
598 reloc_howto_type *howto = reloc_entry->howto;
599 asection *reloc_target_output_section;
600 asymbol *symbol;
601
602 symbol = *(reloc_entry->sym_ptr_ptr);
603 if (bfd_is_abs_section (symbol->section)
604 && output_bfd != (bfd *) NULL)
605 {
606 reloc_entry->address += input_section->output_offset;
607 return bfd_reloc_ok;
608 }
609
610 /* If we are not producing relocateable output, return an error if
611 the symbol is not defined. An undefined weak symbol is
612 considered to have a value of zero (SVR4 ABI, p. 4-27). */
613 if (bfd_is_und_section (symbol->section)
614 && (symbol->flags & BSF_WEAK) == 0
615 && output_bfd == (bfd *) NULL)
616 flag = bfd_reloc_undefined;
617
618 /* If there is a function supplied to handle this relocation type,
619 call it. It'll return `bfd_reloc_continue' if further processing
620 can be done. */
621 if (howto->special_function)
622 {
623 bfd_reloc_status_type cont;
624 cont = howto->special_function (abfd, reloc_entry, symbol, data,
625 input_section, output_bfd,
626 error_message);
627 if (cont != bfd_reloc_continue)
628 return cont;
629 }
630
631 /* Is the address of the relocation really within the section? */
e207c4fa
AM
632 if (reloc_entry->address > (input_section->_cooked_size
633 / bfd_octets_per_byte (abfd)))
252b5132
RH
634 return bfd_reloc_outofrange;
635
636 /* Work out which section the relocation is targetted at and the
637 initial relocation command value. */
638
639 /* Get symbol value. (Common symbols are special.) */
640 if (bfd_is_com_section (symbol->section))
641 relocation = 0;
642 else
643 relocation = symbol->value;
644
252b5132
RH
645 reloc_target_output_section = symbol->section->output_section;
646
647 /* Convert input-section-relative symbol value to absolute. */
648 if (output_bfd && howto->partial_inplace == false)
649 output_base = 0;
650 else
651 output_base = reloc_target_output_section->vma;
652
653 relocation += output_base + symbol->section->output_offset;
654
655 /* Add in supplied addend. */
656 relocation += reloc_entry->addend;
657
658 /* Here the variable relocation holds the final address of the
659 symbol we are relocating against, plus any addend. */
660
661 if (howto->pc_relative == true)
662 {
663 /* This is a PC relative relocation. We want to set RELOCATION
664 to the distance between the address of the symbol and the
665 location. RELOCATION is already the address of the symbol.
666
667 We start by subtracting the address of the section containing
668 the location.
669
670 If pcrel_offset is set, we must further subtract the position
671 of the location within the section. Some targets arrange for
672 the addend to be the negative of the position of the location
673 within the section; for example, i386-aout does this. For
674 i386-aout, pcrel_offset is false. Some other targets do not
675 include the position of the location; for example, m88kbcs,
676 or ELF. For those targets, pcrel_offset is true.
677
678 If we are producing relocateable output, then we must ensure
679 that this reloc will be correctly computed when the final
680 relocation is done. If pcrel_offset is false we want to wind
681 up with the negative of the location within the section,
682 which means we must adjust the existing addend by the change
683 in the location within the section. If pcrel_offset is true
684 we do not want to adjust the existing addend at all.
685
686 FIXME: This seems logical to me, but for the case of
687 producing relocateable output it is not what the code
688 actually does. I don't want to change it, because it seems
689 far too likely that something will break. */
690
691 relocation -=
692 input_section->output_section->vma + input_section->output_offset;
693
694 if (howto->pcrel_offset == true)
695 relocation -= reloc_entry->address;
696 }
697
698 if (output_bfd != (bfd *) NULL)
699 {
700 if (howto->partial_inplace == false)
701 {
702 /* This is a partial relocation, and we want to apply the relocation
703 to the reloc entry rather than the raw data. Modify the reloc
704 inplace to reflect what we now know. */
705 reloc_entry->addend = relocation;
706 reloc_entry->address += input_section->output_offset;
707 return flag;
708 }
709 else
710 {
711 /* This is a partial relocation, but inplace, so modify the
712 reloc record a bit.
713
714 If we've relocated with a symbol with a section, change
715 into a ref to the section belonging to the symbol. */
716
717 reloc_entry->address += input_section->output_offset;
718
719 /* WTF?? */
720 if (abfd->xvec->flavour == bfd_target_coff_flavour
252b5132
RH
721 && strcmp (abfd->xvec->name, "coff-Intel-little") != 0
722 && strcmp (abfd->xvec->name, "coff-Intel-big") != 0)
723 {
724#if 1
725 /* For m68k-coff, the addend was being subtracted twice during
726 relocation with -r. Removing the line below this comment
727 fixes that problem; see PR 2953.
728
729However, Ian wrote the following, regarding removing the line below,
730which explains why it is still enabled: --djm
731
732If you put a patch like that into BFD you need to check all the COFF
733linkers. I am fairly certain that patch will break coff-i386 (e.g.,
734SCO); see coff_i386_reloc in coff-i386.c where I worked around the
735problem in a different way. There may very well be a reason that the
736code works as it does.
737
738Hmmm. The first obvious point is that bfd_perform_relocation should
739not have any tests that depend upon the flavour. It's seem like
740entirely the wrong place for such a thing. The second obvious point
741is that the current code ignores the reloc addend when producing
742relocateable output for COFF. That's peculiar. In fact, I really
743have no idea what the point of the line you want to remove is.
744
745A typical COFF reloc subtracts the old value of the symbol and adds in
746the new value to the location in the object file (if it's a pc
747relative reloc it adds the difference between the symbol value and the
748location). When relocating we need to preserve that property.
749
750BFD handles this by setting the addend to the negative of the old
751value of the symbol. Unfortunately it handles common symbols in a
752non-standard way (it doesn't subtract the old value) but that's a
753different story (we can't change it without losing backward
754compatibility with old object files) (coff-i386 does subtract the old
755value, to be compatible with existing coff-i386 targets, like SCO).
756
757So everything works fine when not producing relocateable output. When
758we are producing relocateable output, logically we should do exactly
759what we do when not producing relocateable output. Therefore, your
760patch is correct. In fact, it should probably always just set
761reloc_entry->addend to 0 for all cases, since it is, in fact, going to
762add the value into the object file. This won't hurt the COFF code,
763which doesn't use the addend; I'm not sure what it will do to other
764formats (the thing to check for would be whether any formats both use
765the addend and set partial_inplace).
766
767When I wanted to make coff-i386 produce relocateable output, I ran
768into the problem that you are running into: I wanted to remove that
769line. Rather than risk it, I made the coff-i386 relocs use a special
770function; it's coff_i386_reloc in coff-i386.c. The function
771specifically adds the addend field into the object file, knowing that
772bfd_perform_relocation is not going to. If you remove that line, then
773coff-i386.c will wind up adding the addend field in twice. It's
774trivial to fix; it just needs to be done.
775
776The problem with removing the line is just that it may break some
777working code. With BFD it's hard to be sure of anything. The right
778way to deal with this is simply to build and test at least all the
779supported COFF targets. It should be straightforward if time and disk
780space consuming. For each target:
781 1) build the linker
782 2) generate some executable, and link it using -r (I would
783 probably use paranoia.o and link against newlib/libc.a, which
784 for all the supported targets would be available in
785 /usr/cygnus/progressive/H-host/target/lib/libc.a).
786 3) make the change to reloc.c
787 4) rebuild the linker
788 5) repeat step 2
789 6) if the resulting object files are the same, you have at least
790 made it no worse
791 7) if they are different you have to figure out which version is
792 right
793*/
794 relocation -= reloc_entry->addend;
795#endif
796 reloc_entry->addend = 0;
797 }
798 else
799 {
800 reloc_entry->addend = relocation;
801 }
802 }
803 }
804 else
805 {
806 reloc_entry->addend = 0;
807 }
808
809 /* FIXME: This overflow checking is incomplete, because the value
810 might have overflowed before we get here. For a correct check we
811 need to compute the value in a size larger than bitsize, but we
812 can't reasonably do that for a reloc the same size as a host
813 machine word.
814 FIXME: We should also do overflow checking on the result after
815 adding in the value contained in the object file. */
816 if (howto->complain_on_overflow != complain_overflow_dont
817 && flag == bfd_reloc_ok)
818 flag = bfd_check_overflow (howto->complain_on_overflow,
819 howto->bitsize,
820 howto->rightshift,
821 bfd_arch_bits_per_address (abfd),
822 relocation);
823
b5f79c76
NC
824 /* Either we are relocating all the way, or we don't want to apply
825 the relocation to the reloc entry (probably because there isn't
826 any room in the output format to describe addends to relocs). */
252b5132
RH
827
828 /* The cast to bfd_vma avoids a bug in the Alpha OSF/1 C compiler
829 (OSF version 1.3, compiler version 3.11). It miscompiles the
830 following program:
831
832 struct str
833 {
834 unsigned int i0;
835 } s = { 0 };
836
837 int
838 main ()
839 {
840 unsigned long x;
841
842 x = 0x100000000;
843 x <<= (unsigned long) s.i0;
844 if (x == 0)
845 printf ("failed\n");
846 else
847 printf ("succeeded (%lx)\n", x);
848 }
849 */
850
851 relocation >>= (bfd_vma) howto->rightshift;
852
b5f79c76 853 /* Shift everything up to where it's going to be used. */
252b5132
RH
854 relocation <<= (bfd_vma) howto->bitpos;
855
b5f79c76 856 /* Wait for the day when all have the mask in them. */
252b5132
RH
857
858 /* What we do:
859 i instruction to be left alone
860 o offset within instruction
861 r relocation offset to apply
862 S src mask
863 D dst mask
864 N ~dst mask
865 A part 1
866 B part 2
867 R result
868
869 Do this:
88b6bae0
AM
870 (( i i i i i o o o o o from bfd_get<size>
871 and S S S S S) to get the size offset we want
872 + r r r r r r r r r r) to get the final value to place
252b5132
RH
873 and D D D D D to chop to right size
874 -----------------------
88b6bae0 875 = A A A A A
252b5132 876 And this:
88b6bae0
AM
877 ( i i i i i o o o o o from bfd_get<size>
878 and N N N N N ) get instruction
252b5132 879 -----------------------
88b6bae0 880 = B B B B B
252b5132
RH
881
882 And then:
88b6bae0
AM
883 ( B B B B B
884 or A A A A A)
252b5132 885 -----------------------
88b6bae0 886 = R R R R R R R R R R put into bfd_put<size>
252b5132
RH
887 */
888
889#define DOIT(x) \
890 x = ( (x & ~howto->dst_mask) | (((x & howto->src_mask) + relocation) & howto->dst_mask))
891
892 switch (howto->size)
893 {
894 case 0:
895 {
9a968f43 896 char x = bfd_get_8 (abfd, (char *) data + octets);
252b5132 897 DOIT (x);
9a968f43 898 bfd_put_8 (abfd, x, (unsigned char *) data + octets);
252b5132
RH
899 }
900 break;
901
902 case 1:
903 {
9a968f43 904 short x = bfd_get_16 (abfd, (bfd_byte *) data + octets);
252b5132 905 DOIT (x);
dc810e39 906 bfd_put_16 (abfd, (bfd_vma) x, (unsigned char *) data + octets);
252b5132
RH
907 }
908 break;
909 case 2:
910 {
9a968f43 911 long x = bfd_get_32 (abfd, (bfd_byte *) data + octets);
252b5132 912 DOIT (x);
dc810e39 913 bfd_put_32 (abfd, (bfd_vma) x, (bfd_byte *) data + octets);
252b5132
RH
914 }
915 break;
916 case -2:
917 {
9a968f43 918 long x = bfd_get_32 (abfd, (bfd_byte *) data + octets);
252b5132
RH
919 relocation = -relocation;
920 DOIT (x);
dc810e39 921 bfd_put_32 (abfd, (bfd_vma) x, (bfd_byte *) data + octets);
252b5132
RH
922 }
923 break;
924
925 case -1:
926 {
9a968f43 927 long x = bfd_get_16 (abfd, (bfd_byte *) data + octets);
252b5132
RH
928 relocation = -relocation;
929 DOIT (x);
dc810e39 930 bfd_put_16 (abfd, (bfd_vma) x, (bfd_byte *) data + octets);
252b5132
RH
931 }
932 break;
933
934 case 3:
935 /* Do nothing */
936 break;
937
938 case 4:
939#ifdef BFD64
940 {
9a968f43 941 bfd_vma x = bfd_get_64 (abfd, (bfd_byte *) data + octets);
252b5132 942 DOIT (x);
9a968f43 943 bfd_put_64 (abfd, x, (bfd_byte *) data + octets);
252b5132
RH
944 }
945#else
946 abort ();
947#endif
948 break;
949 default:
950 return bfd_reloc_other;
951 }
952
953 return flag;
954}
955
956/*
957FUNCTION
958 bfd_install_relocation
959
960SYNOPSIS
961 bfd_reloc_status_type
962 bfd_install_relocation
963 (bfd *abfd,
964 arelent *reloc_entry,
965 PTR data, bfd_vma data_start,
966 asection *input_section,
967 char **error_message);
968
969DESCRIPTION
970 This looks remarkably like <<bfd_perform_relocation>>, except it
971 does not expect that the section contents have been filled in.
972 I.e., it's suitable for use when creating, rather than applying
973 a relocation.
974
975 For now, this function should be considered reserved for the
976 assembler.
252b5132
RH
977*/
978
252b5132
RH
979bfd_reloc_status_type
980bfd_install_relocation (abfd, reloc_entry, data_start, data_start_offset,
981 input_section, error_message)
982 bfd *abfd;
983 arelent *reloc_entry;
984 PTR data_start;
985 bfd_vma data_start_offset;
986 asection *input_section;
987 char **error_message;
988{
989 bfd_vma relocation;
990 bfd_reloc_status_type flag = bfd_reloc_ok;
9a968f43 991 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
252b5132
RH
992 bfd_vma output_base = 0;
993 reloc_howto_type *howto = reloc_entry->howto;
994 asection *reloc_target_output_section;
995 asymbol *symbol;
996 bfd_byte *data;
997
998 symbol = *(reloc_entry->sym_ptr_ptr);
999 if (bfd_is_abs_section (symbol->section))
1000 {
1001 reloc_entry->address += input_section->output_offset;
1002 return bfd_reloc_ok;
1003 }
1004
1005 /* If there is a function supplied to handle this relocation type,
1006 call it. It'll return `bfd_reloc_continue' if further processing
1007 can be done. */
1008 if (howto->special_function)
1009 {
1010 bfd_reloc_status_type cont;
88b6bae0 1011
252b5132
RH
1012 /* XXX - The special_function calls haven't been fixed up to deal
1013 with creating new relocations and section contents. */
1014 cont = howto->special_function (abfd, reloc_entry, symbol,
1015 /* XXX - Non-portable! */
1016 ((bfd_byte *) data_start
1017 - data_start_offset),
1018 input_section, abfd, error_message);
1019 if (cont != bfd_reloc_continue)
1020 return cont;
1021 }
1022
1023 /* Is the address of the relocation really within the section? */
e207c4fa
AM
1024 if (reloc_entry->address > (input_section->_cooked_size
1025 / bfd_octets_per_byte (abfd)))
252b5132
RH
1026 return bfd_reloc_outofrange;
1027
1028 /* Work out which section the relocation is targetted at and the
1029 initial relocation command value. */
1030
1031 /* Get symbol value. (Common symbols are special.) */
1032 if (bfd_is_com_section (symbol->section))
1033 relocation = 0;
1034 else
1035 relocation = symbol->value;
1036
1037 reloc_target_output_section = symbol->section->output_section;
1038
1039 /* Convert input-section-relative symbol value to absolute. */
1040 if (howto->partial_inplace == false)
1041 output_base = 0;
1042 else
1043 output_base = reloc_target_output_section->vma;
1044
1045 relocation += output_base + symbol->section->output_offset;
1046
1047 /* Add in supplied addend. */
1048 relocation += reloc_entry->addend;
1049
1050 /* Here the variable relocation holds the final address of the
1051 symbol we are relocating against, plus any addend. */
1052
1053 if (howto->pc_relative == true)
1054 {
1055 /* This is a PC relative relocation. We want to set RELOCATION
1056 to the distance between the address of the symbol and the
1057 location. RELOCATION is already the address of the symbol.
1058
1059 We start by subtracting the address of the section containing
1060 the location.
1061
1062 If pcrel_offset is set, we must further subtract the position
1063 of the location within the section. Some targets arrange for
1064 the addend to be the negative of the position of the location
1065 within the section; for example, i386-aout does this. For
1066 i386-aout, pcrel_offset is false. Some other targets do not
1067 include the position of the location; for example, m88kbcs,
1068 or ELF. For those targets, pcrel_offset is true.
1069
1070 If we are producing relocateable output, then we must ensure
1071 that this reloc will be correctly computed when the final
1072 relocation is done. If pcrel_offset is false we want to wind
1073 up with the negative of the location within the section,
1074 which means we must adjust the existing addend by the change
1075 in the location within the section. If pcrel_offset is true
1076 we do not want to adjust the existing addend at all.
1077
1078 FIXME: This seems logical to me, but for the case of
1079 producing relocateable output it is not what the code
1080 actually does. I don't want to change it, because it seems
1081 far too likely that something will break. */
1082
1083 relocation -=
1084 input_section->output_section->vma + input_section->output_offset;
1085
1086 if (howto->pcrel_offset == true && howto->partial_inplace == true)
1087 relocation -= reloc_entry->address;
1088 }
1089
1090 if (howto->partial_inplace == false)
1091 {
1092 /* This is a partial relocation, and we want to apply the relocation
1093 to the reloc entry rather than the raw data. Modify the reloc
1094 inplace to reflect what we now know. */
1095 reloc_entry->addend = relocation;
1096 reloc_entry->address += input_section->output_offset;
1097 return flag;
1098 }
1099 else
1100 {
1101 /* This is a partial relocation, but inplace, so modify the
1102 reloc record a bit.
1103
1104 If we've relocated with a symbol with a section, change
1105 into a ref to the section belonging to the symbol. */
252b5132
RH
1106 reloc_entry->address += input_section->output_offset;
1107
1108 /* WTF?? */
1109 if (abfd->xvec->flavour == bfd_target_coff_flavour
252b5132
RH
1110 && strcmp (abfd->xvec->name, "coff-Intel-little") != 0
1111 && strcmp (abfd->xvec->name, "coff-Intel-big") != 0)
1112 {
1113#if 1
1114/* For m68k-coff, the addend was being subtracted twice during
1115 relocation with -r. Removing the line below this comment
1116 fixes that problem; see PR 2953.
1117
1118However, Ian wrote the following, regarding removing the line below,
1119which explains why it is still enabled: --djm
1120
1121If you put a patch like that into BFD you need to check all the COFF
1122linkers. I am fairly certain that patch will break coff-i386 (e.g.,
1123SCO); see coff_i386_reloc in coff-i386.c where I worked around the
1124problem in a different way. There may very well be a reason that the
1125code works as it does.
1126
1127Hmmm. The first obvious point is that bfd_install_relocation should
1128not have any tests that depend upon the flavour. It's seem like
1129entirely the wrong place for such a thing. The second obvious point
1130is that the current code ignores the reloc addend when producing
1131relocateable output for COFF. That's peculiar. In fact, I really
1132have no idea what the point of the line you want to remove is.
1133
1134A typical COFF reloc subtracts the old value of the symbol and adds in
1135the new value to the location in the object file (if it's a pc
1136relative reloc it adds the difference between the symbol value and the
1137location). When relocating we need to preserve that property.
1138
1139BFD handles this by setting the addend to the negative of the old
1140value of the symbol. Unfortunately it handles common symbols in a
1141non-standard way (it doesn't subtract the old value) but that's a
1142different story (we can't change it without losing backward
1143compatibility with old object files) (coff-i386 does subtract the old
1144value, to be compatible with existing coff-i386 targets, like SCO).
1145
1146So everything works fine when not producing relocateable output. When
1147we are producing relocateable output, logically we should do exactly
1148what we do when not producing relocateable output. Therefore, your
1149patch is correct. In fact, it should probably always just set
1150reloc_entry->addend to 0 for all cases, since it is, in fact, going to
1151add the value into the object file. This won't hurt the COFF code,
1152which doesn't use the addend; I'm not sure what it will do to other
1153formats (the thing to check for would be whether any formats both use
1154the addend and set partial_inplace).
1155
1156When I wanted to make coff-i386 produce relocateable output, I ran
1157into the problem that you are running into: I wanted to remove that
1158line. Rather than risk it, I made the coff-i386 relocs use a special
1159function; it's coff_i386_reloc in coff-i386.c. The function
1160specifically adds the addend field into the object file, knowing that
1161bfd_install_relocation is not going to. If you remove that line, then
1162coff-i386.c will wind up adding the addend field in twice. It's
1163trivial to fix; it just needs to be done.
1164
1165The problem with removing the line is just that it may break some
1166working code. With BFD it's hard to be sure of anything. The right
1167way to deal with this is simply to build and test at least all the
1168supported COFF targets. It should be straightforward if time and disk
1169space consuming. For each target:
1170 1) build the linker
1171 2) generate some executable, and link it using -r (I would
1172 probably use paranoia.o and link against newlib/libc.a, which
1173 for all the supported targets would be available in
1174 /usr/cygnus/progressive/H-host/target/lib/libc.a).
1175 3) make the change to reloc.c
1176 4) rebuild the linker
1177 5) repeat step 2
1178 6) if the resulting object files are the same, you have at least
1179 made it no worse
1180 7) if they are different you have to figure out which version is
b5f79c76 1181 right. */
252b5132
RH
1182 relocation -= reloc_entry->addend;
1183#endif
1184 reloc_entry->addend = 0;
1185 }
1186 else
1187 {
1188 reloc_entry->addend = relocation;
1189 }
1190 }
1191
1192 /* FIXME: This overflow checking is incomplete, because the value
1193 might have overflowed before we get here. For a correct check we
1194 need to compute the value in a size larger than bitsize, but we
1195 can't reasonably do that for a reloc the same size as a host
1196 machine word.
1197 FIXME: We should also do overflow checking on the result after
1198 adding in the value contained in the object file. */
1199 if (howto->complain_on_overflow != complain_overflow_dont)
1200 flag = bfd_check_overflow (howto->complain_on_overflow,
1201 howto->bitsize,
1202 howto->rightshift,
1203 bfd_arch_bits_per_address (abfd),
1204 relocation);
1205
b5f79c76
NC
1206 /* Either we are relocating all the way, or we don't want to apply
1207 the relocation to the reloc entry (probably because there isn't
1208 any room in the output format to describe addends to relocs). */
252b5132
RH
1209
1210 /* The cast to bfd_vma avoids a bug in the Alpha OSF/1 C compiler
1211 (OSF version 1.3, compiler version 3.11). It miscompiles the
1212 following program:
1213
1214 struct str
1215 {
1216 unsigned int i0;
1217 } s = { 0 };
1218
1219 int
1220 main ()
1221 {
1222 unsigned long x;
1223
1224 x = 0x100000000;
1225 x <<= (unsigned long) s.i0;
1226 if (x == 0)
1227 printf ("failed\n");
1228 else
1229 printf ("succeeded (%lx)\n", x);
1230 }
1231 */
1232
1233 relocation >>= (bfd_vma) howto->rightshift;
1234
b5f79c76 1235 /* Shift everything up to where it's going to be used. */
252b5132
RH
1236 relocation <<= (bfd_vma) howto->bitpos;
1237
b5f79c76 1238 /* Wait for the day when all have the mask in them. */
252b5132
RH
1239
1240 /* What we do:
1241 i instruction to be left alone
1242 o offset within instruction
1243 r relocation offset to apply
1244 S src mask
1245 D dst mask
1246 N ~dst mask
1247 A part 1
1248 B part 2
1249 R result
1250
1251 Do this:
88b6bae0
AM
1252 (( i i i i i o o o o o from bfd_get<size>
1253 and S S S S S) to get the size offset we want
1254 + r r r r r r r r r r) to get the final value to place
252b5132
RH
1255 and D D D D D to chop to right size
1256 -----------------------
88b6bae0 1257 = A A A A A
252b5132 1258 And this:
88b6bae0
AM
1259 ( i i i i i o o o o o from bfd_get<size>
1260 and N N N N N ) get instruction
252b5132 1261 -----------------------
88b6bae0 1262 = B B B B B
252b5132
RH
1263
1264 And then:
88b6bae0
AM
1265 ( B B B B B
1266 or A A A A A)
252b5132 1267 -----------------------
88b6bae0 1268 = R R R R R R R R R R put into bfd_put<size>
252b5132
RH
1269 */
1270
1271#define DOIT(x) \
1272 x = ( (x & ~howto->dst_mask) | (((x & howto->src_mask) + relocation) & howto->dst_mask))
1273
9a968f43 1274 data = (bfd_byte *) data_start + (octets - data_start_offset);
252b5132
RH
1275
1276 switch (howto->size)
1277 {
1278 case 0:
1279 {
1280 char x = bfd_get_8 (abfd, (char *) data);
1281 DOIT (x);
1282 bfd_put_8 (abfd, x, (unsigned char *) data);
1283 }
1284 break;
1285
1286 case 1:
1287 {
1288 short x = bfd_get_16 (abfd, (bfd_byte *) data);
1289 DOIT (x);
dc810e39 1290 bfd_put_16 (abfd, (bfd_vma) x, (unsigned char *) data);
252b5132
RH
1291 }
1292 break;
1293 case 2:
1294 {
1295 long x = bfd_get_32 (abfd, (bfd_byte *) data);
1296 DOIT (x);
dc810e39 1297 bfd_put_32 (abfd, (bfd_vma) x, (bfd_byte *) data);
252b5132
RH
1298 }
1299 break;
1300 case -2:
1301 {
1302 long x = bfd_get_32 (abfd, (bfd_byte *) data);
1303 relocation = -relocation;
1304 DOIT (x);
dc810e39 1305 bfd_put_32 (abfd, (bfd_vma) x, (bfd_byte *) data);
252b5132
RH
1306 }
1307 break;
1308
1309 case 3:
1310 /* Do nothing */
1311 break;
1312
1313 case 4:
1314 {
1315 bfd_vma x = bfd_get_64 (abfd, (bfd_byte *) data);
1316 DOIT (x);
1317 bfd_put_64 (abfd, x, (bfd_byte *) data);
1318 }
1319 break;
1320 default:
1321 return bfd_reloc_other;
1322 }
1323
1324 return flag;
1325}
1326
1327/* This relocation routine is used by some of the backend linkers.
1328 They do not construct asymbol or arelent structures, so there is no
1329 reason for them to use bfd_perform_relocation. Also,
1330 bfd_perform_relocation is so hacked up it is easier to write a new
1331 function than to try to deal with it.
1332
1333 This routine does a final relocation. Whether it is useful for a
1334 relocateable link depends upon how the object format defines
1335 relocations.
1336
1337 FIXME: This routine ignores any special_function in the HOWTO,
1338 since the existing special_function values have been written for
1339 bfd_perform_relocation.
1340
1341 HOWTO is the reloc howto information.
1342 INPUT_BFD is the BFD which the reloc applies to.
1343 INPUT_SECTION is the section which the reloc applies to.
1344 CONTENTS is the contents of the section.
1345 ADDRESS is the address of the reloc within INPUT_SECTION.
1346 VALUE is the value of the symbol the reloc refers to.
1347 ADDEND is the addend of the reloc. */
1348
1349bfd_reloc_status_type
1350_bfd_final_link_relocate (howto, input_bfd, input_section, contents, address,
1351 value, addend)
1352 reloc_howto_type *howto;
1353 bfd *input_bfd;
1354 asection *input_section;
1355 bfd_byte *contents;
1356 bfd_vma address;
1357 bfd_vma value;
1358 bfd_vma addend;
1359{
1360 bfd_vma relocation;
1361
1362 /* Sanity check the address. */
1363 if (address > input_section->_raw_size)
1364 return bfd_reloc_outofrange;
1365
1366 /* This function assumes that we are dealing with a basic relocation
1367 against a symbol. We want to compute the value of the symbol to
1368 relocate to. This is just VALUE, the value of the symbol, plus
1369 ADDEND, any addend associated with the reloc. */
1370 relocation = value + addend;
1371
1372 /* If the relocation is PC relative, we want to set RELOCATION to
1373 the distance between the symbol (currently in RELOCATION) and the
1374 location we are relocating. Some targets (e.g., i386-aout)
1375 arrange for the contents of the section to be the negative of the
1376 offset of the location within the section; for such targets
1377 pcrel_offset is false. Other targets (e.g., m88kbcs or ELF)
1378 simply leave the contents of the section as zero; for such
1379 targets pcrel_offset is true. If pcrel_offset is false we do not
1380 need to subtract out the offset of the location within the
1381 section (which is just ADDRESS). */
1382 if (howto->pc_relative)
1383 {
1384 relocation -= (input_section->output_section->vma
1385 + input_section->output_offset);
1386 if (howto->pcrel_offset)
1387 relocation -= address;
1388 }
1389
1390 return _bfd_relocate_contents (howto, input_bfd, relocation,
1391 contents + address);
1392}
1393
1394/* Relocate a given location using a given value and howto. */
1395
1396bfd_reloc_status_type
1397_bfd_relocate_contents (howto, input_bfd, relocation, location)
1398 reloc_howto_type *howto;
1399 bfd *input_bfd;
1400 bfd_vma relocation;
1401 bfd_byte *location;
1402{
1403 int size;
7442e600 1404 bfd_vma x = 0;
d5afc56e 1405 bfd_reloc_status_type flag;
252b5132
RH
1406 unsigned int rightshift = howto->rightshift;
1407 unsigned int bitpos = howto->bitpos;
1408
1409 /* If the size is negative, negate RELOCATION. This isn't very
1410 general. */
1411 if (howto->size < 0)
1412 relocation = -relocation;
1413
1414 /* Get the value we are going to relocate. */
1415 size = bfd_get_reloc_size (howto);
1416 switch (size)
1417 {
1418 default:
1419 case 0:
1420 abort ();
1421 case 1:
1422 x = bfd_get_8 (input_bfd, location);
1423 break;
1424 case 2:
1425 x = bfd_get_16 (input_bfd, location);
1426 break;
1427 case 4:
1428 x = bfd_get_32 (input_bfd, location);
1429 break;
1430 case 8:
1431#ifdef BFD64
1432 x = bfd_get_64 (input_bfd, location);
1433#else
1434 abort ();
1435#endif
1436 break;
1437 }
1438
1439 /* Check for overflow. FIXME: We may drop bits during the addition
1440 which we don't check for. We must either check at every single
1441 operation, which would be tedious, or we must do the computations
1442 in a type larger than bfd_vma, which would be inefficient. */
d5afc56e 1443 flag = bfd_reloc_ok;
252b5132
RH
1444 if (howto->complain_on_overflow != complain_overflow_dont)
1445 {
1446 bfd_vma addrmask, fieldmask, signmask, ss;
1447 bfd_vma a, b, sum;
1448
1449 /* Get the values to be added together. For signed and unsigned
1450 relocations, we assume that all values should be truncated to
1451 the size of an address. For bitfields, all the bits matter.
1452 See also bfd_check_overflow. */
1453 fieldmask = N_ONES (howto->bitsize);
1454 addrmask = N_ONES (bfd_arch_bits_per_address (input_bfd)) | fieldmask;
1455 a = relocation;
1456 b = x & howto->src_mask;
1457
1458 switch (howto->complain_on_overflow)
1459 {
1460 case complain_overflow_signed:
1461 a = (a & addrmask) >> rightshift;
1462
1463 /* If any sign bits are set, all sign bits must be set.
1464 That is, A must be a valid negative address after
1465 shifting. */
1466 signmask = ~ (fieldmask >> 1);
1467 ss = a & signmask;
1468 if (ss != 0 && ss != ((addrmask >> rightshift) & signmask))
d5afc56e 1469 flag = bfd_reloc_overflow;
252b5132
RH
1470
1471 /* We only need this next bit of code if the sign bit of B
1472 is below the sign bit of A. This would only happen if
1473 SRC_MASK had fewer bits than BITSIZE. Note that if
1474 SRC_MASK has more bits than BITSIZE, we can get into
1475 trouble; we would need to verify that B is in range, as
1476 we do for A above. */
1477 signmask = ((~ howto->src_mask) >> 1) & howto->src_mask;
8a4ac871
AM
1478
1479 /* Set all the bits above the sign bit. */
1480 b = (b ^ signmask) - signmask;
252b5132
RH
1481
1482 b = (b & addrmask) >> bitpos;
1483
1484 /* Now we can do the addition. */
1485 sum = a + b;
1486
1487 /* See if the result has the correct sign. Bits above the
1488 sign bit are junk now; ignore them. If the sum is
1489 positive, make sure we did not have all negative inputs;
1490 if the sum is negative, make sure we did not have all
1491 positive inputs. The test below looks only at the sign
1492 bits, and it really just
1493 SIGN (A) == SIGN (B) && SIGN (A) != SIGN (SUM)
1494 */
1495 signmask = (fieldmask >> 1) + 1;
1496 if (((~ (a ^ b)) & (a ^ sum)) & signmask)
d5afc56e 1497 flag = bfd_reloc_overflow;
252b5132
RH
1498
1499 break;
1500
1501 case complain_overflow_unsigned:
1502 /* Checking for an unsigned overflow is relatively easy:
1503 trim the addresses and add, and trim the result as well.
1504 Overflow is normally indicated when the result does not
1505 fit in the field. However, we also need to consider the
1506 case when, e.g., fieldmask is 0x7fffffff or smaller, an
1507 input is 0x80000000, and bfd_vma is only 32 bits; then we
1508 will get sum == 0, but there is an overflow, since the
1509 inputs did not fit in the field. Instead of doing a
1510 separate test, we can check for this by or-ing in the
1511 operands when testing for the sum overflowing its final
1512 field. */
1513 a = (a & addrmask) >> rightshift;
1514 b = (b & addrmask) >> bitpos;
1515 sum = (a + b) & addrmask;
1516 if ((a | b | sum) & ~ fieldmask)
d5afc56e 1517 flag = bfd_reloc_overflow;
252b5132
RH
1518
1519 break;
1520
1521 case complain_overflow_bitfield:
d5afc56e 1522 /* Much like the signed check, but for a field one bit
8a4ac871 1523 wider, and no trimming inputs with addrmask. We allow a
d5afc56e
AM
1524 bitfield to represent numbers in the range -2**n to
1525 2**n-1, where n is the number of bits in the field.
1526 Note that when bfd_vma is 32 bits, a 32-bit reloc can't
1527 overflow, which is exactly what we want. */
252b5132 1528 a >>= rightshift;
252b5132 1529
d5afc56e
AM
1530 signmask = ~ fieldmask;
1531 ss = a & signmask;
1532 if (ss != 0 && ss != (((bfd_vma) -1 >> rightshift) & signmask))
1533 flag = bfd_reloc_overflow;
252b5132 1534
d5afc56e 1535 signmask = ((~ howto->src_mask) >> 1) & howto->src_mask;
8a4ac871 1536 b = (b ^ signmask) - signmask;
252b5132 1537
d5afc56e 1538 b >>= bitpos;
44257b8b 1539
252b5132 1540 sum = a + b;
d5afc56e 1541
8a4ac871
AM
1542 /* We mask with addrmask here to explicitly allow an address
1543 wrap-around. The Linux kernel relies on it, and it is
1544 the only way to write assembler code which can run when
1545 loaded at a location 0x80000000 away from the location at
1546 which it is linked. */
d5afc56e 1547 signmask = fieldmask + 1;
8a4ac871 1548 if (((~ (a ^ b)) & (a ^ sum)) & signmask & addrmask)
d5afc56e 1549 flag = bfd_reloc_overflow;
252b5132
RH
1550
1551 break;
1552
1553 default:
1554 abort ();
1555 }
1556 }
1557
1558 /* Put RELOCATION in the right bits. */
1559 relocation >>= (bfd_vma) rightshift;
1560 relocation <<= (bfd_vma) bitpos;
1561
1562 /* Add RELOCATION to the right bits of X. */
1563 x = ((x & ~howto->dst_mask)
1564 | (((x & howto->src_mask) + relocation) & howto->dst_mask));
1565
1566 /* Put the relocated value back in the object file. */
1567 switch (size)
1568 {
1569 default:
1570 case 0:
1571 abort ();
1572 case 1:
1573 bfd_put_8 (input_bfd, x, location);
1574 break;
1575 case 2:
1576 bfd_put_16 (input_bfd, x, location);
1577 break;
1578 case 4:
1579 bfd_put_32 (input_bfd, x, location);
1580 break;
1581 case 8:
1582#ifdef BFD64
1583 bfd_put_64 (input_bfd, x, location);
1584#else
1585 abort ();
1586#endif
1587 break;
1588 }
1589
d5afc56e 1590 return flag;
252b5132
RH
1591}
1592
1593/*
1594DOCDD
1595INODE
1596 howto manager, , typedef arelent, Relocations
1597
1598SECTION
1599 The howto manager
1600
1601 When an application wants to create a relocation, but doesn't
1602 know what the target machine might call it, it can find out by
1603 using this bit of code.
1604
1605*/
1606
1607/*
1608TYPEDEF
1609 bfd_reloc_code_type
1610
1611DESCRIPTION
1612 The insides of a reloc code. The idea is that, eventually, there
1613 will be one enumerator for every type of relocation we ever do.
1614 Pass one of these values to <<bfd_reloc_type_lookup>>, and it'll
1615 return a howto pointer.
1616
1617 This does mean that the application must determine the correct
1618 enumerator value; you can't get a howto pointer from a random set
1619 of attributes.
1620
1621SENUM
1622 bfd_reloc_code_real
1623
1624ENUM
1625 BFD_RELOC_64
1626ENUMX
1627 BFD_RELOC_32
1628ENUMX
1629 BFD_RELOC_26
1630ENUMX
1631 BFD_RELOC_24
1632ENUMX
1633 BFD_RELOC_16
1634ENUMX
1635 BFD_RELOC_14
1636ENUMX
1637 BFD_RELOC_8
1638ENUMDOC
1639 Basic absolute relocations of N bits.
1640
1641ENUM
1642 BFD_RELOC_64_PCREL
1643ENUMX
1644 BFD_RELOC_32_PCREL
1645ENUMX
1646 BFD_RELOC_24_PCREL
1647ENUMX
1648 BFD_RELOC_16_PCREL
1649ENUMX
1650 BFD_RELOC_12_PCREL
1651ENUMX
1652 BFD_RELOC_8_PCREL
1653ENUMDOC
1654 PC-relative relocations. Sometimes these are relative to the address
1655of the relocation itself; sometimes they are relative to the start of
1656the section containing the relocation. It depends on the specific target.
1657
1658The 24-bit relocation is used in some Intel 960 configurations.
1659
1660ENUM
1661 BFD_RELOC_32_GOT_PCREL
1662ENUMX
1663 BFD_RELOC_16_GOT_PCREL
1664ENUMX
1665 BFD_RELOC_8_GOT_PCREL
1666ENUMX
1667 BFD_RELOC_32_GOTOFF
1668ENUMX
1669 BFD_RELOC_16_GOTOFF
1670ENUMX
1671 BFD_RELOC_LO16_GOTOFF
1672ENUMX
1673 BFD_RELOC_HI16_GOTOFF
1674ENUMX
1675 BFD_RELOC_HI16_S_GOTOFF
1676ENUMX
1677 BFD_RELOC_8_GOTOFF
5bd4f169
AM
1678ENUMX
1679 BFD_RELOC_64_PLT_PCREL
252b5132
RH
1680ENUMX
1681 BFD_RELOC_32_PLT_PCREL
1682ENUMX
1683 BFD_RELOC_24_PLT_PCREL
1684ENUMX
1685 BFD_RELOC_16_PLT_PCREL
1686ENUMX
1687 BFD_RELOC_8_PLT_PCREL
5bd4f169
AM
1688ENUMX
1689 BFD_RELOC_64_PLTOFF
252b5132
RH
1690ENUMX
1691 BFD_RELOC_32_PLTOFF
1692ENUMX
1693 BFD_RELOC_16_PLTOFF
1694ENUMX
1695 BFD_RELOC_LO16_PLTOFF
1696ENUMX
1697 BFD_RELOC_HI16_PLTOFF
1698ENUMX
1699 BFD_RELOC_HI16_S_PLTOFF
1700ENUMX
1701 BFD_RELOC_8_PLTOFF
1702ENUMDOC
1703 For ELF.
1704
1705ENUM
1706 BFD_RELOC_68K_GLOB_DAT
1707ENUMX
1708 BFD_RELOC_68K_JMP_SLOT
1709ENUMX
1710 BFD_RELOC_68K_RELATIVE
1711ENUMDOC
1712 Relocations used by 68K ELF.
1713
1714ENUM
1715 BFD_RELOC_32_BASEREL
1716ENUMX
1717 BFD_RELOC_16_BASEREL
1718ENUMX
1719 BFD_RELOC_LO16_BASEREL
1720ENUMX
1721 BFD_RELOC_HI16_BASEREL
1722ENUMX
1723 BFD_RELOC_HI16_S_BASEREL
1724ENUMX
1725 BFD_RELOC_8_BASEREL
1726ENUMX
1727 BFD_RELOC_RVA
1728ENUMDOC
1729 Linkage-table relative.
1730
1731ENUM
1732 BFD_RELOC_8_FFnn
1733ENUMDOC
1734 Absolute 8-bit relocation, but used to form an address like 0xFFnn.
1735
1736ENUM
1737 BFD_RELOC_32_PCREL_S2
1738ENUMX
1739 BFD_RELOC_16_PCREL_S2
1740ENUMX
1741 BFD_RELOC_23_PCREL_S2
1742ENUMDOC
1743 These PC-relative relocations are stored as word displacements --
1744i.e., byte displacements shifted right two bits. The 30-bit word
1745displacement (<<32_PCREL_S2>> -- 32 bits, shifted 2) is used on the
1746SPARC. (SPARC tools generally refer to this as <<WDISP30>>.) The
1747signed 16-bit displacement is used on the MIPS, and the 23-bit
1748displacement is used on the Alpha.
1749
1750ENUM
1751 BFD_RELOC_HI22
1752ENUMX
1753 BFD_RELOC_LO10
1754ENUMDOC
1755 High 22 bits and low 10 bits of 32-bit value, placed into lower bits of
1756the target word. These are used on the SPARC.
1757
1758ENUM
1759 BFD_RELOC_GPREL16
1760ENUMX
1761 BFD_RELOC_GPREL32
1762ENUMDOC
1763 For systems that allocate a Global Pointer register, these are
1764displacements off that register. These relocation types are
1765handled specially, because the value the register will have is
1766decided relatively late.
1767
252b5132
RH
1768ENUM
1769 BFD_RELOC_I960_CALLJ
1770ENUMDOC
1771 Reloc types used for i960/b.out.
1772
1773ENUM
1774 BFD_RELOC_NONE
1775ENUMX
1776 BFD_RELOC_SPARC_WDISP22
1777ENUMX
1778 BFD_RELOC_SPARC22
1779ENUMX
1780 BFD_RELOC_SPARC13
1781ENUMX
1782 BFD_RELOC_SPARC_GOT10
1783ENUMX
1784 BFD_RELOC_SPARC_GOT13
1785ENUMX
1786 BFD_RELOC_SPARC_GOT22
1787ENUMX
1788 BFD_RELOC_SPARC_PC10
1789ENUMX
1790 BFD_RELOC_SPARC_PC22
1791ENUMX
1792 BFD_RELOC_SPARC_WPLT30
1793ENUMX
1794 BFD_RELOC_SPARC_COPY
1795ENUMX
1796 BFD_RELOC_SPARC_GLOB_DAT
1797ENUMX
1798 BFD_RELOC_SPARC_JMP_SLOT
1799ENUMX
1800 BFD_RELOC_SPARC_RELATIVE
0f2712ed
NC
1801ENUMX
1802 BFD_RELOC_SPARC_UA16
252b5132
RH
1803ENUMX
1804 BFD_RELOC_SPARC_UA32
0f2712ed
NC
1805ENUMX
1806 BFD_RELOC_SPARC_UA64
252b5132
RH
1807ENUMDOC
1808 SPARC ELF relocations. There is probably some overlap with other
1809 relocation types already defined.
1810
1811ENUM
1812 BFD_RELOC_SPARC_BASE13
1813ENUMX
1814 BFD_RELOC_SPARC_BASE22
1815ENUMDOC
1816 I think these are specific to SPARC a.out (e.g., Sun 4).
1817
1818ENUMEQ
1819 BFD_RELOC_SPARC_64
1820 BFD_RELOC_64
1821ENUMX
1822 BFD_RELOC_SPARC_10
1823ENUMX
1824 BFD_RELOC_SPARC_11
1825ENUMX
1826 BFD_RELOC_SPARC_OLO10
1827ENUMX
1828 BFD_RELOC_SPARC_HH22
1829ENUMX
1830 BFD_RELOC_SPARC_HM10
1831ENUMX
1832 BFD_RELOC_SPARC_LM22
1833ENUMX
1834 BFD_RELOC_SPARC_PC_HH22
1835ENUMX
1836 BFD_RELOC_SPARC_PC_HM10
1837ENUMX
1838 BFD_RELOC_SPARC_PC_LM22
1839ENUMX
1840 BFD_RELOC_SPARC_WDISP16
1841ENUMX
1842 BFD_RELOC_SPARC_WDISP19
1843ENUMX
1844 BFD_RELOC_SPARC_7
1845ENUMX
1846 BFD_RELOC_SPARC_6
1847ENUMX
1848 BFD_RELOC_SPARC_5
1849ENUMEQX
1850 BFD_RELOC_SPARC_DISP64
1851 BFD_RELOC_64_PCREL
bd5e6e7e
JJ
1852ENUMX
1853 BFD_RELOC_SPARC_PLT32
252b5132
RH
1854ENUMX
1855 BFD_RELOC_SPARC_PLT64
1856ENUMX
1857 BFD_RELOC_SPARC_HIX22
1858ENUMX
1859 BFD_RELOC_SPARC_LOX10
1860ENUMX
1861 BFD_RELOC_SPARC_H44
1862ENUMX
1863 BFD_RELOC_SPARC_M44
1864ENUMX
1865 BFD_RELOC_SPARC_L44
1866ENUMX
1867 BFD_RELOC_SPARC_REGISTER
1868ENUMDOC
1869 SPARC64 relocations
1870
1871ENUM
1872 BFD_RELOC_SPARC_REV32
1873ENUMDOC
1874 SPARC little endian relocation
1875
1876ENUM
1877 BFD_RELOC_ALPHA_GPDISP_HI16
1878ENUMDOC
1879 Alpha ECOFF and ELF relocations. Some of these treat the symbol or
1880 "addend" in some special way.
1881 For GPDISP_HI16 ("gpdisp") relocations, the symbol is ignored when
1882 writing; when reading, it will be the absolute section symbol. The
1883 addend is the displacement in bytes of the "lda" instruction from
1884 the "ldah" instruction (which is at the address of this reloc).
1885ENUM
1886 BFD_RELOC_ALPHA_GPDISP_LO16
1887ENUMDOC
1888 For GPDISP_LO16 ("ignore") relocations, the symbol is handled as
1889 with GPDISP_HI16 relocs. The addend is ignored when writing the
1890 relocations out, and is filled in with the file's GP value on
1891 reading, for convenience.
1892
1893ENUM
1894 BFD_RELOC_ALPHA_GPDISP
1895ENUMDOC
1896 The ELF GPDISP relocation is exactly the same as the GPDISP_HI16
1897 relocation except that there is no accompanying GPDISP_LO16
1898 relocation.
1899
1900ENUM
1901 BFD_RELOC_ALPHA_LITERAL
1902ENUMX
1903 BFD_RELOC_ALPHA_ELF_LITERAL
1904ENUMX
1905 BFD_RELOC_ALPHA_LITUSE
1906ENUMDOC
1907 The Alpha LITERAL/LITUSE relocs are produced by a symbol reference;
1908 the assembler turns it into a LDQ instruction to load the address of
1909 the symbol, and then fills in a register in the real instruction.
1910
1911 The LITERAL reloc, at the LDQ instruction, refers to the .lita
1912 section symbol. The addend is ignored when writing, but is filled
1913 in with the file's GP value on reading, for convenience, as with the
1914 GPDISP_LO16 reloc.
1915
1916 The ELF_LITERAL reloc is somewhere between 16_GOTOFF and GPDISP_LO16.
1917 It should refer to the symbol to be referenced, as with 16_GOTOFF,
1918 but it generates output not based on the position within the .got
1919 section, but relative to the GP value chosen for the file during the
1920 final link stage.
1921
1922 The LITUSE reloc, on the instruction using the loaded address, gives
1923 information to the linker that it might be able to use to optimize
1924 away some literal section references. The symbol is ignored (read
1925 as the absolute section symbol), and the "addend" indicates the type
1926 of instruction using the register:
1927 1 - "memory" fmt insn
1928 2 - byte-manipulation (byte offset reg)
1929 3 - jsr (target of branch)
1930
252b5132
RH
1931ENUM
1932 BFD_RELOC_ALPHA_HINT
1933ENUMDOC
1934 The HINT relocation indicates a value that should be filled into the
1935 "hint" field of a jmp/jsr/ret instruction, for possible branch-
1936 prediction logic which may be provided on some processors.
1937
1938ENUM
1939 BFD_RELOC_ALPHA_LINKAGE
1940ENUMDOC
1941 The LINKAGE relocation outputs a linkage pair in the object file,
1942 which is filled by the linker.
1943
1944ENUM
1945 BFD_RELOC_ALPHA_CODEADDR
1946ENUMDOC
1947 The CODEADDR relocation outputs a STO_CA in the object file,
1948 which is filled by the linker.
1949
dfe57ca0
RH
1950ENUM
1951 BFD_RELOC_ALPHA_GPREL_HI16
1952ENUMX
1953 BFD_RELOC_ALPHA_GPREL_LO16
1954ENUMDOC
dc810e39
AM
1955 The GPREL_HI/LO relocations together form a 32-bit offset from the
1956 GP register.
dfe57ca0 1957
7793f4d0
RH
1958ENUM
1959 BFD_RELOC_ALPHA_BRSGP
1960ENUMDOC
1961 Like BFD_RELOC_23_PCREL_S2, except that the source and target must
1962 share a common GP, and the target address is adjusted for
1963 STO_ALPHA_STD_GPLOAD.
1964
252b5132
RH
1965ENUM
1966 BFD_RELOC_MIPS_JMP
1967ENUMDOC
1968 Bits 27..2 of the relocation address shifted right 2 bits;
1969 simple reloc otherwise.
1970
1971ENUM
1972 BFD_RELOC_MIPS16_JMP
1973ENUMDOC
1974 The MIPS16 jump instruction.
1975
1976ENUM
1977 BFD_RELOC_MIPS16_GPREL
1978ENUMDOC
1979 MIPS16 GP relative reloc.
1980
1981ENUM
1982 BFD_RELOC_HI16
1983ENUMDOC
1984 High 16 bits of 32-bit value; simple reloc.
1985ENUM
1986 BFD_RELOC_HI16_S
1987ENUMDOC
1988 High 16 bits of 32-bit value but the low 16 bits will be sign
1989 extended and added to form the final result. If the low 16
1990 bits form a negative number, we need to add one to the high value
1991 to compensate for the borrow when the low bits are added.
1992ENUM
1993 BFD_RELOC_LO16
1994ENUMDOC
1995 Low 16 bits.
1996ENUM
1997 BFD_RELOC_PCREL_HI16_S
1998ENUMDOC
1999 Like BFD_RELOC_HI16_S, but PC relative.
2000ENUM
2001 BFD_RELOC_PCREL_LO16
2002ENUMDOC
2003 Like BFD_RELOC_LO16, but PC relative.
2004
252b5132
RH
2005ENUM
2006 BFD_RELOC_MIPS_LITERAL
2007ENUMDOC
2008 Relocation against a MIPS literal section.
2009
2010ENUM
2011 BFD_RELOC_MIPS_GOT16
2012ENUMX
2013 BFD_RELOC_MIPS_CALL16
252b5132
RH
2014ENUMX
2015 BFD_RELOC_MIPS_GOT_HI16
2016ENUMX
2017 BFD_RELOC_MIPS_GOT_LO16
2018ENUMX
2019 BFD_RELOC_MIPS_CALL_HI16
2020ENUMX
2021 BFD_RELOC_MIPS_CALL_LO16
3f830999
MM
2022ENUMX
2023 BFD_RELOC_MIPS_SUB
2024ENUMX
2025 BFD_RELOC_MIPS_GOT_PAGE
2026ENUMX
2027 BFD_RELOC_MIPS_GOT_OFST
2028ENUMX
2029 BFD_RELOC_MIPS_GOT_DISP
c2feb664
NC
2030ENUMX
2031 BFD_RELOC_MIPS_SHIFT5
2032ENUMX
2033 BFD_RELOC_MIPS_SHIFT6
2034ENUMX
2035 BFD_RELOC_MIPS_INSERT_A
2036ENUMX
2037 BFD_RELOC_MIPS_INSERT_B
2038ENUMX
2039 BFD_RELOC_MIPS_DELETE
2040ENUMX
2041 BFD_RELOC_MIPS_HIGHEST
2042ENUMX
2043 BFD_RELOC_MIPS_HIGHER
2044ENUMX
2045 BFD_RELOC_MIPS_SCN_DISP
2046ENUMX
2047 BFD_RELOC_MIPS_REL16
2048ENUMX
2049 BFD_RELOC_MIPS_RELGOT
2050ENUMX
2051 BFD_RELOC_MIPS_JALR
252b5132 2052COMMENT
fbca6ad9 2053COMMENT
252b5132
RH
2054ENUMDOC
2055 MIPS ELF relocations.
2056
2057COMMENT
2058
2059ENUM
2060 BFD_RELOC_386_GOT32
2061ENUMX
2062 BFD_RELOC_386_PLT32
2063ENUMX
2064 BFD_RELOC_386_COPY
2065ENUMX
2066 BFD_RELOC_386_GLOB_DAT
2067ENUMX
2068 BFD_RELOC_386_JUMP_SLOT
2069ENUMX
2070 BFD_RELOC_386_RELATIVE
2071ENUMX
2072 BFD_RELOC_386_GOTOFF
2073ENUMX
2074 BFD_RELOC_386_GOTPC
13ae64f3
JJ
2075ENUMX
2076 BFD_RELOC_386_TLS_LE
2077ENUMX
2078 BFD_RELOC_386_TLS_GD
2079ENUMX
2080 BFD_RELOC_386_TLS_LDM
2081ENUMX
2082 BFD_RELOC_386_TLS_LDO_32
2083ENUMX
2084 BFD_RELOC_386_TLS_IE_32
2085ENUMX
2086 BFD_RELOC_386_TLS_LE_32
2087ENUMX
2088 BFD_RELOC_386_TLS_DTPMOD32
2089ENUMX
2090 BFD_RELOC_386_TLS_DTPOFF32
2091ENUMX
2092 BFD_RELOC_386_TLS_TPOFF32
252b5132
RH
2093ENUMDOC
2094 i386/elf relocations
2095
8d88c4ca
NC
2096ENUM
2097 BFD_RELOC_X86_64_GOT32
2098ENUMX
2099 BFD_RELOC_X86_64_PLT32
2100ENUMX
2101 BFD_RELOC_X86_64_COPY
2102ENUMX
2103 BFD_RELOC_X86_64_GLOB_DAT
2104ENUMX
2105 BFD_RELOC_X86_64_JUMP_SLOT
2106ENUMX
2107 BFD_RELOC_X86_64_RELATIVE
2108ENUMX
2109 BFD_RELOC_X86_64_GOTPCREL
2110ENUMX
2111 BFD_RELOC_X86_64_32S
2112ENUMDOC
2113 x86-64/elf relocations
2114
252b5132
RH
2115ENUM
2116 BFD_RELOC_NS32K_IMM_8
2117ENUMX
2118 BFD_RELOC_NS32K_IMM_16
2119ENUMX
2120 BFD_RELOC_NS32K_IMM_32
2121ENUMX
2122 BFD_RELOC_NS32K_IMM_8_PCREL
2123ENUMX
2124 BFD_RELOC_NS32K_IMM_16_PCREL
2125ENUMX
2126 BFD_RELOC_NS32K_IMM_32_PCREL
2127ENUMX
2128 BFD_RELOC_NS32K_DISP_8
2129ENUMX
2130 BFD_RELOC_NS32K_DISP_16
2131ENUMX
2132 BFD_RELOC_NS32K_DISP_32
2133ENUMX
2134 BFD_RELOC_NS32K_DISP_8_PCREL
2135ENUMX
2136 BFD_RELOC_NS32K_DISP_16_PCREL
2137ENUMX
2138 BFD_RELOC_NS32K_DISP_32_PCREL
2139ENUMDOC
2140 ns32k relocations
2141
e135f41b
NC
2142ENUM
2143 BFD_RELOC_PDP11_DISP_8_PCREL
2144ENUMX
2145 BFD_RELOC_PDP11_DISP_6_PCREL
2146ENUMDOC
2147 PDP11 relocations
2148
0bcb993b
ILT
2149ENUM
2150 BFD_RELOC_PJ_CODE_HI16
2151ENUMX
2152 BFD_RELOC_PJ_CODE_LO16
2153ENUMX
2154 BFD_RELOC_PJ_CODE_DIR16
2155ENUMX
2156 BFD_RELOC_PJ_CODE_DIR32
2157ENUMX
2158 BFD_RELOC_PJ_CODE_REL16
2159ENUMX
2160 BFD_RELOC_PJ_CODE_REL32
2161ENUMDOC
2162 Picojava relocs. Not all of these appear in object files.
88b6bae0 2163
252b5132
RH
2164ENUM
2165 BFD_RELOC_PPC_B26
2166ENUMX
2167 BFD_RELOC_PPC_BA26
2168ENUMX
2169 BFD_RELOC_PPC_TOC16
2170ENUMX
2171 BFD_RELOC_PPC_B16
2172ENUMX
2173 BFD_RELOC_PPC_B16_BRTAKEN
2174ENUMX
2175 BFD_RELOC_PPC_B16_BRNTAKEN
2176ENUMX
2177 BFD_RELOC_PPC_BA16
2178ENUMX
2179 BFD_RELOC_PPC_BA16_BRTAKEN
2180ENUMX
2181 BFD_RELOC_PPC_BA16_BRNTAKEN
2182ENUMX
2183 BFD_RELOC_PPC_COPY
2184ENUMX
2185 BFD_RELOC_PPC_GLOB_DAT
2186ENUMX
2187 BFD_RELOC_PPC_JMP_SLOT
2188ENUMX
2189 BFD_RELOC_PPC_RELATIVE
2190ENUMX
2191 BFD_RELOC_PPC_LOCAL24PC
2192ENUMX
2193 BFD_RELOC_PPC_EMB_NADDR32
2194ENUMX
2195 BFD_RELOC_PPC_EMB_NADDR16
2196ENUMX
2197 BFD_RELOC_PPC_EMB_NADDR16_LO
2198ENUMX
2199 BFD_RELOC_PPC_EMB_NADDR16_HI
2200ENUMX
2201 BFD_RELOC_PPC_EMB_NADDR16_HA
2202ENUMX
2203 BFD_RELOC_PPC_EMB_SDAI16
2204ENUMX
2205 BFD_RELOC_PPC_EMB_SDA2I16
2206ENUMX
2207 BFD_RELOC_PPC_EMB_SDA2REL
2208ENUMX
2209 BFD_RELOC_PPC_EMB_SDA21
2210ENUMX
2211 BFD_RELOC_PPC_EMB_MRKREF
2212ENUMX
2213 BFD_RELOC_PPC_EMB_RELSEC16
2214ENUMX
2215 BFD_RELOC_PPC_EMB_RELST_LO
2216ENUMX
2217 BFD_RELOC_PPC_EMB_RELST_HI
2218ENUMX
2219 BFD_RELOC_PPC_EMB_RELST_HA
2220ENUMX
2221 BFD_RELOC_PPC_EMB_BIT_FLD
2222ENUMX
2223 BFD_RELOC_PPC_EMB_RELSDA
5bd4f169
AM
2224ENUMX
2225 BFD_RELOC_PPC64_HIGHER
2226ENUMX
2227 BFD_RELOC_PPC64_HIGHER_S
2228ENUMX
2229 BFD_RELOC_PPC64_HIGHEST
2230ENUMX
2231 BFD_RELOC_PPC64_HIGHEST_S
2232ENUMX
2233 BFD_RELOC_PPC64_TOC16_LO
2234ENUMX
2235 BFD_RELOC_PPC64_TOC16_HI
2236ENUMX
2237 BFD_RELOC_PPC64_TOC16_HA
2238ENUMX
2239 BFD_RELOC_PPC64_TOC
2240ENUMX
dc810e39 2241 BFD_RELOC_PPC64_PLTGOT16
5bd4f169
AM
2242ENUMX
2243 BFD_RELOC_PPC64_PLTGOT16_LO
2244ENUMX
2245 BFD_RELOC_PPC64_PLTGOT16_HI
2246ENUMX
2247 BFD_RELOC_PPC64_PLTGOT16_HA
2248ENUMX
2249 BFD_RELOC_PPC64_ADDR16_DS
2250ENUMX
2251 BFD_RELOC_PPC64_ADDR16_LO_DS
2252ENUMX
2253 BFD_RELOC_PPC64_GOT16_DS
2254ENUMX
2255 BFD_RELOC_PPC64_GOT16_LO_DS
2256ENUMX
2257 BFD_RELOC_PPC64_PLT16_LO_DS
2258ENUMX
2259 BFD_RELOC_PPC64_SECTOFF_DS
2260ENUMX
2261 BFD_RELOC_PPC64_SECTOFF_LO_DS
2262ENUMX
2263 BFD_RELOC_PPC64_TOC16_DS
2264ENUMX
2265 BFD_RELOC_PPC64_TOC16_LO_DS
2266ENUMX
2267 BFD_RELOC_PPC64_PLTGOT16_DS
2268ENUMX
2269 BFD_RELOC_PPC64_PLTGOT16_LO_DS
252b5132
RH
2270ENUMDOC
2271 Power(rs6000) and PowerPC relocations.
2272
5b93d8bb
AM
2273ENUM
2274 BFD_RELOC_I370_D12
2275ENUMDOC
2276 IBM 370/390 relocations
2277
252b5132
RH
2278ENUM
2279 BFD_RELOC_CTOR
2280ENUMDOC
2281 The type of reloc used to build a contructor table - at the moment
2282 probably a 32 bit wide absolute relocation, but the target can choose.
2283 It generally does map to one of the other relocation types.
2284
2285ENUM
2286 BFD_RELOC_ARM_PCREL_BRANCH
2287ENUMDOC
2288 ARM 26 bit pc-relative branch. The lowest two bits must be zero and are
2289 not stored in the instruction.
dfc5f959
NC
2290ENUM
2291 BFD_RELOC_ARM_PCREL_BLX
2292ENUMDOC
2293 ARM 26 bit pc-relative branch. The lowest bit must be zero and is
2294 not stored in the instruction. The 2nd lowest bit comes from a 1 bit
2295 field in the instruction.
2296ENUM
2297 BFD_RELOC_THUMB_PCREL_BLX
2298ENUMDOC
2299 Thumb 22 bit pc-relative branch. The lowest bit must be zero and is
2300 not stored in the instruction. The 2nd lowest bit comes from a 1 bit
2301 field in the instruction.
252b5132
RH
2302ENUM
2303 BFD_RELOC_ARM_IMMEDIATE
752149a0
NC
2304ENUMX
2305 BFD_RELOC_ARM_ADRL_IMMEDIATE
252b5132
RH
2306ENUMX
2307 BFD_RELOC_ARM_OFFSET_IMM
2308ENUMX
2309 BFD_RELOC_ARM_SHIFT_IMM
2310ENUMX
2311 BFD_RELOC_ARM_SWI
2312ENUMX
2313 BFD_RELOC_ARM_MULTI
2314ENUMX
2315 BFD_RELOC_ARM_CP_OFF_IMM
2316ENUMX
2317 BFD_RELOC_ARM_ADR_IMM
2318ENUMX
2319 BFD_RELOC_ARM_LDR_IMM
2320ENUMX
2321 BFD_RELOC_ARM_LITERAL
2322ENUMX
2323 BFD_RELOC_ARM_IN_POOL
2324ENUMX
2325 BFD_RELOC_ARM_OFFSET_IMM8
2326ENUMX
2327 BFD_RELOC_ARM_HWLITERAL
2328ENUMX
2329 BFD_RELOC_ARM_THUMB_ADD
2330ENUMX
2331 BFD_RELOC_ARM_THUMB_IMM
2332ENUMX
2333 BFD_RELOC_ARM_THUMB_SHIFT
2334ENUMX
2335 BFD_RELOC_ARM_THUMB_OFFSET
2336ENUMX
2337 BFD_RELOC_ARM_GOT12
2338ENUMX
2339 BFD_RELOC_ARM_GOT32
2340ENUMX
2341 BFD_RELOC_ARM_JUMP_SLOT
2342ENUMX
2343 BFD_RELOC_ARM_COPY
2344ENUMX
2345 BFD_RELOC_ARM_GLOB_DAT
2346ENUMX
2347 BFD_RELOC_ARM_PLT32
2348ENUMX
2349 BFD_RELOC_ARM_RELATIVE
2350ENUMX
2351 BFD_RELOC_ARM_GOTOFF
2352ENUMX
2353 BFD_RELOC_ARM_GOTPC
2354ENUMDOC
2355 These relocs are only used within the ARM assembler. They are not
2356 (at present) written to any object files.
2357
2358ENUM
2359 BFD_RELOC_SH_PCDISP8BY2
2360ENUMX
2361 BFD_RELOC_SH_PCDISP12BY2
2362ENUMX
2363 BFD_RELOC_SH_IMM4
2364ENUMX
2365 BFD_RELOC_SH_IMM4BY2
2366ENUMX
2367 BFD_RELOC_SH_IMM4BY4
2368ENUMX
2369 BFD_RELOC_SH_IMM8
2370ENUMX
2371 BFD_RELOC_SH_IMM8BY2
2372ENUMX
2373 BFD_RELOC_SH_IMM8BY4
2374ENUMX
2375 BFD_RELOC_SH_PCRELIMM8BY2
2376ENUMX
2377 BFD_RELOC_SH_PCRELIMM8BY4
2378ENUMX
2379 BFD_RELOC_SH_SWITCH16
2380ENUMX
2381 BFD_RELOC_SH_SWITCH32
2382ENUMX
2383 BFD_RELOC_SH_USES
2384ENUMX
2385 BFD_RELOC_SH_COUNT
2386ENUMX
2387 BFD_RELOC_SH_ALIGN
2388ENUMX
2389 BFD_RELOC_SH_CODE
2390ENUMX
2391 BFD_RELOC_SH_DATA
2392ENUMX
2393 BFD_RELOC_SH_LABEL
015551fc
JR
2394ENUMX
2395 BFD_RELOC_SH_LOOP_START
2396ENUMX
2397 BFD_RELOC_SH_LOOP_END
3d96075c
L
2398ENUMX
2399 BFD_RELOC_SH_COPY
2400ENUMX
2401 BFD_RELOC_SH_GLOB_DAT
2402ENUMX
2403 BFD_RELOC_SH_JMP_SLOT
2404ENUMX
2405 BFD_RELOC_SH_RELATIVE
2406ENUMX
2407 BFD_RELOC_SH_GOTPC
eb1e0e80
NC
2408ENUMX
2409 BFD_RELOC_SH_GOT_LOW16
2410ENUMX
2411 BFD_RELOC_SH_GOT_MEDLOW16
2412ENUMX
2413 BFD_RELOC_SH_GOT_MEDHI16
2414ENUMX
2415 BFD_RELOC_SH_GOT_HI16
2416ENUMX
2417 BFD_RELOC_SH_GOTPLT_LOW16
2418ENUMX
2419 BFD_RELOC_SH_GOTPLT_MEDLOW16
2420ENUMX
2421 BFD_RELOC_SH_GOTPLT_MEDHI16
2422ENUMX
2423 BFD_RELOC_SH_GOTPLT_HI16
2424ENUMX
2425 BFD_RELOC_SH_PLT_LOW16
2426ENUMX
2427 BFD_RELOC_SH_PLT_MEDLOW16
2428ENUMX
2429 BFD_RELOC_SH_PLT_MEDHI16
2430ENUMX
2431 BFD_RELOC_SH_PLT_HI16
2432ENUMX
2433 BFD_RELOC_SH_GOTOFF_LOW16
2434ENUMX
2435 BFD_RELOC_SH_GOTOFF_MEDLOW16
2436ENUMX
2437 BFD_RELOC_SH_GOTOFF_MEDHI16
2438ENUMX
2439 BFD_RELOC_SH_GOTOFF_HI16
2440ENUMX
2441 BFD_RELOC_SH_GOTPC_LOW16
2442ENUMX
2443 BFD_RELOC_SH_GOTPC_MEDLOW16
2444ENUMX
2445 BFD_RELOC_SH_GOTPC_MEDHI16
2446ENUMX
2447 BFD_RELOC_SH_GOTPC_HI16
2448ENUMX
2449 BFD_RELOC_SH_COPY64
2450ENUMX
2451 BFD_RELOC_SH_GLOB_DAT64
2452ENUMX
2453 BFD_RELOC_SH_JMP_SLOT64
2454ENUMX
2455 BFD_RELOC_SH_RELATIVE64
2456ENUMX
2457 BFD_RELOC_SH_GOT10BY4
2458ENUMX
2459 BFD_RELOC_SH_GOT10BY8
2460ENUMX
2461 BFD_RELOC_SH_GOTPLT10BY4
2462ENUMX
2463 BFD_RELOC_SH_GOTPLT10BY8
2464ENUMX
2465 BFD_RELOC_SH_GOTPLT32
2466ENUMX
2467 BFD_RELOC_SH_SHMEDIA_CODE
2468ENUMX
2469 BFD_RELOC_SH_IMMU5
2470ENUMX
2471 BFD_RELOC_SH_IMMS6
2472ENUMX
2473 BFD_RELOC_SH_IMMS6BY32
2474ENUMX
2475 BFD_RELOC_SH_IMMU6
2476ENUMX
2477 BFD_RELOC_SH_IMMS10
2478ENUMX
2479 BFD_RELOC_SH_IMMS10BY2
2480ENUMX
2481 BFD_RELOC_SH_IMMS10BY4
2482ENUMX
2483 BFD_RELOC_SH_IMMS10BY8
2484ENUMX
2485 BFD_RELOC_SH_IMMS16
2486ENUMX
2487 BFD_RELOC_SH_IMMU16
2488ENUMX
2489 BFD_RELOC_SH_IMM_LOW16
2490ENUMX
2491 BFD_RELOC_SH_IMM_LOW16_PCREL
2492ENUMX
2493 BFD_RELOC_SH_IMM_MEDLOW16
2494ENUMX
2495 BFD_RELOC_SH_IMM_MEDLOW16_PCREL
2496ENUMX
2497 BFD_RELOC_SH_IMM_MEDHI16
2498ENUMX
2499 BFD_RELOC_SH_IMM_MEDHI16_PCREL
2500ENUMX
2501 BFD_RELOC_SH_IMM_HI16
2502ENUMX
2503 BFD_RELOC_SH_IMM_HI16_PCREL
2504ENUMX
2505 BFD_RELOC_SH_PT_16
252b5132
RH
2506ENUMDOC
2507 Hitachi SH relocs. Not all of these appear in object files.
2508
2509ENUM
2510 BFD_RELOC_THUMB_PCREL_BRANCH9
2511ENUMX
2512 BFD_RELOC_THUMB_PCREL_BRANCH12
2513ENUMX
2514 BFD_RELOC_THUMB_PCREL_BRANCH23
2515ENUMDOC
2516 Thumb 23-, 12- and 9-bit pc-relative branches. The lowest bit must
2517 be zero and is not stored in the instruction.
2518
2519ENUM
2520 BFD_RELOC_ARC_B22_PCREL
2521ENUMDOC
0d2bcfaf 2522 ARC Cores relocs.
252b5132
RH
2523 ARC 22 bit pc-relative branch. The lowest two bits must be zero and are
2524 not stored in the instruction. The high 20 bits are installed in bits 26
2525 through 7 of the instruction.
2526ENUM
2527 BFD_RELOC_ARC_B26
2528ENUMDOC
2529 ARC 26 bit absolute branch. The lowest two bits must be zero and are not
2530 stored in the instruction. The high 24 bits are installed in bits 23
2531 through 0.
2532
2533ENUM
2534 BFD_RELOC_D10V_10_PCREL_R
2535ENUMDOC
2536 Mitsubishi D10V relocs.
2537 This is a 10-bit reloc with the right 2 bits
2538 assumed to be 0.
2539ENUM
2540 BFD_RELOC_D10V_10_PCREL_L
2541ENUMDOC
2542 Mitsubishi D10V relocs.
2543 This is a 10-bit reloc with the right 2 bits
2544 assumed to be 0. This is the same as the previous reloc
2545 except it is in the left container, i.e.,
2546 shifted left 15 bits.
2547ENUM
2548 BFD_RELOC_D10V_18
2549ENUMDOC
2550 This is an 18-bit reloc with the right 2 bits
2551 assumed to be 0.
2552ENUM
2553 BFD_RELOC_D10V_18_PCREL
2554ENUMDOC
2555 This is an 18-bit reloc with the right 2 bits
2556 assumed to be 0.
2557
2558ENUM
2559 BFD_RELOC_D30V_6
2560ENUMDOC
2561 Mitsubishi D30V relocs.
2562 This is a 6-bit absolute reloc.
2563ENUM
2564 BFD_RELOC_D30V_9_PCREL
2565ENUMDOC
88b6bae0
AM
2566 This is a 6-bit pc-relative reloc with
2567 the right 3 bits assumed to be 0.
252b5132
RH
2568ENUM
2569 BFD_RELOC_D30V_9_PCREL_R
2570ENUMDOC
88b6bae0 2571 This is a 6-bit pc-relative reloc with
252b5132
RH
2572 the right 3 bits assumed to be 0. Same
2573 as the previous reloc but on the right side
88b6bae0 2574 of the container.
252b5132
RH
2575ENUM
2576 BFD_RELOC_D30V_15
2577ENUMDOC
88b6bae0
AM
2578 This is a 12-bit absolute reloc with the
2579 right 3 bitsassumed to be 0.
252b5132
RH
2580ENUM
2581 BFD_RELOC_D30V_15_PCREL
2582ENUMDOC
88b6bae0
AM
2583 This is a 12-bit pc-relative reloc with
2584 the right 3 bits assumed to be 0.
252b5132
RH
2585ENUM
2586 BFD_RELOC_D30V_15_PCREL_R
2587ENUMDOC
88b6bae0 2588 This is a 12-bit pc-relative reloc with
252b5132
RH
2589 the right 3 bits assumed to be 0. Same
2590 as the previous reloc but on the right side
88b6bae0 2591 of the container.
252b5132
RH
2592ENUM
2593 BFD_RELOC_D30V_21
2594ENUMDOC
88b6bae0 2595 This is an 18-bit absolute reloc with
252b5132
RH
2596 the right 3 bits assumed to be 0.
2597ENUM
2598 BFD_RELOC_D30V_21_PCREL
2599ENUMDOC
88b6bae0 2600 This is an 18-bit pc-relative reloc with
252b5132
RH
2601 the right 3 bits assumed to be 0.
2602ENUM
2603 BFD_RELOC_D30V_21_PCREL_R
2604ENUMDOC
88b6bae0 2605 This is an 18-bit pc-relative reloc with
252b5132
RH
2606 the right 3 bits assumed to be 0. Same
2607 as the previous reloc but on the right side
2608 of the container.
2609ENUM
2610 BFD_RELOC_D30V_32
2611ENUMDOC
2612 This is a 32-bit absolute reloc.
2613ENUM
2614 BFD_RELOC_D30V_32_PCREL
2615ENUMDOC
2616 This is a 32-bit pc-relative reloc.
2617
2618ENUM
2619 BFD_RELOC_M32R_24
2620ENUMDOC
2621 Mitsubishi M32R relocs.
2622 This is a 24 bit absolute address.
2623ENUM
2624 BFD_RELOC_M32R_10_PCREL
2625ENUMDOC
2626 This is a 10-bit pc-relative reloc with the right 2 bits assumed to be 0.
2627ENUM
2628 BFD_RELOC_M32R_18_PCREL
2629ENUMDOC
2630 This is an 18-bit reloc with the right 2 bits assumed to be 0.
2631ENUM
2632 BFD_RELOC_M32R_26_PCREL
2633ENUMDOC
2634 This is a 26-bit reloc with the right 2 bits assumed to be 0.
2635ENUM
2636 BFD_RELOC_M32R_HI16_ULO
2637ENUMDOC
2638 This is a 16-bit reloc containing the high 16 bits of an address
2639 used when the lower 16 bits are treated as unsigned.
2640ENUM
2641 BFD_RELOC_M32R_HI16_SLO
2642ENUMDOC
2643 This is a 16-bit reloc containing the high 16 bits of an address
2644 used when the lower 16 bits are treated as signed.
2645ENUM
2646 BFD_RELOC_M32R_LO16
2647ENUMDOC
2648 This is a 16-bit reloc containing the lower 16 bits of an address.
2649ENUM
2650 BFD_RELOC_M32R_SDA16
2651ENUMDOC
2652 This is a 16-bit reloc containing the small data area offset for use in
2653 add3, load, and store instructions.
2654
2655ENUM
2656 BFD_RELOC_V850_9_PCREL
2657ENUMDOC
2658 This is a 9-bit reloc
2659ENUM
2660 BFD_RELOC_V850_22_PCREL
2661ENUMDOC
2662 This is a 22-bit reloc
2663
2664ENUM
2665 BFD_RELOC_V850_SDA_16_16_OFFSET
2666ENUMDOC
2667 This is a 16 bit offset from the short data area pointer.
2668ENUM
2669 BFD_RELOC_V850_SDA_15_16_OFFSET
2670ENUMDOC
2671 This is a 16 bit offset (of which only 15 bits are used) from the
2672 short data area pointer.
2673ENUM
2674 BFD_RELOC_V850_ZDA_16_16_OFFSET
2675ENUMDOC
2676 This is a 16 bit offset from the zero data area pointer.
2677ENUM
2678 BFD_RELOC_V850_ZDA_15_16_OFFSET
2679ENUMDOC
2680 This is a 16 bit offset (of which only 15 bits are used) from the
2681 zero data area pointer.
2682ENUM
2683 BFD_RELOC_V850_TDA_6_8_OFFSET
2684ENUMDOC
2685 This is an 8 bit offset (of which only 6 bits are used) from the
2686 tiny data area pointer.
2687ENUM
2688 BFD_RELOC_V850_TDA_7_8_OFFSET
2689ENUMDOC
2690 This is an 8bit offset (of which only 7 bits are used) from the tiny
2691 data area pointer.
2692ENUM
2693 BFD_RELOC_V850_TDA_7_7_OFFSET
2694ENUMDOC
2695 This is a 7 bit offset from the tiny data area pointer.
2696ENUM
2697 BFD_RELOC_V850_TDA_16_16_OFFSET
2698ENUMDOC
2699 This is a 16 bit offset from the tiny data area pointer.
2700COMMENT
2701ENUM
2702 BFD_RELOC_V850_TDA_4_5_OFFSET
2703ENUMDOC
2704 This is a 5 bit offset (of which only 4 bits are used) from the tiny
2705 data area pointer.
2706ENUM
2707 BFD_RELOC_V850_TDA_4_4_OFFSET
2708ENUMDOC
2709 This is a 4 bit offset from the tiny data area pointer.
2710ENUM
2711 BFD_RELOC_V850_SDA_16_16_SPLIT_OFFSET
2712ENUMDOC
2713 This is a 16 bit offset from the short data area pointer, with the
2714 bits placed non-contigously in the instruction.
2715ENUM
2716 BFD_RELOC_V850_ZDA_16_16_SPLIT_OFFSET
2717ENUMDOC
2718 This is a 16 bit offset from the zero data area pointer, with the
2719 bits placed non-contigously in the instruction.
2720ENUM
2721 BFD_RELOC_V850_CALLT_6_7_OFFSET
2722ENUMDOC
2723 This is a 6 bit offset from the call table base pointer.
2724ENUM
2725 BFD_RELOC_V850_CALLT_16_16_OFFSET
2726ENUMDOC
2727 This is a 16 bit offset from the call table base pointer.
2728COMMENT
2729
2730ENUM
2731 BFD_RELOC_MN10300_32_PCREL
2732ENUMDOC
2733 This is a 32bit pcrel reloc for the mn10300, offset by two bytes in the
2734 instruction.
2735ENUM
2736 BFD_RELOC_MN10300_16_PCREL
2737ENUMDOC
2738 This is a 16bit pcrel reloc for the mn10300, offset by two bytes in the
2739 instruction.
2740
2741ENUM
2742 BFD_RELOC_TIC30_LDP
2743ENUMDOC
2744 This is a 8bit DP reloc for the tms320c30, where the most
2745 significant 8 bits of a 24 bit word are placed into the least
2746 significant 8 bits of the opcode.
2747
81635ce4
TW
2748ENUM
2749 BFD_RELOC_TIC54X_PARTLS7
2750ENUMDOC
2751 This is a 7bit reloc for the tms320c54x, where the least
2752 significant 7 bits of a 16 bit word are placed into the least
2753 significant 7 bits of the opcode.
2754
2755ENUM
2756 BFD_RELOC_TIC54X_PARTMS9
2757ENUMDOC
2758 This is a 9bit DP reloc for the tms320c54x, where the most
2759 significant 9 bits of a 16 bit word are placed into the least
2760 significant 9 bits of the opcode.
2761
2762ENUM
2763 BFD_RELOC_TIC54X_23
2764ENUMDOC
2765 This is an extended address 23-bit reloc for the tms320c54x.
2766
2767ENUM
2768 BFD_RELOC_TIC54X_16_OF_23
2769ENUMDOC
3d855632
KH
2770 This is a 16-bit reloc for the tms320c54x, where the least
2771 significant 16 bits of a 23-bit extended address are placed into
81635ce4
TW
2772 the opcode.
2773
2774ENUM
2775 BFD_RELOC_TIC54X_MS7_OF_23
2776ENUMDOC
2777 This is a reloc for the tms320c54x, where the most
3d855632 2778 significant 7 bits of a 23-bit extended address are placed into
81635ce4 2779 the opcode.
81635ce4 2780
252b5132
RH
2781ENUM
2782 BFD_RELOC_FR30_48
2783ENUMDOC
2784 This is a 48 bit reloc for the FR30 that stores 32 bits.
2785ENUM
2786 BFD_RELOC_FR30_20
2787ENUMDOC
2788 This is a 32 bit reloc for the FR30 that stores 20 bits split up into
2789 two sections.
2790ENUM
2791 BFD_RELOC_FR30_6_IN_4
2792ENUMDOC
2793 This is a 16 bit reloc for the FR30 that stores a 6 bit word offset in
2794 4 bits.
2795ENUM
2796 BFD_RELOC_FR30_8_IN_8
2797ENUMDOC
2798 This is a 16 bit reloc for the FR30 that stores an 8 bit byte offset
2799 into 8 bits.
2800ENUM
2801 BFD_RELOC_FR30_9_IN_8
2802ENUMDOC
2803 This is a 16 bit reloc for the FR30 that stores a 9 bit short offset
2804 into 8 bits.
2805ENUM
2806 BFD_RELOC_FR30_10_IN_8
2807ENUMDOC
2808 This is a 16 bit reloc for the FR30 that stores a 10 bit word offset
2809 into 8 bits.
2810ENUM
2811 BFD_RELOC_FR30_9_PCREL
2812ENUMDOC
2813 This is a 16 bit reloc for the FR30 that stores a 9 bit pc relative
2814 short offset into 8 bits.
2815ENUM
2816 BFD_RELOC_FR30_12_PCREL
2817ENUMDOC
2818 This is a 16 bit reloc for the FR30 that stores a 12 bit pc relative
2819 short offset into 11 bits.
88b6bae0 2820
252b5132
RH
2821ENUM
2822 BFD_RELOC_MCORE_PCREL_IMM8BY4
2823ENUMX
2824 BFD_RELOC_MCORE_PCREL_IMM11BY2
2825ENUMX
2826 BFD_RELOC_MCORE_PCREL_IMM4BY2
2827ENUMX
2828 BFD_RELOC_MCORE_PCREL_32
2829ENUMX
2830 BFD_RELOC_MCORE_PCREL_JSR_IMM11BY2
36797d47
NC
2831ENUMX
2832 BFD_RELOC_MCORE_RVA
252b5132
RH
2833ENUMDOC
2834 Motorola Mcore relocations.
88b6bae0 2835
3c3bdf30
NC
2836ENUM
2837 BFD_RELOC_MMIX_GETA
2838ENUMX
2839 BFD_RELOC_MMIX_GETA_1
2840ENUMX
2841 BFD_RELOC_MMIX_GETA_2
2842ENUMX
2843 BFD_RELOC_MMIX_GETA_3
2844ENUMDOC
2845 These are relocations for the GETA instruction.
2846ENUM
2847 BFD_RELOC_MMIX_CBRANCH
2848ENUMX
2849 BFD_RELOC_MMIX_CBRANCH_J
2850ENUMX
2851 BFD_RELOC_MMIX_CBRANCH_1
2852ENUMX
2853 BFD_RELOC_MMIX_CBRANCH_2
2854ENUMX
2855 BFD_RELOC_MMIX_CBRANCH_3
2856ENUMDOC
2857 These are relocations for a conditional branch instruction.
2858ENUM
2859 BFD_RELOC_MMIX_PUSHJ
2860ENUMX
2861 BFD_RELOC_MMIX_PUSHJ_1
2862ENUMX
2863 BFD_RELOC_MMIX_PUSHJ_2
2864ENUMX
2865 BFD_RELOC_MMIX_PUSHJ_3
2866ENUMDOC
2867 These are relocations for the PUSHJ instruction.
2868ENUM
2869 BFD_RELOC_MMIX_JMP
2870ENUMX
2871 BFD_RELOC_MMIX_JMP_1
2872ENUMX
2873 BFD_RELOC_MMIX_JMP_2
2874ENUMX
2875 BFD_RELOC_MMIX_JMP_3
2876ENUMDOC
2877 These are relocations for the JMP instruction.
2878ENUM
2879 BFD_RELOC_MMIX_ADDR19
2880ENUMDOC
2881 This is a relocation for a relative address as in a GETA instruction or
2882 a branch.
2883ENUM
2884 BFD_RELOC_MMIX_ADDR27
2885ENUMDOC
2886 This is a relocation for a relative address as in a JMP instruction.
2887ENUM
2888 BFD_RELOC_MMIX_REG_OR_BYTE
2889ENUMDOC
2890 This is a relocation for an instruction field that may be a general
2891 register or a value 0..255.
2892ENUM
2893 BFD_RELOC_MMIX_REG
2894ENUMDOC
2895 This is a relocation for an instruction field that may be a general
2896 register.
2897ENUM
2898 BFD_RELOC_MMIX_BASE_PLUS_OFFSET
2899ENUMDOC
2900 This is a relocation for two instruction fields holding a register and
2901 an offset, the equivalent of the relocation.
2902ENUM
2903 BFD_RELOC_MMIX_LOCAL
2904ENUMDOC
2905 This relocation is an assertion that the expression is not allocated as
2906 a global register. It does not modify contents.
2907
adde6300
AM
2908ENUM
2909 BFD_RELOC_AVR_7_PCREL
2910ENUMDOC
2911 This is a 16 bit reloc for the AVR that stores 8 bit pc relative
2912 short offset into 7 bits.
2913ENUM
2914 BFD_RELOC_AVR_13_PCREL
2915ENUMDOC
2916 This is a 16 bit reloc for the AVR that stores 13 bit pc relative
2917 short offset into 12 bits.
2918ENUM
2919 BFD_RELOC_AVR_16_PM
2920ENUMDOC
2921 This is a 16 bit reloc for the AVR that stores 17 bit value (usually
3d855632 2922 program memory address) into 16 bits.
adde6300
AM
2923ENUM
2924 BFD_RELOC_AVR_LO8_LDI
2925ENUMDOC
2926 This is a 16 bit reloc for the AVR that stores 8 bit value (usually
2927 data memory address) into 8 bit immediate value of LDI insn.
2928ENUM
2929 BFD_RELOC_AVR_HI8_LDI
2930ENUMDOC
2931 This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 bit
2932 of data memory address) into 8 bit immediate value of LDI insn.
2933ENUM
2934 BFD_RELOC_AVR_HH8_LDI
2935ENUMDOC
2936 This is a 16 bit reloc for the AVR that stores 8 bit value (most high 8 bit
2937 of program memory address) into 8 bit immediate value of LDI insn.
2938ENUM
2939 BFD_RELOC_AVR_LO8_LDI_NEG
2940ENUMDOC
2941 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2942 (usually data memory address) into 8 bit immediate value of SUBI insn.
2943ENUM
2944 BFD_RELOC_AVR_HI8_LDI_NEG
2945ENUMDOC
2946 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2947 (high 8 bit of data memory address) into 8 bit immediate value of
2948 SUBI insn.
2949ENUM
2950 BFD_RELOC_AVR_HH8_LDI_NEG
2951ENUMDOC
2952 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2953 (most high 8 bit of program memory address) into 8 bit immediate value
2954 of LDI or SUBI insn.
2955ENUM
2956 BFD_RELOC_AVR_LO8_LDI_PM
2957ENUMDOC
2958 This is a 16 bit reloc for the AVR that stores 8 bit value (usually
2959 command address) into 8 bit immediate value of LDI insn.
2960ENUM
2961 BFD_RELOC_AVR_HI8_LDI_PM
2962ENUMDOC
2963 This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 bit
2964 of command address) into 8 bit immediate value of LDI insn.
2965ENUM
2966 BFD_RELOC_AVR_HH8_LDI_PM
2967ENUMDOC
2968 This is a 16 bit reloc for the AVR that stores 8 bit value (most high 8 bit
2969 of command address) into 8 bit immediate value of LDI insn.
2970ENUM
2971 BFD_RELOC_AVR_LO8_LDI_PM_NEG
2972ENUMDOC
2973 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2974 (usually command address) into 8 bit immediate value of SUBI insn.
2975ENUM
2976 BFD_RELOC_AVR_HI8_LDI_PM_NEG
2977ENUMDOC
2978 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2979 (high 8 bit of 16 bit command address) into 8 bit immediate value
2980 of SUBI insn.
2981ENUM
2982 BFD_RELOC_AVR_HH8_LDI_PM_NEG
2983ENUMDOC
2984 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2985 (high 6 bit of 22 bit command address) into 8 bit immediate
2986 value of SUBI insn.
2987ENUM
2988 BFD_RELOC_AVR_CALL
2989ENUMDOC
2990 This is a 32 bit reloc for the AVR that stores 23 bit value
2991 into 22 bits.
2992
a85d7ed0
NC
2993ENUM
2994 BFD_RELOC_390_12
2995ENUMDOC
2996 Direct 12 bit.
2997ENUM
2998 BFD_RELOC_390_GOT12
2999ENUMDOC
3000 12 bit GOT offset.
3001ENUM
3002 BFD_RELOC_390_PLT32
3003ENUMDOC
3004 32 bit PC relative PLT address.
3005ENUM
3006 BFD_RELOC_390_COPY
3007ENUMDOC
3008 Copy symbol at runtime.
3009ENUM
3010 BFD_RELOC_390_GLOB_DAT
3011ENUMDOC
3012 Create GOT entry.
3013ENUM
3014 BFD_RELOC_390_JMP_SLOT
3015ENUMDOC
3016 Create PLT entry.
3017ENUM
3018 BFD_RELOC_390_RELATIVE
3019ENUMDOC
3020 Adjust by program base.
3021ENUM
3022 BFD_RELOC_390_GOTPC
3023ENUMDOC
3024 32 bit PC relative offset to GOT.
3025ENUM
3026 BFD_RELOC_390_GOT16
3027ENUMDOC
3028 16 bit GOT offset.
3029ENUM
3030 BFD_RELOC_390_PC16DBL
3031ENUMDOC
3032 PC relative 16 bit shifted by 1.
3033ENUM
3034 BFD_RELOC_390_PLT16DBL
3035ENUMDOC
3036 16 bit PC rel. PLT shifted by 1.
3037ENUM
3038 BFD_RELOC_390_PC32DBL
3039ENUMDOC
3040 PC relative 32 bit shifted by 1.
3041ENUM
3042 BFD_RELOC_390_PLT32DBL
3043ENUMDOC
3044 32 bit PC rel. PLT shifted by 1.
3045ENUM
3046 BFD_RELOC_390_GOTPCDBL
3047ENUMDOC
3048 32 bit PC rel. GOT shifted by 1.
3049ENUM
3050 BFD_RELOC_390_GOT64
3051ENUMDOC
3052 64 bit GOT offset.
3053ENUM
3054 BFD_RELOC_390_PLT64
3055ENUMDOC
3056 64 bit PC relative PLT address.
3057ENUM
3058 BFD_RELOC_390_GOTENT
3059ENUMDOC
3060 32 bit rel. offset to GOT entry.
dc810e39 3061
252b5132
RH
3062ENUM
3063 BFD_RELOC_VTABLE_INHERIT
3064ENUMX
3065 BFD_RELOC_VTABLE_ENTRY
3066ENUMDOC
88b6bae0 3067 These two relocations are used by the linker to determine which of
252b5132
RH
3068 the entries in a C++ virtual function table are actually used. When
3069 the --gc-sections option is given, the linker will zero out the entries
3070 that are not used, so that the code for those functions need not be
3071 included in the output.
3072
3073 VTABLE_INHERIT is a zero-space relocation used to describe to the
3074 linker the inheritence tree of a C++ virtual function table. The
3075 relocation's symbol should be the parent class' vtable, and the
3076 relocation should be located at the child vtable.
3077
3078 VTABLE_ENTRY is a zero-space relocation that describes the use of a
3079 virtual function table entry. The reloc's symbol should refer to the
3080 table of the class mentioned in the code. Off of that base, an offset
88b6bae0 3081 describes the entry that is being used. For Rela hosts, this offset
252b5132
RH
3082 is stored in the reloc's addend. For Rel hosts, we are forced to put
3083 this offset in the reloc's section offset.
3084
800eeca4
JW
3085ENUM
3086 BFD_RELOC_IA64_IMM14
3087ENUMX
3088 BFD_RELOC_IA64_IMM22
3089ENUMX
3090 BFD_RELOC_IA64_IMM64
3091ENUMX
3092 BFD_RELOC_IA64_DIR32MSB
3093ENUMX
3094 BFD_RELOC_IA64_DIR32LSB
3095ENUMX
3096 BFD_RELOC_IA64_DIR64MSB
3097ENUMX
3098 BFD_RELOC_IA64_DIR64LSB
3099ENUMX
3100 BFD_RELOC_IA64_GPREL22
3101ENUMX
3102 BFD_RELOC_IA64_GPREL64I
3103ENUMX
3104 BFD_RELOC_IA64_GPREL32MSB
3105ENUMX
3106 BFD_RELOC_IA64_GPREL32LSB
3107ENUMX
3108 BFD_RELOC_IA64_GPREL64MSB
3109ENUMX
3110 BFD_RELOC_IA64_GPREL64LSB
3111ENUMX
3112 BFD_RELOC_IA64_LTOFF22
3113ENUMX
3114 BFD_RELOC_IA64_LTOFF64I
3115ENUMX
3116 BFD_RELOC_IA64_PLTOFF22
3117ENUMX
3118 BFD_RELOC_IA64_PLTOFF64I
3119ENUMX
3120 BFD_RELOC_IA64_PLTOFF64MSB
3121ENUMX
3122 BFD_RELOC_IA64_PLTOFF64LSB
3123ENUMX
3124 BFD_RELOC_IA64_FPTR64I
3125ENUMX
3126 BFD_RELOC_IA64_FPTR32MSB
3127ENUMX
3128 BFD_RELOC_IA64_FPTR32LSB
3129ENUMX
3130 BFD_RELOC_IA64_FPTR64MSB
3131ENUMX
3132 BFD_RELOC_IA64_FPTR64LSB
3133ENUMX
3134 BFD_RELOC_IA64_PCREL21B
748abff6
RH
3135ENUMX
3136 BFD_RELOC_IA64_PCREL21BI
800eeca4
JW
3137ENUMX
3138 BFD_RELOC_IA64_PCREL21M
3139ENUMX
3140 BFD_RELOC_IA64_PCREL21F
748abff6
RH
3141ENUMX
3142 BFD_RELOC_IA64_PCREL22
3143ENUMX
3144 BFD_RELOC_IA64_PCREL60B
3145ENUMX
3146 BFD_RELOC_IA64_PCREL64I
800eeca4
JW
3147ENUMX
3148 BFD_RELOC_IA64_PCREL32MSB
3149ENUMX
3150 BFD_RELOC_IA64_PCREL32LSB
3151ENUMX
3152 BFD_RELOC_IA64_PCREL64MSB
3153ENUMX
3154 BFD_RELOC_IA64_PCREL64LSB
3155ENUMX
3156 BFD_RELOC_IA64_LTOFF_FPTR22
3157ENUMX
3158 BFD_RELOC_IA64_LTOFF_FPTR64I
a4bd8390
JW
3159ENUMX
3160 BFD_RELOC_IA64_LTOFF_FPTR32MSB
3161ENUMX
3162 BFD_RELOC_IA64_LTOFF_FPTR32LSB
800eeca4
JW
3163ENUMX
3164 BFD_RELOC_IA64_LTOFF_FPTR64MSB
3165ENUMX
3166 BFD_RELOC_IA64_LTOFF_FPTR64LSB
800eeca4
JW
3167ENUMX
3168 BFD_RELOC_IA64_SEGREL32MSB
3169ENUMX
3170 BFD_RELOC_IA64_SEGREL32LSB
3171ENUMX
3172 BFD_RELOC_IA64_SEGREL64MSB
3173ENUMX
3174 BFD_RELOC_IA64_SEGREL64LSB
3175ENUMX
3176 BFD_RELOC_IA64_SECREL32MSB
3177ENUMX
3178 BFD_RELOC_IA64_SECREL32LSB
3179ENUMX
3180 BFD_RELOC_IA64_SECREL64MSB
3181ENUMX
3182 BFD_RELOC_IA64_SECREL64LSB
3183ENUMX
3184 BFD_RELOC_IA64_REL32MSB
3185ENUMX
3186 BFD_RELOC_IA64_REL32LSB
3187ENUMX
3188 BFD_RELOC_IA64_REL64MSB
3189ENUMX
3190 BFD_RELOC_IA64_REL64LSB
3191ENUMX
3192 BFD_RELOC_IA64_LTV32MSB
3193ENUMX
3194 BFD_RELOC_IA64_LTV32LSB
3195ENUMX
3196 BFD_RELOC_IA64_LTV64MSB
3197ENUMX
3198 BFD_RELOC_IA64_LTV64LSB
3199ENUMX
3200 BFD_RELOC_IA64_IPLTMSB
3201ENUMX
3202 BFD_RELOC_IA64_IPLTLSB
800eeca4
JW
3203ENUMX
3204 BFD_RELOC_IA64_COPY
13ae64f3
JJ
3205ENUMX
3206 BFD_RELOC_IA64_LTOFF22X
3207ENUMX
3208 BFD_RELOC_IA64_LDXMOV
3209ENUMX
3210 BFD_RELOC_IA64_TPREL14
800eeca4
JW
3211ENUMX
3212 BFD_RELOC_IA64_TPREL22
13ae64f3
JJ
3213ENUMX
3214 BFD_RELOC_IA64_TPREL64I
800eeca4
JW
3215ENUMX
3216 BFD_RELOC_IA64_TPREL64MSB
3217ENUMX
3218 BFD_RELOC_IA64_TPREL64LSB
3219ENUMX
13ae64f3 3220 BFD_RELOC_IA64_LTOFF_TPREL22
800eeca4 3221ENUMX
13ae64f3 3222 BFD_RELOC_IA64_DTPMOD64MSB
800eeca4 3223ENUMX
13ae64f3
JJ
3224 BFD_RELOC_IA64_DTPMOD64LSB
3225ENUMX
3226 BFD_RELOC_IA64_LTOFF_DTPMOD22
3227ENUMX
3228 BFD_RELOC_IA64_DTPREL14
3229ENUMX
3230 BFD_RELOC_IA64_DTPREL22
3231ENUMX
3232 BFD_RELOC_IA64_DTPREL64I
3233ENUMX
3234 BFD_RELOC_IA64_DTPREL32MSB
3235ENUMX
3236 BFD_RELOC_IA64_DTPREL32LSB
3237ENUMX
3238 BFD_RELOC_IA64_DTPREL64MSB
3239ENUMX
3240 BFD_RELOC_IA64_DTPREL64LSB
3241ENUMX
3242 BFD_RELOC_IA64_LTOFF_DTPREL22
800eeca4
JW
3243ENUMDOC
3244 Intel IA64 Relocations.
60bcf0fa
NC
3245
3246ENUM
3247 BFD_RELOC_M68HC11_HI8
3248ENUMDOC
3249 Motorola 68HC11 reloc.
3250 This is the 8 bits high part of an absolute address.
3251ENUM
3252 BFD_RELOC_M68HC11_LO8
3253ENUMDOC
3254 Motorola 68HC11 reloc.
3255 This is the 8 bits low part of an absolute address.
3256ENUM
3257 BFD_RELOC_M68HC11_3B
3258ENUMDOC
3259 Motorola 68HC11 reloc.
3260 This is the 3 bits of a value.
3261
06c15ad7
HPN
3262ENUM
3263 BFD_RELOC_CRIS_BDISP8
3264ENUMX
3265 BFD_RELOC_CRIS_UNSIGNED_5
3266ENUMX
3267 BFD_RELOC_CRIS_SIGNED_6
3268ENUMX
3269 BFD_RELOC_CRIS_UNSIGNED_6
3270ENUMX
3271 BFD_RELOC_CRIS_UNSIGNED_4
3272ENUMDOC
3273 These relocs are only used within the CRIS assembler. They are not
3274 (at present) written to any object files.
58d29fc3
HPN
3275ENUM
3276 BFD_RELOC_CRIS_COPY
3277ENUMX
3278 BFD_RELOC_CRIS_GLOB_DAT
3279ENUMX
3280 BFD_RELOC_CRIS_JUMP_SLOT
3281ENUMX
3282 BFD_RELOC_CRIS_RELATIVE
3283ENUMDOC
3284 Relocs used in ELF shared libraries for CRIS.
3285ENUM
3286 BFD_RELOC_CRIS_32_GOT
3287ENUMDOC
3288 32-bit offset to symbol-entry within GOT.
3289ENUM
3290 BFD_RELOC_CRIS_16_GOT
3291ENUMDOC
3292 16-bit offset to symbol-entry within GOT.
3293ENUM
3294 BFD_RELOC_CRIS_32_GOTPLT
3295ENUMDOC
3296 32-bit offset to symbol-entry within GOT, with PLT handling.
3297ENUM
3298 BFD_RELOC_CRIS_16_GOTPLT
3299ENUMDOC
3300 16-bit offset to symbol-entry within GOT, with PLT handling.
3301ENUM
3302 BFD_RELOC_CRIS_32_GOTREL
3303ENUMDOC
3304 32-bit offset to symbol, relative to GOT.
3305ENUM
3306 BFD_RELOC_CRIS_32_PLT_GOTREL
3307ENUMDOC
3308 32-bit offset to symbol with PLT entry, relative to GOT.
3309ENUM
3310 BFD_RELOC_CRIS_32_PLT_PCREL
3311ENUMDOC
3312 32-bit offset to symbol with PLT entry, relative to this relocation.
06c15ad7 3313
a87fdb8d
JE
3314ENUM
3315 BFD_RELOC_860_COPY
3316ENUMX
3317 BFD_RELOC_860_GLOB_DAT
3318ENUMX
3319 BFD_RELOC_860_JUMP_SLOT
3320ENUMX
3321 BFD_RELOC_860_RELATIVE
3322ENUMX
3323 BFD_RELOC_860_PC26
3324ENUMX
3325 BFD_RELOC_860_PLT26
3326ENUMX
3327 BFD_RELOC_860_PC16
3328ENUMX
3329 BFD_RELOC_860_LOW0
3330ENUMX
3331 BFD_RELOC_860_SPLIT0
3332ENUMX
3333 BFD_RELOC_860_LOW1
3334ENUMX
3335 BFD_RELOC_860_SPLIT1
3336ENUMX
3337 BFD_RELOC_860_LOW2
3338ENUMX
3339 BFD_RELOC_860_SPLIT2
3340ENUMX
3341 BFD_RELOC_860_LOW3
3342ENUMX
3343 BFD_RELOC_860_LOGOT0
3344ENUMX
3345 BFD_RELOC_860_SPGOT0
3346ENUMX
3347 BFD_RELOC_860_LOGOT1
3348ENUMX
3349 BFD_RELOC_860_SPGOT1
3350ENUMX
3351 BFD_RELOC_860_LOGOTOFF0
3352ENUMX
3353 BFD_RELOC_860_SPGOTOFF0
3354ENUMX
3355 BFD_RELOC_860_LOGOTOFF1
3356ENUMX
3357 BFD_RELOC_860_SPGOTOFF1
3358ENUMX
3359 BFD_RELOC_860_LOGOTOFF2
3360ENUMX
3361 BFD_RELOC_860_LOGOTOFF3
3362ENUMX
3363 BFD_RELOC_860_LOPC
3364ENUMX
3365 BFD_RELOC_860_HIGHADJ
3366ENUMX
3367 BFD_RELOC_860_HAGOT
3368ENUMX
3369 BFD_RELOC_860_HAGOTOFF
3370ENUMX
3371 BFD_RELOC_860_HAPC
3372ENUMX
3373 BFD_RELOC_860_HIGH
3374ENUMX
3375 BFD_RELOC_860_HIGOT
3376ENUMX
3377 BFD_RELOC_860_HIGOTOFF
3378ENUMDOC
3379 Intel i860 Relocations.
3380
b3baf5d0
NC
3381ENUM
3382 BFD_RELOC_OPENRISC_ABS_26
3383ENUMX
3384 BFD_RELOC_OPENRISC_REL_26
3385ENUMDOC
3386 OpenRISC Relocations.
3387
e01b0e69
JR
3388ENUM
3389 BFD_RELOC_H8_DIR16A8
3390ENUMX
3391 BFD_RELOC_H8_DIR16R8
3392ENUMX
3393 BFD_RELOC_H8_DIR24A8
3394ENUMX
3395 BFD_RELOC_H8_DIR24R8
3396ENUMX
3397 BFD_RELOC_H8_DIR32A16
3398ENUMDOC
3399 H8 elf Relocations.
3400
93fbbb04
GK
3401ENUM
3402 BFD_RELOC_XSTORMY16_REL_12
3403ENUMX
3404 BFD_RELOC_XSTORMY16_24
3405ENUMX
3406 BFD_RELOC_XSTORMY16_FPTR16
3407ENUMDOC
3408 Sony Xstormy16 Relocations.
3409
252b5132
RH
3410ENDSENUM
3411 BFD_RELOC_UNUSED
3412CODE_FRAGMENT
3413.
3414.typedef enum bfd_reloc_code_real bfd_reloc_code_real_type;
3415*/
3416
252b5132
RH
3417/*
3418FUNCTION
3419 bfd_reloc_type_lookup
3420
3421SYNOPSIS
3422 reloc_howto_type *
3423 bfd_reloc_type_lookup (bfd *abfd, bfd_reloc_code_real_type code);
3424
3425DESCRIPTION
3426 Return a pointer to a howto structure which, when
3427 invoked, will perform the relocation @var{code} on data from the
3428 architecture noted.
3429
3430*/
3431
252b5132
RH
3432reloc_howto_type *
3433bfd_reloc_type_lookup (abfd, code)
3434 bfd *abfd;
3435 bfd_reloc_code_real_type code;
3436{
3437 return BFD_SEND (abfd, reloc_type_lookup, (abfd, code));
3438}
3439
3440static reloc_howto_type bfd_howto_32 =
3441HOWTO (0, 00, 2, 32, false, 0, complain_overflow_bitfield, 0, "VRT32", false, 0xffffffff, 0xffffffff, true);
3442
252b5132
RH
3443/*
3444INTERNAL_FUNCTION
3445 bfd_default_reloc_type_lookup
3446
3447SYNOPSIS
3448 reloc_howto_type *bfd_default_reloc_type_lookup
3449 (bfd *abfd, bfd_reloc_code_real_type code);
3450
3451DESCRIPTION
3452 Provides a default relocation lookup routine for any architecture.
3453
252b5132
RH
3454*/
3455
3456reloc_howto_type *
3457bfd_default_reloc_type_lookup (abfd, code)
3458 bfd *abfd;
3459 bfd_reloc_code_real_type code;
3460{
3461 switch (code)
3462 {
3463 case BFD_RELOC_CTOR:
3464 /* The type of reloc used in a ctor, which will be as wide as the
3465 address - so either a 64, 32, or 16 bitter. */
3466 switch (bfd_get_arch_info (abfd)->bits_per_address)
3467 {
3468 case 64:
3469 BFD_FAIL ();
3470 case 32:
3471 return &bfd_howto_32;
3472 case 16:
3473 BFD_FAIL ();
3474 default:
3475 BFD_FAIL ();
3476 }
3477 default:
3478 BFD_FAIL ();
3479 }
3480 return (reloc_howto_type *) NULL;
3481}
3482
3483/*
3484FUNCTION
3485 bfd_get_reloc_code_name
3486
3487SYNOPSIS
3488 const char *bfd_get_reloc_code_name (bfd_reloc_code_real_type code);
3489
3490DESCRIPTION
3491 Provides a printable name for the supplied relocation code.
3492 Useful mainly for printing error messages.
3493*/
3494
3495const char *
3496bfd_get_reloc_code_name (code)
3497 bfd_reloc_code_real_type code;
3498{
3499 if (code > BFD_RELOC_UNUSED)
3500 return 0;
3501 return bfd_reloc_code_real_names[(int)code];
3502}
3503
3504/*
3505INTERNAL_FUNCTION
3506 bfd_generic_relax_section
3507
3508SYNOPSIS
3509 boolean bfd_generic_relax_section
3510 (bfd *abfd,
3511 asection *section,
3512 struct bfd_link_info *,
3513 boolean *);
3514
3515DESCRIPTION
3516 Provides default handling for relaxing for back ends which
3517 don't do relaxing -- i.e., does nothing.
3518*/
3519
252b5132
RH
3520boolean
3521bfd_generic_relax_section (abfd, section, link_info, again)
7442e600
ILT
3522 bfd *abfd ATTRIBUTE_UNUSED;
3523 asection *section ATTRIBUTE_UNUSED;
3524 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
252b5132
RH
3525 boolean *again;
3526{
3527 *again = false;
3528 return true;
3529}
3530
3531/*
3532INTERNAL_FUNCTION
3533 bfd_generic_gc_sections
3534
3535SYNOPSIS
3536 boolean bfd_generic_gc_sections
3537 (bfd *, struct bfd_link_info *);
3538
3539DESCRIPTION
3540 Provides default handling for relaxing for back ends which
3541 don't do section gc -- i.e., does nothing.
3542*/
3543
252b5132
RH
3544boolean
3545bfd_generic_gc_sections (abfd, link_info)
7442e600
ILT
3546 bfd *abfd ATTRIBUTE_UNUSED;
3547 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
252b5132
RH
3548{
3549 return true;
3550}
3551
8550eb6e
JJ
3552/*
3553INTERNAL_FUNCTION
3554 bfd_generic_merge_sections
3555
3556SYNOPSIS
3557 boolean bfd_generic_merge_sections
3558 (bfd *, struct bfd_link_info *);
3559
3560DESCRIPTION
3561 Provides default handling for SEC_MERGE section merging for back ends
3562 which don't have SEC_MERGE support -- i.e., does nothing.
3563*/
3564
8550eb6e
JJ
3565boolean
3566bfd_generic_merge_sections (abfd, link_info)
3567 bfd *abfd ATTRIBUTE_UNUSED;
3568 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
3569{
3570 return true;
3571}
3572
252b5132
RH
3573/*
3574INTERNAL_FUNCTION
3575 bfd_generic_get_relocated_section_contents
3576
3577SYNOPSIS
3578 bfd_byte *
3579 bfd_generic_get_relocated_section_contents (bfd *abfd,
3580 struct bfd_link_info *link_info,
3581 struct bfd_link_order *link_order,
3582 bfd_byte *data,
3583 boolean relocateable,
3584 asymbol **symbols);
3585
3586DESCRIPTION
3587 Provides default handling of relocation effort for back ends
3588 which can't be bothered to do it efficiently.
3589
3590*/
3591
3592bfd_byte *
3593bfd_generic_get_relocated_section_contents (abfd, link_info, link_order, data,
3594 relocateable, symbols)
3595 bfd *abfd;
3596 struct bfd_link_info *link_info;
3597 struct bfd_link_order *link_order;
3598 bfd_byte *data;
3599 boolean relocateable;
3600 asymbol **symbols;
3601{
b5f79c76 3602 /* Get enough memory to hold the stuff. */
252b5132
RH
3603 bfd *input_bfd = link_order->u.indirect.section->owner;
3604 asection *input_section = link_order->u.indirect.section;
3605
3606 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
3607 arelent **reloc_vector = NULL;
3608 long reloc_count;
3609
3610 if (reloc_size < 0)
3611 goto error_return;
3612
dc810e39 3613 reloc_vector = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
252b5132
RH
3614 if (reloc_vector == NULL && reloc_size != 0)
3615 goto error_return;
3616
b5f79c76 3617 /* Read in the section. */
252b5132
RH
3618 if (!bfd_get_section_contents (input_bfd,
3619 input_section,
3620 (PTR) data,
dc810e39 3621 (bfd_vma) 0,
252b5132
RH
3622 input_section->_raw_size))
3623 goto error_return;
3624
b5f79c76 3625 /* We're not relaxing the section, so just copy the size info. */
252b5132
RH
3626 input_section->_cooked_size = input_section->_raw_size;
3627 input_section->reloc_done = true;
3628
3629 reloc_count = bfd_canonicalize_reloc (input_bfd,
3630 input_section,
3631 reloc_vector,
3632 symbols);
3633 if (reloc_count < 0)
3634 goto error_return;
3635
3636 if (reloc_count > 0)
3637 {
3638 arelent **parent;
3639 for (parent = reloc_vector; *parent != (arelent *) NULL;
3640 parent++)
3641 {
3642 char *error_message = (char *) NULL;
3643 bfd_reloc_status_type r =
3644 bfd_perform_relocation (input_bfd,
3645 *parent,
3646 (PTR) data,
3647 input_section,
3648 relocateable ? abfd : (bfd *) NULL,
3649 &error_message);
3650
3651 if (relocateable)
3652 {
3653 asection *os = input_section->output_section;
3654
b5f79c76 3655 /* A partial link, so keep the relocs. */
252b5132
RH
3656 os->orelocation[os->reloc_count] = *parent;
3657 os->reloc_count++;
3658 }
3659
3660 if (r != bfd_reloc_ok)
3661 {
3662 switch (r)
3663 {
3664 case bfd_reloc_undefined:
3665 if (!((*link_info->callbacks->undefined_symbol)
3666 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
5cc7c785
L
3667 input_bfd, input_section, (*parent)->address,
3668 true)))
252b5132
RH
3669 goto error_return;
3670 break;
3671 case bfd_reloc_dangerous:
3672 BFD_ASSERT (error_message != (char *) NULL);
3673 if (!((*link_info->callbacks->reloc_dangerous)
3674 (link_info, error_message, input_bfd, input_section,
3675 (*parent)->address)))
3676 goto error_return;
3677 break;
3678 case bfd_reloc_overflow:
3679 if (!((*link_info->callbacks->reloc_overflow)
3680 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
3681 (*parent)->howto->name, (*parent)->addend,
3682 input_bfd, input_section, (*parent)->address)))
3683 goto error_return;
3684 break;
3685 case bfd_reloc_outofrange:
3686 default:
3687 abort ();
3688 break;
3689 }
3690
3691 }
3692 }
3693 }
3694 if (reloc_vector != NULL)
3695 free (reloc_vector);
3696 return data;
3697
3698error_return:
3699 if (reloc_vector != NULL)
3700 free (reloc_vector);
3701 return NULL;
3702}
This page took 0.397842 seconds and 4 git commands to generate.