Fix typo
[deliverable/binutils-gdb.git] / bfd / reloc.c
CommitLineData
252b5132 1/* BFD support for handling relocation entries.
7898deda
NC
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001
252b5132
RH
4 Free Software Foundation, Inc.
5 Written by Cygnus Support.
6
7This file is part of BFD, the Binary File Descriptor library.
8
9This program is free software; you can redistribute it and/or modify
10it under the terms of the GNU General Public License as published by
11the Free Software Foundation; either version 2 of the License, or
12(at your option) any later version.
13
14This program is distributed in the hope that it will be useful,
15but WITHOUT ANY WARRANTY; without even the implied warranty of
16MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17GNU General Public License for more details.
18
19You should have received a copy of the GNU General Public License
20along with this program; if not, write to the Free Software
21Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
22
23/*
24SECTION
25 Relocations
26
27 BFD maintains relocations in much the same way it maintains
28 symbols: they are left alone until required, then read in
3f9b03b5 29 en-masse and translated into an internal form. A common
252b5132
RH
30 routine <<bfd_perform_relocation>> acts upon the
31 canonical form to do the fixup.
32
33 Relocations are maintained on a per section basis,
34 while symbols are maintained on a per BFD basis.
35
36 All that a back end has to do to fit the BFD interface is to create
37 a <<struct reloc_cache_entry>> for each relocation
38 in a particular section, and fill in the right bits of the structures.
39
40@menu
41@* typedef arelent::
42@* howto manager::
43@end menu
44
45*/
46
47/* DO compile in the reloc_code name table from libbfd.h. */
48#define _BFD_MAKE_TABLE_bfd_reloc_code_real
49
50#include "bfd.h"
51#include "sysdep.h"
52#include "bfdlink.h"
53#include "libbfd.h"
54/*
55DOCDD
56INODE
57 typedef arelent, howto manager, Relocations, Relocations
58
59SUBSECTION
60 typedef arelent
61
62 This is the structure of a relocation entry:
63
64CODE_FRAGMENT
65.
66.typedef enum bfd_reloc_status
67.{
68. {* No errors detected *}
69. bfd_reloc_ok,
70.
71. {* The relocation was performed, but there was an overflow. *}
72. bfd_reloc_overflow,
73.
74. {* The address to relocate was not within the section supplied. *}
75. bfd_reloc_outofrange,
76.
77. {* Used by special functions *}
78. bfd_reloc_continue,
79.
80. {* Unsupported relocation size requested. *}
81. bfd_reloc_notsupported,
82.
83. {* Unused *}
84. bfd_reloc_other,
85.
86. {* The symbol to relocate against was undefined. *}
87. bfd_reloc_undefined,
88.
89. {* The relocation was performed, but may not be ok - presently
90. generated only when linking i960 coff files with i960 b.out
91. symbols. If this type is returned, the error_message argument
92. to bfd_perform_relocation will be set. *}
93. bfd_reloc_dangerous
94. }
95. bfd_reloc_status_type;
96.
97.
98.typedef struct reloc_cache_entry
99.{
100. {* A pointer into the canonical table of pointers *}
101. struct symbol_cache_entry **sym_ptr_ptr;
102.
103. {* offset in section *}
104. bfd_size_type address;
105.
106. {* addend for relocation value *}
107. bfd_vma addend;
108.
109. {* Pointer to how to perform the required relocation *}
110. reloc_howto_type *howto;
111.
112.} arelent;
113
114*/
115
116/*
117DESCRIPTION
118
119 Here is a description of each of the fields within an <<arelent>>:
120
121 o <<sym_ptr_ptr>>
122
123 The symbol table pointer points to a pointer to the symbol
124 associated with the relocation request. It is
125 the pointer into the table returned by the back end's
126 <<get_symtab>> action. @xref{Symbols}. The symbol is referenced
127 through a pointer to a pointer so that tools like the linker
128 can fix up all the symbols of the same name by modifying only
129 one pointer. The relocation routine looks in the symbol and
130 uses the base of the section the symbol is attached to and the
131 value of the symbol as the initial relocation offset. If the
132 symbol pointer is zero, then the section provided is looked up.
133
134 o <<address>>
135
136 The <<address>> field gives the offset in bytes from the base of
137 the section data which owns the relocation record to the first
138 byte of relocatable information. The actual data relocated
139 will be relative to this point; for example, a relocation
140 type which modifies the bottom two bytes of a four byte word
141 would not touch the first byte pointed to in a big endian
142 world.
143
144 o <<addend>>
145
146 The <<addend>> is a value provided by the back end to be added (!)
147 to the relocation offset. Its interpretation is dependent upon
148 the howto. For example, on the 68k the code:
149
252b5132
RH
150| char foo[];
151| main()
152| {
153| return foo[0x12345678];
154| }
155
156 Could be compiled into:
157
158| linkw fp,#-4
159| moveb @@#12345678,d0
160| extbl d0
161| unlk fp
162| rts
163
252b5132
RH
164 This could create a reloc pointing to <<foo>>, but leave the
165 offset in the data, something like:
166
252b5132
RH
167|RELOCATION RECORDS FOR [.text]:
168|offset type value
169|00000006 32 _foo
170|
171|00000000 4e56 fffc ; linkw fp,#-4
172|00000004 1039 1234 5678 ; moveb @@#12345678,d0
173|0000000a 49c0 ; extbl d0
174|0000000c 4e5e ; unlk fp
175|0000000e 4e75 ; rts
176
252b5132
RH
177 Using coff and an 88k, some instructions don't have enough
178 space in them to represent the full address range, and
179 pointers have to be loaded in two parts. So you'd get something like:
180
252b5132
RH
181| or.u r13,r0,hi16(_foo+0x12345678)
182| ld.b r2,r13,lo16(_foo+0x12345678)
183| jmp r1
184
252b5132
RH
185 This should create two relocs, both pointing to <<_foo>>, and with
186 0x12340000 in their addend field. The data would consist of:
187
252b5132
RH
188|RELOCATION RECORDS FOR [.text]:
189|offset type value
190|00000002 HVRT16 _foo+0x12340000
191|00000006 LVRT16 _foo+0x12340000
192|
193|00000000 5da05678 ; or.u r13,r0,0x5678
194|00000004 1c4d5678 ; ld.b r2,r13,0x5678
195|00000008 f400c001 ; jmp r1
196
252b5132
RH
197 The relocation routine digs out the value from the data, adds
198 it to the addend to get the original offset, and then adds the
199 value of <<_foo>>. Note that all 32 bits have to be kept around
200 somewhere, to cope with carry from bit 15 to bit 16.
201
202 One further example is the sparc and the a.out format. The
203 sparc has a similar problem to the 88k, in that some
204 instructions don't have room for an entire offset, but on the
205 sparc the parts are created in odd sized lumps. The designers of
206 the a.out format chose to not use the data within the section
207 for storing part of the offset; all the offset is kept within
208 the reloc. Anything in the data should be ignored.
209
210| save %sp,-112,%sp
211| sethi %hi(_foo+0x12345678),%g2
212| ldsb [%g2+%lo(_foo+0x12345678)],%i0
213| ret
214| restore
215
216 Both relocs contain a pointer to <<foo>>, and the offsets
217 contain junk.
218
252b5132
RH
219|RELOCATION RECORDS FOR [.text]:
220|offset type value
221|00000004 HI22 _foo+0x12345678
222|00000008 LO10 _foo+0x12345678
223|
224|00000000 9de3bf90 ; save %sp,-112,%sp
225|00000004 05000000 ; sethi %hi(_foo+0),%g2
226|00000008 f048a000 ; ldsb [%g2+%lo(_foo+0)],%i0
227|0000000c 81c7e008 ; ret
228|00000010 81e80000 ; restore
229
252b5132
RH
230 o <<howto>>
231
232 The <<howto>> field can be imagined as a
233 relocation instruction. It is a pointer to a structure which
234 contains information on what to do with all of the other
235 information in the reloc record and data section. A back end
236 would normally have a relocation instruction set and turn
237 relocations into pointers to the correct structure on input -
238 but it would be possible to create each howto field on demand.
239
240*/
241
242/*
243SUBSUBSECTION
244 <<enum complain_overflow>>
245
246 Indicates what sort of overflow checking should be done when
247 performing a relocation.
248
249CODE_FRAGMENT
250.
251.enum complain_overflow
252.{
253. {* Do not complain on overflow. *}
254. complain_overflow_dont,
255.
256. {* Complain if the bitfield overflows, whether it is considered
257. as signed or unsigned. *}
258. complain_overflow_bitfield,
259.
260. {* Complain if the value overflows when considered as signed
261. number. *}
262. complain_overflow_signed,
263.
264. {* Complain if the value overflows when considered as an
265. unsigned number. *}
266. complain_overflow_unsigned
267.};
268
269*/
270
271/*
272SUBSUBSECTION
273 <<reloc_howto_type>>
274
275 The <<reloc_howto_type>> is a structure which contains all the
276 information that libbfd needs to know to tie up a back end's data.
277
278CODE_FRAGMENT
279.struct symbol_cache_entry; {* Forward declaration *}
280.
281.struct reloc_howto_struct
282.{
283. {* The type field has mainly a documentary use - the back end can
284. do what it wants with it, though normally the back end's
285. external idea of what a reloc number is stored
286. in this field. For example, a PC relative word relocation
287. in a coff environment has the type 023 - because that's
288. what the outside world calls a R_PCRWORD reloc. *}
289. unsigned int type;
290.
291. {* The value the final relocation is shifted right by. This drops
292. unwanted data from the relocation. *}
293. unsigned int rightshift;
294.
295. {* The size of the item to be relocated. This is *not* a
296. power-of-two measure. To get the number of bytes operated
297. on by a type of relocation, use bfd_get_reloc_size. *}
298. int size;
299.
300. {* The number of bits in the item to be relocated. This is used
301. when doing overflow checking. *}
302. unsigned int bitsize;
303.
304. {* Notes that the relocation is relative to the location in the
305. data section of the addend. The relocation function will
306. subtract from the relocation value the address of the location
307. being relocated. *}
308. boolean pc_relative;
309.
310. {* The bit position of the reloc value in the destination.
311. The relocated value is left shifted by this amount. *}
312. unsigned int bitpos;
313.
314. {* What type of overflow error should be checked for when
315. relocating. *}
316. enum complain_overflow complain_on_overflow;
317.
318. {* If this field is non null, then the supplied function is
319. called rather than the normal function. This allows really
320. strange relocation methods to be accomodated (e.g., i960 callj
321. instructions). *}
322. bfd_reloc_status_type (*special_function)
323. PARAMS ((bfd *abfd,
324. arelent *reloc_entry,
325. struct symbol_cache_entry *symbol,
326. PTR data,
327. asection *input_section,
328. bfd *output_bfd,
329. char **error_message));
330.
331. {* The textual name of the relocation type. *}
332. char *name;
333.
c1b7949f
DE
334. {* Some formats record a relocation addend in the section contents
335. rather than with the relocation. For ELF formats this is the
336. distinction between USE_REL and USE_RELA (though the code checks
337. for USE_REL == 1/0). The value of this field is TRUE if the
338. addend is recorded with the section contents; when performing a
339. partial link (ld -r) the section contents (the data) will be
340. modified. The value of this field is FALSE if addends are
341. recorded with the relocation (in arelent.addend); when performing
342. a partial link the relocation will be modified.
343. All relocations for all ELF USE_RELA targets should set this field
344. to FALSE (values of TRUE should be looked on with suspicion).
345. However, the converse is not true: not all relocations of all ELF
346. USE_REL targets set this field to TRUE. Why this is so is peculiar
347. to each particular target. For relocs that aren't used in partial
348. links (e.g. GOT stuff) it doesn't matter what this is set to. *}
252b5132
RH
349. boolean partial_inplace;
350.
351. {* The src_mask selects which parts of the read in data
352. are to be used in the relocation sum. E.g., if this was an 8 bit
88b6bae0 353. byte of data which we read and relocated, this would be
252b5132
RH
354. 0x000000ff. When we have relocs which have an addend, such as
355. sun4 extended relocs, the value in the offset part of a
356. relocating field is garbage so we never use it. In this case
357. the mask would be 0x00000000. *}
358. bfd_vma src_mask;
359.
360. {* The dst_mask selects which parts of the instruction are replaced
361. into the instruction. In most cases src_mask == dst_mask,
362. except in the above special case, where dst_mask would be
363. 0x000000ff, and src_mask would be 0x00000000. *}
364. bfd_vma dst_mask;
365.
366. {* When some formats create PC relative instructions, they leave
367. the value of the pc of the place being relocated in the offset
368. slot of the instruction, so that a PC relative relocation can
369. be made just by adding in an ordinary offset (e.g., sun3 a.out).
370. Some formats leave the displacement part of an instruction
371. empty (e.g., m88k bcs); this flag signals the fact.*}
372. boolean pcrel_offset;
373.
374.};
375
376*/
377
378/*
379FUNCTION
380 The HOWTO Macro
381
382DESCRIPTION
383 The HOWTO define is horrible and will go away.
384
252b5132
RH
385.#define HOWTO(C, R,S,B, P, BI, O, SF, NAME, INPLACE, MASKSRC, MASKDST, PC) \
386. {(unsigned)C,R,S,B, P, BI, O,SF,NAME,INPLACE,MASKSRC,MASKDST,PC}
387
388DESCRIPTION
389 And will be replaced with the totally magic way. But for the
390 moment, we are compatible, so do it this way.
391
252b5132
RH
392.#define NEWHOWTO( FUNCTION, NAME,SIZE,REL,IN) HOWTO(0,0,SIZE,0,REL,0,complain_overflow_dont,FUNCTION, NAME,false,0,0,IN)
393.
5f771d47
ILT
394
395DESCRIPTION
396 This is used to fill in an empty howto entry in an array.
397
398.#define EMPTY_HOWTO(C) \
399. HOWTO((C),0,0,0,false,0,complain_overflow_dont,NULL,NULL,false,0,0,false)
400.
401
252b5132
RH
402DESCRIPTION
403 Helper routine to turn a symbol into a relocation value.
404
405.#define HOWTO_PREPARE(relocation, symbol) \
406. { \
407. if (symbol != (asymbol *)NULL) { \
408. if (bfd_is_com_section (symbol->section)) { \
409. relocation = 0; \
410. } \
411. else { \
412. relocation = symbol->value; \
413. } \
414. } \
415.}
416
417*/
418
419/*
420FUNCTION
421 bfd_get_reloc_size
422
423SYNOPSIS
424 unsigned int bfd_get_reloc_size (reloc_howto_type *);
425
426DESCRIPTION
427 For a reloc_howto_type that operates on a fixed number of bytes,
428 this returns the number of bytes operated on.
429 */
430
431unsigned int
432bfd_get_reloc_size (howto)
433 reloc_howto_type *howto;
434{
435 switch (howto->size)
436 {
437 case 0: return 1;
438 case 1: return 2;
439 case 2: return 4;
440 case 3: return 0;
441 case 4: return 8;
442 case 8: return 16;
443 case -2: return 4;
444 default: abort ();
445 }
446}
447
448/*
449TYPEDEF
450 arelent_chain
451
452DESCRIPTION
453
454 How relocs are tied together in an <<asection>>:
455
456.typedef struct relent_chain {
457. arelent relent;
458. struct relent_chain *next;
459.} arelent_chain;
460
461*/
462
463/* N_ONES produces N one bits, without overflowing machine arithmetic. */
464#define N_ONES(n) (((((bfd_vma) 1 << ((n) - 1)) - 1) << 1) | 1)
465
466/*
467FUNCTION
468 bfd_check_overflow
469
470SYNOPSIS
471 bfd_reloc_status_type
472 bfd_check_overflow
473 (enum complain_overflow how,
474 unsigned int bitsize,
475 unsigned int rightshift,
476 unsigned int addrsize,
477 bfd_vma relocation);
478
479DESCRIPTION
480 Perform overflow checking on @var{relocation} which has
481 @var{bitsize} significant bits and will be shifted right by
482 @var{rightshift} bits, on a machine with addresses containing
483 @var{addrsize} significant bits. The result is either of
484 @code{bfd_reloc_ok} or @code{bfd_reloc_overflow}.
485
486*/
487
488bfd_reloc_status_type
489bfd_check_overflow (how, bitsize, rightshift, addrsize, relocation)
490 enum complain_overflow how;
491 unsigned int bitsize;
492 unsigned int rightshift;
493 unsigned int addrsize;
494 bfd_vma relocation;
495{
496 bfd_vma fieldmask, addrmask, signmask, ss, a;
497 bfd_reloc_status_type flag = bfd_reloc_ok;
498
499 a = relocation;
500
501 /* Note: BITSIZE should always be <= ADDRSIZE, but in case it's not,
502 we'll be permissive: extra bits in the field mask will
503 automatically extend the address mask for purposes of the
504 overflow check. */
505 fieldmask = N_ONES (bitsize);
506 addrmask = N_ONES (addrsize) | fieldmask;
507
508 switch (how)
509 {
510 case complain_overflow_dont:
511 break;
512
513 case complain_overflow_signed:
514 /* If any sign bits are set, all sign bits must be set. That
515 is, A must be a valid negative address after shifting. */
516 a = (a & addrmask) >> rightshift;
517 signmask = ~ (fieldmask >> 1);
518 ss = a & signmask;
519 if (ss != 0 && ss != ((addrmask >> rightshift) & signmask))
520 flag = bfd_reloc_overflow;
521 break;
522
523 case complain_overflow_unsigned:
524 /* We have an overflow if the address does not fit in the field. */
525 a = (a & addrmask) >> rightshift;
526 if ((a & ~ fieldmask) != 0)
527 flag = bfd_reloc_overflow;
528 break;
529
530 case complain_overflow_bitfield:
531 /* Bitfields are sometimes signed, sometimes unsigned. We
d5afc56e
AM
532 explicitly allow an address wrap too, which means a bitfield
533 of n bits is allowed to store -2**n to 2**n-1. Thus overflow
534 if the value has some, but not all, bits set outside the
535 field. */
252b5132 536 a >>= rightshift;
d5afc56e
AM
537 ss = a & ~ fieldmask;
538 if (ss != 0 && ss != (((bfd_vma) -1 >> rightshift) & ~ fieldmask))
539 flag = bfd_reloc_overflow;
252b5132
RH
540 break;
541
542 default:
543 abort ();
544 }
545
546 return flag;
547}
548
549/*
550FUNCTION
551 bfd_perform_relocation
552
553SYNOPSIS
554 bfd_reloc_status_type
555 bfd_perform_relocation
556 (bfd *abfd,
557 arelent *reloc_entry,
558 PTR data,
559 asection *input_section,
560 bfd *output_bfd,
561 char **error_message);
562
563DESCRIPTION
564 If @var{output_bfd} is supplied to this function, the
565 generated image will be relocatable; the relocations are
566 copied to the output file after they have been changed to
567 reflect the new state of the world. There are two ways of
568 reflecting the results of partial linkage in an output file:
569 by modifying the output data in place, and by modifying the
570 relocation record. Some native formats (e.g., basic a.out and
571 basic coff) have no way of specifying an addend in the
572 relocation type, so the addend has to go in the output data.
573 This is no big deal since in these formats the output data
574 slot will always be big enough for the addend. Complex reloc
575 types with addends were invented to solve just this problem.
576 The @var{error_message} argument is set to an error message if
577 this return @code{bfd_reloc_dangerous}.
578
579*/
580
252b5132
RH
581bfd_reloc_status_type
582bfd_perform_relocation (abfd, reloc_entry, data, input_section, output_bfd,
583 error_message)
584 bfd *abfd;
585 arelent *reloc_entry;
586 PTR data;
587 asection *input_section;
588 bfd *output_bfd;
589 char **error_message;
590{
591 bfd_vma relocation;
592 bfd_reloc_status_type flag = bfd_reloc_ok;
9a968f43 593 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
252b5132
RH
594 bfd_vma output_base = 0;
595 reloc_howto_type *howto = reloc_entry->howto;
596 asection *reloc_target_output_section;
597 asymbol *symbol;
598
599 symbol = *(reloc_entry->sym_ptr_ptr);
600 if (bfd_is_abs_section (symbol->section)
601 && output_bfd != (bfd *) NULL)
602 {
603 reloc_entry->address += input_section->output_offset;
604 return bfd_reloc_ok;
605 }
606
607 /* If we are not producing relocateable output, return an error if
608 the symbol is not defined. An undefined weak symbol is
609 considered to have a value of zero (SVR4 ABI, p. 4-27). */
610 if (bfd_is_und_section (symbol->section)
611 && (symbol->flags & BSF_WEAK) == 0
612 && output_bfd == (bfd *) NULL)
613 flag = bfd_reloc_undefined;
614
615 /* If there is a function supplied to handle this relocation type,
616 call it. It'll return `bfd_reloc_continue' if further processing
617 can be done. */
618 if (howto->special_function)
619 {
620 bfd_reloc_status_type cont;
621 cont = howto->special_function (abfd, reloc_entry, symbol, data,
622 input_section, output_bfd,
623 error_message);
624 if (cont != bfd_reloc_continue)
625 return cont;
626 }
627
628 /* Is the address of the relocation really within the section? */
9a968f43
NC
629 if (reloc_entry->address > input_section->_cooked_size /
630 bfd_octets_per_byte (abfd))
252b5132
RH
631 return bfd_reloc_outofrange;
632
633 /* Work out which section the relocation is targetted at and the
634 initial relocation command value. */
635
636 /* Get symbol value. (Common symbols are special.) */
637 if (bfd_is_com_section (symbol->section))
638 relocation = 0;
639 else
640 relocation = symbol->value;
641
252b5132
RH
642 reloc_target_output_section = symbol->section->output_section;
643
644 /* Convert input-section-relative symbol value to absolute. */
645 if (output_bfd && howto->partial_inplace == false)
646 output_base = 0;
647 else
648 output_base = reloc_target_output_section->vma;
649
650 relocation += output_base + symbol->section->output_offset;
651
652 /* Add in supplied addend. */
653 relocation += reloc_entry->addend;
654
655 /* Here the variable relocation holds the final address of the
656 symbol we are relocating against, plus any addend. */
657
658 if (howto->pc_relative == true)
659 {
660 /* This is a PC relative relocation. We want to set RELOCATION
661 to the distance between the address of the symbol and the
662 location. RELOCATION is already the address of the symbol.
663
664 We start by subtracting the address of the section containing
665 the location.
666
667 If pcrel_offset is set, we must further subtract the position
668 of the location within the section. Some targets arrange for
669 the addend to be the negative of the position of the location
670 within the section; for example, i386-aout does this. For
671 i386-aout, pcrel_offset is false. Some other targets do not
672 include the position of the location; for example, m88kbcs,
673 or ELF. For those targets, pcrel_offset is true.
674
675 If we are producing relocateable output, then we must ensure
676 that this reloc will be correctly computed when the final
677 relocation is done. If pcrel_offset is false we want to wind
678 up with the negative of the location within the section,
679 which means we must adjust the existing addend by the change
680 in the location within the section. If pcrel_offset is true
681 we do not want to adjust the existing addend at all.
682
683 FIXME: This seems logical to me, but for the case of
684 producing relocateable output it is not what the code
685 actually does. I don't want to change it, because it seems
686 far too likely that something will break. */
687
688 relocation -=
689 input_section->output_section->vma + input_section->output_offset;
690
691 if (howto->pcrel_offset == true)
692 relocation -= reloc_entry->address;
693 }
694
695 if (output_bfd != (bfd *) NULL)
696 {
697 if (howto->partial_inplace == false)
698 {
699 /* This is a partial relocation, and we want to apply the relocation
700 to the reloc entry rather than the raw data. Modify the reloc
701 inplace to reflect what we now know. */
702 reloc_entry->addend = relocation;
703 reloc_entry->address += input_section->output_offset;
704 return flag;
705 }
706 else
707 {
708 /* This is a partial relocation, but inplace, so modify the
709 reloc record a bit.
710
711 If we've relocated with a symbol with a section, change
712 into a ref to the section belonging to the symbol. */
713
714 reloc_entry->address += input_section->output_offset;
715
716 /* WTF?? */
717 if (abfd->xvec->flavour == bfd_target_coff_flavour
252b5132
RH
718 && strcmp (abfd->xvec->name, "coff-Intel-little") != 0
719 && strcmp (abfd->xvec->name, "coff-Intel-big") != 0)
720 {
721#if 1
722 /* For m68k-coff, the addend was being subtracted twice during
723 relocation with -r. Removing the line below this comment
724 fixes that problem; see PR 2953.
725
726However, Ian wrote the following, regarding removing the line below,
727which explains why it is still enabled: --djm
728
729If you put a patch like that into BFD you need to check all the COFF
730linkers. I am fairly certain that patch will break coff-i386 (e.g.,
731SCO); see coff_i386_reloc in coff-i386.c where I worked around the
732problem in a different way. There may very well be a reason that the
733code works as it does.
734
735Hmmm. The first obvious point is that bfd_perform_relocation should
736not have any tests that depend upon the flavour. It's seem like
737entirely the wrong place for such a thing. The second obvious point
738is that the current code ignores the reloc addend when producing
739relocateable output for COFF. That's peculiar. In fact, I really
740have no idea what the point of the line you want to remove is.
741
742A typical COFF reloc subtracts the old value of the symbol and adds in
743the new value to the location in the object file (if it's a pc
744relative reloc it adds the difference between the symbol value and the
745location). When relocating we need to preserve that property.
746
747BFD handles this by setting the addend to the negative of the old
748value of the symbol. Unfortunately it handles common symbols in a
749non-standard way (it doesn't subtract the old value) but that's a
750different story (we can't change it without losing backward
751compatibility with old object files) (coff-i386 does subtract the old
752value, to be compatible with existing coff-i386 targets, like SCO).
753
754So everything works fine when not producing relocateable output. When
755we are producing relocateable output, logically we should do exactly
756what we do when not producing relocateable output. Therefore, your
757patch is correct. In fact, it should probably always just set
758reloc_entry->addend to 0 for all cases, since it is, in fact, going to
759add the value into the object file. This won't hurt the COFF code,
760which doesn't use the addend; I'm not sure what it will do to other
761formats (the thing to check for would be whether any formats both use
762the addend and set partial_inplace).
763
764When I wanted to make coff-i386 produce relocateable output, I ran
765into the problem that you are running into: I wanted to remove that
766line. Rather than risk it, I made the coff-i386 relocs use a special
767function; it's coff_i386_reloc in coff-i386.c. The function
768specifically adds the addend field into the object file, knowing that
769bfd_perform_relocation is not going to. If you remove that line, then
770coff-i386.c will wind up adding the addend field in twice. It's
771trivial to fix; it just needs to be done.
772
773The problem with removing the line is just that it may break some
774working code. With BFD it's hard to be sure of anything. The right
775way to deal with this is simply to build and test at least all the
776supported COFF targets. It should be straightforward if time and disk
777space consuming. For each target:
778 1) build the linker
779 2) generate some executable, and link it using -r (I would
780 probably use paranoia.o and link against newlib/libc.a, which
781 for all the supported targets would be available in
782 /usr/cygnus/progressive/H-host/target/lib/libc.a).
783 3) make the change to reloc.c
784 4) rebuild the linker
785 5) repeat step 2
786 6) if the resulting object files are the same, you have at least
787 made it no worse
788 7) if they are different you have to figure out which version is
789 right
790*/
791 relocation -= reloc_entry->addend;
792#endif
793 reloc_entry->addend = 0;
794 }
795 else
796 {
797 reloc_entry->addend = relocation;
798 }
799 }
800 }
801 else
802 {
803 reloc_entry->addend = 0;
804 }
805
806 /* FIXME: This overflow checking is incomplete, because the value
807 might have overflowed before we get here. For a correct check we
808 need to compute the value in a size larger than bitsize, but we
809 can't reasonably do that for a reloc the same size as a host
810 machine word.
811 FIXME: We should also do overflow checking on the result after
812 adding in the value contained in the object file. */
813 if (howto->complain_on_overflow != complain_overflow_dont
814 && flag == bfd_reloc_ok)
815 flag = bfd_check_overflow (howto->complain_on_overflow,
816 howto->bitsize,
817 howto->rightshift,
818 bfd_arch_bits_per_address (abfd),
819 relocation);
820
821 /*
822 Either we are relocating all the way, or we don't want to apply
823 the relocation to the reloc entry (probably because there isn't
824 any room in the output format to describe addends to relocs)
825 */
826
827 /* The cast to bfd_vma avoids a bug in the Alpha OSF/1 C compiler
828 (OSF version 1.3, compiler version 3.11). It miscompiles the
829 following program:
830
831 struct str
832 {
833 unsigned int i0;
834 } s = { 0 };
835
836 int
837 main ()
838 {
839 unsigned long x;
840
841 x = 0x100000000;
842 x <<= (unsigned long) s.i0;
843 if (x == 0)
844 printf ("failed\n");
845 else
846 printf ("succeeded (%lx)\n", x);
847 }
848 */
849
850 relocation >>= (bfd_vma) howto->rightshift;
851
852 /* Shift everything up to where it's going to be used */
853
854 relocation <<= (bfd_vma) howto->bitpos;
855
856 /* Wait for the day when all have the mask in them */
857
858 /* What we do:
859 i instruction to be left alone
860 o offset within instruction
861 r relocation offset to apply
862 S src mask
863 D dst mask
864 N ~dst mask
865 A part 1
866 B part 2
867 R result
868
869 Do this:
88b6bae0
AM
870 (( i i i i i o o o o o from bfd_get<size>
871 and S S S S S) to get the size offset we want
872 + r r r r r r r r r r) to get the final value to place
252b5132
RH
873 and D D D D D to chop to right size
874 -----------------------
88b6bae0 875 = A A A A A
252b5132 876 And this:
88b6bae0
AM
877 ( i i i i i o o o o o from bfd_get<size>
878 and N N N N N ) get instruction
252b5132 879 -----------------------
88b6bae0 880 = B B B B B
252b5132
RH
881
882 And then:
88b6bae0
AM
883 ( B B B B B
884 or A A A A A)
252b5132 885 -----------------------
88b6bae0 886 = R R R R R R R R R R put into bfd_put<size>
252b5132
RH
887 */
888
889#define DOIT(x) \
890 x = ( (x & ~howto->dst_mask) | (((x & howto->src_mask) + relocation) & howto->dst_mask))
891
892 switch (howto->size)
893 {
894 case 0:
895 {
9a968f43 896 char x = bfd_get_8 (abfd, (char *) data + octets);
252b5132 897 DOIT (x);
9a968f43 898 bfd_put_8 (abfd, x, (unsigned char *) data + octets);
252b5132
RH
899 }
900 break;
901
902 case 1:
903 {
9a968f43 904 short x = bfd_get_16 (abfd, (bfd_byte *) data + octets);
252b5132 905 DOIT (x);
9a968f43 906 bfd_put_16 (abfd, x, (unsigned char *) data + octets);
252b5132
RH
907 }
908 break;
909 case 2:
910 {
9a968f43 911 long x = bfd_get_32 (abfd, (bfd_byte *) data + octets);
252b5132 912 DOIT (x);
9a968f43 913 bfd_put_32 (abfd, x, (bfd_byte *) data + octets);
252b5132
RH
914 }
915 break;
916 case -2:
917 {
9a968f43 918 long x = bfd_get_32 (abfd, (bfd_byte *) data + octets);
252b5132
RH
919 relocation = -relocation;
920 DOIT (x);
9a968f43 921 bfd_put_32 (abfd, x, (bfd_byte *) data + octets);
252b5132
RH
922 }
923 break;
924
925 case -1:
926 {
9a968f43 927 long x = bfd_get_16 (abfd, (bfd_byte *) data + octets);
252b5132
RH
928 relocation = -relocation;
929 DOIT (x);
9a968f43 930 bfd_put_16 (abfd, x, (bfd_byte *) data + octets);
252b5132
RH
931 }
932 break;
933
934 case 3:
935 /* Do nothing */
936 break;
937
938 case 4:
939#ifdef BFD64
940 {
9a968f43 941 bfd_vma x = bfd_get_64 (abfd, (bfd_byte *) data + octets);
252b5132 942 DOIT (x);
9a968f43 943 bfd_put_64 (abfd, x, (bfd_byte *) data + octets);
252b5132
RH
944 }
945#else
946 abort ();
947#endif
948 break;
949 default:
950 return bfd_reloc_other;
951 }
952
953 return flag;
954}
955
956/*
957FUNCTION
958 bfd_install_relocation
959
960SYNOPSIS
961 bfd_reloc_status_type
962 bfd_install_relocation
963 (bfd *abfd,
964 arelent *reloc_entry,
965 PTR data, bfd_vma data_start,
966 asection *input_section,
967 char **error_message);
968
969DESCRIPTION
970 This looks remarkably like <<bfd_perform_relocation>>, except it
971 does not expect that the section contents have been filled in.
972 I.e., it's suitable for use when creating, rather than applying
973 a relocation.
974
975 For now, this function should be considered reserved for the
976 assembler.
977
978*/
979
252b5132
RH
980bfd_reloc_status_type
981bfd_install_relocation (abfd, reloc_entry, data_start, data_start_offset,
982 input_section, error_message)
983 bfd *abfd;
984 arelent *reloc_entry;
985 PTR data_start;
986 bfd_vma data_start_offset;
987 asection *input_section;
988 char **error_message;
989{
990 bfd_vma relocation;
991 bfd_reloc_status_type flag = bfd_reloc_ok;
9a968f43 992 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
252b5132
RH
993 bfd_vma output_base = 0;
994 reloc_howto_type *howto = reloc_entry->howto;
995 asection *reloc_target_output_section;
996 asymbol *symbol;
997 bfd_byte *data;
998
999 symbol = *(reloc_entry->sym_ptr_ptr);
1000 if (bfd_is_abs_section (symbol->section))
1001 {
1002 reloc_entry->address += input_section->output_offset;
1003 return bfd_reloc_ok;
1004 }
1005
1006 /* If there is a function supplied to handle this relocation type,
1007 call it. It'll return `bfd_reloc_continue' if further processing
1008 can be done. */
1009 if (howto->special_function)
1010 {
1011 bfd_reloc_status_type cont;
88b6bae0 1012
252b5132
RH
1013 /* XXX - The special_function calls haven't been fixed up to deal
1014 with creating new relocations and section contents. */
1015 cont = howto->special_function (abfd, reloc_entry, symbol,
1016 /* XXX - Non-portable! */
1017 ((bfd_byte *) data_start
1018 - data_start_offset),
1019 input_section, abfd, error_message);
1020 if (cont != bfd_reloc_continue)
1021 return cont;
1022 }
1023
1024 /* Is the address of the relocation really within the section? */
1025 if (reloc_entry->address > input_section->_cooked_size)
1026 return bfd_reloc_outofrange;
1027
1028 /* Work out which section the relocation is targetted at and the
1029 initial relocation command value. */
1030
1031 /* Get symbol value. (Common symbols are special.) */
1032 if (bfd_is_com_section (symbol->section))
1033 relocation = 0;
1034 else
1035 relocation = symbol->value;
1036
1037 reloc_target_output_section = symbol->section->output_section;
1038
1039 /* Convert input-section-relative symbol value to absolute. */
1040 if (howto->partial_inplace == false)
1041 output_base = 0;
1042 else
1043 output_base = reloc_target_output_section->vma;
1044
1045 relocation += output_base + symbol->section->output_offset;
1046
1047 /* Add in supplied addend. */
1048 relocation += reloc_entry->addend;
1049
1050 /* Here the variable relocation holds the final address of the
1051 symbol we are relocating against, plus any addend. */
1052
1053 if (howto->pc_relative == true)
1054 {
1055 /* This is a PC relative relocation. We want to set RELOCATION
1056 to the distance between the address of the symbol and the
1057 location. RELOCATION is already the address of the symbol.
1058
1059 We start by subtracting the address of the section containing
1060 the location.
1061
1062 If pcrel_offset is set, we must further subtract the position
1063 of the location within the section. Some targets arrange for
1064 the addend to be the negative of the position of the location
1065 within the section; for example, i386-aout does this. For
1066 i386-aout, pcrel_offset is false. Some other targets do not
1067 include the position of the location; for example, m88kbcs,
1068 or ELF. For those targets, pcrel_offset is true.
1069
1070 If we are producing relocateable output, then we must ensure
1071 that this reloc will be correctly computed when the final
1072 relocation is done. If pcrel_offset is false we want to wind
1073 up with the negative of the location within the section,
1074 which means we must adjust the existing addend by the change
1075 in the location within the section. If pcrel_offset is true
1076 we do not want to adjust the existing addend at all.
1077
1078 FIXME: This seems logical to me, but for the case of
1079 producing relocateable output it is not what the code
1080 actually does. I don't want to change it, because it seems
1081 far too likely that something will break. */
1082
1083 relocation -=
1084 input_section->output_section->vma + input_section->output_offset;
1085
1086 if (howto->pcrel_offset == true && howto->partial_inplace == true)
1087 relocation -= reloc_entry->address;
1088 }
1089
1090 if (howto->partial_inplace == false)
1091 {
1092 /* This is a partial relocation, and we want to apply the relocation
1093 to the reloc entry rather than the raw data. Modify the reloc
1094 inplace to reflect what we now know. */
1095 reloc_entry->addend = relocation;
1096 reloc_entry->address += input_section->output_offset;
1097 return flag;
1098 }
1099 else
1100 {
1101 /* This is a partial relocation, but inplace, so modify the
1102 reloc record a bit.
1103
1104 If we've relocated with a symbol with a section, change
1105 into a ref to the section belonging to the symbol. */
1106
1107 reloc_entry->address += input_section->output_offset;
1108
1109 /* WTF?? */
1110 if (abfd->xvec->flavour == bfd_target_coff_flavour
252b5132
RH
1111 && strcmp (abfd->xvec->name, "coff-Intel-little") != 0
1112 && strcmp (abfd->xvec->name, "coff-Intel-big") != 0)
1113 {
1114#if 1
1115/* For m68k-coff, the addend was being subtracted twice during
1116 relocation with -r. Removing the line below this comment
1117 fixes that problem; see PR 2953.
1118
1119However, Ian wrote the following, regarding removing the line below,
1120which explains why it is still enabled: --djm
1121
1122If you put a patch like that into BFD you need to check all the COFF
1123linkers. I am fairly certain that patch will break coff-i386 (e.g.,
1124SCO); see coff_i386_reloc in coff-i386.c where I worked around the
1125problem in a different way. There may very well be a reason that the
1126code works as it does.
1127
1128Hmmm. The first obvious point is that bfd_install_relocation should
1129not have any tests that depend upon the flavour. It's seem like
1130entirely the wrong place for such a thing. The second obvious point
1131is that the current code ignores the reloc addend when producing
1132relocateable output for COFF. That's peculiar. In fact, I really
1133have no idea what the point of the line you want to remove is.
1134
1135A typical COFF reloc subtracts the old value of the symbol and adds in
1136the new value to the location in the object file (if it's a pc
1137relative reloc it adds the difference between the symbol value and the
1138location). When relocating we need to preserve that property.
1139
1140BFD handles this by setting the addend to the negative of the old
1141value of the symbol. Unfortunately it handles common symbols in a
1142non-standard way (it doesn't subtract the old value) but that's a
1143different story (we can't change it without losing backward
1144compatibility with old object files) (coff-i386 does subtract the old
1145value, to be compatible with existing coff-i386 targets, like SCO).
1146
1147So everything works fine when not producing relocateable output. When
1148we are producing relocateable output, logically we should do exactly
1149what we do when not producing relocateable output. Therefore, your
1150patch is correct. In fact, it should probably always just set
1151reloc_entry->addend to 0 for all cases, since it is, in fact, going to
1152add the value into the object file. This won't hurt the COFF code,
1153which doesn't use the addend; I'm not sure what it will do to other
1154formats (the thing to check for would be whether any formats both use
1155the addend and set partial_inplace).
1156
1157When I wanted to make coff-i386 produce relocateable output, I ran
1158into the problem that you are running into: I wanted to remove that
1159line. Rather than risk it, I made the coff-i386 relocs use a special
1160function; it's coff_i386_reloc in coff-i386.c. The function
1161specifically adds the addend field into the object file, knowing that
1162bfd_install_relocation is not going to. If you remove that line, then
1163coff-i386.c will wind up adding the addend field in twice. It's
1164trivial to fix; it just needs to be done.
1165
1166The problem with removing the line is just that it may break some
1167working code. With BFD it's hard to be sure of anything. The right
1168way to deal with this is simply to build and test at least all the
1169supported COFF targets. It should be straightforward if time and disk
1170space consuming. For each target:
1171 1) build the linker
1172 2) generate some executable, and link it using -r (I would
1173 probably use paranoia.o and link against newlib/libc.a, which
1174 for all the supported targets would be available in
1175 /usr/cygnus/progressive/H-host/target/lib/libc.a).
1176 3) make the change to reloc.c
1177 4) rebuild the linker
1178 5) repeat step 2
1179 6) if the resulting object files are the same, you have at least
1180 made it no worse
1181 7) if they are different you have to figure out which version is
1182 right
1183*/
1184 relocation -= reloc_entry->addend;
1185#endif
1186 reloc_entry->addend = 0;
1187 }
1188 else
1189 {
1190 reloc_entry->addend = relocation;
1191 }
1192 }
1193
1194 /* FIXME: This overflow checking is incomplete, because the value
1195 might have overflowed before we get here. For a correct check we
1196 need to compute the value in a size larger than bitsize, but we
1197 can't reasonably do that for a reloc the same size as a host
1198 machine word.
1199 FIXME: We should also do overflow checking on the result after
1200 adding in the value contained in the object file. */
1201 if (howto->complain_on_overflow != complain_overflow_dont)
1202 flag = bfd_check_overflow (howto->complain_on_overflow,
1203 howto->bitsize,
1204 howto->rightshift,
1205 bfd_arch_bits_per_address (abfd),
1206 relocation);
1207
1208 /*
1209 Either we are relocating all the way, or we don't want to apply
1210 the relocation to the reloc entry (probably because there isn't
1211 any room in the output format to describe addends to relocs)
1212 */
1213
1214 /* The cast to bfd_vma avoids a bug in the Alpha OSF/1 C compiler
1215 (OSF version 1.3, compiler version 3.11). It miscompiles the
1216 following program:
1217
1218 struct str
1219 {
1220 unsigned int i0;
1221 } s = { 0 };
1222
1223 int
1224 main ()
1225 {
1226 unsigned long x;
1227
1228 x = 0x100000000;
1229 x <<= (unsigned long) s.i0;
1230 if (x == 0)
1231 printf ("failed\n");
1232 else
1233 printf ("succeeded (%lx)\n", x);
1234 }
1235 */
1236
1237 relocation >>= (bfd_vma) howto->rightshift;
1238
1239 /* Shift everything up to where it's going to be used */
1240
1241 relocation <<= (bfd_vma) howto->bitpos;
1242
1243 /* Wait for the day when all have the mask in them */
1244
1245 /* What we do:
1246 i instruction to be left alone
1247 o offset within instruction
1248 r relocation offset to apply
1249 S src mask
1250 D dst mask
1251 N ~dst mask
1252 A part 1
1253 B part 2
1254 R result
1255
1256 Do this:
88b6bae0
AM
1257 (( i i i i i o o o o o from bfd_get<size>
1258 and S S S S S) to get the size offset we want
1259 + r r r r r r r r r r) to get the final value to place
252b5132
RH
1260 and D D D D D to chop to right size
1261 -----------------------
88b6bae0 1262 = A A A A A
252b5132 1263 And this:
88b6bae0
AM
1264 ( i i i i i o o o o o from bfd_get<size>
1265 and N N N N N ) get instruction
252b5132 1266 -----------------------
88b6bae0 1267 = B B B B B
252b5132
RH
1268
1269 And then:
88b6bae0
AM
1270 ( B B B B B
1271 or A A A A A)
252b5132 1272 -----------------------
88b6bae0 1273 = R R R R R R R R R R put into bfd_put<size>
252b5132
RH
1274 */
1275
1276#define DOIT(x) \
1277 x = ( (x & ~howto->dst_mask) | (((x & howto->src_mask) + relocation) & howto->dst_mask))
1278
9a968f43 1279 data = (bfd_byte *) data_start + (octets - data_start_offset);
252b5132
RH
1280
1281 switch (howto->size)
1282 {
1283 case 0:
1284 {
1285 char x = bfd_get_8 (abfd, (char *) data);
1286 DOIT (x);
1287 bfd_put_8 (abfd, x, (unsigned char *) data);
1288 }
1289 break;
1290
1291 case 1:
1292 {
1293 short x = bfd_get_16 (abfd, (bfd_byte *) data);
1294 DOIT (x);
1295 bfd_put_16 (abfd, x, (unsigned char *) data);
1296 }
1297 break;
1298 case 2:
1299 {
1300 long x = bfd_get_32 (abfd, (bfd_byte *) data);
1301 DOIT (x);
1302 bfd_put_32 (abfd, x, (bfd_byte *) data);
1303 }
1304 break;
1305 case -2:
1306 {
1307 long x = bfd_get_32 (abfd, (bfd_byte *) data);
1308 relocation = -relocation;
1309 DOIT (x);
1310 bfd_put_32 (abfd, x, (bfd_byte *) data);
1311 }
1312 break;
1313
1314 case 3:
1315 /* Do nothing */
1316 break;
1317
1318 case 4:
1319 {
1320 bfd_vma x = bfd_get_64 (abfd, (bfd_byte *) data);
1321 DOIT (x);
1322 bfd_put_64 (abfd, x, (bfd_byte *) data);
1323 }
1324 break;
1325 default:
1326 return bfd_reloc_other;
1327 }
1328
1329 return flag;
1330}
1331
1332/* This relocation routine is used by some of the backend linkers.
1333 They do not construct asymbol or arelent structures, so there is no
1334 reason for them to use bfd_perform_relocation. Also,
1335 bfd_perform_relocation is so hacked up it is easier to write a new
1336 function than to try to deal with it.
1337
1338 This routine does a final relocation. Whether it is useful for a
1339 relocateable link depends upon how the object format defines
1340 relocations.
1341
1342 FIXME: This routine ignores any special_function in the HOWTO,
1343 since the existing special_function values have been written for
1344 bfd_perform_relocation.
1345
1346 HOWTO is the reloc howto information.
1347 INPUT_BFD is the BFD which the reloc applies to.
1348 INPUT_SECTION is the section which the reloc applies to.
1349 CONTENTS is the contents of the section.
1350 ADDRESS is the address of the reloc within INPUT_SECTION.
1351 VALUE is the value of the symbol the reloc refers to.
1352 ADDEND is the addend of the reloc. */
1353
1354bfd_reloc_status_type
1355_bfd_final_link_relocate (howto, input_bfd, input_section, contents, address,
1356 value, addend)
1357 reloc_howto_type *howto;
1358 bfd *input_bfd;
1359 asection *input_section;
1360 bfd_byte *contents;
1361 bfd_vma address;
1362 bfd_vma value;
1363 bfd_vma addend;
1364{
1365 bfd_vma relocation;
1366
1367 /* Sanity check the address. */
1368 if (address > input_section->_raw_size)
1369 return bfd_reloc_outofrange;
1370
1371 /* This function assumes that we are dealing with a basic relocation
1372 against a symbol. We want to compute the value of the symbol to
1373 relocate to. This is just VALUE, the value of the symbol, plus
1374 ADDEND, any addend associated with the reloc. */
1375 relocation = value + addend;
1376
1377 /* If the relocation is PC relative, we want to set RELOCATION to
1378 the distance between the symbol (currently in RELOCATION) and the
1379 location we are relocating. Some targets (e.g., i386-aout)
1380 arrange for the contents of the section to be the negative of the
1381 offset of the location within the section; for such targets
1382 pcrel_offset is false. Other targets (e.g., m88kbcs or ELF)
1383 simply leave the contents of the section as zero; for such
1384 targets pcrel_offset is true. If pcrel_offset is false we do not
1385 need to subtract out the offset of the location within the
1386 section (which is just ADDRESS). */
1387 if (howto->pc_relative)
1388 {
1389 relocation -= (input_section->output_section->vma
1390 + input_section->output_offset);
1391 if (howto->pcrel_offset)
1392 relocation -= address;
1393 }
1394
1395 return _bfd_relocate_contents (howto, input_bfd, relocation,
1396 contents + address);
1397}
1398
1399/* Relocate a given location using a given value and howto. */
1400
1401bfd_reloc_status_type
1402_bfd_relocate_contents (howto, input_bfd, relocation, location)
1403 reloc_howto_type *howto;
1404 bfd *input_bfd;
1405 bfd_vma relocation;
1406 bfd_byte *location;
1407{
1408 int size;
7442e600 1409 bfd_vma x = 0;
d5afc56e 1410 bfd_reloc_status_type flag;
252b5132
RH
1411 unsigned int rightshift = howto->rightshift;
1412 unsigned int bitpos = howto->bitpos;
1413
1414 /* If the size is negative, negate RELOCATION. This isn't very
1415 general. */
1416 if (howto->size < 0)
1417 relocation = -relocation;
1418
1419 /* Get the value we are going to relocate. */
1420 size = bfd_get_reloc_size (howto);
1421 switch (size)
1422 {
1423 default:
1424 case 0:
1425 abort ();
1426 case 1:
1427 x = bfd_get_8 (input_bfd, location);
1428 break;
1429 case 2:
1430 x = bfd_get_16 (input_bfd, location);
1431 break;
1432 case 4:
1433 x = bfd_get_32 (input_bfd, location);
1434 break;
1435 case 8:
1436#ifdef BFD64
1437 x = bfd_get_64 (input_bfd, location);
1438#else
1439 abort ();
1440#endif
1441 break;
1442 }
1443
1444 /* Check for overflow. FIXME: We may drop bits during the addition
1445 which we don't check for. We must either check at every single
1446 operation, which would be tedious, or we must do the computations
1447 in a type larger than bfd_vma, which would be inefficient. */
d5afc56e 1448 flag = bfd_reloc_ok;
252b5132
RH
1449 if (howto->complain_on_overflow != complain_overflow_dont)
1450 {
1451 bfd_vma addrmask, fieldmask, signmask, ss;
1452 bfd_vma a, b, sum;
1453
1454 /* Get the values to be added together. For signed and unsigned
1455 relocations, we assume that all values should be truncated to
1456 the size of an address. For bitfields, all the bits matter.
1457 See also bfd_check_overflow. */
1458 fieldmask = N_ONES (howto->bitsize);
1459 addrmask = N_ONES (bfd_arch_bits_per_address (input_bfd)) | fieldmask;
1460 a = relocation;
1461 b = x & howto->src_mask;
1462
1463 switch (howto->complain_on_overflow)
1464 {
1465 case complain_overflow_signed:
1466 a = (a & addrmask) >> rightshift;
1467
1468 /* If any sign bits are set, all sign bits must be set.
1469 That is, A must be a valid negative address after
1470 shifting. */
1471 signmask = ~ (fieldmask >> 1);
1472 ss = a & signmask;
1473 if (ss != 0 && ss != ((addrmask >> rightshift) & signmask))
d5afc56e 1474 flag = bfd_reloc_overflow;
252b5132
RH
1475
1476 /* We only need this next bit of code if the sign bit of B
1477 is below the sign bit of A. This would only happen if
1478 SRC_MASK had fewer bits than BITSIZE. Note that if
1479 SRC_MASK has more bits than BITSIZE, we can get into
1480 trouble; we would need to verify that B is in range, as
1481 we do for A above. */
1482 signmask = ((~ howto->src_mask) >> 1) & howto->src_mask;
8a4ac871
AM
1483
1484 /* Set all the bits above the sign bit. */
1485 b = (b ^ signmask) - signmask;
252b5132
RH
1486
1487 b = (b & addrmask) >> bitpos;
1488
1489 /* Now we can do the addition. */
1490 sum = a + b;
1491
1492 /* See if the result has the correct sign. Bits above the
1493 sign bit are junk now; ignore them. If the sum is
1494 positive, make sure we did not have all negative inputs;
1495 if the sum is negative, make sure we did not have all
1496 positive inputs. The test below looks only at the sign
1497 bits, and it really just
1498 SIGN (A) == SIGN (B) && SIGN (A) != SIGN (SUM)
1499 */
1500 signmask = (fieldmask >> 1) + 1;
1501 if (((~ (a ^ b)) & (a ^ sum)) & signmask)
d5afc56e 1502 flag = bfd_reloc_overflow;
252b5132
RH
1503
1504 break;
1505
1506 case complain_overflow_unsigned:
1507 /* Checking for an unsigned overflow is relatively easy:
1508 trim the addresses and add, and trim the result as well.
1509 Overflow is normally indicated when the result does not
1510 fit in the field. However, we also need to consider the
1511 case when, e.g., fieldmask is 0x7fffffff or smaller, an
1512 input is 0x80000000, and bfd_vma is only 32 bits; then we
1513 will get sum == 0, but there is an overflow, since the
1514 inputs did not fit in the field. Instead of doing a
1515 separate test, we can check for this by or-ing in the
1516 operands when testing for the sum overflowing its final
1517 field. */
1518 a = (a & addrmask) >> rightshift;
1519 b = (b & addrmask) >> bitpos;
1520 sum = (a + b) & addrmask;
1521 if ((a | b | sum) & ~ fieldmask)
d5afc56e 1522 flag = bfd_reloc_overflow;
252b5132
RH
1523
1524 break;
1525
1526 case complain_overflow_bitfield:
d5afc56e 1527 /* Much like the signed check, but for a field one bit
8a4ac871 1528 wider, and no trimming inputs with addrmask. We allow a
d5afc56e
AM
1529 bitfield to represent numbers in the range -2**n to
1530 2**n-1, where n is the number of bits in the field.
1531 Note that when bfd_vma is 32 bits, a 32-bit reloc can't
1532 overflow, which is exactly what we want. */
252b5132 1533 a >>= rightshift;
252b5132 1534
d5afc56e
AM
1535 signmask = ~ fieldmask;
1536 ss = a & signmask;
1537 if (ss != 0 && ss != (((bfd_vma) -1 >> rightshift) & signmask))
1538 flag = bfd_reloc_overflow;
252b5132 1539
d5afc56e 1540 signmask = ((~ howto->src_mask) >> 1) & howto->src_mask;
8a4ac871 1541 b = (b ^ signmask) - signmask;
252b5132 1542
d5afc56e 1543 b >>= bitpos;
44257b8b 1544
252b5132 1545 sum = a + b;
d5afc56e 1546
8a4ac871
AM
1547 /* We mask with addrmask here to explicitly allow an address
1548 wrap-around. The Linux kernel relies on it, and it is
1549 the only way to write assembler code which can run when
1550 loaded at a location 0x80000000 away from the location at
1551 which it is linked. */
d5afc56e 1552 signmask = fieldmask + 1;
8a4ac871 1553 if (((~ (a ^ b)) & (a ^ sum)) & signmask & addrmask)
d5afc56e 1554 flag = bfd_reloc_overflow;
252b5132
RH
1555
1556 break;
1557
1558 default:
1559 abort ();
1560 }
1561 }
1562
1563 /* Put RELOCATION in the right bits. */
1564 relocation >>= (bfd_vma) rightshift;
1565 relocation <<= (bfd_vma) bitpos;
1566
1567 /* Add RELOCATION to the right bits of X. */
1568 x = ((x & ~howto->dst_mask)
1569 | (((x & howto->src_mask) + relocation) & howto->dst_mask));
1570
1571 /* Put the relocated value back in the object file. */
1572 switch (size)
1573 {
1574 default:
1575 case 0:
1576 abort ();
1577 case 1:
1578 bfd_put_8 (input_bfd, x, location);
1579 break;
1580 case 2:
1581 bfd_put_16 (input_bfd, x, location);
1582 break;
1583 case 4:
1584 bfd_put_32 (input_bfd, x, location);
1585 break;
1586 case 8:
1587#ifdef BFD64
1588 bfd_put_64 (input_bfd, x, location);
1589#else
1590 abort ();
1591#endif
1592 break;
1593 }
1594
d5afc56e 1595 return flag;
252b5132
RH
1596}
1597
1598/*
1599DOCDD
1600INODE
1601 howto manager, , typedef arelent, Relocations
1602
1603SECTION
1604 The howto manager
1605
1606 When an application wants to create a relocation, but doesn't
1607 know what the target machine might call it, it can find out by
1608 using this bit of code.
1609
1610*/
1611
1612/*
1613TYPEDEF
1614 bfd_reloc_code_type
1615
1616DESCRIPTION
1617 The insides of a reloc code. The idea is that, eventually, there
1618 will be one enumerator for every type of relocation we ever do.
1619 Pass one of these values to <<bfd_reloc_type_lookup>>, and it'll
1620 return a howto pointer.
1621
1622 This does mean that the application must determine the correct
1623 enumerator value; you can't get a howto pointer from a random set
1624 of attributes.
1625
1626SENUM
1627 bfd_reloc_code_real
1628
1629ENUM
1630 BFD_RELOC_64
1631ENUMX
1632 BFD_RELOC_32
1633ENUMX
1634 BFD_RELOC_26
1635ENUMX
1636 BFD_RELOC_24
1637ENUMX
1638 BFD_RELOC_16
1639ENUMX
1640 BFD_RELOC_14
1641ENUMX
1642 BFD_RELOC_8
1643ENUMDOC
1644 Basic absolute relocations of N bits.
1645
1646ENUM
1647 BFD_RELOC_64_PCREL
1648ENUMX
1649 BFD_RELOC_32_PCREL
1650ENUMX
1651 BFD_RELOC_24_PCREL
1652ENUMX
1653 BFD_RELOC_16_PCREL
1654ENUMX
1655 BFD_RELOC_12_PCREL
1656ENUMX
1657 BFD_RELOC_8_PCREL
1658ENUMDOC
1659 PC-relative relocations. Sometimes these are relative to the address
1660of the relocation itself; sometimes they are relative to the start of
1661the section containing the relocation. It depends on the specific target.
1662
1663The 24-bit relocation is used in some Intel 960 configurations.
1664
1665ENUM
1666 BFD_RELOC_32_GOT_PCREL
1667ENUMX
1668 BFD_RELOC_16_GOT_PCREL
1669ENUMX
1670 BFD_RELOC_8_GOT_PCREL
1671ENUMX
1672 BFD_RELOC_32_GOTOFF
1673ENUMX
1674 BFD_RELOC_16_GOTOFF
1675ENUMX
1676 BFD_RELOC_LO16_GOTOFF
1677ENUMX
1678 BFD_RELOC_HI16_GOTOFF
1679ENUMX
1680 BFD_RELOC_HI16_S_GOTOFF
1681ENUMX
1682 BFD_RELOC_8_GOTOFF
5bd4f169
AM
1683ENUMX
1684 BFD_RELOC_64_PLT_PCREL
252b5132
RH
1685ENUMX
1686 BFD_RELOC_32_PLT_PCREL
1687ENUMX
1688 BFD_RELOC_24_PLT_PCREL
1689ENUMX
1690 BFD_RELOC_16_PLT_PCREL
1691ENUMX
1692 BFD_RELOC_8_PLT_PCREL
5bd4f169
AM
1693ENUMX
1694 BFD_RELOC_64_PLTOFF
252b5132
RH
1695ENUMX
1696 BFD_RELOC_32_PLTOFF
1697ENUMX
1698 BFD_RELOC_16_PLTOFF
1699ENUMX
1700 BFD_RELOC_LO16_PLTOFF
1701ENUMX
1702 BFD_RELOC_HI16_PLTOFF
1703ENUMX
1704 BFD_RELOC_HI16_S_PLTOFF
1705ENUMX
1706 BFD_RELOC_8_PLTOFF
1707ENUMDOC
1708 For ELF.
1709
1710ENUM
1711 BFD_RELOC_68K_GLOB_DAT
1712ENUMX
1713 BFD_RELOC_68K_JMP_SLOT
1714ENUMX
1715 BFD_RELOC_68K_RELATIVE
1716ENUMDOC
1717 Relocations used by 68K ELF.
1718
1719ENUM
1720 BFD_RELOC_32_BASEREL
1721ENUMX
1722 BFD_RELOC_16_BASEREL
1723ENUMX
1724 BFD_RELOC_LO16_BASEREL
1725ENUMX
1726 BFD_RELOC_HI16_BASEREL
1727ENUMX
1728 BFD_RELOC_HI16_S_BASEREL
1729ENUMX
1730 BFD_RELOC_8_BASEREL
1731ENUMX
1732 BFD_RELOC_RVA
1733ENUMDOC
1734 Linkage-table relative.
1735
1736ENUM
1737 BFD_RELOC_8_FFnn
1738ENUMDOC
1739 Absolute 8-bit relocation, but used to form an address like 0xFFnn.
1740
1741ENUM
1742 BFD_RELOC_32_PCREL_S2
1743ENUMX
1744 BFD_RELOC_16_PCREL_S2
1745ENUMX
1746 BFD_RELOC_23_PCREL_S2
1747ENUMDOC
1748 These PC-relative relocations are stored as word displacements --
1749i.e., byte displacements shifted right two bits. The 30-bit word
1750displacement (<<32_PCREL_S2>> -- 32 bits, shifted 2) is used on the
1751SPARC. (SPARC tools generally refer to this as <<WDISP30>>.) The
1752signed 16-bit displacement is used on the MIPS, and the 23-bit
1753displacement is used on the Alpha.
1754
1755ENUM
1756 BFD_RELOC_HI22
1757ENUMX
1758 BFD_RELOC_LO10
1759ENUMDOC
1760 High 22 bits and low 10 bits of 32-bit value, placed into lower bits of
1761the target word. These are used on the SPARC.
1762
1763ENUM
1764 BFD_RELOC_GPREL16
1765ENUMX
1766 BFD_RELOC_GPREL32
1767ENUMDOC
1768 For systems that allocate a Global Pointer register, these are
1769displacements off that register. These relocation types are
1770handled specially, because the value the register will have is
1771decided relatively late.
1772
252b5132
RH
1773ENUM
1774 BFD_RELOC_I960_CALLJ
1775ENUMDOC
1776 Reloc types used for i960/b.out.
1777
1778ENUM
1779 BFD_RELOC_NONE
1780ENUMX
1781 BFD_RELOC_SPARC_WDISP22
1782ENUMX
1783 BFD_RELOC_SPARC22
1784ENUMX
1785 BFD_RELOC_SPARC13
1786ENUMX
1787 BFD_RELOC_SPARC_GOT10
1788ENUMX
1789 BFD_RELOC_SPARC_GOT13
1790ENUMX
1791 BFD_RELOC_SPARC_GOT22
1792ENUMX
1793 BFD_RELOC_SPARC_PC10
1794ENUMX
1795 BFD_RELOC_SPARC_PC22
1796ENUMX
1797 BFD_RELOC_SPARC_WPLT30
1798ENUMX
1799 BFD_RELOC_SPARC_COPY
1800ENUMX
1801 BFD_RELOC_SPARC_GLOB_DAT
1802ENUMX
1803 BFD_RELOC_SPARC_JMP_SLOT
1804ENUMX
1805 BFD_RELOC_SPARC_RELATIVE
0f2712ed
NC
1806ENUMX
1807 BFD_RELOC_SPARC_UA16
252b5132
RH
1808ENUMX
1809 BFD_RELOC_SPARC_UA32
0f2712ed
NC
1810ENUMX
1811 BFD_RELOC_SPARC_UA64
252b5132
RH
1812ENUMDOC
1813 SPARC ELF relocations. There is probably some overlap with other
1814 relocation types already defined.
1815
1816ENUM
1817 BFD_RELOC_SPARC_BASE13
1818ENUMX
1819 BFD_RELOC_SPARC_BASE22
1820ENUMDOC
1821 I think these are specific to SPARC a.out (e.g., Sun 4).
1822
1823ENUMEQ
1824 BFD_RELOC_SPARC_64
1825 BFD_RELOC_64
1826ENUMX
1827 BFD_RELOC_SPARC_10
1828ENUMX
1829 BFD_RELOC_SPARC_11
1830ENUMX
1831 BFD_RELOC_SPARC_OLO10
1832ENUMX
1833 BFD_RELOC_SPARC_HH22
1834ENUMX
1835 BFD_RELOC_SPARC_HM10
1836ENUMX
1837 BFD_RELOC_SPARC_LM22
1838ENUMX
1839 BFD_RELOC_SPARC_PC_HH22
1840ENUMX
1841 BFD_RELOC_SPARC_PC_HM10
1842ENUMX
1843 BFD_RELOC_SPARC_PC_LM22
1844ENUMX
1845 BFD_RELOC_SPARC_WDISP16
1846ENUMX
1847 BFD_RELOC_SPARC_WDISP19
1848ENUMX
1849 BFD_RELOC_SPARC_7
1850ENUMX
1851 BFD_RELOC_SPARC_6
1852ENUMX
1853 BFD_RELOC_SPARC_5
1854ENUMEQX
1855 BFD_RELOC_SPARC_DISP64
1856 BFD_RELOC_64_PCREL
1857ENUMX
1858 BFD_RELOC_SPARC_PLT64
1859ENUMX
1860 BFD_RELOC_SPARC_HIX22
1861ENUMX
1862 BFD_RELOC_SPARC_LOX10
1863ENUMX
1864 BFD_RELOC_SPARC_H44
1865ENUMX
1866 BFD_RELOC_SPARC_M44
1867ENUMX
1868 BFD_RELOC_SPARC_L44
1869ENUMX
1870 BFD_RELOC_SPARC_REGISTER
1871ENUMDOC
1872 SPARC64 relocations
1873
1874ENUM
1875 BFD_RELOC_SPARC_REV32
1876ENUMDOC
1877 SPARC little endian relocation
1878
1879ENUM
1880 BFD_RELOC_ALPHA_GPDISP_HI16
1881ENUMDOC
1882 Alpha ECOFF and ELF relocations. Some of these treat the symbol or
1883 "addend" in some special way.
1884 For GPDISP_HI16 ("gpdisp") relocations, the symbol is ignored when
1885 writing; when reading, it will be the absolute section symbol. The
1886 addend is the displacement in bytes of the "lda" instruction from
1887 the "ldah" instruction (which is at the address of this reloc).
1888ENUM
1889 BFD_RELOC_ALPHA_GPDISP_LO16
1890ENUMDOC
1891 For GPDISP_LO16 ("ignore") relocations, the symbol is handled as
1892 with GPDISP_HI16 relocs. The addend is ignored when writing the
1893 relocations out, and is filled in with the file's GP value on
1894 reading, for convenience.
1895
1896ENUM
1897 BFD_RELOC_ALPHA_GPDISP
1898ENUMDOC
1899 The ELF GPDISP relocation is exactly the same as the GPDISP_HI16
1900 relocation except that there is no accompanying GPDISP_LO16
1901 relocation.
1902
1903ENUM
1904 BFD_RELOC_ALPHA_LITERAL
1905ENUMX
1906 BFD_RELOC_ALPHA_ELF_LITERAL
1907ENUMX
1908 BFD_RELOC_ALPHA_LITUSE
1909ENUMDOC
1910 The Alpha LITERAL/LITUSE relocs are produced by a symbol reference;
1911 the assembler turns it into a LDQ instruction to load the address of
1912 the symbol, and then fills in a register in the real instruction.
1913
1914 The LITERAL reloc, at the LDQ instruction, refers to the .lita
1915 section symbol. The addend is ignored when writing, but is filled
1916 in with the file's GP value on reading, for convenience, as with the
1917 GPDISP_LO16 reloc.
1918
1919 The ELF_LITERAL reloc is somewhere between 16_GOTOFF and GPDISP_LO16.
1920 It should refer to the symbol to be referenced, as with 16_GOTOFF,
1921 but it generates output not based on the position within the .got
1922 section, but relative to the GP value chosen for the file during the
1923 final link stage.
1924
1925 The LITUSE reloc, on the instruction using the loaded address, gives
1926 information to the linker that it might be able to use to optimize
1927 away some literal section references. The symbol is ignored (read
1928 as the absolute section symbol), and the "addend" indicates the type
1929 of instruction using the register:
1930 1 - "memory" fmt insn
1931 2 - byte-manipulation (byte offset reg)
1932 3 - jsr (target of branch)
1933
252b5132
RH
1934ENUM
1935 BFD_RELOC_ALPHA_HINT
1936ENUMDOC
1937 The HINT relocation indicates a value that should be filled into the
1938 "hint" field of a jmp/jsr/ret instruction, for possible branch-
1939 prediction logic which may be provided on some processors.
1940
1941ENUM
1942 BFD_RELOC_ALPHA_LINKAGE
1943ENUMDOC
1944 The LINKAGE relocation outputs a linkage pair in the object file,
1945 which is filled by the linker.
1946
1947ENUM
1948 BFD_RELOC_ALPHA_CODEADDR
1949ENUMDOC
1950 The CODEADDR relocation outputs a STO_CA in the object file,
1951 which is filled by the linker.
1952
dfe57ca0
RH
1953ENUM
1954 BFD_RELOC_ALPHA_GPREL_HI16
1955ENUMX
1956 BFD_RELOC_ALPHA_GPREL_LO16
1957ENUMDOC
1958 The GPREL_HI/LO relocations together form a 32-bit offset from the
1959 GP register.
1960
252b5132
RH
1961ENUM
1962 BFD_RELOC_MIPS_JMP
1963ENUMDOC
1964 Bits 27..2 of the relocation address shifted right 2 bits;
1965 simple reloc otherwise.
1966
1967ENUM
1968 BFD_RELOC_MIPS16_JMP
1969ENUMDOC
1970 The MIPS16 jump instruction.
1971
1972ENUM
1973 BFD_RELOC_MIPS16_GPREL
1974ENUMDOC
1975 MIPS16 GP relative reloc.
1976
1977ENUM
1978 BFD_RELOC_HI16
1979ENUMDOC
1980 High 16 bits of 32-bit value; simple reloc.
1981ENUM
1982 BFD_RELOC_HI16_S
1983ENUMDOC
1984 High 16 bits of 32-bit value but the low 16 bits will be sign
1985 extended and added to form the final result. If the low 16
1986 bits form a negative number, we need to add one to the high value
1987 to compensate for the borrow when the low bits are added.
1988ENUM
1989 BFD_RELOC_LO16
1990ENUMDOC
1991 Low 16 bits.
1992ENUM
1993 BFD_RELOC_PCREL_HI16_S
1994ENUMDOC
1995 Like BFD_RELOC_HI16_S, but PC relative.
1996ENUM
1997 BFD_RELOC_PCREL_LO16
1998ENUMDOC
1999 Like BFD_RELOC_LO16, but PC relative.
2000
2001ENUMEQ
2002 BFD_RELOC_MIPS_GPREL
2003 BFD_RELOC_GPREL16
2004ENUMDOC
2005 Relocation relative to the global pointer.
2006
2007ENUM
2008 BFD_RELOC_MIPS_LITERAL
2009ENUMDOC
2010 Relocation against a MIPS literal section.
2011
2012ENUM
2013 BFD_RELOC_MIPS_GOT16
2014ENUMX
2015 BFD_RELOC_MIPS_CALL16
2016ENUMEQX
2017 BFD_RELOC_MIPS_GPREL32
2018 BFD_RELOC_GPREL32
2019ENUMX
2020 BFD_RELOC_MIPS_GOT_HI16
2021ENUMX
2022 BFD_RELOC_MIPS_GOT_LO16
2023ENUMX
2024 BFD_RELOC_MIPS_CALL_HI16
2025ENUMX
2026 BFD_RELOC_MIPS_CALL_LO16
3f830999
MM
2027ENUMX
2028 BFD_RELOC_MIPS_SUB
2029ENUMX
2030 BFD_RELOC_MIPS_GOT_PAGE
2031ENUMX
2032 BFD_RELOC_MIPS_GOT_OFST
2033ENUMX
2034 BFD_RELOC_MIPS_GOT_DISP
c2feb664
NC
2035ENUMX
2036 BFD_RELOC_MIPS_SHIFT5
2037ENUMX
2038 BFD_RELOC_MIPS_SHIFT6
2039ENUMX
2040 BFD_RELOC_MIPS_INSERT_A
2041ENUMX
2042 BFD_RELOC_MIPS_INSERT_B
2043ENUMX
2044 BFD_RELOC_MIPS_DELETE
2045ENUMX
2046 BFD_RELOC_MIPS_HIGHEST
2047ENUMX
2048 BFD_RELOC_MIPS_HIGHER
2049ENUMX
2050 BFD_RELOC_MIPS_SCN_DISP
2051ENUMX
2052 BFD_RELOC_MIPS_REL16
2053ENUMX
2054 BFD_RELOC_MIPS_RELGOT
2055ENUMX
2056 BFD_RELOC_MIPS_JALR
252b5132
RH
2057COMMENT
2058ENUMDOC
2059 MIPS ELF relocations.
2060
2061COMMENT
2062
2063ENUM
2064 BFD_RELOC_386_GOT32
2065ENUMX
2066 BFD_RELOC_386_PLT32
2067ENUMX
2068 BFD_RELOC_386_COPY
2069ENUMX
2070 BFD_RELOC_386_GLOB_DAT
2071ENUMX
2072 BFD_RELOC_386_JUMP_SLOT
2073ENUMX
2074 BFD_RELOC_386_RELATIVE
2075ENUMX
2076 BFD_RELOC_386_GOTOFF
2077ENUMX
2078 BFD_RELOC_386_GOTPC
2079ENUMDOC
2080 i386/elf relocations
2081
8d88c4ca
NC
2082ENUM
2083 BFD_RELOC_X86_64_GOT32
2084ENUMX
2085 BFD_RELOC_X86_64_PLT32
2086ENUMX
2087 BFD_RELOC_X86_64_COPY
2088ENUMX
2089 BFD_RELOC_X86_64_GLOB_DAT
2090ENUMX
2091 BFD_RELOC_X86_64_JUMP_SLOT
2092ENUMX
2093 BFD_RELOC_X86_64_RELATIVE
2094ENUMX
2095 BFD_RELOC_X86_64_GOTPCREL
2096ENUMX
2097 BFD_RELOC_X86_64_32S
2098ENUMDOC
2099 x86-64/elf relocations
2100
252b5132
RH
2101ENUM
2102 BFD_RELOC_NS32K_IMM_8
2103ENUMX
2104 BFD_RELOC_NS32K_IMM_16
2105ENUMX
2106 BFD_RELOC_NS32K_IMM_32
2107ENUMX
2108 BFD_RELOC_NS32K_IMM_8_PCREL
2109ENUMX
2110 BFD_RELOC_NS32K_IMM_16_PCREL
2111ENUMX
2112 BFD_RELOC_NS32K_IMM_32_PCREL
2113ENUMX
2114 BFD_RELOC_NS32K_DISP_8
2115ENUMX
2116 BFD_RELOC_NS32K_DISP_16
2117ENUMX
2118 BFD_RELOC_NS32K_DISP_32
2119ENUMX
2120 BFD_RELOC_NS32K_DISP_8_PCREL
2121ENUMX
2122 BFD_RELOC_NS32K_DISP_16_PCREL
2123ENUMX
2124 BFD_RELOC_NS32K_DISP_32_PCREL
2125ENUMDOC
2126 ns32k relocations
2127
e135f41b
NC
2128ENUM
2129 BFD_RELOC_PDP11_DISP_8_PCREL
2130ENUMX
2131 BFD_RELOC_PDP11_DISP_6_PCREL
2132ENUMDOC
2133 PDP11 relocations
2134
0bcb993b
ILT
2135ENUM
2136 BFD_RELOC_PJ_CODE_HI16
2137ENUMX
2138 BFD_RELOC_PJ_CODE_LO16
2139ENUMX
2140 BFD_RELOC_PJ_CODE_DIR16
2141ENUMX
2142 BFD_RELOC_PJ_CODE_DIR32
2143ENUMX
2144 BFD_RELOC_PJ_CODE_REL16
2145ENUMX
2146 BFD_RELOC_PJ_CODE_REL32
2147ENUMDOC
2148 Picojava relocs. Not all of these appear in object files.
88b6bae0 2149
252b5132
RH
2150ENUM
2151 BFD_RELOC_PPC_B26
2152ENUMX
2153 BFD_RELOC_PPC_BA26
2154ENUMX
2155 BFD_RELOC_PPC_TOC16
2156ENUMX
2157 BFD_RELOC_PPC_B16
2158ENUMX
2159 BFD_RELOC_PPC_B16_BRTAKEN
2160ENUMX
2161 BFD_RELOC_PPC_B16_BRNTAKEN
2162ENUMX
2163 BFD_RELOC_PPC_BA16
2164ENUMX
2165 BFD_RELOC_PPC_BA16_BRTAKEN
2166ENUMX
2167 BFD_RELOC_PPC_BA16_BRNTAKEN
2168ENUMX
2169 BFD_RELOC_PPC_COPY
2170ENUMX
2171 BFD_RELOC_PPC_GLOB_DAT
2172ENUMX
2173 BFD_RELOC_PPC_JMP_SLOT
2174ENUMX
2175 BFD_RELOC_PPC_RELATIVE
2176ENUMX
2177 BFD_RELOC_PPC_LOCAL24PC
2178ENUMX
2179 BFD_RELOC_PPC_EMB_NADDR32
2180ENUMX
2181 BFD_RELOC_PPC_EMB_NADDR16
2182ENUMX
2183 BFD_RELOC_PPC_EMB_NADDR16_LO
2184ENUMX
2185 BFD_RELOC_PPC_EMB_NADDR16_HI
2186ENUMX
2187 BFD_RELOC_PPC_EMB_NADDR16_HA
2188ENUMX
2189 BFD_RELOC_PPC_EMB_SDAI16
2190ENUMX
2191 BFD_RELOC_PPC_EMB_SDA2I16
2192ENUMX
2193 BFD_RELOC_PPC_EMB_SDA2REL
2194ENUMX
2195 BFD_RELOC_PPC_EMB_SDA21
2196ENUMX
2197 BFD_RELOC_PPC_EMB_MRKREF
2198ENUMX
2199 BFD_RELOC_PPC_EMB_RELSEC16
2200ENUMX
2201 BFD_RELOC_PPC_EMB_RELST_LO
2202ENUMX
2203 BFD_RELOC_PPC_EMB_RELST_HI
2204ENUMX
2205 BFD_RELOC_PPC_EMB_RELST_HA
2206ENUMX
2207 BFD_RELOC_PPC_EMB_BIT_FLD
2208ENUMX
2209 BFD_RELOC_PPC_EMB_RELSDA
5bd4f169
AM
2210ENUMX
2211 BFD_RELOC_PPC64_HIGHER
2212ENUMX
2213 BFD_RELOC_PPC64_HIGHER_S
2214ENUMX
2215 BFD_RELOC_PPC64_HIGHEST
2216ENUMX
2217 BFD_RELOC_PPC64_HIGHEST_S
2218ENUMX
2219 BFD_RELOC_PPC64_TOC16_LO
2220ENUMX
2221 BFD_RELOC_PPC64_TOC16_HI
2222ENUMX
2223 BFD_RELOC_PPC64_TOC16_HA
2224ENUMX
2225 BFD_RELOC_PPC64_TOC
2226ENUMX
2227 BFD_RELOC_PPC64_PLTGOT16
2228ENUMX
2229 BFD_RELOC_PPC64_PLTGOT16_LO
2230ENUMX
2231 BFD_RELOC_PPC64_PLTGOT16_HI
2232ENUMX
2233 BFD_RELOC_PPC64_PLTGOT16_HA
2234ENUMX
2235 BFD_RELOC_PPC64_ADDR16_DS
2236ENUMX
2237 BFD_RELOC_PPC64_ADDR16_LO_DS
2238ENUMX
2239 BFD_RELOC_PPC64_GOT16_DS
2240ENUMX
2241 BFD_RELOC_PPC64_GOT16_LO_DS
2242ENUMX
2243 BFD_RELOC_PPC64_PLT16_LO_DS
2244ENUMX
2245 BFD_RELOC_PPC64_SECTOFF_DS
2246ENUMX
2247 BFD_RELOC_PPC64_SECTOFF_LO_DS
2248ENUMX
2249 BFD_RELOC_PPC64_TOC16_DS
2250ENUMX
2251 BFD_RELOC_PPC64_TOC16_LO_DS
2252ENUMX
2253 BFD_RELOC_PPC64_PLTGOT16_DS
2254ENUMX
2255 BFD_RELOC_PPC64_PLTGOT16_LO_DS
252b5132
RH
2256ENUMDOC
2257 Power(rs6000) and PowerPC relocations.
2258
5b93d8bb
AM
2259ENUM
2260 BFD_RELOC_I370_D12
2261ENUMDOC
2262 IBM 370/390 relocations
2263
252b5132
RH
2264ENUM
2265 BFD_RELOC_CTOR
2266ENUMDOC
2267 The type of reloc used to build a contructor table - at the moment
2268 probably a 32 bit wide absolute relocation, but the target can choose.
2269 It generally does map to one of the other relocation types.
2270
2271ENUM
2272 BFD_RELOC_ARM_PCREL_BRANCH
2273ENUMDOC
2274 ARM 26 bit pc-relative branch. The lowest two bits must be zero and are
2275 not stored in the instruction.
dfc5f959
NC
2276ENUM
2277 BFD_RELOC_ARM_PCREL_BLX
2278ENUMDOC
2279 ARM 26 bit pc-relative branch. The lowest bit must be zero and is
2280 not stored in the instruction. The 2nd lowest bit comes from a 1 bit
2281 field in the instruction.
2282ENUM
2283 BFD_RELOC_THUMB_PCREL_BLX
2284ENUMDOC
2285 Thumb 22 bit pc-relative branch. The lowest bit must be zero and is
2286 not stored in the instruction. The 2nd lowest bit comes from a 1 bit
2287 field in the instruction.
252b5132
RH
2288ENUM
2289 BFD_RELOC_ARM_IMMEDIATE
752149a0
NC
2290ENUMX
2291 BFD_RELOC_ARM_ADRL_IMMEDIATE
252b5132
RH
2292ENUMX
2293 BFD_RELOC_ARM_OFFSET_IMM
2294ENUMX
2295 BFD_RELOC_ARM_SHIFT_IMM
2296ENUMX
2297 BFD_RELOC_ARM_SWI
2298ENUMX
2299 BFD_RELOC_ARM_MULTI
2300ENUMX
2301 BFD_RELOC_ARM_CP_OFF_IMM
2302ENUMX
2303 BFD_RELOC_ARM_ADR_IMM
2304ENUMX
2305 BFD_RELOC_ARM_LDR_IMM
2306ENUMX
2307 BFD_RELOC_ARM_LITERAL
2308ENUMX
2309 BFD_RELOC_ARM_IN_POOL
2310ENUMX
2311 BFD_RELOC_ARM_OFFSET_IMM8
2312ENUMX
2313 BFD_RELOC_ARM_HWLITERAL
2314ENUMX
2315 BFD_RELOC_ARM_THUMB_ADD
2316ENUMX
2317 BFD_RELOC_ARM_THUMB_IMM
2318ENUMX
2319 BFD_RELOC_ARM_THUMB_SHIFT
2320ENUMX
2321 BFD_RELOC_ARM_THUMB_OFFSET
2322ENUMX
2323 BFD_RELOC_ARM_GOT12
2324ENUMX
2325 BFD_RELOC_ARM_GOT32
2326ENUMX
2327 BFD_RELOC_ARM_JUMP_SLOT
2328ENUMX
2329 BFD_RELOC_ARM_COPY
2330ENUMX
2331 BFD_RELOC_ARM_GLOB_DAT
2332ENUMX
2333 BFD_RELOC_ARM_PLT32
2334ENUMX
2335 BFD_RELOC_ARM_RELATIVE
2336ENUMX
2337 BFD_RELOC_ARM_GOTOFF
2338ENUMX
2339 BFD_RELOC_ARM_GOTPC
2340ENUMDOC
2341 These relocs are only used within the ARM assembler. They are not
2342 (at present) written to any object files.
2343
2344ENUM
2345 BFD_RELOC_SH_PCDISP8BY2
2346ENUMX
2347 BFD_RELOC_SH_PCDISP12BY2
2348ENUMX
2349 BFD_RELOC_SH_IMM4
2350ENUMX
2351 BFD_RELOC_SH_IMM4BY2
2352ENUMX
2353 BFD_RELOC_SH_IMM4BY4
2354ENUMX
2355 BFD_RELOC_SH_IMM8
2356ENUMX
2357 BFD_RELOC_SH_IMM8BY2
2358ENUMX
2359 BFD_RELOC_SH_IMM8BY4
2360ENUMX
2361 BFD_RELOC_SH_PCRELIMM8BY2
2362ENUMX
2363 BFD_RELOC_SH_PCRELIMM8BY4
2364ENUMX
2365 BFD_RELOC_SH_SWITCH16
2366ENUMX
2367 BFD_RELOC_SH_SWITCH32
2368ENUMX
2369 BFD_RELOC_SH_USES
2370ENUMX
2371 BFD_RELOC_SH_COUNT
2372ENUMX
2373 BFD_RELOC_SH_ALIGN
2374ENUMX
2375 BFD_RELOC_SH_CODE
2376ENUMX
2377 BFD_RELOC_SH_DATA
2378ENUMX
2379 BFD_RELOC_SH_LABEL
015551fc
JR
2380ENUMX
2381 BFD_RELOC_SH_LOOP_START
2382ENUMX
2383 BFD_RELOC_SH_LOOP_END
3d96075c
L
2384ENUMX
2385 BFD_RELOC_SH_COPY
2386ENUMX
2387 BFD_RELOC_SH_GLOB_DAT
2388ENUMX
2389 BFD_RELOC_SH_JMP_SLOT
2390ENUMX
2391 BFD_RELOC_SH_RELATIVE
2392ENUMX
2393 BFD_RELOC_SH_GOTPC
252b5132
RH
2394ENUMDOC
2395 Hitachi SH relocs. Not all of these appear in object files.
2396
2397ENUM
2398 BFD_RELOC_THUMB_PCREL_BRANCH9
2399ENUMX
2400 BFD_RELOC_THUMB_PCREL_BRANCH12
2401ENUMX
2402 BFD_RELOC_THUMB_PCREL_BRANCH23
2403ENUMDOC
2404 Thumb 23-, 12- and 9-bit pc-relative branches. The lowest bit must
2405 be zero and is not stored in the instruction.
2406
2407ENUM
2408 BFD_RELOC_ARC_B22_PCREL
2409ENUMDOC
0d2bcfaf 2410 ARC Cores relocs.
252b5132
RH
2411 ARC 22 bit pc-relative branch. The lowest two bits must be zero and are
2412 not stored in the instruction. The high 20 bits are installed in bits 26
2413 through 7 of the instruction.
2414ENUM
2415 BFD_RELOC_ARC_B26
2416ENUMDOC
2417 ARC 26 bit absolute branch. The lowest two bits must be zero and are not
2418 stored in the instruction. The high 24 bits are installed in bits 23
2419 through 0.
2420
2421ENUM
2422 BFD_RELOC_D10V_10_PCREL_R
2423ENUMDOC
2424 Mitsubishi D10V relocs.
2425 This is a 10-bit reloc with the right 2 bits
2426 assumed to be 0.
2427ENUM
2428 BFD_RELOC_D10V_10_PCREL_L
2429ENUMDOC
2430 Mitsubishi D10V relocs.
2431 This is a 10-bit reloc with the right 2 bits
2432 assumed to be 0. This is the same as the previous reloc
2433 except it is in the left container, i.e.,
2434 shifted left 15 bits.
2435ENUM
2436 BFD_RELOC_D10V_18
2437ENUMDOC
2438 This is an 18-bit reloc with the right 2 bits
2439 assumed to be 0.
2440ENUM
2441 BFD_RELOC_D10V_18_PCREL
2442ENUMDOC
2443 This is an 18-bit reloc with the right 2 bits
2444 assumed to be 0.
2445
2446ENUM
2447 BFD_RELOC_D30V_6
2448ENUMDOC
2449 Mitsubishi D30V relocs.
2450 This is a 6-bit absolute reloc.
2451ENUM
2452 BFD_RELOC_D30V_9_PCREL
2453ENUMDOC
88b6bae0
AM
2454 This is a 6-bit pc-relative reloc with
2455 the right 3 bits assumed to be 0.
252b5132
RH
2456ENUM
2457 BFD_RELOC_D30V_9_PCREL_R
2458ENUMDOC
88b6bae0 2459 This is a 6-bit pc-relative reloc with
252b5132
RH
2460 the right 3 bits assumed to be 0. Same
2461 as the previous reloc but on the right side
88b6bae0 2462 of the container.
252b5132
RH
2463ENUM
2464 BFD_RELOC_D30V_15
2465ENUMDOC
88b6bae0
AM
2466 This is a 12-bit absolute reloc with the
2467 right 3 bitsassumed to be 0.
252b5132
RH
2468ENUM
2469 BFD_RELOC_D30V_15_PCREL
2470ENUMDOC
88b6bae0
AM
2471 This is a 12-bit pc-relative reloc with
2472 the right 3 bits assumed to be 0.
252b5132
RH
2473ENUM
2474 BFD_RELOC_D30V_15_PCREL_R
2475ENUMDOC
88b6bae0 2476 This is a 12-bit pc-relative reloc with
252b5132
RH
2477 the right 3 bits assumed to be 0. Same
2478 as the previous reloc but on the right side
88b6bae0 2479 of the container.
252b5132
RH
2480ENUM
2481 BFD_RELOC_D30V_21
2482ENUMDOC
88b6bae0 2483 This is an 18-bit absolute reloc with
252b5132
RH
2484 the right 3 bits assumed to be 0.
2485ENUM
2486 BFD_RELOC_D30V_21_PCREL
2487ENUMDOC
88b6bae0 2488 This is an 18-bit pc-relative reloc with
252b5132
RH
2489 the right 3 bits assumed to be 0.
2490ENUM
2491 BFD_RELOC_D30V_21_PCREL_R
2492ENUMDOC
88b6bae0 2493 This is an 18-bit pc-relative reloc with
252b5132
RH
2494 the right 3 bits assumed to be 0. Same
2495 as the previous reloc but on the right side
2496 of the container.
2497ENUM
2498 BFD_RELOC_D30V_32
2499ENUMDOC
2500 This is a 32-bit absolute reloc.
2501ENUM
2502 BFD_RELOC_D30V_32_PCREL
2503ENUMDOC
2504 This is a 32-bit pc-relative reloc.
2505
2506ENUM
2507 BFD_RELOC_M32R_24
2508ENUMDOC
2509 Mitsubishi M32R relocs.
2510 This is a 24 bit absolute address.
2511ENUM
2512 BFD_RELOC_M32R_10_PCREL
2513ENUMDOC
2514 This is a 10-bit pc-relative reloc with the right 2 bits assumed to be 0.
2515ENUM
2516 BFD_RELOC_M32R_18_PCREL
2517ENUMDOC
2518 This is an 18-bit reloc with the right 2 bits assumed to be 0.
2519ENUM
2520 BFD_RELOC_M32R_26_PCREL
2521ENUMDOC
2522 This is a 26-bit reloc with the right 2 bits assumed to be 0.
2523ENUM
2524 BFD_RELOC_M32R_HI16_ULO
2525ENUMDOC
2526 This is a 16-bit reloc containing the high 16 bits of an address
2527 used when the lower 16 bits are treated as unsigned.
2528ENUM
2529 BFD_RELOC_M32R_HI16_SLO
2530ENUMDOC
2531 This is a 16-bit reloc containing the high 16 bits of an address
2532 used when the lower 16 bits are treated as signed.
2533ENUM
2534 BFD_RELOC_M32R_LO16
2535ENUMDOC
2536 This is a 16-bit reloc containing the lower 16 bits of an address.
2537ENUM
2538 BFD_RELOC_M32R_SDA16
2539ENUMDOC
2540 This is a 16-bit reloc containing the small data area offset for use in
2541 add3, load, and store instructions.
2542
2543ENUM
2544 BFD_RELOC_V850_9_PCREL
2545ENUMDOC
2546 This is a 9-bit reloc
2547ENUM
2548 BFD_RELOC_V850_22_PCREL
2549ENUMDOC
2550 This is a 22-bit reloc
2551
2552ENUM
2553 BFD_RELOC_V850_SDA_16_16_OFFSET
2554ENUMDOC
2555 This is a 16 bit offset from the short data area pointer.
2556ENUM
2557 BFD_RELOC_V850_SDA_15_16_OFFSET
2558ENUMDOC
2559 This is a 16 bit offset (of which only 15 bits are used) from the
2560 short data area pointer.
2561ENUM
2562 BFD_RELOC_V850_ZDA_16_16_OFFSET
2563ENUMDOC
2564 This is a 16 bit offset from the zero data area pointer.
2565ENUM
2566 BFD_RELOC_V850_ZDA_15_16_OFFSET
2567ENUMDOC
2568 This is a 16 bit offset (of which only 15 bits are used) from the
2569 zero data area pointer.
2570ENUM
2571 BFD_RELOC_V850_TDA_6_8_OFFSET
2572ENUMDOC
2573 This is an 8 bit offset (of which only 6 bits are used) from the
2574 tiny data area pointer.
2575ENUM
2576 BFD_RELOC_V850_TDA_7_8_OFFSET
2577ENUMDOC
2578 This is an 8bit offset (of which only 7 bits are used) from the tiny
2579 data area pointer.
2580ENUM
2581 BFD_RELOC_V850_TDA_7_7_OFFSET
2582ENUMDOC
2583 This is a 7 bit offset from the tiny data area pointer.
2584ENUM
2585 BFD_RELOC_V850_TDA_16_16_OFFSET
2586ENUMDOC
2587 This is a 16 bit offset from the tiny data area pointer.
2588COMMENT
2589ENUM
2590 BFD_RELOC_V850_TDA_4_5_OFFSET
2591ENUMDOC
2592 This is a 5 bit offset (of which only 4 bits are used) from the tiny
2593 data area pointer.
2594ENUM
2595 BFD_RELOC_V850_TDA_4_4_OFFSET
2596ENUMDOC
2597 This is a 4 bit offset from the tiny data area pointer.
2598ENUM
2599 BFD_RELOC_V850_SDA_16_16_SPLIT_OFFSET
2600ENUMDOC
2601 This is a 16 bit offset from the short data area pointer, with the
2602 bits placed non-contigously in the instruction.
2603ENUM
2604 BFD_RELOC_V850_ZDA_16_16_SPLIT_OFFSET
2605ENUMDOC
2606 This is a 16 bit offset from the zero data area pointer, with the
2607 bits placed non-contigously in the instruction.
2608ENUM
2609 BFD_RELOC_V850_CALLT_6_7_OFFSET
2610ENUMDOC
2611 This is a 6 bit offset from the call table base pointer.
2612ENUM
2613 BFD_RELOC_V850_CALLT_16_16_OFFSET
2614ENUMDOC
2615 This is a 16 bit offset from the call table base pointer.
2616COMMENT
2617
2618ENUM
2619 BFD_RELOC_MN10300_32_PCREL
2620ENUMDOC
2621 This is a 32bit pcrel reloc for the mn10300, offset by two bytes in the
2622 instruction.
2623ENUM
2624 BFD_RELOC_MN10300_16_PCREL
2625ENUMDOC
2626 This is a 16bit pcrel reloc for the mn10300, offset by two bytes in the
2627 instruction.
2628
2629ENUM
2630 BFD_RELOC_TIC30_LDP
2631ENUMDOC
2632 This is a 8bit DP reloc for the tms320c30, where the most
2633 significant 8 bits of a 24 bit word are placed into the least
2634 significant 8 bits of the opcode.
2635
81635ce4
TW
2636ENUM
2637 BFD_RELOC_TIC54X_PARTLS7
2638ENUMDOC
2639 This is a 7bit reloc for the tms320c54x, where the least
2640 significant 7 bits of a 16 bit word are placed into the least
2641 significant 7 bits of the opcode.
2642
2643ENUM
2644 BFD_RELOC_TIC54X_PARTMS9
2645ENUMDOC
2646 This is a 9bit DP reloc for the tms320c54x, where the most
2647 significant 9 bits of a 16 bit word are placed into the least
2648 significant 9 bits of the opcode.
2649
2650ENUM
2651 BFD_RELOC_TIC54X_23
2652ENUMDOC
2653 This is an extended address 23-bit reloc for the tms320c54x.
2654
2655ENUM
2656 BFD_RELOC_TIC54X_16_OF_23
2657ENUMDOC
3d855632
KH
2658 This is a 16-bit reloc for the tms320c54x, where the least
2659 significant 16 bits of a 23-bit extended address are placed into
81635ce4
TW
2660 the opcode.
2661
2662ENUM
2663 BFD_RELOC_TIC54X_MS7_OF_23
2664ENUMDOC
2665 This is a reloc for the tms320c54x, where the most
3d855632 2666 significant 7 bits of a 23-bit extended address are placed into
81635ce4 2667 the opcode.
81635ce4 2668
252b5132
RH
2669ENUM
2670 BFD_RELOC_FR30_48
2671ENUMDOC
2672 This is a 48 bit reloc for the FR30 that stores 32 bits.
2673ENUM
2674 BFD_RELOC_FR30_20
2675ENUMDOC
2676 This is a 32 bit reloc for the FR30 that stores 20 bits split up into
2677 two sections.
2678ENUM
2679 BFD_RELOC_FR30_6_IN_4
2680ENUMDOC
2681 This is a 16 bit reloc for the FR30 that stores a 6 bit word offset in
2682 4 bits.
2683ENUM
2684 BFD_RELOC_FR30_8_IN_8
2685ENUMDOC
2686 This is a 16 bit reloc for the FR30 that stores an 8 bit byte offset
2687 into 8 bits.
2688ENUM
2689 BFD_RELOC_FR30_9_IN_8
2690ENUMDOC
2691 This is a 16 bit reloc for the FR30 that stores a 9 bit short offset
2692 into 8 bits.
2693ENUM
2694 BFD_RELOC_FR30_10_IN_8
2695ENUMDOC
2696 This is a 16 bit reloc for the FR30 that stores a 10 bit word offset
2697 into 8 bits.
2698ENUM
2699 BFD_RELOC_FR30_9_PCREL
2700ENUMDOC
2701 This is a 16 bit reloc for the FR30 that stores a 9 bit pc relative
2702 short offset into 8 bits.
2703ENUM
2704 BFD_RELOC_FR30_12_PCREL
2705ENUMDOC
2706 This is a 16 bit reloc for the FR30 that stores a 12 bit pc relative
2707 short offset into 11 bits.
88b6bae0 2708
252b5132
RH
2709ENUM
2710 BFD_RELOC_MCORE_PCREL_IMM8BY4
2711ENUMX
2712 BFD_RELOC_MCORE_PCREL_IMM11BY2
2713ENUMX
2714 BFD_RELOC_MCORE_PCREL_IMM4BY2
2715ENUMX
2716 BFD_RELOC_MCORE_PCREL_32
2717ENUMX
2718 BFD_RELOC_MCORE_PCREL_JSR_IMM11BY2
36797d47
NC
2719ENUMX
2720 BFD_RELOC_MCORE_RVA
252b5132
RH
2721ENUMDOC
2722 Motorola Mcore relocations.
88b6bae0 2723
adde6300
AM
2724ENUM
2725 BFD_RELOC_AVR_7_PCREL
2726ENUMDOC
2727 This is a 16 bit reloc for the AVR that stores 8 bit pc relative
2728 short offset into 7 bits.
2729ENUM
2730 BFD_RELOC_AVR_13_PCREL
2731ENUMDOC
2732 This is a 16 bit reloc for the AVR that stores 13 bit pc relative
2733 short offset into 12 bits.
2734ENUM
2735 BFD_RELOC_AVR_16_PM
2736ENUMDOC
2737 This is a 16 bit reloc for the AVR that stores 17 bit value (usually
3d855632 2738 program memory address) into 16 bits.
adde6300
AM
2739ENUM
2740 BFD_RELOC_AVR_LO8_LDI
2741ENUMDOC
2742 This is a 16 bit reloc for the AVR that stores 8 bit value (usually
2743 data memory address) into 8 bit immediate value of LDI insn.
2744ENUM
2745 BFD_RELOC_AVR_HI8_LDI
2746ENUMDOC
2747 This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 bit
2748 of data memory address) into 8 bit immediate value of LDI insn.
2749ENUM
2750 BFD_RELOC_AVR_HH8_LDI
2751ENUMDOC
2752 This is a 16 bit reloc for the AVR that stores 8 bit value (most high 8 bit
2753 of program memory address) into 8 bit immediate value of LDI insn.
2754ENUM
2755 BFD_RELOC_AVR_LO8_LDI_NEG
2756ENUMDOC
2757 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2758 (usually data memory address) into 8 bit immediate value of SUBI insn.
2759ENUM
2760 BFD_RELOC_AVR_HI8_LDI_NEG
2761ENUMDOC
2762 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2763 (high 8 bit of data memory address) into 8 bit immediate value of
2764 SUBI insn.
2765ENUM
2766 BFD_RELOC_AVR_HH8_LDI_NEG
2767ENUMDOC
2768 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2769 (most high 8 bit of program memory address) into 8 bit immediate value
2770 of LDI or SUBI insn.
2771ENUM
2772 BFD_RELOC_AVR_LO8_LDI_PM
2773ENUMDOC
2774 This is a 16 bit reloc for the AVR that stores 8 bit value (usually
2775 command address) into 8 bit immediate value of LDI insn.
2776ENUM
2777 BFD_RELOC_AVR_HI8_LDI_PM
2778ENUMDOC
2779 This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 bit
2780 of command address) into 8 bit immediate value of LDI insn.
2781ENUM
2782 BFD_RELOC_AVR_HH8_LDI_PM
2783ENUMDOC
2784 This is a 16 bit reloc for the AVR that stores 8 bit value (most high 8 bit
2785 of command address) into 8 bit immediate value of LDI insn.
2786ENUM
2787 BFD_RELOC_AVR_LO8_LDI_PM_NEG
2788ENUMDOC
2789 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2790 (usually command address) into 8 bit immediate value of SUBI insn.
2791ENUM
2792 BFD_RELOC_AVR_HI8_LDI_PM_NEG
2793ENUMDOC
2794 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2795 (high 8 bit of 16 bit command address) into 8 bit immediate value
2796 of SUBI insn.
2797ENUM
2798 BFD_RELOC_AVR_HH8_LDI_PM_NEG
2799ENUMDOC
2800 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2801 (high 6 bit of 22 bit command address) into 8 bit immediate
2802 value of SUBI insn.
2803ENUM
2804 BFD_RELOC_AVR_CALL
2805ENUMDOC
2806 This is a 32 bit reloc for the AVR that stores 23 bit value
2807 into 22 bits.
2808
a85d7ed0
NC
2809ENUM
2810 BFD_RELOC_390_12
2811ENUMDOC
2812 Direct 12 bit.
2813ENUM
2814 BFD_RELOC_390_GOT12
2815ENUMDOC
2816 12 bit GOT offset.
2817ENUM
2818 BFD_RELOC_390_PLT32
2819ENUMDOC
2820 32 bit PC relative PLT address.
2821ENUM
2822 BFD_RELOC_390_COPY
2823ENUMDOC
2824 Copy symbol at runtime.
2825ENUM
2826 BFD_RELOC_390_GLOB_DAT
2827ENUMDOC
2828 Create GOT entry.
2829ENUM
2830 BFD_RELOC_390_JMP_SLOT
2831ENUMDOC
2832 Create PLT entry.
2833ENUM
2834 BFD_RELOC_390_RELATIVE
2835ENUMDOC
2836 Adjust by program base.
2837ENUM
2838 BFD_RELOC_390_GOTPC
2839ENUMDOC
2840 32 bit PC relative offset to GOT.
2841ENUM
2842 BFD_RELOC_390_GOT16
2843ENUMDOC
2844 16 bit GOT offset.
2845ENUM
2846 BFD_RELOC_390_PC16DBL
2847ENUMDOC
2848 PC relative 16 bit shifted by 1.
2849ENUM
2850 BFD_RELOC_390_PLT16DBL
2851ENUMDOC
2852 16 bit PC rel. PLT shifted by 1.
2853ENUM
2854 BFD_RELOC_390_PC32DBL
2855ENUMDOC
2856 PC relative 32 bit shifted by 1.
2857ENUM
2858 BFD_RELOC_390_PLT32DBL
2859ENUMDOC
2860 32 bit PC rel. PLT shifted by 1.
2861ENUM
2862 BFD_RELOC_390_GOTPCDBL
2863ENUMDOC
2864 32 bit PC rel. GOT shifted by 1.
2865ENUM
2866 BFD_RELOC_390_GOT64
2867ENUMDOC
2868 64 bit GOT offset.
2869ENUM
2870 BFD_RELOC_390_PLT64
2871ENUMDOC
2872 64 bit PC relative PLT address.
2873ENUM
2874 BFD_RELOC_390_GOTENT
2875ENUMDOC
2876 32 bit rel. offset to GOT entry.
2877
252b5132
RH
2878ENUM
2879 BFD_RELOC_VTABLE_INHERIT
2880ENUMX
2881 BFD_RELOC_VTABLE_ENTRY
2882ENUMDOC
88b6bae0 2883 These two relocations are used by the linker to determine which of
252b5132
RH
2884 the entries in a C++ virtual function table are actually used. When
2885 the --gc-sections option is given, the linker will zero out the entries
2886 that are not used, so that the code for those functions need not be
2887 included in the output.
2888
2889 VTABLE_INHERIT is a zero-space relocation used to describe to the
2890 linker the inheritence tree of a C++ virtual function table. The
2891 relocation's symbol should be the parent class' vtable, and the
2892 relocation should be located at the child vtable.
2893
2894 VTABLE_ENTRY is a zero-space relocation that describes the use of a
2895 virtual function table entry. The reloc's symbol should refer to the
2896 table of the class mentioned in the code. Off of that base, an offset
88b6bae0 2897 describes the entry that is being used. For Rela hosts, this offset
252b5132
RH
2898 is stored in the reloc's addend. For Rel hosts, we are forced to put
2899 this offset in the reloc's section offset.
2900
800eeca4
JW
2901ENUM
2902 BFD_RELOC_IA64_IMM14
2903ENUMX
2904 BFD_RELOC_IA64_IMM22
2905ENUMX
2906 BFD_RELOC_IA64_IMM64
2907ENUMX
2908 BFD_RELOC_IA64_DIR32MSB
2909ENUMX
2910 BFD_RELOC_IA64_DIR32LSB
2911ENUMX
2912 BFD_RELOC_IA64_DIR64MSB
2913ENUMX
2914 BFD_RELOC_IA64_DIR64LSB
2915ENUMX
2916 BFD_RELOC_IA64_GPREL22
2917ENUMX
2918 BFD_RELOC_IA64_GPREL64I
2919ENUMX
2920 BFD_RELOC_IA64_GPREL32MSB
2921ENUMX
2922 BFD_RELOC_IA64_GPREL32LSB
2923ENUMX
2924 BFD_RELOC_IA64_GPREL64MSB
2925ENUMX
2926 BFD_RELOC_IA64_GPREL64LSB
2927ENUMX
2928 BFD_RELOC_IA64_LTOFF22
2929ENUMX
2930 BFD_RELOC_IA64_LTOFF64I
2931ENUMX
2932 BFD_RELOC_IA64_PLTOFF22
2933ENUMX
2934 BFD_RELOC_IA64_PLTOFF64I
2935ENUMX
2936 BFD_RELOC_IA64_PLTOFF64MSB
2937ENUMX
2938 BFD_RELOC_IA64_PLTOFF64LSB
2939ENUMX
2940 BFD_RELOC_IA64_FPTR64I
2941ENUMX
2942 BFD_RELOC_IA64_FPTR32MSB
2943ENUMX
2944 BFD_RELOC_IA64_FPTR32LSB
2945ENUMX
2946 BFD_RELOC_IA64_FPTR64MSB
2947ENUMX
2948 BFD_RELOC_IA64_FPTR64LSB
2949ENUMX
2950 BFD_RELOC_IA64_PCREL21B
748abff6
RH
2951ENUMX
2952 BFD_RELOC_IA64_PCREL21BI
800eeca4
JW
2953ENUMX
2954 BFD_RELOC_IA64_PCREL21M
2955ENUMX
2956 BFD_RELOC_IA64_PCREL21F
748abff6
RH
2957ENUMX
2958 BFD_RELOC_IA64_PCREL22
2959ENUMX
2960 BFD_RELOC_IA64_PCREL60B
2961ENUMX
2962 BFD_RELOC_IA64_PCREL64I
800eeca4
JW
2963ENUMX
2964 BFD_RELOC_IA64_PCREL32MSB
2965ENUMX
2966 BFD_RELOC_IA64_PCREL32LSB
2967ENUMX
2968 BFD_RELOC_IA64_PCREL64MSB
2969ENUMX
2970 BFD_RELOC_IA64_PCREL64LSB
2971ENUMX
2972 BFD_RELOC_IA64_LTOFF_FPTR22
2973ENUMX
2974 BFD_RELOC_IA64_LTOFF_FPTR64I
a4bd8390
JW
2975ENUMX
2976 BFD_RELOC_IA64_LTOFF_FPTR32MSB
2977ENUMX
2978 BFD_RELOC_IA64_LTOFF_FPTR32LSB
800eeca4
JW
2979ENUMX
2980 BFD_RELOC_IA64_LTOFF_FPTR64MSB
2981ENUMX
2982 BFD_RELOC_IA64_LTOFF_FPTR64LSB
800eeca4
JW
2983ENUMX
2984 BFD_RELOC_IA64_SEGREL32MSB
2985ENUMX
2986 BFD_RELOC_IA64_SEGREL32LSB
2987ENUMX
2988 BFD_RELOC_IA64_SEGREL64MSB
2989ENUMX
2990 BFD_RELOC_IA64_SEGREL64LSB
2991ENUMX
2992 BFD_RELOC_IA64_SECREL32MSB
2993ENUMX
2994 BFD_RELOC_IA64_SECREL32LSB
2995ENUMX
2996 BFD_RELOC_IA64_SECREL64MSB
2997ENUMX
2998 BFD_RELOC_IA64_SECREL64LSB
2999ENUMX
3000 BFD_RELOC_IA64_REL32MSB
3001ENUMX
3002 BFD_RELOC_IA64_REL32LSB
3003ENUMX
3004 BFD_RELOC_IA64_REL64MSB
3005ENUMX
3006 BFD_RELOC_IA64_REL64LSB
3007ENUMX
3008 BFD_RELOC_IA64_LTV32MSB
3009ENUMX
3010 BFD_RELOC_IA64_LTV32LSB
3011ENUMX
3012 BFD_RELOC_IA64_LTV64MSB
3013ENUMX
3014 BFD_RELOC_IA64_LTV64LSB
3015ENUMX
3016 BFD_RELOC_IA64_IPLTMSB
3017ENUMX
3018 BFD_RELOC_IA64_IPLTLSB
800eeca4
JW
3019ENUMX
3020 BFD_RELOC_IA64_COPY
3021ENUMX
3022 BFD_RELOC_IA64_TPREL22
3023ENUMX
3024 BFD_RELOC_IA64_TPREL64MSB
3025ENUMX
3026 BFD_RELOC_IA64_TPREL64LSB
3027ENUMX
3028 BFD_RELOC_IA64_LTOFF_TP22
3029ENUMX
3030 BFD_RELOC_IA64_LTOFF22X
3031ENUMX
3032 BFD_RELOC_IA64_LDXMOV
3033ENUMDOC
3034 Intel IA64 Relocations.
60bcf0fa
NC
3035
3036ENUM
3037 BFD_RELOC_M68HC11_HI8
3038ENUMDOC
3039 Motorola 68HC11 reloc.
3040 This is the 8 bits high part of an absolute address.
3041ENUM
3042 BFD_RELOC_M68HC11_LO8
3043ENUMDOC
3044 Motorola 68HC11 reloc.
3045 This is the 8 bits low part of an absolute address.
3046ENUM
3047 BFD_RELOC_M68HC11_3B
3048ENUMDOC
3049 Motorola 68HC11 reloc.
3050 This is the 3 bits of a value.
3051
06c15ad7
HPN
3052ENUM
3053 BFD_RELOC_CRIS_BDISP8
3054ENUMX
3055 BFD_RELOC_CRIS_UNSIGNED_5
3056ENUMX
3057 BFD_RELOC_CRIS_SIGNED_6
3058ENUMX
3059 BFD_RELOC_CRIS_UNSIGNED_6
3060ENUMX
3061 BFD_RELOC_CRIS_UNSIGNED_4
3062ENUMDOC
3063 These relocs are only used within the CRIS assembler. They are not
3064 (at present) written to any object files.
58d29fc3
HPN
3065ENUM
3066 BFD_RELOC_CRIS_COPY
3067ENUMX
3068 BFD_RELOC_CRIS_GLOB_DAT
3069ENUMX
3070 BFD_RELOC_CRIS_JUMP_SLOT
3071ENUMX
3072 BFD_RELOC_CRIS_RELATIVE
3073ENUMDOC
3074 Relocs used in ELF shared libraries for CRIS.
3075ENUM
3076 BFD_RELOC_CRIS_32_GOT
3077ENUMDOC
3078 32-bit offset to symbol-entry within GOT.
3079ENUM
3080 BFD_RELOC_CRIS_16_GOT
3081ENUMDOC
3082 16-bit offset to symbol-entry within GOT.
3083ENUM
3084 BFD_RELOC_CRIS_32_GOTPLT
3085ENUMDOC
3086 32-bit offset to symbol-entry within GOT, with PLT handling.
3087ENUM
3088 BFD_RELOC_CRIS_16_GOTPLT
3089ENUMDOC
3090 16-bit offset to symbol-entry within GOT, with PLT handling.
3091ENUM
3092 BFD_RELOC_CRIS_32_GOTREL
3093ENUMDOC
3094 32-bit offset to symbol, relative to GOT.
3095ENUM
3096 BFD_RELOC_CRIS_32_PLT_GOTREL
3097ENUMDOC
3098 32-bit offset to symbol with PLT entry, relative to GOT.
3099ENUM
3100 BFD_RELOC_CRIS_32_PLT_PCREL
3101ENUMDOC
3102 32-bit offset to symbol with PLT entry, relative to this relocation.
06c15ad7 3103
a87fdb8d
JE
3104ENUM
3105 BFD_RELOC_860_COPY
3106ENUMX
3107 BFD_RELOC_860_GLOB_DAT
3108ENUMX
3109 BFD_RELOC_860_JUMP_SLOT
3110ENUMX
3111 BFD_RELOC_860_RELATIVE
3112ENUMX
3113 BFD_RELOC_860_PC26
3114ENUMX
3115 BFD_RELOC_860_PLT26
3116ENUMX
3117 BFD_RELOC_860_PC16
3118ENUMX
3119 BFD_RELOC_860_LOW0
3120ENUMX
3121 BFD_RELOC_860_SPLIT0
3122ENUMX
3123 BFD_RELOC_860_LOW1
3124ENUMX
3125 BFD_RELOC_860_SPLIT1
3126ENUMX
3127 BFD_RELOC_860_LOW2
3128ENUMX
3129 BFD_RELOC_860_SPLIT2
3130ENUMX
3131 BFD_RELOC_860_LOW3
3132ENUMX
3133 BFD_RELOC_860_LOGOT0
3134ENUMX
3135 BFD_RELOC_860_SPGOT0
3136ENUMX
3137 BFD_RELOC_860_LOGOT1
3138ENUMX
3139 BFD_RELOC_860_SPGOT1
3140ENUMX
3141 BFD_RELOC_860_LOGOTOFF0
3142ENUMX
3143 BFD_RELOC_860_SPGOTOFF0
3144ENUMX
3145 BFD_RELOC_860_LOGOTOFF1
3146ENUMX
3147 BFD_RELOC_860_SPGOTOFF1
3148ENUMX
3149 BFD_RELOC_860_LOGOTOFF2
3150ENUMX
3151 BFD_RELOC_860_LOGOTOFF3
3152ENUMX
3153 BFD_RELOC_860_LOPC
3154ENUMX
3155 BFD_RELOC_860_HIGHADJ
3156ENUMX
3157 BFD_RELOC_860_HAGOT
3158ENUMX
3159 BFD_RELOC_860_HAGOTOFF
3160ENUMX
3161 BFD_RELOC_860_HAPC
3162ENUMX
3163 BFD_RELOC_860_HIGH
3164ENUMX
3165 BFD_RELOC_860_HIGOT
3166ENUMX
3167 BFD_RELOC_860_HIGOTOFF
3168ENUMDOC
3169 Intel i860 Relocations.
3170
b3baf5d0
NC
3171ENUM
3172 BFD_RELOC_OPENRISC_ABS_26
3173ENUMX
3174 BFD_RELOC_OPENRISC_REL_26
3175ENUMDOC
3176 OpenRISC Relocations.
3177
e01b0e69
JR
3178ENUM
3179 BFD_RELOC_H8_DIR16A8
3180ENUMX
3181 BFD_RELOC_H8_DIR16R8
3182ENUMX
3183 BFD_RELOC_H8_DIR24A8
3184ENUMX
3185 BFD_RELOC_H8_DIR24R8
3186ENUMX
3187 BFD_RELOC_H8_DIR32A16
3188ENUMDOC
3189 H8 elf Relocations.
3190
252b5132
RH
3191ENDSENUM
3192 BFD_RELOC_UNUSED
3193CODE_FRAGMENT
3194.
3195.typedef enum bfd_reloc_code_real bfd_reloc_code_real_type;
3196*/
3197
252b5132
RH
3198/*
3199FUNCTION
3200 bfd_reloc_type_lookup
3201
3202SYNOPSIS
3203 reloc_howto_type *
3204 bfd_reloc_type_lookup (bfd *abfd, bfd_reloc_code_real_type code);
3205
3206DESCRIPTION
3207 Return a pointer to a howto structure which, when
3208 invoked, will perform the relocation @var{code} on data from the
3209 architecture noted.
3210
3211*/
3212
252b5132
RH
3213reloc_howto_type *
3214bfd_reloc_type_lookup (abfd, code)
3215 bfd *abfd;
3216 bfd_reloc_code_real_type code;
3217{
3218 return BFD_SEND (abfd, reloc_type_lookup, (abfd, code));
3219}
3220
3221static reloc_howto_type bfd_howto_32 =
3222HOWTO (0, 00, 2, 32, false, 0, complain_overflow_bitfield, 0, "VRT32", false, 0xffffffff, 0xffffffff, true);
3223
252b5132
RH
3224/*
3225INTERNAL_FUNCTION
3226 bfd_default_reloc_type_lookup
3227
3228SYNOPSIS
3229 reloc_howto_type *bfd_default_reloc_type_lookup
3230 (bfd *abfd, bfd_reloc_code_real_type code);
3231
3232DESCRIPTION
3233 Provides a default relocation lookup routine for any architecture.
3234
252b5132
RH
3235*/
3236
3237reloc_howto_type *
3238bfd_default_reloc_type_lookup (abfd, code)
3239 bfd *abfd;
3240 bfd_reloc_code_real_type code;
3241{
3242 switch (code)
3243 {
3244 case BFD_RELOC_CTOR:
3245 /* The type of reloc used in a ctor, which will be as wide as the
3246 address - so either a 64, 32, or 16 bitter. */
3247 switch (bfd_get_arch_info (abfd)->bits_per_address)
3248 {
3249 case 64:
3250 BFD_FAIL ();
3251 case 32:
3252 return &bfd_howto_32;
3253 case 16:
3254 BFD_FAIL ();
3255 default:
3256 BFD_FAIL ();
3257 }
3258 default:
3259 BFD_FAIL ();
3260 }
3261 return (reloc_howto_type *) NULL;
3262}
3263
3264/*
3265FUNCTION
3266 bfd_get_reloc_code_name
3267
3268SYNOPSIS
3269 const char *bfd_get_reloc_code_name (bfd_reloc_code_real_type code);
3270
3271DESCRIPTION
3272 Provides a printable name for the supplied relocation code.
3273 Useful mainly for printing error messages.
3274*/
3275
3276const char *
3277bfd_get_reloc_code_name (code)
3278 bfd_reloc_code_real_type code;
3279{
3280 if (code > BFD_RELOC_UNUSED)
3281 return 0;
3282 return bfd_reloc_code_real_names[(int)code];
3283}
3284
3285/*
3286INTERNAL_FUNCTION
3287 bfd_generic_relax_section
3288
3289SYNOPSIS
3290 boolean bfd_generic_relax_section
3291 (bfd *abfd,
3292 asection *section,
3293 struct bfd_link_info *,
3294 boolean *);
3295
3296DESCRIPTION
3297 Provides default handling for relaxing for back ends which
3298 don't do relaxing -- i.e., does nothing.
3299*/
3300
3301/*ARGSUSED*/
3302boolean
3303bfd_generic_relax_section (abfd, section, link_info, again)
7442e600
ILT
3304 bfd *abfd ATTRIBUTE_UNUSED;
3305 asection *section ATTRIBUTE_UNUSED;
3306 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
252b5132
RH
3307 boolean *again;
3308{
3309 *again = false;
3310 return true;
3311}
3312
3313/*
3314INTERNAL_FUNCTION
3315 bfd_generic_gc_sections
3316
3317SYNOPSIS
3318 boolean bfd_generic_gc_sections
3319 (bfd *, struct bfd_link_info *);
3320
3321DESCRIPTION
3322 Provides default handling for relaxing for back ends which
3323 don't do section gc -- i.e., does nothing.
3324*/
3325
3326/*ARGSUSED*/
3327boolean
3328bfd_generic_gc_sections (abfd, link_info)
7442e600
ILT
3329 bfd *abfd ATTRIBUTE_UNUSED;
3330 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
252b5132
RH
3331{
3332 return true;
3333}
3334
8550eb6e
JJ
3335/*
3336INTERNAL_FUNCTION
3337 bfd_generic_merge_sections
3338
3339SYNOPSIS
3340 boolean bfd_generic_merge_sections
3341 (bfd *, struct bfd_link_info *);
3342
3343DESCRIPTION
3344 Provides default handling for SEC_MERGE section merging for back ends
3345 which don't have SEC_MERGE support -- i.e., does nothing.
3346*/
3347
3348/*ARGSUSED*/
3349boolean
3350bfd_generic_merge_sections (abfd, link_info)
3351 bfd *abfd ATTRIBUTE_UNUSED;
3352 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
3353{
3354 return true;
3355}
3356
252b5132
RH
3357/*
3358INTERNAL_FUNCTION
3359 bfd_generic_get_relocated_section_contents
3360
3361SYNOPSIS
3362 bfd_byte *
3363 bfd_generic_get_relocated_section_contents (bfd *abfd,
3364 struct bfd_link_info *link_info,
3365 struct bfd_link_order *link_order,
3366 bfd_byte *data,
3367 boolean relocateable,
3368 asymbol **symbols);
3369
3370DESCRIPTION
3371 Provides default handling of relocation effort for back ends
3372 which can't be bothered to do it efficiently.
3373
3374*/
3375
3376bfd_byte *
3377bfd_generic_get_relocated_section_contents (abfd, link_info, link_order, data,
3378 relocateable, symbols)
3379 bfd *abfd;
3380 struct bfd_link_info *link_info;
3381 struct bfd_link_order *link_order;
3382 bfd_byte *data;
3383 boolean relocateable;
3384 asymbol **symbols;
3385{
3386 /* Get enough memory to hold the stuff */
3387 bfd *input_bfd = link_order->u.indirect.section->owner;
3388 asection *input_section = link_order->u.indirect.section;
3389
3390 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
3391 arelent **reloc_vector = NULL;
3392 long reloc_count;
3393
3394 if (reloc_size < 0)
3395 goto error_return;
3396
3397 reloc_vector = (arelent **) bfd_malloc ((size_t) reloc_size);
3398 if (reloc_vector == NULL && reloc_size != 0)
3399 goto error_return;
3400
3401 /* read in the section */
3402 if (!bfd_get_section_contents (input_bfd,
3403 input_section,
3404 (PTR) data,
3405 0,
3406 input_section->_raw_size))
3407 goto error_return;
3408
3409 /* We're not relaxing the section, so just copy the size info */
3410 input_section->_cooked_size = input_section->_raw_size;
3411 input_section->reloc_done = true;
3412
3413 reloc_count = bfd_canonicalize_reloc (input_bfd,
3414 input_section,
3415 reloc_vector,
3416 symbols);
3417 if (reloc_count < 0)
3418 goto error_return;
3419
3420 if (reloc_count > 0)
3421 {
3422 arelent **parent;
3423 for (parent = reloc_vector; *parent != (arelent *) NULL;
3424 parent++)
3425 {
3426 char *error_message = (char *) NULL;
3427 bfd_reloc_status_type r =
3428 bfd_perform_relocation (input_bfd,
3429 *parent,
3430 (PTR) data,
3431 input_section,
3432 relocateable ? abfd : (bfd *) NULL,
3433 &error_message);
3434
3435 if (relocateable)
3436 {
3437 asection *os = input_section->output_section;
3438
3439 /* A partial link, so keep the relocs */
3440 os->orelocation[os->reloc_count] = *parent;
3441 os->reloc_count++;
3442 }
3443
3444 if (r != bfd_reloc_ok)
3445 {
3446 switch (r)
3447 {
3448 case bfd_reloc_undefined:
3449 if (!((*link_info->callbacks->undefined_symbol)
3450 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
5cc7c785
L
3451 input_bfd, input_section, (*parent)->address,
3452 true)))
252b5132
RH
3453 goto error_return;
3454 break;
3455 case bfd_reloc_dangerous:
3456 BFD_ASSERT (error_message != (char *) NULL);
3457 if (!((*link_info->callbacks->reloc_dangerous)
3458 (link_info, error_message, input_bfd, input_section,
3459 (*parent)->address)))
3460 goto error_return;
3461 break;
3462 case bfd_reloc_overflow:
3463 if (!((*link_info->callbacks->reloc_overflow)
3464 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
3465 (*parent)->howto->name, (*parent)->addend,
3466 input_bfd, input_section, (*parent)->address)))
3467 goto error_return;
3468 break;
3469 case bfd_reloc_outofrange:
3470 default:
3471 abort ();
3472 break;
3473 }
3474
3475 }
3476 }
3477 }
3478 if (reloc_vector != NULL)
3479 free (reloc_vector);
3480 return data;
3481
3482error_return:
3483 if (reloc_vector != NULL)
3484 free (reloc_vector);
3485 return NULL;
3486}
This page took 0.470911 seconds and 4 git commands to generate.