s/boolean/bfd_boolean/ s/true/TRUE/ s/false/FALSE/. Simplify
[deliverable/binutils-gdb.git] / bfd / reloc.c
CommitLineData
252b5132 1/* BFD support for handling relocation entries.
7898deda 2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
fbca6ad9 3 2000, 2001, 2002
252b5132
RH
4 Free Software Foundation, Inc.
5 Written by Cygnus Support.
6
ec4530b5 7 This file is part of BFD, the Binary File Descriptor library.
252b5132 8
ec4530b5
NC
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
252b5132 13
ec4530b5
NC
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
252b5132 18
ec4530b5
NC
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
252b5132
RH
22
23/*
24SECTION
25 Relocations
26
27 BFD maintains relocations in much the same way it maintains
28 symbols: they are left alone until required, then read in
3f9b03b5 29 en-masse and translated into an internal form. A common
252b5132
RH
30 routine <<bfd_perform_relocation>> acts upon the
31 canonical form to do the fixup.
32
33 Relocations are maintained on a per section basis,
34 while symbols are maintained on a per BFD basis.
35
36 All that a back end has to do to fit the BFD interface is to create
37 a <<struct reloc_cache_entry>> for each relocation
38 in a particular section, and fill in the right bits of the structures.
39
40@menu
41@* typedef arelent::
42@* howto manager::
43@end menu
44
45*/
46
47/* DO compile in the reloc_code name table from libbfd.h. */
48#define _BFD_MAKE_TABLE_bfd_reloc_code_real
49
50#include "bfd.h"
51#include "sysdep.h"
52#include "bfdlink.h"
53#include "libbfd.h"
54/*
55DOCDD
56INODE
57 typedef arelent, howto manager, Relocations, Relocations
58
59SUBSECTION
60 typedef arelent
61
62 This is the structure of a relocation entry:
63
64CODE_FRAGMENT
65.
66.typedef enum bfd_reloc_status
67.{
b5f79c76 68. {* No errors detected. *}
252b5132
RH
69. bfd_reloc_ok,
70.
b5f79c76 71. {* The relocation was performed, but there was an overflow. *}
252b5132
RH
72. bfd_reloc_overflow,
73.
b5f79c76 74. {* The address to relocate was not within the section supplied. *}
252b5132
RH
75. bfd_reloc_outofrange,
76.
b5f79c76 77. {* Used by special functions. *}
252b5132
RH
78. bfd_reloc_continue,
79.
b5f79c76 80. {* Unsupported relocation size requested. *}
252b5132
RH
81. bfd_reloc_notsupported,
82.
b5f79c76 83. {* Unused. *}
252b5132
RH
84. bfd_reloc_other,
85.
b5f79c76 86. {* The symbol to relocate against was undefined. *}
252b5132
RH
87. bfd_reloc_undefined,
88.
dc810e39
AM
89. {* The relocation was performed, but may not be ok - presently
90. generated only when linking i960 coff files with i960 b.out
91. symbols. If this type is returned, the error_message argument
92. to bfd_perform_relocation will be set. *}
252b5132
RH
93. bfd_reloc_dangerous
94. }
95. bfd_reloc_status_type;
96.
97.
98.typedef struct reloc_cache_entry
99.{
b5f79c76 100. {* A pointer into the canonical table of pointers. *}
252b5132
RH
101. struct symbol_cache_entry **sym_ptr_ptr;
102.
b5f79c76 103. {* offset in section. *}
252b5132
RH
104. bfd_size_type address;
105.
b5f79c76 106. {* addend for relocation value. *}
252b5132
RH
107. bfd_vma addend;
108.
b5f79c76 109. {* Pointer to how to perform the required relocation. *}
252b5132
RH
110. reloc_howto_type *howto;
111.
b5f79c76
NC
112.}
113.arelent;
114.
252b5132
RH
115*/
116
117/*
118DESCRIPTION
119
120 Here is a description of each of the fields within an <<arelent>>:
121
122 o <<sym_ptr_ptr>>
123
124 The symbol table pointer points to a pointer to the symbol
125 associated with the relocation request. It is
126 the pointer into the table returned by the back end's
127 <<get_symtab>> action. @xref{Symbols}. The symbol is referenced
128 through a pointer to a pointer so that tools like the linker
129 can fix up all the symbols of the same name by modifying only
130 one pointer. The relocation routine looks in the symbol and
131 uses the base of the section the symbol is attached to and the
132 value of the symbol as the initial relocation offset. If the
133 symbol pointer is zero, then the section provided is looked up.
134
135 o <<address>>
136
137 The <<address>> field gives the offset in bytes from the base of
138 the section data which owns the relocation record to the first
139 byte of relocatable information. The actual data relocated
140 will be relative to this point; for example, a relocation
141 type which modifies the bottom two bytes of a four byte word
142 would not touch the first byte pointed to in a big endian
143 world.
144
145 o <<addend>>
146
147 The <<addend>> is a value provided by the back end to be added (!)
148 to the relocation offset. Its interpretation is dependent upon
149 the howto. For example, on the 68k the code:
150
252b5132
RH
151| char foo[];
152| main()
153| {
154| return foo[0x12345678];
155| }
156
157 Could be compiled into:
158
159| linkw fp,#-4
160| moveb @@#12345678,d0
161| extbl d0
162| unlk fp
163| rts
164
252b5132
RH
165 This could create a reloc pointing to <<foo>>, but leave the
166 offset in the data, something like:
167
252b5132
RH
168|RELOCATION RECORDS FOR [.text]:
169|offset type value
170|00000006 32 _foo
171|
172|00000000 4e56 fffc ; linkw fp,#-4
173|00000004 1039 1234 5678 ; moveb @@#12345678,d0
174|0000000a 49c0 ; extbl d0
175|0000000c 4e5e ; unlk fp
176|0000000e 4e75 ; rts
177
252b5132
RH
178 Using coff and an 88k, some instructions don't have enough
179 space in them to represent the full address range, and
180 pointers have to be loaded in two parts. So you'd get something like:
181
252b5132
RH
182| or.u r13,r0,hi16(_foo+0x12345678)
183| ld.b r2,r13,lo16(_foo+0x12345678)
184| jmp r1
185
252b5132
RH
186 This should create two relocs, both pointing to <<_foo>>, and with
187 0x12340000 in their addend field. The data would consist of:
188
252b5132
RH
189|RELOCATION RECORDS FOR [.text]:
190|offset type value
191|00000002 HVRT16 _foo+0x12340000
192|00000006 LVRT16 _foo+0x12340000
193|
194|00000000 5da05678 ; or.u r13,r0,0x5678
195|00000004 1c4d5678 ; ld.b r2,r13,0x5678
196|00000008 f400c001 ; jmp r1
197
252b5132
RH
198 The relocation routine digs out the value from the data, adds
199 it to the addend to get the original offset, and then adds the
200 value of <<_foo>>. Note that all 32 bits have to be kept around
201 somewhere, to cope with carry from bit 15 to bit 16.
202
203 One further example is the sparc and the a.out format. The
204 sparc has a similar problem to the 88k, in that some
205 instructions don't have room for an entire offset, but on the
206 sparc the parts are created in odd sized lumps. The designers of
207 the a.out format chose to not use the data within the section
208 for storing part of the offset; all the offset is kept within
209 the reloc. Anything in the data should be ignored.
210
211| save %sp,-112,%sp
212| sethi %hi(_foo+0x12345678),%g2
213| ldsb [%g2+%lo(_foo+0x12345678)],%i0
214| ret
215| restore
216
217 Both relocs contain a pointer to <<foo>>, and the offsets
218 contain junk.
219
252b5132
RH
220|RELOCATION RECORDS FOR [.text]:
221|offset type value
222|00000004 HI22 _foo+0x12345678
223|00000008 LO10 _foo+0x12345678
224|
225|00000000 9de3bf90 ; save %sp,-112,%sp
226|00000004 05000000 ; sethi %hi(_foo+0),%g2
227|00000008 f048a000 ; ldsb [%g2+%lo(_foo+0)],%i0
228|0000000c 81c7e008 ; ret
229|00000010 81e80000 ; restore
230
252b5132
RH
231 o <<howto>>
232
233 The <<howto>> field can be imagined as a
234 relocation instruction. It is a pointer to a structure which
235 contains information on what to do with all of the other
236 information in the reloc record and data section. A back end
237 would normally have a relocation instruction set and turn
238 relocations into pointers to the correct structure on input -
239 but it would be possible to create each howto field on demand.
240
241*/
242
243/*
244SUBSUBSECTION
245 <<enum complain_overflow>>
246
247 Indicates what sort of overflow checking should be done when
248 performing a relocation.
249
250CODE_FRAGMENT
251.
252.enum complain_overflow
253.{
b5f79c76 254. {* Do not complain on overflow. *}
252b5132
RH
255. complain_overflow_dont,
256.
dc810e39 257. {* Complain if the bitfield overflows, whether it is considered
b5f79c76 258. as signed or unsigned. *}
252b5132
RH
259. complain_overflow_bitfield,
260.
dc810e39 261. {* Complain if the value overflows when considered as signed
b5f79c76 262. number. *}
252b5132
RH
263. complain_overflow_signed,
264.
dc810e39 265. {* Complain if the value overflows when considered as an
b5f79c76 266. unsigned number. *}
252b5132
RH
267. complain_overflow_unsigned
268.};
269
270*/
271
272/*
273SUBSUBSECTION
274 <<reloc_howto_type>>
275
276 The <<reloc_howto_type>> is a structure which contains all the
277 information that libbfd needs to know to tie up a back end's data.
278
279CODE_FRAGMENT
b5f79c76 280.struct symbol_cache_entry; {* Forward declaration. *}
252b5132
RH
281.
282.struct reloc_howto_struct
283.{
dc810e39
AM
284. {* The type field has mainly a documentary use - the back end can
285. do what it wants with it, though normally the back end's
286. external idea of what a reloc number is stored
287. in this field. For example, a PC relative word relocation
288. in a coff environment has the type 023 - because that's
289. what the outside world calls a R_PCRWORD reloc. *}
252b5132
RH
290. unsigned int type;
291.
dc810e39
AM
292. {* The value the final relocation is shifted right by. This drops
293. unwanted data from the relocation. *}
252b5132
RH
294. unsigned int rightshift;
295.
dc810e39
AM
296. {* The size of the item to be relocated. This is *not* a
297. power-of-two measure. To get the number of bytes operated
298. on by a type of relocation, use bfd_get_reloc_size. *}
252b5132
RH
299. int size;
300.
dc810e39
AM
301. {* The number of bits in the item to be relocated. This is used
302. when doing overflow checking. *}
252b5132
RH
303. unsigned int bitsize;
304.
dc810e39
AM
305. {* Notes that the relocation is relative to the location in the
306. data section of the addend. The relocation function will
307. subtract from the relocation value the address of the location
308. being relocated. *}
b34976b6 309. bfd_boolean pc_relative;
252b5132 310.
dc810e39
AM
311. {* The bit position of the reloc value in the destination.
312. The relocated value is left shifted by this amount. *}
252b5132
RH
313. unsigned int bitpos;
314.
dc810e39
AM
315. {* What type of overflow error should be checked for when
316. relocating. *}
252b5132
RH
317. enum complain_overflow complain_on_overflow;
318.
dc810e39
AM
319. {* If this field is non null, then the supplied function is
320. called rather than the normal function. This allows really
321. strange relocation methods to be accomodated (e.g., i960 callj
322. instructions). *}
252b5132 323. bfd_reloc_status_type (*special_function)
dc810e39
AM
324. PARAMS ((bfd *, arelent *, struct symbol_cache_entry *, PTR, asection *,
325. bfd *, char **));
252b5132 326.
dc810e39 327. {* The textual name of the relocation type. *}
252b5132
RH
328. char *name;
329.
dc810e39
AM
330. {* Some formats record a relocation addend in the section contents
331. rather than with the relocation. For ELF formats this is the
332. distinction between USE_REL and USE_RELA (though the code checks
333. for USE_REL == 1/0). The value of this field is TRUE if the
334. addend is recorded with the section contents; when performing a
335. partial link (ld -r) the section contents (the data) will be
336. modified. The value of this field is FALSE if addends are
337. recorded with the relocation (in arelent.addend); when performing
338. a partial link the relocation will be modified.
339. All relocations for all ELF USE_RELA targets should set this field
340. to FALSE (values of TRUE should be looked on with suspicion).
341. However, the converse is not true: not all relocations of all ELF
342. USE_REL targets set this field to TRUE. Why this is so is peculiar
343. to each particular target. For relocs that aren't used in partial
344. links (e.g. GOT stuff) it doesn't matter what this is set to. *}
b34976b6 345. bfd_boolean partial_inplace;
252b5132 346.
dc810e39
AM
347. {* The src_mask selects which parts of the read in data
348. are to be used in the relocation sum. E.g., if this was an 8 bit
349. byte of data which we read and relocated, this would be
350. 0x000000ff. When we have relocs which have an addend, such as
351. sun4 extended relocs, the value in the offset part of a
352. relocating field is garbage so we never use it. In this case
353. the mask would be 0x00000000. *}
252b5132
RH
354. bfd_vma src_mask;
355.
dc810e39
AM
356. {* The dst_mask selects which parts of the instruction are replaced
357. into the instruction. In most cases src_mask == dst_mask,
358. except in the above special case, where dst_mask would be
359. 0x000000ff, and src_mask would be 0x00000000. *}
252b5132
RH
360. bfd_vma dst_mask;
361.
dc810e39
AM
362. {* When some formats create PC relative instructions, they leave
363. the value of the pc of the place being relocated in the offset
364. slot of the instruction, so that a PC relative relocation can
365. be made just by adding in an ordinary offset (e.g., sun3 a.out).
366. Some formats leave the displacement part of an instruction
367. empty (e.g., m88k bcs); this flag signals the fact. *}
b34976b6 368. bfd_boolean pcrel_offset;
252b5132 369.};
b5f79c76 370.
252b5132
RH
371*/
372
373/*
374FUNCTION
375 The HOWTO Macro
376
377DESCRIPTION
378 The HOWTO define is horrible and will go away.
379
dc810e39
AM
380.#define HOWTO(C, R, S, B, P, BI, O, SF, NAME, INPLACE, MASKSRC, MASKDST, PC) \
381. { (unsigned) C, R, S, B, P, BI, O, SF, NAME, INPLACE, MASKSRC, MASKDST, PC }
252b5132
RH
382
383DESCRIPTION
384 And will be replaced with the totally magic way. But for the
385 moment, we are compatible, so do it this way.
386
dc810e39
AM
387.#define NEWHOWTO(FUNCTION, NAME, SIZE, REL, IN) \
388. HOWTO (0, 0, SIZE, 0, REL, 0, complain_overflow_dont, FUNCTION, \
b34976b6 389. NAME, FALSE, 0, 0, IN)
252b5132 390.
5f771d47
ILT
391
392DESCRIPTION
393 This is used to fill in an empty howto entry in an array.
394
395.#define EMPTY_HOWTO(C) \
b34976b6
AM
396. HOWTO ((C), 0, 0, 0, FALSE, 0, complain_overflow_dont, NULL, \
397. NULL, FALSE, 0, 0, FALSE)
5f771d47
ILT
398.
399
252b5132
RH
400DESCRIPTION
401 Helper routine to turn a symbol into a relocation value.
402
dc810e39
AM
403.#define HOWTO_PREPARE(relocation, symbol) \
404. { \
405. if (symbol != (asymbol *) NULL) \
406. { \
407. if (bfd_is_com_section (symbol->section)) \
408. { \
409. relocation = 0; \
410. } \
411. else \
412. { \
413. relocation = symbol->value; \
414. } \
415. } \
416. }
b5f79c76 417.
252b5132
RH
418*/
419
420/*
421FUNCTION
422 bfd_get_reloc_size
423
424SYNOPSIS
425 unsigned int bfd_get_reloc_size (reloc_howto_type *);
426
427DESCRIPTION
428 For a reloc_howto_type that operates on a fixed number of bytes,
429 this returns the number of bytes operated on.
430 */
431
432unsigned int
433bfd_get_reloc_size (howto)
434 reloc_howto_type *howto;
435{
436 switch (howto->size)
437 {
438 case 0: return 1;
439 case 1: return 2;
440 case 2: return 4;
441 case 3: return 0;
442 case 4: return 8;
443 case 8: return 16;
444 case -2: return 4;
445 default: abort ();
446 }
447}
448
449/*
450TYPEDEF
451 arelent_chain
452
453DESCRIPTION
454
455 How relocs are tied together in an <<asection>>:
456
dc810e39
AM
457.typedef struct relent_chain
458.{
252b5132 459. arelent relent;
dc810e39 460. struct relent_chain *next;
b5f79c76
NC
461.}
462.arelent_chain;
463.
252b5132
RH
464*/
465
466/* N_ONES produces N one bits, without overflowing machine arithmetic. */
467#define N_ONES(n) (((((bfd_vma) 1 << ((n) - 1)) - 1) << 1) | 1)
468
469/*
470FUNCTION
471 bfd_check_overflow
472
473SYNOPSIS
474 bfd_reloc_status_type
475 bfd_check_overflow
476 (enum complain_overflow how,
477 unsigned int bitsize,
478 unsigned int rightshift,
479 unsigned int addrsize,
480 bfd_vma relocation);
481
482DESCRIPTION
483 Perform overflow checking on @var{relocation} which has
484 @var{bitsize} significant bits and will be shifted right by
485 @var{rightshift} bits, on a machine with addresses containing
486 @var{addrsize} significant bits. The result is either of
487 @code{bfd_reloc_ok} or @code{bfd_reloc_overflow}.
488
489*/
490
491bfd_reloc_status_type
492bfd_check_overflow (how, bitsize, rightshift, addrsize, relocation)
493 enum complain_overflow how;
494 unsigned int bitsize;
495 unsigned int rightshift;
496 unsigned int addrsize;
497 bfd_vma relocation;
498{
499 bfd_vma fieldmask, addrmask, signmask, ss, a;
500 bfd_reloc_status_type flag = bfd_reloc_ok;
501
502 a = relocation;
503
504 /* Note: BITSIZE should always be <= ADDRSIZE, but in case it's not,
505 we'll be permissive: extra bits in the field mask will
506 automatically extend the address mask for purposes of the
507 overflow check. */
508 fieldmask = N_ONES (bitsize);
509 addrmask = N_ONES (addrsize) | fieldmask;
510
511 switch (how)
512 {
513 case complain_overflow_dont:
514 break;
515
516 case complain_overflow_signed:
517 /* If any sign bits are set, all sign bits must be set. That
518 is, A must be a valid negative address after shifting. */
519 a = (a & addrmask) >> rightshift;
520 signmask = ~ (fieldmask >> 1);
521 ss = a & signmask;
522 if (ss != 0 && ss != ((addrmask >> rightshift) & signmask))
523 flag = bfd_reloc_overflow;
524 break;
525
526 case complain_overflow_unsigned:
527 /* We have an overflow if the address does not fit in the field. */
528 a = (a & addrmask) >> rightshift;
529 if ((a & ~ fieldmask) != 0)
530 flag = bfd_reloc_overflow;
531 break;
532
533 case complain_overflow_bitfield:
534 /* Bitfields are sometimes signed, sometimes unsigned. We
d5afc56e
AM
535 explicitly allow an address wrap too, which means a bitfield
536 of n bits is allowed to store -2**n to 2**n-1. Thus overflow
537 if the value has some, but not all, bits set outside the
538 field. */
252b5132 539 a >>= rightshift;
d5afc56e
AM
540 ss = a & ~ fieldmask;
541 if (ss != 0 && ss != (((bfd_vma) -1 >> rightshift) & ~ fieldmask))
542 flag = bfd_reloc_overflow;
252b5132
RH
543 break;
544
545 default:
546 abort ();
547 }
548
549 return flag;
550}
551
552/*
553FUNCTION
554 bfd_perform_relocation
555
556SYNOPSIS
557 bfd_reloc_status_type
558 bfd_perform_relocation
559 (bfd *abfd,
560 arelent *reloc_entry,
561 PTR data,
562 asection *input_section,
563 bfd *output_bfd,
564 char **error_message);
565
566DESCRIPTION
567 If @var{output_bfd} is supplied to this function, the
568 generated image will be relocatable; the relocations are
569 copied to the output file after they have been changed to
570 reflect the new state of the world. There are two ways of
571 reflecting the results of partial linkage in an output file:
572 by modifying the output data in place, and by modifying the
573 relocation record. Some native formats (e.g., basic a.out and
574 basic coff) have no way of specifying an addend in the
575 relocation type, so the addend has to go in the output data.
576 This is no big deal since in these formats the output data
577 slot will always be big enough for the addend. Complex reloc
578 types with addends were invented to solve just this problem.
579 The @var{error_message} argument is set to an error message if
580 this return @code{bfd_reloc_dangerous}.
581
582*/
583
252b5132
RH
584bfd_reloc_status_type
585bfd_perform_relocation (abfd, reloc_entry, data, input_section, output_bfd,
586 error_message)
587 bfd *abfd;
588 arelent *reloc_entry;
589 PTR data;
590 asection *input_section;
591 bfd *output_bfd;
592 char **error_message;
593{
594 bfd_vma relocation;
595 bfd_reloc_status_type flag = bfd_reloc_ok;
9a968f43 596 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
252b5132
RH
597 bfd_vma output_base = 0;
598 reloc_howto_type *howto = reloc_entry->howto;
599 asection *reloc_target_output_section;
600 asymbol *symbol;
601
602 symbol = *(reloc_entry->sym_ptr_ptr);
603 if (bfd_is_abs_section (symbol->section)
604 && output_bfd != (bfd *) NULL)
605 {
606 reloc_entry->address += input_section->output_offset;
607 return bfd_reloc_ok;
608 }
609
610 /* If we are not producing relocateable output, return an error if
611 the symbol is not defined. An undefined weak symbol is
612 considered to have a value of zero (SVR4 ABI, p. 4-27). */
613 if (bfd_is_und_section (symbol->section)
614 && (symbol->flags & BSF_WEAK) == 0
615 && output_bfd == (bfd *) NULL)
616 flag = bfd_reloc_undefined;
617
618 /* If there is a function supplied to handle this relocation type,
619 call it. It'll return `bfd_reloc_continue' if further processing
620 can be done. */
621 if (howto->special_function)
622 {
623 bfd_reloc_status_type cont;
624 cont = howto->special_function (abfd, reloc_entry, symbol, data,
625 input_section, output_bfd,
626 error_message);
627 if (cont != bfd_reloc_continue)
628 return cont;
629 }
630
631 /* Is the address of the relocation really within the section? */
e207c4fa
AM
632 if (reloc_entry->address > (input_section->_cooked_size
633 / bfd_octets_per_byte (abfd)))
252b5132
RH
634 return bfd_reloc_outofrange;
635
636 /* Work out which section the relocation is targetted at and the
637 initial relocation command value. */
638
639 /* Get symbol value. (Common symbols are special.) */
640 if (bfd_is_com_section (symbol->section))
641 relocation = 0;
642 else
643 relocation = symbol->value;
644
252b5132
RH
645 reloc_target_output_section = symbol->section->output_section;
646
647 /* Convert input-section-relative symbol value to absolute. */
ec4530b5
NC
648 if ((output_bfd && ! howto->partial_inplace)
649 || reloc_target_output_section == NULL)
252b5132
RH
650 output_base = 0;
651 else
652 output_base = reloc_target_output_section->vma;
653
654 relocation += output_base + symbol->section->output_offset;
655
656 /* Add in supplied addend. */
657 relocation += reloc_entry->addend;
658
659 /* Here the variable relocation holds the final address of the
660 symbol we are relocating against, plus any addend. */
661
82e51918 662 if (howto->pc_relative)
252b5132
RH
663 {
664 /* This is a PC relative relocation. We want to set RELOCATION
665 to the distance between the address of the symbol and the
666 location. RELOCATION is already the address of the symbol.
667
668 We start by subtracting the address of the section containing
669 the location.
670
671 If pcrel_offset is set, we must further subtract the position
672 of the location within the section. Some targets arrange for
673 the addend to be the negative of the position of the location
674 within the section; for example, i386-aout does this. For
b34976b6 675 i386-aout, pcrel_offset is FALSE. Some other targets do not
252b5132 676 include the position of the location; for example, m88kbcs,
b34976b6 677 or ELF. For those targets, pcrel_offset is TRUE.
252b5132
RH
678
679 If we are producing relocateable output, then we must ensure
680 that this reloc will be correctly computed when the final
b34976b6 681 relocation is done. If pcrel_offset is FALSE we want to wind
252b5132
RH
682 up with the negative of the location within the section,
683 which means we must adjust the existing addend by the change
b34976b6 684 in the location within the section. If pcrel_offset is TRUE
252b5132
RH
685 we do not want to adjust the existing addend at all.
686
687 FIXME: This seems logical to me, but for the case of
688 producing relocateable output it is not what the code
689 actually does. I don't want to change it, because it seems
690 far too likely that something will break. */
691
692 relocation -=
693 input_section->output_section->vma + input_section->output_offset;
694
82e51918 695 if (howto->pcrel_offset)
252b5132
RH
696 relocation -= reloc_entry->address;
697 }
698
699 if (output_bfd != (bfd *) NULL)
700 {
82e51918 701 if (! howto->partial_inplace)
252b5132
RH
702 {
703 /* This is a partial relocation, and we want to apply the relocation
704 to the reloc entry rather than the raw data. Modify the reloc
705 inplace to reflect what we now know. */
706 reloc_entry->addend = relocation;
707 reloc_entry->address += input_section->output_offset;
708 return flag;
709 }
710 else
711 {
712 /* This is a partial relocation, but inplace, so modify the
713 reloc record a bit.
714
715 If we've relocated with a symbol with a section, change
716 into a ref to the section belonging to the symbol. */
717
718 reloc_entry->address += input_section->output_offset;
719
720 /* WTF?? */
721 if (abfd->xvec->flavour == bfd_target_coff_flavour
252b5132
RH
722 && strcmp (abfd->xvec->name, "coff-Intel-little") != 0
723 && strcmp (abfd->xvec->name, "coff-Intel-big") != 0)
724 {
725#if 1
726 /* For m68k-coff, the addend was being subtracted twice during
727 relocation with -r. Removing the line below this comment
728 fixes that problem; see PR 2953.
729
730However, Ian wrote the following, regarding removing the line below,
731which explains why it is still enabled: --djm
732
733If you put a patch like that into BFD you need to check all the COFF
734linkers. I am fairly certain that patch will break coff-i386 (e.g.,
735SCO); see coff_i386_reloc in coff-i386.c where I worked around the
736problem in a different way. There may very well be a reason that the
737code works as it does.
738
739Hmmm. The first obvious point is that bfd_perform_relocation should
740not have any tests that depend upon the flavour. It's seem like
741entirely the wrong place for such a thing. The second obvious point
742is that the current code ignores the reloc addend when producing
743relocateable output for COFF. That's peculiar. In fact, I really
744have no idea what the point of the line you want to remove is.
745
746A typical COFF reloc subtracts the old value of the symbol and adds in
747the new value to the location in the object file (if it's a pc
748relative reloc it adds the difference between the symbol value and the
749location). When relocating we need to preserve that property.
750
751BFD handles this by setting the addend to the negative of the old
752value of the symbol. Unfortunately it handles common symbols in a
753non-standard way (it doesn't subtract the old value) but that's a
754different story (we can't change it without losing backward
755compatibility with old object files) (coff-i386 does subtract the old
756value, to be compatible with existing coff-i386 targets, like SCO).
757
758So everything works fine when not producing relocateable output. When
759we are producing relocateable output, logically we should do exactly
760what we do when not producing relocateable output. Therefore, your
761patch is correct. In fact, it should probably always just set
762reloc_entry->addend to 0 for all cases, since it is, in fact, going to
763add the value into the object file. This won't hurt the COFF code,
764which doesn't use the addend; I'm not sure what it will do to other
765formats (the thing to check for would be whether any formats both use
766the addend and set partial_inplace).
767
768When I wanted to make coff-i386 produce relocateable output, I ran
769into the problem that you are running into: I wanted to remove that
770line. Rather than risk it, I made the coff-i386 relocs use a special
771function; it's coff_i386_reloc in coff-i386.c. The function
772specifically adds the addend field into the object file, knowing that
773bfd_perform_relocation is not going to. If you remove that line, then
774coff-i386.c will wind up adding the addend field in twice. It's
775trivial to fix; it just needs to be done.
776
777The problem with removing the line is just that it may break some
778working code. With BFD it's hard to be sure of anything. The right
779way to deal with this is simply to build and test at least all the
780supported COFF targets. It should be straightforward if time and disk
781space consuming. For each target:
782 1) build the linker
783 2) generate some executable, and link it using -r (I would
784 probably use paranoia.o and link against newlib/libc.a, which
785 for all the supported targets would be available in
786 /usr/cygnus/progressive/H-host/target/lib/libc.a).
787 3) make the change to reloc.c
788 4) rebuild the linker
789 5) repeat step 2
790 6) if the resulting object files are the same, you have at least
791 made it no worse
792 7) if they are different you have to figure out which version is
793 right
794*/
795 relocation -= reloc_entry->addend;
796#endif
797 reloc_entry->addend = 0;
798 }
799 else
800 {
801 reloc_entry->addend = relocation;
802 }
803 }
804 }
805 else
806 {
807 reloc_entry->addend = 0;
808 }
809
810 /* FIXME: This overflow checking is incomplete, because the value
811 might have overflowed before we get here. For a correct check we
812 need to compute the value in a size larger than bitsize, but we
813 can't reasonably do that for a reloc the same size as a host
814 machine word.
815 FIXME: We should also do overflow checking on the result after
816 adding in the value contained in the object file. */
817 if (howto->complain_on_overflow != complain_overflow_dont
818 && flag == bfd_reloc_ok)
819 flag = bfd_check_overflow (howto->complain_on_overflow,
820 howto->bitsize,
821 howto->rightshift,
822 bfd_arch_bits_per_address (abfd),
823 relocation);
824
b5f79c76
NC
825 /* Either we are relocating all the way, or we don't want to apply
826 the relocation to the reloc entry (probably because there isn't
827 any room in the output format to describe addends to relocs). */
252b5132
RH
828
829 /* The cast to bfd_vma avoids a bug in the Alpha OSF/1 C compiler
830 (OSF version 1.3, compiler version 3.11). It miscompiles the
831 following program:
832
833 struct str
834 {
835 unsigned int i0;
836 } s = { 0 };
837
838 int
839 main ()
840 {
841 unsigned long x;
842
843 x = 0x100000000;
844 x <<= (unsigned long) s.i0;
845 if (x == 0)
846 printf ("failed\n");
847 else
848 printf ("succeeded (%lx)\n", x);
849 }
850 */
851
852 relocation >>= (bfd_vma) howto->rightshift;
853
b5f79c76 854 /* Shift everything up to where it's going to be used. */
252b5132
RH
855 relocation <<= (bfd_vma) howto->bitpos;
856
b5f79c76 857 /* Wait for the day when all have the mask in them. */
252b5132
RH
858
859 /* What we do:
860 i instruction to be left alone
861 o offset within instruction
862 r relocation offset to apply
863 S src mask
864 D dst mask
865 N ~dst mask
866 A part 1
867 B part 2
868 R result
869
870 Do this:
88b6bae0
AM
871 (( i i i i i o o o o o from bfd_get<size>
872 and S S S S S) to get the size offset we want
873 + r r r r r r r r r r) to get the final value to place
252b5132
RH
874 and D D D D D to chop to right size
875 -----------------------
88b6bae0 876 = A A A A A
252b5132 877 And this:
88b6bae0
AM
878 ( i i i i i o o o o o from bfd_get<size>
879 and N N N N N ) get instruction
252b5132 880 -----------------------
88b6bae0 881 = B B B B B
252b5132
RH
882
883 And then:
88b6bae0
AM
884 ( B B B B B
885 or A A A A A)
252b5132 886 -----------------------
88b6bae0 887 = R R R R R R R R R R put into bfd_put<size>
252b5132
RH
888 */
889
890#define DOIT(x) \
891 x = ( (x & ~howto->dst_mask) | (((x & howto->src_mask) + relocation) & howto->dst_mask))
892
893 switch (howto->size)
894 {
895 case 0:
896 {
9a968f43 897 char x = bfd_get_8 (abfd, (char *) data + octets);
252b5132 898 DOIT (x);
9a968f43 899 bfd_put_8 (abfd, x, (unsigned char *) data + octets);
252b5132
RH
900 }
901 break;
902
903 case 1:
904 {
9a968f43 905 short x = bfd_get_16 (abfd, (bfd_byte *) data + octets);
252b5132 906 DOIT (x);
dc810e39 907 bfd_put_16 (abfd, (bfd_vma) x, (unsigned char *) data + octets);
252b5132
RH
908 }
909 break;
910 case 2:
911 {
9a968f43 912 long x = bfd_get_32 (abfd, (bfd_byte *) data + octets);
252b5132 913 DOIT (x);
dc810e39 914 bfd_put_32 (abfd, (bfd_vma) x, (bfd_byte *) data + octets);
252b5132
RH
915 }
916 break;
917 case -2:
918 {
9a968f43 919 long x = bfd_get_32 (abfd, (bfd_byte *) data + octets);
252b5132
RH
920 relocation = -relocation;
921 DOIT (x);
dc810e39 922 bfd_put_32 (abfd, (bfd_vma) x, (bfd_byte *) data + octets);
252b5132
RH
923 }
924 break;
925
926 case -1:
927 {
9a968f43 928 long x = bfd_get_16 (abfd, (bfd_byte *) data + octets);
252b5132
RH
929 relocation = -relocation;
930 DOIT (x);
dc810e39 931 bfd_put_16 (abfd, (bfd_vma) x, (bfd_byte *) data + octets);
252b5132
RH
932 }
933 break;
934
935 case 3:
936 /* Do nothing */
937 break;
938
939 case 4:
940#ifdef BFD64
941 {
9a968f43 942 bfd_vma x = bfd_get_64 (abfd, (bfd_byte *) data + octets);
252b5132 943 DOIT (x);
9a968f43 944 bfd_put_64 (abfd, x, (bfd_byte *) data + octets);
252b5132
RH
945 }
946#else
947 abort ();
948#endif
949 break;
950 default:
951 return bfd_reloc_other;
952 }
953
954 return flag;
955}
956
957/*
958FUNCTION
959 bfd_install_relocation
960
961SYNOPSIS
962 bfd_reloc_status_type
963 bfd_install_relocation
964 (bfd *abfd,
965 arelent *reloc_entry,
966 PTR data, bfd_vma data_start,
967 asection *input_section,
968 char **error_message);
969
970DESCRIPTION
971 This looks remarkably like <<bfd_perform_relocation>>, except it
972 does not expect that the section contents have been filled in.
973 I.e., it's suitable for use when creating, rather than applying
974 a relocation.
975
976 For now, this function should be considered reserved for the
977 assembler.
252b5132
RH
978*/
979
252b5132
RH
980bfd_reloc_status_type
981bfd_install_relocation (abfd, reloc_entry, data_start, data_start_offset,
982 input_section, error_message)
983 bfd *abfd;
984 arelent *reloc_entry;
985 PTR data_start;
986 bfd_vma data_start_offset;
987 asection *input_section;
988 char **error_message;
989{
990 bfd_vma relocation;
991 bfd_reloc_status_type flag = bfd_reloc_ok;
9a968f43 992 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
252b5132
RH
993 bfd_vma output_base = 0;
994 reloc_howto_type *howto = reloc_entry->howto;
995 asection *reloc_target_output_section;
996 asymbol *symbol;
997 bfd_byte *data;
998
999 symbol = *(reloc_entry->sym_ptr_ptr);
1000 if (bfd_is_abs_section (symbol->section))
1001 {
1002 reloc_entry->address += input_section->output_offset;
1003 return bfd_reloc_ok;
1004 }
1005
1006 /* If there is a function supplied to handle this relocation type,
1007 call it. It'll return `bfd_reloc_continue' if further processing
1008 can be done. */
1009 if (howto->special_function)
1010 {
1011 bfd_reloc_status_type cont;
88b6bae0 1012
252b5132
RH
1013 /* XXX - The special_function calls haven't been fixed up to deal
1014 with creating new relocations and section contents. */
1015 cont = howto->special_function (abfd, reloc_entry, symbol,
1016 /* XXX - Non-portable! */
1017 ((bfd_byte *) data_start
1018 - data_start_offset),
1019 input_section, abfd, error_message);
1020 if (cont != bfd_reloc_continue)
1021 return cont;
1022 }
1023
1024 /* Is the address of the relocation really within the section? */
e207c4fa
AM
1025 if (reloc_entry->address > (input_section->_cooked_size
1026 / bfd_octets_per_byte (abfd)))
252b5132
RH
1027 return bfd_reloc_outofrange;
1028
1029 /* Work out which section the relocation is targetted at and the
1030 initial relocation command value. */
1031
1032 /* Get symbol value. (Common symbols are special.) */
1033 if (bfd_is_com_section (symbol->section))
1034 relocation = 0;
1035 else
1036 relocation = symbol->value;
1037
1038 reloc_target_output_section = symbol->section->output_section;
1039
1040 /* Convert input-section-relative symbol value to absolute. */
82e51918 1041 if (! howto->partial_inplace)
252b5132
RH
1042 output_base = 0;
1043 else
1044 output_base = reloc_target_output_section->vma;
1045
1046 relocation += output_base + symbol->section->output_offset;
1047
1048 /* Add in supplied addend. */
1049 relocation += reloc_entry->addend;
1050
1051 /* Here the variable relocation holds the final address of the
1052 symbol we are relocating against, plus any addend. */
1053
82e51918 1054 if (howto->pc_relative)
252b5132
RH
1055 {
1056 /* This is a PC relative relocation. We want to set RELOCATION
1057 to the distance between the address of the symbol and the
1058 location. RELOCATION is already the address of the symbol.
1059
1060 We start by subtracting the address of the section containing
1061 the location.
1062
1063 If pcrel_offset is set, we must further subtract the position
1064 of the location within the section. Some targets arrange for
1065 the addend to be the negative of the position of the location
1066 within the section; for example, i386-aout does this. For
b34976b6 1067 i386-aout, pcrel_offset is FALSE. Some other targets do not
252b5132 1068 include the position of the location; for example, m88kbcs,
b34976b6 1069 or ELF. For those targets, pcrel_offset is TRUE.
252b5132
RH
1070
1071 If we are producing relocateable output, then we must ensure
1072 that this reloc will be correctly computed when the final
b34976b6 1073 relocation is done. If pcrel_offset is FALSE we want to wind
252b5132
RH
1074 up with the negative of the location within the section,
1075 which means we must adjust the existing addend by the change
b34976b6 1076 in the location within the section. If pcrel_offset is TRUE
252b5132
RH
1077 we do not want to adjust the existing addend at all.
1078
1079 FIXME: This seems logical to me, but for the case of
1080 producing relocateable output it is not what the code
1081 actually does. I don't want to change it, because it seems
1082 far too likely that something will break. */
1083
1084 relocation -=
1085 input_section->output_section->vma + input_section->output_offset;
1086
82e51918 1087 if (howto->pcrel_offset && howto->partial_inplace)
252b5132
RH
1088 relocation -= reloc_entry->address;
1089 }
1090
82e51918 1091 if (! howto->partial_inplace)
252b5132
RH
1092 {
1093 /* This is a partial relocation, and we want to apply the relocation
1094 to the reloc entry rather than the raw data. Modify the reloc
1095 inplace to reflect what we now know. */
1096 reloc_entry->addend = relocation;
1097 reloc_entry->address += input_section->output_offset;
1098 return flag;
1099 }
1100 else
1101 {
1102 /* This is a partial relocation, but inplace, so modify the
1103 reloc record a bit.
1104
1105 If we've relocated with a symbol with a section, change
1106 into a ref to the section belonging to the symbol. */
252b5132
RH
1107 reloc_entry->address += input_section->output_offset;
1108
1109 /* WTF?? */
1110 if (abfd->xvec->flavour == bfd_target_coff_flavour
252b5132
RH
1111 && strcmp (abfd->xvec->name, "coff-Intel-little") != 0
1112 && strcmp (abfd->xvec->name, "coff-Intel-big") != 0)
1113 {
1114#if 1
1115/* For m68k-coff, the addend was being subtracted twice during
1116 relocation with -r. Removing the line below this comment
1117 fixes that problem; see PR 2953.
1118
1119However, Ian wrote the following, regarding removing the line below,
1120which explains why it is still enabled: --djm
1121
1122If you put a patch like that into BFD you need to check all the COFF
1123linkers. I am fairly certain that patch will break coff-i386 (e.g.,
1124SCO); see coff_i386_reloc in coff-i386.c where I worked around the
1125problem in a different way. There may very well be a reason that the
1126code works as it does.
1127
1128Hmmm. The first obvious point is that bfd_install_relocation should
1129not have any tests that depend upon the flavour. It's seem like
1130entirely the wrong place for such a thing. The second obvious point
1131is that the current code ignores the reloc addend when producing
1132relocateable output for COFF. That's peculiar. In fact, I really
1133have no idea what the point of the line you want to remove is.
1134
1135A typical COFF reloc subtracts the old value of the symbol and adds in
1136the new value to the location in the object file (if it's a pc
1137relative reloc it adds the difference between the symbol value and the
1138location). When relocating we need to preserve that property.
1139
1140BFD handles this by setting the addend to the negative of the old
1141value of the symbol. Unfortunately it handles common symbols in a
1142non-standard way (it doesn't subtract the old value) but that's a
1143different story (we can't change it without losing backward
1144compatibility with old object files) (coff-i386 does subtract the old
1145value, to be compatible with existing coff-i386 targets, like SCO).
1146
1147So everything works fine when not producing relocateable output. When
1148we are producing relocateable output, logically we should do exactly
1149what we do when not producing relocateable output. Therefore, your
1150patch is correct. In fact, it should probably always just set
1151reloc_entry->addend to 0 for all cases, since it is, in fact, going to
1152add the value into the object file. This won't hurt the COFF code,
1153which doesn't use the addend; I'm not sure what it will do to other
1154formats (the thing to check for would be whether any formats both use
1155the addend and set partial_inplace).
1156
1157When I wanted to make coff-i386 produce relocateable output, I ran
1158into the problem that you are running into: I wanted to remove that
1159line. Rather than risk it, I made the coff-i386 relocs use a special
1160function; it's coff_i386_reloc in coff-i386.c. The function
1161specifically adds the addend field into the object file, knowing that
1162bfd_install_relocation is not going to. If you remove that line, then
1163coff-i386.c will wind up adding the addend field in twice. It's
1164trivial to fix; it just needs to be done.
1165
1166The problem with removing the line is just that it may break some
1167working code. With BFD it's hard to be sure of anything. The right
1168way to deal with this is simply to build and test at least all the
1169supported COFF targets. It should be straightforward if time and disk
1170space consuming. For each target:
1171 1) build the linker
1172 2) generate some executable, and link it using -r (I would
1173 probably use paranoia.o and link against newlib/libc.a, which
1174 for all the supported targets would be available in
1175 /usr/cygnus/progressive/H-host/target/lib/libc.a).
1176 3) make the change to reloc.c
1177 4) rebuild the linker
1178 5) repeat step 2
1179 6) if the resulting object files are the same, you have at least
1180 made it no worse
1181 7) if they are different you have to figure out which version is
b5f79c76 1182 right. */
252b5132
RH
1183 relocation -= reloc_entry->addend;
1184#endif
1185 reloc_entry->addend = 0;
1186 }
1187 else
1188 {
1189 reloc_entry->addend = relocation;
1190 }
1191 }
1192
1193 /* FIXME: This overflow checking is incomplete, because the value
1194 might have overflowed before we get here. For a correct check we
1195 need to compute the value in a size larger than bitsize, but we
1196 can't reasonably do that for a reloc the same size as a host
1197 machine word.
1198 FIXME: We should also do overflow checking on the result after
1199 adding in the value contained in the object file. */
1200 if (howto->complain_on_overflow != complain_overflow_dont)
1201 flag = bfd_check_overflow (howto->complain_on_overflow,
1202 howto->bitsize,
1203 howto->rightshift,
1204 bfd_arch_bits_per_address (abfd),
1205 relocation);
1206
b5f79c76
NC
1207 /* Either we are relocating all the way, or we don't want to apply
1208 the relocation to the reloc entry (probably because there isn't
1209 any room in the output format to describe addends to relocs). */
252b5132
RH
1210
1211 /* The cast to bfd_vma avoids a bug in the Alpha OSF/1 C compiler
1212 (OSF version 1.3, compiler version 3.11). It miscompiles the
1213 following program:
1214
1215 struct str
1216 {
1217 unsigned int i0;
1218 } s = { 0 };
1219
1220 int
1221 main ()
1222 {
1223 unsigned long x;
1224
1225 x = 0x100000000;
1226 x <<= (unsigned long) s.i0;
1227 if (x == 0)
1228 printf ("failed\n");
1229 else
1230 printf ("succeeded (%lx)\n", x);
1231 }
1232 */
1233
1234 relocation >>= (bfd_vma) howto->rightshift;
1235
b5f79c76 1236 /* Shift everything up to where it's going to be used. */
252b5132
RH
1237 relocation <<= (bfd_vma) howto->bitpos;
1238
b5f79c76 1239 /* Wait for the day when all have the mask in them. */
252b5132
RH
1240
1241 /* What we do:
1242 i instruction to be left alone
1243 o offset within instruction
1244 r relocation offset to apply
1245 S src mask
1246 D dst mask
1247 N ~dst mask
1248 A part 1
1249 B part 2
1250 R result
1251
1252 Do this:
88b6bae0
AM
1253 (( i i i i i o o o o o from bfd_get<size>
1254 and S S S S S) to get the size offset we want
1255 + r r r r r r r r r r) to get the final value to place
252b5132
RH
1256 and D D D D D to chop to right size
1257 -----------------------
88b6bae0 1258 = A A A A A
252b5132 1259 And this:
88b6bae0
AM
1260 ( i i i i i o o o o o from bfd_get<size>
1261 and N N N N N ) get instruction
252b5132 1262 -----------------------
88b6bae0 1263 = B B B B B
252b5132
RH
1264
1265 And then:
88b6bae0
AM
1266 ( B B B B B
1267 or A A A A A)
252b5132 1268 -----------------------
88b6bae0 1269 = R R R R R R R R R R put into bfd_put<size>
252b5132
RH
1270 */
1271
1272#define DOIT(x) \
1273 x = ( (x & ~howto->dst_mask) | (((x & howto->src_mask) + relocation) & howto->dst_mask))
1274
9a968f43 1275 data = (bfd_byte *) data_start + (octets - data_start_offset);
252b5132
RH
1276
1277 switch (howto->size)
1278 {
1279 case 0:
1280 {
1281 char x = bfd_get_8 (abfd, (char *) data);
1282 DOIT (x);
1283 bfd_put_8 (abfd, x, (unsigned char *) data);
1284 }
1285 break;
1286
1287 case 1:
1288 {
1289 short x = bfd_get_16 (abfd, (bfd_byte *) data);
1290 DOIT (x);
dc810e39 1291 bfd_put_16 (abfd, (bfd_vma) x, (unsigned char *) data);
252b5132
RH
1292 }
1293 break;
1294 case 2:
1295 {
1296 long x = bfd_get_32 (abfd, (bfd_byte *) data);
1297 DOIT (x);
dc810e39 1298 bfd_put_32 (abfd, (bfd_vma) x, (bfd_byte *) data);
252b5132
RH
1299 }
1300 break;
1301 case -2:
1302 {
1303 long x = bfd_get_32 (abfd, (bfd_byte *) data);
1304 relocation = -relocation;
1305 DOIT (x);
dc810e39 1306 bfd_put_32 (abfd, (bfd_vma) x, (bfd_byte *) data);
252b5132
RH
1307 }
1308 break;
1309
1310 case 3:
1311 /* Do nothing */
1312 break;
1313
1314 case 4:
1315 {
1316 bfd_vma x = bfd_get_64 (abfd, (bfd_byte *) data);
1317 DOIT (x);
1318 bfd_put_64 (abfd, x, (bfd_byte *) data);
1319 }
1320 break;
1321 default:
1322 return bfd_reloc_other;
1323 }
1324
1325 return flag;
1326}
1327
1328/* This relocation routine is used by some of the backend linkers.
1329 They do not construct asymbol or arelent structures, so there is no
1330 reason for them to use bfd_perform_relocation. Also,
1331 bfd_perform_relocation is so hacked up it is easier to write a new
1332 function than to try to deal with it.
1333
1334 This routine does a final relocation. Whether it is useful for a
1335 relocateable link depends upon how the object format defines
1336 relocations.
1337
1338 FIXME: This routine ignores any special_function in the HOWTO,
1339 since the existing special_function values have been written for
1340 bfd_perform_relocation.
1341
1342 HOWTO is the reloc howto information.
1343 INPUT_BFD is the BFD which the reloc applies to.
1344 INPUT_SECTION is the section which the reloc applies to.
1345 CONTENTS is the contents of the section.
1346 ADDRESS is the address of the reloc within INPUT_SECTION.
1347 VALUE is the value of the symbol the reloc refers to.
1348 ADDEND is the addend of the reloc. */
1349
1350bfd_reloc_status_type
1351_bfd_final_link_relocate (howto, input_bfd, input_section, contents, address,
1352 value, addend)
1353 reloc_howto_type *howto;
1354 bfd *input_bfd;
1355 asection *input_section;
1356 bfd_byte *contents;
1357 bfd_vma address;
1358 bfd_vma value;
1359 bfd_vma addend;
1360{
1361 bfd_vma relocation;
1362
1363 /* Sanity check the address. */
1364 if (address > input_section->_raw_size)
1365 return bfd_reloc_outofrange;
1366
1367 /* This function assumes that we are dealing with a basic relocation
1368 against a symbol. We want to compute the value of the symbol to
1369 relocate to. This is just VALUE, the value of the symbol, plus
1370 ADDEND, any addend associated with the reloc. */
1371 relocation = value + addend;
1372
1373 /* If the relocation is PC relative, we want to set RELOCATION to
1374 the distance between the symbol (currently in RELOCATION) and the
1375 location we are relocating. Some targets (e.g., i386-aout)
1376 arrange for the contents of the section to be the negative of the
1377 offset of the location within the section; for such targets
b34976b6 1378 pcrel_offset is FALSE. Other targets (e.g., m88kbcs or ELF)
252b5132 1379 simply leave the contents of the section as zero; for such
b34976b6 1380 targets pcrel_offset is TRUE. If pcrel_offset is FALSE we do not
252b5132
RH
1381 need to subtract out the offset of the location within the
1382 section (which is just ADDRESS). */
1383 if (howto->pc_relative)
1384 {
1385 relocation -= (input_section->output_section->vma
1386 + input_section->output_offset);
1387 if (howto->pcrel_offset)
1388 relocation -= address;
1389 }
1390
1391 return _bfd_relocate_contents (howto, input_bfd, relocation,
1392 contents + address);
1393}
1394
1395/* Relocate a given location using a given value and howto. */
1396
1397bfd_reloc_status_type
1398_bfd_relocate_contents (howto, input_bfd, relocation, location)
1399 reloc_howto_type *howto;
1400 bfd *input_bfd;
1401 bfd_vma relocation;
1402 bfd_byte *location;
1403{
1404 int size;
7442e600 1405 bfd_vma x = 0;
d5afc56e 1406 bfd_reloc_status_type flag;
252b5132
RH
1407 unsigned int rightshift = howto->rightshift;
1408 unsigned int bitpos = howto->bitpos;
1409
1410 /* If the size is negative, negate RELOCATION. This isn't very
1411 general. */
1412 if (howto->size < 0)
1413 relocation = -relocation;
1414
1415 /* Get the value we are going to relocate. */
1416 size = bfd_get_reloc_size (howto);
1417 switch (size)
1418 {
1419 default:
1420 case 0:
1421 abort ();
1422 case 1:
1423 x = bfd_get_8 (input_bfd, location);
1424 break;
1425 case 2:
1426 x = bfd_get_16 (input_bfd, location);
1427 break;
1428 case 4:
1429 x = bfd_get_32 (input_bfd, location);
1430 break;
1431 case 8:
1432#ifdef BFD64
1433 x = bfd_get_64 (input_bfd, location);
1434#else
1435 abort ();
1436#endif
1437 break;
1438 }
1439
1440 /* Check for overflow. FIXME: We may drop bits during the addition
1441 which we don't check for. We must either check at every single
1442 operation, which would be tedious, or we must do the computations
1443 in a type larger than bfd_vma, which would be inefficient. */
d5afc56e 1444 flag = bfd_reloc_ok;
252b5132
RH
1445 if (howto->complain_on_overflow != complain_overflow_dont)
1446 {
1447 bfd_vma addrmask, fieldmask, signmask, ss;
1448 bfd_vma a, b, sum;
1449
1450 /* Get the values to be added together. For signed and unsigned
1451 relocations, we assume that all values should be truncated to
1452 the size of an address. For bitfields, all the bits matter.
1453 See also bfd_check_overflow. */
1454 fieldmask = N_ONES (howto->bitsize);
1455 addrmask = N_ONES (bfd_arch_bits_per_address (input_bfd)) | fieldmask;
1456 a = relocation;
1457 b = x & howto->src_mask;
1458
1459 switch (howto->complain_on_overflow)
1460 {
1461 case complain_overflow_signed:
1462 a = (a & addrmask) >> rightshift;
1463
1464 /* If any sign bits are set, all sign bits must be set.
1465 That is, A must be a valid negative address after
1466 shifting. */
1467 signmask = ~ (fieldmask >> 1);
1468 ss = a & signmask;
1469 if (ss != 0 && ss != ((addrmask >> rightshift) & signmask))
d5afc56e 1470 flag = bfd_reloc_overflow;
252b5132
RH
1471
1472 /* We only need this next bit of code if the sign bit of B
1473 is below the sign bit of A. This would only happen if
1474 SRC_MASK had fewer bits than BITSIZE. Note that if
1475 SRC_MASK has more bits than BITSIZE, we can get into
1476 trouble; we would need to verify that B is in range, as
1477 we do for A above. */
1478 signmask = ((~ howto->src_mask) >> 1) & howto->src_mask;
8a4ac871
AM
1479
1480 /* Set all the bits above the sign bit. */
1481 b = (b ^ signmask) - signmask;
252b5132
RH
1482
1483 b = (b & addrmask) >> bitpos;
1484
1485 /* Now we can do the addition. */
1486 sum = a + b;
1487
1488 /* See if the result has the correct sign. Bits above the
1489 sign bit are junk now; ignore them. If the sum is
1490 positive, make sure we did not have all negative inputs;
1491 if the sum is negative, make sure we did not have all
1492 positive inputs. The test below looks only at the sign
1493 bits, and it really just
1494 SIGN (A) == SIGN (B) && SIGN (A) != SIGN (SUM)
1495 */
1496 signmask = (fieldmask >> 1) + 1;
1497 if (((~ (a ^ b)) & (a ^ sum)) & signmask)
d5afc56e 1498 flag = bfd_reloc_overflow;
252b5132
RH
1499
1500 break;
1501
1502 case complain_overflow_unsigned:
1503 /* Checking for an unsigned overflow is relatively easy:
1504 trim the addresses and add, and trim the result as well.
1505 Overflow is normally indicated when the result does not
1506 fit in the field. However, we also need to consider the
1507 case when, e.g., fieldmask is 0x7fffffff or smaller, an
1508 input is 0x80000000, and bfd_vma is only 32 bits; then we
1509 will get sum == 0, but there is an overflow, since the
1510 inputs did not fit in the field. Instead of doing a
1511 separate test, we can check for this by or-ing in the
1512 operands when testing for the sum overflowing its final
1513 field. */
1514 a = (a & addrmask) >> rightshift;
1515 b = (b & addrmask) >> bitpos;
1516 sum = (a + b) & addrmask;
1517 if ((a | b | sum) & ~ fieldmask)
d5afc56e 1518 flag = bfd_reloc_overflow;
252b5132
RH
1519
1520 break;
1521
1522 case complain_overflow_bitfield:
d5afc56e 1523 /* Much like the signed check, but for a field one bit
8a4ac871 1524 wider, and no trimming inputs with addrmask. We allow a
d5afc56e
AM
1525 bitfield to represent numbers in the range -2**n to
1526 2**n-1, where n is the number of bits in the field.
1527 Note that when bfd_vma is 32 bits, a 32-bit reloc can't
1528 overflow, which is exactly what we want. */
252b5132 1529 a >>= rightshift;
252b5132 1530
d5afc56e
AM
1531 signmask = ~ fieldmask;
1532 ss = a & signmask;
1533 if (ss != 0 && ss != (((bfd_vma) -1 >> rightshift) & signmask))
1534 flag = bfd_reloc_overflow;
252b5132 1535
d5afc56e 1536 signmask = ((~ howto->src_mask) >> 1) & howto->src_mask;
8a4ac871 1537 b = (b ^ signmask) - signmask;
252b5132 1538
d5afc56e 1539 b >>= bitpos;
44257b8b 1540
252b5132 1541 sum = a + b;
d5afc56e 1542
8a4ac871
AM
1543 /* We mask with addrmask here to explicitly allow an address
1544 wrap-around. The Linux kernel relies on it, and it is
1545 the only way to write assembler code which can run when
1546 loaded at a location 0x80000000 away from the location at
1547 which it is linked. */
d5afc56e 1548 signmask = fieldmask + 1;
8a4ac871 1549 if (((~ (a ^ b)) & (a ^ sum)) & signmask & addrmask)
d5afc56e 1550 flag = bfd_reloc_overflow;
252b5132
RH
1551
1552 break;
1553
1554 default:
1555 abort ();
1556 }
1557 }
1558
1559 /* Put RELOCATION in the right bits. */
1560 relocation >>= (bfd_vma) rightshift;
1561 relocation <<= (bfd_vma) bitpos;
1562
1563 /* Add RELOCATION to the right bits of X. */
1564 x = ((x & ~howto->dst_mask)
1565 | (((x & howto->src_mask) + relocation) & howto->dst_mask));
1566
1567 /* Put the relocated value back in the object file. */
1568 switch (size)
1569 {
1570 default:
1571 case 0:
1572 abort ();
1573 case 1:
1574 bfd_put_8 (input_bfd, x, location);
1575 break;
1576 case 2:
1577 bfd_put_16 (input_bfd, x, location);
1578 break;
1579 case 4:
1580 bfd_put_32 (input_bfd, x, location);
1581 break;
1582 case 8:
1583#ifdef BFD64
1584 bfd_put_64 (input_bfd, x, location);
1585#else
1586 abort ();
1587#endif
1588 break;
1589 }
1590
d5afc56e 1591 return flag;
252b5132
RH
1592}
1593
1594/*
1595DOCDD
1596INODE
1597 howto manager, , typedef arelent, Relocations
1598
1599SECTION
1600 The howto manager
1601
1602 When an application wants to create a relocation, but doesn't
1603 know what the target machine might call it, it can find out by
1604 using this bit of code.
1605
1606*/
1607
1608/*
1609TYPEDEF
1610 bfd_reloc_code_type
1611
1612DESCRIPTION
1613 The insides of a reloc code. The idea is that, eventually, there
1614 will be one enumerator for every type of relocation we ever do.
1615 Pass one of these values to <<bfd_reloc_type_lookup>>, and it'll
1616 return a howto pointer.
1617
1618 This does mean that the application must determine the correct
1619 enumerator value; you can't get a howto pointer from a random set
1620 of attributes.
1621
1622SENUM
1623 bfd_reloc_code_real
1624
1625ENUM
1626 BFD_RELOC_64
1627ENUMX
1628 BFD_RELOC_32
1629ENUMX
1630 BFD_RELOC_26
1631ENUMX
1632 BFD_RELOC_24
1633ENUMX
1634 BFD_RELOC_16
1635ENUMX
1636 BFD_RELOC_14
1637ENUMX
1638 BFD_RELOC_8
1639ENUMDOC
1640 Basic absolute relocations of N bits.
1641
1642ENUM
1643 BFD_RELOC_64_PCREL
1644ENUMX
1645 BFD_RELOC_32_PCREL
1646ENUMX
1647 BFD_RELOC_24_PCREL
1648ENUMX
1649 BFD_RELOC_16_PCREL
1650ENUMX
1651 BFD_RELOC_12_PCREL
1652ENUMX
1653 BFD_RELOC_8_PCREL
1654ENUMDOC
1655 PC-relative relocations. Sometimes these are relative to the address
1656of the relocation itself; sometimes they are relative to the start of
1657the section containing the relocation. It depends on the specific target.
1658
1659The 24-bit relocation is used in some Intel 960 configurations.
1660
1661ENUM
1662 BFD_RELOC_32_GOT_PCREL
1663ENUMX
1664 BFD_RELOC_16_GOT_PCREL
1665ENUMX
1666 BFD_RELOC_8_GOT_PCREL
1667ENUMX
1668 BFD_RELOC_32_GOTOFF
1669ENUMX
1670 BFD_RELOC_16_GOTOFF
1671ENUMX
1672 BFD_RELOC_LO16_GOTOFF
1673ENUMX
1674 BFD_RELOC_HI16_GOTOFF
1675ENUMX
1676 BFD_RELOC_HI16_S_GOTOFF
1677ENUMX
1678 BFD_RELOC_8_GOTOFF
5bd4f169
AM
1679ENUMX
1680 BFD_RELOC_64_PLT_PCREL
252b5132
RH
1681ENUMX
1682 BFD_RELOC_32_PLT_PCREL
1683ENUMX
1684 BFD_RELOC_24_PLT_PCREL
1685ENUMX
1686 BFD_RELOC_16_PLT_PCREL
1687ENUMX
1688 BFD_RELOC_8_PLT_PCREL
5bd4f169
AM
1689ENUMX
1690 BFD_RELOC_64_PLTOFF
252b5132
RH
1691ENUMX
1692 BFD_RELOC_32_PLTOFF
1693ENUMX
1694 BFD_RELOC_16_PLTOFF
1695ENUMX
1696 BFD_RELOC_LO16_PLTOFF
1697ENUMX
1698 BFD_RELOC_HI16_PLTOFF
1699ENUMX
1700 BFD_RELOC_HI16_S_PLTOFF
1701ENUMX
1702 BFD_RELOC_8_PLTOFF
1703ENUMDOC
1704 For ELF.
1705
1706ENUM
1707 BFD_RELOC_68K_GLOB_DAT
1708ENUMX
1709 BFD_RELOC_68K_JMP_SLOT
1710ENUMX
1711 BFD_RELOC_68K_RELATIVE
1712ENUMDOC
1713 Relocations used by 68K ELF.
1714
1715ENUM
1716 BFD_RELOC_32_BASEREL
1717ENUMX
1718 BFD_RELOC_16_BASEREL
1719ENUMX
1720 BFD_RELOC_LO16_BASEREL
1721ENUMX
1722 BFD_RELOC_HI16_BASEREL
1723ENUMX
1724 BFD_RELOC_HI16_S_BASEREL
1725ENUMX
1726 BFD_RELOC_8_BASEREL
1727ENUMX
1728 BFD_RELOC_RVA
1729ENUMDOC
1730 Linkage-table relative.
1731
1732ENUM
1733 BFD_RELOC_8_FFnn
1734ENUMDOC
1735 Absolute 8-bit relocation, but used to form an address like 0xFFnn.
1736
1737ENUM
1738 BFD_RELOC_32_PCREL_S2
1739ENUMX
1740 BFD_RELOC_16_PCREL_S2
1741ENUMX
1742 BFD_RELOC_23_PCREL_S2
1743ENUMDOC
1744 These PC-relative relocations are stored as word displacements --
1745i.e., byte displacements shifted right two bits. The 30-bit word
1746displacement (<<32_PCREL_S2>> -- 32 bits, shifted 2) is used on the
1747SPARC. (SPARC tools generally refer to this as <<WDISP30>>.) The
1748signed 16-bit displacement is used on the MIPS, and the 23-bit
1749displacement is used on the Alpha.
1750
1751ENUM
1752 BFD_RELOC_HI22
1753ENUMX
1754 BFD_RELOC_LO10
1755ENUMDOC
1756 High 22 bits and low 10 bits of 32-bit value, placed into lower bits of
1757the target word. These are used on the SPARC.
1758
1759ENUM
1760 BFD_RELOC_GPREL16
1761ENUMX
1762 BFD_RELOC_GPREL32
1763ENUMDOC
1764 For systems that allocate a Global Pointer register, these are
1765displacements off that register. These relocation types are
1766handled specially, because the value the register will have is
1767decided relatively late.
1768
252b5132
RH
1769ENUM
1770 BFD_RELOC_I960_CALLJ
1771ENUMDOC
1772 Reloc types used for i960/b.out.
1773
1774ENUM
1775 BFD_RELOC_NONE
1776ENUMX
1777 BFD_RELOC_SPARC_WDISP22
1778ENUMX
1779 BFD_RELOC_SPARC22
1780ENUMX
1781 BFD_RELOC_SPARC13
1782ENUMX
1783 BFD_RELOC_SPARC_GOT10
1784ENUMX
1785 BFD_RELOC_SPARC_GOT13
1786ENUMX
1787 BFD_RELOC_SPARC_GOT22
1788ENUMX
1789 BFD_RELOC_SPARC_PC10
1790ENUMX
1791 BFD_RELOC_SPARC_PC22
1792ENUMX
1793 BFD_RELOC_SPARC_WPLT30
1794ENUMX
1795 BFD_RELOC_SPARC_COPY
1796ENUMX
1797 BFD_RELOC_SPARC_GLOB_DAT
1798ENUMX
1799 BFD_RELOC_SPARC_JMP_SLOT
1800ENUMX
1801 BFD_RELOC_SPARC_RELATIVE
0f2712ed
NC
1802ENUMX
1803 BFD_RELOC_SPARC_UA16
252b5132
RH
1804ENUMX
1805 BFD_RELOC_SPARC_UA32
0f2712ed
NC
1806ENUMX
1807 BFD_RELOC_SPARC_UA64
252b5132
RH
1808ENUMDOC
1809 SPARC ELF relocations. There is probably some overlap with other
1810 relocation types already defined.
1811
1812ENUM
1813 BFD_RELOC_SPARC_BASE13
1814ENUMX
1815 BFD_RELOC_SPARC_BASE22
1816ENUMDOC
1817 I think these are specific to SPARC a.out (e.g., Sun 4).
1818
1819ENUMEQ
1820 BFD_RELOC_SPARC_64
1821 BFD_RELOC_64
1822ENUMX
1823 BFD_RELOC_SPARC_10
1824ENUMX
1825 BFD_RELOC_SPARC_11
1826ENUMX
1827 BFD_RELOC_SPARC_OLO10
1828ENUMX
1829 BFD_RELOC_SPARC_HH22
1830ENUMX
1831 BFD_RELOC_SPARC_HM10
1832ENUMX
1833 BFD_RELOC_SPARC_LM22
1834ENUMX
1835 BFD_RELOC_SPARC_PC_HH22
1836ENUMX
1837 BFD_RELOC_SPARC_PC_HM10
1838ENUMX
1839 BFD_RELOC_SPARC_PC_LM22
1840ENUMX
1841 BFD_RELOC_SPARC_WDISP16
1842ENUMX
1843 BFD_RELOC_SPARC_WDISP19
1844ENUMX
1845 BFD_RELOC_SPARC_7
1846ENUMX
1847 BFD_RELOC_SPARC_6
1848ENUMX
1849 BFD_RELOC_SPARC_5
1850ENUMEQX
1851 BFD_RELOC_SPARC_DISP64
1852 BFD_RELOC_64_PCREL
bd5e6e7e
JJ
1853ENUMX
1854 BFD_RELOC_SPARC_PLT32
252b5132
RH
1855ENUMX
1856 BFD_RELOC_SPARC_PLT64
1857ENUMX
1858 BFD_RELOC_SPARC_HIX22
1859ENUMX
1860 BFD_RELOC_SPARC_LOX10
1861ENUMX
1862 BFD_RELOC_SPARC_H44
1863ENUMX
1864 BFD_RELOC_SPARC_M44
1865ENUMX
1866 BFD_RELOC_SPARC_L44
1867ENUMX
1868 BFD_RELOC_SPARC_REGISTER
1869ENUMDOC
1870 SPARC64 relocations
1871
1872ENUM
1873 BFD_RELOC_SPARC_REV32
1874ENUMDOC
1875 SPARC little endian relocation
1876
1877ENUM
1878 BFD_RELOC_ALPHA_GPDISP_HI16
1879ENUMDOC
1880 Alpha ECOFF and ELF relocations. Some of these treat the symbol or
1881 "addend" in some special way.
1882 For GPDISP_HI16 ("gpdisp") relocations, the symbol is ignored when
1883 writing; when reading, it will be the absolute section symbol. The
1884 addend is the displacement in bytes of the "lda" instruction from
1885 the "ldah" instruction (which is at the address of this reloc).
1886ENUM
1887 BFD_RELOC_ALPHA_GPDISP_LO16
1888ENUMDOC
1889 For GPDISP_LO16 ("ignore") relocations, the symbol is handled as
1890 with GPDISP_HI16 relocs. The addend is ignored when writing the
1891 relocations out, and is filled in with the file's GP value on
1892 reading, for convenience.
1893
1894ENUM
1895 BFD_RELOC_ALPHA_GPDISP
1896ENUMDOC
1897 The ELF GPDISP relocation is exactly the same as the GPDISP_HI16
1898 relocation except that there is no accompanying GPDISP_LO16
1899 relocation.
1900
1901ENUM
1902 BFD_RELOC_ALPHA_LITERAL
1903ENUMX
1904 BFD_RELOC_ALPHA_ELF_LITERAL
1905ENUMX
1906 BFD_RELOC_ALPHA_LITUSE
1907ENUMDOC
1908 The Alpha LITERAL/LITUSE relocs are produced by a symbol reference;
1909 the assembler turns it into a LDQ instruction to load the address of
1910 the symbol, and then fills in a register in the real instruction.
1911
1912 The LITERAL reloc, at the LDQ instruction, refers to the .lita
1913 section symbol. The addend is ignored when writing, but is filled
1914 in with the file's GP value on reading, for convenience, as with the
1915 GPDISP_LO16 reloc.
1916
1917 The ELF_LITERAL reloc is somewhere between 16_GOTOFF and GPDISP_LO16.
1918 It should refer to the symbol to be referenced, as with 16_GOTOFF,
1919 but it generates output not based on the position within the .got
1920 section, but relative to the GP value chosen for the file during the
1921 final link stage.
1922
1923 The LITUSE reloc, on the instruction using the loaded address, gives
1924 information to the linker that it might be able to use to optimize
1925 away some literal section references. The symbol is ignored (read
1926 as the absolute section symbol), and the "addend" indicates the type
1927 of instruction using the register:
1928 1 - "memory" fmt insn
1929 2 - byte-manipulation (byte offset reg)
1930 3 - jsr (target of branch)
1931
252b5132
RH
1932ENUM
1933 BFD_RELOC_ALPHA_HINT
1934ENUMDOC
1935 The HINT relocation indicates a value that should be filled into the
1936 "hint" field of a jmp/jsr/ret instruction, for possible branch-
1937 prediction logic which may be provided on some processors.
1938
1939ENUM
1940 BFD_RELOC_ALPHA_LINKAGE
1941ENUMDOC
1942 The LINKAGE relocation outputs a linkage pair in the object file,
1943 which is filled by the linker.
1944
1945ENUM
1946 BFD_RELOC_ALPHA_CODEADDR
1947ENUMDOC
1948 The CODEADDR relocation outputs a STO_CA in the object file,
1949 which is filled by the linker.
1950
dfe57ca0
RH
1951ENUM
1952 BFD_RELOC_ALPHA_GPREL_HI16
1953ENUMX
1954 BFD_RELOC_ALPHA_GPREL_LO16
1955ENUMDOC
dc810e39
AM
1956 The GPREL_HI/LO relocations together form a 32-bit offset from the
1957 GP register.
dfe57ca0 1958
7793f4d0
RH
1959ENUM
1960 BFD_RELOC_ALPHA_BRSGP
1961ENUMDOC
1962 Like BFD_RELOC_23_PCREL_S2, except that the source and target must
b34976b6 1963 share a common GP, and the target address is adjusted for
7793f4d0
RH
1964 STO_ALPHA_STD_GPLOAD.
1965
3765b1be
RH
1966ENUM
1967 BFD_RELOC_ALPHA_TLSGD
1968ENUMX
1969 BFD_RELOC_ALPHA_TLSLDM
1970ENUMX
1971 BFD_RELOC_ALPHA_DTPMOD64
1972ENUMX
1973 BFD_RELOC_ALPHA_GOTDTPREL16
1974ENUMX
1975 BFD_RELOC_ALPHA_DTPREL64
1976ENUMX
1977 BFD_RELOC_ALPHA_DTPREL_HI16
1978ENUMX
1979 BFD_RELOC_ALPHA_DTPREL_LO16
1980ENUMX
1981 BFD_RELOC_ALPHA_DTPREL16
1982ENUMX
1983 BFD_RELOC_ALPHA_GOTTPREL16
1984ENUMX
1985 BFD_RELOC_ALPHA_TPREL64
1986ENUMX
1987 BFD_RELOC_ALPHA_TPREL_HI16
1988ENUMX
1989 BFD_RELOC_ALPHA_TPREL_LO16
1990ENUMX
1991 BFD_RELOC_ALPHA_TPREL16
1992ENUMDOC
1993 Alpha thread-local storage relocations.
1994
252b5132
RH
1995ENUM
1996 BFD_RELOC_MIPS_JMP
1997ENUMDOC
1998 Bits 27..2 of the relocation address shifted right 2 bits;
1999 simple reloc otherwise.
2000
2001ENUM
2002 BFD_RELOC_MIPS16_JMP
2003ENUMDOC
2004 The MIPS16 jump instruction.
2005
2006ENUM
2007 BFD_RELOC_MIPS16_GPREL
2008ENUMDOC
2009 MIPS16 GP relative reloc.
2010
2011ENUM
2012 BFD_RELOC_HI16
2013ENUMDOC
2014 High 16 bits of 32-bit value; simple reloc.
2015ENUM
2016 BFD_RELOC_HI16_S
2017ENUMDOC
2018 High 16 bits of 32-bit value but the low 16 bits will be sign
2019 extended and added to form the final result. If the low 16
2020 bits form a negative number, we need to add one to the high value
2021 to compensate for the borrow when the low bits are added.
2022ENUM
2023 BFD_RELOC_LO16
2024ENUMDOC
2025 Low 16 bits.
2026ENUM
2027 BFD_RELOC_PCREL_HI16_S
2028ENUMDOC
2029 Like BFD_RELOC_HI16_S, but PC relative.
2030ENUM
2031 BFD_RELOC_PCREL_LO16
2032ENUMDOC
2033 Like BFD_RELOC_LO16, but PC relative.
2034
252b5132
RH
2035ENUM
2036 BFD_RELOC_MIPS_LITERAL
2037ENUMDOC
2038 Relocation against a MIPS literal section.
2039
2040ENUM
2041 BFD_RELOC_MIPS_GOT16
2042ENUMX
2043 BFD_RELOC_MIPS_CALL16
252b5132
RH
2044ENUMX
2045 BFD_RELOC_MIPS_GOT_HI16
2046ENUMX
2047 BFD_RELOC_MIPS_GOT_LO16
2048ENUMX
2049 BFD_RELOC_MIPS_CALL_HI16
2050ENUMX
2051 BFD_RELOC_MIPS_CALL_LO16
3f830999
MM
2052ENUMX
2053 BFD_RELOC_MIPS_SUB
2054ENUMX
2055 BFD_RELOC_MIPS_GOT_PAGE
2056ENUMX
2057 BFD_RELOC_MIPS_GOT_OFST
2058ENUMX
2059 BFD_RELOC_MIPS_GOT_DISP
c2feb664
NC
2060ENUMX
2061 BFD_RELOC_MIPS_SHIFT5
2062ENUMX
2063 BFD_RELOC_MIPS_SHIFT6
2064ENUMX
2065 BFD_RELOC_MIPS_INSERT_A
2066ENUMX
2067 BFD_RELOC_MIPS_INSERT_B
2068ENUMX
2069 BFD_RELOC_MIPS_DELETE
2070ENUMX
2071 BFD_RELOC_MIPS_HIGHEST
2072ENUMX
2073 BFD_RELOC_MIPS_HIGHER
2074ENUMX
2075 BFD_RELOC_MIPS_SCN_DISP
2076ENUMX
2077 BFD_RELOC_MIPS_REL16
2078ENUMX
2079 BFD_RELOC_MIPS_RELGOT
2080ENUMX
2081 BFD_RELOC_MIPS_JALR
252b5132 2082COMMENT
4e5ba5b7
DB
2083ENUM
2084 BFD_RELOC_FRV_LABEL16
2085ENUMX
2086 BFD_RELOC_FRV_LABEL24
2087ENUMX
2088 BFD_RELOC_FRV_LO16
2089ENUMX
2090 BFD_RELOC_FRV_HI16
2091ENUMX
2092 BFD_RELOC_FRV_GPREL12
2093ENUMX
2094 BFD_RELOC_FRV_GPRELU12
2095ENUMX
2096 BFD_RELOC_FRV_GPREL32
2097ENUMX
2098 BFD_RELOC_FRV_GPRELHI
2099ENUMX
2100 BFD_RELOC_FRV_GPRELLO
2101ENUMDOC
2102 Fujitsu Frv Relocations.
2103COMMENT
fbca6ad9 2104COMMENT
252b5132
RH
2105ENUMDOC
2106 MIPS ELF relocations.
2107
2108COMMENT
2109
2110ENUM
2111 BFD_RELOC_386_GOT32
2112ENUMX
2113 BFD_RELOC_386_PLT32
2114ENUMX
2115 BFD_RELOC_386_COPY
2116ENUMX
2117 BFD_RELOC_386_GLOB_DAT
2118ENUMX
2119 BFD_RELOC_386_JUMP_SLOT
2120ENUMX
2121 BFD_RELOC_386_RELATIVE
2122ENUMX
2123 BFD_RELOC_386_GOTOFF
2124ENUMX
2125 BFD_RELOC_386_GOTPC
37e55690
JJ
2126ENUMX
2127 BFD_RELOC_386_TLS_TPOFF
2128ENUMX
2129 BFD_RELOC_386_TLS_IE
2130ENUMX
2131 BFD_RELOC_386_TLS_GOTIE
13ae64f3
JJ
2132ENUMX
2133 BFD_RELOC_386_TLS_LE
2134ENUMX
2135 BFD_RELOC_386_TLS_GD
2136ENUMX
2137 BFD_RELOC_386_TLS_LDM
2138ENUMX
2139 BFD_RELOC_386_TLS_LDO_32
2140ENUMX
2141 BFD_RELOC_386_TLS_IE_32
2142ENUMX
2143 BFD_RELOC_386_TLS_LE_32
2144ENUMX
2145 BFD_RELOC_386_TLS_DTPMOD32
2146ENUMX
2147 BFD_RELOC_386_TLS_DTPOFF32
2148ENUMX
2149 BFD_RELOC_386_TLS_TPOFF32
252b5132
RH
2150ENUMDOC
2151 i386/elf relocations
2152
8d88c4ca
NC
2153ENUM
2154 BFD_RELOC_X86_64_GOT32
2155ENUMX
2156 BFD_RELOC_X86_64_PLT32
2157ENUMX
2158 BFD_RELOC_X86_64_COPY
2159ENUMX
2160 BFD_RELOC_X86_64_GLOB_DAT
2161ENUMX
2162 BFD_RELOC_X86_64_JUMP_SLOT
2163ENUMX
2164 BFD_RELOC_X86_64_RELATIVE
2165ENUMX
2166 BFD_RELOC_X86_64_GOTPCREL
2167ENUMX
2168 BFD_RELOC_X86_64_32S
bffbf940
JJ
2169ENUMX
2170 BFD_RELOC_X86_64_DTPMOD64
2171ENUMX
2172 BFD_RELOC_X86_64_DTPOFF64
2173ENUMX
2174 BFD_RELOC_X86_64_TPOFF64
2175ENUMX
2176 BFD_RELOC_X86_64_TLSGD
2177ENUMX
2178 BFD_RELOC_X86_64_TLSLD
2179ENUMX
2180 BFD_RELOC_X86_64_DTPOFF32
2181ENUMX
2182 BFD_RELOC_X86_64_GOTTPOFF
2183ENUMX
2184 BFD_RELOC_X86_64_TPOFF32
8d88c4ca
NC
2185ENUMDOC
2186 x86-64/elf relocations
2187
252b5132
RH
2188ENUM
2189 BFD_RELOC_NS32K_IMM_8
2190ENUMX
2191 BFD_RELOC_NS32K_IMM_16
2192ENUMX
2193 BFD_RELOC_NS32K_IMM_32
2194ENUMX
2195 BFD_RELOC_NS32K_IMM_8_PCREL
2196ENUMX
2197 BFD_RELOC_NS32K_IMM_16_PCREL
2198ENUMX
2199 BFD_RELOC_NS32K_IMM_32_PCREL
2200ENUMX
2201 BFD_RELOC_NS32K_DISP_8
2202ENUMX
2203 BFD_RELOC_NS32K_DISP_16
2204ENUMX
2205 BFD_RELOC_NS32K_DISP_32
2206ENUMX
2207 BFD_RELOC_NS32K_DISP_8_PCREL
2208ENUMX
2209 BFD_RELOC_NS32K_DISP_16_PCREL
2210ENUMX
2211 BFD_RELOC_NS32K_DISP_32_PCREL
2212ENUMDOC
2213 ns32k relocations
2214
e135f41b
NC
2215ENUM
2216 BFD_RELOC_PDP11_DISP_8_PCREL
2217ENUMX
2218 BFD_RELOC_PDP11_DISP_6_PCREL
2219ENUMDOC
2220 PDP11 relocations
2221
0bcb993b
ILT
2222ENUM
2223 BFD_RELOC_PJ_CODE_HI16
2224ENUMX
2225 BFD_RELOC_PJ_CODE_LO16
2226ENUMX
2227 BFD_RELOC_PJ_CODE_DIR16
2228ENUMX
2229 BFD_RELOC_PJ_CODE_DIR32
2230ENUMX
2231 BFD_RELOC_PJ_CODE_REL16
2232ENUMX
2233 BFD_RELOC_PJ_CODE_REL32
2234ENUMDOC
2235 Picojava relocs. Not all of these appear in object files.
88b6bae0 2236
252b5132
RH
2237ENUM
2238 BFD_RELOC_PPC_B26
2239ENUMX
2240 BFD_RELOC_PPC_BA26
2241ENUMX
2242 BFD_RELOC_PPC_TOC16
2243ENUMX
2244 BFD_RELOC_PPC_B16
2245ENUMX
2246 BFD_RELOC_PPC_B16_BRTAKEN
2247ENUMX
2248 BFD_RELOC_PPC_B16_BRNTAKEN
2249ENUMX
2250 BFD_RELOC_PPC_BA16
2251ENUMX
2252 BFD_RELOC_PPC_BA16_BRTAKEN
2253ENUMX
2254 BFD_RELOC_PPC_BA16_BRNTAKEN
2255ENUMX
2256 BFD_RELOC_PPC_COPY
2257ENUMX
2258 BFD_RELOC_PPC_GLOB_DAT
2259ENUMX
2260 BFD_RELOC_PPC_JMP_SLOT
2261ENUMX
2262 BFD_RELOC_PPC_RELATIVE
2263ENUMX
2264 BFD_RELOC_PPC_LOCAL24PC
2265ENUMX
2266 BFD_RELOC_PPC_EMB_NADDR32
2267ENUMX
2268 BFD_RELOC_PPC_EMB_NADDR16
2269ENUMX
2270 BFD_RELOC_PPC_EMB_NADDR16_LO
2271ENUMX
2272 BFD_RELOC_PPC_EMB_NADDR16_HI
2273ENUMX
2274 BFD_RELOC_PPC_EMB_NADDR16_HA
2275ENUMX
2276 BFD_RELOC_PPC_EMB_SDAI16
2277ENUMX
2278 BFD_RELOC_PPC_EMB_SDA2I16
2279ENUMX
2280 BFD_RELOC_PPC_EMB_SDA2REL
2281ENUMX
2282 BFD_RELOC_PPC_EMB_SDA21
2283ENUMX
2284 BFD_RELOC_PPC_EMB_MRKREF
2285ENUMX
2286 BFD_RELOC_PPC_EMB_RELSEC16
2287ENUMX
2288 BFD_RELOC_PPC_EMB_RELST_LO
2289ENUMX
2290 BFD_RELOC_PPC_EMB_RELST_HI
2291ENUMX
2292 BFD_RELOC_PPC_EMB_RELST_HA
2293ENUMX
2294 BFD_RELOC_PPC_EMB_BIT_FLD
2295ENUMX
2296 BFD_RELOC_PPC_EMB_RELSDA
5bd4f169
AM
2297ENUMX
2298 BFD_RELOC_PPC64_HIGHER
2299ENUMX
2300 BFD_RELOC_PPC64_HIGHER_S
2301ENUMX
2302 BFD_RELOC_PPC64_HIGHEST
2303ENUMX
2304 BFD_RELOC_PPC64_HIGHEST_S
2305ENUMX
2306 BFD_RELOC_PPC64_TOC16_LO
2307ENUMX
2308 BFD_RELOC_PPC64_TOC16_HI
2309ENUMX
2310 BFD_RELOC_PPC64_TOC16_HA
2311ENUMX
2312 BFD_RELOC_PPC64_TOC
2313ENUMX
dc810e39 2314 BFD_RELOC_PPC64_PLTGOT16
5bd4f169
AM
2315ENUMX
2316 BFD_RELOC_PPC64_PLTGOT16_LO
2317ENUMX
2318 BFD_RELOC_PPC64_PLTGOT16_HI
2319ENUMX
2320 BFD_RELOC_PPC64_PLTGOT16_HA
2321ENUMX
2322 BFD_RELOC_PPC64_ADDR16_DS
2323ENUMX
2324 BFD_RELOC_PPC64_ADDR16_LO_DS
2325ENUMX
2326 BFD_RELOC_PPC64_GOT16_DS
2327ENUMX
2328 BFD_RELOC_PPC64_GOT16_LO_DS
2329ENUMX
2330 BFD_RELOC_PPC64_PLT16_LO_DS
2331ENUMX
2332 BFD_RELOC_PPC64_SECTOFF_DS
2333ENUMX
2334 BFD_RELOC_PPC64_SECTOFF_LO_DS
2335ENUMX
2336 BFD_RELOC_PPC64_TOC16_DS
2337ENUMX
2338 BFD_RELOC_PPC64_TOC16_LO_DS
2339ENUMX
2340 BFD_RELOC_PPC64_PLTGOT16_DS
2341ENUMX
2342 BFD_RELOC_PPC64_PLTGOT16_LO_DS
252b5132
RH
2343ENUMDOC
2344 Power(rs6000) and PowerPC relocations.
2345
5b93d8bb
AM
2346ENUM
2347 BFD_RELOC_I370_D12
2348ENUMDOC
2349 IBM 370/390 relocations
2350
252b5132
RH
2351ENUM
2352 BFD_RELOC_CTOR
2353ENUMDOC
2354 The type of reloc used to build a contructor table - at the moment
2355 probably a 32 bit wide absolute relocation, but the target can choose.
2356 It generally does map to one of the other relocation types.
2357
2358ENUM
2359 BFD_RELOC_ARM_PCREL_BRANCH
2360ENUMDOC
2361 ARM 26 bit pc-relative branch. The lowest two bits must be zero and are
2362 not stored in the instruction.
dfc5f959
NC
2363ENUM
2364 BFD_RELOC_ARM_PCREL_BLX
2365ENUMDOC
2366 ARM 26 bit pc-relative branch. The lowest bit must be zero and is
2367 not stored in the instruction. The 2nd lowest bit comes from a 1 bit
2368 field in the instruction.
2369ENUM
2370 BFD_RELOC_THUMB_PCREL_BLX
2371ENUMDOC
2372 Thumb 22 bit pc-relative branch. The lowest bit must be zero and is
2373 not stored in the instruction. The 2nd lowest bit comes from a 1 bit
2374 field in the instruction.
252b5132
RH
2375ENUM
2376 BFD_RELOC_ARM_IMMEDIATE
752149a0
NC
2377ENUMX
2378 BFD_RELOC_ARM_ADRL_IMMEDIATE
252b5132
RH
2379ENUMX
2380 BFD_RELOC_ARM_OFFSET_IMM
2381ENUMX
2382 BFD_RELOC_ARM_SHIFT_IMM
2383ENUMX
2384 BFD_RELOC_ARM_SWI
2385ENUMX
2386 BFD_RELOC_ARM_MULTI
2387ENUMX
2388 BFD_RELOC_ARM_CP_OFF_IMM
2389ENUMX
2390 BFD_RELOC_ARM_ADR_IMM
2391ENUMX
2392 BFD_RELOC_ARM_LDR_IMM
2393ENUMX
2394 BFD_RELOC_ARM_LITERAL
2395ENUMX
2396 BFD_RELOC_ARM_IN_POOL
2397ENUMX
2398 BFD_RELOC_ARM_OFFSET_IMM8
2399ENUMX
2400 BFD_RELOC_ARM_HWLITERAL
2401ENUMX
2402 BFD_RELOC_ARM_THUMB_ADD
2403ENUMX
2404 BFD_RELOC_ARM_THUMB_IMM
2405ENUMX
2406 BFD_RELOC_ARM_THUMB_SHIFT
2407ENUMX
2408 BFD_RELOC_ARM_THUMB_OFFSET
2409ENUMX
2410 BFD_RELOC_ARM_GOT12
2411ENUMX
2412 BFD_RELOC_ARM_GOT32
2413ENUMX
2414 BFD_RELOC_ARM_JUMP_SLOT
2415ENUMX
2416 BFD_RELOC_ARM_COPY
2417ENUMX
2418 BFD_RELOC_ARM_GLOB_DAT
2419ENUMX
2420 BFD_RELOC_ARM_PLT32
2421ENUMX
2422 BFD_RELOC_ARM_RELATIVE
2423ENUMX
2424 BFD_RELOC_ARM_GOTOFF
2425ENUMX
2426 BFD_RELOC_ARM_GOTPC
2427ENUMDOC
2428 These relocs are only used within the ARM assembler. They are not
2429 (at present) written to any object files.
2430
2431ENUM
2432 BFD_RELOC_SH_PCDISP8BY2
2433ENUMX
2434 BFD_RELOC_SH_PCDISP12BY2
2435ENUMX
2436 BFD_RELOC_SH_IMM4
2437ENUMX
2438 BFD_RELOC_SH_IMM4BY2
2439ENUMX
2440 BFD_RELOC_SH_IMM4BY4
2441ENUMX
2442 BFD_RELOC_SH_IMM8
2443ENUMX
2444 BFD_RELOC_SH_IMM8BY2
2445ENUMX
2446 BFD_RELOC_SH_IMM8BY4
2447ENUMX
2448 BFD_RELOC_SH_PCRELIMM8BY2
2449ENUMX
2450 BFD_RELOC_SH_PCRELIMM8BY4
2451ENUMX
2452 BFD_RELOC_SH_SWITCH16
2453ENUMX
2454 BFD_RELOC_SH_SWITCH32
2455ENUMX
2456 BFD_RELOC_SH_USES
2457ENUMX
2458 BFD_RELOC_SH_COUNT
2459ENUMX
2460 BFD_RELOC_SH_ALIGN
2461ENUMX
2462 BFD_RELOC_SH_CODE
2463ENUMX
2464 BFD_RELOC_SH_DATA
2465ENUMX
2466 BFD_RELOC_SH_LABEL
015551fc
JR
2467ENUMX
2468 BFD_RELOC_SH_LOOP_START
2469ENUMX
2470 BFD_RELOC_SH_LOOP_END
3d96075c
L
2471ENUMX
2472 BFD_RELOC_SH_COPY
2473ENUMX
2474 BFD_RELOC_SH_GLOB_DAT
2475ENUMX
2476 BFD_RELOC_SH_JMP_SLOT
2477ENUMX
2478 BFD_RELOC_SH_RELATIVE
2479ENUMX
2480 BFD_RELOC_SH_GOTPC
eb1e0e80
NC
2481ENUMX
2482 BFD_RELOC_SH_GOT_LOW16
2483ENUMX
2484 BFD_RELOC_SH_GOT_MEDLOW16
2485ENUMX
2486 BFD_RELOC_SH_GOT_MEDHI16
2487ENUMX
2488 BFD_RELOC_SH_GOT_HI16
2489ENUMX
2490 BFD_RELOC_SH_GOTPLT_LOW16
2491ENUMX
2492 BFD_RELOC_SH_GOTPLT_MEDLOW16
2493ENUMX
2494 BFD_RELOC_SH_GOTPLT_MEDHI16
2495ENUMX
2496 BFD_RELOC_SH_GOTPLT_HI16
2497ENUMX
2498 BFD_RELOC_SH_PLT_LOW16
2499ENUMX
2500 BFD_RELOC_SH_PLT_MEDLOW16
2501ENUMX
2502 BFD_RELOC_SH_PLT_MEDHI16
2503ENUMX
2504 BFD_RELOC_SH_PLT_HI16
2505ENUMX
2506 BFD_RELOC_SH_GOTOFF_LOW16
2507ENUMX
2508 BFD_RELOC_SH_GOTOFF_MEDLOW16
2509ENUMX
2510 BFD_RELOC_SH_GOTOFF_MEDHI16
2511ENUMX
2512 BFD_RELOC_SH_GOTOFF_HI16
2513ENUMX
2514 BFD_RELOC_SH_GOTPC_LOW16
2515ENUMX
2516 BFD_RELOC_SH_GOTPC_MEDLOW16
2517ENUMX
2518 BFD_RELOC_SH_GOTPC_MEDHI16
2519ENUMX
2520 BFD_RELOC_SH_GOTPC_HI16
2521ENUMX
2522 BFD_RELOC_SH_COPY64
2523ENUMX
2524 BFD_RELOC_SH_GLOB_DAT64
2525ENUMX
2526 BFD_RELOC_SH_JMP_SLOT64
2527ENUMX
2528 BFD_RELOC_SH_RELATIVE64
2529ENUMX
2530 BFD_RELOC_SH_GOT10BY4
2531ENUMX
2532 BFD_RELOC_SH_GOT10BY8
2533ENUMX
2534 BFD_RELOC_SH_GOTPLT10BY4
2535ENUMX
2536 BFD_RELOC_SH_GOTPLT10BY8
2537ENUMX
2538 BFD_RELOC_SH_GOTPLT32
2539ENUMX
2540 BFD_RELOC_SH_SHMEDIA_CODE
2541ENUMX
2542 BFD_RELOC_SH_IMMU5
2543ENUMX
2544 BFD_RELOC_SH_IMMS6
2545ENUMX
2546 BFD_RELOC_SH_IMMS6BY32
2547ENUMX
2548 BFD_RELOC_SH_IMMU6
2549ENUMX
2550 BFD_RELOC_SH_IMMS10
2551ENUMX
2552 BFD_RELOC_SH_IMMS10BY2
2553ENUMX
2554 BFD_RELOC_SH_IMMS10BY4
2555ENUMX
2556 BFD_RELOC_SH_IMMS10BY8
2557ENUMX
2558 BFD_RELOC_SH_IMMS16
2559ENUMX
2560 BFD_RELOC_SH_IMMU16
2561ENUMX
2562 BFD_RELOC_SH_IMM_LOW16
2563ENUMX
2564 BFD_RELOC_SH_IMM_LOW16_PCREL
2565ENUMX
2566 BFD_RELOC_SH_IMM_MEDLOW16
2567ENUMX
2568 BFD_RELOC_SH_IMM_MEDLOW16_PCREL
2569ENUMX
2570 BFD_RELOC_SH_IMM_MEDHI16
2571ENUMX
2572 BFD_RELOC_SH_IMM_MEDHI16_PCREL
2573ENUMX
2574 BFD_RELOC_SH_IMM_HI16
2575ENUMX
2576 BFD_RELOC_SH_IMM_HI16_PCREL
2577ENUMX
2578 BFD_RELOC_SH_PT_16
3376eaf5
KK
2579ENUMX
2580 BFD_RELOC_SH_TLS_GD_32
2581ENUMX
2582 BFD_RELOC_SH_TLS_LD_32
2583ENUMX
2584 BFD_RELOC_SH_TLS_LDO_32
2585ENUMX
2586 BFD_RELOC_SH_TLS_IE_32
2587ENUMX
2588 BFD_RELOC_SH_TLS_LE_32
2589ENUMX
2590 BFD_RELOC_SH_TLS_DTPMOD32
2591ENUMX
2592 BFD_RELOC_SH_TLS_DTPOFF32
2593ENUMX
2594 BFD_RELOC_SH_TLS_TPOFF32
252b5132
RH
2595ENUMDOC
2596 Hitachi SH relocs. Not all of these appear in object files.
2597
2598ENUM
2599 BFD_RELOC_THUMB_PCREL_BRANCH9
2600ENUMX
2601 BFD_RELOC_THUMB_PCREL_BRANCH12
2602ENUMX
2603 BFD_RELOC_THUMB_PCREL_BRANCH23
2604ENUMDOC
2605 Thumb 23-, 12- and 9-bit pc-relative branches. The lowest bit must
2606 be zero and is not stored in the instruction.
2607
2608ENUM
2609 BFD_RELOC_ARC_B22_PCREL
2610ENUMDOC
0d2bcfaf 2611 ARC Cores relocs.
252b5132
RH
2612 ARC 22 bit pc-relative branch. The lowest two bits must be zero and are
2613 not stored in the instruction. The high 20 bits are installed in bits 26
2614 through 7 of the instruction.
2615ENUM
2616 BFD_RELOC_ARC_B26
2617ENUMDOC
2618 ARC 26 bit absolute branch. The lowest two bits must be zero and are not
2619 stored in the instruction. The high 24 bits are installed in bits 23
2620 through 0.
2621
2622ENUM
2623 BFD_RELOC_D10V_10_PCREL_R
2624ENUMDOC
2625 Mitsubishi D10V relocs.
2626 This is a 10-bit reloc with the right 2 bits
2627 assumed to be 0.
2628ENUM
2629 BFD_RELOC_D10V_10_PCREL_L
2630ENUMDOC
2631 Mitsubishi D10V relocs.
2632 This is a 10-bit reloc with the right 2 bits
2633 assumed to be 0. This is the same as the previous reloc
2634 except it is in the left container, i.e.,
2635 shifted left 15 bits.
2636ENUM
2637 BFD_RELOC_D10V_18
2638ENUMDOC
2639 This is an 18-bit reloc with the right 2 bits
2640 assumed to be 0.
2641ENUM
2642 BFD_RELOC_D10V_18_PCREL
2643ENUMDOC
2644 This is an 18-bit reloc with the right 2 bits
2645 assumed to be 0.
2646
2647ENUM
2648 BFD_RELOC_D30V_6
2649ENUMDOC
2650 Mitsubishi D30V relocs.
2651 This is a 6-bit absolute reloc.
2652ENUM
2653 BFD_RELOC_D30V_9_PCREL
2654ENUMDOC
88b6bae0
AM
2655 This is a 6-bit pc-relative reloc with
2656 the right 3 bits assumed to be 0.
252b5132
RH
2657ENUM
2658 BFD_RELOC_D30V_9_PCREL_R
2659ENUMDOC
88b6bae0 2660 This is a 6-bit pc-relative reloc with
252b5132
RH
2661 the right 3 bits assumed to be 0. Same
2662 as the previous reloc but on the right side
88b6bae0 2663 of the container.
252b5132
RH
2664ENUM
2665 BFD_RELOC_D30V_15
2666ENUMDOC
88b6bae0
AM
2667 This is a 12-bit absolute reloc with the
2668 right 3 bitsassumed to be 0.
252b5132
RH
2669ENUM
2670 BFD_RELOC_D30V_15_PCREL
2671ENUMDOC
88b6bae0
AM
2672 This is a 12-bit pc-relative reloc with
2673 the right 3 bits assumed to be 0.
252b5132
RH
2674ENUM
2675 BFD_RELOC_D30V_15_PCREL_R
2676ENUMDOC
88b6bae0 2677 This is a 12-bit pc-relative reloc with
252b5132
RH
2678 the right 3 bits assumed to be 0. Same
2679 as the previous reloc but on the right side
88b6bae0 2680 of the container.
252b5132
RH
2681ENUM
2682 BFD_RELOC_D30V_21
2683ENUMDOC
88b6bae0 2684 This is an 18-bit absolute reloc with
252b5132
RH
2685 the right 3 bits assumed to be 0.
2686ENUM
2687 BFD_RELOC_D30V_21_PCREL
2688ENUMDOC
88b6bae0 2689 This is an 18-bit pc-relative reloc with
252b5132
RH
2690 the right 3 bits assumed to be 0.
2691ENUM
2692 BFD_RELOC_D30V_21_PCREL_R
2693ENUMDOC
88b6bae0 2694 This is an 18-bit pc-relative reloc with
252b5132
RH
2695 the right 3 bits assumed to be 0. Same
2696 as the previous reloc but on the right side
2697 of the container.
2698ENUM
2699 BFD_RELOC_D30V_32
2700ENUMDOC
2701 This is a 32-bit absolute reloc.
2702ENUM
2703 BFD_RELOC_D30V_32_PCREL
2704ENUMDOC
2705 This is a 32-bit pc-relative reloc.
2706
d172d4ba
NC
2707ENUM
2708 BFD_RELOC_DLX_HI16_S
2709ENUMDOC
2710 DLX relocs
2711ENUM
2712 BFD_RELOC_DLX_LO16
2713ENUMDOC
2714 DLX relocs
2715ENUM
2716 BFD_RELOC_DLX_JMP26
2717ENUMDOC
2718 DLX relocs
2719
252b5132
RH
2720ENUM
2721 BFD_RELOC_M32R_24
2722ENUMDOC
2723 Mitsubishi M32R relocs.
2724 This is a 24 bit absolute address.
2725ENUM
2726 BFD_RELOC_M32R_10_PCREL
2727ENUMDOC
2728 This is a 10-bit pc-relative reloc with the right 2 bits assumed to be 0.
2729ENUM
2730 BFD_RELOC_M32R_18_PCREL
2731ENUMDOC
2732 This is an 18-bit reloc with the right 2 bits assumed to be 0.
2733ENUM
2734 BFD_RELOC_M32R_26_PCREL
2735ENUMDOC
2736 This is a 26-bit reloc with the right 2 bits assumed to be 0.
2737ENUM
2738 BFD_RELOC_M32R_HI16_ULO
2739ENUMDOC
2740 This is a 16-bit reloc containing the high 16 bits of an address
2741 used when the lower 16 bits are treated as unsigned.
2742ENUM
2743 BFD_RELOC_M32R_HI16_SLO
2744ENUMDOC
2745 This is a 16-bit reloc containing the high 16 bits of an address
2746 used when the lower 16 bits are treated as signed.
2747ENUM
2748 BFD_RELOC_M32R_LO16
2749ENUMDOC
2750 This is a 16-bit reloc containing the lower 16 bits of an address.
2751ENUM
2752 BFD_RELOC_M32R_SDA16
2753ENUMDOC
2754 This is a 16-bit reloc containing the small data area offset for use in
2755 add3, load, and store instructions.
2756
2757ENUM
2758 BFD_RELOC_V850_9_PCREL
2759ENUMDOC
2760 This is a 9-bit reloc
2761ENUM
2762 BFD_RELOC_V850_22_PCREL
2763ENUMDOC
2764 This is a 22-bit reloc
2765
2766ENUM
2767 BFD_RELOC_V850_SDA_16_16_OFFSET
2768ENUMDOC
2769 This is a 16 bit offset from the short data area pointer.
2770ENUM
2771 BFD_RELOC_V850_SDA_15_16_OFFSET
2772ENUMDOC
2773 This is a 16 bit offset (of which only 15 bits are used) from the
2774 short data area pointer.
2775ENUM
2776 BFD_RELOC_V850_ZDA_16_16_OFFSET
2777ENUMDOC
2778 This is a 16 bit offset from the zero data area pointer.
2779ENUM
2780 BFD_RELOC_V850_ZDA_15_16_OFFSET
2781ENUMDOC
2782 This is a 16 bit offset (of which only 15 bits are used) from the
2783 zero data area pointer.
2784ENUM
2785 BFD_RELOC_V850_TDA_6_8_OFFSET
2786ENUMDOC
2787 This is an 8 bit offset (of which only 6 bits are used) from the
2788 tiny data area pointer.
2789ENUM
2790 BFD_RELOC_V850_TDA_7_8_OFFSET
2791ENUMDOC
2792 This is an 8bit offset (of which only 7 bits are used) from the tiny
2793 data area pointer.
2794ENUM
2795 BFD_RELOC_V850_TDA_7_7_OFFSET
2796ENUMDOC
2797 This is a 7 bit offset from the tiny data area pointer.
2798ENUM
2799 BFD_RELOC_V850_TDA_16_16_OFFSET
2800ENUMDOC
2801 This is a 16 bit offset from the tiny data area pointer.
2802COMMENT
2803ENUM
2804 BFD_RELOC_V850_TDA_4_5_OFFSET
2805ENUMDOC
2806 This is a 5 bit offset (of which only 4 bits are used) from the tiny
2807 data area pointer.
2808ENUM
2809 BFD_RELOC_V850_TDA_4_4_OFFSET
2810ENUMDOC
2811 This is a 4 bit offset from the tiny data area pointer.
2812ENUM
2813 BFD_RELOC_V850_SDA_16_16_SPLIT_OFFSET
2814ENUMDOC
2815 This is a 16 bit offset from the short data area pointer, with the
2816 bits placed non-contigously in the instruction.
2817ENUM
2818 BFD_RELOC_V850_ZDA_16_16_SPLIT_OFFSET
2819ENUMDOC
2820 This is a 16 bit offset from the zero data area pointer, with the
2821 bits placed non-contigously in the instruction.
2822ENUM
2823 BFD_RELOC_V850_CALLT_6_7_OFFSET
2824ENUMDOC
2825 This is a 6 bit offset from the call table base pointer.
2826ENUM
2827 BFD_RELOC_V850_CALLT_16_16_OFFSET
2828ENUMDOC
2829 This is a 16 bit offset from the call table base pointer.
86aba9db
NC
2830ENUM
2831 BFD_RELOC_V850_LONGCALL
2832ENUMDOC
2833 Used for relaxing indirect function calls.
2834ENUM
2835 BFD_RELOC_V850_LONGJUMP
2836ENUMDOC
2837 Used for relaxing indirect jumps.
2838ENUM
2839 BFD_RELOC_V850_ALIGN
2840ENUMDOC
2841 Used to maintain alignment whilst relaxing.
252b5132
RH
2842ENUM
2843 BFD_RELOC_MN10300_32_PCREL
2844ENUMDOC
2845 This is a 32bit pcrel reloc for the mn10300, offset by two bytes in the
2846 instruction.
2847ENUM
2848 BFD_RELOC_MN10300_16_PCREL
2849ENUMDOC
2850 This is a 16bit pcrel reloc for the mn10300, offset by two bytes in the
2851 instruction.
2852
2853ENUM
2854 BFD_RELOC_TIC30_LDP
2855ENUMDOC
2856 This is a 8bit DP reloc for the tms320c30, where the most
2857 significant 8 bits of a 24 bit word are placed into the least
2858 significant 8 bits of the opcode.
2859
81635ce4
TW
2860ENUM
2861 BFD_RELOC_TIC54X_PARTLS7
2862ENUMDOC
2863 This is a 7bit reloc for the tms320c54x, where the least
2864 significant 7 bits of a 16 bit word are placed into the least
2865 significant 7 bits of the opcode.
2866
2867ENUM
2868 BFD_RELOC_TIC54X_PARTMS9
2869ENUMDOC
2870 This is a 9bit DP reloc for the tms320c54x, where the most
2871 significant 9 bits of a 16 bit word are placed into the least
2872 significant 9 bits of the opcode.
2873
2874ENUM
2875 BFD_RELOC_TIC54X_23
2876ENUMDOC
2877 This is an extended address 23-bit reloc for the tms320c54x.
2878
2879ENUM
2880 BFD_RELOC_TIC54X_16_OF_23
2881ENUMDOC
3d855632
KH
2882 This is a 16-bit reloc for the tms320c54x, where the least
2883 significant 16 bits of a 23-bit extended address are placed into
81635ce4
TW
2884 the opcode.
2885
2886ENUM
2887 BFD_RELOC_TIC54X_MS7_OF_23
2888ENUMDOC
2889 This is a reloc for the tms320c54x, where the most
3d855632 2890 significant 7 bits of a 23-bit extended address are placed into
81635ce4 2891 the opcode.
81635ce4 2892
252b5132
RH
2893ENUM
2894 BFD_RELOC_FR30_48
2895ENUMDOC
2896 This is a 48 bit reloc for the FR30 that stores 32 bits.
2897ENUM
2898 BFD_RELOC_FR30_20
2899ENUMDOC
2900 This is a 32 bit reloc for the FR30 that stores 20 bits split up into
2901 two sections.
2902ENUM
2903 BFD_RELOC_FR30_6_IN_4
2904ENUMDOC
2905 This is a 16 bit reloc for the FR30 that stores a 6 bit word offset in
2906 4 bits.
2907ENUM
2908 BFD_RELOC_FR30_8_IN_8
2909ENUMDOC
2910 This is a 16 bit reloc for the FR30 that stores an 8 bit byte offset
2911 into 8 bits.
2912ENUM
2913 BFD_RELOC_FR30_9_IN_8
2914ENUMDOC
2915 This is a 16 bit reloc for the FR30 that stores a 9 bit short offset
2916 into 8 bits.
2917ENUM
2918 BFD_RELOC_FR30_10_IN_8
2919ENUMDOC
2920 This is a 16 bit reloc for the FR30 that stores a 10 bit word offset
2921 into 8 bits.
2922ENUM
2923 BFD_RELOC_FR30_9_PCREL
2924ENUMDOC
2925 This is a 16 bit reloc for the FR30 that stores a 9 bit pc relative
2926 short offset into 8 bits.
2927ENUM
2928 BFD_RELOC_FR30_12_PCREL
2929ENUMDOC
2930 This is a 16 bit reloc for the FR30 that stores a 12 bit pc relative
2931 short offset into 11 bits.
88b6bae0 2932
252b5132
RH
2933ENUM
2934 BFD_RELOC_MCORE_PCREL_IMM8BY4
2935ENUMX
2936 BFD_RELOC_MCORE_PCREL_IMM11BY2
2937ENUMX
2938 BFD_RELOC_MCORE_PCREL_IMM4BY2
2939ENUMX
2940 BFD_RELOC_MCORE_PCREL_32
2941ENUMX
2942 BFD_RELOC_MCORE_PCREL_JSR_IMM11BY2
36797d47
NC
2943ENUMX
2944 BFD_RELOC_MCORE_RVA
252b5132
RH
2945ENUMDOC
2946 Motorola Mcore relocations.
88b6bae0 2947
3c3bdf30
NC
2948ENUM
2949 BFD_RELOC_MMIX_GETA
2950ENUMX
2951 BFD_RELOC_MMIX_GETA_1
2952ENUMX
2953 BFD_RELOC_MMIX_GETA_2
2954ENUMX
2955 BFD_RELOC_MMIX_GETA_3
2956ENUMDOC
2957 These are relocations for the GETA instruction.
2958ENUM
2959 BFD_RELOC_MMIX_CBRANCH
2960ENUMX
2961 BFD_RELOC_MMIX_CBRANCH_J
2962ENUMX
2963 BFD_RELOC_MMIX_CBRANCH_1
2964ENUMX
2965 BFD_RELOC_MMIX_CBRANCH_2
2966ENUMX
2967 BFD_RELOC_MMIX_CBRANCH_3
2968ENUMDOC
2969 These are relocations for a conditional branch instruction.
2970ENUM
2971 BFD_RELOC_MMIX_PUSHJ
2972ENUMX
2973 BFD_RELOC_MMIX_PUSHJ_1
2974ENUMX
2975 BFD_RELOC_MMIX_PUSHJ_2
2976ENUMX
2977 BFD_RELOC_MMIX_PUSHJ_3
2978ENUMDOC
2979 These are relocations for the PUSHJ instruction.
2980ENUM
2981 BFD_RELOC_MMIX_JMP
2982ENUMX
2983 BFD_RELOC_MMIX_JMP_1
2984ENUMX
2985 BFD_RELOC_MMIX_JMP_2
2986ENUMX
2987 BFD_RELOC_MMIX_JMP_3
2988ENUMDOC
2989 These are relocations for the JMP instruction.
2990ENUM
2991 BFD_RELOC_MMIX_ADDR19
2992ENUMDOC
2993 This is a relocation for a relative address as in a GETA instruction or
2994 a branch.
2995ENUM
2996 BFD_RELOC_MMIX_ADDR27
2997ENUMDOC
2998 This is a relocation for a relative address as in a JMP instruction.
2999ENUM
3000 BFD_RELOC_MMIX_REG_OR_BYTE
3001ENUMDOC
3002 This is a relocation for an instruction field that may be a general
3003 register or a value 0..255.
3004ENUM
3005 BFD_RELOC_MMIX_REG
3006ENUMDOC
3007 This is a relocation for an instruction field that may be a general
3008 register.
3009ENUM
3010 BFD_RELOC_MMIX_BASE_PLUS_OFFSET
3011ENUMDOC
3012 This is a relocation for two instruction fields holding a register and
3013 an offset, the equivalent of the relocation.
3014ENUM
3015 BFD_RELOC_MMIX_LOCAL
3016ENUMDOC
3017 This relocation is an assertion that the expression is not allocated as
3018 a global register. It does not modify contents.
3019
adde6300
AM
3020ENUM
3021 BFD_RELOC_AVR_7_PCREL
3022ENUMDOC
3023 This is a 16 bit reloc for the AVR that stores 8 bit pc relative
3024 short offset into 7 bits.
3025ENUM
3026 BFD_RELOC_AVR_13_PCREL
3027ENUMDOC
3028 This is a 16 bit reloc for the AVR that stores 13 bit pc relative
3029 short offset into 12 bits.
3030ENUM
3031 BFD_RELOC_AVR_16_PM
3032ENUMDOC
3033 This is a 16 bit reloc for the AVR that stores 17 bit value (usually
3d855632 3034 program memory address) into 16 bits.
adde6300
AM
3035ENUM
3036 BFD_RELOC_AVR_LO8_LDI
3037ENUMDOC
3038 This is a 16 bit reloc for the AVR that stores 8 bit value (usually
3039 data memory address) into 8 bit immediate value of LDI insn.
3040ENUM
3041 BFD_RELOC_AVR_HI8_LDI
3042ENUMDOC
3043 This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 bit
3044 of data memory address) into 8 bit immediate value of LDI insn.
3045ENUM
3046 BFD_RELOC_AVR_HH8_LDI
3047ENUMDOC
3048 This is a 16 bit reloc for the AVR that stores 8 bit value (most high 8 bit
3049 of program memory address) into 8 bit immediate value of LDI insn.
3050ENUM
3051 BFD_RELOC_AVR_LO8_LDI_NEG
3052ENUMDOC
3053 This is a 16 bit reloc for the AVR that stores negated 8 bit value
3054 (usually data memory address) into 8 bit immediate value of SUBI insn.
3055ENUM
3056 BFD_RELOC_AVR_HI8_LDI_NEG
3057ENUMDOC
3058 This is a 16 bit reloc for the AVR that stores negated 8 bit value
3059 (high 8 bit of data memory address) into 8 bit immediate value of
3060 SUBI insn.
3061ENUM
3062 BFD_RELOC_AVR_HH8_LDI_NEG
3063ENUMDOC
3064 This is a 16 bit reloc for the AVR that stores negated 8 bit value
3065 (most high 8 bit of program memory address) into 8 bit immediate value
3066 of LDI or SUBI insn.
3067ENUM
3068 BFD_RELOC_AVR_LO8_LDI_PM
3069ENUMDOC
3070 This is a 16 bit reloc for the AVR that stores 8 bit value (usually
3071 command address) into 8 bit immediate value of LDI insn.
3072ENUM
3073 BFD_RELOC_AVR_HI8_LDI_PM
3074ENUMDOC
3075 This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 bit
3076 of command address) into 8 bit immediate value of LDI insn.
3077ENUM
3078 BFD_RELOC_AVR_HH8_LDI_PM
3079ENUMDOC
3080 This is a 16 bit reloc for the AVR that stores 8 bit value (most high 8 bit
3081 of command address) into 8 bit immediate value of LDI insn.
3082ENUM
3083 BFD_RELOC_AVR_LO8_LDI_PM_NEG
3084ENUMDOC
3085 This is a 16 bit reloc for the AVR that stores negated 8 bit value
3086 (usually command address) into 8 bit immediate value of SUBI insn.
3087ENUM
3088 BFD_RELOC_AVR_HI8_LDI_PM_NEG
3089ENUMDOC
3090 This is a 16 bit reloc for the AVR that stores negated 8 bit value
3091 (high 8 bit of 16 bit command address) into 8 bit immediate value
3092 of SUBI insn.
3093ENUM
3094 BFD_RELOC_AVR_HH8_LDI_PM_NEG
3095ENUMDOC
3096 This is a 16 bit reloc for the AVR that stores negated 8 bit value
3097 (high 6 bit of 22 bit command address) into 8 bit immediate
3098 value of SUBI insn.
3099ENUM
3100 BFD_RELOC_AVR_CALL
3101ENUMDOC
3102 This is a 32 bit reloc for the AVR that stores 23 bit value
3103 into 22 bits.
3104
a85d7ed0
NC
3105ENUM
3106 BFD_RELOC_390_12
3107ENUMDOC
3108 Direct 12 bit.
3109ENUM
3110 BFD_RELOC_390_GOT12
3111ENUMDOC
3112 12 bit GOT offset.
3113ENUM
3114 BFD_RELOC_390_PLT32
3115ENUMDOC
3116 32 bit PC relative PLT address.
3117ENUM
3118 BFD_RELOC_390_COPY
3119ENUMDOC
3120 Copy symbol at runtime.
3121ENUM
3122 BFD_RELOC_390_GLOB_DAT
3123ENUMDOC
3124 Create GOT entry.
3125ENUM
3126 BFD_RELOC_390_JMP_SLOT
3127ENUMDOC
3128 Create PLT entry.
3129ENUM
3130 BFD_RELOC_390_RELATIVE
3131ENUMDOC
3132 Adjust by program base.
3133ENUM
3134 BFD_RELOC_390_GOTPC
3135ENUMDOC
3136 32 bit PC relative offset to GOT.
3137ENUM
3138 BFD_RELOC_390_GOT16
3139ENUMDOC
3140 16 bit GOT offset.
3141ENUM
3142 BFD_RELOC_390_PC16DBL
3143ENUMDOC
3144 PC relative 16 bit shifted by 1.
3145ENUM
3146 BFD_RELOC_390_PLT16DBL
3147ENUMDOC
3148 16 bit PC rel. PLT shifted by 1.
3149ENUM
3150 BFD_RELOC_390_PC32DBL
3151ENUMDOC
3152 PC relative 32 bit shifted by 1.
3153ENUM
3154 BFD_RELOC_390_PLT32DBL
3155ENUMDOC
3156 32 bit PC rel. PLT shifted by 1.
3157ENUM
3158 BFD_RELOC_390_GOTPCDBL
3159ENUMDOC
3160 32 bit PC rel. GOT shifted by 1.
3161ENUM
3162 BFD_RELOC_390_GOT64
3163ENUMDOC
3164 64 bit GOT offset.
3165ENUM
3166 BFD_RELOC_390_PLT64
3167ENUMDOC
3168 64 bit PC relative PLT address.
3169ENUM
3170 BFD_RELOC_390_GOTENT
3171ENUMDOC
3172 32 bit rel. offset to GOT entry.
dc810e39 3173
cf88bb9f
NC
3174ENUM
3175 BFD_RELOC_IP2K_FR9
3176ENUMDOC
3177 Scenix IP2K - 9-bit register number / data address
3178ENUM
3179 BFD_RELOC_IP2K_BANK
3180ENUMDOC
3181 Scenix IP2K - 4-bit register/data bank number
3182ENUM
3183 BFD_RELOC_IP2K_ADDR16CJP
3184ENUMDOC
3185 Scenix IP2K - low 13 bits of instruction word address
3186ENUM
3187 BFD_RELOC_IP2K_PAGE3
3188ENUMDOC
3189 Scenix IP2K - high 3 bits of instruction word address
3190ENUM
3191 BFD_RELOC_IP2K_LO8DATA
3192ENUMX
3193 BFD_RELOC_IP2K_HI8DATA
3194ENUMX
3195 BFD_RELOC_IP2K_EX8DATA
3196ENUMDOC
3197 Scenix IP2K - ext/low/high 8 bits of data address
3198ENUM
3199 BFD_RELOC_IP2K_LO8INSN
3200ENUMX
3201 BFD_RELOC_IP2K_HI8INSN
3202ENUMDOC
3203 Scenix IP2K - low/high 8 bits of instruction word address
3204ENUM
3205 BFD_RELOC_IP2K_PC_SKIP
3206ENUMDOC
3207 Scenix IP2K - even/odd PC modifier to modify snb pcl.0
3208ENUM
3209 BFD_RELOC_IP2K_TEXT
3210ENUMDOC
3211 Scenix IP2K - 16 bit word address in text section.
3212ENUM
3213 BFD_RELOC_IP2K_FR_OFFSET
3214ENUMDOC
3215 Scenix IP2K - 7-bit sp or dp offset
3216ENUM
3217 BFD_RELOC_VPE4KMATH_DATA
3218ENUMX
3219 BFD_RELOC_VPE4KMATH_INSN
3220ENUMDOC
3221 Scenix VPE4K coprocessor - data/insn-space addressing
3222
252b5132
RH
3223ENUM
3224 BFD_RELOC_VTABLE_INHERIT
3225ENUMX
3226 BFD_RELOC_VTABLE_ENTRY
3227ENUMDOC
88b6bae0 3228 These two relocations are used by the linker to determine which of
252b5132
RH
3229 the entries in a C++ virtual function table are actually used. When
3230 the --gc-sections option is given, the linker will zero out the entries
3231 that are not used, so that the code for those functions need not be
3232 included in the output.
3233
3234 VTABLE_INHERIT is a zero-space relocation used to describe to the
3235 linker the inheritence tree of a C++ virtual function table. The
3236 relocation's symbol should be the parent class' vtable, and the
3237 relocation should be located at the child vtable.
3238
3239 VTABLE_ENTRY is a zero-space relocation that describes the use of a
3240 virtual function table entry. The reloc's symbol should refer to the
3241 table of the class mentioned in the code. Off of that base, an offset
88b6bae0 3242 describes the entry that is being used. For Rela hosts, this offset
252b5132
RH
3243 is stored in the reloc's addend. For Rel hosts, we are forced to put
3244 this offset in the reloc's section offset.
3245
800eeca4
JW
3246ENUM
3247 BFD_RELOC_IA64_IMM14
3248ENUMX
3249 BFD_RELOC_IA64_IMM22
3250ENUMX
3251 BFD_RELOC_IA64_IMM64
3252ENUMX
3253 BFD_RELOC_IA64_DIR32MSB
3254ENUMX
3255 BFD_RELOC_IA64_DIR32LSB
3256ENUMX
3257 BFD_RELOC_IA64_DIR64MSB
3258ENUMX
3259 BFD_RELOC_IA64_DIR64LSB
3260ENUMX
3261 BFD_RELOC_IA64_GPREL22
3262ENUMX
3263 BFD_RELOC_IA64_GPREL64I
3264ENUMX
3265 BFD_RELOC_IA64_GPREL32MSB
3266ENUMX
3267 BFD_RELOC_IA64_GPREL32LSB
3268ENUMX
3269 BFD_RELOC_IA64_GPREL64MSB
3270ENUMX
3271 BFD_RELOC_IA64_GPREL64LSB
3272ENUMX
3273 BFD_RELOC_IA64_LTOFF22
3274ENUMX
3275 BFD_RELOC_IA64_LTOFF64I
3276ENUMX
3277 BFD_RELOC_IA64_PLTOFF22
3278ENUMX
3279 BFD_RELOC_IA64_PLTOFF64I
3280ENUMX
3281 BFD_RELOC_IA64_PLTOFF64MSB
3282ENUMX
3283 BFD_RELOC_IA64_PLTOFF64LSB
3284ENUMX
3285 BFD_RELOC_IA64_FPTR64I
3286ENUMX
3287 BFD_RELOC_IA64_FPTR32MSB
3288ENUMX
3289 BFD_RELOC_IA64_FPTR32LSB
3290ENUMX
3291 BFD_RELOC_IA64_FPTR64MSB
3292ENUMX
3293 BFD_RELOC_IA64_FPTR64LSB
3294ENUMX
3295 BFD_RELOC_IA64_PCREL21B
748abff6
RH
3296ENUMX
3297 BFD_RELOC_IA64_PCREL21BI
800eeca4
JW
3298ENUMX
3299 BFD_RELOC_IA64_PCREL21M
3300ENUMX
3301 BFD_RELOC_IA64_PCREL21F
748abff6
RH
3302ENUMX
3303 BFD_RELOC_IA64_PCREL22
3304ENUMX
3305 BFD_RELOC_IA64_PCREL60B
3306ENUMX
3307 BFD_RELOC_IA64_PCREL64I
800eeca4
JW
3308ENUMX
3309 BFD_RELOC_IA64_PCREL32MSB
3310ENUMX
3311 BFD_RELOC_IA64_PCREL32LSB
3312ENUMX
3313 BFD_RELOC_IA64_PCREL64MSB
3314ENUMX
3315 BFD_RELOC_IA64_PCREL64LSB
3316ENUMX
3317 BFD_RELOC_IA64_LTOFF_FPTR22
3318ENUMX
3319 BFD_RELOC_IA64_LTOFF_FPTR64I
a4bd8390
JW
3320ENUMX
3321 BFD_RELOC_IA64_LTOFF_FPTR32MSB
3322ENUMX
3323 BFD_RELOC_IA64_LTOFF_FPTR32LSB
800eeca4
JW
3324ENUMX
3325 BFD_RELOC_IA64_LTOFF_FPTR64MSB
3326ENUMX
3327 BFD_RELOC_IA64_LTOFF_FPTR64LSB
800eeca4
JW
3328ENUMX
3329 BFD_RELOC_IA64_SEGREL32MSB
3330ENUMX
3331 BFD_RELOC_IA64_SEGREL32LSB
3332ENUMX
3333 BFD_RELOC_IA64_SEGREL64MSB
3334ENUMX
3335 BFD_RELOC_IA64_SEGREL64LSB
3336ENUMX
3337 BFD_RELOC_IA64_SECREL32MSB
3338ENUMX
3339 BFD_RELOC_IA64_SECREL32LSB
3340ENUMX
3341 BFD_RELOC_IA64_SECREL64MSB
3342ENUMX
3343 BFD_RELOC_IA64_SECREL64LSB
3344ENUMX
3345 BFD_RELOC_IA64_REL32MSB
3346ENUMX
3347 BFD_RELOC_IA64_REL32LSB
3348ENUMX
3349 BFD_RELOC_IA64_REL64MSB
3350ENUMX
3351 BFD_RELOC_IA64_REL64LSB
3352ENUMX
3353 BFD_RELOC_IA64_LTV32MSB
3354ENUMX
3355 BFD_RELOC_IA64_LTV32LSB
3356ENUMX
3357 BFD_RELOC_IA64_LTV64MSB
3358ENUMX
3359 BFD_RELOC_IA64_LTV64LSB
3360ENUMX
3361 BFD_RELOC_IA64_IPLTMSB
3362ENUMX
3363 BFD_RELOC_IA64_IPLTLSB
800eeca4
JW
3364ENUMX
3365 BFD_RELOC_IA64_COPY
13ae64f3
JJ
3366ENUMX
3367 BFD_RELOC_IA64_LTOFF22X
3368ENUMX
3369 BFD_RELOC_IA64_LDXMOV
3370ENUMX
3371 BFD_RELOC_IA64_TPREL14
800eeca4
JW
3372ENUMX
3373 BFD_RELOC_IA64_TPREL22
13ae64f3
JJ
3374ENUMX
3375 BFD_RELOC_IA64_TPREL64I
800eeca4
JW
3376ENUMX
3377 BFD_RELOC_IA64_TPREL64MSB
3378ENUMX
3379 BFD_RELOC_IA64_TPREL64LSB
3380ENUMX
13ae64f3 3381 BFD_RELOC_IA64_LTOFF_TPREL22
800eeca4 3382ENUMX
13ae64f3 3383 BFD_RELOC_IA64_DTPMOD64MSB
800eeca4 3384ENUMX
13ae64f3
JJ
3385 BFD_RELOC_IA64_DTPMOD64LSB
3386ENUMX
3387 BFD_RELOC_IA64_LTOFF_DTPMOD22
3388ENUMX
3389 BFD_RELOC_IA64_DTPREL14
3390ENUMX
3391 BFD_RELOC_IA64_DTPREL22
3392ENUMX
3393 BFD_RELOC_IA64_DTPREL64I
3394ENUMX
3395 BFD_RELOC_IA64_DTPREL32MSB
3396ENUMX
3397 BFD_RELOC_IA64_DTPREL32LSB
3398ENUMX
3399 BFD_RELOC_IA64_DTPREL64MSB
3400ENUMX
3401 BFD_RELOC_IA64_DTPREL64LSB
3402ENUMX
3403 BFD_RELOC_IA64_LTOFF_DTPREL22
800eeca4
JW
3404ENUMDOC
3405 Intel IA64 Relocations.
60bcf0fa
NC
3406
3407ENUM
3408 BFD_RELOC_M68HC11_HI8
3409ENUMDOC
3410 Motorola 68HC11 reloc.
3dbfec86 3411 This is the 8 bit high part of an absolute address.
60bcf0fa
NC
3412ENUM
3413 BFD_RELOC_M68HC11_LO8
3414ENUMDOC
3415 Motorola 68HC11 reloc.
3dbfec86 3416 This is the 8 bit low part of an absolute address.
60bcf0fa
NC
3417ENUM
3418 BFD_RELOC_M68HC11_3B
3419ENUMDOC
3420 Motorola 68HC11 reloc.
3dbfec86
SC
3421 This is the 3 bit of a value.
3422ENUM
3423 BFD_RELOC_M68HC11_RL_JUMP
3424ENUMDOC
3425 Motorola 68HC11 reloc.
3426 This reloc marks the beginning of a jump/call instruction.
3427 It is used for linker relaxation to correctly identify beginning
3428 of instruction and change some branchs to use PC-relative
3429 addressing mode.
3430ENUM
3431 BFD_RELOC_M68HC11_RL_GROUP
3432ENUMDOC
3433 Motorola 68HC11 reloc.
3434 This reloc marks a group of several instructions that gcc generates
3435 and for which the linker relaxation pass can modify and/or remove
3436 some of them.
3437ENUM
3438 BFD_RELOC_M68HC11_LO16
3439ENUMDOC
3440 Motorola 68HC11 reloc.
3441 This is the 16-bit lower part of an address. It is used for 'call'
3442 instruction to specify the symbol address without any special
3443 transformation (due to memory bank window).
3444ENUM
3445 BFD_RELOC_M68HC11_PAGE
3446ENUMDOC
3447 Motorola 68HC11 reloc.
3448 This is a 8-bit reloc that specifies the page number of an address.
3449 It is used by 'call' instruction to specify the page number of
3450 the symbol.
3451ENUM
3452 BFD_RELOC_M68HC11_24
3453ENUMDOC
3454 Motorola 68HC11 reloc.
3455 This is a 24-bit reloc that represents the address with a 16-bit
3456 value and a 8-bit page number. The symbol address is transformed
3457 to follow the 16K memory bank of 68HC12 (seen as mapped in the window).
60bcf0fa 3458
06c15ad7
HPN
3459ENUM
3460 BFD_RELOC_CRIS_BDISP8
3461ENUMX
3462 BFD_RELOC_CRIS_UNSIGNED_5
3463ENUMX
3464 BFD_RELOC_CRIS_SIGNED_6
3465ENUMX
3466 BFD_RELOC_CRIS_UNSIGNED_6
3467ENUMX
3468 BFD_RELOC_CRIS_UNSIGNED_4
3469ENUMDOC
3470 These relocs are only used within the CRIS assembler. They are not
3471 (at present) written to any object files.
58d29fc3
HPN
3472ENUM
3473 BFD_RELOC_CRIS_COPY
3474ENUMX
3475 BFD_RELOC_CRIS_GLOB_DAT
3476ENUMX
3477 BFD_RELOC_CRIS_JUMP_SLOT
3478ENUMX
3479 BFD_RELOC_CRIS_RELATIVE
3480ENUMDOC
3481 Relocs used in ELF shared libraries for CRIS.
3482ENUM
3483 BFD_RELOC_CRIS_32_GOT
3484ENUMDOC
3485 32-bit offset to symbol-entry within GOT.
3486ENUM
3487 BFD_RELOC_CRIS_16_GOT
3488ENUMDOC
3489 16-bit offset to symbol-entry within GOT.
3490ENUM
3491 BFD_RELOC_CRIS_32_GOTPLT
3492ENUMDOC
3493 32-bit offset to symbol-entry within GOT, with PLT handling.
3494ENUM
3495 BFD_RELOC_CRIS_16_GOTPLT
3496ENUMDOC
3497 16-bit offset to symbol-entry within GOT, with PLT handling.
3498ENUM
3499 BFD_RELOC_CRIS_32_GOTREL
3500ENUMDOC
3501 32-bit offset to symbol, relative to GOT.
3502ENUM
3503 BFD_RELOC_CRIS_32_PLT_GOTREL
3504ENUMDOC
3505 32-bit offset to symbol with PLT entry, relative to GOT.
3506ENUM
3507 BFD_RELOC_CRIS_32_PLT_PCREL
3508ENUMDOC
3509 32-bit offset to symbol with PLT entry, relative to this relocation.
06c15ad7 3510
a87fdb8d
JE
3511ENUM
3512 BFD_RELOC_860_COPY
3513ENUMX
3514 BFD_RELOC_860_GLOB_DAT
3515ENUMX
3516 BFD_RELOC_860_JUMP_SLOT
3517ENUMX
3518 BFD_RELOC_860_RELATIVE
3519ENUMX
3520 BFD_RELOC_860_PC26
3521ENUMX
3522 BFD_RELOC_860_PLT26
3523ENUMX
3524 BFD_RELOC_860_PC16
3525ENUMX
3526 BFD_RELOC_860_LOW0
3527ENUMX
3528 BFD_RELOC_860_SPLIT0
3529ENUMX
3530 BFD_RELOC_860_LOW1
3531ENUMX
3532 BFD_RELOC_860_SPLIT1
3533ENUMX
3534 BFD_RELOC_860_LOW2
3535ENUMX
3536 BFD_RELOC_860_SPLIT2
3537ENUMX
3538 BFD_RELOC_860_LOW3
3539ENUMX
3540 BFD_RELOC_860_LOGOT0
3541ENUMX
3542 BFD_RELOC_860_SPGOT0
3543ENUMX
3544 BFD_RELOC_860_LOGOT1
3545ENUMX
3546 BFD_RELOC_860_SPGOT1
3547ENUMX
3548 BFD_RELOC_860_LOGOTOFF0
3549ENUMX
3550 BFD_RELOC_860_SPGOTOFF0
3551ENUMX
3552 BFD_RELOC_860_LOGOTOFF1
3553ENUMX
3554 BFD_RELOC_860_SPGOTOFF1
3555ENUMX
3556 BFD_RELOC_860_LOGOTOFF2
3557ENUMX
3558 BFD_RELOC_860_LOGOTOFF3
3559ENUMX
3560 BFD_RELOC_860_LOPC
3561ENUMX
3562 BFD_RELOC_860_HIGHADJ
3563ENUMX
3564 BFD_RELOC_860_HAGOT
3565ENUMX
3566 BFD_RELOC_860_HAGOTOFF
3567ENUMX
3568 BFD_RELOC_860_HAPC
3569ENUMX
3570 BFD_RELOC_860_HIGH
3571ENUMX
3572 BFD_RELOC_860_HIGOT
3573ENUMX
3574 BFD_RELOC_860_HIGOTOFF
3575ENUMDOC
3576 Intel i860 Relocations.
3577
b3baf5d0
NC
3578ENUM
3579 BFD_RELOC_OPENRISC_ABS_26
3580ENUMX
3581 BFD_RELOC_OPENRISC_REL_26
3582ENUMDOC
3583 OpenRISC Relocations.
3584
e01b0e69
JR
3585ENUM
3586 BFD_RELOC_H8_DIR16A8
3587ENUMX
3588 BFD_RELOC_H8_DIR16R8
3589ENUMX
3590 BFD_RELOC_H8_DIR24A8
3591ENUMX
3592 BFD_RELOC_H8_DIR24R8
3593ENUMX
3594 BFD_RELOC_H8_DIR32A16
3595ENUMDOC
3596 H8 elf Relocations.
3597
93fbbb04
GK
3598ENUM
3599 BFD_RELOC_XSTORMY16_REL_12
3600ENUMX
3601 BFD_RELOC_XSTORMY16_24
3602ENUMX
3603 BFD_RELOC_XSTORMY16_FPTR16
3604ENUMDOC
3605 Sony Xstormy16 Relocations.
3606
90ace9e9
JT
3607ENUM
3608 BFD_RELOC_VAX_GLOB_DAT
3609ENUMX
3610 BFD_RELOC_VAX_JMP_SLOT
3611ENUMX
3612 BFD_RELOC_VAX_RELATIVE
3613ENUMDOC
3614 Relocations used by VAX ELF.
3615
252b5132
RH
3616ENDSENUM
3617 BFD_RELOC_UNUSED
3618CODE_FRAGMENT
3619.
3620.typedef enum bfd_reloc_code_real bfd_reloc_code_real_type;
3621*/
3622
252b5132
RH
3623/*
3624FUNCTION
3625 bfd_reloc_type_lookup
3626
3627SYNOPSIS
3628 reloc_howto_type *
3629 bfd_reloc_type_lookup (bfd *abfd, bfd_reloc_code_real_type code);
3630
3631DESCRIPTION
3632 Return a pointer to a howto structure which, when
3633 invoked, will perform the relocation @var{code} on data from the
3634 architecture noted.
3635
3636*/
3637
252b5132
RH
3638reloc_howto_type *
3639bfd_reloc_type_lookup (abfd, code)
3640 bfd *abfd;
3641 bfd_reloc_code_real_type code;
3642{
3643 return BFD_SEND (abfd, reloc_type_lookup, (abfd, code));
3644}
3645
3646static reloc_howto_type bfd_howto_32 =
b34976b6 3647HOWTO (0, 00, 2, 32, FALSE, 0, complain_overflow_bitfield, 0, "VRT32", FALSE, 0xffffffff, 0xffffffff, TRUE);
252b5132 3648
252b5132
RH
3649/*
3650INTERNAL_FUNCTION
3651 bfd_default_reloc_type_lookup
3652
3653SYNOPSIS
3654 reloc_howto_type *bfd_default_reloc_type_lookup
3655 (bfd *abfd, bfd_reloc_code_real_type code);
3656
3657DESCRIPTION
3658 Provides a default relocation lookup routine for any architecture.
3659
252b5132
RH
3660*/
3661
3662reloc_howto_type *
3663bfd_default_reloc_type_lookup (abfd, code)
3664 bfd *abfd;
3665 bfd_reloc_code_real_type code;
3666{
3667 switch (code)
3668 {
3669 case BFD_RELOC_CTOR:
3670 /* The type of reloc used in a ctor, which will be as wide as the
3671 address - so either a 64, 32, or 16 bitter. */
3672 switch (bfd_get_arch_info (abfd)->bits_per_address)
3673 {
3674 case 64:
3675 BFD_FAIL ();
3676 case 32:
3677 return &bfd_howto_32;
3678 case 16:
3679 BFD_FAIL ();
3680 default:
3681 BFD_FAIL ();
3682 }
3683 default:
3684 BFD_FAIL ();
3685 }
3686 return (reloc_howto_type *) NULL;
3687}
3688
3689/*
3690FUNCTION
3691 bfd_get_reloc_code_name
3692
3693SYNOPSIS
3694 const char *bfd_get_reloc_code_name (bfd_reloc_code_real_type code);
3695
3696DESCRIPTION
3697 Provides a printable name for the supplied relocation code.
3698 Useful mainly for printing error messages.
3699*/
3700
3701const char *
3702bfd_get_reloc_code_name (code)
3703 bfd_reloc_code_real_type code;
3704{
d45913a0 3705 if ((int) code > (int) BFD_RELOC_UNUSED)
252b5132
RH
3706 return 0;
3707 return bfd_reloc_code_real_names[(int)code];
3708}
3709
3710/*
3711INTERNAL_FUNCTION
3712 bfd_generic_relax_section
3713
3714SYNOPSIS
b34976b6 3715 bfd_boolean bfd_generic_relax_section
252b5132
RH
3716 (bfd *abfd,
3717 asection *section,
3718 struct bfd_link_info *,
b34976b6 3719 bfd_boolean *);
252b5132
RH
3720
3721DESCRIPTION
3722 Provides default handling for relaxing for back ends which
3723 don't do relaxing -- i.e., does nothing.
3724*/
3725
b34976b6 3726bfd_boolean
252b5132 3727bfd_generic_relax_section (abfd, section, link_info, again)
7442e600
ILT
3728 bfd *abfd ATTRIBUTE_UNUSED;
3729 asection *section ATTRIBUTE_UNUSED;
3730 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
b34976b6 3731 bfd_boolean *again;
252b5132 3732{
b34976b6
AM
3733 *again = FALSE;
3734 return TRUE;
252b5132
RH
3735}
3736
3737/*
3738INTERNAL_FUNCTION
3739 bfd_generic_gc_sections
3740
3741SYNOPSIS
b34976b6 3742 bfd_boolean bfd_generic_gc_sections
252b5132
RH
3743 (bfd *, struct bfd_link_info *);
3744
3745DESCRIPTION
3746 Provides default handling for relaxing for back ends which
3747 don't do section gc -- i.e., does nothing.
3748*/
3749
b34976b6 3750bfd_boolean
252b5132 3751bfd_generic_gc_sections (abfd, link_info)
7442e600
ILT
3752 bfd *abfd ATTRIBUTE_UNUSED;
3753 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
252b5132 3754{
b34976b6 3755 return TRUE;
252b5132
RH
3756}
3757
8550eb6e
JJ
3758/*
3759INTERNAL_FUNCTION
3760 bfd_generic_merge_sections
3761
3762SYNOPSIS
b34976b6 3763 bfd_boolean bfd_generic_merge_sections
8550eb6e
JJ
3764 (bfd *, struct bfd_link_info *);
3765
3766DESCRIPTION
3767 Provides default handling for SEC_MERGE section merging for back ends
3768 which don't have SEC_MERGE support -- i.e., does nothing.
3769*/
3770
b34976b6 3771bfd_boolean
8550eb6e
JJ
3772bfd_generic_merge_sections (abfd, link_info)
3773 bfd *abfd ATTRIBUTE_UNUSED;
3774 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
3775{
b34976b6 3776 return TRUE;
8550eb6e
JJ
3777}
3778
252b5132
RH
3779/*
3780INTERNAL_FUNCTION
3781 bfd_generic_get_relocated_section_contents
3782
3783SYNOPSIS
3784 bfd_byte *
3785 bfd_generic_get_relocated_section_contents (bfd *abfd,
3786 struct bfd_link_info *link_info,
3787 struct bfd_link_order *link_order,
3788 bfd_byte *data,
b34976b6 3789 bfd_boolean relocateable,
252b5132
RH
3790 asymbol **symbols);
3791
3792DESCRIPTION
3793 Provides default handling of relocation effort for back ends
3794 which can't be bothered to do it efficiently.
3795
3796*/
3797
3798bfd_byte *
3799bfd_generic_get_relocated_section_contents (abfd, link_info, link_order, data,
3800 relocateable, symbols)
3801 bfd *abfd;
3802 struct bfd_link_info *link_info;
3803 struct bfd_link_order *link_order;
3804 bfd_byte *data;
b34976b6 3805 bfd_boolean relocateable;
252b5132
RH
3806 asymbol **symbols;
3807{
b5f79c76 3808 /* Get enough memory to hold the stuff. */
252b5132
RH
3809 bfd *input_bfd = link_order->u.indirect.section->owner;
3810 asection *input_section = link_order->u.indirect.section;
3811
3812 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
3813 arelent **reloc_vector = NULL;
3814 long reloc_count;
3815
3816 if (reloc_size < 0)
3817 goto error_return;
3818
dc810e39 3819 reloc_vector = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
252b5132
RH
3820 if (reloc_vector == NULL && reloc_size != 0)
3821 goto error_return;
3822
b5f79c76 3823 /* Read in the section. */
252b5132
RH
3824 if (!bfd_get_section_contents (input_bfd,
3825 input_section,
3826 (PTR) data,
dc810e39 3827 (bfd_vma) 0,
252b5132
RH
3828 input_section->_raw_size))
3829 goto error_return;
3830
b5f79c76 3831 /* We're not relaxing the section, so just copy the size info. */
252b5132 3832 input_section->_cooked_size = input_section->_raw_size;
b34976b6 3833 input_section->reloc_done = TRUE;
252b5132
RH
3834
3835 reloc_count = bfd_canonicalize_reloc (input_bfd,
3836 input_section,
3837 reloc_vector,
3838 symbols);
3839 if (reloc_count < 0)
3840 goto error_return;
3841
3842 if (reloc_count > 0)
3843 {
3844 arelent **parent;
3845 for (parent = reloc_vector; *parent != (arelent *) NULL;
3846 parent++)
3847 {
3848 char *error_message = (char *) NULL;
3849 bfd_reloc_status_type r =
3850 bfd_perform_relocation (input_bfd,
3851 *parent,
3852 (PTR) data,
3853 input_section,
3854 relocateable ? abfd : (bfd *) NULL,
3855 &error_message);
3856
3857 if (relocateable)
3858 {
3859 asection *os = input_section->output_section;
3860
b5f79c76 3861 /* A partial link, so keep the relocs. */
252b5132
RH
3862 os->orelocation[os->reloc_count] = *parent;
3863 os->reloc_count++;
3864 }
3865
3866 if (r != bfd_reloc_ok)
3867 {
3868 switch (r)
3869 {
3870 case bfd_reloc_undefined:
3871 if (!((*link_info->callbacks->undefined_symbol)
3872 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
5cc7c785 3873 input_bfd, input_section, (*parent)->address,
b34976b6 3874 TRUE)))
252b5132
RH
3875 goto error_return;
3876 break;
3877 case bfd_reloc_dangerous:
3878 BFD_ASSERT (error_message != (char *) NULL);
3879 if (!((*link_info->callbacks->reloc_dangerous)
3880 (link_info, error_message, input_bfd, input_section,
3881 (*parent)->address)))
3882 goto error_return;
3883 break;
3884 case bfd_reloc_overflow:
3885 if (!((*link_info->callbacks->reloc_overflow)
3886 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
3887 (*parent)->howto->name, (*parent)->addend,
3888 input_bfd, input_section, (*parent)->address)))
3889 goto error_return;
3890 break;
3891 case bfd_reloc_outofrange:
3892 default:
3893 abort ();
3894 break;
3895 }
3896
3897 }
3898 }
3899 }
3900 if (reloc_vector != NULL)
3901 free (reloc_vector);
3902 return data;
3903
3904error_return:
3905 if (reloc_vector != NULL)
3906 free (reloc_vector);
3907 return NULL;
3908}
This page took 0.563205 seconds and 4 git commands to generate.