* som.c (som_decode_symclass): Recognize weak symbols.
[deliverable/binutils-gdb.git] / bfd / som.c
CommitLineData
252b5132
RH
1/* bfd back-end for HP PA-RISC SOM objects.
2 Copyright (C) 1990, 91, 92, 93, 94, 95, 96, 97, 1998
3 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of BFD, the Binary File Descriptor library.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23 02111-1307, USA. */
24
25#include "bfd.h"
26#include "sysdep.h"
27
28#if defined (HOST_HPPAHPUX) || defined (HOST_HPPABSD) || defined (HOST_HPPAOSF) || defined(HOST_HPPAMPEIX)
29
30#include "libbfd.h"
31#include "som.h"
32
33#include <sys/param.h>
34#include <signal.h>
35#include <machine/reg.h>
36#include <sys/file.h>
37#include <ctype.h>
38
39/* Magic not defined in standard HP-UX header files until 8.0 */
40
41#ifndef CPU_PA_RISC1_0
42#define CPU_PA_RISC1_0 0x20B
43#endif /* CPU_PA_RISC1_0 */
44
45#ifndef CPU_PA_RISC1_1
46#define CPU_PA_RISC1_1 0x210
47#endif /* CPU_PA_RISC1_1 */
48
49#ifndef CPU_PA_RISC2_0
50#define CPU_PA_RISC2_0 0x214
51#endif /* CPU_PA_RISC2_0 */
52
53#ifndef _PA_RISC1_0_ID
54#define _PA_RISC1_0_ID CPU_PA_RISC1_0
55#endif /* _PA_RISC1_0_ID */
56
57#ifndef _PA_RISC1_1_ID
58#define _PA_RISC1_1_ID CPU_PA_RISC1_1
59#endif /* _PA_RISC1_1_ID */
60
61#ifndef _PA_RISC2_0_ID
62#define _PA_RISC2_0_ID CPU_PA_RISC2_0
63#endif /* _PA_RISC2_0_ID */
64
65#ifndef _PA_RISC_MAXID
66#define _PA_RISC_MAXID 0x2FF
67#endif /* _PA_RISC_MAXID */
68
69#ifndef _PA_RISC_ID
70#define _PA_RISC_ID(__m_num) \
71 (((__m_num) == _PA_RISC1_0_ID) || \
72 ((__m_num) >= _PA_RISC1_1_ID && (__m_num) <= _PA_RISC_MAXID))
73#endif /* _PA_RISC_ID */
74
75
76/* HIUX in it's infinite stupidity changed the names for several "well
77 known" constants. Work around such braindamage. Try the HPUX version
78 first, then the HIUX version, and finally provide a default. */
79#ifdef HPUX_AUX_ID
80#define EXEC_AUX_ID HPUX_AUX_ID
81#endif
82
83#if !defined (EXEC_AUX_ID) && defined (HIUX_AUX_ID)
84#define EXEC_AUX_ID HIUX_AUX_ID
85#endif
86
87#ifndef EXEC_AUX_ID
88#define EXEC_AUX_ID 0
89#endif
90
91/* Size (in chars) of the temporary buffers used during fixup and string
92 table writes. */
93
94#define SOM_TMP_BUFSIZE 8192
95
96/* Size of the hash table in archives. */
97#define SOM_LST_HASH_SIZE 31
98
99/* Max number of SOMs to be found in an archive. */
100#define SOM_LST_MODULE_LIMIT 1024
101
102/* Generic alignment macro. */
103#define SOM_ALIGN(val, alignment) \
104 (((val) + (alignment) - 1) & ~((alignment) - 1))
105
106/* SOM allows any one of the four previous relocations to be reused
107 with a "R_PREV_FIXUP" relocation entry. Since R_PREV_FIXUP
108 relocations are always a single byte, using a R_PREV_FIXUP instead
109 of some multi-byte relocation makes object files smaller.
110
111 Note one side effect of using a R_PREV_FIXUP is the relocation that
112 is being repeated moves to the front of the queue. */
113struct reloc_queue
114 {
115 unsigned char *reloc;
116 unsigned int size;
117 } reloc_queue[4];
118
119/* This fully describes the symbol types which may be attached to
120 an EXPORT or IMPORT directive. Only SOM uses this formation
121 (ELF has no need for it). */
122typedef enum
123{
124 SYMBOL_TYPE_UNKNOWN,
125 SYMBOL_TYPE_ABSOLUTE,
126 SYMBOL_TYPE_CODE,
127 SYMBOL_TYPE_DATA,
128 SYMBOL_TYPE_ENTRY,
129 SYMBOL_TYPE_MILLICODE,
130 SYMBOL_TYPE_PLABEL,
131 SYMBOL_TYPE_PRI_PROG,
132 SYMBOL_TYPE_SEC_PROG,
133} pa_symbol_type;
134
135struct section_to_type
136{
137 char *section;
138 char type;
139};
140
141/* Assorted symbol information that needs to be derived from the BFD symbol
142 and/or the BFD backend private symbol data. */
143struct som_misc_symbol_info
144{
145 unsigned int symbol_type;
146 unsigned int symbol_scope;
147 unsigned int arg_reloc;
148 unsigned int symbol_info;
149 unsigned int symbol_value;
150 unsigned int priv_level;
ba20314e 151 unsigned int secondary_def;
252b5132
RH
152};
153
154/* Forward declarations */
155
156static boolean som_mkobject PARAMS ((bfd *));
157static const bfd_target * som_object_setup PARAMS ((bfd *,
158 struct header *,
159 struct som_exec_auxhdr *,
160 unsigned long));
161static boolean setup_sections PARAMS ((bfd *, struct header *, unsigned long));
162static const bfd_target * som_object_p PARAMS ((bfd *));
163static boolean som_write_object_contents PARAMS ((bfd *));
164static boolean som_slurp_string_table PARAMS ((bfd *));
165static unsigned int som_slurp_symbol_table PARAMS ((bfd *));
166static long som_get_symtab_upper_bound PARAMS ((bfd *));
167static long som_canonicalize_reloc PARAMS ((bfd *, sec_ptr,
168 arelent **, asymbol **));
169static long som_get_reloc_upper_bound PARAMS ((bfd *, sec_ptr));
170static unsigned int som_set_reloc_info PARAMS ((unsigned char *, unsigned int,
171 arelent *, asection *,
172 asymbol **, boolean));
173static boolean som_slurp_reloc_table PARAMS ((bfd *, asection *,
174 asymbol **, boolean));
175static long som_get_symtab PARAMS ((bfd *, asymbol **));
176static asymbol * som_make_empty_symbol PARAMS ((bfd *));
177static void som_print_symbol PARAMS ((bfd *, PTR,
178 asymbol *, bfd_print_symbol_type));
179static boolean som_new_section_hook PARAMS ((bfd *, asection *));
180static boolean som_bfd_copy_private_symbol_data PARAMS ((bfd *, asymbol *,
181 bfd *, asymbol *));
182static boolean som_bfd_copy_private_section_data PARAMS ((bfd *, asection *,
183 bfd *, asection *));
184static boolean som_bfd_copy_private_bfd_data PARAMS ((bfd *, bfd *));
185#define som_bfd_merge_private_bfd_data _bfd_generic_bfd_merge_private_bfd_data
186#define som_bfd_set_private_flags _bfd_generic_bfd_set_private_flags
187static boolean som_bfd_is_local_label_name PARAMS ((bfd *, const char *));
188static boolean som_set_section_contents PARAMS ((bfd *, sec_ptr, PTR,
189 file_ptr, bfd_size_type));
190static boolean som_get_section_contents PARAMS ((bfd *, sec_ptr, PTR,
191 file_ptr, bfd_size_type));
192static boolean som_set_arch_mach PARAMS ((bfd *, enum bfd_architecture,
193 unsigned long));
194static boolean som_find_nearest_line PARAMS ((bfd *, asection *,
195 asymbol **, bfd_vma,
196 CONST char **,
197 CONST char **,
198 unsigned int *));
199static void som_get_symbol_info PARAMS ((bfd *, asymbol *, symbol_info *));
200static asection * bfd_section_from_som_symbol PARAMS ((bfd *,
201 struct symbol_dictionary_record *));
202static int log2 PARAMS ((unsigned int));
203static bfd_reloc_status_type hppa_som_reloc PARAMS ((bfd *, arelent *,
204 asymbol *, PTR,
205 asection *, bfd *,
206 char **));
207static void som_initialize_reloc_queue PARAMS ((struct reloc_queue *));
208static void som_reloc_queue_insert PARAMS ((unsigned char *, unsigned int,
209 struct reloc_queue *));
210static void som_reloc_queue_fix PARAMS ((struct reloc_queue *, unsigned int));
211static int som_reloc_queue_find PARAMS ((unsigned char *, unsigned int,
212 struct reloc_queue *));
213static unsigned char * try_prev_fixup PARAMS ((bfd *, int *, unsigned char *,
214 unsigned int,
215 struct reloc_queue *));
216
217static unsigned char * som_reloc_skip PARAMS ((bfd *, unsigned int,
218 unsigned char *, unsigned int *,
219 struct reloc_queue *));
220static unsigned char * som_reloc_addend PARAMS ((bfd *, int, unsigned char *,
221 unsigned int *,
222 struct reloc_queue *));
223static unsigned char * som_reloc_call PARAMS ((bfd *, unsigned char *,
224 unsigned int *,
225 arelent *, int,
226 struct reloc_queue *));
227static unsigned long som_count_spaces PARAMS ((bfd *));
228static unsigned long som_count_subspaces PARAMS ((bfd *));
229static int compare_syms PARAMS ((const void *, const void *));
230static int compare_subspaces PARAMS ((const void *, const void *));
231static unsigned long som_compute_checksum PARAMS ((bfd *));
232static boolean som_prep_headers PARAMS ((bfd *));
233static int som_sizeof_headers PARAMS ((bfd *, boolean));
234static boolean som_finish_writing PARAMS ((bfd *));
235static boolean som_build_and_write_symbol_table PARAMS ((bfd *));
236static void som_prep_for_fixups PARAMS ((bfd *, asymbol **, unsigned long));
237static boolean som_write_fixups PARAMS ((bfd *, unsigned long, unsigned int *));
238static boolean som_write_space_strings PARAMS ((bfd *, unsigned long,
239 unsigned int *));
240static boolean som_write_symbol_strings PARAMS ((bfd *, unsigned long,
241 asymbol **, unsigned int,
242 unsigned *,
243 COMPUNIT *));
244static boolean som_begin_writing PARAMS ((bfd *));
245static reloc_howto_type * som_bfd_reloc_type_lookup
246 PARAMS ((bfd *, bfd_reloc_code_real_type));
247static char som_section_type PARAMS ((const char *));
248static int som_decode_symclass PARAMS ((asymbol *));
249static boolean som_bfd_count_ar_symbols PARAMS ((bfd *, struct lst_header *,
250 symindex *));
251
252static boolean som_bfd_fill_in_ar_symbols PARAMS ((bfd *, struct lst_header *,
253 carsym **syms));
254static boolean som_slurp_armap PARAMS ((bfd *));
255static boolean som_write_armap PARAMS ((bfd *, unsigned int, struct orl *,
256 unsigned int, int));
257static void som_bfd_derive_misc_symbol_info PARAMS ((bfd *, asymbol *,
258 struct som_misc_symbol_info *));
259static boolean som_bfd_prep_for_ar_write PARAMS ((bfd *, unsigned int *,
260 unsigned int *));
261static unsigned int som_bfd_ar_symbol_hash PARAMS ((asymbol *));
262static boolean som_bfd_ar_write_symbol_stuff PARAMS ((bfd *, unsigned int,
263 unsigned int,
264 struct lst_header,
265 unsigned int));
266static boolean som_is_space PARAMS ((asection *));
267static boolean som_is_subspace PARAMS ((asection *));
268static boolean som_is_container PARAMS ((asection *, asection *));
269static boolean som_bfd_free_cached_info PARAMS ((bfd *));
270static boolean som_bfd_link_split_section PARAMS ((bfd *, asection *));
271
272/* Map SOM section names to POSIX/BSD single-character symbol types.
273
274 This table includes all the standard subspaces as defined in the
275 current "PRO ABI for PA-RISC Systems", $UNWIND$ which for
276 some reason was left out, and sections specific to embedded stabs. */
277
278static const struct section_to_type stt[] = {
279 {"$TEXT$", 't'},
280 {"$SHLIB_INFO$", 't'},
281 {"$MILLICODE$", 't'},
282 {"$LIT$", 't'},
283 {"$CODE$", 't'},
284 {"$UNWIND_START$", 't'},
285 {"$UNWIND$", 't'},
286 {"$PRIVATE$", 'd'},
287 {"$PLT$", 'd'},
288 {"$SHLIB_DATA$", 'd'},
289 {"$DATA$", 'd'},
290 {"$SHORTDATA$", 'g'},
291 {"$DLT$", 'd'},
292 {"$GLOBAL$", 'g'},
293 {"$SHORTBSS$", 's'},
294 {"$BSS$", 'b'},
295 {"$GDB_STRINGS$", 'N'},
296 {"$GDB_SYMBOLS$", 'N'},
297 {0, 0}
298};
299
300/* About the relocation formatting table...
301
302 There are 256 entries in the table, one for each possible
303 relocation opcode available in SOM. We index the table by
304 the relocation opcode. The names and operations are those
305 defined by a.out_800 (4).
306
307 Right now this table is only used to count and perform minimal
308 processing on relocation streams so that they can be internalized
309 into BFD and symbolically printed by utilities. To make actual use
310 of them would be much more difficult, BFD's concept of relocations
311 is far too simple to handle SOM relocations. The basic assumption
312 that a relocation can be completely processed independent of other
313 relocations before an object file is written is invalid for SOM.
314
315 The SOM relocations are meant to be processed as a stream, they
316 specify copying of data from the input section to the output section
317 while possibly modifying the data in some manner. They also can
318 specify that a variable number of zeros or uninitialized data be
319 inserted on in the output segment at the current offset. Some
320 relocations specify that some previous relocation be re-applied at
321 the current location in the input/output sections. And finally a number
322 of relocations have effects on other sections (R_ENTRY, R_EXIT,
323 R_UNWIND_AUX and a variety of others). There isn't even enough room
324 in the BFD relocation data structure to store enough information to
325 perform all the relocations.
326
327 Each entry in the table has three fields.
328
329 The first entry is an index into this "class" of relocations. This
330 index can then be used as a variable within the relocation itself.
331
332 The second field is a format string which actually controls processing
333 of the relocation. It uses a simple postfix machine to do calculations
334 based on variables/constants found in the string and the relocation
335 stream.
336
337 The third field specifys whether or not this relocation may use
338 a constant (V) from the previous R_DATA_OVERRIDE rather than a constant
339 stored in the instruction.
340
341 Variables:
342
343 L = input space byte count
344 D = index into class of relocations
345 M = output space byte count
346 N = statement number (unused?)
347 O = stack operation
348 R = parameter relocation bits
349 S = symbol index
350 T = first 32 bits of stack unwind information
351 U = second 32 bits of stack unwind information
352 V = a literal constant (usually used in the next relocation)
353 P = a previous relocation
354
355 Lower case letters (starting with 'b') refer to following
356 bytes in the relocation stream. 'b' is the next 1 byte,
357 c is the next 2 bytes, d is the next 3 bytes, etc...
358 This is the variable part of the relocation entries that
359 makes our life a living hell.
360
361 numerical constants are also used in the format string. Note
362 the constants are represented in decimal.
363
364 '+', "*" and "=" represents the obvious postfix operators.
365 '<' represents a left shift.
366
367 Stack Operations:
368
369 Parameter Relocation Bits:
370
371 Unwind Entries:
372
373 Previous Relocations: The index field represents which in the queue
374 of 4 previous fixups should be re-applied.
375
376 Literal Constants: These are generally used to represent addend
377 parts of relocations when these constants are not stored in the
378 fields of the instructions themselves. For example the instruction
379 addil foo-$global$-0x1234 would use an override for "0x1234" rather
380 than storing it into the addil itself. */
381
382struct fixup_format
383{
384 int D;
385 char *format;
386};
387
388static const struct fixup_format som_fixup_formats[256] =
389{
390 /* R_NO_RELOCATION */
391 0, "LD1+4*=", /* 0x00 */
392 1, "LD1+4*=", /* 0x01 */
393 2, "LD1+4*=", /* 0x02 */
394 3, "LD1+4*=", /* 0x03 */
395 4, "LD1+4*=", /* 0x04 */
396 5, "LD1+4*=", /* 0x05 */
397 6, "LD1+4*=", /* 0x06 */
398 7, "LD1+4*=", /* 0x07 */
399 8, "LD1+4*=", /* 0x08 */
400 9, "LD1+4*=", /* 0x09 */
401 10, "LD1+4*=", /* 0x0a */
402 11, "LD1+4*=", /* 0x0b */
403 12, "LD1+4*=", /* 0x0c */
404 13, "LD1+4*=", /* 0x0d */
405 14, "LD1+4*=", /* 0x0e */
406 15, "LD1+4*=", /* 0x0f */
407 16, "LD1+4*=", /* 0x10 */
408 17, "LD1+4*=", /* 0x11 */
409 18, "LD1+4*=", /* 0x12 */
410 19, "LD1+4*=", /* 0x13 */
411 20, "LD1+4*=", /* 0x14 */
412 21, "LD1+4*=", /* 0x15 */
413 22, "LD1+4*=", /* 0x16 */
414 23, "LD1+4*=", /* 0x17 */
415 0, "LD8<b+1+4*=", /* 0x18 */
416 1, "LD8<b+1+4*=", /* 0x19 */
417 2, "LD8<b+1+4*=", /* 0x1a */
418 3, "LD8<b+1+4*=", /* 0x1b */
419 0, "LD16<c+1+4*=", /* 0x1c */
420 1, "LD16<c+1+4*=", /* 0x1d */
421 2, "LD16<c+1+4*=", /* 0x1e */
422 0, "Ld1+=", /* 0x1f */
423 /* R_ZEROES */
424 0, "Lb1+4*=", /* 0x20 */
425 1, "Ld1+=", /* 0x21 */
426 /* R_UNINIT */
427 0, "Lb1+4*=", /* 0x22 */
428 1, "Ld1+=", /* 0x23 */
429 /* R_RELOCATION */
430 0, "L4=", /* 0x24 */
431 /* R_DATA_ONE_SYMBOL */
432 0, "L4=Sb=", /* 0x25 */
433 1, "L4=Sd=", /* 0x26 */
434 /* R_DATA_PLEBEL */
435 0, "L4=Sb=", /* 0x27 */
436 1, "L4=Sd=", /* 0x28 */
437 /* R_SPACE_REF */
438 0, "L4=", /* 0x29 */
439 /* R_REPEATED_INIT */
440 0, "L4=Mb1+4*=", /* 0x2a */
441 1, "Lb4*=Mb1+L*=", /* 0x2b */
442 2, "Lb4*=Md1+4*=", /* 0x2c */
443 3, "Ld1+=Me1+=", /* 0x2d */
252b5132 444 0, "", /* 0x2e */
252b5132
RH
445 0, "", /* 0x2f */
446 /* R_PCREL_CALL */
447 0, "L4=RD=Sb=", /* 0x30 */
448 1, "L4=RD=Sb=", /* 0x31 */
449 2, "L4=RD=Sb=", /* 0x32 */
450 3, "L4=RD=Sb=", /* 0x33 */
451 4, "L4=RD=Sb=", /* 0x34 */
452 5, "L4=RD=Sb=", /* 0x35 */
453 6, "L4=RD=Sb=", /* 0x36 */
454 7, "L4=RD=Sb=", /* 0x37 */
455 8, "L4=RD=Sb=", /* 0x38 */
456 9, "L4=RD=Sb=", /* 0x39 */
457 0, "L4=RD8<b+=Sb=",/* 0x3a */
458 1, "L4=RD8<b+=Sb=",/* 0x3b */
459 0, "L4=RD8<b+=Sd=",/* 0x3c */
460 1, "L4=RD8<b+=Sd=",/* 0x3d */
c1006781 461 /* R_SHORT_PCREL_MODE */
252b5132 462 0, "", /* 0x3e */
c1006781 463 /* R_LONG_PCREL_MODE */
252b5132
RH
464 0, "", /* 0x3f */
465 /* R_ABS_CALL */
466 0, "L4=RD=Sb=", /* 0x40 */
467 1, "L4=RD=Sb=", /* 0x41 */
468 2, "L4=RD=Sb=", /* 0x42 */
469 3, "L4=RD=Sb=", /* 0x43 */
470 4, "L4=RD=Sb=", /* 0x44 */
471 5, "L4=RD=Sb=", /* 0x45 */
472 6, "L4=RD=Sb=", /* 0x46 */
473 7, "L4=RD=Sb=", /* 0x47 */
474 8, "L4=RD=Sb=", /* 0x48 */
475 9, "L4=RD=Sb=", /* 0x49 */
476 0, "L4=RD8<b+=Sb=",/* 0x4a */
477 1, "L4=RD8<b+=Sb=",/* 0x4b */
478 0, "L4=RD8<b+=Sd=",/* 0x4c */
479 1, "L4=RD8<b+=Sd=",/* 0x4d */
480 /* R_RESERVED */
481 0, "", /* 0x4e */
482 0, "", /* 0x4f */
483 /* R_DP_RELATIVE */
484 0, "L4=SD=", /* 0x50 */
485 1, "L4=SD=", /* 0x51 */
486 2, "L4=SD=", /* 0x52 */
487 3, "L4=SD=", /* 0x53 */
488 4, "L4=SD=", /* 0x54 */
489 5, "L4=SD=", /* 0x55 */
490 6, "L4=SD=", /* 0x56 */
491 7, "L4=SD=", /* 0x57 */
492 8, "L4=SD=", /* 0x58 */
493 9, "L4=SD=", /* 0x59 */
494 10, "L4=SD=", /* 0x5a */
495 11, "L4=SD=", /* 0x5b */
496 12, "L4=SD=", /* 0x5c */
497 13, "L4=SD=", /* 0x5d */
498 14, "L4=SD=", /* 0x5e */
499 15, "L4=SD=", /* 0x5f */
500 16, "L4=SD=", /* 0x60 */
501 17, "L4=SD=", /* 0x61 */
502 18, "L4=SD=", /* 0x62 */
503 19, "L4=SD=", /* 0x63 */
504 20, "L4=SD=", /* 0x64 */
505 21, "L4=SD=", /* 0x65 */
506 22, "L4=SD=", /* 0x66 */
507 23, "L4=SD=", /* 0x67 */
508 24, "L4=SD=", /* 0x68 */
509 25, "L4=SD=", /* 0x69 */
510 26, "L4=SD=", /* 0x6a */
511 27, "L4=SD=", /* 0x6b */
512 28, "L4=SD=", /* 0x6c */
513 29, "L4=SD=", /* 0x6d */
514 30, "L4=SD=", /* 0x6e */
515 31, "L4=SD=", /* 0x6f */
516 32, "L4=Sb=", /* 0x70 */
517 33, "L4=Sd=", /* 0x71 */
518 /* R_RESERVED */
519 0, "", /* 0x72 */
520 0, "", /* 0x73 */
521 0, "", /* 0x74 */
522 0, "", /* 0x75 */
523 0, "", /* 0x76 */
524 0, "", /* 0x77 */
525 /* R_DLT_REL */
526 0, "L4=Sb=", /* 0x78 */
527 1, "L4=Sd=", /* 0x79 */
528 /* R_RESERVED */
529 0, "", /* 0x7a */
530 0, "", /* 0x7b */
531 0, "", /* 0x7c */
532 0, "", /* 0x7d */
533 0, "", /* 0x7e */
534 0, "", /* 0x7f */
535 /* R_CODE_ONE_SYMBOL */
536 0, "L4=SD=", /* 0x80 */
537 1, "L4=SD=", /* 0x81 */
538 2, "L4=SD=", /* 0x82 */
539 3, "L4=SD=", /* 0x83 */
540 4, "L4=SD=", /* 0x84 */
541 5, "L4=SD=", /* 0x85 */
542 6, "L4=SD=", /* 0x86 */
543 7, "L4=SD=", /* 0x87 */
544 8, "L4=SD=", /* 0x88 */
545 9, "L4=SD=", /* 0x89 */
546 10, "L4=SD=", /* 0x8q */
547 11, "L4=SD=", /* 0x8b */
548 12, "L4=SD=", /* 0x8c */
549 13, "L4=SD=", /* 0x8d */
550 14, "L4=SD=", /* 0x8e */
551 15, "L4=SD=", /* 0x8f */
552 16, "L4=SD=", /* 0x90 */
553 17, "L4=SD=", /* 0x91 */
554 18, "L4=SD=", /* 0x92 */
555 19, "L4=SD=", /* 0x93 */
556 20, "L4=SD=", /* 0x94 */
557 21, "L4=SD=", /* 0x95 */
558 22, "L4=SD=", /* 0x96 */
559 23, "L4=SD=", /* 0x97 */
560 24, "L4=SD=", /* 0x98 */
561 25, "L4=SD=", /* 0x99 */
562 26, "L4=SD=", /* 0x9a */
563 27, "L4=SD=", /* 0x9b */
564 28, "L4=SD=", /* 0x9c */
565 29, "L4=SD=", /* 0x9d */
566 30, "L4=SD=", /* 0x9e */
567 31, "L4=SD=", /* 0x9f */
568 32, "L4=Sb=", /* 0xa0 */
569 33, "L4=Sd=", /* 0xa1 */
570 /* R_RESERVED */
571 0, "", /* 0xa2 */
572 0, "", /* 0xa3 */
573 0, "", /* 0xa4 */
574 0, "", /* 0xa5 */
575 0, "", /* 0xa6 */
576 0, "", /* 0xa7 */
577 0, "", /* 0xa8 */
578 0, "", /* 0xa9 */
579 0, "", /* 0xaa */
580 0, "", /* 0xab */
581 0, "", /* 0xac */
582 0, "", /* 0xad */
583 /* R_MILLI_REL */
584 0, "L4=Sb=", /* 0xae */
585 1, "L4=Sd=", /* 0xaf */
586 /* R_CODE_PLABEL */
587 0, "L4=Sb=", /* 0xb0 */
588 1, "L4=Sd=", /* 0xb1 */
589 /* R_BREAKPOINT */
590 0, "L4=", /* 0xb2 */
591 /* R_ENTRY */
592 0, "Te=Ue=", /* 0xb3 */
593 1, "Uf=", /* 0xb4 */
594 /* R_ALT_ENTRY */
595 0, "", /* 0xb5 */
596 /* R_EXIT */
597 0, "", /* 0xb6 */
598 /* R_BEGIN_TRY */
599 0, "", /* 0xb7 */
600 /* R_END_TRY */
601 0, "R0=", /* 0xb8 */
602 1, "Rb4*=", /* 0xb9 */
603 2, "Rd4*=", /* 0xba */
604 /* R_BEGIN_BRTAB */
605 0, "", /* 0xbb */
606 /* R_END_BRTAB */
607 0, "", /* 0xbc */
608 /* R_STATEMENT */
609 0, "Nb=", /* 0xbd */
610 1, "Nc=", /* 0xbe */
611 2, "Nd=", /* 0xbf */
612 /* R_DATA_EXPR */
613 0, "L4=", /* 0xc0 */
614 /* R_CODE_EXPR */
615 0, "L4=", /* 0xc1 */
616 /* R_FSEL */
617 0, "", /* 0xc2 */
618 /* R_LSEL */
619 0, "", /* 0xc3 */
620 /* R_RSEL */
621 0, "", /* 0xc4 */
622 /* R_N_MODE */
623 0, "", /* 0xc5 */
624 /* R_S_MODE */
625 0, "", /* 0xc6 */
626 /* R_D_MODE */
627 0, "", /* 0xc7 */
628 /* R_R_MODE */
629 0, "", /* 0xc8 */
630 /* R_DATA_OVERRIDE */
631 0, "V0=", /* 0xc9 */
632 1, "Vb=", /* 0xca */
633 2, "Vc=", /* 0xcb */
634 3, "Vd=", /* 0xcc */
635 4, "Ve=", /* 0xcd */
636 /* R_TRANSLATED */
637 0, "", /* 0xce */
832fc202
JL
638 /* R_AUX_UNWIND */
639 0, "Sd=Vf=Ef=", /* 0xcf */
252b5132
RH
640 /* R_COMP1 */
641 0, "Ob=", /* 0xd0 */
642 /* R_COMP2 */
643 0, "Ob=Sd=", /* 0xd1 */
644 /* R_COMP3 */
645 0, "Ob=Ve=", /* 0xd2 */
646 /* R_PREV_FIXUP */
647 0, "P", /* 0xd3 */
648 1, "P", /* 0xd4 */
649 2, "P", /* 0xd5 */
650 3, "P", /* 0xd6 */
651 /* R_SEC_STMT */
652 0, "", /* 0xd7 */
653 /* R_N0SEL */
654 0, "", /* 0xd8 */
655 /* R_N1SEL */
656 0, "", /* 0xd9 */
657 /* R_LINETAB */
832fc202 658 0, "Eb=Sd=Ve=", /* 0xda */
252b5132 659 /* R_LINETAB_ESC */
832fc202 660 0, "Eb=Mb=", /* 0xdb */
252b5132
RH
661 /* R_LTP_OVERRIDE */
662 0, "", /* 0xdc */
663 /* R_COMMENT */
832fc202 664 0, "Ob=Ve=", /* 0xdd */
252b5132
RH
665 /* R_RESERVED */
666 0, "", /* 0xde */
667 0, "", /* 0xdf */
668 0, "", /* 0xe0 */
669 0, "", /* 0xe1 */
670 0, "", /* 0xe2 */
671 0, "", /* 0xe3 */
672 0, "", /* 0xe4 */
673 0, "", /* 0xe5 */
674 0, "", /* 0xe6 */
675 0, "", /* 0xe7 */
676 0, "", /* 0xe8 */
677 0, "", /* 0xe9 */
678 0, "", /* 0xea */
679 0, "", /* 0xeb */
680 0, "", /* 0xec */
681 0, "", /* 0xed */
682 0, "", /* 0xee */
683 0, "", /* 0xef */
684 0, "", /* 0xf0 */
685 0, "", /* 0xf1 */
686 0, "", /* 0xf2 */
687 0, "", /* 0xf3 */
688 0, "", /* 0xf4 */
689 0, "", /* 0xf5 */
690 0, "", /* 0xf6 */
691 0, "", /* 0xf7 */
692 0, "", /* 0xf8 */
693 0, "", /* 0xf9 */
694 0, "", /* 0xfa */
695 0, "", /* 0xfb */
696 0, "", /* 0xfc */
697 0, "", /* 0xfd */
698 0, "", /* 0xfe */
699 0, "", /* 0xff */
700};
701
702static const int comp1_opcodes[] =
703{
704 0x00,
705 0x40,
706 0x41,
707 0x42,
708 0x43,
709 0x44,
710 0x45,
711 0x46,
712 0x47,
713 0x48,
714 0x49,
715 0x4a,
716 0x4b,
717 0x60,
718 0x80,
719 0xa0,
720 0xc0,
721 -1
722};
723
724static const int comp2_opcodes[] =
725{
726 0x00,
727 0x80,
728 0x82,
729 0xc0,
730 -1
731};
732
733static const int comp3_opcodes[] =
734{
735 0x00,
736 0x02,
737 -1
738};
739
740/* These apparently are not in older versions of hpux reloc.h (hpux7). */
741#ifndef R_DLT_REL
742#define R_DLT_REL 0x78
743#endif
744
745#ifndef R_AUX_UNWIND
746#define R_AUX_UNWIND 0xcf
747#endif
748
749#ifndef R_SEC_STMT
750#define R_SEC_STMT 0xd7
751#endif
752
753/* And these first appeared in hpux10. */
754#ifndef R_SHORT_PCREL_MODE
2667095f 755#define NO_PCREL_MODES
252b5132
RH
756#define R_SHORT_PCREL_MODE 0x3e
757#endif
758
759#ifndef R_LONG_PCREL_MODE
760#define R_LONG_PCREL_MODE 0x3f
761#endif
762
763#ifndef R_N0SEL
764#define R_N0SEL 0xd8
765#endif
766
767#ifndef R_N1SEL
768#define R_N1SEL 0xd9
769#endif
770
771#ifndef R_LINETAB
772#define R_LINETAB 0xda
773#endif
774
775#ifndef R_LINETAB_ESC
776#define R_LINETAB_ESC 0xdb
777#endif
778
779#ifndef R_LTP_OVERRIDE
780#define R_LTP_OVERRIDE 0xdc
781#endif
782
783#ifndef R_COMMENT
784#define R_COMMENT 0xdd
785#endif
786
36e89602
JL
787#define SOM_HOWTO(TYPE, NAME) \
788 HOWTO(TYPE, 0, 0, 32, false, 0, 0, hppa_som_reloc, NAME, false, 0, 0, false)
789
252b5132
RH
790static reloc_howto_type som_hppa_howto_table[] =
791{
792 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
793 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
794 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
795 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
796 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
797 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
798 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
799 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
800 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
801 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
802 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
803 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
804 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
805 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
806 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
807 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
808 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
809 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
810 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
811 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
812 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
813 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
814 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
815 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
816 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
817 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
818 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
819 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
820 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
821 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
822 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
823 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
824 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
825 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
826 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
827 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
828 {R_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RELOCATION"},
829 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
830 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
831 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
832 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
833 {R_SPACE_REF, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SPACE_REF"},
834 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
835 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
836 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
837 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
838 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
839 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
840 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
841 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
842 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
843 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
844 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
845 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
846 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
847 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
848 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
849 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
850 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
851 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
852 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
853 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
854 {R_SHORT_PCREL_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SHORT_PCREL_MODE"},
855 {R_LONG_PCREL_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_LONG_PCREL_MODE"},
856 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
857 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
858 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
859 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
860 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
861 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
862 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
863 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
864 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
865 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
866 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
867 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
868 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
869 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
870 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
871 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
872 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
873 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
874 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
875 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
876 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
877 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
878 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
879 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
880 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
881 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
882 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
883 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
884 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
885 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
886 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
887 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
888 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
889 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
890 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
891 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
892 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
893 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
894 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
895 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
896 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
897 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
898 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
899 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
900 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
901 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
902 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
903 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
904 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
905 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
906 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
907 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
908 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
909 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
910 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
911 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
912 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
913 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
914 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
915 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
916 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
917 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
918 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
919 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
920 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
921 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
922 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
923 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
924 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
925 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
926 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
927 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
928 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
929 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
930 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
931 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
932 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
933 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
934 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
935 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
936 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
937 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
938 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
939 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
940 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
941 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
942 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
943 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
944 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
945 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
946 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
947 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
948 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
949 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
950 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
951 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
952 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
953 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
954 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
955 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
956 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
957 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
958 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
959 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
960 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
961 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
962 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
963 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
964 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
965 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
966 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
967 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
968 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
969 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
970 {R_BREAKPOINT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BREAKPOINT"},
971 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
972 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
973 {R_ALT_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ALT_ENTRY"},
974 {R_EXIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_EXIT"},
975 {R_BEGIN_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_TRY"},
976 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
977 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
978 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
979 {R_BEGIN_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_BRTAB"},
980 {R_END_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_BRTAB"},
981 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
982 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
983 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
984 {R_DATA_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_EXPR"},
985 {R_CODE_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_EXPR"},
986 {R_FSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_FSEL"},
987 {R_LSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_LSEL"},
988 {R_RSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RSEL"},
989 {R_N_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_N_MODE"},
990 {R_S_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_S_MODE"},
991 {R_D_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_D_MODE"},
992 {R_R_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_R_MODE"},
993 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
994 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
995 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
996 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
997 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
998 {R_TRANSLATED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_TRANSLATED"},
999 {R_AUX_UNWIND, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_AUX_UNWIND"},
1000 {R_COMP1, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP1"},
1001 {R_COMP2, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP2"},
1002 {R_COMP3, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP3"},
1003 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
1004 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
1005 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
1006 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
1007 {R_SEC_STMT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SEC_STMT"},
1008 {R_N0SEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_N0SEL"},
1009 {R_N1SEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_N1SEL"},
1010 {R_LINETAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_LINETAB"},
1011 {R_LINETAB_ESC, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_LINETAB_ESC"},
1012 {R_LTP_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_LTP_OVERRIDE"},
1013 {R_COMMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMMENT"},
1014 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1015 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1016 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1017 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1018 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1019 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1020 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1021 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1022 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1023 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1024 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1025 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1026 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1027 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1028 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1029 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1030 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1031 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1032 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1033 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1034 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1035 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1036 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1037 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1038 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1039 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1040 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1041 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1042 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1043 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1044 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1045 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1046 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1047 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}};
1048
1049/* Initialize the SOM relocation queue. By definition the queue holds
1050 the last four multibyte fixups. */
1051
1052static void
1053som_initialize_reloc_queue (queue)
1054 struct reloc_queue *queue;
1055{
1056 queue[0].reloc = NULL;
1057 queue[0].size = 0;
1058 queue[1].reloc = NULL;
1059 queue[1].size = 0;
1060 queue[2].reloc = NULL;
1061 queue[2].size = 0;
1062 queue[3].reloc = NULL;
1063 queue[3].size = 0;
1064}
1065
1066/* Insert a new relocation into the relocation queue. */
1067
1068static void
1069som_reloc_queue_insert (p, size, queue)
1070 unsigned char *p;
1071 unsigned int size;
1072 struct reloc_queue *queue;
1073{
1074 queue[3].reloc = queue[2].reloc;
1075 queue[3].size = queue[2].size;
1076 queue[2].reloc = queue[1].reloc;
1077 queue[2].size = queue[1].size;
1078 queue[1].reloc = queue[0].reloc;
1079 queue[1].size = queue[0].size;
1080 queue[0].reloc = p;
1081 queue[0].size = size;
1082}
1083
1084/* When an entry in the relocation queue is reused, the entry moves
1085 to the front of the queue. */
1086
1087static void
1088som_reloc_queue_fix (queue, index)
1089 struct reloc_queue *queue;
1090 unsigned int index;
1091{
1092 if (index == 0)
1093 return;
1094
1095 if (index == 1)
1096 {
1097 unsigned char *tmp1 = queue[0].reloc;
1098 unsigned int tmp2 = queue[0].size;
1099 queue[0].reloc = queue[1].reloc;
1100 queue[0].size = queue[1].size;
1101 queue[1].reloc = tmp1;
1102 queue[1].size = tmp2;
1103 return;
1104 }
1105
1106 if (index == 2)
1107 {
1108 unsigned char *tmp1 = queue[0].reloc;
1109 unsigned int tmp2 = queue[0].size;
1110 queue[0].reloc = queue[2].reloc;
1111 queue[0].size = queue[2].size;
1112 queue[2].reloc = queue[1].reloc;
1113 queue[2].size = queue[1].size;
1114 queue[1].reloc = tmp1;
1115 queue[1].size = tmp2;
1116 return;
1117 }
1118
1119 if (index == 3)
1120 {
1121 unsigned char *tmp1 = queue[0].reloc;
1122 unsigned int tmp2 = queue[0].size;
1123 queue[0].reloc = queue[3].reloc;
1124 queue[0].size = queue[3].size;
1125 queue[3].reloc = queue[2].reloc;
1126 queue[3].size = queue[2].size;
1127 queue[2].reloc = queue[1].reloc;
1128 queue[2].size = queue[1].size;
1129 queue[1].reloc = tmp1;
1130 queue[1].size = tmp2;
1131 return;
1132 }
1133 abort();
1134}
1135
1136/* Search for a particular relocation in the relocation queue. */
1137
1138static int
1139som_reloc_queue_find (p, size, queue)
1140 unsigned char *p;
1141 unsigned int size;
1142 struct reloc_queue *queue;
1143{
1144 if (queue[0].reloc && !memcmp (p, queue[0].reloc, size)
1145 && size == queue[0].size)
1146 return 0;
1147 if (queue[1].reloc && !memcmp (p, queue[1].reloc, size)
1148 && size == queue[1].size)
1149 return 1;
1150 if (queue[2].reloc && !memcmp (p, queue[2].reloc, size)
1151 && size == queue[2].size)
1152 return 2;
1153 if (queue[3].reloc && !memcmp (p, queue[3].reloc, size)
1154 && size == queue[3].size)
1155 return 3;
1156 return -1;
1157}
1158
1159static unsigned char *
1160try_prev_fixup (abfd, subspace_reloc_sizep, p, size, queue)
1161 bfd *abfd;
1162 int *subspace_reloc_sizep;
1163 unsigned char *p;
1164 unsigned int size;
1165 struct reloc_queue *queue;
1166{
1167 int queue_index = som_reloc_queue_find (p, size, queue);
1168
1169 if (queue_index != -1)
1170 {
1171 /* Found this in a previous fixup. Undo the fixup we
1172 just built and use R_PREV_FIXUP instead. We saved
1173 a total of size - 1 bytes in the fixup stream. */
1174 bfd_put_8 (abfd, R_PREV_FIXUP + queue_index, p);
1175 p += 1;
1176 *subspace_reloc_sizep += 1;
1177 som_reloc_queue_fix (queue, queue_index);
1178 }
1179 else
1180 {
1181 som_reloc_queue_insert (p, size, queue);
1182 *subspace_reloc_sizep += size;
1183 p += size;
1184 }
1185 return p;
1186}
1187
1188/* Emit the proper R_NO_RELOCATION fixups to map the next SKIP
1189 bytes without any relocation. Update the size of the subspace
1190 relocation stream via SUBSPACE_RELOC_SIZE_P; also return the
1191 current pointer into the relocation stream. */
1192
1193static unsigned char *
1194som_reloc_skip (abfd, skip, p, subspace_reloc_sizep, queue)
1195 bfd *abfd;
1196 unsigned int skip;
1197 unsigned char *p;
1198 unsigned int *subspace_reloc_sizep;
1199 struct reloc_queue *queue;
1200{
1201 /* Use a 4 byte R_NO_RELOCATION entry with a maximal value
1202 then R_PREV_FIXUPs to get the difference down to a
1203 reasonable size. */
1204 if (skip >= 0x1000000)
1205 {
1206 skip -= 0x1000000;
1207 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1208 bfd_put_8 (abfd, 0xff, p + 1);
1209 bfd_put_16 (abfd, 0xffff, p + 2);
1210 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1211 while (skip >= 0x1000000)
1212 {
1213 skip -= 0x1000000;
1214 bfd_put_8 (abfd, R_PREV_FIXUP, p);
1215 p++;
1216 *subspace_reloc_sizep += 1;
1217 /* No need to adjust queue here since we are repeating the
1218 most recent fixup. */
1219 }
1220 }
1221
1222 /* The difference must be less than 0x1000000. Use one
1223 more R_NO_RELOCATION entry to get to the right difference. */
1224 if ((skip & 3) == 0 && skip <= 0xc0000 && skip > 0)
1225 {
1226 /* Difference can be handled in a simple single-byte
1227 R_NO_RELOCATION entry. */
1228 if (skip <= 0x60)
1229 {
1230 bfd_put_8 (abfd, R_NO_RELOCATION + (skip >> 2) - 1, p);
1231 *subspace_reloc_sizep += 1;
1232 p++;
1233 }
1234 /* Handle it with a two byte R_NO_RELOCATION entry. */
1235 else if (skip <= 0x1000)
1236 {
1237 bfd_put_8 (abfd, R_NO_RELOCATION + 24 + (((skip >> 2) - 1) >> 8), p);
1238 bfd_put_8 (abfd, (skip >> 2) - 1, p + 1);
1239 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1240 }
1241 /* Handle it with a three byte R_NO_RELOCATION entry. */
1242 else
1243 {
1244 bfd_put_8 (abfd, R_NO_RELOCATION + 28 + (((skip >> 2) - 1) >> 16), p);
1245 bfd_put_16 (abfd, (skip >> 2) - 1, p + 1);
1246 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1247 }
1248 }
1249 /* Ugh. Punt and use a 4 byte entry. */
1250 else if (skip > 0)
1251 {
1252 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1253 bfd_put_8 (abfd, (skip - 1) >> 16, p + 1);
1254 bfd_put_16 (abfd, skip - 1, p + 2);
1255 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1256 }
1257 return p;
1258}
1259
1260/* Emit the proper R_DATA_OVERRIDE fixups to handle a nonzero addend
1261 from a BFD relocation. Update the size of the subspace relocation
1262 stream via SUBSPACE_RELOC_SIZE_P; also return the current pointer
1263 into the relocation stream. */
1264
1265static unsigned char *
1266som_reloc_addend (abfd, addend, p, subspace_reloc_sizep, queue)
1267 bfd *abfd;
1268 int addend;
1269 unsigned char *p;
1270 unsigned int *subspace_reloc_sizep;
1271 struct reloc_queue *queue;
1272{
1273 if ((unsigned)(addend) + 0x80 < 0x100)
1274 {
1275 bfd_put_8 (abfd, R_DATA_OVERRIDE + 1, p);
1276 bfd_put_8 (abfd, addend, p + 1);
1277 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1278 }
1279 else if ((unsigned) (addend) + 0x8000 < 0x10000)
1280 {
1281 bfd_put_8 (abfd, R_DATA_OVERRIDE + 2, p);
1282 bfd_put_16 (abfd, addend, p + 1);
1283 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1284 }
1285 else if ((unsigned) (addend) + 0x800000 < 0x1000000)
1286 {
1287 bfd_put_8 (abfd, R_DATA_OVERRIDE + 3, p);
1288 bfd_put_8 (abfd, addend >> 16, p + 1);
1289 bfd_put_16 (abfd, addend, p + 2);
1290 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1291 }
1292 else
1293 {
1294 bfd_put_8 (abfd, R_DATA_OVERRIDE + 4, p);
1295 bfd_put_32 (abfd, addend, p + 1);
1296 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1297 }
1298 return p;
1299}
1300
1301/* Handle a single function call relocation. */
1302
1303static unsigned char *
1304som_reloc_call (abfd, p, subspace_reloc_sizep, bfd_reloc, sym_num, queue)
1305 bfd *abfd;
1306 unsigned char *p;
1307 unsigned int *subspace_reloc_sizep;
1308 arelent *bfd_reloc;
1309 int sym_num;
1310 struct reloc_queue *queue;
1311{
1312 int arg_bits = HPPA_R_ARG_RELOC (bfd_reloc->addend);
1313 int rtn_bits = arg_bits & 0x3;
1314 int type, done = 0;
1315
1316 /* You'll never believe all this is necessary to handle relocations
1317 for function calls. Having to compute and pack the argument
1318 relocation bits is the real nightmare.
1319
1320 If you're interested in how this works, just forget it. You really
1321 do not want to know about this braindamage. */
1322
1323 /* First see if this can be done with a "simple" relocation. Simple
1324 relocations have a symbol number < 0x100 and have simple encodings
1325 of argument relocations. */
1326
1327 if (sym_num < 0x100)
1328 {
1329 switch (arg_bits)
1330 {
1331 case 0:
1332 case 1:
1333 type = 0;
1334 break;
1335 case 1 << 8:
1336 case 1 << 8 | 1:
1337 type = 1;
1338 break;
1339 case 1 << 8 | 1 << 6:
1340 case 1 << 8 | 1 << 6 | 1:
1341 type = 2;
1342 break;
1343 case 1 << 8 | 1 << 6 | 1 << 4:
1344 case 1 << 8 | 1 << 6 | 1 << 4 | 1:
1345 type = 3;
1346 break;
1347 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2:
1348 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2 | 1:
1349 type = 4;
1350 break;
1351 default:
1352 /* Not one of the easy encodings. This will have to be
1353 handled by the more complex code below. */
1354 type = -1;
1355 break;
1356 }
1357 if (type != -1)
1358 {
1359 /* Account for the return value too. */
1360 if (rtn_bits)
1361 type += 5;
1362
1363 /* Emit a 2 byte relocation. Then see if it can be handled
1364 with a relocation which is already in the relocation queue. */
1365 bfd_put_8 (abfd, bfd_reloc->howto->type + type, p);
1366 bfd_put_8 (abfd, sym_num, p + 1);
1367 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1368 done = 1;
1369 }
1370 }
1371
1372 /* If this could not be handled with a simple relocation, then do a hard
1373 one. Hard relocations occur if the symbol number was too high or if
1374 the encoding of argument relocation bits is too complex. */
1375 if (! done)
1376 {
1377 /* Don't ask about these magic sequences. I took them straight
1378 from gas-1.36 which took them from the a.out man page. */
1379 type = rtn_bits;
1380 if ((arg_bits >> 6 & 0xf) == 0xe)
1381 type += 9 * 40;
1382 else
1383 type += (3 * (arg_bits >> 8 & 3) + (arg_bits >> 6 & 3)) * 40;
1384 if ((arg_bits >> 2 & 0xf) == 0xe)
1385 type += 9 * 4;
1386 else
1387 type += (3 * (arg_bits >> 4 & 3) + (arg_bits >> 2 & 3)) * 4;
1388
1389 /* Output the first two bytes of the relocation. These describe
1390 the length of the relocation and encoding style. */
1391 bfd_put_8 (abfd, bfd_reloc->howto->type + 10
1392 + 2 * (sym_num >= 0x100) + (type >= 0x100),
1393 p);
1394 bfd_put_8 (abfd, type, p + 1);
1395
1396 /* Now output the symbol index and see if this bizarre relocation
1397 just happened to be in the relocation queue. */
1398 if (sym_num < 0x100)
1399 {
1400 bfd_put_8 (abfd, sym_num, p + 2);
1401 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1402 }
1403 else
1404 {
1405 bfd_put_8 (abfd, sym_num >> 16, p + 2);
1406 bfd_put_16 (abfd, sym_num, p + 3);
1407 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1408 }
1409 }
1410 return p;
1411}
1412
1413
1414/* Return the logarithm of X, base 2, considering X unsigned.
1415 Abort -1 if X is not a power or two or is zero. */
1416
1417static int
1418log2 (x)
1419 unsigned int x;
1420{
1421 int log = 0;
1422
1423 /* Test for 0 or a power of 2. */
1424 if (x == 0 || x != (x & -x))
1425 return -1;
1426
1427 while ((x >>= 1) != 0)
1428 log++;
1429 return log;
1430}
1431
1432static bfd_reloc_status_type
1433hppa_som_reloc (abfd, reloc_entry, symbol_in, data,
1434 input_section, output_bfd, error_message)
1435 bfd *abfd;
1436 arelent *reloc_entry;
1437 asymbol *symbol_in;
1438 PTR data;
1439 asection *input_section;
1440 bfd *output_bfd;
1441 char **error_message;
1442{
1443 if (output_bfd)
1444 {
1445 reloc_entry->address += input_section->output_offset;
1446 return bfd_reloc_ok;
1447 }
1448 return bfd_reloc_ok;
1449}
1450
1451/* Given a generic HPPA relocation type, the instruction format,
1452 and a field selector, return one or more appropriate SOM relocations. */
1453
1454int **
1455hppa_som_gen_reloc_type (abfd, base_type, format, field, sym_diff, sym)
1456 bfd *abfd;
1457 int base_type;
1458 int format;
1459 enum hppa_reloc_field_selector_type_alt field;
1460 int sym_diff;
1461 asymbol *sym;
1462{
1463 int *final_type, **final_types;
1464
1465 final_types = (int **) bfd_alloc (abfd, sizeof (int *) * 6);
1466 final_type = (int *) bfd_alloc (abfd, sizeof (int));
1467 if (!final_types || !final_type)
1468 return NULL;
1469
1470 /* The field selector may require additional relocations to be
1471 generated. It's impossible to know at this moment if additional
1472 relocations will be needed, so we make them. The code to actually
1473 write the relocation/fixup stream is responsible for removing
1474 any redundant relocations. */
1475 switch (field)
1476 {
1477 case e_fsel:
1478 case e_psel:
1479 case e_lpsel:
1480 case e_rpsel:
1481 final_types[0] = final_type;
1482 final_types[1] = NULL;
1483 final_types[2] = NULL;
1484 *final_type = base_type;
1485 break;
1486
1487 case e_tsel:
1488 case e_ltsel:
1489 case e_rtsel:
1490 final_types[0] = (int *) bfd_alloc (abfd, sizeof (int));
1491 if (!final_types[0])
1492 return NULL;
1493 if (field == e_tsel)
1494 *final_types[0] = R_FSEL;
1495 else if (field == e_ltsel)
1496 *final_types[0] = R_LSEL;
1497 else
1498 *final_types[0] = R_RSEL;
1499 final_types[1] = final_type;
1500 final_types[2] = NULL;
1501 *final_type = base_type;
1502 break;
1503
1504 case e_lssel:
1505 case e_rssel:
1506 final_types[0] = (int *) bfd_alloc (abfd, sizeof (int));
1507 if (!final_types[0])
1508 return NULL;
1509 *final_types[0] = R_S_MODE;
1510 final_types[1] = final_type;
1511 final_types[2] = NULL;
1512 *final_type = base_type;
1513 break;
1514
1515 case e_lsel:
1516 case e_rsel:
1517 final_types[0] = (int *) bfd_alloc (abfd, sizeof (int));
1518 if (!final_types[0])
1519 return NULL;
1520 *final_types[0] = R_N_MODE;
1521 final_types[1] = final_type;
1522 final_types[2] = NULL;
1523 *final_type = base_type;
1524 break;
1525
1526 case e_ldsel:
1527 case e_rdsel:
1528 final_types[0] = (int *) bfd_alloc (abfd, sizeof (int));
1529 if (!final_types[0])
1530 return NULL;
1531 *final_types[0] = R_D_MODE;
1532 final_types[1] = final_type;
1533 final_types[2] = NULL;
1534 *final_type = base_type;
1535 break;
1536
1537 case e_lrsel:
1538 case e_rrsel:
1539 final_types[0] = (int *) bfd_alloc (abfd, sizeof (int));
1540 if (!final_types[0])
1541 return NULL;
1542 *final_types[0] = R_R_MODE;
1543 final_types[1] = final_type;
1544 final_types[2] = NULL;
1545 *final_type = base_type;
1546 break;
1547
1548 case e_nsel:
1549 final_types[0] = (int *) bfd_alloc (abfd, sizeof (int));
1550 if (!final_types[0])
1551 return NULL;
1552 *final_types[0] = R_N1SEL;
1553 final_types[1] = final_type;
1554 final_types[2] = NULL;
1555 *final_type = base_type;
1556 break;
1557
1558 case e_nlsel:
1559 case e_nlrsel:
1560 final_types[0] = (int *) bfd_alloc (abfd, sizeof (int));
1561 if (!final_types[0])
1562 return NULL;
1563 *final_types[0] = R_N0SEL;
1564 final_types[1] = (int *) bfd_alloc (abfd, sizeof (int));
1565 if (!final_types[1])
1566 return NULL;
1567 if (field == e_nlsel)
1568 *final_types[1] = R_N_MODE;
1569 else
1570 *final_types[1] = R_R_MODE;
1571 final_types[2] = final_type;
1572 final_types[3] = NULL;
1573 *final_type = base_type;
1574 break;
1575 }
1576
1577 switch (base_type)
1578 {
1579 case R_HPPA:
1580 /* The difference of two symbols needs *very* special handling. */
1581 if (sym_diff)
1582 {
1583 final_types[0] = (int *)bfd_alloc (abfd, sizeof (int));
1584 final_types[1] = (int *)bfd_alloc (abfd, sizeof (int));
1585 final_types[2] = (int *)bfd_alloc (abfd, sizeof (int));
1586 final_types[3] = (int *)bfd_alloc (abfd, sizeof (int));
1587 if (!final_types[0] || !final_types[1] || !final_types[2])
1588 return NULL;
1589 if (field == e_fsel)
1590 *final_types[0] = R_FSEL;
1591 else if (field == e_rsel)
1592 *final_types[0] = R_RSEL;
1593 else if (field == e_lsel)
1594 *final_types[0] = R_LSEL;
1595 *final_types[1] = R_COMP2;
1596 *final_types[2] = R_COMP2;
1597 *final_types[3] = R_COMP1;
1598 final_types[4] = final_type;
1599 if (format == 32)
1600 *final_types[4] = R_DATA_EXPR;
1601 else
1602 *final_types[4] = R_CODE_EXPR;
1603 final_types[5] = NULL;
1604 break;
1605 }
1606 /* PLABELs get their own relocation type. */
1607 else if (field == e_psel
1608 || field == e_lpsel
1609 || field == e_rpsel)
1610 {
1611 /* A PLABEL relocation that has a size of 32 bits must
1612 be a R_DATA_PLABEL. All others are R_CODE_PLABELs. */
1613 if (format == 32)
1614 *final_type = R_DATA_PLABEL;
1615 else
1616 *final_type = R_CODE_PLABEL;
1617 }
1618 /* PIC stuff. */
1619 else if (field == e_tsel
1620 || field == e_ltsel
1621 || field == e_rtsel)
1622 *final_type = R_DLT_REL;
1623 /* A relocation in the data space is always a full 32bits. */
1624 else if (format == 32)
1625 {
1626 *final_type = R_DATA_ONE_SYMBOL;
1627
1628 /* If there's no SOM symbol type associated with this BFD
1629 symbol, then set the symbol type to ST_DATA.
1630
1631 Only do this if the type is going to default later when
1632 we write the object file.
1633
1634 This is done so that the linker never encounters an
1635 R_DATA_ONE_SYMBOL reloc involving an ST_CODE symbol.
1636
1637 This allows the compiler to generate exception handling
1638 tables.
1639
1640 Note that one day we may need to also emit BEGIN_BRTAB and
1641 END_BRTAB to prevent the linker from optimizing away insns
1642 in exception handling regions. */
1643 if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
1644 && (sym->flags & BSF_SECTION_SYM) == 0
1645 && (sym->flags & BSF_FUNCTION) == 0
1646 && ! bfd_is_com_section (sym->section))
1647 som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA;
1648 }
1649 break;
1650
1651
1652 case R_HPPA_GOTOFF:
1653 /* More PLABEL special cases. */
1654 if (field == e_psel
1655 || field == e_lpsel
1656 || field == e_rpsel)
1657 *final_type = R_DATA_PLABEL;
1658 break;
1659
1660 case R_HPPA_COMPLEX:
1661 /* The difference of two symbols needs *very* special handling. */
1662 if (sym_diff)
1663 {
1664 final_types[0] = (int *)bfd_alloc (abfd, sizeof (int));
1665 final_types[1] = (int *)bfd_alloc (abfd, sizeof (int));
1666 final_types[2] = (int *)bfd_alloc (abfd, sizeof (int));
1667 final_types[3] = (int *)bfd_alloc (abfd, sizeof (int));
1668 if (!final_types[0] || !final_types[1] || !final_types[2])
1669 return NULL;
1670 if (field == e_fsel)
1671 *final_types[0] = R_FSEL;
1672 else if (field == e_rsel)
1673 *final_types[0] = R_RSEL;
1674 else if (field == e_lsel)
1675 *final_types[0] = R_LSEL;
1676 *final_types[1] = R_COMP2;
1677 *final_types[2] = R_COMP2;
1678 *final_types[3] = R_COMP1;
1679 final_types[4] = final_type;
1680 if (format == 32)
1681 *final_types[4] = R_DATA_EXPR;
1682 else
1683 *final_types[4] = R_CODE_EXPR;
1684 final_types[5] = NULL;
1685 break;
1686 }
1687 else
1688 break;
1689
1690 case R_HPPA_NONE:
1691 case R_HPPA_ABS_CALL:
252b5132
RH
1692 /* Right now we can default all these. */
1693 break;
2667095f
JL
1694
1695 case R_HPPA_PCREL_CALL:
1696 {
1697#ifndef NO_PCREL_MODES
1698 /* If we have short and long pcrel modes, then generate the proper
1699 mode selector, then the pcrel relocation. Redundant selectors
1700 will be eliminted as the relocs are sized and emitted. */
1701 final_types[0] = (int *) bfd_alloc (abfd, sizeof (int));
1702 if (!final_types[0])
1703 return NULL;
1704 if (format == 17)
1705 *final_types[0] = R_SHORT_PCREL_MODE;
1706 else
1707 *final_types[0] = R_LONG_PCREL_MODE;
1708 final_types[1] = final_type;
1709 final_types[2] = NULL;
1710 *final_type = base_type;
1711#endif
1712 break;
1713 }
252b5132
RH
1714 }
1715 return final_types;
1716}
1717
1718/* Return the address of the correct entry in the PA SOM relocation
1719 howto table. */
1720
1721/*ARGSUSED*/
1722static reloc_howto_type *
1723som_bfd_reloc_type_lookup (abfd, code)
1724 bfd *abfd;
1725 bfd_reloc_code_real_type code;
1726{
1727 if ((int) code < (int) R_NO_RELOCATION + 255)
1728 {
1729 BFD_ASSERT ((int) som_hppa_howto_table[(int) code].type == (int) code);
1730 return &som_hppa_howto_table[(int) code];
1731 }
1732
1733 return (reloc_howto_type *) 0;
1734}
1735
1736/* Perform some initialization for an object. Save results of this
1737 initialization in the BFD. */
1738
1739static const bfd_target *
1740som_object_setup (abfd, file_hdrp, aux_hdrp, current_offset)
1741 bfd *abfd;
1742 struct header *file_hdrp;
1743 struct som_exec_auxhdr *aux_hdrp;
1744 unsigned long current_offset;
1745{
1746 asection *section;
1747 int found;
1748
1749 /* som_mkobject will set bfd_error if som_mkobject fails. */
1750 if (som_mkobject (abfd) != true)
1751 return 0;
1752
1753 /* Set BFD flags based on what information is available in the SOM. */
1754 abfd->flags = BFD_NO_FLAGS;
1755 if (file_hdrp->symbol_total)
1756 abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS;
1757
1758 switch (file_hdrp->a_magic)
1759 {
1760 case DEMAND_MAGIC:
1761 abfd->flags |= (D_PAGED | WP_TEXT | EXEC_P);
1762 break;
1763 case SHARE_MAGIC:
1764 abfd->flags |= (WP_TEXT | EXEC_P);
1765 break;
1766 case EXEC_MAGIC:
1767 abfd->flags |= (EXEC_P);
1768 break;
1769 case RELOC_MAGIC:
1770 abfd->flags |= HAS_RELOC;
1771 break;
1772#ifdef SHL_MAGIC
1773 case SHL_MAGIC:
1774#endif
1775#ifdef DL_MAGIC
1776 case DL_MAGIC:
1777#endif
1778 abfd->flags |= DYNAMIC;
1779 break;
1780
1781 default:
1782 break;
1783 }
1784
1785 /* Allocate space to hold the saved exec header information. */
1786 obj_som_exec_data (abfd) = (struct som_exec_data *)
1787 bfd_zalloc (abfd, sizeof (struct som_exec_data ));
1788 if (obj_som_exec_data (abfd) == NULL)
1789 return NULL;
1790
1791 /* The braindamaged OSF1 linker switched exec_flags and exec_entry!
1792
1793 We used to identify OSF1 binaries based on NEW_VERSION_ID, but
1794 apparently the latest HPUX linker is using NEW_VERSION_ID now.
1795
1796 It's about time, OSF has used the new id since at least 1992;
1797 HPUX didn't start till nearly 1995!.
1798
1799 The new approach examines the entry field. If it's zero or not 4
1800 byte aligned then it's not a proper code address and we guess it's
1801 really the executable flags. */
1802 found = 0;
1803 for (section = abfd->sections; section; section = section->next)
1804 {
1805 if ((section->flags & SEC_CODE) == 0)
1806 continue;
1807 if (aux_hdrp->exec_entry >= section->vma
1808 && aux_hdrp->exec_entry < section->vma + section->_cooked_size)
1809 found = 1;
1810 }
1811 if (aux_hdrp->exec_entry == 0
1812 || (aux_hdrp->exec_entry & 0x3) != 0
1813 || ! found)
1814 {
1815 bfd_get_start_address (abfd) = aux_hdrp->exec_flags;
1816 obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_entry;
1817 }
1818 else
1819 {
1820 bfd_get_start_address (abfd) = aux_hdrp->exec_entry + current_offset;
1821 obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_flags;
1822 }
1823
1824 bfd_default_set_arch_mach (abfd, bfd_arch_hppa, pa10);
1825 bfd_get_symcount (abfd) = file_hdrp->symbol_total;
1826
1827 /* Initialize the saved symbol table and string table to NULL.
1828 Save important offsets and sizes from the SOM header into
1829 the BFD. */
1830 obj_som_stringtab (abfd) = (char *) NULL;
1831 obj_som_symtab (abfd) = (som_symbol_type *) NULL;
1832 obj_som_sorted_syms (abfd) = NULL;
1833 obj_som_stringtab_size (abfd) = file_hdrp->symbol_strings_size;
1834 obj_som_sym_filepos (abfd) = file_hdrp->symbol_location + current_offset;
1835 obj_som_str_filepos (abfd) = (file_hdrp->symbol_strings_location
1836 + current_offset);
1837 obj_som_reloc_filepos (abfd) = (file_hdrp->fixup_request_location
1838 + current_offset);
1839 obj_som_exec_data (abfd)->system_id = file_hdrp->system_id;
1840
1841 return abfd->xvec;
1842}
1843
1844/* Convert all of the space and subspace info into BFD sections. Each space
1845 contains a number of subspaces, which in turn describe the mapping between
1846 regions of the exec file, and the address space that the program runs in.
1847 BFD sections which correspond to spaces will overlap the sections for the
1848 associated subspaces. */
1849
1850static boolean
1851setup_sections (abfd, file_hdr, current_offset)
1852 bfd *abfd;
1853 struct header *file_hdr;
1854 unsigned long current_offset;
1855{
1856 char *space_strings;
1857 unsigned int space_index, i;
1858 unsigned int total_subspaces = 0;
1859 asection **subspace_sections, *section;
1860
1861 /* First, read in space names */
1862
1863 space_strings = bfd_malloc (file_hdr->space_strings_size);
1864 if (!space_strings && file_hdr->space_strings_size != 0)
1865 goto error_return;
1866
1867 if (bfd_seek (abfd, current_offset + file_hdr->space_strings_location,
1868 SEEK_SET) < 0)
1869 goto error_return;
1870 if (bfd_read (space_strings, 1, file_hdr->space_strings_size, abfd)
1871 != file_hdr->space_strings_size)
1872 goto error_return;
1873
1874 /* Loop over all of the space dictionaries, building up sections */
1875 for (space_index = 0; space_index < file_hdr->space_total; space_index++)
1876 {
1877 struct space_dictionary_record space;
1878 struct subspace_dictionary_record subspace, save_subspace;
1879 int subspace_index;
1880 asection *space_asect;
1881 char *newname;
1882
1883 /* Read the space dictionary element */
1884 if (bfd_seek (abfd,
1885 (current_offset + file_hdr->space_location
1886 + space_index * sizeof space),
1887 SEEK_SET) < 0)
1888 goto error_return;
1889 if (bfd_read (&space, 1, sizeof space, abfd) != sizeof space)
1890 goto error_return;
1891
1892 /* Setup the space name string */
1893 space.name.n_name = space.name.n_strx + space_strings;
1894
1895 /* Make a section out of it */
1896 newname = bfd_alloc (abfd, strlen (space.name.n_name) + 1);
1897 if (!newname)
1898 goto error_return;
1899 strcpy (newname, space.name.n_name);
1900
1901 space_asect = bfd_make_section_anyway (abfd, newname);
1902 if (!space_asect)
1903 goto error_return;
1904
1905 if (space.is_loadable == 0)
1906 space_asect->flags |= SEC_DEBUGGING;
1907
1908 /* Set up all the attributes for the space. */
1909 if (bfd_som_set_section_attributes (space_asect, space.is_defined,
1910 space.is_private, space.sort_key,
1911 space.space_number) == false)
1912 goto error_return;
1913
1914 /* If the space has no subspaces, then we're done. */
1915 if (space.subspace_quantity == 0)
1916 continue;
1917
1918 /* Now, read in the first subspace for this space */
1919 if (bfd_seek (abfd,
1920 (current_offset + file_hdr->subspace_location
1921 + space.subspace_index * sizeof subspace),
1922 SEEK_SET) < 0)
1923 goto error_return;
1924 if (bfd_read (&subspace, 1, sizeof subspace, abfd) != sizeof subspace)
1925 goto error_return;
1926 /* Seek back to the start of the subspaces for loop below */
1927 if (bfd_seek (abfd,
1928 (current_offset + file_hdr->subspace_location
1929 + space.subspace_index * sizeof subspace),
1930 SEEK_SET) < 0)
1931 goto error_return;
1932
1933 /* Setup the start address and file loc from the first subspace record */
1934 space_asect->vma = subspace.subspace_start;
1935 space_asect->filepos = subspace.file_loc_init_value + current_offset;
1936 space_asect->alignment_power = log2 (subspace.alignment);
1937 if (space_asect->alignment_power == -1)
1938 goto error_return;
1939
1940 /* Initialize save_subspace so we can reliably determine if this
1941 loop placed any useful values into it. */
1942 memset (&save_subspace, 0, sizeof (struct subspace_dictionary_record));
1943
1944 /* Loop over the rest of the subspaces, building up more sections */
1945 for (subspace_index = 0; subspace_index < space.subspace_quantity;
1946 subspace_index++)
1947 {
1948 asection *subspace_asect;
1949
1950 /* Read in the next subspace */
1951 if (bfd_read (&subspace, 1, sizeof subspace, abfd)
1952 != sizeof subspace)
1953 goto error_return;
1954
1955 /* Setup the subspace name string */
1956 subspace.name.n_name = subspace.name.n_strx + space_strings;
1957
1958 newname = bfd_alloc (abfd, strlen (subspace.name.n_name) + 1);
1959 if (!newname)
1960 goto error_return;
1961 strcpy (newname, subspace.name.n_name);
1962
1963 /* Make a section out of this subspace */
1964 subspace_asect = bfd_make_section_anyway (abfd, newname);
1965 if (!subspace_asect)
1966 goto error_return;
1967
1968 /* Store private information about the section. */
1969 if (bfd_som_set_subsection_attributes (subspace_asect, space_asect,
1970 subspace.access_control_bits,
1971 subspace.sort_key,
1972 subspace.quadrant) == false)
1973 goto error_return;
1974
1975 /* Keep an easy mapping between subspaces and sections.
1976 Note we do not necessarily read the subspaces in the
1977 same order in which they appear in the object file.
1978
1979 So to make the target index come out correctly, we
1980 store the location of the subspace header in target
1981 index, then sort using the location of the subspace
1982 header as the key. Then we can assign correct
1983 subspace indices. */
1984 total_subspaces++;
1985 subspace_asect->target_index = bfd_tell (abfd) - sizeof (subspace);
1986
1987 /* Set SEC_READONLY and SEC_CODE/SEC_DATA as specified
1988 by the access_control_bits in the subspace header. */
1989 switch (subspace.access_control_bits >> 4)
1990 {
1991 /* Readonly data. */
1992 case 0x0:
1993 subspace_asect->flags |= SEC_DATA | SEC_READONLY;
1994 break;
1995
1996 /* Normal data. */
1997 case 0x1:
1998 subspace_asect->flags |= SEC_DATA;
1999 break;
2000
2001 /* Readonly code and the gateways.
2002 Gateways have other attributes which do not map
2003 into anything BFD knows about. */
2004 case 0x2:
2005 case 0x4:
2006 case 0x5:
2007 case 0x6:
2008 case 0x7:
2009 subspace_asect->flags |= SEC_CODE | SEC_READONLY;
2010 break;
2011
2012 /* dynamic (writable) code. */
2013 case 0x3:
2014 subspace_asect->flags |= SEC_CODE;
2015 break;
2016 }
2017
2018 if (subspace.dup_common || subspace.is_common)
2019 subspace_asect->flags |= SEC_IS_COMMON;
2020 else if (subspace.subspace_length > 0)
2021 subspace_asect->flags |= SEC_HAS_CONTENTS;
2022
2023 if (subspace.is_loadable)
2024 subspace_asect->flags |= SEC_ALLOC | SEC_LOAD;
2025 else
2026 subspace_asect->flags |= SEC_DEBUGGING;
2027
2028 if (subspace.code_only)
2029 subspace_asect->flags |= SEC_CODE;
2030
2031 /* Both file_loc_init_value and initialization_length will
2032 be zero for a BSS like subspace. */
2033 if (subspace.file_loc_init_value == 0
2034 && subspace.initialization_length == 0)
2035 subspace_asect->flags &= ~(SEC_DATA | SEC_LOAD | SEC_HAS_CONTENTS);
2036
2037 /* This subspace has relocations.
2038 The fixup_request_quantity is a byte count for the number of
2039 entries in the relocation stream; it is not the actual number
2040 of relocations in the subspace. */
2041 if (subspace.fixup_request_quantity != 0)
2042 {
2043 subspace_asect->flags |= SEC_RELOC;
2044 subspace_asect->rel_filepos = subspace.fixup_request_index;
2045 som_section_data (subspace_asect)->reloc_size
2046 = subspace.fixup_request_quantity;
2047 /* We can not determine this yet. When we read in the
2048 relocation table the correct value will be filled in. */
2049 subspace_asect->reloc_count = -1;
2050 }
2051
2052 /* Update save_subspace if appropriate. */
2053 if (subspace.file_loc_init_value > save_subspace.file_loc_init_value)
2054 save_subspace = subspace;
2055
2056 subspace_asect->vma = subspace.subspace_start;
2057 subspace_asect->_cooked_size = subspace.subspace_length;
2058 subspace_asect->_raw_size = subspace.subspace_length;
2059 subspace_asect->filepos = (subspace.file_loc_init_value
2060 + current_offset);
2061 subspace_asect->alignment_power = log2 (subspace.alignment);
2062 if (subspace_asect->alignment_power == -1)
2063 goto error_return;
2064 }
2065
2066 /* This can happen for a .o which defines symbols in otherwise
2067 empty subspaces. */
2068 if (!save_subspace.file_loc_init_value)
2069 {
2070 space_asect->_cooked_size = 0;
2071 space_asect->_raw_size = 0;
2072 }
2073 else
2074 {
2075 /* Setup the sizes for the space section based upon the info in the
2076 last subspace of the space. */
2077 space_asect->_cooked_size = (save_subspace.subspace_start
2078 - space_asect->vma
2079 + save_subspace.subspace_length);
2080 space_asect->_raw_size = (save_subspace.file_loc_init_value
2081 - space_asect->filepos
2082 + save_subspace.initialization_length);
2083 }
2084 }
2085 /* Now that we've read in all the subspace records, we need to assign
2086 a target index to each subspace. */
2087 subspace_sections = (asection **) bfd_malloc (total_subspaces
2088 * sizeof (asection *));
2089 if (subspace_sections == NULL)
2090 goto error_return;
2091
2092 for (i = 0, section = abfd->sections; section; section = section->next)
2093 {
2094 if (!som_is_subspace (section))
2095 continue;
2096
2097 subspace_sections[i] = section;
2098 i++;
2099 }
2100 qsort (subspace_sections, total_subspaces,
2101 sizeof (asection *), compare_subspaces);
2102
2103 /* subspace_sections is now sorted in the order in which the subspaces
2104 appear in the object file. Assign an index to each one now. */
2105 for (i = 0; i < total_subspaces; i++)
2106 subspace_sections[i]->target_index = i;
2107
2108 if (space_strings != NULL)
2109 free (space_strings);
2110
2111 if (subspace_sections != NULL)
2112 free (subspace_sections);
2113
2114 return true;
2115
2116 error_return:
2117 if (space_strings != NULL)
2118 free (space_strings);
2119
2120 if (subspace_sections != NULL)
2121 free (subspace_sections);
2122 return false;
2123}
2124
2125/* Read in a SOM object and make it into a BFD. */
2126
2127static const bfd_target *
2128som_object_p (abfd)
2129 bfd *abfd;
2130{
2131 struct header file_hdr;
2132 struct som_exec_auxhdr aux_hdr;
2133 unsigned long current_offset = 0;
2134 struct lst_header lst_header;
2135 struct som_entry som_entry;
2136#define ENTRY_SIZE sizeof(struct som_entry)
2137
2138 if (bfd_read ((PTR) & file_hdr, 1, FILE_HDR_SIZE, abfd) != FILE_HDR_SIZE)
2139 {
2140 if (bfd_get_error () != bfd_error_system_call)
2141 bfd_set_error (bfd_error_wrong_format);
2142 return 0;
2143 }
2144
2145 if (!_PA_RISC_ID (file_hdr.system_id))
2146 {
2147 bfd_set_error (bfd_error_wrong_format);
2148 return 0;
2149 }
2150
2151 switch (file_hdr.a_magic)
2152 {
2153 case RELOC_MAGIC:
2154 case EXEC_MAGIC:
2155 case SHARE_MAGIC:
2156 case DEMAND_MAGIC:
2157#ifdef DL_MAGIC
2158 case DL_MAGIC:
2159#endif
2160#ifdef SHL_MAGIC
2161 case SHL_MAGIC:
2162#endif
2163#ifdef SHARED_MAGIC_CNX
2164 case SHARED_MAGIC_CNX:
2165#endif
2166 break;
2167
2168#ifdef EXECLIBMAGIC
2169 case EXECLIBMAGIC:
2170 /* Read the lst header and determine where the SOM directory begins */
2171
2172 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) < 0)
2173 {
2174 if (bfd_get_error () != bfd_error_system_call)
2175 bfd_set_error (bfd_error_wrong_format);
2176 return 0;
2177 }
2178
2179 if (bfd_read ((PTR) & lst_header, 1, SLSTHDR, abfd) != SLSTHDR)
2180 {
2181 if (bfd_get_error () != bfd_error_system_call)
2182 bfd_set_error (bfd_error_wrong_format);
2183 return 0;
2184 }
2185
2186 /* Position to and read the first directory entry */
2187
2188 if (bfd_seek (abfd, lst_header.dir_loc, SEEK_SET) < 0)
2189 {
2190 if (bfd_get_error () != bfd_error_system_call)
2191 bfd_set_error (bfd_error_wrong_format);
2192 return 0;
2193 }
2194
2195 if (bfd_read ((PTR) & som_entry, 1, ENTRY_SIZE, abfd) != ENTRY_SIZE)
2196 {
2197 if (bfd_get_error () != bfd_error_system_call)
2198 bfd_set_error (bfd_error_wrong_format);
2199 return 0;
2200 }
2201
2202 /* Now position to the first SOM */
2203
2204 if (bfd_seek (abfd, som_entry.location, SEEK_SET) < 0)
2205 {
2206 if (bfd_get_error () != bfd_error_system_call)
2207 bfd_set_error (bfd_error_wrong_format);
2208 return 0;
2209 }
2210
2211 current_offset = som_entry.location;
2212
2213 /* And finally, re-read the som header */
2214
2215 if (bfd_read ((PTR) & file_hdr, 1, FILE_HDR_SIZE, abfd) != FILE_HDR_SIZE)
2216 {
2217 if (bfd_get_error () != bfd_error_system_call)
2218 bfd_set_error (bfd_error_wrong_format);
2219 return 0;
2220 }
2221
2222 break;
2223#endif
2224
2225 default:
2226 bfd_set_error (bfd_error_wrong_format);
2227 return 0;
2228 }
2229
2230 if (file_hdr.version_id != VERSION_ID
2231 && file_hdr.version_id != NEW_VERSION_ID)
2232 {
2233 bfd_set_error (bfd_error_wrong_format);
2234 return 0;
2235 }
2236
2237 /* If the aux_header_size field in the file header is zero, then this
2238 object is an incomplete executable (a .o file). Do not try to read
2239 a non-existant auxiliary header. */
2240 memset (&aux_hdr, 0, sizeof (struct som_exec_auxhdr));
2241 if (file_hdr.aux_header_size != 0)
2242 {
2243 if (bfd_read ((PTR) & aux_hdr, 1, AUX_HDR_SIZE, abfd) != AUX_HDR_SIZE)
2244 {
2245 if (bfd_get_error () != bfd_error_system_call)
2246 bfd_set_error (bfd_error_wrong_format);
2247 return 0;
2248 }
2249 }
2250
2251 if (!setup_sections (abfd, &file_hdr, current_offset))
2252 {
2253 /* setup_sections does not bubble up a bfd error code. */
2254 bfd_set_error (bfd_error_bad_value);
2255 return 0;
2256 }
2257
2258 /* This appears to be a valid SOM object. Do some initialization. */
2259 return som_object_setup (abfd, &file_hdr, &aux_hdr, current_offset);
2260}
2261
2262/* Create a SOM object. */
2263
2264static boolean
2265som_mkobject (abfd)
2266 bfd *abfd;
2267{
2268 /* Allocate memory to hold backend information. */
2269 abfd->tdata.som_data = (struct som_data_struct *)
2270 bfd_zalloc (abfd, sizeof (struct som_data_struct));
2271 if (abfd->tdata.som_data == NULL)
2272 return false;
2273 return true;
2274}
2275
2276/* Initialize some information in the file header. This routine makes
2277 not attempt at doing the right thing for a full executable; it
2278 is only meant to handle relocatable objects. */
2279
2280static boolean
2281som_prep_headers (abfd)
2282 bfd *abfd;
2283{
2284 struct header *file_hdr;
2285 asection *section;
2286
2287 /* Make and attach a file header to the BFD. */
2288 file_hdr = (struct header *) bfd_zalloc (abfd, sizeof (struct header));
2289 if (file_hdr == NULL)
2290 return false;
2291 obj_som_file_hdr (abfd) = file_hdr;
2292
2293 if (abfd->flags & (EXEC_P | DYNAMIC))
2294 {
2295
2296 /* Make and attach an exec header to the BFD. */
2297 obj_som_exec_hdr (abfd) = (struct som_exec_auxhdr *)
2298 bfd_zalloc (abfd, sizeof (struct som_exec_auxhdr));
2299 if (obj_som_exec_hdr (abfd) == NULL)
2300 return false;
2301
2302 if (abfd->flags & D_PAGED)
2303 file_hdr->a_magic = DEMAND_MAGIC;
2304 else if (abfd->flags & WP_TEXT)
2305 file_hdr->a_magic = SHARE_MAGIC;
2306#ifdef SHL_MAGIC
2307 else if (abfd->flags & DYNAMIC)
2308 file_hdr->a_magic = SHL_MAGIC;
2309#endif
2310 else
2311 file_hdr->a_magic = EXEC_MAGIC;
2312 }
2313 else
2314 file_hdr->a_magic = RELOC_MAGIC;
2315
2316 /* Only new format SOM is supported. */
2317 file_hdr->version_id = NEW_VERSION_ID;
2318
2319 /* These fields are optional, and embedding timestamps is not always
2320 a wise thing to do, it makes comparing objects during a multi-stage
2321 bootstrap difficult. */
2322 file_hdr->file_time.secs = 0;
2323 file_hdr->file_time.nanosecs = 0;
2324
2325 file_hdr->entry_space = 0;
2326 file_hdr->entry_subspace = 0;
2327 file_hdr->entry_offset = 0;
2328 file_hdr->presumed_dp = 0;
2329
2330 /* Now iterate over the sections translating information from
2331 BFD sections to SOM spaces/subspaces. */
2332
2333 for (section = abfd->sections; section != NULL; section = section->next)
2334 {
2335 /* Ignore anything which has not been marked as a space or
2336 subspace. */
2337 if (!som_is_space (section) && !som_is_subspace (section))
2338 continue;
2339
2340 if (som_is_space (section))
2341 {
2342 /* Allocate space for the space dictionary. */
2343 som_section_data (section)->space_dict
2344 = (struct space_dictionary_record *)
2345 bfd_zalloc (abfd, sizeof (struct space_dictionary_record));
2346 if (som_section_data (section)->space_dict == NULL)
2347 return false;
2348 /* Set space attributes. Note most attributes of SOM spaces
2349 are set based on the subspaces it contains. */
2350 som_section_data (section)->space_dict->loader_fix_index = -1;
2351 som_section_data (section)->space_dict->init_pointer_index = -1;
2352
2353 /* Set more attributes that were stuffed away in private data. */
2354 som_section_data (section)->space_dict->sort_key =
2355 som_section_data (section)->copy_data->sort_key;
2356 som_section_data (section)->space_dict->is_defined =
2357 som_section_data (section)->copy_data->is_defined;
2358 som_section_data (section)->space_dict->is_private =
2359 som_section_data (section)->copy_data->is_private;
2360 som_section_data (section)->space_dict->space_number =
2361 som_section_data (section)->copy_data->space_number;
2362 }
2363 else
2364 {
2365 /* Allocate space for the subspace dictionary. */
2366 som_section_data (section)->subspace_dict
2367 = (struct subspace_dictionary_record *)
2368 bfd_zalloc (abfd, sizeof (struct subspace_dictionary_record));
2369 if (som_section_data (section)->subspace_dict == NULL)
2370 return false;
2371
2372 /* Set subspace attributes. Basic stuff is done here, additional
2373 attributes are filled in later as more information becomes
2374 available. */
2375 if (section->flags & SEC_IS_COMMON)
2376 {
2377 som_section_data (section)->subspace_dict->dup_common = 1;
2378 som_section_data (section)->subspace_dict->is_common = 1;
2379 }
2380
2381 if (section->flags & SEC_ALLOC)
2382 som_section_data (section)->subspace_dict->is_loadable = 1;
2383
2384 if (section->flags & SEC_CODE)
2385 som_section_data (section)->subspace_dict->code_only = 1;
2386
2387 som_section_data (section)->subspace_dict->subspace_start =
2388 section->vma;
2389 som_section_data (section)->subspace_dict->subspace_length =
2390 bfd_section_size (abfd, section);
2391 som_section_data (section)->subspace_dict->initialization_length =
2392 bfd_section_size (abfd, section);
2393 som_section_data (section)->subspace_dict->alignment =
2394 1 << section->alignment_power;
2395
2396 /* Set more attributes that were stuffed away in private data. */
2397 som_section_data (section)->subspace_dict->sort_key =
2398 som_section_data (section)->copy_data->sort_key;
2399 som_section_data (section)->subspace_dict->access_control_bits =
2400 som_section_data (section)->copy_data->access_control_bits;
2401 som_section_data (section)->subspace_dict->quadrant =
2402 som_section_data (section)->copy_data->quadrant;
2403 }
2404 }
2405 return true;
2406}
2407
2408/* Return true if the given section is a SOM space, false otherwise. */
2409
2410static boolean
2411som_is_space (section)
2412 asection *section;
2413{
2414 /* If no copy data is available, then it's neither a space nor a
2415 subspace. */
2416 if (som_section_data (section)->copy_data == NULL)
2417 return false;
2418
2419 /* If the containing space isn't the same as the given section,
2420 then this isn't a space. */
2421 if (som_section_data (section)->copy_data->container != section
2422 && (som_section_data (section)->copy_data->container->output_section
2423 != section))
2424 return false;
2425
2426 /* OK. Must be a space. */
2427 return true;
2428}
2429
2430/* Return true if the given section is a SOM subspace, false otherwise. */
2431
2432static boolean
2433som_is_subspace (section)
2434 asection *section;
2435{
2436 /* If no copy data is available, then it's neither a space nor a
2437 subspace. */
2438 if (som_section_data (section)->copy_data == NULL)
2439 return false;
2440
2441 /* If the containing space is the same as the given section,
2442 then this isn't a subspace. */
2443 if (som_section_data (section)->copy_data->container == section
2444 || (som_section_data (section)->copy_data->container->output_section
2445 == section))
2446 return false;
2447
2448 /* OK. Must be a subspace. */
2449 return true;
2450}
2451
2452/* Return true if the given space containins the given subspace. It
2453 is safe to assume space really is a space, and subspace really
2454 is a subspace. */
2455
2456static boolean
2457som_is_container (space, subspace)
2458 asection *space, *subspace;
2459{
2460 return (som_section_data (subspace)->copy_data->container == space
2461 || (som_section_data (subspace)->copy_data->container->output_section
2462 == space));
2463}
2464
2465/* Count and return the number of spaces attached to the given BFD. */
2466
2467static unsigned long
2468som_count_spaces (abfd)
2469 bfd *abfd;
2470{
2471 int count = 0;
2472 asection *section;
2473
2474 for (section = abfd->sections; section != NULL; section = section->next)
2475 count += som_is_space (section);
2476
2477 return count;
2478}
2479
2480/* Count the number of subspaces attached to the given BFD. */
2481
2482static unsigned long
2483som_count_subspaces (abfd)
2484 bfd *abfd;
2485{
2486 int count = 0;
2487 asection *section;
2488
2489 for (section = abfd->sections; section != NULL; section = section->next)
2490 count += som_is_subspace (section);
2491
2492 return count;
2493}
2494
2495/* Return -1, 0, 1 indicating the relative ordering of sym1 and sym2.
2496
2497 We desire symbols to be ordered starting with the symbol with the
2498 highest relocation count down to the symbol with the lowest relocation
2499 count. Doing so compacts the relocation stream. */
2500
2501static int
2502compare_syms (arg1, arg2)
2503 const PTR arg1;
2504 const PTR arg2;
2505
2506{
2507 asymbol **sym1 = (asymbol **) arg1;
2508 asymbol **sym2 = (asymbol **) arg2;
2509 unsigned int count1, count2;
2510
2511 /* Get relocation count for each symbol. Note that the count
2512 is stored in the udata pointer for section symbols! */
2513 if ((*sym1)->flags & BSF_SECTION_SYM)
2514 count1 = (*sym1)->udata.i;
2515 else
2516 count1 = som_symbol_data (*sym1)->reloc_count;
2517
2518 if ((*sym2)->flags & BSF_SECTION_SYM)
2519 count2 = (*sym2)->udata.i;
2520 else
2521 count2 = som_symbol_data (*sym2)->reloc_count;
2522
2523 /* Return the appropriate value. */
2524 if (count1 < count2)
2525 return 1;
2526 else if (count1 > count2)
2527 return -1;
2528 return 0;
2529}
2530
2531/* Return -1, 0, 1 indicating the relative ordering of subspace1
2532 and subspace. */
2533
2534static int
2535compare_subspaces (arg1, arg2)
2536 const PTR arg1;
2537 const PTR arg2;
2538
2539{
2540 asection **subspace1 = (asection **) arg1;
2541 asection **subspace2 = (asection **) arg2;
2542 unsigned int count1, count2;
2543
2544 if ((*subspace1)->target_index < (*subspace2)->target_index)
2545 return -1;
2546 else if ((*subspace2)->target_index < (*subspace1)->target_index)
2547 return 1;
2548 else
2549 return 0;
2550}
2551
2552/* Perform various work in preparation for emitting the fixup stream. */
2553
2554static void
2555som_prep_for_fixups (abfd, syms, num_syms)
2556 bfd *abfd;
2557 asymbol **syms;
2558 unsigned long num_syms;
2559{
2560 int i;
2561 asection *section;
2562 asymbol **sorted_syms;
2563
2564 /* Most SOM relocations involving a symbol have a length which is
2565 dependent on the index of the symbol. So symbols which are
2566 used often in relocations should have a small index. */
2567
2568 /* First initialize the counters for each symbol. */
2569 for (i = 0; i < num_syms; i++)
2570 {
2571 /* Handle a section symbol; these have no pointers back to the
2572 SOM symbol info. So we just use the udata field to hold the
2573 relocation count. */
2574 if (som_symbol_data (syms[i]) == NULL
2575 || syms[i]->flags & BSF_SECTION_SYM)
2576 {
2577 syms[i]->flags |= BSF_SECTION_SYM;
2578 syms[i]->udata.i = 0;
2579 }
2580 else
2581 som_symbol_data (syms[i])->reloc_count = 0;
2582 }
2583
2584 /* Now that the counters are initialized, make a weighted count
2585 of how often a given symbol is used in a relocation. */
2586 for (section = abfd->sections; section != NULL; section = section->next)
2587 {
2588 int i;
2589
2590 /* Does this section have any relocations? */
2591 if (section->reloc_count <= 0)
2592 continue;
2593
2594 /* Walk through each relocation for this section. */
2595 for (i = 1; i < section->reloc_count; i++)
2596 {
2597 arelent *reloc = section->orelocation[i];
2598 int scale;
2599
2600 /* A relocation against a symbol in the *ABS* section really
2601 does not have a symbol. Likewise if the symbol isn't associated
2602 with any section. */
2603 if (reloc->sym_ptr_ptr == NULL
2604 || bfd_is_abs_section ((*reloc->sym_ptr_ptr)->section))
2605 continue;
2606
2607 /* Scaling to encourage symbols involved in R_DP_RELATIVE
2608 and R_CODE_ONE_SYMBOL relocations to come first. These
2609 two relocations have single byte versions if the symbol
2610 index is very small. */
2611 if (reloc->howto->type == R_DP_RELATIVE
2612 || reloc->howto->type == R_CODE_ONE_SYMBOL)
2613 scale = 2;
2614 else
2615 scale = 1;
2616
2617 /* Handle section symbols by storing the count in the udata
2618 field. It will not be used and the count is very important
2619 for these symbols. */
2620 if ((*reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2621 {
2622 (*reloc->sym_ptr_ptr)->udata.i =
2623 (*reloc->sym_ptr_ptr)->udata.i + scale;
2624 continue;
2625 }
2626
2627 /* A normal symbol. Increment the count. */
2628 som_symbol_data (*reloc->sym_ptr_ptr)->reloc_count += scale;
2629 }
2630 }
2631
2632 /* Sort a copy of the symbol table, rather than the canonical
2633 output symbol table. */
2634 sorted_syms = (asymbol **) bfd_zalloc (abfd, num_syms * sizeof (asymbol *));
2635 memcpy (sorted_syms, syms, num_syms * sizeof (asymbol *));
2636 qsort (sorted_syms, num_syms, sizeof (asymbol *), compare_syms);
2637 obj_som_sorted_syms (abfd) = sorted_syms;
2638
2639 /* Compute the symbol indexes, they will be needed by the relocation
2640 code. */
2641 for (i = 0; i < num_syms; i++)
2642 {
2643 /* A section symbol. Again, there is no pointer to backend symbol
2644 information, so we reuse the udata field again. */
2645 if (sorted_syms[i]->flags & BSF_SECTION_SYM)
2646 sorted_syms[i]->udata.i = i;
2647 else
2648 som_symbol_data (sorted_syms[i])->index = i;
2649 }
2650}
2651
2652static boolean
2653som_write_fixups (abfd, current_offset, total_reloc_sizep)
2654 bfd *abfd;
2655 unsigned long current_offset;
2656 unsigned int *total_reloc_sizep;
2657{
2658 unsigned int i, j;
2659 /* Chunk of memory that we can use as buffer space, then throw
2660 away. */
2661 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2662 unsigned char *p;
2663 unsigned int total_reloc_size = 0;
2664 unsigned int subspace_reloc_size = 0;
2665 unsigned int num_spaces = obj_som_file_hdr (abfd)->space_total;
2666 asection *section = abfd->sections;
2667
2668 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2669 p = tmp_space;
2670
2671 /* All the fixups for a particular subspace are emitted in a single
2672 stream. All the subspaces for a particular space are emitted
2673 as a single stream.
2674
2675 So, to get all the locations correct one must iterate through all the
2676 spaces, for each space iterate through its subspaces and output a
2677 fixups stream. */
2678 for (i = 0; i < num_spaces; i++)
2679 {
2680 asection *subsection;
2681
2682 /* Find a space. */
2683 while (!som_is_space (section))
2684 section = section->next;
2685
2686 /* Now iterate through each of its subspaces. */
2687 for (subsection = abfd->sections;
2688 subsection != NULL;
2689 subsection = subsection->next)
2690 {
2691 int reloc_offset, current_rounding_mode;
2667095f
JL
2692#ifndef NO_PCREL_MODES
2693 int current_call_mode;
2694#endif
252b5132
RH
2695
2696 /* Find a subspace of this space. */
2697 if (!som_is_subspace (subsection)
2698 || !som_is_container (section, subsection))
2699 continue;
2700
2701 /* If this subspace does not have real data, then we are
2702 finised with it. */
2703 if ((subsection->flags & SEC_HAS_CONTENTS) == 0)
2704 {
2705 som_section_data (subsection)->subspace_dict->fixup_request_index
2706 = -1;
2707 continue;
2708 }
2709
2710 /* This subspace has some relocations. Put the relocation stream
2711 index into the subspace record. */
2712 som_section_data (subsection)->subspace_dict->fixup_request_index
2713 = total_reloc_size;
2714
2715 /* To make life easier start over with a clean slate for
2716 each subspace. Seek to the start of the relocation stream
2717 for this subspace in preparation for writing out its fixup
2718 stream. */
2719 if (bfd_seek (abfd, current_offset + total_reloc_size, SEEK_SET) < 0)
2720 return false;
2721
2722 /* Buffer space has already been allocated. Just perform some
2723 initialization here. */
2724 p = tmp_space;
2725 subspace_reloc_size = 0;
2726 reloc_offset = 0;
2727 som_initialize_reloc_queue (reloc_queue);
2728 current_rounding_mode = R_N_MODE;
2667095f
JL
2729#ifndef NO_PCREL_MODES
2730 current_call_mode = R_SHORT_PCREL_MODE;
2731#endif
252b5132
RH
2732
2733 /* Translate each BFD relocation into one or more SOM
2734 relocations. */
2735 for (j = 0; j < subsection->reloc_count; j++)
2736 {
2737 arelent *bfd_reloc = subsection->orelocation[j];
2738 unsigned int skip;
2739 int sym_num;
2740
2741 /* Get the symbol number. Remember it's stored in a
2742 special place for section symbols. */
2743 if ((*bfd_reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2744 sym_num = (*bfd_reloc->sym_ptr_ptr)->udata.i;
2745 else
2746 sym_num = som_symbol_data (*bfd_reloc->sym_ptr_ptr)->index;
2747
2748 /* If there is not enough room for the next couple relocations,
2749 then dump the current buffer contents now. Also reinitialize
2750 the relocation queue.
2751
2752 No single BFD relocation could ever translate into more
2753 than 100 bytes of SOM relocations (20bytes is probably the
2754 upper limit, but leave lots of space for growth). */
2755 if (p - tmp_space + 100 > SOM_TMP_BUFSIZE)
2756 {
2757 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2758 != p - tmp_space)
2759 return false;
2760
2761 p = tmp_space;
2762 som_initialize_reloc_queue (reloc_queue);
2763 }
2764
2765 /* Emit R_NO_RELOCATION fixups to map any bytes which were
2766 skipped. */
2767 skip = bfd_reloc->address - reloc_offset;
2768 p = som_reloc_skip (abfd, skip, p,
2769 &subspace_reloc_size, reloc_queue);
2770
2771 /* Update reloc_offset for the next iteration.
2772
2773 Many relocations do not consume input bytes. They
2774 are markers, or set state necessary to perform some
2775 later relocation. */
2776 switch (bfd_reloc->howto->type)
2777 {
2778 case R_ENTRY:
2779 case R_ALT_ENTRY:
2780 case R_EXIT:
2781 case R_N_MODE:
2782 case R_S_MODE:
2783 case R_D_MODE:
2784 case R_R_MODE:
2785 case R_FSEL:
2786 case R_LSEL:
2787 case R_RSEL:
2788 case R_COMP1:
2789 case R_COMP2:
2790 case R_BEGIN_BRTAB:
2791 case R_END_BRTAB:
2792 case R_BEGIN_TRY:
2793 case R_END_TRY:
2794 case R_N0SEL:
2795 case R_N1SEL:
2667095f
JL
2796#ifndef NO_PCREL_MODES
2797 case R_SHORT_PCREL_MODE:
2798 case R_LONG_PCREL_MODE:
2799#endif
252b5132
RH
2800 reloc_offset = bfd_reloc->address;
2801 break;
2802
2803 default:
2804 reloc_offset = bfd_reloc->address + 4;
2805 break;
2806 }
2807
2808 /* Now the actual relocation we care about. */
2809 switch (bfd_reloc->howto->type)
2810 {
2811 case R_PCREL_CALL:
2812 case R_ABS_CALL:
2813 p = som_reloc_call (abfd, p, &subspace_reloc_size,
2814 bfd_reloc, sym_num, reloc_queue);
2815 break;
2816
2817 case R_CODE_ONE_SYMBOL:
2818 case R_DP_RELATIVE:
2819 /* Account for any addend. */
2820 if (bfd_reloc->addend)
2821 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2822 &subspace_reloc_size, reloc_queue);
2823
2824 if (sym_num < 0x20)
2825 {
2826 bfd_put_8 (abfd, bfd_reloc->howto->type + sym_num, p);
2827 subspace_reloc_size += 1;
2828 p += 1;
2829 }
2830 else if (sym_num < 0x100)
2831 {
2832 bfd_put_8 (abfd, bfd_reloc->howto->type + 32, p);
2833 bfd_put_8 (abfd, sym_num, p + 1);
2834 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2835 2, reloc_queue);
2836 }
2837 else if (sym_num < 0x10000000)
2838 {
2839 bfd_put_8 (abfd, bfd_reloc->howto->type + 33, p);
2840 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2841 bfd_put_16 (abfd, sym_num, p + 2);
2842 p = try_prev_fixup (abfd, &subspace_reloc_size,
2843 p, 4, reloc_queue);
2844 }
2845 else
2846 abort ();
2847 break;
2848
2849 case R_DATA_ONE_SYMBOL:
2850 case R_DATA_PLABEL:
2851 case R_CODE_PLABEL:
2852 case R_DLT_REL:
2853 /* Account for any addend using R_DATA_OVERRIDE. */
2854 if (bfd_reloc->howto->type != R_DATA_ONE_SYMBOL
2855 && bfd_reloc->addend)
2856 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2857 &subspace_reloc_size, reloc_queue);
2858
2859 if (sym_num < 0x100)
2860 {
2861 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2862 bfd_put_8 (abfd, sym_num, p + 1);
2863 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2864 2, reloc_queue);
2865 }
2866 else if (sym_num < 0x10000000)
2867 {
2868 bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
2869 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2870 bfd_put_16 (abfd, sym_num, p + 2);
2871 p = try_prev_fixup (abfd, &subspace_reloc_size,
2872 p, 4, reloc_queue);
2873 }
2874 else
2875 abort ();
2876 break;
2877
2878 case R_ENTRY:
2879 {
2880 int tmp;
2881 arelent *tmp_reloc = NULL;
2882 bfd_put_8 (abfd, R_ENTRY, p);
2883
2884 /* R_ENTRY relocations have 64 bits of associated
2885 data. Unfortunately the addend field of a bfd
2886 relocation is only 32 bits. So, we split up
2887 the 64bit unwind information and store part in
2888 the R_ENTRY relocation, and the rest in the R_EXIT
2889 relocation. */
2890 bfd_put_32 (abfd, bfd_reloc->addend, p + 1);
2891
2892 /* Find the next R_EXIT relocation. */
2893 for (tmp = j; tmp < subsection->reloc_count; tmp++)
2894 {
2895 tmp_reloc = subsection->orelocation[tmp];
2896 if (tmp_reloc->howto->type == R_EXIT)
2897 break;
2898 }
2899
2900 if (tmp == subsection->reloc_count)
2901 abort ();
2902
2903 bfd_put_32 (abfd, tmp_reloc->addend, p + 5);
2904 p = try_prev_fixup (abfd, &subspace_reloc_size,
2905 p, 9, reloc_queue);
2906 break;
2907 }
2908
2909 case R_N_MODE:
2910 case R_S_MODE:
2911 case R_D_MODE:
2912 case R_R_MODE:
2913 /* If this relocation requests the current rounding
2914 mode, then it is redundant. */
2915 if (bfd_reloc->howto->type != current_rounding_mode)
2916 {
2917 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2918 subspace_reloc_size += 1;
2919 p += 1;
2920 current_rounding_mode = bfd_reloc->howto->type;
2921 }
2922 break;
2923
2667095f
JL
2924#ifndef NO_PCREL_MODES
2925 case R_LONG_PCREL_MODE:
2926 case R_SHORT_PCREL_MODE:
2927 if (bfd_reloc->howto->type != current_call_mode)
2928 {
2929 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2930 subspace_reloc_size += 1;
2931 p += 1;
2932 current_call_mode = bfd_reloc->howto->type;
2933 }
2934 break;
2935#endif
2936
252b5132
RH
2937 case R_EXIT:
2938 case R_ALT_ENTRY:
2939 case R_FSEL:
2940 case R_LSEL:
2941 case R_RSEL:
2942 case R_BEGIN_BRTAB:
2943 case R_END_BRTAB:
2944 case R_BEGIN_TRY:
2945 case R_N0SEL:
2946 case R_N1SEL:
2947 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2948 subspace_reloc_size += 1;
2949 p += 1;
2950 break;
2951
2952 case R_END_TRY:
2953 /* The end of a exception handling region. The reloc's
2954 addend contains the offset of the exception handling
2955 code. */
2956 if (bfd_reloc->addend == 0)
2957 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2958 else if (bfd_reloc->addend < 1024)
2959 {
2960 bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
2961 bfd_put_8 (abfd, bfd_reloc->addend / 4, p + 1);
2962 p = try_prev_fixup (abfd, &subspace_reloc_size,
2963 p, 2, reloc_queue);
2964 }
2965 else
2966 {
2967 bfd_put_8 (abfd, bfd_reloc->howto->type + 2, p);
2968 bfd_put_8 (abfd, (bfd_reloc->addend / 4) >> 16, p + 1);
2969 bfd_put_16 (abfd, bfd_reloc->addend / 4, p + 2);
2970 p = try_prev_fixup (abfd, &subspace_reloc_size,
2971 p, 4, reloc_queue);
2972 }
2973 break;
2974
2975 case R_COMP1:
2976 /* The only time we generate R_COMP1, R_COMP2 and
2977 R_CODE_EXPR relocs is for the difference of two
2978 symbols. Hence we can cheat here. */
2979 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2980 bfd_put_8 (abfd, 0x44, p + 1);
2981 p = try_prev_fixup (abfd, &subspace_reloc_size,
2982 p, 2, reloc_queue);
2983 break;
2984
2985 case R_COMP2:
2986 /* The only time we generate R_COMP1, R_COMP2 and
2987 R_CODE_EXPR relocs is for the difference of two
2988 symbols. Hence we can cheat here. */
2989 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2990 bfd_put_8 (abfd, 0x80, p + 1);
2991 bfd_put_8 (abfd, sym_num >> 16, p + 2);
2992 bfd_put_16 (abfd, sym_num, p + 3);
2993 p = try_prev_fixup (abfd, &subspace_reloc_size,
2994 p, 5, reloc_queue);
2995 break;
2996
2997 case R_CODE_EXPR:
2998 case R_DATA_EXPR:
2999 /* The only time we generate R_COMP1, R_COMP2 and
3000 R_CODE_EXPR relocs is for the difference of two
3001 symbols. Hence we can cheat here. */
3002 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
3003 subspace_reloc_size += 1;
3004 p += 1;
3005 break;
3006
3007 /* Put a "R_RESERVED" relocation in the stream if
3008 we hit something we do not understand. The linker
3009 will complain loudly if this ever happens. */
3010 default:
3011 bfd_put_8 (abfd, 0xff, p);
3012 subspace_reloc_size += 1;
3013 p += 1;
3014 break;
3015 }
3016 }
3017
3018 /* Last BFD relocation for a subspace has been processed.
3019 Map the rest of the subspace with R_NO_RELOCATION fixups. */
3020 p = som_reloc_skip (abfd, bfd_section_size (abfd, subsection)
3021 - reloc_offset,
3022 p, &subspace_reloc_size, reloc_queue);
3023
3024 /* Scribble out the relocations. */
3025 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
3026 != p - tmp_space)
3027 return false;
3028 p = tmp_space;
3029
3030 total_reloc_size += subspace_reloc_size;
3031 som_section_data (subsection)->subspace_dict->fixup_request_quantity
3032 = subspace_reloc_size;
3033 }
3034 section = section->next;
3035 }
3036 *total_reloc_sizep = total_reloc_size;
3037 return true;
3038}
3039
3040/* Write out the space/subspace string table. */
3041
3042static boolean
3043som_write_space_strings (abfd, current_offset, string_sizep)
3044 bfd *abfd;
3045 unsigned long current_offset;
3046 unsigned int *string_sizep;
3047{
3048 /* Chunk of memory that we can use as buffer space, then throw
3049 away. */
3050 unsigned char tmp_space[SOM_TMP_BUFSIZE];
3051 unsigned char *p;
3052 unsigned int strings_size = 0;
3053 asection *section;
3054
3055 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
3056 p = tmp_space;
3057
3058 /* Seek to the start of the space strings in preparation for writing
3059 them out. */
3060 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
3061 return false;
3062
3063 /* Walk through all the spaces and subspaces (order is not important)
3064 building up and writing string table entries for their names. */
3065 for (section = abfd->sections; section != NULL; section = section->next)
3066 {
3067 int length;
3068
3069 /* Only work with space/subspaces; avoid any other sections
3070 which might have been made (.text for example). */
3071 if (!som_is_space (section) && !som_is_subspace (section))
3072 continue;
3073
3074 /* Get the length of the space/subspace name. */
3075 length = strlen (section->name);
3076
3077 /* If there is not enough room for the next entry, then dump the
3078 current buffer contents now. Each entry will take 4 bytes to
3079 hold the string length + the string itself + null terminator. */
3080 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
3081 {
3082 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
3083 != p - tmp_space)
3084 return false;
3085 /* Reset to beginning of the buffer space. */
3086 p = tmp_space;
3087 }
3088
3089 /* First element in a string table entry is the length of the
3090 string. Alignment issues are already handled. */
3091 bfd_put_32 (abfd, length, p);
3092 p += 4;
3093 strings_size += 4;
3094
3095 /* Record the index in the space/subspace records. */
3096 if (som_is_space (section))
3097 som_section_data (section)->space_dict->name.n_strx = strings_size;
3098 else
3099 som_section_data (section)->subspace_dict->name.n_strx = strings_size;
3100
3101 /* Next comes the string itself + a null terminator. */
3102 strcpy (p, section->name);
3103 p += length + 1;
3104 strings_size += length + 1;
3105
3106 /* Always align up to the next word boundary. */
3107 while (strings_size % 4)
3108 {
3109 bfd_put_8 (abfd, 0, p);
3110 p++;
3111 strings_size++;
3112 }
3113 }
3114
3115 /* Done with the space/subspace strings. Write out any information
3116 contained in a partial block. */
3117 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space)
3118 return false;
3119 *string_sizep = strings_size;
3120 return true;
3121}
3122
3123/* Write out the symbol string table. */
3124
3125static boolean
3126som_write_symbol_strings (abfd, current_offset, syms, num_syms, string_sizep,
3127 compilation_unit)
3128 bfd *abfd;
3129 unsigned long current_offset;
3130 asymbol **syms;
3131 unsigned int num_syms;
3132 unsigned int *string_sizep;
3133 COMPUNIT *compilation_unit;
3134{
3135 unsigned int i;
3136
3137 /* Chunk of memory that we can use as buffer space, then throw
3138 away. */
3139 unsigned char tmp_space[SOM_TMP_BUFSIZE];
3140 unsigned char *p;
3141 unsigned int strings_size = 0;
3142 unsigned char *comp[4];
3143
3144 /* This gets a bit gruesome because of the compilation unit. The
3145 strings within the compilation unit are part of the symbol
3146 strings, but don't have symbol_dictionary entries. So, manually
3147 write them and update the compliation unit header. On input, the
3148 compilation unit header contains local copies of the strings.
3149 Move them aside. */
3150 if (compilation_unit)
3151 {
3152 comp[0] = compilation_unit->name.n_name;
3153 comp[1] = compilation_unit->language_name.n_name;
3154 comp[2] = compilation_unit->product_id.n_name;
3155 comp[3] = compilation_unit->version_id.n_name;
3156 }
3157
3158 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
3159 p = tmp_space;
3160
3161 /* Seek to the start of the space strings in preparation for writing
3162 them out. */
3163 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
3164 return false;
3165
3166 if (compilation_unit)
3167 {
3168 for (i = 0; i < 4; i++)
3169 {
3170 int length = strlen (comp[i]);
3171
3172 /* If there is not enough room for the next entry, then dump
3173 the current buffer contents now. */
3174 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
3175 {
3176 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
3177 != p - tmp_space)
3178 return false;
3179 /* Reset to beginning of the buffer space. */
3180 p = tmp_space;
3181 }
3182
3183 /* First element in a string table entry is the length of
3184 the string. This must always be 4 byte aligned. This is
3185 also an appropriate time to fill in the string index
3186 field in the symbol table entry. */
3187 bfd_put_32 (abfd, length, p);
3188 strings_size += 4;
3189 p += 4;
3190
3191 /* Next comes the string itself + a null terminator. */
3192 strcpy (p, comp[i]);
3193
3194 switch (i)
3195 {
3196 case 0:
3197 obj_som_compilation_unit (abfd)->name.n_strx = strings_size;
3198 break;
3199 case 1:
3200 obj_som_compilation_unit (abfd)->language_name.n_strx =
3201 strings_size;
3202 break;
3203 case 2:
3204 obj_som_compilation_unit (abfd)->product_id.n_strx =
3205 strings_size;
3206 break;
3207 case 3:
3208 obj_som_compilation_unit (abfd)->version_id.n_strx =
3209 strings_size;
3210 break;
3211 }
3212
3213 p += length + 1;
3214 strings_size += length + 1;
3215
3216 /* Always align up to the next word boundary. */
3217 while (strings_size % 4)
3218 {
3219 bfd_put_8 (abfd, 0, p);
3220 strings_size++;
3221 p++;
3222 }
3223 }
3224 }
3225
3226 for (i = 0; i < num_syms; i++)
3227 {
3228 int length = strlen (syms[i]->name);
3229
3230 /* If there is not enough room for the next entry, then dump the
3231 current buffer contents now. */
3232 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
3233 {
3234 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
3235 != p - tmp_space)
3236 return false;
3237 /* Reset to beginning of the buffer space. */
3238 p = tmp_space;
3239 }
3240
3241 /* First element in a string table entry is the length of the
3242 string. This must always be 4 byte aligned. This is also
3243 an appropriate time to fill in the string index field in the
3244 symbol table entry. */
3245 bfd_put_32 (abfd, length, p);
3246 strings_size += 4;
3247 p += 4;
3248
3249 /* Next comes the string itself + a null terminator. */
3250 strcpy (p, syms[i]->name);
3251
3252 som_symbol_data(syms[i])->stringtab_offset = strings_size;
3253 p += length + 1;
3254 strings_size += length + 1;
3255
3256 /* Always align up to the next word boundary. */
3257 while (strings_size % 4)
3258 {
3259 bfd_put_8 (abfd, 0, p);
3260 strings_size++;
3261 p++;
3262 }
3263 }
3264
3265 /* Scribble out any partial block. */
3266 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space)
3267 return false;
3268
3269 *string_sizep = strings_size;
3270 return true;
3271}
3272
3273/* Compute variable information to be placed in the SOM headers,
3274 space/subspace dictionaries, relocation streams, etc. Begin
3275 writing parts of the object file. */
3276
3277static boolean
3278som_begin_writing (abfd)
3279 bfd *abfd;
3280{
3281 unsigned long current_offset = 0;
3282 int strings_size = 0;
3283 unsigned int total_reloc_size = 0;
3284 unsigned long num_spaces, num_subspaces, i;
3285 asection *section;
3286 unsigned int total_subspaces = 0;
3287 struct som_exec_auxhdr *exec_header = NULL;
3288
3289 /* The file header will always be first in an object file,
3290 everything else can be in random locations. To keep things
3291 "simple" BFD will lay out the object file in the manner suggested
3292 by the PRO ABI for PA-RISC Systems. */
3293
3294 /* Before any output can really begin offsets for all the major
3295 portions of the object file must be computed. So, starting
3296 with the initial file header compute (and sometimes write)
3297 each portion of the object file. */
3298
3299 /* Make room for the file header, it's contents are not complete
3300 yet, so it can not be written at this time. */
3301 current_offset += sizeof (struct header);
3302
3303 /* Any auxiliary headers will follow the file header. Right now
3304 we support only the copyright and version headers. */
3305 obj_som_file_hdr (abfd)->aux_header_location = current_offset;
3306 obj_som_file_hdr (abfd)->aux_header_size = 0;
3307 if (abfd->flags & (EXEC_P | DYNAMIC))
3308 {
3309 /* Parts of the exec header will be filled in later, so
3310 delay writing the header itself. Fill in the defaults,
3311 and write it later. */
3312 current_offset += sizeof (struct som_exec_auxhdr);
3313 obj_som_file_hdr (abfd)->aux_header_size
3314 += sizeof (struct som_exec_auxhdr);
3315 exec_header = obj_som_exec_hdr (abfd);
3316 exec_header->som_auxhdr.type = EXEC_AUX_ID;
3317 exec_header->som_auxhdr.length = 40;
3318 }
3319 if (obj_som_version_hdr (abfd) != NULL)
3320 {
3321 unsigned int len;
3322
3323 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
3324 return false;
3325
3326 /* Write the aux_id structure and the string length. */
3327 len = sizeof (struct aux_id) + sizeof (unsigned int);
3328 obj_som_file_hdr (abfd)->aux_header_size += len;
3329 current_offset += len;
3330 if (bfd_write ((PTR) obj_som_version_hdr (abfd), len, 1, abfd) != len)
3331 return false;
3332
3333 /* Write the version string. */
3334 len = obj_som_version_hdr (abfd)->header_id.length - sizeof (int);
3335 obj_som_file_hdr (abfd)->aux_header_size += len;
3336 current_offset += len;
3337 if (bfd_write ((PTR) obj_som_version_hdr (abfd)->user_string,
3338 len, 1, abfd) != len)
3339 return false;
3340 }
3341
3342 if (obj_som_copyright_hdr (abfd) != NULL)
3343 {
3344 unsigned int len;
3345
3346 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
3347 return false;
3348
3349 /* Write the aux_id structure and the string length. */
3350 len = sizeof (struct aux_id) + sizeof (unsigned int);
3351 obj_som_file_hdr (abfd)->aux_header_size += len;
3352 current_offset += len;
3353 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd), len, 1, abfd) != len)
3354 return false;
3355
3356 /* Write the copyright string. */
3357 len = obj_som_copyright_hdr (abfd)->header_id.length - sizeof (int);
3358 obj_som_file_hdr (abfd)->aux_header_size += len;
3359 current_offset += len;
3360 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd)->copyright,
3361 len, 1, abfd) != len)
3362 return false;
3363 }
3364
3365 /* Next comes the initialization pointers; we have no initialization
3366 pointers, so current offset does not change. */
3367 obj_som_file_hdr (abfd)->init_array_location = current_offset;
3368 obj_som_file_hdr (abfd)->init_array_total = 0;
3369
3370 /* Next are the space records. These are fixed length records.
3371
3372 Count the number of spaces to determine how much room is needed
3373 in the object file for the space records.
3374
3375 The names of the spaces are stored in a separate string table,
3376 and the index for each space into the string table is computed
3377 below. Therefore, it is not possible to write the space headers
3378 at this time. */
3379 num_spaces = som_count_spaces (abfd);
3380 obj_som_file_hdr (abfd)->space_location = current_offset;
3381 obj_som_file_hdr (abfd)->space_total = num_spaces;
3382 current_offset += num_spaces * sizeof (struct space_dictionary_record);
3383
3384 /* Next are the subspace records. These are fixed length records.
3385
3386 Count the number of subspaes to determine how much room is needed
3387 in the object file for the subspace records.
3388
3389 A variety if fields in the subspace record are still unknown at
3390 this time (index into string table, fixup stream location/size, etc). */
3391 num_subspaces = som_count_subspaces (abfd);
3392 obj_som_file_hdr (abfd)->subspace_location = current_offset;
3393 obj_som_file_hdr (abfd)->subspace_total = num_subspaces;
3394 current_offset += num_subspaces * sizeof (struct subspace_dictionary_record);
3395
3396 /* Next is the string table for the space/subspace names. We will
3397 build and write the string table on the fly. At the same time
3398 we will fill in the space/subspace name index fields. */
3399
3400 /* The string table needs to be aligned on a word boundary. */
3401 if (current_offset % 4)
3402 current_offset += (4 - (current_offset % 4));
3403
3404 /* Mark the offset of the space/subspace string table in the
3405 file header. */
3406 obj_som_file_hdr (abfd)->space_strings_location = current_offset;
3407
3408 /* Scribble out the space strings. */
3409 if (som_write_space_strings (abfd, current_offset, &strings_size) == false)
3410 return false;
3411
3412 /* Record total string table size in the header and update the
3413 current offset. */
3414 obj_som_file_hdr (abfd)->space_strings_size = strings_size;
3415 current_offset += strings_size;
3416
3417 /* Next is the compilation unit. */
3418 obj_som_file_hdr (abfd)->compiler_location = current_offset;
3419 obj_som_file_hdr (abfd)->compiler_total = 0;
3420 if (obj_som_compilation_unit (abfd))
3421 {
3422 obj_som_file_hdr (abfd)->compiler_total = 1;
3423 current_offset += COMPUNITSZ;
3424 }
3425
3426 /* Now compute the file positions for the loadable subspaces, taking
3427 care to make sure everything stays properly aligned. */
3428
3429 section = abfd->sections;
3430 for (i = 0; i < num_spaces; i++)
3431 {
3432 asection *subsection;
3433 int first_subspace;
3434 unsigned int subspace_offset = 0;
3435
3436 /* Find a space. */
3437 while (!som_is_space (section))
3438 section = section->next;
3439
3440 first_subspace = 1;
3441 /* Now look for all its subspaces. */
3442 for (subsection = abfd->sections;
3443 subsection != NULL;
3444 subsection = subsection->next)
3445 {
3446
3447 if (!som_is_subspace (subsection)
3448 || !som_is_container (section, subsection)
3449 || (subsection->flags & SEC_ALLOC) == 0)
3450 continue;
3451
3452 /* If this is the first subspace in the space, and we are
3453 building an executable, then take care to make sure all
3454 the alignments are correct and update the exec header. */
3455 if (first_subspace
3456 && (abfd->flags & (EXEC_P | DYNAMIC)))
3457 {
3458 /* Demand paged executables have each space aligned to a
3459 page boundary. Sharable executables (write-protected
3460 text) have just the private (aka data & bss) space aligned
3461 to a page boundary. Ugh. Not true for HPUX.
3462
3463 The HPUX kernel requires the text to always be page aligned
3464 within the file regardless of the executable's type. */
3465 if (abfd->flags & (D_PAGED | DYNAMIC)
3466 || (subsection->flags & SEC_CODE)
3467 || ((abfd->flags & WP_TEXT)
3468 && (subsection->flags & SEC_DATA)))
3469 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3470
3471 /* Update the exec header. */
3472 if (subsection->flags & SEC_CODE && exec_header->exec_tfile == 0)
3473 {
3474 exec_header->exec_tmem = section->vma;
3475 exec_header->exec_tfile = current_offset;
3476 }
3477 if (subsection->flags & SEC_DATA && exec_header->exec_dfile == 0)
3478 {
3479 exec_header->exec_dmem = section->vma;
3480 exec_header->exec_dfile = current_offset;
3481 }
3482
3483 /* Keep track of exactly where we are within a particular
3484 space. This is necessary as the braindamaged HPUX
3485 loader will create holes between subspaces *and*
3486 subspace alignments are *NOT* preserved. What a crock. */
3487 subspace_offset = subsection->vma;
3488
3489 /* Only do this for the first subspace within each space. */
3490 first_subspace = 0;
3491 }
3492 else if (abfd->flags & (EXEC_P | DYNAMIC))
3493 {
3494 /* The braindamaged HPUX loader may have created a hole
3495 between two subspaces. It is *not* sufficient to use
3496 the alignment specifications within the subspaces to
3497 account for these holes -- I've run into at least one
3498 case where the loader left one code subspace unaligned
3499 in a final executable.
3500
3501 To combat this we keep a current offset within each space,
3502 and use the subspace vma fields to detect and preserve
3503 holes. What a crock!
3504
3505 ps. This is not necessary for unloadable space/subspaces. */
3506 current_offset += subsection->vma - subspace_offset;
3507 if (subsection->flags & SEC_CODE)
3508 exec_header->exec_tsize += subsection->vma - subspace_offset;
3509 else
3510 exec_header->exec_dsize += subsection->vma - subspace_offset;
3511 subspace_offset += subsection->vma - subspace_offset;
3512 }
3513
3514
3515 subsection->target_index = total_subspaces++;
3516 /* This is real data to be loaded from the file. */
3517 if (subsection->flags & SEC_LOAD)
3518 {
3519 /* Update the size of the code & data. */
3520 if (abfd->flags & (EXEC_P | DYNAMIC)
3521 && subsection->flags & SEC_CODE)
3522 exec_header->exec_tsize += subsection->_cooked_size;
3523 else if (abfd->flags & (EXEC_P | DYNAMIC)
3524 && subsection->flags & SEC_DATA)
3525 exec_header->exec_dsize += subsection->_cooked_size;
3526 som_section_data (subsection)->subspace_dict->file_loc_init_value
3527 = current_offset;
3528 subsection->filepos = current_offset;
3529 current_offset += bfd_section_size (abfd, subsection);
3530 subspace_offset += bfd_section_size (abfd, subsection);
3531 }
3532 /* Looks like uninitialized data. */
3533 else
3534 {
3535 /* Update the size of the bss section. */
3536 if (abfd->flags & (EXEC_P | DYNAMIC))
3537 exec_header->exec_bsize += subsection->_cooked_size;
3538
3539 som_section_data (subsection)->subspace_dict->file_loc_init_value
3540 = 0;
3541 som_section_data (subsection)->subspace_dict->
3542 initialization_length = 0;
3543 }
3544 }
3545 /* Goto the next section. */
3546 section = section->next;
3547 }
3548
3549 /* Finally compute the file positions for unloadable subspaces.
3550 If building an executable, start the unloadable stuff on its
3551 own page. */
3552
3553 if (abfd->flags & (EXEC_P | DYNAMIC))
3554 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3555
3556 obj_som_file_hdr (abfd)->unloadable_sp_location = current_offset;
3557 section = abfd->sections;
3558 for (i = 0; i < num_spaces; i++)
3559 {
3560 asection *subsection;
3561
3562 /* Find a space. */
3563 while (!som_is_space (section))
3564 section = section->next;
3565
3566 if (abfd->flags & (EXEC_P | DYNAMIC))
3567 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3568
3569 /* Now look for all its subspaces. */
3570 for (subsection = abfd->sections;
3571 subsection != NULL;
3572 subsection = subsection->next)
3573 {
3574
3575 if (!som_is_subspace (subsection)
3576 || !som_is_container (section, subsection)
3577 || (subsection->flags & SEC_ALLOC) != 0)
3578 continue;
3579
3580 subsection->target_index = total_subspaces++;
3581 /* This is real data to be loaded from the file. */
3582 if ((subsection->flags & SEC_LOAD) == 0)
3583 {
3584 som_section_data (subsection)->subspace_dict->file_loc_init_value
3585 = current_offset;
3586 subsection->filepos = current_offset;
3587 current_offset += bfd_section_size (abfd, subsection);
3588 }
3589 /* Looks like uninitialized data. */
3590 else
3591 {
3592 som_section_data (subsection)->subspace_dict->file_loc_init_value
3593 = 0;
3594 som_section_data (subsection)->subspace_dict->
3595 initialization_length = bfd_section_size (abfd, subsection);
3596 }
3597 }
3598 /* Goto the next section. */
3599 section = section->next;
3600 }
3601
3602 /* If building an executable, then make sure to seek to and write
3603 one byte at the end of the file to make sure any necessary
3604 zeros are filled in. Ugh. */
3605 if (abfd->flags & (EXEC_P | DYNAMIC))
3606 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3607 if (bfd_seek (abfd, current_offset - 1, SEEK_SET) < 0)
3608 return false;
3609 if (bfd_write ((PTR) "", 1, 1, abfd) != 1)
3610 return false;
3611
3612 obj_som_file_hdr (abfd)->unloadable_sp_size
3613 = current_offset - obj_som_file_hdr (abfd)->unloadable_sp_location;
3614
3615 /* Loader fixups are not supported in any way shape or form. */
3616 obj_som_file_hdr (abfd)->loader_fixup_location = 0;
3617 obj_som_file_hdr (abfd)->loader_fixup_total = 0;
3618
3619 /* Done. Store the total size of the SOM so far. */
3620 obj_som_file_hdr (abfd)->som_length = current_offset;
3621
3622 return true;
3623}
3624
3625/* Finally, scribble out the various headers to the disk. */
3626
3627static boolean
3628som_finish_writing (abfd)
3629 bfd *abfd;
3630{
3631 int num_spaces = som_count_spaces (abfd);
3632 asymbol **syms = bfd_get_outsymbols (abfd);
3633 int i, num_syms, strings_size;
3634 int subspace_index = 0;
3635 file_ptr location;
3636 asection *section;
3637 unsigned long current_offset;
3638 unsigned int total_reloc_size;
3639
3640 /* Next is the symbol table. These are fixed length records.
3641
3642 Count the number of symbols to determine how much room is needed
3643 in the object file for the symbol table.
3644
3645 The names of the symbols are stored in a separate string table,
3646 and the index for each symbol name into the string table is computed
3647 below. Therefore, it is not possible to write the symbol table
3648 at this time.
3649
3650 These used to be output before the subspace contents, but they
3651 were moved here to work around a stupid bug in the hpux linker
3652 (fixed in hpux10). */
3653 current_offset = obj_som_file_hdr (abfd)->som_length;
3654
3655 /* Make sure we're on a word boundary. */
3656 if (current_offset % 4)
3657 current_offset += (4 - (current_offset % 4));
3658
3659 num_syms = bfd_get_symcount (abfd);
3660 obj_som_file_hdr (abfd)->symbol_location = current_offset;
3661 obj_som_file_hdr (abfd)->symbol_total = num_syms;
3662 current_offset += num_syms * sizeof (struct symbol_dictionary_record);
3663
3664 /* Next are the symbol strings.
3665 Align them to a word boundary. */
3666 if (current_offset % 4)
3667 current_offset += (4 - (current_offset % 4));
3668 obj_som_file_hdr (abfd)->symbol_strings_location = current_offset;
3669
3670 /* Scribble out the symbol strings. */
3671 if (som_write_symbol_strings (abfd, current_offset, syms,
3672 num_syms, &strings_size,
3673 obj_som_compilation_unit (abfd))
3674 == false)
3675 return false;
3676
3677 /* Record total string table size in header and update the
3678 current offset. */
3679 obj_som_file_hdr (abfd)->symbol_strings_size = strings_size;
3680 current_offset += strings_size;
3681
3682 /* Do prep work before handling fixups. */
3683 som_prep_for_fixups (abfd,
3684 bfd_get_outsymbols (abfd),
3685 bfd_get_symcount (abfd));
3686
3687 /* At the end of the file is the fixup stream which starts on a
3688 word boundary. */
3689 if (current_offset % 4)
3690 current_offset += (4 - (current_offset % 4));
3691 obj_som_file_hdr (abfd)->fixup_request_location = current_offset;
3692
3693 /* Write the fixups and update fields in subspace headers which
3694 relate to the fixup stream. */
3695 if (som_write_fixups (abfd, current_offset, &total_reloc_size) == false)
3696 return false;
3697
3698 /* Record the total size of the fixup stream in the file header. */
3699 obj_som_file_hdr (abfd)->fixup_request_total = total_reloc_size;
3700
3701 /* Done. Store the total size of the SOM. */
3702 obj_som_file_hdr (abfd)->som_length = current_offset + total_reloc_size;
3703
3704 /* Now that the symbol table information is complete, build and
3705 write the symbol table. */
3706 if (som_build_and_write_symbol_table (abfd) == false)
3707 return false;
3708
3709 /* Subspaces are written first so that we can set up information
3710 about them in their containing spaces as the subspace is written. */
3711
3712 /* Seek to the start of the subspace dictionary records. */
3713 location = obj_som_file_hdr (abfd)->subspace_location;
3714 if (bfd_seek (abfd, location, SEEK_SET) < 0)
3715 return false;
3716
3717 section = abfd->sections;
3718 /* Now for each loadable space write out records for its subspaces. */
3719 for (i = 0; i < num_spaces; i++)
3720 {
3721 asection *subsection;
3722
3723 /* Find a space. */
3724 while (!som_is_space (section))
3725 section = section->next;
3726
3727 /* Now look for all its subspaces. */
3728 for (subsection = abfd->sections;
3729 subsection != NULL;
3730 subsection = subsection->next)
3731 {
3732
3733 /* Skip any section which does not correspond to a space
3734 or subspace. Or does not have SEC_ALLOC set (and therefore
3735 has no real bits on the disk). */
3736 if (!som_is_subspace (subsection)
3737 || !som_is_container (section, subsection)
3738 || (subsection->flags & SEC_ALLOC) == 0)
3739 continue;
3740
3741 /* If this is the first subspace for this space, then save
3742 the index of the subspace in its containing space. Also
3743 set "is_loadable" in the containing space. */
3744
3745 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3746 {
3747 som_section_data (section)->space_dict->is_loadable = 1;
3748 som_section_data (section)->space_dict->subspace_index
3749 = subspace_index;
3750 }
3751
3752 /* Increment the number of subspaces seen and the number of
3753 subspaces contained within the current space. */
3754 subspace_index++;
3755 som_section_data (section)->space_dict->subspace_quantity++;
3756
3757 /* Mark the index of the current space within the subspace's
3758 dictionary record. */
3759 som_section_data (subsection)->subspace_dict->space_index = i;
3760
3761 /* Dump the current subspace header. */
3762 if (bfd_write ((PTR) som_section_data (subsection)->subspace_dict,
3763 sizeof (struct subspace_dictionary_record), 1, abfd)
3764 != sizeof (struct subspace_dictionary_record))
3765 return false;
3766 }
3767 /* Goto the next section. */
3768 section = section->next;
3769 }
3770
3771 /* Now repeat the process for unloadable subspaces. */
3772 section = abfd->sections;
3773 /* Now for each space write out records for its subspaces. */
3774 for (i = 0; i < num_spaces; i++)
3775 {
3776 asection *subsection;
3777
3778 /* Find a space. */
3779 while (!som_is_space (section))
3780 section = section->next;
3781
3782 /* Now look for all its subspaces. */
3783 for (subsection = abfd->sections;
3784 subsection != NULL;
3785 subsection = subsection->next)
3786 {
3787
3788 /* Skip any section which does not correspond to a space or
3789 subspace, or which SEC_ALLOC set (and therefore handled
3790 in the loadable spaces/subspaces code above). */
3791
3792 if (!som_is_subspace (subsection)
3793 || !som_is_container (section, subsection)
3794 || (subsection->flags & SEC_ALLOC) != 0)
3795 continue;
3796
3797 /* If this is the first subspace for this space, then save
3798 the index of the subspace in its containing space. Clear
3799 "is_loadable". */
3800
3801 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3802 {
3803 som_section_data (section)->space_dict->is_loadable = 0;
3804 som_section_data (section)->space_dict->subspace_index
3805 = subspace_index;
3806 }
3807
3808 /* Increment the number of subspaces seen and the number of
3809 subspaces contained within the current space. */
3810 som_section_data (section)->space_dict->subspace_quantity++;
3811 subspace_index++;
3812
3813 /* Mark the index of the current space within the subspace's
3814 dictionary record. */
3815 som_section_data (subsection)->subspace_dict->space_index = i;
3816
3817 /* Dump this subspace header. */
3818 if (bfd_write ((PTR) som_section_data (subsection)->subspace_dict,
3819 sizeof (struct subspace_dictionary_record), 1, abfd)
3820 != sizeof (struct subspace_dictionary_record))
3821 return false;
3822 }
3823 /* Goto the next section. */
3824 section = section->next;
3825 }
3826
3827 /* All the subspace dictiondary records are written, and all the
3828 fields are set up in the space dictionary records.
3829
3830 Seek to the right location and start writing the space
3831 dictionary records. */
3832 location = obj_som_file_hdr (abfd)->space_location;
3833 if (bfd_seek (abfd, location, SEEK_SET) < 0)
3834 return false;
3835
3836 section = abfd->sections;
3837 for (i = 0; i < num_spaces; i++)
3838 {
3839
3840 /* Find a space. */
3841 while (!som_is_space (section))
3842 section = section->next;
3843
3844 /* Dump its header */
3845 if (bfd_write ((PTR) som_section_data (section)->space_dict,
3846 sizeof (struct space_dictionary_record), 1, abfd)
3847 != sizeof (struct space_dictionary_record))
3848 return false;
3849
3850 /* Goto the next section. */
3851 section = section->next;
3852 }
3853
3854 /* Write the compilation unit record if there is one. */
3855 if (obj_som_compilation_unit (abfd))
3856 {
3857 location = obj_som_file_hdr (abfd)->compiler_location;
3858 if (bfd_seek (abfd, location, SEEK_SET) < 0)
3859 return false;
3860
3861 if (bfd_write ((PTR) obj_som_compilation_unit (abfd),
3862 COMPUNITSZ, 1, abfd) != COMPUNITSZ)
3863 return false;
3864 }
3865
3866 /* Setting of the system_id has to happen very late now that copying of
3867 BFD private data happens *after* section contents are set. */
3868 if (abfd->flags & (EXEC_P | DYNAMIC))
3869 obj_som_file_hdr(abfd)->system_id = obj_som_exec_data (abfd)->system_id;
3870 else if (bfd_get_mach (abfd) == pa20)
3871 obj_som_file_hdr(abfd)->system_id = CPU_PA_RISC2_0;
3872 else if (bfd_get_mach (abfd) == pa11)
3873 obj_som_file_hdr(abfd)->system_id = CPU_PA_RISC1_1;
3874 else
3875 obj_som_file_hdr(abfd)->system_id = CPU_PA_RISC1_0;
3876
3877 /* Compute the checksum for the file header just before writing
3878 the header to disk. */
3879 obj_som_file_hdr (abfd)->checksum = som_compute_checksum (abfd);
3880
3881 /* Only thing left to do is write out the file header. It is always
3882 at location zero. Seek there and write it. */
3883 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) < 0)
3884 return false;
3885 if (bfd_write ((PTR) obj_som_file_hdr (abfd),
3886 sizeof (struct header), 1, abfd)
3887 != sizeof (struct header))
3888 return false;
3889
3890 /* Now write the exec header. */
3891 if (abfd->flags & (EXEC_P | DYNAMIC))
3892 {
3893 long tmp, som_length;
3894 struct som_exec_auxhdr *exec_header;
3895
3896 exec_header = obj_som_exec_hdr (abfd);
3897 exec_header->exec_entry = bfd_get_start_address (abfd);
3898 exec_header->exec_flags = obj_som_exec_data (abfd)->exec_flags;
3899
3900 /* Oh joys. Ram some of the BSS data into the DATA section
3901 to be compatable with how the hp linker makes objects
3902 (saves memory space). */
3903 tmp = exec_header->exec_dsize;
3904 tmp = SOM_ALIGN (tmp, PA_PAGESIZE);
3905 exec_header->exec_bsize -= (tmp - exec_header->exec_dsize);
3906 if (exec_header->exec_bsize < 0)
3907 exec_header->exec_bsize = 0;
3908 exec_header->exec_dsize = tmp;
3909
3910 /* Now perform some sanity checks. The idea is to catch bogons now and
3911 inform the user, instead of silently generating a bogus file. */
3912 som_length = obj_som_file_hdr (abfd)->som_length;
3913 if (exec_header->exec_tfile + exec_header->exec_tsize > som_length
3914 || exec_header->exec_dfile + exec_header->exec_dsize > som_length)
3915 {
3916 bfd_set_error (bfd_error_bad_value);
3917 return false;
3918 }
3919
3920 if (bfd_seek (abfd, obj_som_file_hdr (abfd)->aux_header_location,
3921 SEEK_SET) < 0)
3922 return false;
3923
3924 if (bfd_write ((PTR) exec_header, AUX_HDR_SIZE, 1, abfd)
3925 != AUX_HDR_SIZE)
3926 return false;
3927 }
3928 return true;
3929}
3930
3931/* Compute and return the checksum for a SOM file header. */
3932
3933static unsigned long
3934som_compute_checksum (abfd)
3935 bfd *abfd;
3936{
3937 unsigned long checksum, count, i;
3938 unsigned long *buffer = (unsigned long *) obj_som_file_hdr (abfd);
3939
3940 checksum = 0;
3941 count = sizeof (struct header) / sizeof (unsigned long);
3942 for (i = 0; i < count; i++)
3943 checksum ^= *(buffer + i);
3944
3945 return checksum;
3946}
3947
3948static void
3949som_bfd_derive_misc_symbol_info (abfd, sym, info)
3950 bfd *abfd;
3951 asymbol *sym;
3952 struct som_misc_symbol_info *info;
3953{
3954 /* Initialize. */
3955 memset (info, 0, sizeof (struct som_misc_symbol_info));
3956
3957 /* The HP SOM linker requires detailed type information about
3958 all symbols (including undefined symbols!). Unfortunately,
3959 the type specified in an import/export statement does not
3960 always match what the linker wants. Severe braindamage. */
3961
3962 /* Section symbols will not have a SOM symbol type assigned to
3963 them yet. Assign all section symbols type ST_DATA. */
3964 if (sym->flags & BSF_SECTION_SYM)
3965 info->symbol_type = ST_DATA;
3966 else
3967 {
3968 /* Common symbols must have scope SS_UNSAT and type
3969 ST_STORAGE or the linker will choke. */
3970 if (bfd_is_com_section (sym->section))
3971 {
3972 info->symbol_scope = SS_UNSAT;
3973 info->symbol_type = ST_STORAGE;
3974 }
3975
3976 /* It is possible to have a symbol without an associated
3977 type. This happens if the user imported the symbol
3978 without a type and the symbol was never defined
3979 locally. If BSF_FUNCTION is set for this symbol, then
3980 assign it type ST_CODE (the HP linker requires undefined
3981 external functions to have type ST_CODE rather than ST_ENTRY). */
3982 else if ((som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3983 || som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
3984 && bfd_is_und_section (sym->section)
3985 && sym->flags & BSF_FUNCTION)
3986 info->symbol_type = ST_CODE;
3987
3988 /* Handle function symbols which were defined in this file.
3989 They should have type ST_ENTRY. Also retrieve the argument
3990 relocation bits from the SOM backend information. */
3991 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ENTRY
3992 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE
3993 && (sym->flags & BSF_FUNCTION))
3994 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3995 && (sym->flags & BSF_FUNCTION)))
3996 {
3997 info->symbol_type = ST_ENTRY;
3998 info->arg_reloc = som_symbol_data (sym)->tc_data.ap.hppa_arg_reloc;
3999 info->priv_level= som_symbol_data (sym)->tc_data.ap.hppa_priv_level;
4000 }
4001
4002 /* For unknown symbols set the symbol's type based on the symbol's
4003 section (ST_DATA for DATA sections, ST_CODE for CODE sections). */
4004 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN)
4005 {
4006 if (sym->section->flags & SEC_CODE)
4007 info->symbol_type = ST_CODE;
4008 else
4009 info->symbol_type = ST_DATA;
4010 }
4011
4012 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN)
4013 info->symbol_type = ST_DATA;
4014
4015 /* From now on it's a very simple mapping. */
4016 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ABSOLUTE)
4017 info->symbol_type = ST_ABSOLUTE;
4018 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
4019 info->symbol_type = ST_CODE;
4020 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_DATA)
4021 info->symbol_type = ST_DATA;
4022 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_MILLICODE)
4023 info->symbol_type = ST_MILLICODE;
4024 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PLABEL)
4025 info->symbol_type = ST_PLABEL;
4026 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PRI_PROG)
4027 info->symbol_type = ST_PRI_PROG;
4028 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_SEC_PROG)
4029 info->symbol_type = ST_SEC_PROG;
4030 }
4031
4032 /* Now handle the symbol's scope. Exported data which is not
4033 in the common section has scope SS_UNIVERSAL. Note scope
4034 of common symbols was handled earlier! */
4035 if (bfd_is_und_section (sym->section))
4036 info->symbol_scope = SS_UNSAT;
4037 else if (sym->flags & BSF_EXPORT && ! bfd_is_com_section (sym->section))
4038 info->symbol_scope = SS_UNIVERSAL;
4039 /* Anything else which is not in the common section has scope
4040 SS_LOCAL. */
4041 else if (! bfd_is_com_section (sym->section))
4042 info->symbol_scope = SS_LOCAL;
4043
4044 /* Now set the symbol_info field. It has no real meaning
4045 for undefined or common symbols, but the HP linker will
4046 choke if it's not set to some "reasonable" value. We
4047 use zero as a reasonable value. */
4048 if (bfd_is_com_section (sym->section)
4049 || bfd_is_und_section (sym->section)
4050 || bfd_is_abs_section (sym->section))
4051 info->symbol_info = 0;
4052 /* For all other symbols, the symbol_info field contains the
4053 subspace index of the space this symbol is contained in. */
4054 else
4055 info->symbol_info = sym->section->target_index;
4056
4057 /* Set the symbol's value. */
4058 info->symbol_value = sym->value + sym->section->vma;
ba20314e
CM
4059
4060 /* The secondary_def field is for weak symbols. */
4061 if (sym->flags & BSF_WEAK)
4062 info->secondary_def = true;
4063 else
4064 info->secondary_def = false;
4065
252b5132
RH
4066}
4067
4068/* Build and write, in one big chunk, the entire symbol table for
4069 this BFD. */
4070
4071static boolean
4072som_build_and_write_symbol_table (abfd)
4073 bfd *abfd;
4074{
4075 unsigned int num_syms = bfd_get_symcount (abfd);
4076 file_ptr symtab_location = obj_som_file_hdr (abfd)->symbol_location;
4077 asymbol **bfd_syms = obj_som_sorted_syms (abfd);
4078 struct symbol_dictionary_record *som_symtab = NULL;
4079 int i, symtab_size;
4080
4081 /* Compute total symbol table size and allocate a chunk of memory
4082 to hold the symbol table as we build it. */
4083 symtab_size = num_syms * sizeof (struct symbol_dictionary_record);
4084 som_symtab = (struct symbol_dictionary_record *) bfd_malloc (symtab_size);
4085 if (som_symtab == NULL && symtab_size != 0)
4086 goto error_return;
4087 memset (som_symtab, 0, symtab_size);
4088
4089 /* Walk over each symbol. */
4090 for (i = 0; i < num_syms; i++)
4091 {
4092 struct som_misc_symbol_info info;
4093
4094 /* This is really an index into the symbol strings table.
4095 By the time we get here, the index has already been
4096 computed and stored into the name field in the BFD symbol. */
4097 som_symtab[i].name.n_strx = som_symbol_data(bfd_syms[i])->stringtab_offset;
4098
4099 /* Derive SOM information from the BFD symbol. */
4100 som_bfd_derive_misc_symbol_info (abfd, bfd_syms[i], &info);
4101
4102 /* Now use it. */
4103 som_symtab[i].symbol_type = info.symbol_type;
4104 som_symtab[i].symbol_scope = info.symbol_scope;
4105 som_symtab[i].arg_reloc = info.arg_reloc;
4106 som_symtab[i].symbol_info = info.symbol_info;
4107 som_symtab[i].xleast = 3;
4108 som_symtab[i].symbol_value = info.symbol_value | info.priv_level;
ba20314e 4109 som_symtab[i].secondary_def = info.secondary_def;
252b5132
RH
4110 }
4111
4112 /* Everything is ready, seek to the right location and
4113 scribble out the symbol table. */
4114 if (bfd_seek (abfd, symtab_location, SEEK_SET) != 0)
4115 return false;
4116
4117 if (bfd_write ((PTR) som_symtab, symtab_size, 1, abfd) != symtab_size)
4118 goto error_return;
4119
4120 if (som_symtab != NULL)
4121 free (som_symtab);
4122 return true;
4123 error_return:
4124 if (som_symtab != NULL)
4125 free (som_symtab);
4126 return false;
4127}
4128
4129/* Write an object in SOM format. */
4130
4131static boolean
4132som_write_object_contents (abfd)
4133 bfd *abfd;
4134{
4135 if (abfd->output_has_begun == false)
4136 {
4137 /* Set up fixed parts of the file, space, and subspace headers.
4138 Notify the world that output has begun. */
4139 som_prep_headers (abfd);
4140 abfd->output_has_begun = true;
4141 /* Start writing the object file. This include all the string
4142 tables, fixup streams, and other portions of the object file. */
4143 som_begin_writing (abfd);
4144 }
4145
4146 return (som_finish_writing (abfd));
4147}
4148
4149\f
4150/* Read and save the string table associated with the given BFD. */
4151
4152static boolean
4153som_slurp_string_table (abfd)
4154 bfd *abfd;
4155{
4156 char *stringtab;
4157
4158 /* Use the saved version if its available. */
4159 if (obj_som_stringtab (abfd) != NULL)
4160 return true;
4161
4162 /* I don't think this can currently happen, and I'm not sure it should
4163 really be an error, but it's better than getting unpredictable results
4164 from the host's malloc when passed a size of zero. */
4165 if (obj_som_stringtab_size (abfd) == 0)
4166 {
4167 bfd_set_error (bfd_error_no_symbols);
4168 return false;
4169 }
4170
4171 /* Allocate and read in the string table. */
4172 stringtab = bfd_malloc (obj_som_stringtab_size (abfd));
4173 if (stringtab == NULL)
4174 return false;
4175 memset (stringtab, 0, obj_som_stringtab_size (abfd));
4176
4177 if (bfd_seek (abfd, obj_som_str_filepos (abfd), SEEK_SET) < 0)
4178 return false;
4179
4180 if (bfd_read (stringtab, obj_som_stringtab_size (abfd), 1, abfd)
4181 != obj_som_stringtab_size (abfd))
4182 return false;
4183
4184 /* Save our results and return success. */
4185 obj_som_stringtab (abfd) = stringtab;
4186 return true;
4187}
4188
4189/* Return the amount of data (in bytes) required to hold the symbol
4190 table for this object. */
4191
4192static long
4193som_get_symtab_upper_bound (abfd)
4194 bfd *abfd;
4195{
4196 if (!som_slurp_symbol_table (abfd))
4197 return -1;
4198
4199 return (bfd_get_symcount (abfd) + 1) * (sizeof (asymbol *));
4200}
4201
4202/* Convert from a SOM subspace index to a BFD section. */
4203
4204static asection *
4205bfd_section_from_som_symbol (abfd, symbol)
4206 bfd *abfd;
4207 struct symbol_dictionary_record *symbol;
4208{
4209 asection *section;
4210
4211 /* The meaning of the symbol_info field changes for functions
4212 within executables. So only use the quick symbol_info mapping for
4213 incomplete objects and non-function symbols in executables. */
4214 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4215 || (symbol->symbol_type != ST_ENTRY
4216 && symbol->symbol_type != ST_PRI_PROG
4217 && symbol->symbol_type != ST_SEC_PROG
4218 && symbol->symbol_type != ST_MILLICODE))
4219 {
4220 unsigned int index = symbol->symbol_info;
4221 for (section = abfd->sections; section != NULL; section = section->next)
4222 if (section->target_index == index && som_is_subspace (section))
4223 return section;
4224
4225 /* Could be a symbol from an external library (such as an OMOS
4226 shared library). Don't abort. */
4227 return bfd_abs_section_ptr;
4228
4229 }
4230 else
4231 {
4232 unsigned int value = symbol->symbol_value;
4233
4234 /* For executables we will have to use the symbol's address and
4235 find out what section would contain that address. Yuk. */
4236 for (section = abfd->sections; section; section = section->next)
4237 {
4238 if (value >= section->vma
4239 && value <= section->vma + section->_cooked_size
4240 && som_is_subspace (section))
4241 return section;
4242 }
4243
4244 /* Could be a symbol from an external library (such as an OMOS
4245 shared library). Don't abort. */
4246 return bfd_abs_section_ptr;
4247
4248 }
4249}
4250
4251/* Read and save the symbol table associated with the given BFD. */
4252
4253static unsigned int
4254som_slurp_symbol_table (abfd)
4255 bfd *abfd;
4256{
4257 int symbol_count = bfd_get_symcount (abfd);
4258 int symsize = sizeof (struct symbol_dictionary_record);
4259 char *stringtab;
4260 struct symbol_dictionary_record *buf = NULL, *bufp, *endbufp;
4261 som_symbol_type *sym, *symbase;
4262
4263 /* Return saved value if it exists. */
4264 if (obj_som_symtab (abfd) != NULL)
4265 goto successful_return;
4266
4267 /* Special case. This is *not* an error. */
4268 if (symbol_count == 0)
4269 goto successful_return;
4270
4271 if (!som_slurp_string_table (abfd))
4272 goto error_return;
4273
4274 stringtab = obj_som_stringtab (abfd);
4275
4276 symbase = ((som_symbol_type *)
4277 bfd_malloc (symbol_count * sizeof (som_symbol_type)));
4278 if (symbase == NULL)
4279 goto error_return;
4280 memset (symbase, 0, symbol_count * sizeof (som_symbol_type));
4281
4282 /* Read in the external SOM representation. */
4283 buf = bfd_malloc (symbol_count * symsize);
4284 if (buf == NULL && symbol_count * symsize != 0)
4285 goto error_return;
4286 if (bfd_seek (abfd, obj_som_sym_filepos (abfd), SEEK_SET) < 0)
4287 goto error_return;
4288 if (bfd_read (buf, symbol_count * symsize, 1, abfd)
4289 != symbol_count * symsize)
4290 goto error_return;
4291
4292 /* Iterate over all the symbols and internalize them. */
4293 endbufp = buf + symbol_count;
4294 for (bufp = buf, sym = symbase; bufp < endbufp; ++bufp)
4295 {
4296
4297 /* I don't think we care about these. */
4298 if (bufp->symbol_type == ST_SYM_EXT
4299 || bufp->symbol_type == ST_ARG_EXT)
4300 continue;
4301
4302 /* Set some private data we care about. */
4303 if (bufp->symbol_type == ST_NULL)
4304 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
4305 else if (bufp->symbol_type == ST_ABSOLUTE)
4306 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ABSOLUTE;
4307 else if (bufp->symbol_type == ST_DATA)
4308 som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA;
4309 else if (bufp->symbol_type == ST_CODE)
4310 som_symbol_data (sym)->som_type = SYMBOL_TYPE_CODE;
4311 else if (bufp->symbol_type == ST_PRI_PROG)
4312 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PRI_PROG;
4313 else if (bufp->symbol_type == ST_SEC_PROG)
4314 som_symbol_data (sym)->som_type = SYMBOL_TYPE_SEC_PROG;
4315 else if (bufp->symbol_type == ST_ENTRY)
4316 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ENTRY;
4317 else if (bufp->symbol_type == ST_MILLICODE)
4318 som_symbol_data (sym)->som_type = SYMBOL_TYPE_MILLICODE;
4319 else if (bufp->symbol_type == ST_PLABEL)
4320 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PLABEL;
4321 else
4322 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
4323 som_symbol_data (sym)->tc_data.ap.hppa_arg_reloc = bufp->arg_reloc;
4324
4325 /* Some reasonable defaults. */
4326 sym->symbol.the_bfd = abfd;
4327 sym->symbol.name = bufp->name.n_strx + stringtab;
4328 sym->symbol.value = bufp->symbol_value;
4329 sym->symbol.section = 0;
4330 sym->symbol.flags = 0;
4331
4332 switch (bufp->symbol_type)
4333 {
4334 case ST_ENTRY:
4335 case ST_MILLICODE:
4336 sym->symbol.flags |= BSF_FUNCTION;
4337 som_symbol_data (sym)->tc_data.ap.hppa_priv_level =
4338 sym->symbol.value & 0x3;
4339 sym->symbol.value &= ~0x3;
4340 break;
4341
4342 case ST_STUB:
4343 case ST_CODE:
4344 case ST_PRI_PROG:
4345 case ST_SEC_PROG:
4346 som_symbol_data (sym)->tc_data.ap.hppa_priv_level =
4347 sym->symbol.value & 0x3;
4348 sym->symbol.value &= ~0x3;
7da1b175 4349 /* If the symbol's scope is SS_UNSAT, then these are
252b5132
RH
4350 undefined function symbols. */
4351 if (bufp->symbol_scope == SS_UNSAT)
4352 sym->symbol.flags |= BSF_FUNCTION;
4353
4354
4355 default:
4356 break;
4357 }
4358
4359 /* Handle scoping and section information. */
4360 switch (bufp->symbol_scope)
4361 {
4362 /* symbol_info field is undefined for SS_EXTERNAL and SS_UNSAT symbols,
4363 so the section associated with this symbol can't be known. */
4364 case SS_EXTERNAL:
4365 if (bufp->symbol_type != ST_STORAGE)
4366 sym->symbol.section = bfd_und_section_ptr;
4367 else
4368 sym->symbol.section = bfd_com_section_ptr;
4369 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
4370 break;
4371
4372 case SS_UNSAT:
4373 if (bufp->symbol_type != ST_STORAGE)
4374 sym->symbol.section = bfd_und_section_ptr;
4375 else
4376 sym->symbol.section = bfd_com_section_ptr;
4377 break;
4378
4379 case SS_UNIVERSAL:
4380 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
4381 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
4382 sym->symbol.value -= sym->symbol.section->vma;
4383 break;
4384
4385#if 0
4386 /* SS_GLOBAL and SS_LOCAL are two names for the same thing.
4387 Sound dumb? It is. */
4388 case SS_GLOBAL:
4389#endif
4390 case SS_LOCAL:
4391 sym->symbol.flags |= BSF_LOCAL;
4392 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
4393 sym->symbol.value -= sym->symbol.section->vma;
4394 break;
4395 }
4396
ba20314e
CM
4397 /* Check for a weak symbol. */
4398 if (bufp->secondary_def)
4399 sym->symbol.flags |= BSF_WEAK;
4400
252b5132
RH
4401 /* Mark section symbols and symbols used by the debugger.
4402 Note $START$ is a magic code symbol, NOT a section symbol. */
4403 if (sym->symbol.name[0] == '$'
4404 && sym->symbol.name[strlen (sym->symbol.name) - 1] == '$'
4405 && !strcmp (sym->symbol.name, sym->symbol.section->name))
4406 sym->symbol.flags |= BSF_SECTION_SYM;
4407 else if (!strncmp (sym->symbol.name, "L$0\002", 4))
4408 {
4409 sym->symbol.flags |= BSF_SECTION_SYM;
4410 sym->symbol.name = sym->symbol.section->name;
4411 }
4412 else if (!strncmp (sym->symbol.name, "L$0\001", 4))
4413 sym->symbol.flags |= BSF_DEBUGGING;
4414
4415 /* Note increment at bottom of loop, since we skip some symbols
4416 we can not include it as part of the for statement. */
4417 sym++;
4418 }
4419
4420 /* We modify the symbol count to record the number of BFD symbols we
4421 created. */
4422 bfd_get_symcount (abfd) = sym - symbase;
4423
4424 /* Save our results and return success. */
4425 obj_som_symtab (abfd) = symbase;
4426 successful_return:
4427 if (buf != NULL)
4428 free (buf);
4429 return (true);
4430
4431 error_return:
4432 if (buf != NULL)
4433 free (buf);
4434 return false;
4435}
4436
4437/* Canonicalize a SOM symbol table. Return the number of entries
4438 in the symbol table. */
4439
4440static long
4441som_get_symtab (abfd, location)
4442 bfd *abfd;
4443 asymbol **location;
4444{
4445 int i;
4446 som_symbol_type *symbase;
4447
4448 if (!som_slurp_symbol_table (abfd))
4449 return -1;
4450
4451 i = bfd_get_symcount (abfd);
4452 symbase = obj_som_symtab (abfd);
4453
4454 for (; i > 0; i--, location++, symbase++)
4455 *location = &symbase->symbol;
4456
4457 /* Final null pointer. */
4458 *location = 0;
4459 return (bfd_get_symcount (abfd));
4460}
4461
4462/* Make a SOM symbol. There is nothing special to do here. */
4463
4464static asymbol *
4465som_make_empty_symbol (abfd)
4466 bfd *abfd;
4467{
4468 som_symbol_type *new =
4469 (som_symbol_type *) bfd_zalloc (abfd, sizeof (som_symbol_type));
4470 if (new == NULL)
4471 return 0;
4472 new->symbol.the_bfd = abfd;
4473
4474 return &new->symbol;
4475}
4476
4477/* Print symbol information. */
4478
4479static void
4480som_print_symbol (ignore_abfd, afile, symbol, how)
4481 bfd *ignore_abfd;
4482 PTR afile;
4483 asymbol *symbol;
4484 bfd_print_symbol_type how;
4485{
4486 FILE *file = (FILE *) afile;
4487 switch (how)
4488 {
4489 case bfd_print_symbol_name:
4490 fprintf (file, "%s", symbol->name);
4491 break;
4492 case bfd_print_symbol_more:
4493 fprintf (file, "som ");
4494 fprintf_vma (file, symbol->value);
4495 fprintf (file, " %lx", (long) symbol->flags);
4496 break;
4497 case bfd_print_symbol_all:
4498 {
4499 CONST char *section_name;
4500 section_name = symbol->section ? symbol->section->name : "(*none*)";
4501 bfd_print_symbol_vandf ((PTR) file, symbol);
4502 fprintf (file, " %s\t%s", section_name, symbol->name);
4503 break;
4504 }
4505 }
4506}
4507
4508static boolean
4509som_bfd_is_local_label_name (abfd, name)
4510 bfd *abfd;
4511 const char *name;
4512{
4513 return (name[0] == 'L' && name[1] == '$');
4514}
4515
4516/* Count or process variable-length SOM fixup records.
4517
4518 To avoid code duplication we use this code both to compute the number
4519 of relocations requested by a stream, and to internalize the stream.
4520
4521 When computing the number of relocations requested by a stream the
4522 variables rptr, section, and symbols have no meaning.
4523
4524 Return the number of relocations requested by the fixup stream. When
4525 not just counting
4526
4527 This needs at least two or three more passes to get it cleaned up. */
4528
4529static unsigned int
4530som_set_reloc_info (fixup, end, internal_relocs, section, symbols, just_count)
4531 unsigned char *fixup;
4532 unsigned int end;
4533 arelent *internal_relocs;
4534 asection *section;
4535 asymbol **symbols;
4536 boolean just_count;
4537{
4538 unsigned int op, varname, deallocate_contents = 0;
4539 unsigned char *end_fixups = &fixup[end];
4540 const struct fixup_format *fp;
4541 char *cp;
4542 unsigned char *save_fixup;
4543 int variables[26], stack[20], c, v, count, prev_fixup, *sp, saved_unwind_bits;
4544 const int *subop;
4545 arelent *rptr= internal_relocs;
4546 unsigned int offset = 0;
4547
4548#define var(c) variables[(c) - 'A']
4549#define push(v) (*sp++ = (v))
4550#define pop() (*--sp)
4551#define emptystack() (sp == stack)
4552
4553 som_initialize_reloc_queue (reloc_queue);
4554 memset (variables, 0, sizeof (variables));
4555 memset (stack, 0, sizeof (stack));
4556 count = 0;
4557 prev_fixup = 0;
4558 saved_unwind_bits = 0;
4559 sp = stack;
4560
4561 while (fixup < end_fixups)
4562 {
4563
4564 /* Save pointer to the start of this fixup. We'll use
4565 it later to determine if it is necessary to put this fixup
4566 on the queue. */
4567 save_fixup = fixup;
4568
4569 /* Get the fixup code and its associated format. */
4570 op = *fixup++;
4571 fp = &som_fixup_formats[op];
4572
4573 /* Handle a request for a previous fixup. */
4574 if (*fp->format == 'P')
4575 {
4576 /* Get pointer to the beginning of the prev fixup, move
4577 the repeated fixup to the head of the queue. */
4578 fixup = reloc_queue[fp->D].reloc;
4579 som_reloc_queue_fix (reloc_queue, fp->D);
4580 prev_fixup = 1;
4581
4582 /* Get the fixup code and its associated format. */
4583 op = *fixup++;
4584 fp = &som_fixup_formats[op];
4585 }
4586
4587 /* If this fixup will be passed to BFD, set some reasonable defaults. */
4588 if (! just_count
4589 && som_hppa_howto_table[op].type != R_NO_RELOCATION
4590 && som_hppa_howto_table[op].type != R_DATA_OVERRIDE)
4591 {
4592 rptr->address = offset;
4593 rptr->howto = &som_hppa_howto_table[op];
4594 rptr->addend = 0;
4595 rptr->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
4596 }
4597
4598 /* Set default input length to 0. Get the opcode class index
4599 into D. */
4600 var ('L') = 0;
4601 var ('D') = fp->D;
4602 var ('U') = saved_unwind_bits;
4603
4604 /* Get the opcode format. */
4605 cp = fp->format;
4606
4607 /* Process the format string. Parsing happens in two phases,
4608 parse RHS, then assign to LHS. Repeat until no more
4609 characters in the format string. */
4610 while (*cp)
4611 {
4612 /* The variable this pass is going to compute a value for. */
4613 varname = *cp++;
4614
4615 /* Start processing RHS. Continue until a NULL or '=' is found. */
4616 do
4617 {
4618 c = *cp++;
4619
4620 /* If this is a variable, push it on the stack. */
4621 if (isupper (c))
4622 push (var (c));
4623
4624 /* If this is a lower case letter, then it represents
4625 additional data from the fixup stream to be pushed onto
4626 the stack. */
4627 else if (islower (c))
4628 {
4629 int bits = (c - 'a') * 8;
4630 for (v = 0; c > 'a'; --c)
4631 v = (v << 8) | *fixup++;
4632 if (varname == 'V')
4633 v = sign_extend (v, bits);
4634 push (v);
4635 }
4636
4637 /* A decimal constant. Push it on the stack. */
4638 else if (isdigit (c))
4639 {
4640 v = c - '0';
4641 while (isdigit (*cp))
4642 v = (v * 10) + (*cp++ - '0');
4643 push (v);
4644 }
4645 else
4646
4647 /* An operator. Pop two two values from the stack and
4648 use them as operands to the given operation. Push
4649 the result of the operation back on the stack. */
4650 switch (c)
4651 {
4652 case '+':
4653 v = pop ();
4654 v += pop ();
4655 push (v);
4656 break;
4657 case '*':
4658 v = pop ();
4659 v *= pop ();
4660 push (v);
4661 break;
4662 case '<':
4663 v = pop ();
4664 v = pop () << v;
4665 push (v);
4666 break;
4667 default:
4668 abort ();
4669 }
4670 }
4671 while (*cp && *cp != '=');
4672
4673 /* Move over the equal operator. */
4674 cp++;
4675
4676 /* Pop the RHS off the stack. */
4677 c = pop ();
4678
4679 /* Perform the assignment. */
4680 var (varname) = c;
4681
4682 /* Handle side effects. and special 'O' stack cases. */
4683 switch (varname)
4684 {
4685 /* Consume some bytes from the input space. */
4686 case 'L':
4687 offset += c;
4688 break;
4689 /* A symbol to use in the relocation. Make a note
4690 of this if we are not just counting. */
4691 case 'S':
4692 if (! just_count)
4693 rptr->sym_ptr_ptr = &symbols[c];
4694 break;
4695 /* Argument relocation bits for a function call. */
4696 case 'R':
4697 if (! just_count)
4698 {
4699 unsigned int tmp = var ('R');
4700 rptr->addend = 0;
4701
4702 if ((som_hppa_howto_table[op].type == R_PCREL_CALL
4703 && R_PCREL_CALL + 10 > op)
4704 || (som_hppa_howto_table[op].type == R_ABS_CALL
4705 && R_ABS_CALL + 10 > op))
4706 {
4707 /* Simple encoding. */
4708 if (tmp > 4)
4709 {
4710 tmp -= 5;
4711 rptr->addend |= 1;
4712 }
4713 if (tmp == 4)
4714 rptr->addend |= 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2;
4715 else if (tmp == 3)
4716 rptr->addend |= 1 << 8 | 1 << 6 | 1 << 4;
4717 else if (tmp == 2)
4718 rptr->addend |= 1 << 8 | 1 << 6;
4719 else if (tmp == 1)
4720 rptr->addend |= 1 << 8;
4721 }
4722 else
4723 {
4724 unsigned int tmp1, tmp2;
4725
4726 /* First part is easy -- low order two bits are
4727 directly copied, then shifted away. */
4728 rptr->addend = tmp & 0x3;
4729 tmp >>= 2;
4730
4731 /* Diving the result by 10 gives us the second
4732 part. If it is 9, then the first two words
4733 are a double precision paramater, else it is
4734 3 * the first arg bits + the 2nd arg bits. */
4735 tmp1 = tmp / 10;
4736 tmp -= tmp1 * 10;
4737 if (tmp1 == 9)
4738 rptr->addend += (0xe << 6);
4739 else
4740 {
4741 /* Get the two pieces. */
4742 tmp2 = tmp1 / 3;
4743 tmp1 -= tmp2 * 3;
4744 /* Put them in the addend. */
4745 rptr->addend += (tmp2 << 8) + (tmp1 << 6);
4746 }
4747
4748 /* What's left is the third part. It's unpacked
4749 just like the second. */
4750 if (tmp == 9)
4751 rptr->addend += (0xe << 2);
4752 else
4753 {
4754 tmp2 = tmp / 3;
4755 tmp -= tmp2 * 3;
4756 rptr->addend += (tmp2 << 4) + (tmp << 2);
4757 }
4758 }
4759 rptr->addend = HPPA_R_ADDEND (rptr->addend, 0);
4760 }
4761 break;
4762 /* Handle the linker expression stack. */
4763 case 'O':
4764 switch (op)
4765 {
4766 case R_COMP1:
4767 subop = comp1_opcodes;
4768 break;
4769 case R_COMP2:
4770 subop = comp2_opcodes;
4771 break;
4772 case R_COMP3:
4773 subop = comp3_opcodes;
4774 break;
4775 default:
4776 abort ();
4777 }
4778 while (*subop <= (unsigned char) c)
4779 ++subop;
4780 --subop;
4781 break;
4782 /* The lower 32unwind bits must be persistent. */
4783 case 'U':
4784 saved_unwind_bits = var ('U');
4785 break;
4786
4787 default:
4788 break;
4789 }
4790 }
4791
4792 /* If we used a previous fixup, clean up after it. */
4793 if (prev_fixup)
4794 {
4795 fixup = save_fixup + 1;
4796 prev_fixup = 0;
4797 }
4798 /* Queue it. */
4799 else if (fixup > save_fixup + 1)
4800 som_reloc_queue_insert (save_fixup, fixup - save_fixup, reloc_queue);
4801
4802 /* We do not pass R_DATA_OVERRIDE or R_NO_RELOCATION
4803 fixups to BFD. */
4804 if (som_hppa_howto_table[op].type != R_DATA_OVERRIDE
4805 && som_hppa_howto_table[op].type != R_NO_RELOCATION)
4806 {
4807 /* Done with a single reloction. Loop back to the top. */
4808 if (! just_count)
4809 {
4810 if (som_hppa_howto_table[op].type == R_ENTRY)
4811 rptr->addend = var ('T');
4812 else if (som_hppa_howto_table[op].type == R_EXIT)
4813 rptr->addend = var ('U');
4814 else if (som_hppa_howto_table[op].type == R_PCREL_CALL
4815 || som_hppa_howto_table[op].type == R_ABS_CALL)
4816 ;
4817 else if (som_hppa_howto_table[op].type == R_DATA_ONE_SYMBOL)
4818 {
4819 unsigned addend = var ('V');
4820
4821 /* Try what was specified in R_DATA_OVERRIDE first
4822 (if anything). Then the hard way using the
4823 section contents. */
4824 rptr->addend = var ('V');
4825
4826 if (rptr->addend == 0 && !section->contents)
4827 {
4828 /* Got to read the damn contents first. We don't
4829 bother saving the contents (yet). Add it one
4830 day if the need arises. */
4831 section->contents = bfd_malloc (section->_raw_size);
4832 if (section->contents == NULL)
4833 return -1;
4834
4835 deallocate_contents = 1;
4836 bfd_get_section_contents (section->owner,
4837 section,
4838 section->contents,
4839 0,
4840 section->_raw_size);
4841 }
4842 else if (rptr->addend == 0)
4843 rptr->addend = bfd_get_32 (section->owner,
4844 (section->contents
4845 + offset - var ('L')));
4846
4847 }
4848 else
4849 rptr->addend = var ('V');
4850 rptr++;
4851 }
4852 count++;
4853 /* Now that we've handled a "full" relocation, reset
4854 some state. */
4855 memset (variables, 0, sizeof (variables));
4856 memset (stack, 0, sizeof (stack));
4857 }
4858 }
4859 if (deallocate_contents)
4860 free (section->contents);
4861
4862 return count;
4863
4864#undef var
4865#undef push
4866#undef pop
4867#undef emptystack
4868}
4869
4870/* Read in the relocs (aka fixups in SOM terms) for a section.
4871
4872 som_get_reloc_upper_bound calls this routine with JUST_COUNT
4873 set to true to indicate it only needs a count of the number
4874 of actual relocations. */
4875
4876static boolean
4877som_slurp_reloc_table (abfd, section, symbols, just_count)
4878 bfd *abfd;
4879 asection *section;
4880 asymbol **symbols;
4881 boolean just_count;
4882{
4883 char *external_relocs;
4884 unsigned int fixup_stream_size;
4885 arelent *internal_relocs;
4886 unsigned int num_relocs;
4887
4888 fixup_stream_size = som_section_data (section)->reloc_size;
4889 /* If there were no relocations, then there is nothing to do. */
4890 if (section->reloc_count == 0)
4891 return true;
4892
4893 /* If reloc_count is -1, then the relocation stream has not been
4894 parsed. We must do so now to know how many relocations exist. */
4895 if (section->reloc_count == -1)
4896 {
4897 external_relocs = (char *) bfd_malloc (fixup_stream_size);
4898 if (external_relocs == (char *) NULL)
4899 return false;
4900 /* Read in the external forms. */
4901 if (bfd_seek (abfd,
4902 obj_som_reloc_filepos (abfd) + section->rel_filepos,
4903 SEEK_SET)
4904 != 0)
4905 return false;
4906 if (bfd_read (external_relocs, 1, fixup_stream_size, abfd)
4907 != fixup_stream_size)
4908 return false;
4909
4910 /* Let callers know how many relocations found.
4911 also save the relocation stream as we will
4912 need it again. */
4913 section->reloc_count = som_set_reloc_info (external_relocs,
4914 fixup_stream_size,
4915 NULL, NULL, NULL, true);
4916
4917 som_section_data (section)->reloc_stream = external_relocs;
4918 }
4919
4920 /* If the caller only wanted a count, then return now. */
4921 if (just_count)
4922 return true;
4923
4924 num_relocs = section->reloc_count;
4925 external_relocs = som_section_data (section)->reloc_stream;
4926 /* Return saved information about the relocations if it is available. */
4927 if (section->relocation != (arelent *) NULL)
4928 return true;
4929
4930 internal_relocs = (arelent *)
4931 bfd_zalloc (abfd, (num_relocs * sizeof (arelent)));
4932 if (internal_relocs == (arelent *) NULL)
4933 return false;
4934
4935 /* Process and internalize the relocations. */
4936 som_set_reloc_info (external_relocs, fixup_stream_size,
4937 internal_relocs, section, symbols, false);
4938
4939 /* We're done with the external relocations. Free them. */
4940 free (external_relocs);
4941 som_section_data (section)->reloc_stream = NULL;
4942
4943 /* Save our results and return success. */
4944 section->relocation = internal_relocs;
4945 return (true);
4946}
4947
4948/* Return the number of bytes required to store the relocation
4949 information associated with the given section. */
4950
4951static long
4952som_get_reloc_upper_bound (abfd, asect)
4953 bfd *abfd;
4954 sec_ptr asect;
4955{
4956 /* If section has relocations, then read in the relocation stream
4957 and parse it to determine how many relocations exist. */
4958 if (asect->flags & SEC_RELOC)
4959 {
4960 if (! som_slurp_reloc_table (abfd, asect, NULL, true))
4961 return -1;
4962 return (asect->reloc_count + 1) * sizeof (arelent *);
4963 }
4964 /* There are no relocations. */
4965 return 0;
4966}
4967
4968/* Convert relocations from SOM (external) form into BFD internal
4969 form. Return the number of relocations. */
4970
4971static long
4972som_canonicalize_reloc (abfd, section, relptr, symbols)
4973 bfd *abfd;
4974 sec_ptr section;
4975 arelent **relptr;
4976 asymbol **symbols;
4977{
4978 arelent *tblptr;
4979 int count;
4980
4981 if (som_slurp_reloc_table (abfd, section, symbols, false) == false)
4982 return -1;
4983
4984 count = section->reloc_count;
4985 tblptr = section->relocation;
4986
4987 while (count--)
4988 *relptr++ = tblptr++;
4989
4990 *relptr = (arelent *) NULL;
4991 return section->reloc_count;
4992}
4993
4994extern const bfd_target som_vec;
4995
4996/* A hook to set up object file dependent section information. */
4997
4998static boolean
4999som_new_section_hook (abfd, newsect)
5000 bfd *abfd;
5001 asection *newsect;
5002{
5003 newsect->used_by_bfd =
5004 (PTR) bfd_zalloc (abfd, sizeof (struct som_section_data_struct));
5005 if (!newsect->used_by_bfd)
5006 return false;
5007 newsect->alignment_power = 3;
5008
5009 /* We allow more than three sections internally */
5010 return true;
5011}
5012
5013/* Copy any private info we understand from the input symbol
5014 to the output symbol. */
5015
5016static boolean
5017som_bfd_copy_private_symbol_data (ibfd, isymbol, obfd, osymbol)
5018 bfd *ibfd;
5019 asymbol *isymbol;
5020 bfd *obfd;
5021 asymbol *osymbol;
5022{
5023 struct som_symbol *input_symbol = (struct som_symbol *) isymbol;
5024 struct som_symbol *output_symbol = (struct som_symbol *) osymbol;
5025
5026 /* One day we may try to grok other private data. */
5027 if (ibfd->xvec->flavour != bfd_target_som_flavour
5028 || obfd->xvec->flavour != bfd_target_som_flavour)
5029 return false;
5030
5031 /* The only private information we need to copy is the argument relocation
5032 bits. */
5033 output_symbol->tc_data.ap.hppa_arg_reloc =
5034 input_symbol->tc_data.ap.hppa_arg_reloc;
5035
5036 return true;
5037}
5038
5039/* Copy any private info we understand from the input section
5040 to the output section. */
5041static boolean
5042som_bfd_copy_private_section_data (ibfd, isection, obfd, osection)
5043 bfd *ibfd;
5044 asection *isection;
5045 bfd *obfd;
5046 asection *osection;
5047{
5048 /* One day we may try to grok other private data. */
5049 if (ibfd->xvec->flavour != bfd_target_som_flavour
5050 || obfd->xvec->flavour != bfd_target_som_flavour
5051 || (!som_is_space (isection) && !som_is_subspace (isection)))
5052 return true;
5053
5054 som_section_data (osection)->copy_data
5055 = (struct som_copyable_section_data_struct *)
5056 bfd_zalloc (obfd, sizeof (struct som_copyable_section_data_struct));
5057 if (som_section_data (osection)->copy_data == NULL)
5058 return false;
5059
5060 memcpy (som_section_data (osection)->copy_data,
5061 som_section_data (isection)->copy_data,
5062 sizeof (struct som_copyable_section_data_struct));
5063
5064 /* Reparent if necessary. */
5065 if (som_section_data (osection)->copy_data->container)
5066 som_section_data (osection)->copy_data->container =
5067 som_section_data (osection)->copy_data->container->output_section;
5068
5069 return true;
5070}
5071
5072/* Copy any private info we understand from the input bfd
5073 to the output bfd. */
5074
5075static boolean
5076som_bfd_copy_private_bfd_data (ibfd, obfd)
5077 bfd *ibfd, *obfd;
5078{
5079 /* One day we may try to grok other private data. */
5080 if (ibfd->xvec->flavour != bfd_target_som_flavour
5081 || obfd->xvec->flavour != bfd_target_som_flavour)
5082 return true;
5083
5084 /* Allocate some memory to hold the data we need. */
5085 obj_som_exec_data (obfd) = (struct som_exec_data *)
5086 bfd_zalloc (obfd, sizeof (struct som_exec_data));
5087 if (obj_som_exec_data (obfd) == NULL)
5088 return false;
5089
5090 /* Now copy the data. */
5091 memcpy (obj_som_exec_data (obfd), obj_som_exec_data (ibfd),
5092 sizeof (struct som_exec_data));
5093
5094 return true;
5095}
5096
5097/* Set backend info for sections which can not be described
5098 in the BFD data structures. */
5099
5100boolean
5101bfd_som_set_section_attributes (section, defined, private, sort_key, spnum)
5102 asection *section;
5103 int defined;
5104 int private;
5105 unsigned int sort_key;
5106 int spnum;
5107{
5108 /* Allocate memory to hold the magic information. */
5109 if (som_section_data (section)->copy_data == NULL)
5110 {
5111 som_section_data (section)->copy_data
5112 = (struct som_copyable_section_data_struct *)
5113 bfd_zalloc (section->owner,
5114 sizeof (struct som_copyable_section_data_struct));
5115 if (som_section_data (section)->copy_data == NULL)
5116 return false;
5117 }
5118 som_section_data (section)->copy_data->sort_key = sort_key;
5119 som_section_data (section)->copy_data->is_defined = defined;
5120 som_section_data (section)->copy_data->is_private = private;
5121 som_section_data (section)->copy_data->container = section;
5122 som_section_data (section)->copy_data->space_number = spnum;
5123 return true;
5124}
5125
5126/* Set backend info for subsections which can not be described
5127 in the BFD data structures. */
5128
5129boolean
5130bfd_som_set_subsection_attributes (section, container, access,
5131 sort_key, quadrant)
5132 asection *section;
5133 asection *container;
5134 int access;
5135 unsigned int sort_key;
5136 int quadrant;
5137{
5138 /* Allocate memory to hold the magic information. */
5139 if (som_section_data (section)->copy_data == NULL)
5140 {
5141 som_section_data (section)->copy_data
5142 = (struct som_copyable_section_data_struct *)
5143 bfd_zalloc (section->owner,
5144 sizeof (struct som_copyable_section_data_struct));
5145 if (som_section_data (section)->copy_data == NULL)
5146 return false;
5147 }
5148 som_section_data (section)->copy_data->sort_key = sort_key;
5149 som_section_data (section)->copy_data->access_control_bits = access;
5150 som_section_data (section)->copy_data->quadrant = quadrant;
5151 som_section_data (section)->copy_data->container = container;
5152 return true;
5153}
5154
5155/* Set the full SOM symbol type. SOM needs far more symbol information
5156 than any other object file format I'm aware of. It is mandatory
5157 to be able to know if a symbol is an entry point, millicode, data,
5158 code, absolute, storage request, or procedure label. If you get
5159 the symbol type wrong your program will not link. */
5160
5161void
5162bfd_som_set_symbol_type (symbol, type)
5163 asymbol *symbol;
5164 unsigned int type;
5165{
5166 som_symbol_data (symbol)->som_type = type;
5167}
5168
5169/* Attach an auxiliary header to the BFD backend so that it may be
5170 written into the object file. */
5171boolean
5172bfd_som_attach_aux_hdr (abfd, type, string)
5173 bfd *abfd;
5174 int type;
5175 char *string;
5176{
5177 if (type == VERSION_AUX_ID)
5178 {
5179 int len = strlen (string);
5180 int pad = 0;
5181
5182 if (len % 4)
5183 pad = (4 - (len % 4));
5184 obj_som_version_hdr (abfd) = (struct user_string_aux_hdr *)
5185 bfd_zalloc (abfd, sizeof (struct aux_id)
5186 + sizeof (unsigned int) + len + pad);
5187 if (!obj_som_version_hdr (abfd))
5188 return false;
5189 obj_som_version_hdr (abfd)->header_id.type = VERSION_AUX_ID;
5190 obj_som_version_hdr (abfd)->header_id.length = len + pad;
5191 obj_som_version_hdr (abfd)->header_id.length += sizeof (int);
5192 obj_som_version_hdr (abfd)->string_length = len;
5193 strncpy (obj_som_version_hdr (abfd)->user_string, string, len);
5194 }
5195 else if (type == COPYRIGHT_AUX_ID)
5196 {
5197 int len = strlen (string);
5198 int pad = 0;
5199
5200 if (len % 4)
5201 pad = (4 - (len % 4));
5202 obj_som_copyright_hdr (abfd) = (struct copyright_aux_hdr *)
5203 bfd_zalloc (abfd, sizeof (struct aux_id)
5204 + sizeof (unsigned int) + len + pad);
5205 if (!obj_som_copyright_hdr (abfd))
5206 return false;
5207 obj_som_copyright_hdr (abfd)->header_id.type = COPYRIGHT_AUX_ID;
5208 obj_som_copyright_hdr (abfd)->header_id.length = len + pad;
5209 obj_som_copyright_hdr (abfd)->header_id.length += sizeof (int);
5210 obj_som_copyright_hdr (abfd)->string_length = len;
5211 strcpy (obj_som_copyright_hdr (abfd)->copyright, string);
5212 }
5213 return true;
5214}
5215
5216/* Attach an compilation unit header to the BFD backend so that it may be
5217 written into the object file. */
5218
5219boolean
5220bfd_som_attach_compilation_unit (abfd, name, language_name, product_id,
5221 version_id)
5222 bfd *abfd;
5223 const char *name;
5224 const char *language_name;
5225 const char *product_id;
5226 const char *version_id;
5227{
5228 COMPUNIT *n = (COMPUNIT *) bfd_zalloc (abfd, COMPUNITSZ);
5229 if (n == NULL)
5230 return false;
5231
5232#define STRDUP(f) \
5233 if (f != NULL) \
5234 { \
5235 n->f.n_name = bfd_alloc (abfd, strlen (f) + 1); \
5236 if (n->f.n_name == NULL) \
5237 return false; \
5238 strcpy (n->f.n_name, f); \
5239 }
5240
5241 STRDUP (name);
5242 STRDUP (language_name);
5243 STRDUP (product_id);
5244 STRDUP (version_id);
5245
5246#undef STRDUP
5247
5248 obj_som_compilation_unit (abfd) = n;
5249
5250 return true;
5251}
5252
5253static boolean
5254som_get_section_contents (abfd, section, location, offset, count)
5255 bfd *abfd;
5256 sec_ptr section;
5257 PTR location;
5258 file_ptr offset;
5259 bfd_size_type count;
5260{
5261 if (count == 0 || ((section->flags & SEC_HAS_CONTENTS) == 0))
5262 return true;
5263 if ((bfd_size_type)(offset+count) > section->_raw_size
5264 || bfd_seek (abfd, (file_ptr)(section->filepos + offset), SEEK_SET) == -1
5265 || bfd_read (location, (bfd_size_type)1, count, abfd) != count)
5266 return (false); /* on error */
5267 return (true);
5268}
5269
5270static boolean
5271som_set_section_contents (abfd, section, location, offset, count)
5272 bfd *abfd;
5273 sec_ptr section;
5274 PTR location;
5275 file_ptr offset;
5276 bfd_size_type count;
5277{
5278 if (abfd->output_has_begun == false)
5279 {
5280 /* Set up fixed parts of the file, space, and subspace headers.
5281 Notify the world that output has begun. */
5282 som_prep_headers (abfd);
5283 abfd->output_has_begun = true;
5284 /* Start writing the object file. This include all the string
5285 tables, fixup streams, and other portions of the object file. */
5286 som_begin_writing (abfd);
5287 }
5288
5289 /* Only write subspaces which have "real" contents (eg. the contents
5290 are not generated at run time by the OS). */
5291 if (!som_is_subspace (section)
5292 || ((section->flags & SEC_HAS_CONTENTS) == 0))
5293 return true;
5294
5295 /* Seek to the proper offset within the object file and write the
5296 data. */
5297 offset += som_section_data (section)->subspace_dict->file_loc_init_value;
5298 if (bfd_seek (abfd, offset, SEEK_SET) == -1)
5299 return false;
5300
5301 if (bfd_write ((PTR) location, 1, count, abfd) != count)
5302 return false;
5303 return true;
5304}
5305
5306static boolean
5307som_set_arch_mach (abfd, arch, machine)
5308 bfd *abfd;
5309 enum bfd_architecture arch;
5310 unsigned long machine;
5311{
5312 /* Allow any architecture to be supported by the SOM backend */
5313 return bfd_default_set_arch_mach (abfd, arch, machine);
5314}
5315
5316static boolean
5317som_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
5318 functionname_ptr, line_ptr)
5319 bfd *abfd;
5320 asection *section;
5321 asymbol **symbols;
5322 bfd_vma offset;
5323 CONST char **filename_ptr;
5324 CONST char **functionname_ptr;
5325 unsigned int *line_ptr;
5326{
5327 return (false);
5328}
5329
5330static int
5331som_sizeof_headers (abfd, reloc)
5332 bfd *abfd;
5333 boolean reloc;
5334{
5335 (*_bfd_error_handler) (_("som_sizeof_headers unimplemented"));
5336 fflush (stderr);
5337 abort ();
5338 return (0);
5339}
5340
5341/* Return the single-character symbol type corresponding to
5342 SOM section S, or '?' for an unknown SOM section. */
5343
5344static char
5345som_section_type (s)
5346 const char *s;
5347{
5348 const struct section_to_type *t;
5349
5350 for (t = &stt[0]; t->section; t++)
5351 if (!strcmp (s, t->section))
5352 return t->type;
5353 return '?';
5354}
5355
5356static int
5357som_decode_symclass (symbol)
5358 asymbol *symbol;
5359{
5360 char c;
5361
5362 if (bfd_is_com_section (symbol->section))
5363 return 'C';
5364 if (bfd_is_und_section (symbol->section))
5365 return 'U';
5366 if (bfd_is_ind_section (symbol->section))
5367 return 'I';
10febd84
CM
5368 if (symbol->flags & BSF_WEAK)
5369 return 'W';
252b5132
RH
5370 if (!(symbol->flags & (BSF_GLOBAL|BSF_LOCAL)))
5371 return '?';
5372
5373 if (bfd_is_abs_section (symbol->section)
5374 || (som_symbol_data (symbol) != NULL
5375 && som_symbol_data (symbol)->som_type == SYMBOL_TYPE_ABSOLUTE))
5376 c = 'a';
5377 else if (symbol->section)
5378 c = som_section_type (symbol->section->name);
5379 else
5380 return '?';
5381 if (symbol->flags & BSF_GLOBAL)
5382 c = toupper (c);
5383 return c;
5384}
5385
5386/* Return information about SOM symbol SYMBOL in RET. */
5387
5388static void
5389som_get_symbol_info (ignore_abfd, symbol, ret)
5390 bfd *ignore_abfd;
5391 asymbol *symbol;
5392 symbol_info *ret;
5393{
5394 ret->type = som_decode_symclass (symbol);
5395 if (ret->type != 'U')
5396 ret->value = symbol->value+symbol->section->vma;
5397 else
5398 ret->value = 0;
5399 ret->name = symbol->name;
5400}
5401
5402/* Count the number of symbols in the archive symbol table. Necessary
5403 so that we can allocate space for all the carsyms at once. */
5404
5405static boolean
5406som_bfd_count_ar_symbols (abfd, lst_header, count)
5407 bfd *abfd;
5408 struct lst_header *lst_header;
5409 symindex *count;
5410{
5411 unsigned int i;
5412 unsigned int *hash_table = NULL;
5413 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5414
5415 hash_table =
5416 (unsigned int *) bfd_malloc (lst_header->hash_size
5417 * sizeof (unsigned int));
5418 if (hash_table == NULL && lst_header->hash_size != 0)
5419 goto error_return;
5420
5421 /* Don't forget to initialize the counter! */
5422 *count = 0;
5423
5424 /* Read in the hash table. The has table is an array of 32bit file offsets
5425 which point to the hash chains. */
5426 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
5427 != lst_header->hash_size * 4)
5428 goto error_return;
5429
5430 /* Walk each chain counting the number of symbols found on that particular
5431 chain. */
5432 for (i = 0; i < lst_header->hash_size; i++)
5433 {
5434 struct lst_symbol_record lst_symbol;
5435
5436 /* An empty chain has zero as it's file offset. */
5437 if (hash_table[i] == 0)
5438 continue;
5439
5440 /* Seek to the first symbol in this hash chain. */
5441 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
5442 goto error_return;
5443
5444 /* Read in this symbol and update the counter. */
5445 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
5446 != sizeof (lst_symbol))
5447 goto error_return;
5448
5449 (*count)++;
5450
5451 /* Now iterate through the rest of the symbols on this chain. */
5452 while (lst_symbol.next_entry)
5453 {
5454
5455 /* Seek to the next symbol. */
5456 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
5457 < 0)
5458 goto error_return;
5459
5460 /* Read the symbol in and update the counter. */
5461 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
5462 != sizeof (lst_symbol))
5463 goto error_return;
5464
5465 (*count)++;
5466 }
5467 }
5468 if (hash_table != NULL)
5469 free (hash_table);
5470 return true;
5471
5472 error_return:
5473 if (hash_table != NULL)
5474 free (hash_table);
5475 return false;
5476}
5477
5478/* Fill in the canonical archive symbols (SYMS) from the archive described
5479 by ABFD and LST_HEADER. */
5480
5481static boolean
5482som_bfd_fill_in_ar_symbols (abfd, lst_header, syms)
5483 bfd *abfd;
5484 struct lst_header *lst_header;
5485 carsym **syms;
5486{
5487 unsigned int i, len;
5488 carsym *set = syms[0];
5489 unsigned int *hash_table = NULL;
5490 struct som_entry *som_dict = NULL;
5491 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5492
5493 hash_table =
5494 (unsigned int *) bfd_malloc (lst_header->hash_size
5495 * sizeof (unsigned int));
5496 if (hash_table == NULL && lst_header->hash_size != 0)
5497 goto error_return;
5498
5499 som_dict =
5500 (struct som_entry *) bfd_malloc (lst_header->module_count
5501 * sizeof (struct som_entry));
5502 if (som_dict == NULL && lst_header->module_count != 0)
5503 goto error_return;
5504
5505 /* Read in the hash table. The has table is an array of 32bit file offsets
5506 which point to the hash chains. */
5507 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
5508 != lst_header->hash_size * 4)
5509 goto error_return;
5510
5511 /* Seek to and read in the SOM dictionary. We will need this to fill
5512 in the carsym's filepos field. */
5513 if (bfd_seek (abfd, lst_filepos + lst_header->dir_loc, SEEK_SET) < 0)
5514 goto error_return;
5515
5516 if (bfd_read ((PTR) som_dict, lst_header->module_count,
5517 sizeof (struct som_entry), abfd)
5518 != lst_header->module_count * sizeof (struct som_entry))
5519 goto error_return;
5520
5521 /* Walk each chain filling in the carsyms as we go along. */
5522 for (i = 0; i < lst_header->hash_size; i++)
5523 {
5524 struct lst_symbol_record lst_symbol;
5525
5526 /* An empty chain has zero as it's file offset. */
5527 if (hash_table[i] == 0)
5528 continue;
5529
5530 /* Seek to and read the first symbol on the chain. */
5531 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
5532 goto error_return;
5533
5534 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
5535 != sizeof (lst_symbol))
5536 goto error_return;
5537
5538 /* Get the name of the symbol, first get the length which is stored
5539 as a 32bit integer just before the symbol.
5540
5541 One might ask why we don't just read in the entire string table
5542 and index into it. Well, according to the SOM ABI the string
5543 index can point *anywhere* in the archive to save space, so just
5544 using the string table would not be safe. */
5545 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
5546 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
5547 goto error_return;
5548
5549 if (bfd_read (&len, 1, 4, abfd) != 4)
5550 goto error_return;
5551
5552 /* Allocate space for the name and null terminate it too. */
5553 set->name = bfd_zalloc (abfd, len + 1);
5554 if (!set->name)
5555 goto error_return;
5556 if (bfd_read (set->name, 1, len, abfd) != len)
5557 goto error_return;
5558
5559 set->name[len] = 0;
5560
5561 /* Fill in the file offset. Note that the "location" field points
5562 to the SOM itself, not the ar_hdr in front of it. */
5563 set->file_offset = som_dict[lst_symbol.som_index].location
5564 - sizeof (struct ar_hdr);
5565
5566 /* Go to the next symbol. */
5567 set++;
5568
5569 /* Iterate through the rest of the chain. */
5570 while (lst_symbol.next_entry)
5571 {
5572 /* Seek to the next symbol and read it in. */
5573 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET) <0)
5574 goto error_return;
5575
5576 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
5577 != sizeof (lst_symbol))
5578 goto error_return;
5579
5580 /* Seek to the name length & string and read them in. */
5581 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
5582 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
5583 goto error_return;
5584
5585 if (bfd_read (&len, 1, 4, abfd) != 4)
5586 goto error_return;
5587
5588 /* Allocate space for the name and null terminate it too. */
5589 set->name = bfd_zalloc (abfd, len + 1);
5590 if (!set->name)
5591 goto error_return;
5592
5593 if (bfd_read (set->name, 1, len, abfd) != len)
5594 goto error_return;
5595 set->name[len] = 0;
5596
5597 /* Fill in the file offset. Note that the "location" field points
5598 to the SOM itself, not the ar_hdr in front of it. */
5599 set->file_offset = som_dict[lst_symbol.som_index].location
5600 - sizeof (struct ar_hdr);
5601
5602 /* Go on to the next symbol. */
5603 set++;
5604 }
5605 }
5606 /* If we haven't died by now, then we successfully read the entire
5607 archive symbol table. */
5608 if (hash_table != NULL)
5609 free (hash_table);
5610 if (som_dict != NULL)
5611 free (som_dict);
5612 return true;
5613
5614 error_return:
5615 if (hash_table != NULL)
5616 free (hash_table);
5617 if (som_dict != NULL)
5618 free (som_dict);
5619 return false;
5620}
5621
5622/* Read in the LST from the archive. */
5623static boolean
5624som_slurp_armap (abfd)
5625 bfd *abfd;
5626{
5627 struct lst_header lst_header;
5628 struct ar_hdr ar_header;
5629 unsigned int parsed_size;
5630 struct artdata *ardata = bfd_ardata (abfd);
5631 char nextname[17];
5632 int i = bfd_read ((PTR) nextname, 1, 16, abfd);
5633
5634 /* Special cases. */
5635 if (i == 0)
5636 return true;
5637 if (i != 16)
5638 return false;
5639
5640 if (bfd_seek (abfd, (file_ptr) - 16, SEEK_CUR) < 0)
5641 return false;
5642
5643 /* For archives without .o files there is no symbol table. */
5644 if (strncmp (nextname, "/ ", 16))
5645 {
5646 bfd_has_map (abfd) = false;
5647 return true;
5648 }
5649
5650 /* Read in and sanity check the archive header. */
5651 if (bfd_read ((PTR) &ar_header, 1, sizeof (struct ar_hdr), abfd)
5652 != sizeof (struct ar_hdr))
5653 return false;
5654
5655 if (strncmp (ar_header.ar_fmag, ARFMAG, 2))
5656 {
5657 bfd_set_error (bfd_error_malformed_archive);
5658 return false;
5659 }
5660
5661 /* How big is the archive symbol table entry? */
5662 errno = 0;
5663 parsed_size = strtol (ar_header.ar_size, NULL, 10);
5664 if (errno != 0)
5665 {
5666 bfd_set_error (bfd_error_malformed_archive);
5667 return false;
5668 }
5669
5670 /* Save off the file offset of the first real user data. */
5671 ardata->first_file_filepos = bfd_tell (abfd) + parsed_size;
5672
5673 /* Read in the library symbol table. We'll make heavy use of this
5674 in just a minute. */
5675 if (bfd_read ((PTR) & lst_header, 1, sizeof (struct lst_header), abfd)
5676 != sizeof (struct lst_header))
5677 return false;
5678
5679 /* Sanity check. */
5680 if (lst_header.a_magic != LIBMAGIC)
5681 {
5682 bfd_set_error (bfd_error_malformed_archive);
5683 return false;
5684 }
5685
5686 /* Count the number of symbols in the library symbol table. */
5687 if (som_bfd_count_ar_symbols (abfd, &lst_header, &ardata->symdef_count)
5688 == false)
5689 return false;
5690
5691 /* Get back to the start of the library symbol table. */
5692 if (bfd_seek (abfd, ardata->first_file_filepos - parsed_size
5693 + sizeof (struct lst_header), SEEK_SET) < 0)
5694 return false;
5695
5696 /* Initializae the cache and allocate space for the library symbols. */
5697 ardata->cache = 0;
5698 ardata->symdefs = (carsym *) bfd_alloc (abfd,
5699 (ardata->symdef_count
5700 * sizeof (carsym)));
5701 if (!ardata->symdefs)
5702 return false;
5703
5704 /* Now fill in the canonical archive symbols. */
5705 if (som_bfd_fill_in_ar_symbols (abfd, &lst_header, &ardata->symdefs)
5706 == false)
5707 return false;
5708
5709 /* Seek back to the "first" file in the archive. Note the "first"
5710 file may be the extended name table. */
5711 if (bfd_seek (abfd, ardata->first_file_filepos, SEEK_SET) < 0)
5712 return false;
5713
5714 /* Notify the generic archive code that we have a symbol map. */
5715 bfd_has_map (abfd) = true;
5716 return true;
5717}
5718
5719/* Begin preparing to write a SOM library symbol table.
5720
5721 As part of the prep work we need to determine the number of symbols
5722 and the size of the associated string section. */
5723
5724static boolean
5725som_bfd_prep_for_ar_write (abfd, num_syms, stringsize)
5726 bfd *abfd;
5727 unsigned int *num_syms, *stringsize;
5728{
5729 bfd *curr_bfd = abfd->archive_head;
5730
5731 /* Some initialization. */
5732 *num_syms = 0;
5733 *stringsize = 0;
5734
5735 /* Iterate over each BFD within this archive. */
5736 while (curr_bfd != NULL)
5737 {
5738 unsigned int curr_count, i;
5739 som_symbol_type *sym;
5740
5741 /* Don't bother for non-SOM objects. */
5742 if (curr_bfd->format != bfd_object
5743 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
5744 {
5745 curr_bfd = curr_bfd->next;
5746 continue;
5747 }
5748
5749 /* Make sure the symbol table has been read, then snag a pointer
5750 to it. It's a little slimey to grab the symbols via obj_som_symtab,
5751 but doing so avoids allocating lots of extra memory. */
5752 if (som_slurp_symbol_table (curr_bfd) == false)
5753 return false;
5754
5755 sym = obj_som_symtab (curr_bfd);
5756 curr_count = bfd_get_symcount (curr_bfd);
5757
5758 /* Examine each symbol to determine if it belongs in the
5759 library symbol table. */
5760 for (i = 0; i < curr_count; i++, sym++)
5761 {
5762 struct som_misc_symbol_info info;
5763
5764 /* Derive SOM information from the BFD symbol. */
5765 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5766
5767 /* Should we include this symbol? */
5768 if (info.symbol_type == ST_NULL
5769 || info.symbol_type == ST_SYM_EXT
5770 || info.symbol_type == ST_ARG_EXT)
5771 continue;
5772
5773 /* Only global symbols and unsatisfied commons. */
5774 if (info.symbol_scope != SS_UNIVERSAL
5775 && info.symbol_type != ST_STORAGE)
5776 continue;
5777
5778 /* Do no include undefined symbols. */
5779 if (bfd_is_und_section (sym->symbol.section))
5780 continue;
5781
5782 /* Bump the various counters, being careful to honor
5783 alignment considerations in the string table. */
5784 (*num_syms)++;
5785 *stringsize = *stringsize + strlen (sym->symbol.name) + 5;
5786 while (*stringsize % 4)
5787 (*stringsize)++;
5788 }
5789
5790 curr_bfd = curr_bfd->next;
5791 }
5792 return true;
5793}
5794
5795/* Hash a symbol name based on the hashing algorithm presented in the
5796 SOM ABI. */
5797static unsigned int
5798som_bfd_ar_symbol_hash (symbol)
5799 asymbol *symbol;
5800{
5801 unsigned int len = strlen (symbol->name);
5802
5803 /* Names with length 1 are special. */
5804 if (len == 1)
5805 return 0x1000100 | (symbol->name[0] << 16) | symbol->name[0];
5806
5807 return ((len & 0x7f) << 24) | (symbol->name[1] << 16)
5808 | (symbol->name[len-2] << 8) | symbol->name[len-1];
5809}
5810
5811/* Do the bulk of the work required to write the SOM library
5812 symbol table. */
5813
5814static boolean
5815som_bfd_ar_write_symbol_stuff (abfd, nsyms, string_size, lst, elength)
5816 bfd *abfd;
5817 unsigned int nsyms, string_size;
5818 struct lst_header lst;
5819 unsigned elength;
5820{
5821 file_ptr lst_filepos;
5822 char *strings = NULL, *p;
5823 struct lst_symbol_record *lst_syms = NULL, *curr_lst_sym;
5824 bfd *curr_bfd;
5825 unsigned int *hash_table = NULL;
5826 struct som_entry *som_dict = NULL;
5827 struct lst_symbol_record **last_hash_entry = NULL;
5828 unsigned int curr_som_offset, som_index = 0;
5829
5830 hash_table =
5831 (unsigned int *) bfd_malloc (lst.hash_size * sizeof (unsigned int));
5832 if (hash_table == NULL && lst.hash_size != 0)
5833 goto error_return;
5834 som_dict =
5835 (struct som_entry *) bfd_malloc (lst.module_count
5836 * sizeof (struct som_entry));
5837 if (som_dict == NULL && lst.module_count != 0)
5838 goto error_return;
5839
5840 last_hash_entry =
5841 ((struct lst_symbol_record **)
5842 bfd_malloc (lst.hash_size * sizeof (struct lst_symbol_record *)));
5843 if (last_hash_entry == NULL && lst.hash_size != 0)
5844 goto error_return;
5845
5846 /* Lots of fields are file positions relative to the start
5847 of the lst record. So save its location. */
5848 lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5849
5850 /* Some initialization. */
5851 memset (hash_table, 0, 4 * lst.hash_size);
5852 memset (som_dict, 0, lst.module_count * sizeof (struct som_entry));
5853 memset (last_hash_entry, 0,
5854 lst.hash_size * sizeof (struct lst_symbol_record *));
5855
5856 /* Symbols have som_index fields, so we have to keep track of the
5857 index of each SOM in the archive.
5858
5859 The SOM dictionary has (among other things) the absolute file
5860 position for the SOM which a particular dictionary entry
5861 describes. We have to compute that information as we iterate
5862 through the SOMs/symbols. */
5863 som_index = 0;
5864
5865 /* We add in the size of the archive header twice as the location
5866 in the SOM dictionary is the actual offset of the SOM, not the
5867 archive header before the SOM. */
5868 curr_som_offset = 8 + 2 * sizeof (struct ar_hdr) + lst.file_end;
5869
5870 /* Make room for the archive header and the contents of the
5871 extended string table. Note that elength includes the size
5872 of the archive header for the extended name table! */
5873 if (elength)
5874 curr_som_offset += elength;
5875
5876 /* Make sure we're properly aligned. */
5877 curr_som_offset = (curr_som_offset + 0x1) & ~0x1;
5878
5879 /* FIXME should be done with buffers just like everything else... */
5880 lst_syms = bfd_malloc (nsyms * sizeof (struct lst_symbol_record));
5881 if (lst_syms == NULL && nsyms != 0)
5882 goto error_return;
5883 strings = bfd_malloc (string_size);
5884 if (strings == NULL && string_size != 0)
5885 goto error_return;
5886
5887 p = strings;
5888 curr_lst_sym = lst_syms;
5889
5890 curr_bfd = abfd->archive_head;
5891 while (curr_bfd != NULL)
5892 {
5893 unsigned int curr_count, i;
5894 som_symbol_type *sym;
5895
5896 /* Don't bother for non-SOM objects. */
5897 if (curr_bfd->format != bfd_object
5898 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
5899 {
5900 curr_bfd = curr_bfd->next;
5901 continue;
5902 }
5903
5904 /* Make sure the symbol table has been read, then snag a pointer
5905 to it. It's a little slimey to grab the symbols via obj_som_symtab,
5906 but doing so avoids allocating lots of extra memory. */
5907 if (som_slurp_symbol_table (curr_bfd) == false)
5908 goto error_return;
5909
5910 sym = obj_som_symtab (curr_bfd);
5911 curr_count = bfd_get_symcount (curr_bfd);
5912
5913 for (i = 0; i < curr_count; i++, sym++)
5914 {
5915 struct som_misc_symbol_info info;
5916
5917 /* Derive SOM information from the BFD symbol. */
5918 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5919
5920 /* Should we include this symbol? */
5921 if (info.symbol_type == ST_NULL
5922 || info.symbol_type == ST_SYM_EXT
5923 || info.symbol_type == ST_ARG_EXT)
5924 continue;
5925
5926 /* Only global symbols and unsatisfied commons. */
5927 if (info.symbol_scope != SS_UNIVERSAL
5928 && info.symbol_type != ST_STORAGE)
5929 continue;
5930
5931 /* Do no include undefined symbols. */
5932 if (bfd_is_und_section (sym->symbol.section))
5933 continue;
5934
5935 /* If this is the first symbol from this SOM, then update
5936 the SOM dictionary too. */
5937 if (som_dict[som_index].location == 0)
5938 {
5939 som_dict[som_index].location = curr_som_offset;
5940 som_dict[som_index].length = arelt_size (curr_bfd);
5941 }
5942
5943 /* Fill in the lst symbol record. */
5944 curr_lst_sym->hidden = 0;
ba20314e 5945 curr_lst_sym->secondary_def = info.secondary_def;
252b5132
RH
5946 curr_lst_sym->symbol_type = info.symbol_type;
5947 curr_lst_sym->symbol_scope = info.symbol_scope;
5948 curr_lst_sym->check_level = 0;
5949 curr_lst_sym->must_qualify = 0;
5950 curr_lst_sym->initially_frozen = 0;
5951 curr_lst_sym->memory_resident = 0;
5952 curr_lst_sym->is_common = bfd_is_com_section (sym->symbol.section);
5953 curr_lst_sym->dup_common = 0;
5954 curr_lst_sym->xleast = 3;
5955 curr_lst_sym->arg_reloc = info.arg_reloc;
5956 curr_lst_sym->name.n_strx = p - strings + 4;
5957 curr_lst_sym->qualifier_name.n_strx = 0;
5958 curr_lst_sym->symbol_info = info.symbol_info;
5959 curr_lst_sym->symbol_value = info.symbol_value | info.priv_level;
5960 curr_lst_sym->symbol_descriptor = 0;
5961 curr_lst_sym->reserved = 0;
5962 curr_lst_sym->som_index = som_index;
5963 curr_lst_sym->symbol_key = som_bfd_ar_symbol_hash (&sym->symbol);
5964 curr_lst_sym->next_entry = 0;
5965
5966 /* Insert into the hash table. */
5967 if (hash_table[curr_lst_sym->symbol_key % lst.hash_size])
5968 {
5969 struct lst_symbol_record *tmp;
5970
5971 /* There is already something at the head of this hash chain,
5972 so tack this symbol onto the end of the chain. */
5973 tmp = last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size];
5974 tmp->next_entry
5975 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
5976 + lst.hash_size * 4
5977 + lst.module_count * sizeof (struct som_entry)
5978 + sizeof (struct lst_header);
5979 }
5980 else
5981 {
5982 /* First entry in this hash chain. */
5983 hash_table[curr_lst_sym->symbol_key % lst.hash_size]
5984 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
5985 + lst.hash_size * 4
5986 + lst.module_count * sizeof (struct som_entry)
5987 + sizeof (struct lst_header);
5988 }
5989
5990 /* Keep track of the last symbol we added to this chain so we can
5991 easily update its next_entry pointer. */
5992 last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size]
5993 = curr_lst_sym;
5994
5995
5996 /* Update the string table. */
5997 bfd_put_32 (abfd, strlen (sym->symbol.name), p);
5998 p += 4;
5999 strcpy (p, sym->symbol.name);
6000 p += strlen (sym->symbol.name) + 1;
6001 while ((int)p % 4)
6002 {
6003 bfd_put_8 (abfd, 0, p);
6004 p++;
6005 }
6006
6007 /* Head to the next symbol. */
6008 curr_lst_sym++;
6009 }
6010
6011 /* Keep track of where each SOM will finally reside; then look
6012 at the next BFD. */
6013 curr_som_offset += arelt_size (curr_bfd) + sizeof (struct ar_hdr);
6014
6015 /* A particular object in the archive may have an odd length; the
6016 linker requires objects begin on an even boundary. So round
6017 up the current offset as necessary. */
6018 curr_som_offset = (curr_som_offset + 0x1) & ~0x1;
6019 curr_bfd = curr_bfd->next;
6020 som_index++;
6021 }
6022
6023 /* Now scribble out the hash table. */
6024 if (bfd_write ((PTR) hash_table, lst.hash_size, 4, abfd)
6025 != lst.hash_size * 4)
6026 goto error_return;
6027
6028 /* Then the SOM dictionary. */
6029 if (bfd_write ((PTR) som_dict, lst.module_count,
6030 sizeof (struct som_entry), abfd)
6031 != lst.module_count * sizeof (struct som_entry))
6032 goto error_return;
6033
6034 /* The library symbols. */
6035 if (bfd_write ((PTR) lst_syms, nsyms, sizeof (struct lst_symbol_record), abfd)
6036 != nsyms * sizeof (struct lst_symbol_record))
6037 goto error_return;
6038
6039 /* And finally the strings. */
6040 if (bfd_write ((PTR) strings, string_size, 1, abfd) != string_size)
6041 goto error_return;
6042
6043 if (hash_table != NULL)
6044 free (hash_table);
6045 if (som_dict != NULL)
6046 free (som_dict);
6047 if (last_hash_entry != NULL)
6048 free (last_hash_entry);
6049 if (lst_syms != NULL)
6050 free (lst_syms);
6051 if (strings != NULL)
6052 free (strings);
6053 return true;
6054
6055 error_return:
6056 if (hash_table != NULL)
6057 free (hash_table);
6058 if (som_dict != NULL)
6059 free (som_dict);
6060 if (last_hash_entry != NULL)
6061 free (last_hash_entry);
6062 if (lst_syms != NULL)
6063 free (lst_syms);
6064 if (strings != NULL)
6065 free (strings);
6066
6067 return false;
6068}
6069
6070/* Write out the LST for the archive.
6071
6072 You'll never believe this is really how armaps are handled in SOM... */
6073
6074/*ARGSUSED*/
6075static boolean
6076som_write_armap (abfd, elength, map, orl_count, stridx)
6077 bfd *abfd;
6078 unsigned int elength;
6079 struct orl *map;
6080 unsigned int orl_count;
6081 int stridx;
6082{
6083 bfd *curr_bfd;
6084 struct stat statbuf;
6085 unsigned int i, lst_size, nsyms, stringsize;
6086 struct ar_hdr hdr;
6087 struct lst_header lst;
6088 int *p;
6089
6090 /* We'll use this for the archive's date and mode later. */
6091 if (stat (abfd->filename, &statbuf) != 0)
6092 {
6093 bfd_set_error (bfd_error_system_call);
6094 return false;
6095 }
6096 /* Fudge factor. */
6097 bfd_ardata (abfd)->armap_timestamp = statbuf.st_mtime + 60;
6098
6099 /* Account for the lst header first. */
6100 lst_size = sizeof (struct lst_header);
6101
6102 /* Start building the LST header. */
6103 /* FIXME: Do we need to examine each element to determine the
6104 largest id number? */
6105 lst.system_id = CPU_PA_RISC1_0;
6106 lst.a_magic = LIBMAGIC;
6107 lst.version_id = VERSION_ID;
6108 lst.file_time.secs = 0;
6109 lst.file_time.nanosecs = 0;
6110
6111 lst.hash_loc = lst_size;
6112 lst.hash_size = SOM_LST_HASH_SIZE;
6113
6114 /* Hash table is a SOM_LST_HASH_SIZE 32bit offsets. */
6115 lst_size += 4 * SOM_LST_HASH_SIZE;
6116
6117 /* We need to count the number of SOMs in this archive. */
6118 curr_bfd = abfd->archive_head;
6119 lst.module_count = 0;
6120 while (curr_bfd != NULL)
6121 {
6122 /* Only true SOM objects count. */
6123 if (curr_bfd->format == bfd_object
6124 && curr_bfd->xvec->flavour == bfd_target_som_flavour)
6125 lst.module_count++;
6126 curr_bfd = curr_bfd->next;
6127 }
6128 lst.module_limit = lst.module_count;
6129 lst.dir_loc = lst_size;
6130 lst_size += sizeof (struct som_entry) * lst.module_count;
6131
6132 /* We don't support import/export tables, auxiliary headers,
6133 or free lists yet. Make the linker work a little harder
6134 to make our life easier. */
6135
6136 lst.export_loc = 0;
6137 lst.export_count = 0;
6138 lst.import_loc = 0;
6139 lst.aux_loc = 0;
6140 lst.aux_size = 0;
6141
6142 /* Count how many symbols we will have on the hash chains and the
6143 size of the associated string table. */
6144 if (som_bfd_prep_for_ar_write (abfd, &nsyms, &stringsize) == false)
6145 return false;
6146
6147 lst_size += sizeof (struct lst_symbol_record) * nsyms;
6148
6149 /* For the string table. One day we might actually use this info
6150 to avoid small seeks/reads when reading archives. */
6151 lst.string_loc = lst_size;
6152 lst.string_size = stringsize;
6153 lst_size += stringsize;
6154
6155 /* SOM ABI says this must be zero. */
6156 lst.free_list = 0;
6157 lst.file_end = lst_size;
6158
6159 /* Compute the checksum. Must happen after the entire lst header
6160 has filled in. */
6161 p = (int *)&lst;
6162 lst.checksum = 0;
6163 for (i = 0; i < sizeof (struct lst_header)/sizeof (int) - 1; i++)
6164 lst.checksum ^= *p++;
6165
6166 sprintf (hdr.ar_name, "/ ");
6167 sprintf (hdr.ar_date, "%ld", bfd_ardata (abfd)->armap_timestamp);
6168 sprintf (hdr.ar_uid, "%ld", (long) getuid ());
6169 sprintf (hdr.ar_gid, "%ld", (long) getgid ());
6170 sprintf (hdr.ar_mode, "%-8o", (unsigned int) statbuf.st_mode);
6171 sprintf (hdr.ar_size, "%-10d", (int) lst_size);
6172 hdr.ar_fmag[0] = '`';
6173 hdr.ar_fmag[1] = '\012';
6174
6175 /* Turn any nulls into spaces. */
6176 for (i = 0; i < sizeof (struct ar_hdr); i++)
6177 if (((char *) (&hdr))[i] == '\0')
6178 (((char *) (&hdr))[i]) = ' ';
6179
6180 /* Scribble out the ar header. */
6181 if (bfd_write ((PTR) &hdr, 1, sizeof (struct ar_hdr), abfd)
6182 != sizeof (struct ar_hdr))
6183 return false;
6184
6185 /* Now scribble out the lst header. */
6186 if (bfd_write ((PTR) &lst, 1, sizeof (struct lst_header), abfd)
6187 != sizeof (struct lst_header))
6188 return false;
6189
6190 /* Build and write the armap. */
6191 if (som_bfd_ar_write_symbol_stuff (abfd, nsyms, stringsize, lst, elength)
6192 == false)
6193 return false;
6194
6195 /* Done. */
6196 return true;
6197}
6198
6199/* Free all information we have cached for this BFD. We can always
6200 read it again later if we need it. */
6201
6202static boolean
6203som_bfd_free_cached_info (abfd)
6204 bfd *abfd;
6205{
6206 asection *o;
6207
6208 if (bfd_get_format (abfd) != bfd_object)
6209 return true;
6210
6211#define FREE(x) if (x != NULL) { free (x); x = NULL; }
6212 /* Free the native string and symbol tables. */
6213 FREE (obj_som_symtab (abfd));
6214 FREE (obj_som_stringtab (abfd));
6215 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
6216 {
6217 /* Free the native relocations. */
6218 o->reloc_count = -1;
6219 FREE (som_section_data (o)->reloc_stream);
6220 /* Free the generic relocations. */
6221 FREE (o->relocation);
6222 }
6223#undef FREE
6224
6225 return true;
6226}
6227
6228/* End of miscellaneous support functions. */
6229
6230/* Linker support functions. */
6231static boolean
6232som_bfd_link_split_section (abfd, sec)
6233 bfd *abfd;
6234 asection *sec;
6235{
6236 return (som_is_subspace (sec) && sec->_raw_size > 240000);
6237}
6238
6239#define som_close_and_cleanup som_bfd_free_cached_info
6240
6241#define som_read_ar_hdr _bfd_generic_read_ar_hdr
6242#define som_openr_next_archived_file bfd_generic_openr_next_archived_file
6243#define som_get_elt_at_index _bfd_generic_get_elt_at_index
6244#define som_generic_stat_arch_elt bfd_generic_stat_arch_elt
6245#define som_truncate_arname bfd_bsd_truncate_arname
6246#define som_slurp_extended_name_table _bfd_slurp_extended_name_table
6247#define som_construct_extended_name_table \
6248 _bfd_archive_coff_construct_extended_name_table
6249#define som_update_armap_timestamp bfd_true
6250#define som_bfd_print_private_bfd_data _bfd_generic_bfd_print_private_bfd_data
6251
6252#define som_get_lineno _bfd_nosymbols_get_lineno
6253#define som_bfd_make_debug_symbol _bfd_nosymbols_bfd_make_debug_symbol
6254#define som_read_minisymbols _bfd_generic_read_minisymbols
6255#define som_minisymbol_to_symbol _bfd_generic_minisymbol_to_symbol
6256#define som_get_section_contents_in_window \
6257 _bfd_generic_get_section_contents_in_window
6258
6259#define som_bfd_get_relocated_section_contents \
6260 bfd_generic_get_relocated_section_contents
6261#define som_bfd_relax_section bfd_generic_relax_section
6262#define som_bfd_link_hash_table_create _bfd_generic_link_hash_table_create
6263#define som_bfd_link_add_symbols _bfd_generic_link_add_symbols
6264#define som_bfd_final_link _bfd_generic_final_link
6265
6266#define som_bfd_gc_sections bfd_generic_gc_sections
6267
6268
6269const bfd_target som_vec =
6270{
6271 "som", /* name */
6272 bfd_target_som_flavour,
6273 BFD_ENDIAN_BIG, /* target byte order */
6274 BFD_ENDIAN_BIG, /* target headers byte order */
6275 (HAS_RELOC | EXEC_P | /* object flags */
6276 HAS_LINENO | HAS_DEBUG |
6277 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED | DYNAMIC),
6278 (SEC_CODE | SEC_DATA | SEC_ROM | SEC_HAS_CONTENTS
6279 | SEC_ALLOC | SEC_LOAD | SEC_RELOC), /* section flags */
6280
6281/* leading_symbol_char: is the first char of a user symbol
6282 predictable, and if so what is it */
6283 0,
6284 '/', /* ar_pad_char */
6285 14, /* ar_max_namelen */
6286 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
6287 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
6288 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
6289 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
6290 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
6291 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
6292 {_bfd_dummy_target,
6293 som_object_p, /* bfd_check_format */
6294 bfd_generic_archive_p,
6295 _bfd_dummy_target
6296 },
6297 {
6298 bfd_false,
6299 som_mkobject,
6300 _bfd_generic_mkarchive,
6301 bfd_false
6302 },
6303 {
6304 bfd_false,
6305 som_write_object_contents,
6306 _bfd_write_archive_contents,
6307 bfd_false,
6308 },
6309#undef som
6310
6311 BFD_JUMP_TABLE_GENERIC (som),
6312 BFD_JUMP_TABLE_COPY (som),
6313 BFD_JUMP_TABLE_CORE (_bfd_nocore),
6314 BFD_JUMP_TABLE_ARCHIVE (som),
6315 BFD_JUMP_TABLE_SYMBOLS (som),
6316 BFD_JUMP_TABLE_RELOCS (som),
6317 BFD_JUMP_TABLE_WRITE (som),
6318 BFD_JUMP_TABLE_LINK (som),
6319 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
6320
c3c89269
NC
6321 NULL,
6322
252b5132
RH
6323 (PTR) 0
6324};
6325
6326#endif /* HOST_HPPAHPUX || HOST_HPPABSD || HOST_HPPAOSF */
This page took 0.283746 seconds and 4 git commands to generate.