* config/obj-som.c (som_frob_file): Call adjust_code_sections
[deliverable/binutils-gdb.git] / bfd / som.c
CommitLineData
d9ad93bc
KR
1/* bfd back-end for HP PA-RISC SOM objects.
2 Copyright (C) 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
3
4 Contributed by the Center for Software Science at the
5 University of Utah (pa-gdb-bugs@cs.utah.edu).
6
9e16fcf1 7 This file is part of BFD, the Binary File Descriptor library.
d9ad93bc 8
9e16fcf1
SG
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
d9ad93bc 13
9e16fcf1
SG
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
d9ad93bc 18
9e16fcf1
SG
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
d9ad93bc
KR
22
23#include "bfd.h"
24#include "sysdep.h"
25
d9ad93bc
KR
26#if defined (HOST_HPPAHPUX) || defined (HOST_HPPABSD)
27
28#include "libbfd.h"
29#include "som.h"
70f1d738 30#include "libhppa.h"
d9ad93bc
KR
31
32#include <stdio.h>
33#include <sys/types.h>
34#include <sys/param.h>
35#include <sys/dir.h>
36#include <signal.h>
37#include <machine/reg.h>
38#include <sys/user.h> /* After a.out.h */
39#include <sys/file.h>
40#include <errno.h>
41
42/* Magic not defined in standard HP-UX header files until 8.0 */
43
44#ifndef CPU_PA_RISC1_0
45#define CPU_PA_RISC1_0 0x20B
46#endif /* CPU_PA_RISC1_0 */
47
48#ifndef CPU_PA_RISC1_1
49#define CPU_PA_RISC1_1 0x210
50#endif /* CPU_PA_RISC1_1 */
51
52#ifndef _PA_RISC1_0_ID
53#define _PA_RISC1_0_ID CPU_PA_RISC1_0
54#endif /* _PA_RISC1_0_ID */
55
56#ifndef _PA_RISC1_1_ID
57#define _PA_RISC1_1_ID CPU_PA_RISC1_1
58#endif /* _PA_RISC1_1_ID */
59
60#ifndef _PA_RISC_MAXID
61#define _PA_RISC_MAXID 0x2FF
62#endif /* _PA_RISC_MAXID */
63
64#ifndef _PA_RISC_ID
65#define _PA_RISC_ID(__m_num) \
66 (((__m_num) == _PA_RISC1_0_ID) || \
67 ((__m_num) >= _PA_RISC1_1_ID && (__m_num) <= _PA_RISC_MAXID))
68#endif /* _PA_RISC_ID */
69
9d0dea6f
JL
70/* Size (in chars) of the temporary buffers used during fixup and string
71 table writes. */
72
73#define SOM_TMP_BUFSIZE 8192
74
75
4fdb66cd
JL
76/* SOM allows any one of the four previous relocations to be reused
77 with a "R_PREV_FIXUP" relocation entry. Since R_PREV_FIXUP
78 relocations are always a single byte, using a R_PREV_FIXUP instead
79 of some multi-byte relocation makes object files smaller.
80
81 Note one side effect of using a R_PREV_FIXUP is the relocation that
82 is being repeated moves to the front of the queue. */
83struct reloc_queue
84 {
85 unsigned char *reloc;
86 unsigned int size;
87 } reloc_queue[4];
88
89/* This fully describes the symbol types which may be attached to
90 an EXPORT or IMPORT directive. Only SOM uses this formation
91 (ELF has no need for it). */
92typedef enum
93{
94 SYMBOL_TYPE_UNKNOWN,
95 SYMBOL_TYPE_ABSOLUTE,
96 SYMBOL_TYPE_CODE,
97 SYMBOL_TYPE_DATA,
98 SYMBOL_TYPE_ENTRY,
99 SYMBOL_TYPE_MILLICODE,
100 SYMBOL_TYPE_PLABEL,
101 SYMBOL_TYPE_PRI_PROG,
102 SYMBOL_TYPE_SEC_PROG,
103} pa_symbol_type;
104
017a52d7
JL
105struct section_to_type
106{
107 char *section;
108 char type;
109};
110
9e16fcf1
SG
111/* Forward declarations */
112
113static boolean som_mkobject PARAMS ((bfd *));
114static bfd_target * som_object_setup PARAMS ((bfd *,
115 struct header *,
116 struct som_exec_auxhdr *));
117static asection * make_unique_section PARAMS ((bfd *, CONST char *, int));
118static boolean setup_sections PARAMS ((bfd *, struct header *));
119static bfd_target * som_object_p PARAMS ((bfd *));
120static boolean som_write_object_contents PARAMS ((bfd *));
121static boolean som_slurp_string_table PARAMS ((bfd *));
122static unsigned int som_slurp_symbol_table PARAMS ((bfd *));
123static unsigned int som_get_symtab_upper_bound PARAMS ((bfd *));
124static unsigned int som_canonicalize_reloc PARAMS ((bfd *, sec_ptr,
125 arelent **, asymbol **));
126static unsigned int som_get_reloc_upper_bound PARAMS ((bfd *, sec_ptr));
36456a67
JL
127static unsigned int som_set_reloc_info PARAMS ((unsigned char *, unsigned int,
128 arelent *, asection *,
129 asymbol **, boolean));
130static boolean som_slurp_reloc_table PARAMS ((bfd *, asection *,
131 asymbol **, boolean));
9e16fcf1
SG
132static unsigned int som_get_symtab PARAMS ((bfd *, asymbol **));
133static asymbol * som_make_empty_symbol PARAMS ((bfd *));
134static void som_print_symbol PARAMS ((bfd *, PTR,
135 asymbol *, bfd_print_symbol_type));
136static boolean som_new_section_hook PARAMS ((bfd *, asection *));
137static boolean som_set_section_contents PARAMS ((bfd *, sec_ptr, PTR,
138 file_ptr, bfd_size_type));
139static boolean som_set_arch_mach PARAMS ((bfd *, enum bfd_architecture,
140 unsigned long));
141static boolean som_find_nearest_line PARAMS ((bfd *, asection *,
142 asymbol **, bfd_vma,
143 CONST char **,
144 CONST char **,
145 unsigned int *));
146static void som_get_symbol_info PARAMS ((bfd *, asymbol *, symbol_info *));
147static asection * som_section_from_subspace_index PARAMS ((bfd *,
148 unsigned int));
149static int log2 PARAMS ((unsigned int));
fcb0c846
JL
150static bfd_reloc_status_type hppa_som_reloc PARAMS ((bfd *, arelent *,
151 asymbol *, PTR,
152 asection *, bfd *));
d125665c
JL
153static void som_initialize_reloc_queue PARAMS ((struct reloc_queue *));
154static void som_reloc_queue_insert PARAMS ((unsigned char *, unsigned int,
155 struct reloc_queue *));
156static void som_reloc_queue_fix PARAMS ((struct reloc_queue *, unsigned int));
157static int som_reloc_queue_find PARAMS ((unsigned char *, unsigned int,
158 struct reloc_queue *));
54bbfd37
JL
159static unsigned char * try_prev_fixup PARAMS ((bfd *, int *, unsigned char *,
160 unsigned int,
161 struct reloc_queue *));
162
163static unsigned char * som_reloc_skip PARAMS ((bfd *, unsigned int,
164 unsigned char *, unsigned int *,
165 struct reloc_queue *));
166static unsigned char * som_reloc_addend PARAMS ((bfd *, int, unsigned char *,
167 unsigned int *,
168 struct reloc_queue *));
7057b78f
JL
169static unsigned char * som_reloc_call PARAMS ((bfd *, unsigned char *,
170 unsigned int *,
171 arelent *, int,
172 struct reloc_queue *));
5532fc5a
JL
173static unsigned long som_count_spaces PARAMS ((bfd *));
174static unsigned long som_count_subspaces PARAMS ((bfd *));
175static int compare_syms PARAMS ((asymbol **, asymbol **));
176static unsigned long som_compute_checksum PARAMS ((bfd *));
0ffa24b9 177static boolean som_prep_headers PARAMS ((bfd *));
2212ff92 178static int som_sizeof_headers PARAMS ((bfd *, boolean));
efc0df7c 179static boolean som_write_headers PARAMS ((bfd *));
713de7ec 180static boolean som_build_and_write_symbol_table PARAMS ((bfd *));
aff97790 181static void som_prep_for_fixups PARAMS ((bfd *, asymbol **, unsigned long));
9d0dea6f 182static boolean som_write_fixups PARAMS ((bfd *, unsigned long, unsigned int *));
0b35f7ec
JL
183static boolean som_write_space_strings PARAMS ((bfd *, unsigned long,
184 unsigned int *));
185static boolean som_write_symbol_strings PARAMS ((bfd *, unsigned long,
186 asymbol **, unsigned int,
187 unsigned *));
6eb64408 188static boolean som_begin_writing PARAMS ((bfd *));
91c0bcbb
JL
189static const reloc_howto_type * som_bfd_reloc_type_lookup
190 PARAMS ((bfd_arch_info_type *, bfd_reloc_code_real_type));
017a52d7
JL
191static char som_section_type PARAMS ((const char *));
192static int som_decode_symclass PARAMS ((asymbol *));
193
194
195/* Map SOM section names to POSIX/BSD single-character symbol types.
196
197 This table includes all the standard subspaces as defined in the
198 current "PRO ABI for PA-RISC Systems", $UNWIND$ which for
199 some reason was left out, and sections specific to embedded stabs. */
200
201static const struct section_to_type stt[] = {
202 {"$TEXT$", 't'},
203 {"$SHLIB_INFO$", 't'},
204 {"$MILLICODE$", 't'},
205 {"$LIT$", 't'},
206 {"$CODE$", 't'},
207 {"$UNWIND_START$", 't'},
208 {"$UNWIND$", 't'},
209 {"$PRIVATE$", 'd'},
210 {"$PLT$", 'd'},
211 {"$SHLIB_DATA$", 'd'},
212 {"$DATA$", 'd'},
213 {"$SHORTDATA$", 'g'},
214 {"$DLT$", 'd'},
215 {"$GLOBAL$", 'g'},
216 {"$SHORTBSS$", 's'},
217 {"$BSS$", 'b'},
218 {"$GDB_STRINGS$", 'N'},
219 {"$GDB_SYMBOLS$", 'N'},
220 {0, 0}
221};
2212ff92 222
36456a67
JL
223/* About the relocation formatting table...
224
225 There are 256 entries in the table, one for each possible
226 relocation opcode available in SOM. We index the table by
227 the relocation opcode. The names and operations are those
228 defined by a.out_800 (4).
229
230 Right now this table is only used to count and perform minimal
231 processing on relocation streams so that they can be internalized
232 into BFD and symbolically printed by utilities. To make actual use
233 of them would be much more difficult, BFD's concept of relocations
234 is far too simple to handle SOM relocations. The basic assumption
235 that a relocation can be completely processed independent of other
236 relocations before an object file is written is invalid for SOM.
237
238 The SOM relocations are meant to be processed as a stream, they
239 specify copying of data from the input section to the output section
240 while possibly modifying the data in some manner. They also can
241 specify that a variable number of zeros or uninitialized data be
242 inserted on in the output segment at the current offset. Some
243 relocations specify that some previous relocation be re-applied at
244 the current location in the input/output sections. And finally a number
245 of relocations have effects on other sections (R_ENTRY, R_EXIT,
246 R_UNWIND_AUX and a variety of others). There isn't even enough room
247 in the BFD relocation data structure to store enough information to
248 perform all the relocations.
249
250 Each entry in the table has three fields.
251
252 The first entry is an index into this "class" of relocations. This
253 index can then be used as a variable within the relocation itself.
254
255 The second field is a format string which actually controls processing
256 of the relocation. It uses a simple postfix machine to do calculations
257 based on variables/constants found in the string and the relocation
258 stream.
259
260 The third field specifys whether or not this relocation may use
261 a constant (V) from the previous R_DATA_OVERRIDE rather than a constant
262 stored in the instruction.
263
264 Variables:
265
266 L = input space byte count
267 D = index into class of relocations
268 M = output space byte count
269 N = statement number (unused?)
270 O = stack operation
271 R = parameter relocation bits
272 S = symbol index
273 U = 64 bits of stack unwind and frame size info (we only keep 32 bits)
274 V = a literal constant (usually used in the next relocation)
275 P = a previous relocation
276
277 Lower case letters (starting with 'b') refer to following
278 bytes in the relocation stream. 'b' is the next 1 byte,
279 c is the next 2 bytes, d is the next 3 bytes, etc...
280 This is the variable part of the relocation entries that
281 makes our life a living hell.
282
283 numerical constants are also used in the format string. Note
284 the constants are represented in decimal.
285
286 '+', "*" and "=" represents the obvious postfix operators.
287 '<' represents a left shift.
288
289 Stack Operations:
290
291 Parameter Relocation Bits:
292
293 Unwind Entries:
294
295 Previous Relocations: The index field represents which in the queue
296 of 4 previous fixups should be re-applied.
297
298 Literal Constants: These are generally used to represent addend
299 parts of relocations when these constants are not stored in the
300 fields of the instructions themselves. For example the instruction
301 addil foo-$global$-0x1234 would use an override for "0x1234" rather
302 than storing it into the addil itself. */
303
304struct fixup_format
305{
306 int D;
307 char *format;
308};
309
310static const struct fixup_format som_fixup_formats[256] =
311{
312 /* R_NO_RELOCATION */
313 0, "LD1+4*=", /* 0x00 */
314 1, "LD1+4*=", /* 0x01 */
315 2, "LD1+4*=", /* 0x02 */
316 3, "LD1+4*=", /* 0x03 */
317 4, "LD1+4*=", /* 0x04 */
318 5, "LD1+4*=", /* 0x05 */
319 6, "LD1+4*=", /* 0x06 */
320 7, "LD1+4*=", /* 0x07 */
321 8, "LD1+4*=", /* 0x08 */
322 9, "LD1+4*=", /* 0x09 */
323 10, "LD1+4*=", /* 0x0a */
324 11, "LD1+4*=", /* 0x0b */
325 12, "LD1+4*=", /* 0x0c */
326 13, "LD1+4*=", /* 0x0d */
327 14, "LD1+4*=", /* 0x0e */
328 15, "LD1+4*=", /* 0x0f */
329 16, "LD1+4*=", /* 0x10 */
330 17, "LD1+4*=", /* 0x11 */
331 18, "LD1+4*=", /* 0x12 */
332 19, "LD1+4*=", /* 0x13 */
333 20, "LD1+4*=", /* 0x14 */
334 21, "LD1+4*=", /* 0x15 */
335 22, "LD1+4*=", /* 0x16 */
336 23, "LD1+4*=", /* 0x17 */
337 0, "LD8<b+1+4*=", /* 0x18 */
338 1, "LD8<b+1+4*=", /* 0x19 */
339 2, "LD8<b+1+4*=", /* 0x1a */
340 3, "LD8<b+1+4*=", /* 0x1b */
341 0, "LD16<c+1+4*=", /* 0x1c */
342 1, "LD16<c+1+4*=", /* 0x1d */
343 2, "LD16<c+1+4*=", /* 0x1e */
344 0, "Ld1+=", /* 0x1f */
345 /* R_ZEROES */
346 0, "Lb1+4*=", /* 0x20 */
347 1, "Ld1+=", /* 0x21 */
348 /* R_UNINIT */
349 0, "Lb1+4*=", /* 0x22 */
350 1, "Ld1+=", /* 0x23 */
351 /* R_RELOCATION */
352 0, "L4=", /* 0x24 */
353 /* R_DATA_ONE_SYMBOL */
354 0, "L4=Sb=", /* 0x25 */
355 1, "L4=Sd=", /* 0x26 */
356 /* R_DATA_PLEBEL */
357 0, "L4=Sb=", /* 0x27 */
358 1, "L4=Sd=", /* 0x28 */
359 /* R_SPACE_REF */
360 0, "L4=", /* 0x29 */
361 /* R_REPEATED_INIT */
362 0, "L4=Mb1+4*=", /* 0x2a */
363 1, "Lb4*=Mb1+L*=", /* 0x2b */
364 2, "Lb4*=Md1+4*=", /* 0x2c */
365 3, "Ld1+=Me1+=", /* 0x2d */
366 /* R_RESERVED */
367 0, "", /* 0x2e */
368 0, "", /* 0x2f */
369 /* R_PCREL_CALL */
370 0, "L4=RD=Sb=", /* 0x30 */
371 1, "L4=RD=Sb=", /* 0x31 */
372 2, "L4=RD=Sb=", /* 0x32 */
373 3, "L4=RD=Sb=", /* 0x33 */
374 4, "L4=RD=Sb=", /* 0x34 */
375 5, "L4=RD=Sb=", /* 0x35 */
376 6, "L4=RD=Sb=", /* 0x36 */
377 7, "L4=RD=Sb=", /* 0x37 */
378 8, "L4=RD=Sb=", /* 0x38 */
379 9, "L4=RD=Sb=", /* 0x39 */
380 0, "L4=RD8<b+=Sb=",/* 0x3a */
381 1, "L4=RD8<b+=Sb=",/* 0x3b */
382 0, "L4=RD8<b+=Sd=",/* 0x3c */
383 1, "L4=RD8<b+=Sd=",/* 0x3d */
384 /* R_RESERVED */
385 0, "", /* 0x3e */
386 0, "", /* 0x3f */
387 /* R_ABS_CALL */
388 0, "L4=RD=Sb=", /* 0x40 */
389 1, "L4=RD=Sb=", /* 0x41 */
390 2, "L4=RD=Sb=", /* 0x42 */
391 3, "L4=RD=Sb=", /* 0x43 */
392 4, "L4=RD=Sb=", /* 0x44 */
393 5, "L4=RD=Sb=", /* 0x45 */
394 6, "L4=RD=Sb=", /* 0x46 */
395 7, "L4=RD=Sb=", /* 0x47 */
396 8, "L4=RD=Sb=", /* 0x48 */
397 9, "L4=RD=Sb=", /* 0x49 */
398 0, "L4=RD8<b+=Sb=",/* 0x4a */
399 1, "L4=RD8<b+=Sb=",/* 0x4b */
400 0, "L4=RD8<b+=Sd=",/* 0x4c */
401 1, "L4=RD8<b+=Sd=",/* 0x4d */
402 /* R_RESERVED */
403 0, "", /* 0x4e */
404 0, "", /* 0x4f */
405 /* R_DP_RELATIVE */
406 0, "L4=SD=", /* 0x50 */
407 1, "L4=SD=", /* 0x51 */
408 2, "L4=SD=", /* 0x52 */
409 3, "L4=SD=", /* 0x53 */
410 4, "L4=SD=", /* 0x54 */
411 5, "L4=SD=", /* 0x55 */
412 6, "L4=SD=", /* 0x56 */
413 7, "L4=SD=", /* 0x57 */
414 8, "L4=SD=", /* 0x58 */
415 9, "L4=SD=", /* 0x59 */
416 10, "L4=SD=", /* 0x5a */
417 11, "L4=SD=", /* 0x5b */
418 12, "L4=SD=", /* 0x5c */
419 13, "L4=SD=", /* 0x5d */
420 14, "L4=SD=", /* 0x5e */
421 15, "L4=SD=", /* 0x5f */
422 16, "L4=SD=", /* 0x60 */
423 17, "L4=SD=", /* 0x61 */
424 18, "L4=SD=", /* 0x62 */
425 19, "L4=SD=", /* 0x63 */
426 20, "L4=SD=", /* 0x64 */
427 21, "L4=SD=", /* 0x65 */
428 22, "L4=SD=", /* 0x66 */
429 23, "L4=SD=", /* 0x67 */
430 24, "L4=SD=", /* 0x68 */
431 25, "L4=SD=", /* 0x69 */
432 26, "L4=SD=", /* 0x6a */
433 27, "L4=SD=", /* 0x6b */
434 28, "L4=SD=", /* 0x6c */
435 29, "L4=SD=", /* 0x6d */
436 30, "L4=SD=", /* 0x6e */
437 31, "L4=SD=", /* 0x6f */
438 32, "L4=Sb=", /* 0x70 */
439 33, "L4=Sd=", /* 0x71 */
440 /* R_RESERVED */
441 0, "", /* 0x72 */
442 0, "", /* 0x73 */
443 0, "", /* 0x74 */
444 0, "", /* 0x75 */
445 0, "", /* 0x76 */
446 0, "", /* 0x77 */
447 /* R_DLT_REL */
448 0, "L4=Sb=", /* 0x78 */
449 1, "L4=Sd=", /* 0x79 */
450 /* R_RESERVED */
451 0, "", /* 0x7a */
452 0, "", /* 0x7b */
453 0, "", /* 0x7c */
454 0, "", /* 0x7d */
455 0, "", /* 0x7e */
456 0, "", /* 0x7f */
457 /* R_CODE_ONE_SYMBOL */
458 0, "L4=SD=", /* 0x80 */
459 1, "L4=SD=", /* 0x81 */
460 2, "L4=SD=", /* 0x82 */
461 3, "L4=SD=", /* 0x83 */
462 4, "L4=SD=", /* 0x84 */
463 5, "L4=SD=", /* 0x85 */
464 6, "L4=SD=", /* 0x86 */
465 7, "L4=SD=", /* 0x87 */
466 8, "L4=SD=", /* 0x88 */
467 9, "L4=SD=", /* 0x89 */
468 10, "L4=SD=", /* 0x8q */
469 11, "L4=SD=", /* 0x8b */
470 12, "L4=SD=", /* 0x8c */
471 13, "L4=SD=", /* 0x8d */
472 14, "L4=SD=", /* 0x8e */
473 15, "L4=SD=", /* 0x8f */
474 16, "L4=SD=", /* 0x90 */
475 17, "L4=SD=", /* 0x91 */
476 18, "L4=SD=", /* 0x92 */
477 19, "L4=SD=", /* 0x93 */
478 20, "L4=SD=", /* 0x94 */
479 21, "L4=SD=", /* 0x95 */
480 22, "L4=SD=", /* 0x96 */
481 23, "L4=SD=", /* 0x97 */
482 24, "L4=SD=", /* 0x98 */
483 25, "L4=SD=", /* 0x99 */
484 26, "L4=SD=", /* 0x9a */
485 27, "L4=SD=", /* 0x9b */
486 28, "L4=SD=", /* 0x9c */
487 29, "L4=SD=", /* 0x9d */
488 30, "L4=SD=", /* 0x9e */
489 31, "L4=SD=", /* 0x9f */
490 32, "L4=Sb=", /* 0xa0 */
491 33, "L4=Sd=", /* 0xa1 */
492 /* R_RESERVED */
493 0, "", /* 0xa2 */
494 0, "", /* 0xa3 */
495 0, "", /* 0xa4 */
496 0, "", /* 0xa5 */
497 0, "", /* 0xa6 */
498 0, "", /* 0xa7 */
499 0, "", /* 0xa8 */
500 0, "", /* 0xa9 */
501 0, "", /* 0xaa */
502 0, "", /* 0xab */
503 0, "", /* 0xac */
504 0, "", /* 0xad */
505 /* R_MILLI_REL */
506 0, "L4=Sb=", /* 0xae */
507 1, "L4=Sd=", /* 0xaf */
508 /* R_CODE_PLABEL */
509 0, "L4=Sb=", /* 0xb0 */
510 1, "L4=Sd=", /* 0xb1 */
511 /* R_BREAKPOINT */
512 0, "L4=", /* 0xb2 */
513 /* R_ENTRY */
514 0, "Ui=", /* 0xb3 */
515 1, "Uf=", /* 0xb4 */
516 /* R_ALT_ENTRY */
517 0, "", /* 0xb5 */
518 /* R_EXIT */
519 0, "", /* 0xb6 */
520 /* R_BEGIN_TRY */
521 0, "", /* 0xb7 */
522 /* R_END_TRY */
523 0, "R0=", /* 0xb8 */
524 1, "Rb4*=", /* 0xb9 */
525 2, "Rd4*=", /* 0xba */
526 /* R_BEGIN_BRTAB */
527 0, "", /* 0xbb */
528 /* R_END_BRTAB */
529 0, "", /* 0xbc */
530 /* R_STATEMENT */
531 0, "Nb=", /* 0xbd */
532 1, "Nc=", /* 0xbe */
533 2, "Nd=", /* 0xbf */
534 /* R_DATA_EXPR */
535 0, "L4=", /* 0xc0 */
536 /* R_CODE_EXPR */
537 0, "L4=", /* 0xc1 */
538 /* R_FSEL */
539 0, "", /* 0xc2 */
540 /* R_LSEL */
541 0, "", /* 0xc3 */
542 /* R_RSEL */
543 0, "", /* 0xc4 */
544 /* R_N_MODE */
545 0, "", /* 0xc5 */
546 /* R_S_MODE */
547 0, "", /* 0xc6 */
548 /* R_D_MODE */
549 0, "", /* 0xc7 */
550 /* R_R_MODE */
551 0, "", /* 0xc8 */
552 /* R_DATA_OVERRIDE */
553 0, "V0=", /* 0xc9 */
554 1, "Vb=", /* 0xca */
555 2, "Vc=", /* 0xcb */
556 3, "Vd=", /* 0xcc */
557 4, "Ve=", /* 0xcd */
558 /* R_TRANSLATED */
559 0, "", /* 0xce */
560 /* R_RESERVED */
561 0, "", /* 0xcf */
562 /* R_COMP1 */
563 0, "Ob=", /* 0xd0 */
564 /* R_COMP2 */
565 0, "Ob=Sd=", /* 0xd1 */
566 /* R_COMP3 */
567 0, "Ob=Ve=", /* 0xd2 */
568 /* R_PREV_FIXUP */
569 0, "P", /* 0xd3 */
570 1, "P", /* 0xd4 */
571 2, "P", /* 0xd5 */
572 3, "P", /* 0xd6 */
573 /* R_RESERVED */
574 0, "", /* 0xd7 */
575 0, "", /* 0xd8 */
576 0, "", /* 0xd9 */
577 0, "", /* 0xda */
578 0, "", /* 0xdb */
579 0, "", /* 0xdc */
580 0, "", /* 0xdd */
581 0, "", /* 0xde */
582 0, "", /* 0xdf */
583 0, "", /* 0xe0 */
584 0, "", /* 0xe1 */
585 0, "", /* 0xe2 */
586 0, "", /* 0xe3 */
587 0, "", /* 0xe4 */
588 0, "", /* 0xe5 */
589 0, "", /* 0xe6 */
590 0, "", /* 0xe7 */
591 0, "", /* 0xe8 */
592 0, "", /* 0xe9 */
593 0, "", /* 0xea */
594 0, "", /* 0xeb */
595 0, "", /* 0xec */
596 0, "", /* 0xed */
597 0, "", /* 0xee */
598 0, "", /* 0xef */
599 0, "", /* 0xf0 */
600 0, "", /* 0xf1 */
601 0, "", /* 0xf2 */
602 0, "", /* 0xf3 */
603 0, "", /* 0xf4 */
604 0, "", /* 0xf5 */
605 0, "", /* 0xf6 */
606 0, "", /* 0xf7 */
607 0, "", /* 0xf8 */
608 0, "", /* 0xf9 */
609 0, "", /* 0xfa */
610 0, "", /* 0xfb */
611 0, "", /* 0xfc */
612 0, "", /* 0xfd */
613 0, "", /* 0xfe */
614 0, "", /* 0xff */
615};
616
617static const int comp1_opcodes[] =
618{
619 0x00,
620 0x40,
621 0x41,
622 0x42,
623 0x43,
624 0x44,
625 0x45,
626 0x46,
627 0x47,
628 0x48,
629 0x49,
630 0x4a,
631 0x4b,
632 0x60,
633 0x80,
634 0xa0,
635 0xc0,
636 -1
637};
638
639static const int comp2_opcodes[] =
640{
641 0x00,
642 0x80,
643 0x82,
644 0xc0,
645 -1
646};
647
648static const int comp3_opcodes[] =
649{
650 0x00,
651 0x02,
652 -1
653};
654
744069b8
JL
655/* These apparently are not in older versions of hpux reloc.h. */
656#ifndef R_DLT_REL
657#define R_DLT_REL 0x78
658#endif
659
660#ifndef R_AUX_UNWIND
661#define R_AUX_UNWIND 0xcf
662#endif
663
664#ifndef R_SEC_STMT
665#define R_SEC_STMT 0xd7
666#endif
667
fcb0c846
JL
668static reloc_howto_type som_hppa_howto_table[] =
669{
670 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
671 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
672 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
673 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
674 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
675 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
676 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
677 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
678 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
679 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
680 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
681 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
682 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
683 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
684 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
685 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
686 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
687 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
688 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
689 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
690 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
691 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
692 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
693 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
694 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
695 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
696 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
697 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
698 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
699 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
700 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
701 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
702 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
703 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
704 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
705 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
706 {R_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RELOCATION"},
707 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
708 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
709 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
710 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
711 {R_SPACE_REF, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SPACE_REF"},
712 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
713 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
714 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
715 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
716 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
717 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
718 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
719 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
720 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
721 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
722 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
723 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
724 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
725 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
726 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
727 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
728 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
729 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
730 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
731 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
732 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
733 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
734 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
735 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
736 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
737 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
738 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
739 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
740 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
741 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
742 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
743 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
744 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
745 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
746 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
747 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
748 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
749 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
750 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
751 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
752 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
753 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
754 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
755 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
756 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
757 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
758 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
759 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
760 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
761 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
762 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
763 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
764 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
765 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
766 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
767 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
768 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
769 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
770 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
771 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
772 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
773 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
774 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
775 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
776 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
777 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
778 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
779 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
780 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
781 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
782 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
783 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
784 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
785 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
786 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
787 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
788 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
789 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
744069b8
JL
790 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
791 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
fcb0c846
JL
792 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
793 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
794 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
795 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
796 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
797 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
798 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
799 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
800 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
801 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
802 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
803 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
804 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
805 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
806 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
807 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
808 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
809 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
810 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
811 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
812 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
813 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
814 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
815 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
816 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
817 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
818 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
819 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
820 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
821 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
822 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
823 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
824 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
825 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
826 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
827 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
828 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
829 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
830 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
831 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
832 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
833 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
834 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
835 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
836 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
837 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
838 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
839 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
840 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
841 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
842 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
843 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
844 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
845 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
846 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
847 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
848 {R_BREAKPOINT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BREAKPOINT"},
849 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
850 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
851 {R_ALT_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ALT_ENTRY"},
852 {R_EXIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_EXIT"},
853 {R_BEGIN_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_TRY"},
854 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
855 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
017a52d7 856 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
fcb0c846
JL
857 {R_BEGIN_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_BRTAB"},
858 {R_END_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_BRTAB"},
859 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
860 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
861 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
862 {R_DATA_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_EXPR"},
863 {R_CODE_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_EXPR"},
864 {R_FSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_FSEL"},
865 {R_LSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_LSEL"},
866 {R_RSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RSEL"},
867 {R_N_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_N_MODE"},
868 {R_S_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_S_MODE"},
869 {R_D_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_D_MODE"},
870 {R_R_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_R_MODE"},
871 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
872 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
873 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
874 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
875 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
fcb0c846 876 {R_TRANSLATED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_TRANSLATED"},
744069b8 877 {R_AUX_UNWIND, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_AUX_UNWIND"},
fcb0c846
JL
878 {R_COMP1, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP1"},
879 {R_COMP2, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP2"},
880 {R_COMP3, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP3"},
881 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
882 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
883 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
884 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
744069b8 885 {R_SEC_STMT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SEC_STMT"},
fcb0c846
JL
886 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
887 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
888 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
889 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
890 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
891 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
892 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
893 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
894 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
895 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
896 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
897 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
898 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
899 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
900 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
901 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
902 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
903 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
904 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
905 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
906 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
907 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
908 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
909 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
910 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
911 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
912 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
913 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
914 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
915 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
916 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
917 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
918 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
919 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
920 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
921 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
922 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
923 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
924 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
925 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}};
926
d125665c
JL
927
928/* Initialize the SOM relocation queue. By definition the queue holds
929 the last four multibyte fixups. */
930
931static void
932som_initialize_reloc_queue (queue)
933 struct reloc_queue *queue;
934{
935 queue[0].reloc = NULL;
936 queue[0].size = 0;
937 queue[1].reloc = NULL;
938 queue[1].size = 0;
939 queue[2].reloc = NULL;
940 queue[2].size = 0;
941 queue[3].reloc = NULL;
942 queue[3].size = 0;
943}
944
945/* Insert a new relocation into the relocation queue. */
946
947static void
948som_reloc_queue_insert (p, size, queue)
949 unsigned char *p;
950 unsigned int size;
951 struct reloc_queue *queue;
952{
953 queue[3].reloc = queue[2].reloc;
954 queue[3].size = queue[2].size;
955 queue[2].reloc = queue[1].reloc;
956 queue[2].size = queue[1].size;
957 queue[1].reloc = queue[0].reloc;
958 queue[1].size = queue[0].size;
959 queue[0].reloc = p;
960 queue[0].size = size;
961}
962
963/* When an entry in the relocation queue is reused, the entry moves
964 to the front of the queue. */
965
966static void
967som_reloc_queue_fix (queue, index)
968 struct reloc_queue *queue;
969 unsigned int index;
970{
971 if (index == 0)
972 return;
973
974 if (index == 1)
975 {
976 unsigned char *tmp1 = queue[0].reloc;
977 unsigned int tmp2 = queue[0].size;
978 queue[0].reloc = queue[1].reloc;
979 queue[0].size = queue[1].size;
980 queue[1].reloc = tmp1;
981 queue[1].size = tmp2;
982 return;
983 }
984
985 if (index == 2)
986 {
987 unsigned char *tmp1 = queue[0].reloc;
988 unsigned int tmp2 = queue[0].size;
989 queue[0].reloc = queue[2].reloc;
990 queue[0].size = queue[2].size;
991 queue[2].reloc = queue[1].reloc;
992 queue[2].size = queue[1].size;
993 queue[1].reloc = tmp1;
994 queue[1].size = tmp2;
995 return;
996 }
997
998 if (index == 3)
999 {
1000 unsigned char *tmp1 = queue[0].reloc;
1001 unsigned int tmp2 = queue[0].size;
1002 queue[0].reloc = queue[3].reloc;
1003 queue[0].size = queue[3].size;
1004 queue[3].reloc = queue[2].reloc;
1005 queue[3].size = queue[2].size;
1006 queue[2].reloc = queue[1].reloc;
1007 queue[2].size = queue[1].size;
1008 queue[1].reloc = tmp1;
1009 queue[1].size = tmp2;
1010 return;
1011 }
1012 abort();
1013}
1014
1015/* Search for a particular relocation in the relocation queue. */
1016
1017static int
1018som_reloc_queue_find (p, size, queue)
1019 unsigned char *p;
1020 unsigned int size;
1021 struct reloc_queue *queue;
1022{
1023 if (!bcmp (p, queue[0].reloc, size)
1024 && size == queue[0].size)
1025 return 0;
1026 if (!bcmp (p, queue[1].reloc, size)
1027 && size == queue[1].size)
1028 return 1;
1029 if (!bcmp (p, queue[2].reloc, size)
1030 && size == queue[2].size)
1031 return 2;
1032 if (!bcmp (p, queue[3].reloc, size)
1033 && size == queue[3].size)
1034 return 3;
1035 return -1;
1036}
54bbfd37
JL
1037
1038static unsigned char *
1039try_prev_fixup (abfd, subspace_reloc_sizep, p, size, queue)
1040 bfd *abfd;
1041 int *subspace_reloc_sizep;
1042 unsigned char *p;
1043 unsigned int size;
1044 struct reloc_queue *queue;
1045{
1046 int queue_index = som_reloc_queue_find (p, size, queue);
1047
1048 if (queue_index != -1)
1049 {
1050 /* Found this in a previous fixup. Undo the fixup we
1051 just built and use R_PREV_FIXUP instead. We saved
1052 a total of size - 1 bytes in the fixup stream. */
1053 bfd_put_8 (abfd, R_PREV_FIXUP + queue_index, p);
1054 p += 1;
1055 *subspace_reloc_sizep += 1;
1056 som_reloc_queue_fix (queue, queue_index);
1057 }
1058 else
1059 {
1060 som_reloc_queue_insert (p, size, queue);
1061 *subspace_reloc_sizep += size;
1062 p += size;
1063 }
1064 return p;
1065}
1066
1067/* Emit the proper R_NO_RELOCATION fixups to map the next SKIP
1068 bytes without any relocation. Update the size of the subspace
1069 relocation stream via SUBSPACE_RELOC_SIZE_P; also return the
1070 current pointer into the relocation stream. */
1071
1072static unsigned char *
1073som_reloc_skip (abfd, skip, p, subspace_reloc_sizep, queue)
1074 bfd *abfd;
1075 unsigned int skip;
1076 unsigned char *p;
1077 unsigned int *subspace_reloc_sizep;
1078 struct reloc_queue *queue;
1079{
1080 /* Use a 4 byte R_NO_RELOCATION entry with a maximal value
1081 then R_PREV_FIXUPs to get the difference down to a
1082 reasonable size. */
1083 if (skip >= 0x1000000)
1084 {
1085 skip -= 0x1000000;
1086 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1087 bfd_put_8 (abfd, 0xff, p + 1);
1088 bfd_put_16 (abfd, 0xffff, p + 2);
1089 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1090 while (skip >= 0x1000000)
1091 {
1092 skip -= 0x1000000;
1093 bfd_put_8 (abfd, R_PREV_FIXUP, p);
1094 p++;
1095 *subspace_reloc_sizep += 1;
1096 /* No need to adjust queue here since we are repeating the
1097 most recent fixup. */
1098 }
1099 }
1100
1101 /* The difference must be less than 0x1000000. Use one
1102 more R_NO_RELOCATION entry to get to the right difference. */
1103 if ((skip & 3) == 0 && skip <= 0xc0000 && skip > 0)
1104 {
1105 /* Difference can be handled in a simple single-byte
1106 R_NO_RELOCATION entry. */
1107 if (skip <= 0x60)
1108 {
1109 bfd_put_8 (abfd, R_NO_RELOCATION + (skip >> 2) - 1, p);
1110 *subspace_reloc_sizep += 1;
1111 p++;
1112 }
1113 /* Handle it with a two byte R_NO_RELOCATION entry. */
1114 else if (skip <= 0x1000)
1115 {
1116 bfd_put_8 (abfd, R_NO_RELOCATION + 24 + (((skip >> 2) - 1) >> 8), p);
1117 bfd_put_8 (abfd, (skip >> 2) - 1, p + 1);
1118 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1119 }
1120 /* Handle it with a three byte R_NO_RELOCATION entry. */
1121 else
1122 {
1123 bfd_put_8 (abfd, R_NO_RELOCATION + 28 + (((skip >> 2) - 1) >> 16), p);
1124 bfd_put_16 (abfd, (skip >> 2) - 1, p + 1);
1125 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1126 }
1127 }
1128 /* Ugh. Punt and use a 4 byte entry. */
1129 else if (skip > 0)
1130 {
1131 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1132 bfd_put_8 (abfd, skip >> 16, p + 1);
1133 bfd_put_16 (abfd, skip, p + 2);
1134 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1135 }
1136 return p;
1137}
1138
1139/* Emit the proper R_DATA_OVERRIDE fixups to handle a nonzero addend
1140 from a BFD relocation. Update the size of the subspace relocation
1141 stream via SUBSPACE_RELOC_SIZE_P; also return the current pointer
1142 into the relocation stream. */
1143
1144static unsigned char *
1145som_reloc_addend (abfd, addend, p, subspace_reloc_sizep, queue)
1146 bfd *abfd;
1147 int addend;
1148 unsigned char *p;
1149 unsigned int *subspace_reloc_sizep;
1150 struct reloc_queue *queue;
1151{
1152 if ((unsigned)(addend) + 0x80 < 0x100)
1153 {
1154 bfd_put_8 (abfd, R_DATA_OVERRIDE + 1, p);
1155 bfd_put_8 (abfd, addend, p + 1);
1156 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1157 }
1158 else if ((unsigned) (addend) + 0x8000 < 0x10000)
1159 {
1160 bfd_put_8 (abfd, R_DATA_OVERRIDE + 2, p);
1161 bfd_put_16 (abfd, addend, p + 1);
1162 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1163 }
1164 else if ((unsigned) (addend) + 0x800000 < 0x1000000)
1165 {
1166 bfd_put_8 (abfd, R_DATA_OVERRIDE + 3, p);
1167 bfd_put_8 (abfd, addend >> 16, p + 1);
1168 bfd_put_16 (abfd, addend, p + 2);
1169 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1170 }
1171 else
1172 {
1173 bfd_put_8 (abfd, R_DATA_OVERRIDE + 4, p);
1174 bfd_put_32 (abfd, addend, p + 1);
1175 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1176 }
1177 return p;
1178}
1179
7057b78f
JL
1180/* Handle a single function call relocation. */
1181
1182static unsigned char *
1183som_reloc_call (abfd, p, subspace_reloc_sizep, bfd_reloc, sym_num, queue)
1184 bfd *abfd;
1185 unsigned char *p;
1186 unsigned int *subspace_reloc_sizep;
1187 arelent *bfd_reloc;
1188 int sym_num;
1189 struct reloc_queue *queue;
1190{
1191 int arg_bits = HPPA_R_ARG_RELOC (bfd_reloc->addend);
1192 int rtn_bits = arg_bits & 0x3;
1193 int type, done = 0;
1194
1195 /* You'll never believe all this is necessary to handle relocations
1196 for function calls. Having to compute and pack the argument
1197 relocation bits is the real nightmare.
1198
1199 If you're interested in how this works, just forget it. You really
1200 do not want to know about this braindamage. */
1201
1202 /* First see if this can be done with a "simple" relocation. Simple
1203 relocations have a symbol number < 0x100 and have simple encodings
1204 of argument relocations. */
1205
1206 if (sym_num < 0x100)
1207 {
1208 switch (arg_bits)
1209 {
1210 case 0:
1211 case 1:
1212 type = 0;
1213 break;
1214 case 1 << 8:
1215 case 1 << 8 | 1:
1216 type = 1;
1217 break;
1218 case 1 << 8 | 1 << 6:
1219 case 1 << 8 | 1 << 6 | 1:
1220 type = 2;
1221 break;
1222 case 1 << 8 | 1 << 6 | 1 << 4:
1223 case 1 << 8 | 1 << 6 | 1 << 4 | 1:
1224 type = 3;
1225 break;
1226 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2:
1227 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2 | 1:
1228 type = 4;
1229 break;
1230 default:
1231 /* Not one of the easy encodings. This will have to be
1232 handled by the more complex code below. */
1233 type = -1;
1234 break;
1235 }
1236 if (type != -1)
1237 {
1238 /* Account for the return value too. */
1239 if (rtn_bits)
1240 type += 5;
1241
1242 /* Emit a 2 byte relocation. Then see if it can be handled
1243 with a relocation which is already in the relocation queue. */
1244 bfd_put_8 (abfd, bfd_reloc->howto->type + type, p);
1245 bfd_put_8 (abfd, sym_num, p + 1);
1246 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1247 done = 1;
1248 }
1249 }
1250
1251 /* If this could not be handled with a simple relocation, then do a hard
1252 one. Hard relocations occur if the symbol number was too high or if
1253 the encoding of argument relocation bits is too complex. */
1254 if (! done)
1255 {
1256 /* Don't ask about these magic sequences. I took them straight
1257 from gas-1.36 which took them from the a.out man page. */
1258 type = rtn_bits;
1259 if ((arg_bits >> 6 & 0xf) == 0xe)
1260 type += 9 * 40;
1261 else
1262 type += (3 * (arg_bits >> 8 & 3) + (arg_bits >> 6 & 3)) * 40;
1263 if ((arg_bits >> 2 & 0xf) == 0xe)
1264 type += 9 * 4;
1265 else
1266 type += (3 * (arg_bits >> 4 & 3) + (arg_bits >> 2 & 3)) * 4;
1267
1268 /* Output the first two bytes of the relocation. These describe
1269 the length of the relocation and encoding style. */
1270 bfd_put_8 (abfd, bfd_reloc->howto->type + 10
1271 + 2 * (sym_num >= 0x100) + (type >= 0x100),
1272 p);
1273 bfd_put_8 (abfd, type, p + 1);
1274
1275 /* Now output the symbol index and see if this bizarre relocation
1276 just happened to be in the relocation queue. */
1277 if (sym_num < 0x100)
1278 {
1279 bfd_put_8 (abfd, sym_num, p + 2);
1280 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1281 }
1282 else
1283 {
1284 bfd_put_8 (abfd, sym_num >> 16, p + 2);
1285 bfd_put_16 (abfd, sym_num, p + 3);
1286 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1287 }
1288 }
1289 return p;
1290}
1291
1292
9e16fcf1 1293/* Return the logarithm of X, base 2, considering X unsigned.
40249bfb
JL
1294 Abort if X is not a power of two -- this should never happen (FIXME:
1295 It will happen on corrupt executables. GDB should give an error, not
1296 a coredump, in that case). */
9e16fcf1
SG
1297
1298static int
1299log2 (x)
1300 unsigned int x;
1301{
1302 int log = 0;
1303
1304 /* Test for 0 or a power of 2. */
1305 if (x == 0 || x != (x & -x))
1306 abort();
1307
1308 while ((x >>= 1) != 0)
1309 log++;
1310 return log;
1311}
1312
fcb0c846
JL
1313static bfd_reloc_status_type
1314hppa_som_reloc (abfd, reloc_entry, symbol_in, data, input_section, output_bfd)
1315 bfd *abfd;
1316 arelent *reloc_entry;
1317 asymbol *symbol_in;
1318 PTR data;
1319 asection *input_section;
1320 bfd *output_bfd;
1321{
1322 if (output_bfd)
1323 {
1324 reloc_entry->address += input_section->output_offset;
1325 return bfd_reloc_ok;
1326 }
1327 return bfd_reloc_ok;
1328}
32619c58
JL
1329
1330/* Given a generic HPPA relocation type, the instruction format,
1331 and a field selector, return an appropriate SOM reloation.
1332
1333 FIXME. Need to handle %RR, %LR and the like as field selectors.
1334 These will need to generate multiple SOM relocations. */
1335
1336int **
1337hppa_som_gen_reloc_type (abfd, base_type, format, field)
1338 bfd *abfd;
1339 int base_type;
1340 int format;
017a52d7 1341 enum hppa_reloc_field_selector_type field;
32619c58
JL
1342{
1343 int *final_type, **final_types;
1344
017a52d7 1345 final_types = (int **) bfd_alloc_by_size_t (abfd, sizeof (int *) * 3);
32619c58
JL
1346 final_type = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1347
017a52d7
JL
1348 /* The field selector may require additional relocations to be
1349 generated. It's impossible to know at this moment if additional
1350 relocations will be needed, so we make them. The code to actually
1351 write the relocation/fixup stream is responsible for removing
1352 any redundant relocations. */
1353 switch (field)
1354 {
1355 case e_fsel:
1356 case e_psel:
1357 case e_lpsel:
1358 case e_rpsel:
a36b6f1d
JL
1359 final_types[0] = final_type;
1360 final_types[1] = NULL;
1361 final_types[2] = NULL;
1362 *final_type = base_type;
1363 break;
1364
017a52d7
JL
1365 case e_tsel:
1366 case e_ltsel:
1367 case e_rtsel:
a36b6f1d
JL
1368 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1369 *final_types[0] = R_FSEL;
1370 final_types[1] = final_type;
017a52d7
JL
1371 final_types[2] = NULL;
1372 *final_type = base_type;
1373 break;
1374
1375 case e_lssel:
1376 case e_rssel:
1377 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1378 *final_types[0] = R_S_MODE;
1379 final_types[1] = final_type;
1380 final_types[2] = NULL;
1381 *final_type = base_type;
1382 break;
32619c58 1383
017a52d7
JL
1384 case e_lsel:
1385 case e_rsel:
1386 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1387 *final_types[0] = R_N_MODE;
1388 final_types[1] = final_type;
1389 final_types[2] = NULL;
1390 *final_type = base_type;
1391 break;
32619c58 1392
017a52d7
JL
1393 case e_ldsel:
1394 case e_rdsel:
1395 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1396 *final_types[0] = R_D_MODE;
1397 final_types[1] = final_type;
1398 final_types[2] = NULL;
1399 *final_type = base_type;
1400 break;
32619c58 1401
017a52d7
JL
1402 case e_lrsel:
1403 case e_rrsel:
1404 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1405 *final_types[0] = R_R_MODE;
1406 final_types[1] = final_type;
1407 final_types[2] = NULL;
1408 *final_type = base_type;
1409 break;
1410 }
1411
32619c58
JL
1412 switch (base_type)
1413 {
1414 case R_HPPA:
1415 /* PLABELs get their own relocation type. */
1416 if (field == e_psel
1417 || field == e_lpsel
1418 || field == e_rpsel)
a36b6f1d
JL
1419 {
1420 /* A PLABEL relocation that has a size of 32 bits must
1421 be a R_DATA_PLABEL. All others are R_CODE_PLABELs. */
1422 if (format == 32)
1423 *final_type = R_DATA_PLABEL;
1424 else
1425 *final_type = R_CODE_PLABEL;
1426 }
1427 /* PIC stuff. */
1428 else if (field == e_tsel
1429 || field == e_ltsel
1430 || field == e_rtsel)
1431 *final_type = R_DLT_REL;
1432 /* A relocation in the data space is always a full 32bits. */
32619c58
JL
1433 else if (format == 32)
1434 *final_type = R_DATA_ONE_SYMBOL;
1435
1436 break;
1437
1438 case R_HPPA_GOTOFF:
1439 /* More PLABEL special cases. */
1440 if (field == e_psel
1441 || field == e_lpsel
1442 || field == e_rpsel)
1443 *final_type = R_DATA_PLABEL;
1444 break;
1445
1446 case R_HPPA_NONE:
1447 case R_HPPA_ABS_CALL:
1448 case R_HPPA_PCREL_CALL:
1449 case R_HPPA_COMPLEX:
1450 case R_HPPA_COMPLEX_PCREL_CALL:
1451 case R_HPPA_COMPLEX_ABS_CALL:
1452 /* Right now we can default all these. */
1453 break;
1454 }
1455 return final_types;
1456}
1457
1458/* Return the address of the correct entry in the PA SOM relocation
1459 howto table. */
1460
91c0bcbb 1461static const reloc_howto_type *
32619c58
JL
1462som_bfd_reloc_type_lookup (arch, code)
1463 bfd_arch_info_type *arch;
1464 bfd_reloc_code_real_type code;
1465{
1466 if ((int) code < (int) R_NO_RELOCATION + 255)
1467 {
1468 BFD_ASSERT ((int) som_hppa_howto_table[(int) code].type == (int) code);
1469 return &som_hppa_howto_table[(int) code];
1470 }
1471
1472 return (reloc_howto_type *) 0;
1473}
1474
9e16fcf1
SG
1475/* Perform some initialization for an object. Save results of this
1476 initialization in the BFD. */
d9ad93bc
KR
1477
1478static bfd_target *
9e16fcf1 1479som_object_setup (abfd, file_hdrp, aux_hdrp)
d9ad93bc
KR
1480 bfd *abfd;
1481 struct header *file_hdrp;
1482 struct som_exec_auxhdr *aux_hdrp;
1483{
9e16fcf1
SG
1484 /* som_mkobject will set bfd_error if som_mkobject fails. */
1485 if (som_mkobject (abfd) != true)
1486 return 0;
d9ad93bc 1487
9e16fcf1
SG
1488 /* Set BFD flags based on what information is available in the SOM. */
1489 abfd->flags = NO_FLAGS;
1490 if (! file_hdrp->entry_offset)
1491 abfd->flags |= HAS_RELOC;
1492 else
1493 abfd->flags |= EXEC_P;
1494 if (file_hdrp->symbol_total)
1495 abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS;
1496
1497 bfd_get_start_address (abfd) = aux_hdrp->exec_entry;
1498 bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 0);
d9ad93bc 1499 bfd_get_symcount (abfd) = file_hdrp->symbol_total;
9e16fcf1
SG
1500
1501 /* Initialize the saved symbol table and string table to NULL.
1502 Save important offsets and sizes from the SOM header into
1503 the BFD. */
1504 obj_som_stringtab (abfd) = (char *) NULL;
1505 obj_som_symtab (abfd) = (som_symbol_type *) NULL;
1506 obj_som_stringtab_size (abfd) = file_hdrp->symbol_strings_size;
1507 obj_som_sym_filepos (abfd) = file_hdrp->symbol_location;
1508 obj_som_str_filepos (abfd) = file_hdrp->symbol_strings_location;
1509 obj_som_reloc_filepos (abfd) = file_hdrp->fixup_request_location;
d9ad93bc
KR
1510
1511 return abfd->xvec;
1512}
1513
1514/* Create a new BFD section for NAME. If NAME already exists, then create a
1515 new unique name, with NAME as the prefix. This exists because SOM .o files
9e16fcf1 1516 may have more than one $CODE$ subspace. */
d9ad93bc
KR
1517
1518static asection *
1519make_unique_section (abfd, name, num)
1520 bfd *abfd;
1521 CONST char *name;
1522 int num;
1523{
1524 asection *sect;
1525 char *newname;
1526 char altname[100];
1527
1528 sect = bfd_make_section (abfd, name);
1529 while (!sect)
1530 {
1531 sprintf (altname, "%s-%d", name, num++);
1532 sect = bfd_make_section (abfd, altname);
1533 }
1534
1535 newname = bfd_alloc (abfd, strlen (sect->name) + 1);
1536 strcpy (newname, sect->name);
1537
1538 sect->name = newname;
1539 return sect;
1540}
1541
1542/* Convert all of the space and subspace info into BFD sections. Each space
1543 contains a number of subspaces, which in turn describe the mapping between
1544 regions of the exec file, and the address space that the program runs in.
1545 BFD sections which correspond to spaces will overlap the sections for the
1546 associated subspaces. */
1547
9e16fcf1 1548static boolean
d9ad93bc
KR
1549setup_sections (abfd, file_hdr)
1550 bfd *abfd;
1551 struct header *file_hdr;
1552{
1553 char *space_strings;
1554 int space_index;
9e16fcf1 1555 unsigned int total_subspaces = 0;
d9ad93bc
KR
1556
1557 /* First, read in space names */
1558
1559 space_strings = alloca (file_hdr->space_strings_size);
1560 if (!space_strings)
9e16fcf1 1561 return false;
d9ad93bc
KR
1562
1563 if (bfd_seek (abfd, file_hdr->space_strings_location, SEEK_SET) < 0)
9e16fcf1 1564 return false;
d9ad93bc
KR
1565 if (bfd_read (space_strings, 1, file_hdr->space_strings_size, abfd)
1566 != file_hdr->space_strings_size)
9e16fcf1 1567 return false;
d9ad93bc
KR
1568
1569 /* Loop over all of the space dictionaries, building up sections */
d9ad93bc
KR
1570 for (space_index = 0; space_index < file_hdr->space_total; space_index++)
1571 {
1572 struct space_dictionary_record space;
9e16fcf1
SG
1573 struct subspace_dictionary_record subspace, save_subspace;
1574 int subspace_index;
d9ad93bc
KR
1575 asection *space_asect;
1576
1577 /* Read the space dictionary element */
1578 if (bfd_seek (abfd, file_hdr->space_location
1579 + space_index * sizeof space, SEEK_SET) < 0)
9e16fcf1 1580 return false;
d9ad93bc 1581 if (bfd_read (&space, 1, sizeof space, abfd) != sizeof space)
9e16fcf1 1582 return false;
d9ad93bc
KR
1583
1584 /* Setup the space name string */
1585 space.name.n_name = space.name.n_strx + space_strings;
1586
1587 /* Make a section out of it */
1588 space_asect = make_unique_section (abfd, space.name.n_name, space_index);
1589 if (!space_asect)
9e16fcf1 1590 return false;
d9ad93bc
KR
1591
1592 /* Now, read in the first subspace for this space */
1593 if (bfd_seek (abfd, file_hdr->subspace_location
1594 + space.subspace_index * sizeof subspace,
1595 SEEK_SET) < 0)
9e16fcf1 1596 return false;
d9ad93bc 1597 if (bfd_read (&subspace, 1, sizeof subspace, abfd) != sizeof subspace)
9e16fcf1 1598 return false;
d9ad93bc
KR
1599 /* Seek back to the start of the subspaces for loop below */
1600 if (bfd_seek (abfd, file_hdr->subspace_location
1601 + space.subspace_index * sizeof subspace,
1602 SEEK_SET) < 0)
9e16fcf1 1603 return false;
d9ad93bc
KR
1604
1605 /* Setup the start address and file loc from the first subspace record */
1606 space_asect->vma = subspace.subspace_start;
1607 space_asect->filepos = subspace.file_loc_init_value;
9e16fcf1
SG
1608 space_asect->alignment_power = log2 (subspace.alignment);
1609
1610 /* Initialize save_subspace so we can reliably determine if this
1611 loop placed any useful values into it. */
1612 bzero (&save_subspace, sizeof (struct subspace_dictionary_record));
d9ad93bc
KR
1613
1614 /* Loop over the rest of the subspaces, building up more sections */
1615 for (subspace_index = 0; subspace_index < space.subspace_quantity;
1616 subspace_index++)
1617 {
1618 asection *subspace_asect;
1619
1620 /* Read in the next subspace */
1621 if (bfd_read (&subspace, 1, sizeof subspace, abfd)
1622 != sizeof subspace)
9e16fcf1 1623 return false;
d9ad93bc
KR
1624
1625 /* Setup the subspace name string */
1626 subspace.name.n_name = subspace.name.n_strx + space_strings;
1627
1628 /* Make a section out of this subspace */
1629 subspace_asect = make_unique_section (abfd, subspace.name.n_name,
1630 space.subspace_index + subspace_index);
1631
1632 if (!subspace_asect)
9e16fcf1
SG
1633 return false;
1634
1635 /* Keep an easy mapping between subspaces and sections. */
1636 som_section_data (subspace_asect)->subspace_index
1637 = total_subspaces++;
1638
1639 /* Set SEC_READONLY and SEC_CODE/SEC_DATA as specified
1640 by the access_control_bits in the subspace header. */
1641 switch (subspace.access_control_bits >> 4)
1642 {
1643 /* Readonly data. */
1644 case 0x0:
1645 subspace_asect->flags |= SEC_DATA | SEC_READONLY;
1646 break;
1647
1648 /* Normal data. */
1649 case 0x1:
1650 subspace_asect->flags |= SEC_DATA;
1651 break;
1652
1653 /* Readonly code and the gateways.
1654 Gateways have other attributes which do not map
1655 into anything BFD knows about. */
1656 case 0x2:
1657 case 0x4:
1658 case 0x5:
1659 case 0x6:
1660 case 0x7:
1661 subspace_asect->flags |= SEC_CODE | SEC_READONLY;
1662 break;
1663
1664 /* dynamic (writable) code. */
1665 case 0x3:
1666 subspace_asect->flags |= SEC_CODE;
1667 break;
1668 }
1669
1670 if (subspace.dup_common || subspace.is_common)
1671 subspace_asect->flags |= SEC_IS_COMMON;
36456a67 1672 else if (subspace.subspace_length > 0)
9e16fcf1 1673 subspace_asect->flags |= SEC_HAS_CONTENTS;
d9ad93bc
KR
1674 if (subspace.is_loadable)
1675 subspace_asect->flags |= SEC_ALLOC | SEC_LOAD;
1676 if (subspace.code_only)
1677 subspace_asect->flags |= SEC_CODE;
1678
36456a67
JL
1679 /* Both file_loc_init_value and initialization_length will
1680 be zero for a BSS like subspace. */
1681 if (subspace.file_loc_init_value == 0
1682 && subspace.initialization_length == 0)
1683 subspace_asect->flags &= ~(SEC_DATA | SEC_LOAD);
1684
9e16fcf1
SG
1685 /* This subspace has relocations.
1686 The fixup_request_quantity is a byte count for the number of
1687 entries in the relocation stream; it is not the actual number
1688 of relocations in the subspace. */
1689 if (subspace.fixup_request_quantity != 0)
1690 {
1691 subspace_asect->flags |= SEC_RELOC;
1692 subspace_asect->rel_filepos = subspace.fixup_request_index;
1693 som_section_data (subspace_asect)->reloc_size
1694 = subspace.fixup_request_quantity;
1695 /* We can not determine this yet. When we read in the
1696 relocation table the correct value will be filled in. */
1697 subspace_asect->reloc_count = -1;
1698 }
1699
1700 /* Update save_subspace if appropriate. */
1701 if (subspace.file_loc_init_value > save_subspace.file_loc_init_value)
1702 save_subspace = subspace;
1703
d9ad93bc
KR
1704 subspace_asect->vma = subspace.subspace_start;
1705 subspace_asect->_cooked_size = subspace.subspace_length;
36456a67 1706 subspace_asect->_raw_size = subspace.subspace_length;
9e16fcf1 1707 subspace_asect->alignment_power = log2 (subspace.alignment);
d9ad93bc 1708 subspace_asect->filepos = subspace.file_loc_init_value;
d9ad93bc 1709 }
9e16fcf1
SG
1710
1711 /* Yow! there is no subspace within the space which actually
1712 has initialized information in it; this should never happen
1713 as far as I know. */
1714 if (!save_subspace.file_loc_init_value)
1715 abort ();
1716
d9ad93bc 1717 /* Setup the sizes for the space section based upon the info in the
9e16fcf1
SG
1718 last subspace of the space. */
1719 space_asect->_cooked_size = save_subspace.subspace_start
1720 - space_asect->vma + save_subspace.subspace_length;
1721 space_asect->_raw_size = save_subspace.file_loc_init_value
1722 - space_asect->filepos + save_subspace.initialization_length;
d9ad93bc 1723 }
9e16fcf1 1724 return true;
d9ad93bc
KR
1725}
1726
9e16fcf1
SG
1727/* Read in a SOM object and make it into a BFD. */
1728
d9ad93bc 1729static bfd_target *
9e16fcf1 1730som_object_p (abfd)
d9ad93bc
KR
1731 bfd *abfd;
1732{
1733 struct header file_hdr;
1734 struct som_exec_auxhdr aux_hdr;
1735
1736 if (bfd_read ((PTR) & file_hdr, 1, FILE_HDR_SIZE, abfd) != FILE_HDR_SIZE)
9e16fcf1
SG
1737 {
1738 bfd_error = system_call_error;
1739 return 0;
1740 }
d9ad93bc
KR
1741
1742 if (!_PA_RISC_ID (file_hdr.system_id))
1743 {
1744 bfd_error = wrong_format;
1745 return 0;
1746 }
1747
1748 switch (file_hdr.a_magic)
1749 {
9e16fcf1 1750 case RELOC_MAGIC:
d9ad93bc
KR
1751 case EXEC_MAGIC:
1752 case SHARE_MAGIC:
1753 case DEMAND_MAGIC:
1754#ifdef DL_MAGIC
1755 case DL_MAGIC:
1756#endif
1757#ifdef SHL_MAGIC
1758 case SHL_MAGIC:
9e16fcf1
SG
1759#endif
1760#ifdef EXECLIBMAGIC
1761 case EXECLIBMAGIC:
017a52d7
JL
1762#endif
1763#ifdef SHARED_MAGIC_CNX
1764 case SHARED_MAGIC_CNX:
d9ad93bc
KR
1765#endif
1766 break;
1767 default:
1768 bfd_error = wrong_format;
1769 return 0;
1770 }
1771
1772 if (file_hdr.version_id != VERSION_ID
1773 && file_hdr.version_id != NEW_VERSION_ID)
1774 {
1775 bfd_error = wrong_format;
1776 return 0;
1777 }
1778
9e16fcf1
SG
1779 /* If the aux_header_size field in the file header is zero, then this
1780 object is an incomplete executable (a .o file). Do not try to read
1781 a non-existant auxiliary header. */
1782 bzero (&aux_hdr, sizeof (struct som_exec_auxhdr));
1783 if (file_hdr.aux_header_size != 0)
1784 {
1785 if (bfd_read ((PTR) & aux_hdr, 1, AUX_HDR_SIZE, abfd) != AUX_HDR_SIZE)
1786 {
1787 bfd_error = wrong_format;
1788 return 0;
1789 }
1790 }
d9ad93bc
KR
1791
1792 if (!setup_sections (abfd, &file_hdr))
9e16fcf1
SG
1793 {
1794 /* setup_sections does not bubble up a bfd error code. */
1795 bfd_error = bad_value;
1796 return 0;
1797 }
d9ad93bc 1798
9e16fcf1
SG
1799 /* This appears to be a valid SOM object. Do some initialization. */
1800 return som_object_setup (abfd, &file_hdr, &aux_hdr);
d9ad93bc
KR
1801}
1802
9e16fcf1
SG
1803/* Create a SOM object. */
1804
d9ad93bc 1805static boolean
9e16fcf1 1806som_mkobject (abfd)
d9ad93bc
KR
1807 bfd *abfd;
1808{
9e16fcf1
SG
1809 /* Allocate memory to hold backend information. */
1810 abfd->tdata.som_data = (struct som_data_struct *)
1811 bfd_zalloc (abfd, sizeof (struct som_data_struct));
1812 if (abfd->tdata.som_data == NULL)
1813 {
1814 bfd_error = no_memory;
1815 return false;
1816 }
1817 obj_som_file_hdr (abfd) = bfd_zalloc (abfd, sizeof (struct header));
1818 if (obj_som_file_hdr (abfd) == NULL)
1819
1820 {
1821 bfd_error = no_memory;
1822 return false;
1823 }
1824 return true;
d9ad93bc
KR
1825}
1826
0ffa24b9
JL
1827/* Initialize some information in the file header. This routine makes
1828 not attempt at doing the right thing for a full executable; it
1829 is only meant to handle relocatable objects. */
1830
1831static boolean
1832som_prep_headers (abfd)
1833 bfd *abfd;
1834{
1835 struct header *file_hdr = obj_som_file_hdr (abfd);
1836 asection *section;
1837
1838 /* FIXME. This should really be conditional based on whether or not
1839 PA1.1 instructions/registers have been used. */
1840 file_hdr->system_id = HP9000S800_ID;
1841
1842 /* FIXME. Only correct for building relocatable objects. */
1843 if (abfd->flags & EXEC_P)
1844 abort ();
1845 else
1846 file_hdr->a_magic = RELOC_MAGIC;
1847
1848 /* Only new format SOM is supported. */
1849 file_hdr->version_id = NEW_VERSION_ID;
1850
1851 /* These fields are optional, and embedding timestamps is not always
1852 a wise thing to do, it makes comparing objects during a multi-stage
1853 bootstrap difficult. */
1854 file_hdr->file_time.secs = 0;
1855 file_hdr->file_time.nanosecs = 0;
1856
1857 if (abfd->flags & EXEC_P)
1858 abort ();
1859 else
1860 {
1861 file_hdr->entry_space = 0;
1862 file_hdr->entry_subspace = 0;
1863 file_hdr->entry_offset = 0;
1864 }
1865
1866 /* FIXME. I do not know if we ever need to put anything other
1867 than zero in this field. */
1868 file_hdr->presumed_dp = 0;
1869
1870 /* Now iterate over the sections translating information from
1871 BFD sections to SOM spaces/subspaces. */
1872
1873 for (section = abfd->sections; section != NULL; section = section->next)
1874 {
1875 /* Ignore anything which has not been marked as a space or
1876 subspace. */
1877 if (som_section_data (section)->is_space == 0
1878
1879 && som_section_data (section)->is_subspace == 0)
1880 continue;
1881
1882 if (som_section_data (section)->is_space)
1883 {
1884 /* Set space attributes. Note most attributes of SOM spaces
1885 are set based on the subspaces it contains. */
1886 som_section_data (section)->space_dict.loader_fix_index = -1;
1887 som_section_data (section)->space_dict.init_pointer_index = -1;
1888 }
1889 else
1890 {
1891 /* Set subspace attributes. Basic stuff is done here, additional
1892 attributes are filled in later as more information becomes
1893 available. */
1894 if (section->flags & SEC_IS_COMMON)
1895 {
1896 som_section_data (section)->subspace_dict.dup_common = 1;
1897 som_section_data (section)->subspace_dict.is_common = 1;
1898 }
1899
1900 if (section->flags & SEC_ALLOC)
1901 som_section_data (section)->subspace_dict.is_loadable = 1;
1902
1903 if (section->flags & SEC_CODE)
1904 som_section_data (section)->subspace_dict.code_only = 1;
1905
1906 som_section_data (section)->subspace_dict.subspace_start =
1907 section->vma;
1908 som_section_data (section)->subspace_dict.subspace_length =
1909 bfd_section_size (abfd, section);
1910 som_section_data (section)->subspace_dict.initialization_length =
1911 bfd_section_size (abfd, section);
1912 som_section_data (section)->subspace_dict.alignment =
1913 1 << section->alignment_power;
1914 }
1915 }
1916 return true;
1917}
1918
5532fc5a
JL
1919/* Count and return the number of spaces attached to the given BFD. */
1920
1921static unsigned long
1922som_count_spaces (abfd)
1923 bfd *abfd;
1924{
1925 int count = 0;
1926 asection *section;
1927
1928 for (section = abfd->sections; section != NULL; section = section->next)
1929 count += som_section_data (section)->is_space;
1930
1931 return count;
1932}
1933
1934/* Count the number of subspaces attached to the given BFD. */
1935
1936static unsigned long
1937som_count_subspaces (abfd)
1938 bfd *abfd;
1939{
1940 int count = 0;
1941 asection *section;
1942
1943 for (section = abfd->sections; section != NULL; section = section->next)
1944 count += som_section_data (section)->is_subspace;
1945
1946 return count;
1947}
1948
1949/* Return -1, 0, 1 indicating the relative ordering of sym1 and sym2.
1950
1951 We desire symbols to be ordered starting with the symbol with the
1952 highest relocation count down to the symbol with the lowest relocation
1953 count. Doing so compacts the relocation stream. */
1954
1955static int
1956compare_syms (sym1, sym2)
1957 asymbol **sym1;
1958 asymbol **sym2;
1959
1960{
1961 unsigned int count1, count2;
1962
1963 /* Get relocation count for each symbol. Note that the count
1964 is stored in the udata pointer for section symbols! */
1965 if ((*sym1)->flags & BSF_SECTION_SYM)
1966 count1 = (int)(*sym1)->udata;
1967 else
1968 count1 = (*som_symbol_data ((*sym1)))->reloc_count;
1969
1970 if ((*sym2)->flags & BSF_SECTION_SYM)
1971 count2 = (int)(*sym2)->udata;
1972 else
1973 count2 = (*som_symbol_data ((*sym2)))->reloc_count;
1974
1975 /* Return the appropriate value. */
1976 if (count1 < count2)
1977 return 1;
1978 else if (count1 > count2)
1979 return -1;
1980 return 0;
1981}
1982
aff97790
JL
1983/* Perform various work in preparation for emitting the fixup stream. */
1984
1985static void
1986som_prep_for_fixups (abfd, syms, num_syms)
1987 bfd *abfd;
1988 asymbol **syms;
1989 unsigned long num_syms;
1990{
1991 int i;
1992 asection *section;
1993
1994 /* Most SOM relocations involving a symbol have a length which is
1995 dependent on the index of the symbol. So symbols which are
1996 used often in relocations should have a small index. */
1997
1998 /* First initialize the counters for each symbol. */
1999 for (i = 0; i < num_syms; i++)
2000 {
2001 /* Handle a section symbol; these have no pointers back to the
2002 SOM symbol info. So we just use the pointer field (udata)
2003 to hold the relocation count.
2004
2005 FIXME. While we're here set the name of any section symbol
2006 to something which will not screw GDB. How do other formats
2007 deal with this?!? */
2008 if (som_symbol_data (syms[i]) == NULL)
2009 {
2010 syms[i]->flags |= BSF_SECTION_SYM;
2011 syms[i]->name = "L$0\002";
2012 syms[i]->udata = (PTR) 0;
2013 }
2014 else
2015 (*som_symbol_data (syms[i]))->reloc_count = 0;
2016 }
2017
2018 /* Now that the counters are initialized, make a weighted count
2019 of how often a given symbol is used in a relocation. */
2020 for (section = abfd->sections; section != NULL; section = section->next)
2021 {
2022 int i;
2023
2024 /* Does this section have any relocations? */
2025 if (section->reloc_count <= 0)
2026 continue;
2027
2028 /* Walk through each relocation for this section. */
2029 for (i = 1; i < section->reloc_count; i++)
2030 {
2031 arelent *reloc = section->orelocation[i];
2032 int scale;
2033
2034 /* If no symbol, then there is no counter to increase. */
2035 if (reloc->sym_ptr_ptr == NULL)
2036 continue;
2037
2038 /* Scaling to encourage symbols involved in R_DP_RELATIVE
2039 and R_CODE_ONE_SYMBOL relocations to come first. These
2040 two relocations have single byte versions if the symbol
2041 index is very small. */
2042 if (reloc->howto->type == R_DP_RELATIVE
2043 || reloc->howto->type == R_CODE_ONE_SYMBOL)
2044 scale = 2;
2045 else
2046 scale = 1;
2047
2048 /* Handle section symbols by ramming the count in the udata
2049 field. It will not be used and the count is very important
2050 for these symbols. */
2051 if ((*reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2052 {
2053 (*reloc->sym_ptr_ptr)->udata =
2054 (PTR) ((int) (*reloc->sym_ptr_ptr)->udata + scale);
2055 continue;
2056 }
2057
2058 /* A normal symbol. Increment the count. */
2059 (*som_symbol_data ((*reloc->sym_ptr_ptr)))->reloc_count += scale;
2060 }
2061 }
2062
2063 /* Now sort the symbols. */
2064 qsort (syms, num_syms, sizeof (asymbol *), compare_syms);
2065
2066 /* Compute the symbol indexes, they will be needed by the relocation
2067 code. */
2068 for (i = 0; i < num_syms; i++)
2069 {
2070 /* A section symbol. Again, there is no pointer to backend symbol
2071 information, so we reuse (abuse) the udata field again. */
2072 if (syms[i]->flags & BSF_SECTION_SYM)
2073 syms[i]->udata = (PTR) i;
2074 else
2075 (*som_symbol_data (syms[i]))->index = i;
2076 }
2077}
2078
9d0dea6f
JL
2079static boolean
2080som_write_fixups (abfd, current_offset, total_reloc_sizep)
2081 bfd *abfd;
2082 unsigned long current_offset;
2083 unsigned int *total_reloc_sizep;
2084{
2085 unsigned int i, j;
2086 unsigned char *tmp_space, *p;
2087 unsigned int total_reloc_size = 0;
2088 unsigned int subspace_reloc_size = 0;
2089 unsigned int num_spaces = obj_som_file_hdr (abfd)->space_total;
2090 asection *section = abfd->sections;
2091
2092 /* Get a chunk of memory that we can use as buffer space, then throw
2093 away. */
2094 tmp_space = alloca (SOM_TMP_BUFSIZE);
2095 bzero (tmp_space, SOM_TMP_BUFSIZE);
2096 p = tmp_space;
2097
2098 /* All the fixups for a particular subspace are emitted in a single
2099 stream. All the subspaces for a particular space are emitted
2100 as a single stream.
2101
2102 So, to get all the locations correct one must iterate through all the
2103 spaces, for each space iterate through its subspaces and output a
2104 fixups stream. */
2105 for (i = 0; i < num_spaces; i++)
2106 {
2107 asection *subsection;
2108
2109 /* Find a space. */
2110 while (som_section_data (section)->is_space == 0)
2111 section = section->next;
2112
2113 /* Now iterate through each of its subspaces. */
2114 for (subsection = abfd->sections;
2115 subsection != NULL;
2116 subsection = subsection->next)
2117 {
017a52d7 2118 int reloc_offset, current_rounding_mode;
9d0dea6f
JL
2119
2120 /* Find a subspace of this space. */
2121 if (som_section_data (subsection)->is_subspace == 0
2122 || som_section_data (subsection)->containing_space != section)
2123 continue;
2124
2125 /* If this subspace had no relocations, then we're finished
2126 with it. */
2127 if (subsection->reloc_count <= 0)
2128 {
2129 som_section_data (subsection)->subspace_dict.fixup_request_index
2130 = -1;
2131 continue;
2132 }
2133
2134 /* This subspace has some relocations. Put the relocation stream
2135 index into the subspace record. */
2136 som_section_data (subsection)->subspace_dict.fixup_request_index
2137 = total_reloc_size;
2138
2139 /* To make life easier start over with a clean slate for
2140 each subspace. Seek to the start of the relocation stream
2141 for this subspace in preparation for writing out its fixup
2142 stream. */
2143 if (bfd_seek (abfd, current_offset + total_reloc_size, SEEK_SET) != 0)
2144 {
2145 bfd_error = system_call_error;
2146 return false;
2147 }
2148
2149 /* Buffer space has already been allocated. Just perform some
2150 initialization here. */
2151 p = tmp_space;
2152 subspace_reloc_size = 0;
2153 reloc_offset = 0;
2154 som_initialize_reloc_queue (reloc_queue);
017a52d7 2155 current_rounding_mode = R_N_MODE;
9d0dea6f
JL
2156
2157 /* Translate each BFD relocation into one or more SOM
2158 relocations. */
2159 for (j = 0; j < subsection->reloc_count; j++)
2160 {
2161 arelent *bfd_reloc = subsection->orelocation[j];
2162 unsigned int skip;
2163 int sym_num;
2164
2165 /* Get the symbol number. Remember it's stored in a
2166 special place for section symbols. */
2167 if ((*bfd_reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2168 sym_num = (int) (*bfd_reloc->sym_ptr_ptr)->udata;
2169 else
91c0bcbb 2170 sym_num = (*som_symbol_data ((*bfd_reloc->sym_ptr_ptr)))->index;
9d0dea6f
JL
2171
2172 /* If there is not enough room for the next couple relocations,
2173 then dump the current buffer contents now. Also reinitialize
2174 the relocation queue.
2175
2176 FIXME. We assume here that no BFD relocation will expand
2177 to more than 100 bytes of SOM relocations. This should (?!?)
2178 be quite safe. */
2179 if (p - tmp_space + 100 > SOM_TMP_BUFSIZE)
2180 {
2181 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2182 != p - tmp_space)
2183 {
2184 bfd_error = system_call_error;
2185 return false;
2186 }
2187 p = tmp_space;
2188 som_initialize_reloc_queue (reloc_queue);
2189 }
2190
2191 /* Emit R_NO_RELOCATION fixups to map any bytes which were
2192 skipped. */
2193 skip = bfd_reloc->address - reloc_offset;
2194 p = som_reloc_skip (abfd, skip, p,
2195 &subspace_reloc_size, reloc_queue);
2196
2197 /* Update reloc_offset for the next iteration.
2198
017a52d7
JL
2199 Many relocations do not consume input bytes. They
2200 are markers, or set state necessary to perform some
2201 later relocation. */
2202 switch (bfd_reloc->howto->type)
2203 {
2204 /* This only needs to handle relocations that may be
2205 made by hppa_som_gen_reloc. */
2206 case R_ENTRY:
2207 case R_EXIT:
2208 case R_N_MODE:
2209 case R_S_MODE:
2210 case R_D_MODE:
2211 case R_R_MODE:
a36b6f1d
JL
2212 case R_FSEL:
2213 case R_LSEL:
2214 case R_RSEL:
017a52d7
JL
2215 reloc_offset = bfd_reloc->address;
2216 break;
9d0dea6f 2217
017a52d7
JL
2218 default:
2219 reloc_offset = bfd_reloc->address + 4;
2220 break;
2221 }
9d0dea6f
JL
2222
2223 /* Now the actual relocation we care about. */
2224 switch (bfd_reloc->howto->type)
2225 {
2226 case R_PCREL_CALL:
2227 case R_ABS_CALL:
2228 p = som_reloc_call (abfd, p, &subspace_reloc_size,
2229 bfd_reloc, sym_num, reloc_queue);
2230 break;
2231
2232 case R_CODE_ONE_SYMBOL:
2233 case R_DP_RELATIVE:
2234 /* Account for any addend. */
2235 if (bfd_reloc->addend)
2236 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2237 &subspace_reloc_size, reloc_queue);
2238
2239 if (sym_num < 0x20)
2240 {
2241 bfd_put_8 (abfd, bfd_reloc->howto->type + sym_num, p);
2242 subspace_reloc_size += 1;
2243 p += 1;
2244 }
2245 else if (sym_num < 0x100)
2246 {
2247 bfd_put_8 (abfd, bfd_reloc->howto->type + 32, p);
2248 bfd_put_8 (abfd, sym_num, p + 1);
2249 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2250 2, reloc_queue);
2251 }
2252 else if (sym_num < 0x10000000)
2253 {
2254 bfd_put_8 (abfd, bfd_reloc->howto->type + 33, p);
2255 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2256 bfd_put_16 (abfd, sym_num, p + 2);
2257 p = try_prev_fixup (abfd, &subspace_reloc_size,
2258 p, 4, reloc_queue);
2259 }
2260 else
2261 abort ();
2262 break;
2263
2264 case R_DATA_ONE_SYMBOL:
2265 case R_DATA_PLABEL:
2266 case R_CODE_PLABEL:
a36b6f1d 2267 case R_DLT_REL:
9d0dea6f
JL
2268 /* Account for any addend. */
2269 if (bfd_reloc->addend)
2270 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2271 &subspace_reloc_size, reloc_queue);
2272
2273 if (sym_num < 0x100)
2274 {
2275 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2276 bfd_put_8 (abfd, sym_num, p + 1);
2277 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2278 2, reloc_queue);
2279 }
2280 else if (sym_num < 0x10000000)
2281 {
2282 bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
2283 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2284 bfd_put_16 (abfd, sym_num, p + 2);
2285 p = try_prev_fixup (abfd, &subspace_reloc_size,
2286 p, 4, reloc_queue);
2287 }
2288 else
2289 abort ();
2290 break;
2291
2292 case R_ENTRY:
2293 {
2294 int *descp
2295 = (int *) (*som_symbol_data ((*bfd_reloc->sym_ptr_ptr)))->unwind;
2296 bfd_put_8 (abfd, R_ENTRY, p);
2297 bfd_put_32 (abfd, descp[0], p + 1);
2298 bfd_put_32 (abfd, descp[1], p + 5);
2299 p = try_prev_fixup (abfd, &subspace_reloc_size,
2300 p, 9, reloc_queue);
2301 break;
2302 }
2303
2304 case R_EXIT:
2305 bfd_put_8 (abfd, R_EXIT, p);
2306 subspace_reloc_size += 1;
2307 p += 1;
2308 break;
2309
017a52d7
JL
2310 case R_N_MODE:
2311 case R_S_MODE:
2312 case R_D_MODE:
2313 case R_R_MODE:
2314 /* If this relocation requests the current rounding
2315 mode, then it is redundant. */
2316 if (bfd_reloc->howto->type != current_rounding_mode)
2317 {
2318 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2319 subspace_reloc_size += 1;
2320 p += 1;
2321 current_rounding_mode = bfd_reloc->howto->type;
2322 }
2323 break;
2324
a36b6f1d
JL
2325 case R_FSEL:
2326 case R_LSEL:
2327 case R_RSEL:
2328 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2329 subspace_reloc_size += 1;
2330 p += 1;
2331 break;
2332
9d0dea6f
JL
2333 /* Put a "R_RESERVED" relocation in the stream if
2334 we hit something we do not understand. The linker
2335 will complain loudly if this ever happens. */
2336 default:
2337 bfd_put_8 (abfd, 0xff, p);
2338 subspace_reloc_size += 1;
2339 p += 1;
017a52d7 2340 break;
9d0dea6f
JL
2341 }
2342 }
2343
2344 /* Last BFD relocation for a subspace has been processed.
2345 Map the rest of the subspace with R_NO_RELOCATION fixups. */
2346 p = som_reloc_skip (abfd, bfd_section_size (abfd, subsection)
2347 - reloc_offset,
2348 p, &subspace_reloc_size, reloc_queue);
2349
2350 /* Scribble out the relocations. */
2351 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2352 != p - tmp_space)
2353 {
2354 bfd_error = system_call_error;
2355 return false;
2356 }
2357 p = tmp_space;
2358
2359 total_reloc_size += subspace_reloc_size;
2360 som_section_data (subsection)->subspace_dict.fixup_request_quantity
2361 = subspace_reloc_size;
2362 }
2363 section = section->next;
2364 }
2365 *total_reloc_sizep = total_reloc_size;
2366 return true;
2367}
2368
0b35f7ec
JL
2369/* Write out the space/subspace string table. */
2370
2371static boolean
2372som_write_space_strings (abfd, current_offset, string_sizep)
2373 bfd *abfd;
2374 unsigned long current_offset;
2375 unsigned int *string_sizep;
2376{
2377 unsigned char *tmp_space, *p;
2378 unsigned int strings_size = 0;
2379 asection *section;
2380
2381 /* Get a chunk of memory that we can use as buffer space, then throw
2382 away. */
2383 tmp_space = alloca (SOM_TMP_BUFSIZE);
2384 bzero (tmp_space, SOM_TMP_BUFSIZE);
2385 p = tmp_space;
2386
2387 /* Seek to the start of the space strings in preparation for writing
2388 them out. */
2389 if (bfd_seek (abfd, current_offset, SEEK_SET) != 0)
2390 {
2391 bfd_error = system_call_error;
2392 return false;
2393 }
2394
2395 /* Walk through all the spaces and subspaces (order is not important)
2396 building up and writing string table entries for their names. */
2397 for (section = abfd->sections; section != NULL; section = section->next)
2398 {
2399 int length;
2400
2401 /* Only work with space/subspaces; avoid any other sections
2402 which might have been made (.text for example). */
2403 if (som_section_data (section)->is_space == 0
2404 && som_section_data (section)->is_subspace == 0)
2405 continue;
2406
2407 /* Get the length of the space/subspace name. */
2408 length = strlen (section->name);
2409
2410 /* If there is not enough room for the next entry, then dump the
2411 current buffer contents now. Each entry will take 4 bytes to
2412 hold the string length + the string itself + null terminator. */
2413 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2414 {
2415 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2416 != p - tmp_space)
2417 {
2418 bfd_error = system_call_error;
2419 return false;
2420 }
2421 /* Reset to beginning of the buffer space. */
2422 p = tmp_space;
2423 }
2424
2425 /* First element in a string table entry is the length of the
2426 string. Alignment issues are already handled. */
2427 bfd_put_32 (abfd, length, p);
2428 p += 4;
2429 strings_size += 4;
2430
2431 /* Record the index in the space/subspace records. */
2432 if (som_section_data (section)->is_space)
2433 som_section_data (section)->space_dict.name.n_strx = strings_size;
2434 else
2435 som_section_data (section)->subspace_dict.name.n_strx = strings_size;
2436
2437 /* Next comes the string itself + a null terminator. */
2438 strcpy (p, section->name);
2439 p += length + 1;
2440 strings_size += length + 1;
2441
2442 /* Always align up to the next word boundary. */
2443 while (strings_size % 4)
2444 {
2445 bfd_put_8 (abfd, 0, p);
2446 p++;
2447 strings_size++;
2448 }
2449 }
2450
2451 /* Done with the space/subspace strings. Write out any information
2452 contained in a partial block. */
2453 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd) != p - tmp_space)
2454 {
2455 bfd_error = system_call_error;
2456 return false;
2457 }
2458 *string_sizep = strings_size;
2459 return true;
2460}
2461
2462/* Write out the symbol string table. */
2463
2464static boolean
2465som_write_symbol_strings (abfd, current_offset, syms, num_syms, string_sizep)
2466 bfd *abfd;
2467 unsigned long current_offset;
2468 asymbol **syms;
2469 unsigned int num_syms;
2470 unsigned int *string_sizep;
2471{
2472 unsigned int i;
2473 unsigned char *tmp_space, *p;
2474 unsigned int strings_size = 0;
2475
2476 /* Get a chunk of memory that we can use as buffer space, then throw
2477 away. */
2478 tmp_space = alloca (SOM_TMP_BUFSIZE);
2479 bzero (tmp_space, SOM_TMP_BUFSIZE);
2480 p = tmp_space;
2481
2482 /* Seek to the start of the space strings in preparation for writing
2483 them out. */
2484 if (bfd_seek (abfd, current_offset, SEEK_SET) != 0)
2485 {
2486 bfd_error = system_call_error;
2487 return false;
2488 }
2489
2490 for (i = 0; i < num_syms; i++)
2491 {
2492 int length = strlen (syms[i]->name);
2493
2494 /* If there is not enough room for the next entry, then dump the
2495 current buffer contents now. */
2496 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2497 {
2498 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2499 != p - tmp_space)
2500 {
2501 bfd_error = system_call_error;
2502 return false;
2503 }
2504 /* Reset to beginning of the buffer space. */
2505 p = tmp_space;
2506 }
2507
2508 /* First element in a string table entry is the length of the
2509 string. This must always be 4 byte aligned. This is also
2510 an appropriate time to fill in the string index field in the
2511 symbol table entry. */
2512 bfd_put_32 (abfd, length, p);
2513 strings_size += 4;
2514 p += 4;
2515
2516 /* Next comes the string itself + a null terminator. */
2517 strcpy (p, syms[i]->name);
2518
2519 /* ACK. FIXME. */
2520 syms[i]->name = (char *)strings_size;
2521 p += length + 1;
2522 strings_size += length + 1;
2523
2524 /* Always align up to the next word boundary. */
2525 while (strings_size % 4)
2526 {
2527 bfd_put_8 (abfd, 0, p);
2528 strings_size++;
2529 p++;
2530 }
2531 }
2532
2533 /* Scribble out any partial block. */
2534 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd) != p - tmp_space)
2535 {
2536 bfd_error = system_call_error;
2537 return false;
2538 }
2539
2540 *string_sizep = strings_size;
2541 return true;
2542}
2543
6eb64408
JL
2544/* Compute variable information to be placed in the SOM headers,
2545 space/subspace dictionaries, relocation streams, etc. Begin
2546 writing parts of the object file. */
2547
2548static boolean
2549som_begin_writing (abfd)
2550 bfd *abfd;
2551{
2552 unsigned long current_offset = 0;
2553 int strings_size = 0;
2554 unsigned int total_reloc_size = 0;
2555 unsigned long num_spaces, num_subspaces, num_syms, i;
2556 asection *section;
2557 asymbol **syms = bfd_get_outsymbols (abfd);
2558 unsigned int total_subspaces = 0;
2559
2560 /* The file header will always be first in an object file,
2561 everything else can be in random locations. To keep things
2562 "simple" BFD will lay out the object file in the manner suggested
2563 by the PRO ABI for PA-RISC Systems. */
2564
2565 /* Before any output can really begin offsets for all the major
2566 portions of the object file must be computed. So, starting
2567 with the initial file header compute (and sometimes write)
2568 each portion of the object file. */
2569
2570 /* Make room for the file header, it's contents are not complete
2571 yet, so it can not be written at this time. */
2572 current_offset += sizeof (struct header);
2573
2574 /* Any auxiliary headers will follow the file header. Right now
f6c2300b 2575 we support only the copyright and version headers. */
6eb64408
JL
2576 obj_som_file_hdr (abfd)->aux_header_location = current_offset;
2577 obj_som_file_hdr (abfd)->aux_header_size = 0;
f6c2300b
JL
2578 if (obj_som_version_hdr (abfd) != NULL)
2579 {
2580 unsigned int len;
2581
2582 bfd_seek (abfd, current_offset, SEEK_SET);
2583
2584 /* Write the aux_id structure and the string length. */
2585 len = sizeof (struct aux_id) + sizeof (unsigned int);
2586 obj_som_file_hdr (abfd)->aux_header_size += len;
2587 current_offset += len;
2588 if (bfd_write ((PTR) obj_som_version_hdr (abfd), len, 1, abfd) != len)
2589 {
2590 bfd_error = system_call_error;
2591 return false;
2592 }
2593
2594 /* Write the version string. */
2595 len = obj_som_version_hdr (abfd)->string_length;
2596 obj_som_file_hdr (abfd)->aux_header_size += len;
2597 current_offset += len;
2598 if (bfd_write ((PTR) obj_som_version_hdr (abfd)->user_string,
2599 len, 1, abfd) != len)
2600 {
2601 bfd_error = system_call_error;
2602 return false;
2603 }
2604 }
6eb64408 2605
f6c2300b
JL
2606 if (obj_som_copyright_hdr (abfd) != NULL)
2607 {
2608 unsigned int len;
2609
2610 bfd_seek (abfd, current_offset, SEEK_SET);
2611
2612 /* Write the aux_id structure and the string length. */
2613 len = sizeof (struct aux_id) + sizeof (unsigned int);
2614 obj_som_file_hdr (abfd)->aux_header_size += len;
2615 current_offset += len;
2616 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd), len, 1, abfd) != len)
2617 {
2618 bfd_error = system_call_error;
2619 return false;
2620 }
2621
2622 /* Write the copyright string. */
2623 len = obj_som_copyright_hdr (abfd)->string_length;
2624 obj_som_file_hdr (abfd)->aux_header_size += len;
2625 current_offset += len;
2626 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd)->copyright,
2627 len, 1, abfd) != len)
2628 {
2629 bfd_error = system_call_error;
2630 return false;
2631 }
2632 }
2633
2634 /* Next comes the initialization pointers; we have no initialization
2635 pointers, so current offset does not change. */
6eb64408
JL
2636 obj_som_file_hdr (abfd)->init_array_location = current_offset;
2637 obj_som_file_hdr (abfd)->init_array_total = 0;
2638
2639 /* Next are the space records. These are fixed length records.
2640
2641 Count the number of spaces to determine how much room is needed
2642 in the object file for the space records.
2643
2644 The names of the spaces are stored in a separate string table,
2645 and the index for each space into the string table is computed
2646 below. Therefore, it is not possible to write the space headers
2647 at this time. */
2648 num_spaces = som_count_spaces (abfd);
2649 obj_som_file_hdr (abfd)->space_location = current_offset;
2650 obj_som_file_hdr (abfd)->space_total = num_spaces;
2651 current_offset += num_spaces * sizeof (struct space_dictionary_record);
2652
2653 /* Next are the subspace records. These are fixed length records.
2654
2655 Count the number of subspaes to determine how much room is needed
2656 in the object file for the subspace records.
2657
2658 A variety if fields in the subspace record are still unknown at
2659 this time (index into string table, fixup stream location/size, etc). */
2660 num_subspaces = som_count_subspaces (abfd);
2661 obj_som_file_hdr (abfd)->subspace_location = current_offset;
2662 obj_som_file_hdr (abfd)->subspace_total = num_subspaces;
2663 current_offset += num_subspaces * sizeof (struct subspace_dictionary_record);
2664
2665 /* Next is the string table for the space/subspace names. We will
2666 build and write the string table on the fly. At the same time
2667 we will fill in the space/subspace name index fields. */
2668
2669 /* The string table needs to be aligned on a word boundary. */
2670 if (current_offset % 4)
2671 current_offset += (4 - (current_offset % 4));
2672
2673 /* Mark the offset of the space/subspace string table in the
2674 file header. */
2675 obj_som_file_hdr (abfd)->space_strings_location = current_offset;
2676
2677 /* Scribble out the space strings. */
2678 if (som_write_space_strings (abfd, current_offset, &strings_size) == false)
2679 return false;
2680
2681 /* Record total string table size in the header and update the
2682 current offset. */
2683 obj_som_file_hdr (abfd)->space_strings_size = strings_size;
2684 current_offset += strings_size;
2685
2686 /* Next is the symbol table. These are fixed length records.
2687
2688 Count the number of symbols to determine how much room is needed
2689 in the object file for the symbol table.
2690
2691 The names of the symbols are stored in a separate string table,
2692 and the index for each symbol name into the string table is computed
2693 below. Therefore, it is not possible to write the symobl table
2694 at this time. */
2695 num_syms = bfd_get_symcount (abfd);
2696 obj_som_file_hdr (abfd)->symbol_location = current_offset;
2697 obj_som_file_hdr (abfd)->symbol_total = num_syms;
2698 current_offset += num_syms * sizeof (struct symbol_dictionary_record);
2699
2700 /* Do prep work before handling fixups. */
2701 som_prep_for_fixups (abfd, syms, num_syms);
2702
2703 /* Next comes the fixup stream which starts on a word boundary. */
2704 if (current_offset % 4)
2705 current_offset += (4 - (current_offset % 4));
2706 obj_som_file_hdr (abfd)->fixup_request_location = current_offset;
2707
2708 /* Write the fixups and update fields in subspace headers which
2709 relate to the fixup stream. */
2710 if (som_write_fixups (abfd, current_offset, &total_reloc_size) == false)
2711 return false;
2712
2713 /* Record the total size of the fixup stream in the file header. */
2714 obj_som_file_hdr (abfd)->fixup_request_total = total_reloc_size;
2715 current_offset += total_reloc_size;
2716
2717 /* Next are the symbol strings.
2718 Align them to a word boundary. */
2719 if (current_offset % 4)
2720 current_offset += (4 - (current_offset % 4));
2721 obj_som_file_hdr (abfd)->symbol_strings_location = current_offset;
2722
2723 /* Scribble out the symbol strings. */
2724 if (som_write_symbol_strings (abfd, current_offset, syms,
2725 num_syms, &strings_size)
2726 == false)
2727 return false;
2728
2729 /* Record total string table size in header and update the
2730 current offset. */
2731 obj_som_file_hdr (abfd)->symbol_strings_size = strings_size;
2732 current_offset += strings_size;
2733
2734 /* Next is the compiler records. We do not use these. */
2735 obj_som_file_hdr (abfd)->compiler_location = current_offset;
2736 obj_som_file_hdr (abfd)->compiler_total = 0;
2737
2738 /* Now compute the file positions for the loadable subspaces. */
2739
2740 section = abfd->sections;
2741 for (i = 0; i < num_spaces; i++)
2742 {
2743 asection *subsection;
2744
2745 /* Find a space. */
2746 while (som_section_data (section)->is_space == 0)
2747 section = section->next;
2748
2749 /* Now look for all its subspaces. */
2750 for (subsection = abfd->sections;
2751 subsection != NULL;
2752 subsection = subsection->next)
2753 {
2754
2755 if (som_section_data (subsection)->is_subspace == 0
2756 || som_section_data (subsection)->containing_space != section
2757 || (subsection->flags & SEC_ALLOC) == 0)
2758 continue;
2759
2760 som_section_data (subsection)->subspace_index = total_subspaces++;
2761 /* This is real data to be loaded from the file. */
2762 if (subsection->flags & SEC_LOAD)
2763 {
2764 som_section_data (subsection)->subspace_dict.file_loc_init_value
2765 = current_offset;
2766 section->filepos = current_offset;
2767 current_offset += bfd_section_size (abfd, subsection);
2768 }
2769 /* Looks like uninitialized data. */
2770 else
2771 {
2772 som_section_data (subsection)->subspace_dict.file_loc_init_value
2773 = 0;
2774 som_section_data (subsection)->subspace_dict.
2775 initialization_length = 0;
2776 }
2777 }
2778 /* Goto the next section. */
2779 section = section->next;
2780 }
2781
2782 /* Finally compute the file positions for unloadable subspaces. */
2783
2784 obj_som_file_hdr (abfd)->unloadable_sp_location = current_offset;
2785 section = abfd->sections;
2786 for (i = 0; i < num_spaces; i++)
2787 {
2788 asection *subsection;
2789
2790 /* Find a space. */
2791 while (som_section_data (section)->is_space == 0)
2792 section = section->next;
2793
2794 /* Now look for all its subspaces. */
2795 for (subsection = abfd->sections;
2796 subsection != NULL;
2797 subsection = subsection->next)
2798 {
2799
2800 if (som_section_data (subsection)->is_subspace == 0
2801 || som_section_data (subsection)->containing_space != section
2802 || (subsection->flags & SEC_ALLOC) != 0)
2803 continue;
2804
2805 som_section_data (subsection)->subspace_index = total_subspaces++;
2806 /* This is real data to be loaded from the file. */
2807 if ((subsection->flags & SEC_LOAD) == 0)
2808 {
2809 som_section_data (subsection)->subspace_dict.file_loc_init_value
2810 = current_offset;
2811 section->filepos = current_offset;
2812 current_offset += bfd_section_size (abfd, subsection);
2813 }
2814 /* Looks like uninitialized data. */
2815 else
2816 {
2817 som_section_data (subsection)->subspace_dict.file_loc_init_value
2818 = 0;
2819 som_section_data (subsection)->subspace_dict.
2820 initialization_length = bfd_section_size (abfd, subsection);
2821 }
2822 }
2823 /* Goto the next section. */
2824 section = section->next;
2825 }
2826
2827 obj_som_file_hdr (abfd)->unloadable_sp_size
2828 = current_offset - obj_som_file_hdr (abfd)->unloadable_sp_location;
2829
2830 /* Loader fixups are not supported in any way shape or form. */
2831 obj_som_file_hdr (abfd)->loader_fixup_location = 0;
2832 obj_som_file_hdr (abfd)->loader_fixup_total = 0;
2833
2834 /* Done. Store the total size of the SOM. */
2835 obj_som_file_hdr (abfd)->som_length = current_offset;
2836 return true;
2837}
2838
efc0df7c
JL
2839/* Finally, scribble out the various headers to the disk. */
2840
2841static boolean
2842som_write_headers (abfd)
2843 bfd *abfd;
2844{
2845 int num_spaces = som_count_spaces (abfd);
2846 int i;
2847 int subspace_index = 0;
2848 file_ptr location;
2849 asection *section;
2850
2851 /* Subspaces are written first so that we can set up information
2852 about them in their containing spaces as the subspace is written. */
2853
2854 /* Seek to the start of the subspace dictionary records. */
2855 location = obj_som_file_hdr (abfd)->subspace_location;
2856 bfd_seek (abfd, location, SEEK_SET);
2857 section = abfd->sections;
2858 /* Now for each loadable space write out records for its subspaces. */
2859 for (i = 0; i < num_spaces; i++)
2860 {
2861 asection *subsection;
2862
2863 /* Find a space. */
2864 while (som_section_data (section)->is_space == 0)
2865 section = section->next;
2866
2867 /* Now look for all its subspaces. */
2868 for (subsection = abfd->sections;
2869 subsection != NULL;
2870 subsection = subsection->next)
2871 {
2872
2873 /* Skip any section which does not correspond to a space
2874 or subspace. Or does not have SEC_ALLOC set (and therefore
2875 has no real bits on the disk). */
2876 if (som_section_data (subsection)->is_subspace == 0
2877 || som_section_data (subsection)->containing_space != section
2878 || (subsection->flags & SEC_ALLOC) == 0)
2879 continue;
2880
2881 /* If this is the first subspace for this space, then save
2882 the index of the subspace in its containing space. Also
2883 set "is_loadable" in the containing space. */
2884
2885 if (som_section_data (section)->space_dict.subspace_quantity == 0)
2886 {
2887 som_section_data (section)->space_dict.is_loadable = 1;
2888 som_section_data (section)->space_dict.subspace_index
2889 = subspace_index;
2890 }
2891
2892 /* Increment the number of subspaces seen and the number of
2893 subspaces contained within the current space. */
2894 subspace_index++;
2895 som_section_data (section)->space_dict.subspace_quantity++;
2896
2897 /* Mark the index of the current space within the subspace's
2898 dictionary record. */
2899 som_section_data (subsection)->subspace_dict.space_index = i;
2900
2901 /* Dump the current subspace header. */
2902 if (bfd_write ((PTR) &som_section_data (subsection)->subspace_dict,
2903 sizeof (struct subspace_dictionary_record), 1, abfd)
2904 != sizeof (struct subspace_dictionary_record))
2905 {
2906 bfd_error = system_call_error;
2907 return false;
2908 }
2909 }
2910 /* Goto the next section. */
2911 section = section->next;
2912 }
2913
2914 /* Now repeat the process for unloadable subspaces. */
2915 section = abfd->sections;
2916 /* Now for each space write out records for its subspaces. */
2917 for (i = 0; i < num_spaces; i++)
2918 {
2919 asection *subsection;
2920
2921 /* Find a space. */
2922 while (som_section_data (section)->is_space == 0)
2923 section = section->next;
2924
2925 /* Now look for all its subspaces. */
2926 for (subsection = abfd->sections;
2927 subsection != NULL;
2928 subsection = subsection->next)
2929 {
2930
2931 /* Skip any section which does not correspond to a space or
2932 subspace, or which SEC_ALLOC set (and therefore handled
2933 in the loadable spaces/subspaces code above. */
2934
2935 if (som_section_data (subsection)->is_subspace == 0
2936 || som_section_data (subsection)->containing_space != section
2937 || (subsection->flags & SEC_ALLOC) != 0)
2938 continue;
2939
2940 /* If this is the first subspace for this space, then save
2941 the index of the subspace in its containing space. Clear
2942 "is_loadable". */
2943
2944 if (som_section_data (section)->space_dict.subspace_quantity == 0)
2945 {
2946 som_section_data (section)->space_dict.is_loadable = 0;
2947 som_section_data (section)->space_dict.subspace_index
2948 = subspace_index;
2949 }
2950
2951 /* Increment the number of subspaces seen and the number of
2952 subspaces contained within the current space. */
2953 som_section_data (section)->space_dict.subspace_quantity++;
2954 subspace_index++;
2955
2956 /* Mark the index of the current space within the subspace's
2957 dictionary record. */
2958 som_section_data (subsection)->subspace_dict.space_index = i;
2959
2960 /* Dump this subspace header. */
2961 if (bfd_write ((PTR) &som_section_data (subsection)->subspace_dict,
2962 sizeof (struct subspace_dictionary_record), 1, abfd)
2963 != sizeof (struct subspace_dictionary_record))
2964 {
2965 bfd_error = system_call_error;
2966 return false;
2967 }
2968 }
2969 /* Goto the next section. */
2970 section = section->next;
2971 }
2972
2973 /* All the subspace dictiondary records are written, and all the
2974 fields are set up in the space dictionary records.
2975
2976 Seek to the right location and start writing the space
2977 dictionary records. */
2978 location = obj_som_file_hdr (abfd)->space_location;
2979 bfd_seek (abfd, location, SEEK_SET);
2980
2981 section = abfd->sections;
2982 for (i = 0; i < num_spaces; i++)
2983 {
2984
2985 /* Find a space. */
2986 while (som_section_data (section)->is_space == 0)
2987 section = section->next;
2988
2989 /* Dump its header */
2990 if (bfd_write ((PTR) &som_section_data (section)->space_dict,
2991 sizeof (struct space_dictionary_record), 1, abfd)
2992 != sizeof (struct space_dictionary_record))
2993 {
2994 bfd_error = system_call_error;
2995 return false;
2996 }
2997
2998 /* Goto the next section. */
2999 section = section->next;
3000 }
3001
3002 /* Only thing left to do is write out the file header. It is always
3003 at location zero. Seek there and write it. */
3004 bfd_seek (abfd, (file_ptr) 0, SEEK_SET);
3005 if (bfd_write ((PTR) obj_som_file_hdr (abfd),
3006 sizeof (struct header), 1, abfd)
3007 != sizeof (struct header))
3008 {
3009 bfd_error = system_call_error;
3010 return false;
3011 }
3012 return true;
3013}
3014
980bac64
JL
3015/* Compute and return the checksum for a SOM file header. */
3016
5532fc5a
JL
3017static unsigned long
3018som_compute_checksum (abfd)
3019 bfd *abfd;
3020{
3021 unsigned long checksum, count, i;
3022 unsigned long *buffer = (unsigned long *) obj_som_file_hdr (abfd);
3023
3024 checksum = 0;
3025 count = sizeof (struct header) / sizeof (unsigned long);
3026 for (i = 0; i < count; i++)
3027 checksum ^= *(buffer + i);
3028
3029 return checksum;
3030}
3031
713de7ec
JL
3032/* Build and write, in one big chunk, the entire symbol table for
3033 this BFD. */
3034
3035static boolean
3036som_build_and_write_symbol_table (abfd)
3037 bfd *abfd;
3038{
3039 unsigned int num_syms = bfd_get_symcount (abfd);
3040 file_ptr symtab_location = obj_som_file_hdr (abfd)->symbol_location;
3041 asymbol **bfd_syms = bfd_get_outsymbols (abfd);
3042 struct symbol_dictionary_record *som_symtab;
3043 int i, symtab_size;
3044
3045 /* Compute total symbol table size and allocate a chunk of memory
3046 to hold the symbol table as we build it. */
3047 symtab_size = num_syms * sizeof (struct symbol_dictionary_record);
3048 som_symtab = (struct symbol_dictionary_record *) alloca (symtab_size);
3049 bzero (som_symtab, symtab_size);
3050
3051 /* Walk over each symbol. */
3052 for (i = 0; i < num_syms; i++)
3053 {
3054 /* This is really an index into the symbol strings table.
3055 By the time we get here, the index has already been
3056 computed and stored into the name field in the BFD symbol. */
3057 som_symtab[i].name.n_strx = (int) bfd_syms[i]->name;
3058
3059 /* The HP SOM linker requires detailed type information about
3060 all symbols (including undefined symbols!). Unfortunately,
3061 the type specified in an import/export statement does not
3062 always match what the linker wants. Severe braindamage. */
3063
3064 /* Section symbols will not have a SOM symbol type assigned to
3065 them yet. Assign all section symbols type ST_DATA. */
3066 if (bfd_syms[i]->flags & BSF_SECTION_SYM)
3067 som_symtab[i].symbol_type = ST_DATA;
3068 else
3069 {
3070 /* Common symbols must have scope SS_UNSAT and type
3071 ST_STORAGE or the linker will choke. */
3072 if (bfd_syms[i]->section == &bfd_com_section)
3073 {
3074 som_symtab[i].symbol_scope = SS_UNSAT;
3075 som_symtab[i].symbol_type = ST_STORAGE;
3076 }
3077
3078 /* It is possible to have a symbol without an associated
3079 type. This happens if the user imported the symbol
3080 without a type and the symbol was never defined
3081 locally. If BSF_FUNCTION is set for this symbol, then
3082 assign it type ST_CODE (the HP linker requires undefined
3083 external functions to have type ST_CODE rather than ST_ENTRY. */
3084 else if (((*som_symbol_data (bfd_syms[i]))->som_type
3085 == SYMBOL_TYPE_UNKNOWN)
3086 && (bfd_syms[i]->section == &bfd_und_section)
3087 && (bfd_syms[i]->flags & BSF_FUNCTION))
3088 som_symtab[i].symbol_type = ST_CODE;
3089
3090 /* Handle function symbols which were defined in this file.
3091 They should have type ST_ENTRY. Also retrieve the argument
3092 relocation bits from the SOM backend information. */
3093 else if (((*som_symbol_data (bfd_syms[i]))->som_type
3094 == SYMBOL_TYPE_ENTRY)
3095 || (((*som_symbol_data (bfd_syms[i]))->som_type
3096 == SYMBOL_TYPE_CODE)
3097 && (bfd_syms[i]->flags & BSF_FUNCTION))
3098 || (((*som_symbol_data (bfd_syms[i]))->som_type
3099 == SYMBOL_TYPE_UNKNOWN)
3100 && (bfd_syms[i]->flags & BSF_FUNCTION)))
3101 {
3102 som_symtab[i].symbol_type = ST_ENTRY;
3103 som_symtab[i].arg_reloc
3104 = (*som_symbol_data (bfd_syms[i]))->tc_data.hppa_arg_reloc;
3105 }
3106
3107 /* If the type is unknown at this point, it should be
3108 ST_DATA (functions were handled as special cases above). */
3109 else if ((*som_symbol_data (bfd_syms[i]))->som_type
3110 == SYMBOL_TYPE_UNKNOWN)
3111 som_symtab[i].symbol_type = ST_DATA;
3112
3113 /* From now on it's a very simple mapping. */
3114 else if ((*som_symbol_data (bfd_syms[i]))->som_type
3115 == SYMBOL_TYPE_ABSOLUTE)
3116 som_symtab[i].symbol_type = ST_ABSOLUTE;
3117 else if ((*som_symbol_data (bfd_syms[i]))->som_type
3118 == SYMBOL_TYPE_CODE)
3119 som_symtab[i].symbol_type = ST_CODE;
3120 else if ((*som_symbol_data (bfd_syms[i]))->som_type
3121 == SYMBOL_TYPE_DATA)
3122 som_symtab[i].symbol_type = ST_DATA;
3123 else if ((*som_symbol_data (bfd_syms[i]))->som_type
3124 == SYMBOL_TYPE_MILLICODE)
3125 som_symtab[i].symbol_type = ST_MILLICODE;
3126 else if ((*som_symbol_data (bfd_syms[i]))->som_type
3127 == SYMBOL_TYPE_PLABEL)
3128 som_symtab[i].symbol_type = ST_PLABEL;
3129 else if ((*som_symbol_data (bfd_syms[i]))->som_type
3130 == SYMBOL_TYPE_PRI_PROG)
3131 som_symtab[i].symbol_type = ST_PRI_PROG;
3132 else if ((*som_symbol_data (bfd_syms[i]))->som_type
3133 == SYMBOL_TYPE_SEC_PROG)
3134 som_symtab[i].symbol_type = ST_SEC_PROG;
3135 }
3136
3137 /* Now handle the symbol's scope. Exported data which is not
3138 in the common section has scope SS_UNIVERSAL. Note scope
980bac64 3139 of common symbols was handled earlier! */
713de7ec
JL
3140 if (bfd_syms[i]->flags & BSF_EXPORT
3141 && bfd_syms[i]->section != &bfd_com_section)
3142 som_symtab[i].symbol_scope = SS_UNIVERSAL;
3143 /* Any undefined symbol at this point has a scope SS_UNSAT. */
3144 else if (bfd_syms[i]->section == &bfd_und_section)
3145 som_symtab[i].symbol_scope = SS_UNSAT;
3146 /* Anything else which is not in the common section has scope
3147 SS_LOCAL. */
3148 else if (bfd_syms[i]->section != &bfd_com_section)
3149 som_symtab[i].symbol_scope = SS_LOCAL;
3150
3151 /* Now set the symbol_info field. It has no real meaning
3152 for undefined or common symbols, but the HP linker will
3153 choke if it's not set to some "reasonable" value. We
3154 use zero as a reasonable value. */
3155 if (bfd_syms[i]->section == &bfd_com_section
3156 || bfd_syms[i]->section == &bfd_und_section)
3157 som_symtab[i].symbol_info = 0;
3158 /* For all other symbols, the symbol_info field contains the
3159 subspace index of the space this symbol is contained in. */
3160 else
3161 som_symtab[i].symbol_info
3162 = som_section_data (bfd_syms[i]->section)->subspace_index;
3163
3164 /* Set the symbol's value. */
3165 som_symtab[i].symbol_value
3166 = bfd_syms[i]->value + bfd_syms[i]->section->vma;
3167 }
3168
3169 /* Egad. Everything is ready, seek to the right location and
3170 scribble out the symbol table. */
3171 if (bfd_seek (abfd, symtab_location, SEEK_SET) != 0)
3172 {
3173 bfd_error = system_call_error;
3174 return false;
3175 }
3176
3177 if (bfd_write ((PTR) som_symtab, symtab_size, 1, abfd) != symtab_size)
3178 {
3179 bfd_error = system_call_error;
3180 return false;
3181 }
3182 return true;
3183}
3184
980bac64
JL
3185/* Write an object in SOM format. */
3186
3187static boolean
9e16fcf1 3188som_write_object_contents (abfd)
d9ad93bc
KR
3189 bfd *abfd;
3190{
980bac64
JL
3191 if (abfd->output_has_begun == false)
3192 {
3193 /* Set up fixed parts of the file, space, and subspace headers.
3194 Notify the world that output has begun. */
3195 som_prep_headers (abfd);
3196 abfd->output_has_begun = true;
980bac64
JL
3197 /* Start writing the object file. This include all the string
3198 tables, fixup streams, and other portions of the object file. */
3199 som_begin_writing (abfd);
980bac64
JL
3200 }
3201
3202 /* Now that the symbol table information is complete, build and
3203 write the symbol table. */
3204 if (som_build_and_write_symbol_table (abfd) == false)
3205 return false;
3206
3207 /* Compute the checksum for the file header just before writing
3208 the header to disk. */
3209 obj_som_file_hdr (abfd)->checksum = som_compute_checksum (abfd);
3210 return (som_write_headers (abfd));
d9ad93bc 3211}
980bac64
JL
3212
3213\f
9e16fcf1 3214/* Read and save the string table associated with the given BFD. */
d9ad93bc 3215
9e16fcf1
SG
3216static boolean
3217som_slurp_string_table (abfd)
d9ad93bc
KR
3218 bfd *abfd;
3219{
9e16fcf1
SG
3220 char *stringtab;
3221
3222 /* Use the saved version if its available. */
3223 if (obj_som_stringtab (abfd) != NULL)
3224 return true;
3225
3226 /* Allocate and read in the string table. */
3227 stringtab = bfd_zalloc (abfd, obj_som_stringtab_size (abfd));
3228 if (stringtab == NULL)
3229 {
3230 bfd_error = no_memory;
3231 return false;
3232 }
3233
3234 if (bfd_seek (abfd, obj_som_str_filepos (abfd), SEEK_SET) < 0)
3235 {
3236 bfd_error = system_call_error;
3237 return false;
3238 }
3239
3240 if (bfd_read (stringtab, obj_som_stringtab_size (abfd), 1, abfd)
3241 != obj_som_stringtab_size (abfd))
3242 {
3243 bfd_error = system_call_error;
3244 return false;
3245 }
3246
3247 /* Save our results and return success. */
3248 obj_som_stringtab (abfd) = stringtab;
3249 return true;
d9ad93bc
KR
3250}
3251
9e16fcf1
SG
3252/* Return the amount of data (in bytes) required to hold the symbol
3253 table for this object. */
3254
d9ad93bc 3255static unsigned int
9e16fcf1 3256som_get_symtab_upper_bound (abfd)
d9ad93bc 3257 bfd *abfd;
d9ad93bc 3258{
9e16fcf1
SG
3259 if (!som_slurp_symbol_table (abfd))
3260 return 0;
3261
3262 return (bfd_get_symcount (abfd) + 1) * (sizeof (som_symbol_type *));
d9ad93bc
KR
3263}
3264
9e16fcf1
SG
3265/* Convert from a SOM subspace index to a BFD section. */
3266
3267static asection *
3268som_section_from_subspace_index (abfd, index)
3269 bfd *abfd;
3270 unsigned int index;
3271{
3272 asection *section;
3273
3274 for (section = abfd->sections; section != NULL; section = section->next)
3275 if (som_section_data (section)->subspace_index == index)
3276 return section;
3277
3278 /* Should never happen. */
3279 abort();
3280}
3281
3282/* Read and save the symbol table associated with the given BFD. */
3283
d9ad93bc 3284static unsigned int
9e16fcf1 3285som_slurp_symbol_table (abfd)
d9ad93bc 3286 bfd *abfd;
d9ad93bc 3287{
9e16fcf1
SG
3288 int symbol_count = bfd_get_symcount (abfd);
3289 int symsize = sizeof (struct symbol_dictionary_record);
3290 char *stringtab;
3291 struct symbol_dictionary_record *buf, *bufp, *endbufp;
3292 som_symbol_type *sym, *symbase;
3293
3294 /* Return saved value if it exists. */
3295 if (obj_som_symtab (abfd) != NULL)
3296 return true;
3297
3298 /* Sanity checking. Make sure there are some symbols and that
3299 we can read the string table too. */
3300 if (symbol_count == 0)
3301 {
3302 bfd_error = no_symbols;
3303 return false;
3304 }
3305
3306 if (!som_slurp_string_table (abfd))
3307 return false;
3308
3309 stringtab = obj_som_stringtab (abfd);
3310
3311 symbase = (som_symbol_type *)
3312 bfd_zalloc (abfd, symbol_count * sizeof (som_symbol_type));
3313 if (symbase == NULL)
3314 {
3315 bfd_error = no_memory;
3316 return false;
3317 }
3318
3319 /* Read in the external SOM representation. */
3320 buf = alloca (symbol_count * symsize);
3321 if (buf == NULL)
3322 {
3323 bfd_error = no_memory;
3324 return false;
3325 }
3326 if (bfd_seek (abfd, obj_som_sym_filepos (abfd), SEEK_SET) < 0)
3327 {
3328 bfd_error = system_call_error;
3329 return false;
3330 }
3331 if (bfd_read (buf, symbol_count * symsize, 1, abfd)
3332 != symbol_count * symsize)
3333 {
3334 bfd_error = no_symbols;
3335 return (false);
3336 }
3337
3338 /* Iterate over all the symbols and internalize them. */
3339 endbufp = buf + symbol_count;
3340 for (bufp = buf, sym = symbase; bufp < endbufp; ++bufp)
3341 {
3342
3343 /* I don't think we care about these. */
3344 if (bufp->symbol_type == ST_SYM_EXT
3345 || bufp->symbol_type == ST_ARG_EXT)
3346 continue;
3347
3348 /* Some reasonable defaults. */
3349 sym->symbol.the_bfd = abfd;
3350 sym->symbol.name = bufp->name.n_strx + stringtab;
3351 sym->symbol.value = bufp->symbol_value;
3352 sym->symbol.section = 0;
3353 sym->symbol.flags = 0;
3354
3355 switch (bufp->symbol_type)
3356 {
3357 case ST_ENTRY:
36456a67
JL
3358 case ST_PRI_PROG:
3359 case ST_SEC_PROG:
3360 case ST_MILLICODE:
9e16fcf1
SG
3361 sym->symbol.flags |= BSF_FUNCTION;
3362 sym->symbol.value &= ~0x3;
3363 break;
3364
9e16fcf1 3365 case ST_STUB:
9e16fcf1
SG
3366 case ST_CODE:
3367 sym->symbol.value &= ~0x3;
3368
3369 default:
3370 break;
3371 }
3372
3373 /* Handle scoping and section information. */
3374 switch (bufp->symbol_scope)
3375 {
3376 /* symbol_info field is undefined for SS_EXTERNAL and SS_UNSAT symbols,
3377 so the section associated with this symbol can't be known. */
3378 case SS_EXTERNAL:
3379 case SS_UNSAT:
017a52d7
JL
3380 if (bufp->symbol_type != ST_STORAGE)
3381 sym->symbol.section = &bfd_und_section;
3382 else
3383 sym->symbol.section = &bfd_com_section;
9e16fcf1
SG
3384 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
3385 break;
3386
3387 case SS_UNIVERSAL:
3388 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
3389 sym->symbol.section
3390 = som_section_from_subspace_index (abfd, bufp->symbol_info);
3391 sym->symbol.value -= sym->symbol.section->vma;
3392 break;
3393
3394#if 0
3395 /* SS_GLOBAL and SS_LOCAL are two names for the same thing.
3396 Sound dumb? It is. */
3397 case SS_GLOBAL:
3398#endif
3399 case SS_LOCAL:
3400 sym->symbol.flags |= BSF_LOCAL;
3401 sym->symbol.section
3402 = som_section_from_subspace_index (abfd, bufp->symbol_info);
3403 sym->symbol.value -= sym->symbol.section->vma;
3404 break;
3405 }
3406
3407 /* Mark symbols left around by the debugger. */
36456a67 3408 if (strlen (sym->symbol.name) >= 2
9e16fcf1 3409 && sym->symbol.name[0] == 'L'
36456a67
JL
3410 && (sym->symbol.name[1] == '$' || sym->symbol.name[2] == '$'
3411 || sym->symbol.name[3] == '$'))
9e16fcf1
SG
3412 sym->symbol.flags |= BSF_DEBUGGING;
3413
3414 /* Note increment at bottom of loop, since we skip some symbols
3415 we can not include it as part of the for statement. */
3416 sym++;
3417 }
3418
3419 /* Save our results and return success. */
3420 obj_som_symtab (abfd) = symbase;
3421 return (true);
d9ad93bc
KR
3422}
3423
9e16fcf1
SG
3424/* Canonicalize a SOM symbol table. Return the number of entries
3425 in the symbol table. */
d9ad93bc
KR
3426
3427static unsigned int
9e16fcf1 3428som_get_symtab (abfd, location)
d9ad93bc
KR
3429 bfd *abfd;
3430 asymbol **location;
3431{
9e16fcf1
SG
3432 int i;
3433 som_symbol_type *symbase;
3434
3435 if (!som_slurp_symbol_table (abfd))
3436 return 0;
3437
3438 i = bfd_get_symcount (abfd);
3439 symbase = obj_som_symtab (abfd);
3440
3441 for (; i > 0; i--, location++, symbase++)
3442 *location = &symbase->symbol;
3443
3444 /* Final null pointer. */
3445 *location = 0;
3446 return (bfd_get_symcount (abfd));
d9ad93bc
KR
3447}
3448
9e16fcf1
SG
3449/* Make a SOM symbol. There is nothing special to do here. */
3450
d9ad93bc 3451static asymbol *
9e16fcf1 3452som_make_empty_symbol (abfd)
d9ad93bc
KR
3453 bfd *abfd;
3454{
9e16fcf1
SG
3455 som_symbol_type *new =
3456 (som_symbol_type *) bfd_zalloc (abfd, sizeof (som_symbol_type));
3457 if (new == NULL)
3458 {
3459 bfd_error = no_memory;
3460 return 0;
3461 }
d9ad93bc
KR
3462 new->symbol.the_bfd = abfd;
3463
3464 return &new->symbol;
3465}
3466
9e16fcf1
SG
3467/* Print symbol information. */
3468
d9ad93bc 3469static void
9e16fcf1 3470som_print_symbol (ignore_abfd, afile, symbol, how)
d9ad93bc
KR
3471 bfd *ignore_abfd;
3472 PTR afile;
3473 asymbol *symbol;
3474 bfd_print_symbol_type how;
3475{
9e16fcf1
SG
3476 FILE *file = (FILE *) afile;
3477 switch (how)
3478 {
3479 case bfd_print_symbol_name:
3480 fprintf (file, "%s", symbol->name);
3481 break;
3482 case bfd_print_symbol_more:
3483 fprintf (file, "som ");
3484 fprintf_vma (file, symbol->value);
3485 fprintf (file, " %lx", (long) symbol->flags);
3486 break;
3487 case bfd_print_symbol_all:
3488 {
3489 CONST char *section_name;
3490 section_name = symbol->section ? symbol->section->name : "(*none*)";
3491 bfd_print_symbol_vandf ((PTR) file, symbol);
3492 fprintf (file, " %s\t%s", section_name, symbol->name);
3493 break;
3494 }
3495 }
3496}
3497
36456a67
JL
3498/* Count or process variable-length SOM fixup records.
3499
3500 To avoid code duplication we use this code both to compute the number
3501 of relocations requested by a stream, and to internalize the stream.
3502
3503 When computing the number of relocations requested by a stream the
3504 variables rptr, section, and symbols have no meaning.
3505
3506 Return the number of relocations requested by the fixup stream. When
3507 not just counting
3508
3509 This needs at least two or three more passes to get it cleaned up. */
3510
3511static unsigned int
3512som_set_reloc_info (fixup, end, internal_relocs, section, symbols, just_count)
3513 unsigned char *fixup;
3514 unsigned int end;
3515 arelent *internal_relocs;
3516 asection *section;
3517 asymbol **symbols;
3518 boolean just_count;
3519{
3520 unsigned int op, varname;
3521 unsigned char *end_fixups = &fixup[end];
3522 const struct fixup_format *fp;
3523 char *cp;
3524 unsigned char *save_fixup;
3525 int variables[26], stack[20], c, v, count, prev_fixup, *sp;
3526 const int *subop;
3527 arelent *rptr= internal_relocs;
3528 unsigned int offset = just_count ? 0 : section->vma;
3529
3530#define var(c) variables[(c) - 'A']
3531#define push(v) (*sp++ = (v))
3532#define pop() (*--sp)
3533#define emptystack() (sp == stack)
3534
3535 som_initialize_reloc_queue (reloc_queue);
3536 bzero (variables, sizeof (variables));
3537 bzero (stack, sizeof (stack));
3538 count = 0;
3539 prev_fixup = 0;
3540 sp = stack;
3541
3542 while (fixup < end_fixups)
3543 {
3544
3545 /* Save pointer to the start of this fixup. We'll use
3546 it later to determine if it is necessary to put this fixup
3547 on the queue. */
3548 save_fixup = fixup;
3549
3550 /* Get the fixup code and its associated format. */
3551 op = *fixup++;
3552 fp = &som_fixup_formats[op];
3553
3554 /* Handle a request for a previous fixup. */
3555 if (*fp->format == 'P')
3556 {
3557 /* Get pointer to the beginning of the prev fixup, move
3558 the repeated fixup to the head of the queue. */
3559 fixup = reloc_queue[fp->D].reloc;
3560 som_reloc_queue_fix (reloc_queue, fp->D);
3561 prev_fixup = 1;
3562
3563 /* Get the fixup code and its associated format. */
3564 op = *fixup++;
3565 fp = &som_fixup_formats[op];
3566 }
3567
3568 /* If we are not just counting, set some reasonable defaults. */
3569 if (! just_count)
3570 {
3571 rptr->address = offset;
3572 rptr->howto = &som_hppa_howto_table[op];
3573 rptr->addend = 0;
3574 }
3575
3576 /* Set default input length to 0. Get the opcode class index
3577 into D. */
3578 var ('L') = 0;
3579 var ('D') = fp->D;
3580
3581 /* Get the opcode format. */
3582 cp = fp->format;
3583
3584 /* Process the format string. Parsing happens in two phases,
3585 parse RHS, then assign to LHS. Repeat until no more
3586 characters in the format string. */
3587 while (*cp)
3588 {
3589 /* The variable this pass is going to compute a value for. */
3590 varname = *cp++;
3591
3592 /* Start processing RHS. Continue until a NULL or '=' is found. */
3593 do
3594 {
3595 c = *cp++;
3596
3597 /* If this is a variable, push it on the stack. */
3598 if (isupper (c))
3599 push (var (c));
3600
3601 /* If this is a lower case letter, then it represents
3602 additional data from the fixup stream to be pushed onto
3603 the stack. */
3604 else if (islower (c))
3605 {
3606 for (v = 0; c > 'a'; --c)
3607 v = (v << 8) | *fixup++;
3608 push (v);
3609 }
3610
3611 /* A decimal constant. Push it on the stack. */
3612 else if (isdigit (c))
3613 {
3614 v = c - '0';
3615 while (isdigit (*cp))
3616 v = (v * 10) + (*cp++ - '0');
3617 push (v);
3618 }
3619 else
3620
3621 /* An operator. Pop two two values from the stack and
3622 use them as operands to the given operation. Push
3623 the result of the operation back on the stack. */
3624 switch (c)
3625 {
3626 case '+':
3627 v = pop ();
3628 v += pop ();
3629 push (v);
3630 break;
3631 case '*':
3632 v = pop ();
3633 v *= pop ();
3634 push (v);
3635 break;
3636 case '<':
3637 v = pop ();
3638 v = pop () << v;
3639 push (v);
3640 break;
3641 default:
3642 abort ();
3643 }
3644 }
3645 while (*cp && *cp != '=');
3646
3647 /* Move over the equal operator. */
3648 cp++;
3649
3650 /* Pop the RHS off the stack. */
3651 c = pop ();
3652
3653 /* Perform the assignment. */
3654 var (varname) = c;
3655
3656 /* Handle side effects. and special 'O' stack cases. */
3657 switch (varname)
3658 {
3659 /* Consume some bytes from the input space. */
3660 case 'L':
3661 offset += c;
3662 break;
3663 /* A symbol to use in the relocation. Make a note
3664 of this if we are not just counting. */
3665 case 'S':
3666 if (! just_count)
3667 rptr->sym_ptr_ptr = &symbols[c];
3668 break;
3669 /* Handle the linker expression stack. */
3670 case 'O':
3671 switch (op)
3672 {
3673 case R_COMP1:
3674 subop = comp1_opcodes;
3675 break;
3676 case R_COMP2:
3677 subop = comp2_opcodes;
3678 break;
3679 case R_COMP3:
3680 subop = comp3_opcodes;
3681 break;
3682 default:
3683 abort ();
3684 }
3685 while (*subop <= (unsigned char) c)
3686 ++subop;
3687 --subop;
3688 break;
3689 default:
3690 break;
3691 }
3692 }
3693
3694 /* If we used a previous fixup, clean up after it. */
3695 if (prev_fixup)
3696 {
3697 fixup = save_fixup + 1;
3698 prev_fixup = 0;
3699 }
3700 /* Queue it. */
3701 else if (fixup > save_fixup + 1)
3702 som_reloc_queue_insert (save_fixup, fixup - save_fixup, reloc_queue);
3703
3704 /* We do not pass R_DATA_OVERRIDE or R_NO_RELOCATION
3705 fixups to BFD. */
3706 if (som_hppa_howto_table[op].type != R_DATA_OVERRIDE
3707 && som_hppa_howto_table[op].type != R_NO_RELOCATION)
3708 {
3709 /* Done with a single reloction. Loop back to the top. */
3710 if (! just_count)
3711 {
3712 rptr->addend = var ('V');
3713 rptr++;
3714 }
3715 count++;
3716 /* Now that we've handled a "full" relocation, reset
3717 some state. */
3718 bzero (variables, sizeof (variables));
3719 bzero (stack, sizeof (stack));
3720 }
3721 }
3722 return count;
3723
3724#undef var
3725#undef push
3726#undef pop
3727#undef emptystack
3728}
3729
3730/* Read in the relocs (aka fixups in SOM terms) for a section.
3731
3732 som_get_reloc_upper_bound calls this routine with JUST_COUNT
3733 set to true to indicate it only needs a count of the number
3734 of actual relocations. */
3735
3736static boolean
3737som_slurp_reloc_table (abfd, section, symbols, just_count)
3738 bfd *abfd;
3739 asection *section;
3740 asymbol **symbols;
3741 boolean just_count;
3742{
3743 char *external_relocs;
3744 unsigned int fixup_stream_size;
3745 arelent *internal_relocs;
3746 unsigned int num_relocs;
3747
3748 fixup_stream_size = som_section_data (section)->reloc_size;
3749 /* If there were no relocations, then there is nothing to do. */
3750 if (section->reloc_count == 0)
3751 return true;
3752
3753 /* If reloc_count is -1, then the relocation stream has not been
3754 parsed. We must do so now to know how many relocations exist. */
3755 if (section->reloc_count == -1)
3756 {
3757 external_relocs = (char *) bfd_zalloc (abfd, fixup_stream_size);
3758 if (external_relocs == (char *) NULL)
3759 {
3760 bfd_error = no_memory;
3761 return false;
3762 }
3763 /* Read in the external forms. */
3764 if (bfd_seek (abfd,
3765 obj_som_reloc_filepos (abfd) + section->rel_filepos,
3766 SEEK_SET)
3767 != 0)
3768 {
3769 bfd_error = system_call_error;
3770 return false;
3771 }
3772 if (bfd_read (external_relocs, 1, fixup_stream_size, abfd)
3773 != fixup_stream_size)
3774 {
3775 bfd_error = system_call_error;
3776 return false;
3777 }
3778 /* Let callers know how many relocations found.
3779 also save the relocation stream as we will
3780 need it again. */
3781 section->reloc_count = som_set_reloc_info (external_relocs,
3782 fixup_stream_size,
3783 NULL, NULL, NULL, true);
3784
3785 som_section_data (section)->reloc_stream = external_relocs;
3786 }
3787
3788 /* If the caller only wanted a count, then return now. */
3789 if (just_count)
3790 return true;
3791
3792 num_relocs = section->reloc_count;
3793 external_relocs = som_section_data (section)->reloc_stream;
3794 /* Return saved information about the relocations if it is available. */
3795 if (section->relocation != (arelent *) NULL)
3796 return true;
3797
3798 internal_relocs = (arelent *) bfd_zalloc (abfd,
3799 num_relocs * sizeof (arelent));
3800 if (internal_relocs == (arelent *) NULL)
3801 {
3802 bfd_error = no_memory;
3803 return false;
3804 }
3805
3806 /* Process and internalize the relocations. */
3807 som_set_reloc_info (external_relocs, fixup_stream_size,
3808 internal_relocs, section, symbols, false);
3809
3810 /* Save our results and return success. */
3811 section->relocation = internal_relocs;
3812 return (true);
3813}
3814
3815/* Return the number of bytes required to store the relocation
3816 information associated with the given section. */
3817
9e16fcf1
SG
3818static unsigned int
3819som_get_reloc_upper_bound (abfd, asect)
3820 bfd *abfd;
3821 sec_ptr asect;
3822{
36456a67
JL
3823 /* If section has relocations, then read in the relocation stream
3824 and parse it to determine how many relocations exist. */
3825 if (asect->flags & SEC_RELOC)
3826 {
3827 if (som_slurp_reloc_table (abfd, asect, NULL, true))
3828 return (asect->reloc_count + 1) * sizeof (arelent);
3829 }
3830 /* Either there are no relocations or an error occurred while
3831 reading and parsing the relocation stream. */
3832 return 0;
d9ad93bc
KR
3833}
3834
36456a67
JL
3835/* Convert relocations from SOM (external) form into BFD internal
3836 form. Return the number of relocations. */
3837
9e16fcf1
SG
3838static unsigned int
3839som_canonicalize_reloc (abfd, section, relptr, symbols)
3840 bfd *abfd;
3841 sec_ptr section;
3842 arelent **relptr;
3843 asymbol **symbols;
3844{
36456a67
JL
3845 arelent *tblptr;
3846 int count;
3847
3848 if (som_slurp_reloc_table (abfd, section, symbols, false) == false)
3849 return 0;
3850
3851 count = section->reloc_count;
3852 tblptr = section->relocation;
3853 if (tblptr == (arelent *) NULL)
3854 return 0;
3855
3856 while (count--)
3857 *relptr++ = tblptr++;
3858
3859 *relptr = (arelent *) NULL;
3860 return section->reloc_count;
9e16fcf1
SG
3861}
3862
3863extern bfd_target som_vec;
3864
3865/* A hook to set up object file dependent section information. */
3866
d9ad93bc 3867static boolean
9e16fcf1 3868som_new_section_hook (abfd, newsect)
d9ad93bc
KR
3869 bfd *abfd;
3870 asection *newsect;
3871{
9e16fcf1
SG
3872 newsect->used_by_bfd = (struct som_section_data_struct *)
3873 bfd_zalloc (abfd, sizeof (struct som_section_data_struct));
d9ad93bc
KR
3874 newsect->alignment_power = 3;
3875
9e16fcf1
SG
3876 /* Initialize the subspace_index field to -1 so that it does
3877 not match a subspace with an index of 0. */
3878 som_section_data (newsect)->subspace_index = -1;
3879
d9ad93bc
KR
3880 /* We allow more than three sections internally */
3881 return true;
3882}
3883
40249bfb
JL
3884/* Set backend info for sections which can not be described
3885 in the BFD data structures. */
3886
3887void
3888bfd_som_set_section_attributes (section, defined, private, sort_key, spnum)
3889 asection *section;
3890 char defined;
3891 char private;
3892 unsigned char sort_key;
3893 int spnum;
3894{
3895 struct space_dictionary_record *space_dict;
3896
3897 som_section_data (section)->is_space = 1;
3898 space_dict = &som_section_data (section)->space_dict;
3899 space_dict->is_defined = defined;
3900 space_dict->is_private = private;
3901 space_dict->sort_key = sort_key;
3902 space_dict->space_number = spnum;
3903}
3904
3905/* Set backend info for subsections which can not be described
3906 in the BFD data structures. */
3907
3908void
3909bfd_som_set_subsection_attributes (section, container, access,
3910 sort_key, quadrant)
3911 asection *section;
3912 asection *container;
3913 int access;
3914 unsigned char sort_key;
3915 int quadrant;
3916{
3917 struct subspace_dictionary_record *subspace_dict;
3918 som_section_data (section)->is_subspace = 1;
3919 subspace_dict = &som_section_data (section)->subspace_dict;
3920 subspace_dict->access_control_bits = access;
3921 subspace_dict->sort_key = sort_key;
3922 subspace_dict->quadrant = quadrant;
3923 som_section_data (section)->containing_space = container;
3924}
3925
3926/* Set the full SOM symbol type. SOM needs far more symbol information
3927 than any other object file format I'm aware of. It is mandatory
3928 to be able to know if a symbol is an entry point, millicode, data,
3929 code, absolute, storage request, or procedure label. If you get
3930 the symbol type wrong your program will not link. */
3931
3932void
3933bfd_som_set_symbol_type (symbol, type)
3934 asymbol *symbol;
3935 unsigned int type;
3936{
3937 (*som_symbol_data (symbol))->som_type = type;
3938}
3939
3940/* Attach 64bits of unwind information to a symbol (which hopefully
3941 is a function of some kind!). It would be better to keep this
3942 in the R_ENTRY relocation, but there is not enough space. */
3943
3944void
3945bfd_som_attach_unwind_info (symbol, unwind_desc)
3946 asymbol *symbol;
3947 char *unwind_desc;
3948{
3949 (*som_symbol_data (symbol))->unwind = unwind_desc;
3950}
3951
f6c2300b
JL
3952/* Attach an auxiliary header to the BFD backend so that it may be
3953 written into the object file. */
3954void
3955bfd_som_attach_aux_hdr (abfd, type, string)
3956 bfd *abfd;
3957 int type;
3958 char *string;
3959{
3960 if (type == VERSION_AUX_ID)
3961 {
3962 int len = strlen (string);
3963
3964 if (len % 4)
3965 len += (4 - (len % 4));
3966 obj_som_version_hdr (abfd)
3967 = bfd_zalloc (abfd,
3968 sizeof (struct aux_id) + sizeof (unsigned int) + len);
3969 obj_som_version_hdr (abfd)->header_id.type = VERSION_AUX_ID;
3970 obj_som_version_hdr (abfd)->header_id.length
3971 = sizeof (struct aux_id) + sizeof (unsigned int) + len;
3972 obj_som_version_hdr (abfd)->string_length = len;
3973 strcpy (obj_som_version_hdr (abfd)->user_string, string);
3974 }
3975 else if (type == COPYRIGHT_AUX_ID)
3976 {
3977 int len = strlen (string);
3978
3979 if (len % 4)
3980 len += (4 - (len % 4));
3981 obj_som_copyright_hdr (abfd)
3982 = bfd_zalloc (abfd,
3983 sizeof (struct aux_id) + sizeof (unsigned int) + len);
3984 obj_som_copyright_hdr (abfd)->header_id.type = COPYRIGHT_AUX_ID;
3985 obj_som_version_hdr (abfd)->header_id.length
3986 = sizeof (struct aux_id) + sizeof (unsigned int) + len;
3987 obj_som_copyright_hdr (abfd)->string_length = len;
3988 strcpy (obj_som_copyright_hdr (abfd)->copyright, string);
3989 }
3990 else
3991 abort ();
3992}
3993
d9ad93bc 3994static boolean
9e16fcf1 3995som_set_section_contents (abfd, section, location, offset, count)
d9ad93bc
KR
3996 bfd *abfd;
3997 sec_ptr section;
3998 PTR location;
3999 file_ptr offset;
4000 bfd_size_type count;
4001{
980bac64
JL
4002 if (abfd->output_has_begun == false)
4003 {
4004 /* Set up fixed parts of the file, space, and subspace headers.
4005 Notify the world that output has begun. */
4006 som_prep_headers (abfd);
4007 abfd->output_has_begun = true;
980bac64
JL
4008 /* Start writing the object file. This include all the string
4009 tables, fixup streams, and other portions of the object file. */
4010 som_begin_writing (abfd);
980bac64
JL
4011 }
4012
4013 /* Only write subspaces which have "real" contents (eg. the contents
4014 are not generated at run time by the OS). */
4015 if (som_section_data (section)->is_subspace != 1
4016 || ((section->flags & (SEC_LOAD | SEC_DEBUGGING)) == 0))
4017 return true;
4018
4019 /* Seek to the proper offset within the object file and write the
4020 data. */
4021 offset += som_section_data (section)->subspace_dict.file_loc_init_value;
4022 if (bfd_seek (abfd, offset, SEEK_SET) == -1)
4023 {
4024 bfd_error = system_call_error;
4025 return false;
4026 }
4027
4028 if (bfd_write ((PTR) location, 1, count, abfd) != count)
4029 {
4030 bfd_error = system_call_error;
4031 return false;
4032 }
4033 return true;
d9ad93bc
KR
4034}
4035
4036static boolean
9e16fcf1 4037som_set_arch_mach (abfd, arch, machine)
d9ad93bc
KR
4038 bfd *abfd;
4039 enum bfd_architecture arch;
4040 unsigned long machine;
4041{
2212ff92 4042 /* Allow any architecture to be supported by the SOM backend */
d9ad93bc
KR
4043 return bfd_default_set_arch_mach (abfd, arch, machine);
4044}
4045
4046static boolean
9e16fcf1 4047som_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
d9ad93bc
KR
4048 functionname_ptr, line_ptr)
4049 bfd *abfd;
4050 asection *section;
4051 asymbol **symbols;
4052 bfd_vma offset;
4053 CONST char **filename_ptr;
4054 CONST char **functionname_ptr;
4055 unsigned int *line_ptr;
4056{
9e16fcf1 4057 fprintf (stderr, "som_find_nearest_line unimplemented\n");
d9ad93bc
KR
4058 fflush (stderr);
4059 abort ();
4060 return (false);
4061}
4062
4063static int
9e16fcf1 4064som_sizeof_headers (abfd, reloc)
d9ad93bc
KR
4065 bfd *abfd;
4066 boolean reloc;
4067{
9e16fcf1 4068 fprintf (stderr, "som_sizeof_headers unimplemented\n");
d9ad93bc
KR
4069 fflush (stderr);
4070 abort ();
4071 return (0);
4072}
4073
017a52d7
JL
4074/* Return the single-character symbol type corresponding to
4075 SOM section S, or '?' for an unknown SOM section. */
4076
4077static char
4078som_section_type (s)
4079 const char *s;
4080{
4081 const struct section_to_type *t;
4082
4083 for (t = &stt[0]; t->section; t++)
4084 if (!strcmp (s, t->section))
4085 return t->type;
4086 return '?';
4087}
4088
4089static int
4090som_decode_symclass (symbol)
4091 asymbol *symbol;
4092{
4093 char c;
4094
4095 if (bfd_is_com_section (symbol->section))
4096 return 'C';
4097 if (symbol->section == &bfd_und_section)
4098 return 'U';
4099 if (symbol->section == &bfd_ind_section)
4100 return 'I';
4101 if (!(symbol->flags & (BSF_GLOBAL|BSF_LOCAL)))
4102 return '?';
4103
4104 if (symbol->section == &bfd_abs_section)
4105 c = 'a';
4106 else if (symbol->section)
4107 c = som_section_type (symbol->section->name);
4108 else
4109 return '?';
4110 if (symbol->flags & BSF_GLOBAL)
4111 c = toupper (c);
4112 return c;
4113}
4114
d9ad93bc
KR
4115/* Return information about SOM symbol SYMBOL in RET. */
4116
4117static void
9e16fcf1 4118som_get_symbol_info (ignore_abfd, symbol, ret)
017a52d7 4119 bfd *ignore_abfd;
d9ad93bc
KR
4120 asymbol *symbol;
4121 symbol_info *ret;
4122{
017a52d7
JL
4123 ret->type = som_decode_symclass (symbol);
4124 if (ret->type != 'U')
4125 ret->value = symbol->value+symbol->section->vma;
4126 else
4127 ret->value = 0;
4128 ret->name = symbol->name;
d9ad93bc
KR
4129}
4130
4131/* End of miscellaneous support functions. */
4132
9e16fcf1
SG
4133#define som_bfd_debug_info_start bfd_void
4134#define som_bfd_debug_info_end bfd_void
4135#define som_bfd_debug_info_accumulate (PROTO(void,(*),(bfd*, struct sec *))) bfd_void
d9ad93bc 4136
9e16fcf1
SG
4137#define som_openr_next_archived_file bfd_generic_openr_next_archived_file
4138#define som_generic_stat_arch_elt bfd_generic_stat_arch_elt
4139#define som_slurp_armap bfd_false
4140#define som_slurp_extended_name_table _bfd_slurp_extended_name_table
4141#define som_truncate_arname (void (*)())bfd_nullvoidptr
4142#define som_write_armap 0
d9ad93bc 4143
9e16fcf1
SG
4144#define som_get_lineno (struct lineno_cache_entry *(*)())bfd_nullvoidptr
4145#define som_close_and_cleanup bfd_generic_close_and_cleanup
4146#define som_get_section_contents bfd_generic_get_section_contents
d9ad93bc 4147
9e16fcf1 4148#define som_bfd_get_relocated_section_contents \
d9ad93bc 4149 bfd_generic_get_relocated_section_contents
9e16fcf1
SG
4150#define som_bfd_relax_section bfd_generic_relax_section
4151#define som_bfd_seclet_link bfd_generic_seclet_link
9e16fcf1 4152#define som_bfd_make_debug_symbol \
d9ad93bc
KR
4153 ((asymbol *(*) PARAMS ((bfd *, void *, unsigned long))) bfd_nullvoidptr)
4154
4155/* Core file support is in the hpux-core backend. */
9e16fcf1
SG
4156#define som_core_file_failing_command _bfd_dummy_core_file_failing_command
4157#define som_core_file_failing_signal _bfd_dummy_core_file_failing_signal
4158#define som_core_file_matches_executable_p _bfd_dummy_core_file_matches_executable_p
d9ad93bc 4159
9e16fcf1 4160bfd_target som_vec =
d9ad93bc 4161{
9e16fcf1
SG
4162 "som", /* name */
4163 bfd_target_som_flavour,
d9ad93bc
KR
4164 true, /* target byte order */
4165 true, /* target headers byte order */
4166 (HAS_RELOC | EXEC_P | /* object flags */
4167 HAS_LINENO | HAS_DEBUG |
40249bfb 4168 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED),
d9ad93bc 4169 (SEC_CODE | SEC_DATA | SEC_ROM | SEC_HAS_CONTENTS
9e16fcf1 4170 | SEC_ALLOC | SEC_LOAD | SEC_RELOC), /* section flags */
d9ad93bc
KR
4171
4172/* leading_symbol_char: is the first char of a user symbol
9e16fcf1 4173 predictable, and if so what is it */
d9ad93bc
KR
4174 0,
4175 ' ', /* ar_pad_char */
4176 16, /* ar_max_namelen */
4177 3, /* minimum alignment */
9e16fcf1
SG
4178 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
4179 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
4180 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
4181 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
4182 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
4183 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
d9ad93bc 4184 {_bfd_dummy_target,
9e16fcf1 4185 som_object_p, /* bfd_check_format */
d9ad93bc
KR
4186 bfd_generic_archive_p,
4187 _bfd_dummy_target
4188 },
4189 {
4190 bfd_false,
9e16fcf1 4191 som_mkobject,
d9ad93bc
KR
4192 _bfd_generic_mkarchive,
4193 bfd_false
4194 },
4195 {
4196 bfd_false,
9e16fcf1 4197 som_write_object_contents,
d9ad93bc
KR
4198 _bfd_write_archive_contents,
4199 bfd_false,
4200 },
9e16fcf1
SG
4201#undef som
4202 JUMP_TABLE (som),
d9ad93bc
KR
4203 (PTR) 0
4204};
4205
4206#endif /* HOST_HPPAHPUX || HOST_HPPABSD */
This page took 0.232138 seconds and 4 git commands to generate.