* bfd.c (bfd_get_error, bfd_set_error): New functions.
[deliverable/binutils-gdb.git] / bfd / som.c
CommitLineData
d9ad93bc
KR
1/* bfd back-end for HP PA-RISC SOM objects.
2 Copyright (C) 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
3
4 Contributed by the Center for Software Science at the
5 University of Utah (pa-gdb-bugs@cs.utah.edu).
6
9e16fcf1 7 This file is part of BFD, the Binary File Descriptor library.
d9ad93bc 8
9e16fcf1
SG
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
d9ad93bc 13
9e16fcf1
SG
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
d9ad93bc 18
9e16fcf1
SG
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
d9ad93bc
KR
22
23#include "bfd.h"
24#include "sysdep.h"
25
6941fd4d 26#if defined (HOST_HPPAHPUX) || defined (HOST_HPPABSD) || defined (HOST_HPPAOSF)
d9ad93bc
KR
27
28#include "libbfd.h"
29#include "som.h"
70f1d738 30#include "libhppa.h"
d9ad93bc
KR
31
32#include <stdio.h>
33#include <sys/types.h>
34#include <sys/param.h>
35#include <sys/dir.h>
36#include <signal.h>
37#include <machine/reg.h>
38#include <sys/user.h> /* After a.out.h */
39#include <sys/file.h>
40#include <errno.h>
41
42/* Magic not defined in standard HP-UX header files until 8.0 */
43
44#ifndef CPU_PA_RISC1_0
45#define CPU_PA_RISC1_0 0x20B
46#endif /* CPU_PA_RISC1_0 */
47
48#ifndef CPU_PA_RISC1_1
49#define CPU_PA_RISC1_1 0x210
50#endif /* CPU_PA_RISC1_1 */
51
52#ifndef _PA_RISC1_0_ID
53#define _PA_RISC1_0_ID CPU_PA_RISC1_0
54#endif /* _PA_RISC1_0_ID */
55
56#ifndef _PA_RISC1_1_ID
57#define _PA_RISC1_1_ID CPU_PA_RISC1_1
58#endif /* _PA_RISC1_1_ID */
59
60#ifndef _PA_RISC_MAXID
61#define _PA_RISC_MAXID 0x2FF
62#endif /* _PA_RISC_MAXID */
63
64#ifndef _PA_RISC_ID
65#define _PA_RISC_ID(__m_num) \
66 (((__m_num) == _PA_RISC1_0_ID) || \
67 ((__m_num) >= _PA_RISC1_1_ID && (__m_num) <= _PA_RISC_MAXID))
68#endif /* _PA_RISC_ID */
69
9d0dea6f
JL
70/* Size (in chars) of the temporary buffers used during fixup and string
71 table writes. */
72
73#define SOM_TMP_BUFSIZE 8192
74
6e033f86
JL
75/* Size of the hash table in archives. */
76#define SOM_LST_HASH_SIZE 31
77
78/* Max number of SOMs to be found in an archive. */
79#define SOM_LST_MODULE_LIMIT 1024
9d0dea6f 80
4fdb66cd
JL
81/* SOM allows any one of the four previous relocations to be reused
82 with a "R_PREV_FIXUP" relocation entry. Since R_PREV_FIXUP
83 relocations are always a single byte, using a R_PREV_FIXUP instead
84 of some multi-byte relocation makes object files smaller.
85
86 Note one side effect of using a R_PREV_FIXUP is the relocation that
87 is being repeated moves to the front of the queue. */
88struct reloc_queue
89 {
90 unsigned char *reloc;
91 unsigned int size;
92 } reloc_queue[4];
93
94/* This fully describes the symbol types which may be attached to
95 an EXPORT or IMPORT directive. Only SOM uses this formation
96 (ELF has no need for it). */
97typedef enum
98{
99 SYMBOL_TYPE_UNKNOWN,
100 SYMBOL_TYPE_ABSOLUTE,
101 SYMBOL_TYPE_CODE,
102 SYMBOL_TYPE_DATA,
103 SYMBOL_TYPE_ENTRY,
104 SYMBOL_TYPE_MILLICODE,
105 SYMBOL_TYPE_PLABEL,
106 SYMBOL_TYPE_PRI_PROG,
107 SYMBOL_TYPE_SEC_PROG,
108} pa_symbol_type;
109
017a52d7
JL
110struct section_to_type
111{
112 char *section;
113 char type;
114};
115
6e033f86
JL
116/* Assorted symbol information that needs to be derived from the BFD symbol
117 and/or the BFD backend private symbol data. */
118struct som_misc_symbol_info
119{
120 unsigned int symbol_type;
121 unsigned int symbol_scope;
122 unsigned int arg_reloc;
123 unsigned int symbol_info;
124 unsigned int symbol_value;
125};
126
9e16fcf1
SG
127/* Forward declarations */
128
129static boolean som_mkobject PARAMS ((bfd *));
130static bfd_target * som_object_setup PARAMS ((bfd *,
131 struct header *,
132 struct som_exec_auxhdr *));
133static asection * make_unique_section PARAMS ((bfd *, CONST char *, int));
134static boolean setup_sections PARAMS ((bfd *, struct header *));
135static bfd_target * som_object_p PARAMS ((bfd *));
136static boolean som_write_object_contents PARAMS ((bfd *));
137static boolean som_slurp_string_table PARAMS ((bfd *));
138static unsigned int som_slurp_symbol_table PARAMS ((bfd *));
139static unsigned int som_get_symtab_upper_bound PARAMS ((bfd *));
140static unsigned int som_canonicalize_reloc PARAMS ((bfd *, sec_ptr,
141 arelent **, asymbol **));
142static unsigned int som_get_reloc_upper_bound PARAMS ((bfd *, sec_ptr));
36456a67
JL
143static unsigned int som_set_reloc_info PARAMS ((unsigned char *, unsigned int,
144 arelent *, asection *,
145 asymbol **, boolean));
146static boolean som_slurp_reloc_table PARAMS ((bfd *, asection *,
147 asymbol **, boolean));
9e16fcf1
SG
148static unsigned int som_get_symtab PARAMS ((bfd *, asymbol **));
149static asymbol * som_make_empty_symbol PARAMS ((bfd *));
150static void som_print_symbol PARAMS ((bfd *, PTR,
151 asymbol *, bfd_print_symbol_type));
152static boolean som_new_section_hook PARAMS ((bfd *, asection *));
153static boolean som_set_section_contents PARAMS ((bfd *, sec_ptr, PTR,
154 file_ptr, bfd_size_type));
155static boolean som_set_arch_mach PARAMS ((bfd *, enum bfd_architecture,
156 unsigned long));
157static boolean som_find_nearest_line PARAMS ((bfd *, asection *,
158 asymbol **, bfd_vma,
159 CONST char **,
160 CONST char **,
161 unsigned int *));
162static void som_get_symbol_info PARAMS ((bfd *, asymbol *, symbol_info *));
163static asection * som_section_from_subspace_index PARAMS ((bfd *,
164 unsigned int));
165static int log2 PARAMS ((unsigned int));
fcb0c846
JL
166static bfd_reloc_status_type hppa_som_reloc PARAMS ((bfd *, arelent *,
167 asymbol *, PTR,
39961154
JL
168 asection *, bfd *,
169 char **));
d125665c
JL
170static void som_initialize_reloc_queue PARAMS ((struct reloc_queue *));
171static void som_reloc_queue_insert PARAMS ((unsigned char *, unsigned int,
172 struct reloc_queue *));
173static void som_reloc_queue_fix PARAMS ((struct reloc_queue *, unsigned int));
174static int som_reloc_queue_find PARAMS ((unsigned char *, unsigned int,
175 struct reloc_queue *));
54bbfd37
JL
176static unsigned char * try_prev_fixup PARAMS ((bfd *, int *, unsigned char *,
177 unsigned int,
178 struct reloc_queue *));
179
180static unsigned char * som_reloc_skip PARAMS ((bfd *, unsigned int,
181 unsigned char *, unsigned int *,
182 struct reloc_queue *));
183static unsigned char * som_reloc_addend PARAMS ((bfd *, int, unsigned char *,
184 unsigned int *,
185 struct reloc_queue *));
7057b78f
JL
186static unsigned char * som_reloc_call PARAMS ((bfd *, unsigned char *,
187 unsigned int *,
188 arelent *, int,
189 struct reloc_queue *));
5532fc5a
JL
190static unsigned long som_count_spaces PARAMS ((bfd *));
191static unsigned long som_count_subspaces PARAMS ((bfd *));
192static int compare_syms PARAMS ((asymbol **, asymbol **));
193static unsigned long som_compute_checksum PARAMS ((bfd *));
0ffa24b9 194static boolean som_prep_headers PARAMS ((bfd *));
2212ff92 195static int som_sizeof_headers PARAMS ((bfd *, boolean));
efc0df7c 196static boolean som_write_headers PARAMS ((bfd *));
713de7ec 197static boolean som_build_and_write_symbol_table PARAMS ((bfd *));
aff97790 198static void som_prep_for_fixups PARAMS ((bfd *, asymbol **, unsigned long));
9d0dea6f 199static boolean som_write_fixups PARAMS ((bfd *, unsigned long, unsigned int *));
0b35f7ec
JL
200static boolean som_write_space_strings PARAMS ((bfd *, unsigned long,
201 unsigned int *));
202static boolean som_write_symbol_strings PARAMS ((bfd *, unsigned long,
203 asymbol **, unsigned int,
204 unsigned *));
6eb64408 205static boolean som_begin_writing PARAMS ((bfd *));
91c0bcbb
JL
206static const reloc_howto_type * som_bfd_reloc_type_lookup
207 PARAMS ((bfd_arch_info_type *, bfd_reloc_code_real_type));
017a52d7
JL
208static char som_section_type PARAMS ((const char *));
209static int som_decode_symclass PARAMS ((asymbol *));
3c37f9ca
JL
210static boolean som_bfd_count_ar_symbols PARAMS ((bfd *, struct lst_header *,
211 symindex *));
017a52d7 212
3c37f9ca
JL
213static boolean som_bfd_fill_in_ar_symbols PARAMS ((bfd *, struct lst_header *,
214 carsym **syms));
215static boolean som_slurp_armap PARAMS ((bfd *));
216static boolean som_write_armap PARAMS ((bfd *));
217static boolean som_slurp_extended_name_table PARAMS ((bfd *));
6e033f86
JL
218static void som_bfd_derive_misc_symbol_info PARAMS ((bfd *, asymbol *,
219 struct som_misc_symbol_info *));
220static boolean som_bfd_prep_for_ar_write PARAMS ((bfd *, unsigned int *,
221 unsigned int *));
222static unsigned int som_bfd_ar_symbol_hash PARAMS ((asymbol *));
223static boolean som_bfd_ar_write_symbol_stuff PARAMS ((bfd *, unsigned int,
224 unsigned int,
225 struct lst_header));
226
017a52d7
JL
227/* Map SOM section names to POSIX/BSD single-character symbol types.
228
229 This table includes all the standard subspaces as defined in the
230 current "PRO ABI for PA-RISC Systems", $UNWIND$ which for
231 some reason was left out, and sections specific to embedded stabs. */
232
233static const struct section_to_type stt[] = {
234 {"$TEXT$", 't'},
235 {"$SHLIB_INFO$", 't'},
236 {"$MILLICODE$", 't'},
237 {"$LIT$", 't'},
238 {"$CODE$", 't'},
239 {"$UNWIND_START$", 't'},
240 {"$UNWIND$", 't'},
241 {"$PRIVATE$", 'd'},
242 {"$PLT$", 'd'},
243 {"$SHLIB_DATA$", 'd'},
244 {"$DATA$", 'd'},
245 {"$SHORTDATA$", 'g'},
246 {"$DLT$", 'd'},
247 {"$GLOBAL$", 'g'},
248 {"$SHORTBSS$", 's'},
249 {"$BSS$", 'b'},
250 {"$GDB_STRINGS$", 'N'},
251 {"$GDB_SYMBOLS$", 'N'},
252 {0, 0}
253};
2212ff92 254
36456a67
JL
255/* About the relocation formatting table...
256
257 There are 256 entries in the table, one for each possible
258 relocation opcode available in SOM. We index the table by
259 the relocation opcode. The names and operations are those
260 defined by a.out_800 (4).
261
262 Right now this table is only used to count and perform minimal
263 processing on relocation streams so that they can be internalized
264 into BFD and symbolically printed by utilities. To make actual use
265 of them would be much more difficult, BFD's concept of relocations
266 is far too simple to handle SOM relocations. The basic assumption
267 that a relocation can be completely processed independent of other
268 relocations before an object file is written is invalid for SOM.
269
270 The SOM relocations are meant to be processed as a stream, they
271 specify copying of data from the input section to the output section
272 while possibly modifying the data in some manner. They also can
273 specify that a variable number of zeros or uninitialized data be
274 inserted on in the output segment at the current offset. Some
275 relocations specify that some previous relocation be re-applied at
276 the current location in the input/output sections. And finally a number
277 of relocations have effects on other sections (R_ENTRY, R_EXIT,
278 R_UNWIND_AUX and a variety of others). There isn't even enough room
279 in the BFD relocation data structure to store enough information to
280 perform all the relocations.
281
282 Each entry in the table has three fields.
283
284 The first entry is an index into this "class" of relocations. This
285 index can then be used as a variable within the relocation itself.
286
287 The second field is a format string which actually controls processing
288 of the relocation. It uses a simple postfix machine to do calculations
289 based on variables/constants found in the string and the relocation
290 stream.
291
292 The third field specifys whether or not this relocation may use
293 a constant (V) from the previous R_DATA_OVERRIDE rather than a constant
294 stored in the instruction.
295
296 Variables:
297
298 L = input space byte count
299 D = index into class of relocations
300 M = output space byte count
301 N = statement number (unused?)
302 O = stack operation
303 R = parameter relocation bits
304 S = symbol index
305 U = 64 bits of stack unwind and frame size info (we only keep 32 bits)
306 V = a literal constant (usually used in the next relocation)
307 P = a previous relocation
308
309 Lower case letters (starting with 'b') refer to following
310 bytes in the relocation stream. 'b' is the next 1 byte,
311 c is the next 2 bytes, d is the next 3 bytes, etc...
312 This is the variable part of the relocation entries that
313 makes our life a living hell.
314
315 numerical constants are also used in the format string. Note
316 the constants are represented in decimal.
317
318 '+', "*" and "=" represents the obvious postfix operators.
319 '<' represents a left shift.
320
321 Stack Operations:
322
323 Parameter Relocation Bits:
324
325 Unwind Entries:
326
327 Previous Relocations: The index field represents which in the queue
328 of 4 previous fixups should be re-applied.
329
330 Literal Constants: These are generally used to represent addend
331 parts of relocations when these constants are not stored in the
332 fields of the instructions themselves. For example the instruction
333 addil foo-$global$-0x1234 would use an override for "0x1234" rather
334 than storing it into the addil itself. */
335
336struct fixup_format
337{
338 int D;
339 char *format;
340};
341
342static const struct fixup_format som_fixup_formats[256] =
343{
344 /* R_NO_RELOCATION */
345 0, "LD1+4*=", /* 0x00 */
346 1, "LD1+4*=", /* 0x01 */
347 2, "LD1+4*=", /* 0x02 */
348 3, "LD1+4*=", /* 0x03 */
349 4, "LD1+4*=", /* 0x04 */
350 5, "LD1+4*=", /* 0x05 */
351 6, "LD1+4*=", /* 0x06 */
352 7, "LD1+4*=", /* 0x07 */
353 8, "LD1+4*=", /* 0x08 */
354 9, "LD1+4*=", /* 0x09 */
355 10, "LD1+4*=", /* 0x0a */
356 11, "LD1+4*=", /* 0x0b */
357 12, "LD1+4*=", /* 0x0c */
358 13, "LD1+4*=", /* 0x0d */
359 14, "LD1+4*=", /* 0x0e */
360 15, "LD1+4*=", /* 0x0f */
361 16, "LD1+4*=", /* 0x10 */
362 17, "LD1+4*=", /* 0x11 */
363 18, "LD1+4*=", /* 0x12 */
364 19, "LD1+4*=", /* 0x13 */
365 20, "LD1+4*=", /* 0x14 */
366 21, "LD1+4*=", /* 0x15 */
367 22, "LD1+4*=", /* 0x16 */
368 23, "LD1+4*=", /* 0x17 */
369 0, "LD8<b+1+4*=", /* 0x18 */
370 1, "LD8<b+1+4*=", /* 0x19 */
371 2, "LD8<b+1+4*=", /* 0x1a */
372 3, "LD8<b+1+4*=", /* 0x1b */
373 0, "LD16<c+1+4*=", /* 0x1c */
374 1, "LD16<c+1+4*=", /* 0x1d */
375 2, "LD16<c+1+4*=", /* 0x1e */
376 0, "Ld1+=", /* 0x1f */
377 /* R_ZEROES */
378 0, "Lb1+4*=", /* 0x20 */
379 1, "Ld1+=", /* 0x21 */
380 /* R_UNINIT */
381 0, "Lb1+4*=", /* 0x22 */
382 1, "Ld1+=", /* 0x23 */
383 /* R_RELOCATION */
384 0, "L4=", /* 0x24 */
385 /* R_DATA_ONE_SYMBOL */
386 0, "L4=Sb=", /* 0x25 */
387 1, "L4=Sd=", /* 0x26 */
388 /* R_DATA_PLEBEL */
389 0, "L4=Sb=", /* 0x27 */
390 1, "L4=Sd=", /* 0x28 */
391 /* R_SPACE_REF */
392 0, "L4=", /* 0x29 */
393 /* R_REPEATED_INIT */
394 0, "L4=Mb1+4*=", /* 0x2a */
395 1, "Lb4*=Mb1+L*=", /* 0x2b */
396 2, "Lb4*=Md1+4*=", /* 0x2c */
397 3, "Ld1+=Me1+=", /* 0x2d */
398 /* R_RESERVED */
399 0, "", /* 0x2e */
400 0, "", /* 0x2f */
401 /* R_PCREL_CALL */
402 0, "L4=RD=Sb=", /* 0x30 */
403 1, "L4=RD=Sb=", /* 0x31 */
404 2, "L4=RD=Sb=", /* 0x32 */
405 3, "L4=RD=Sb=", /* 0x33 */
406 4, "L4=RD=Sb=", /* 0x34 */
407 5, "L4=RD=Sb=", /* 0x35 */
408 6, "L4=RD=Sb=", /* 0x36 */
409 7, "L4=RD=Sb=", /* 0x37 */
410 8, "L4=RD=Sb=", /* 0x38 */
411 9, "L4=RD=Sb=", /* 0x39 */
412 0, "L4=RD8<b+=Sb=",/* 0x3a */
413 1, "L4=RD8<b+=Sb=",/* 0x3b */
414 0, "L4=RD8<b+=Sd=",/* 0x3c */
415 1, "L4=RD8<b+=Sd=",/* 0x3d */
416 /* R_RESERVED */
417 0, "", /* 0x3e */
418 0, "", /* 0x3f */
419 /* R_ABS_CALL */
420 0, "L4=RD=Sb=", /* 0x40 */
421 1, "L4=RD=Sb=", /* 0x41 */
422 2, "L4=RD=Sb=", /* 0x42 */
423 3, "L4=RD=Sb=", /* 0x43 */
424 4, "L4=RD=Sb=", /* 0x44 */
425 5, "L4=RD=Sb=", /* 0x45 */
426 6, "L4=RD=Sb=", /* 0x46 */
427 7, "L4=RD=Sb=", /* 0x47 */
428 8, "L4=RD=Sb=", /* 0x48 */
429 9, "L4=RD=Sb=", /* 0x49 */
430 0, "L4=RD8<b+=Sb=",/* 0x4a */
431 1, "L4=RD8<b+=Sb=",/* 0x4b */
432 0, "L4=RD8<b+=Sd=",/* 0x4c */
433 1, "L4=RD8<b+=Sd=",/* 0x4d */
434 /* R_RESERVED */
435 0, "", /* 0x4e */
436 0, "", /* 0x4f */
437 /* R_DP_RELATIVE */
438 0, "L4=SD=", /* 0x50 */
439 1, "L4=SD=", /* 0x51 */
440 2, "L4=SD=", /* 0x52 */
441 3, "L4=SD=", /* 0x53 */
442 4, "L4=SD=", /* 0x54 */
443 5, "L4=SD=", /* 0x55 */
444 6, "L4=SD=", /* 0x56 */
445 7, "L4=SD=", /* 0x57 */
446 8, "L4=SD=", /* 0x58 */
447 9, "L4=SD=", /* 0x59 */
448 10, "L4=SD=", /* 0x5a */
449 11, "L4=SD=", /* 0x5b */
450 12, "L4=SD=", /* 0x5c */
451 13, "L4=SD=", /* 0x5d */
452 14, "L4=SD=", /* 0x5e */
453 15, "L4=SD=", /* 0x5f */
454 16, "L4=SD=", /* 0x60 */
455 17, "L4=SD=", /* 0x61 */
456 18, "L4=SD=", /* 0x62 */
457 19, "L4=SD=", /* 0x63 */
458 20, "L4=SD=", /* 0x64 */
459 21, "L4=SD=", /* 0x65 */
460 22, "L4=SD=", /* 0x66 */
461 23, "L4=SD=", /* 0x67 */
462 24, "L4=SD=", /* 0x68 */
463 25, "L4=SD=", /* 0x69 */
464 26, "L4=SD=", /* 0x6a */
465 27, "L4=SD=", /* 0x6b */
466 28, "L4=SD=", /* 0x6c */
467 29, "L4=SD=", /* 0x6d */
468 30, "L4=SD=", /* 0x6e */
469 31, "L4=SD=", /* 0x6f */
470 32, "L4=Sb=", /* 0x70 */
471 33, "L4=Sd=", /* 0x71 */
472 /* R_RESERVED */
473 0, "", /* 0x72 */
474 0, "", /* 0x73 */
475 0, "", /* 0x74 */
476 0, "", /* 0x75 */
477 0, "", /* 0x76 */
478 0, "", /* 0x77 */
479 /* R_DLT_REL */
480 0, "L4=Sb=", /* 0x78 */
481 1, "L4=Sd=", /* 0x79 */
482 /* R_RESERVED */
483 0, "", /* 0x7a */
484 0, "", /* 0x7b */
485 0, "", /* 0x7c */
486 0, "", /* 0x7d */
487 0, "", /* 0x7e */
488 0, "", /* 0x7f */
489 /* R_CODE_ONE_SYMBOL */
490 0, "L4=SD=", /* 0x80 */
491 1, "L4=SD=", /* 0x81 */
492 2, "L4=SD=", /* 0x82 */
493 3, "L4=SD=", /* 0x83 */
494 4, "L4=SD=", /* 0x84 */
495 5, "L4=SD=", /* 0x85 */
496 6, "L4=SD=", /* 0x86 */
497 7, "L4=SD=", /* 0x87 */
498 8, "L4=SD=", /* 0x88 */
499 9, "L4=SD=", /* 0x89 */
500 10, "L4=SD=", /* 0x8q */
501 11, "L4=SD=", /* 0x8b */
502 12, "L4=SD=", /* 0x8c */
503 13, "L4=SD=", /* 0x8d */
504 14, "L4=SD=", /* 0x8e */
505 15, "L4=SD=", /* 0x8f */
506 16, "L4=SD=", /* 0x90 */
507 17, "L4=SD=", /* 0x91 */
508 18, "L4=SD=", /* 0x92 */
509 19, "L4=SD=", /* 0x93 */
510 20, "L4=SD=", /* 0x94 */
511 21, "L4=SD=", /* 0x95 */
512 22, "L4=SD=", /* 0x96 */
513 23, "L4=SD=", /* 0x97 */
514 24, "L4=SD=", /* 0x98 */
515 25, "L4=SD=", /* 0x99 */
516 26, "L4=SD=", /* 0x9a */
517 27, "L4=SD=", /* 0x9b */
518 28, "L4=SD=", /* 0x9c */
519 29, "L4=SD=", /* 0x9d */
520 30, "L4=SD=", /* 0x9e */
521 31, "L4=SD=", /* 0x9f */
522 32, "L4=Sb=", /* 0xa0 */
523 33, "L4=Sd=", /* 0xa1 */
524 /* R_RESERVED */
525 0, "", /* 0xa2 */
526 0, "", /* 0xa3 */
527 0, "", /* 0xa4 */
528 0, "", /* 0xa5 */
529 0, "", /* 0xa6 */
530 0, "", /* 0xa7 */
531 0, "", /* 0xa8 */
532 0, "", /* 0xa9 */
533 0, "", /* 0xaa */
534 0, "", /* 0xab */
535 0, "", /* 0xac */
536 0, "", /* 0xad */
537 /* R_MILLI_REL */
538 0, "L4=Sb=", /* 0xae */
539 1, "L4=Sd=", /* 0xaf */
540 /* R_CODE_PLABEL */
541 0, "L4=Sb=", /* 0xb0 */
542 1, "L4=Sd=", /* 0xb1 */
543 /* R_BREAKPOINT */
544 0, "L4=", /* 0xb2 */
545 /* R_ENTRY */
546 0, "Ui=", /* 0xb3 */
547 1, "Uf=", /* 0xb4 */
548 /* R_ALT_ENTRY */
549 0, "", /* 0xb5 */
550 /* R_EXIT */
551 0, "", /* 0xb6 */
552 /* R_BEGIN_TRY */
553 0, "", /* 0xb7 */
554 /* R_END_TRY */
555 0, "R0=", /* 0xb8 */
556 1, "Rb4*=", /* 0xb9 */
557 2, "Rd4*=", /* 0xba */
558 /* R_BEGIN_BRTAB */
559 0, "", /* 0xbb */
560 /* R_END_BRTAB */
561 0, "", /* 0xbc */
562 /* R_STATEMENT */
563 0, "Nb=", /* 0xbd */
564 1, "Nc=", /* 0xbe */
565 2, "Nd=", /* 0xbf */
566 /* R_DATA_EXPR */
567 0, "L4=", /* 0xc0 */
568 /* R_CODE_EXPR */
569 0, "L4=", /* 0xc1 */
570 /* R_FSEL */
571 0, "", /* 0xc2 */
572 /* R_LSEL */
573 0, "", /* 0xc3 */
574 /* R_RSEL */
575 0, "", /* 0xc4 */
576 /* R_N_MODE */
577 0, "", /* 0xc5 */
578 /* R_S_MODE */
579 0, "", /* 0xc6 */
580 /* R_D_MODE */
581 0, "", /* 0xc7 */
582 /* R_R_MODE */
583 0, "", /* 0xc8 */
584 /* R_DATA_OVERRIDE */
585 0, "V0=", /* 0xc9 */
586 1, "Vb=", /* 0xca */
587 2, "Vc=", /* 0xcb */
588 3, "Vd=", /* 0xcc */
589 4, "Ve=", /* 0xcd */
590 /* R_TRANSLATED */
591 0, "", /* 0xce */
592 /* R_RESERVED */
593 0, "", /* 0xcf */
594 /* R_COMP1 */
595 0, "Ob=", /* 0xd0 */
596 /* R_COMP2 */
597 0, "Ob=Sd=", /* 0xd1 */
598 /* R_COMP3 */
599 0, "Ob=Ve=", /* 0xd2 */
600 /* R_PREV_FIXUP */
601 0, "P", /* 0xd3 */
602 1, "P", /* 0xd4 */
603 2, "P", /* 0xd5 */
604 3, "P", /* 0xd6 */
605 /* R_RESERVED */
606 0, "", /* 0xd7 */
607 0, "", /* 0xd8 */
608 0, "", /* 0xd9 */
609 0, "", /* 0xda */
610 0, "", /* 0xdb */
611 0, "", /* 0xdc */
612 0, "", /* 0xdd */
613 0, "", /* 0xde */
614 0, "", /* 0xdf */
615 0, "", /* 0xe0 */
616 0, "", /* 0xe1 */
617 0, "", /* 0xe2 */
618 0, "", /* 0xe3 */
619 0, "", /* 0xe4 */
620 0, "", /* 0xe5 */
621 0, "", /* 0xe6 */
622 0, "", /* 0xe7 */
623 0, "", /* 0xe8 */
624 0, "", /* 0xe9 */
625 0, "", /* 0xea */
626 0, "", /* 0xeb */
627 0, "", /* 0xec */
628 0, "", /* 0xed */
629 0, "", /* 0xee */
630 0, "", /* 0xef */
631 0, "", /* 0xf0 */
632 0, "", /* 0xf1 */
633 0, "", /* 0xf2 */
634 0, "", /* 0xf3 */
635 0, "", /* 0xf4 */
636 0, "", /* 0xf5 */
637 0, "", /* 0xf6 */
638 0, "", /* 0xf7 */
639 0, "", /* 0xf8 */
640 0, "", /* 0xf9 */
641 0, "", /* 0xfa */
642 0, "", /* 0xfb */
643 0, "", /* 0xfc */
644 0, "", /* 0xfd */
645 0, "", /* 0xfe */
646 0, "", /* 0xff */
647};
648
649static const int comp1_opcodes[] =
650{
651 0x00,
652 0x40,
653 0x41,
654 0x42,
655 0x43,
656 0x44,
657 0x45,
658 0x46,
659 0x47,
660 0x48,
661 0x49,
662 0x4a,
663 0x4b,
664 0x60,
665 0x80,
666 0xa0,
667 0xc0,
668 -1
669};
670
671static const int comp2_opcodes[] =
672{
673 0x00,
674 0x80,
675 0x82,
676 0xc0,
677 -1
678};
679
680static const int comp3_opcodes[] =
681{
682 0x00,
683 0x02,
684 -1
685};
686
744069b8
JL
687/* These apparently are not in older versions of hpux reloc.h. */
688#ifndef R_DLT_REL
689#define R_DLT_REL 0x78
690#endif
691
692#ifndef R_AUX_UNWIND
693#define R_AUX_UNWIND 0xcf
694#endif
695
696#ifndef R_SEC_STMT
697#define R_SEC_STMT 0xd7
698#endif
699
fcb0c846
JL
700static reloc_howto_type som_hppa_howto_table[] =
701{
702 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
703 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
704 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
705 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
706 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
707 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
708 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
709 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
710 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
711 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
712 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
713 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
714 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
715 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
716 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
717 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
718 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
719 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
720 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
721 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
722 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
723 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
724 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
725 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
726 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
727 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
728 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
729 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
730 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
731 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
732 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
733 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
734 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
735 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
736 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
737 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
738 {R_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RELOCATION"},
739 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
740 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
741 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
742 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
743 {R_SPACE_REF, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SPACE_REF"},
744 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
745 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
746 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
747 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
748 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
749 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
750 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
751 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
752 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
753 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
754 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
755 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
756 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
757 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
758 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
759 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
760 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
761 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
762 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
763 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
764 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
765 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
766 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
767 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
768 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
769 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
770 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
771 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
772 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
773 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
774 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
775 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
776 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
777 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
778 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
779 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
780 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
781 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
782 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
783 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
784 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
785 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
786 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
787 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
788 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
789 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
790 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
791 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
792 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
793 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
794 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
795 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
796 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
797 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
798 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
799 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
800 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
801 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
802 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
803 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
804 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
805 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
806 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
807 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
808 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
809 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
810 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
811 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
812 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
813 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
814 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
815 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
816 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
817 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
818 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
819 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
820 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
821 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
744069b8
JL
822 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
823 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
fcb0c846
JL
824 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
825 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
826 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
827 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
828 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
829 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
830 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
831 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
832 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
833 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
834 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
835 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
836 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
837 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
838 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
839 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
840 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
841 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
842 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
843 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
844 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
845 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
846 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
847 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
848 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
849 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
850 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
851 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
852 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
853 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
854 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
855 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
856 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
857 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
858 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
859 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
860 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
861 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
862 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
863 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
864 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
865 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
866 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
867 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
868 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
869 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
870 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
871 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
872 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
873 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
874 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
875 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
876 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
877 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
878 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
879 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
880 {R_BREAKPOINT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BREAKPOINT"},
881 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
882 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
883 {R_ALT_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ALT_ENTRY"},
884 {R_EXIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_EXIT"},
885 {R_BEGIN_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_TRY"},
886 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
887 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
017a52d7 888 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
fcb0c846
JL
889 {R_BEGIN_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_BRTAB"},
890 {R_END_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_BRTAB"},
891 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
892 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
893 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
894 {R_DATA_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_EXPR"},
895 {R_CODE_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_EXPR"},
896 {R_FSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_FSEL"},
897 {R_LSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_LSEL"},
898 {R_RSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RSEL"},
899 {R_N_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_N_MODE"},
900 {R_S_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_S_MODE"},
901 {R_D_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_D_MODE"},
902 {R_R_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_R_MODE"},
903 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
904 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
905 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
906 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
907 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
fcb0c846 908 {R_TRANSLATED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_TRANSLATED"},
744069b8 909 {R_AUX_UNWIND, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_AUX_UNWIND"},
fcb0c846
JL
910 {R_COMP1, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP1"},
911 {R_COMP2, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP2"},
912 {R_COMP3, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP3"},
913 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
914 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
915 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
916 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
744069b8 917 {R_SEC_STMT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SEC_STMT"},
fcb0c846
JL
918 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
919 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
920 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
921 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
922 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
923 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
924 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
925 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
926 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
927 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
928 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
929 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
930 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
931 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
932 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
933 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
934 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
935 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
936 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
937 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
938 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
939 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
940 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
941 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
942 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
943 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
944 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
945 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
946 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
947 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
948 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
949 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
950 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
951 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
952 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
953 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
954 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
955 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
956 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
957 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}};
958
d125665c
JL
959
960/* Initialize the SOM relocation queue. By definition the queue holds
961 the last four multibyte fixups. */
962
963static void
964som_initialize_reloc_queue (queue)
965 struct reloc_queue *queue;
966{
967 queue[0].reloc = NULL;
968 queue[0].size = 0;
969 queue[1].reloc = NULL;
970 queue[1].size = 0;
971 queue[2].reloc = NULL;
972 queue[2].size = 0;
973 queue[3].reloc = NULL;
974 queue[3].size = 0;
975}
976
977/* Insert a new relocation into the relocation queue. */
978
979static void
980som_reloc_queue_insert (p, size, queue)
981 unsigned char *p;
982 unsigned int size;
983 struct reloc_queue *queue;
984{
985 queue[3].reloc = queue[2].reloc;
986 queue[3].size = queue[2].size;
987 queue[2].reloc = queue[1].reloc;
988 queue[2].size = queue[1].size;
989 queue[1].reloc = queue[0].reloc;
990 queue[1].size = queue[0].size;
991 queue[0].reloc = p;
992 queue[0].size = size;
993}
994
995/* When an entry in the relocation queue is reused, the entry moves
996 to the front of the queue. */
997
998static void
999som_reloc_queue_fix (queue, index)
1000 struct reloc_queue *queue;
1001 unsigned int index;
1002{
1003 if (index == 0)
1004 return;
1005
1006 if (index == 1)
1007 {
1008 unsigned char *tmp1 = queue[0].reloc;
1009 unsigned int tmp2 = queue[0].size;
1010 queue[0].reloc = queue[1].reloc;
1011 queue[0].size = queue[1].size;
1012 queue[1].reloc = tmp1;
1013 queue[1].size = tmp2;
1014 return;
1015 }
1016
1017 if (index == 2)
1018 {
1019 unsigned char *tmp1 = queue[0].reloc;
1020 unsigned int tmp2 = queue[0].size;
1021 queue[0].reloc = queue[2].reloc;
1022 queue[0].size = queue[2].size;
1023 queue[2].reloc = queue[1].reloc;
1024 queue[2].size = queue[1].size;
1025 queue[1].reloc = tmp1;
1026 queue[1].size = tmp2;
1027 return;
1028 }
1029
1030 if (index == 3)
1031 {
1032 unsigned char *tmp1 = queue[0].reloc;
1033 unsigned int tmp2 = queue[0].size;
1034 queue[0].reloc = queue[3].reloc;
1035 queue[0].size = queue[3].size;
1036 queue[3].reloc = queue[2].reloc;
1037 queue[3].size = queue[2].size;
1038 queue[2].reloc = queue[1].reloc;
1039 queue[2].size = queue[1].size;
1040 queue[1].reloc = tmp1;
1041 queue[1].size = tmp2;
1042 return;
1043 }
1044 abort();
1045}
1046
1047/* Search for a particular relocation in the relocation queue. */
1048
1049static int
1050som_reloc_queue_find (p, size, queue)
1051 unsigned char *p;
1052 unsigned int size;
1053 struct reloc_queue *queue;
1054{
9783e04a 1055 if (queue[0].reloc && !bcmp (p, queue[0].reloc, size)
d125665c
JL
1056 && size == queue[0].size)
1057 return 0;
9783e04a 1058 if (queue[1].reloc && !bcmp (p, queue[1].reloc, size)
d125665c
JL
1059 && size == queue[1].size)
1060 return 1;
9783e04a 1061 if (queue[2].reloc && !bcmp (p, queue[2].reloc, size)
d125665c
JL
1062 && size == queue[2].size)
1063 return 2;
9783e04a 1064 if (queue[3].reloc && !bcmp (p, queue[3].reloc, size)
d125665c
JL
1065 && size == queue[3].size)
1066 return 3;
1067 return -1;
1068}
54bbfd37
JL
1069
1070static unsigned char *
1071try_prev_fixup (abfd, subspace_reloc_sizep, p, size, queue)
1072 bfd *abfd;
1073 int *subspace_reloc_sizep;
1074 unsigned char *p;
1075 unsigned int size;
1076 struct reloc_queue *queue;
1077{
1078 int queue_index = som_reloc_queue_find (p, size, queue);
1079
1080 if (queue_index != -1)
1081 {
1082 /* Found this in a previous fixup. Undo the fixup we
1083 just built and use R_PREV_FIXUP instead. We saved
1084 a total of size - 1 bytes in the fixup stream. */
1085 bfd_put_8 (abfd, R_PREV_FIXUP + queue_index, p);
1086 p += 1;
1087 *subspace_reloc_sizep += 1;
1088 som_reloc_queue_fix (queue, queue_index);
1089 }
1090 else
1091 {
1092 som_reloc_queue_insert (p, size, queue);
1093 *subspace_reloc_sizep += size;
1094 p += size;
1095 }
1096 return p;
1097}
1098
1099/* Emit the proper R_NO_RELOCATION fixups to map the next SKIP
1100 bytes without any relocation. Update the size of the subspace
1101 relocation stream via SUBSPACE_RELOC_SIZE_P; also return the
1102 current pointer into the relocation stream. */
1103
1104static unsigned char *
1105som_reloc_skip (abfd, skip, p, subspace_reloc_sizep, queue)
1106 bfd *abfd;
1107 unsigned int skip;
1108 unsigned char *p;
1109 unsigned int *subspace_reloc_sizep;
1110 struct reloc_queue *queue;
1111{
1112 /* Use a 4 byte R_NO_RELOCATION entry with a maximal value
1113 then R_PREV_FIXUPs to get the difference down to a
1114 reasonable size. */
1115 if (skip >= 0x1000000)
1116 {
1117 skip -= 0x1000000;
1118 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1119 bfd_put_8 (abfd, 0xff, p + 1);
1120 bfd_put_16 (abfd, 0xffff, p + 2);
1121 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1122 while (skip >= 0x1000000)
1123 {
1124 skip -= 0x1000000;
1125 bfd_put_8 (abfd, R_PREV_FIXUP, p);
1126 p++;
1127 *subspace_reloc_sizep += 1;
1128 /* No need to adjust queue here since we are repeating the
1129 most recent fixup. */
1130 }
1131 }
1132
1133 /* The difference must be less than 0x1000000. Use one
1134 more R_NO_RELOCATION entry to get to the right difference. */
1135 if ((skip & 3) == 0 && skip <= 0xc0000 && skip > 0)
1136 {
1137 /* Difference can be handled in a simple single-byte
1138 R_NO_RELOCATION entry. */
1139 if (skip <= 0x60)
1140 {
1141 bfd_put_8 (abfd, R_NO_RELOCATION + (skip >> 2) - 1, p);
1142 *subspace_reloc_sizep += 1;
1143 p++;
1144 }
1145 /* Handle it with a two byte R_NO_RELOCATION entry. */
1146 else if (skip <= 0x1000)
1147 {
1148 bfd_put_8 (abfd, R_NO_RELOCATION + 24 + (((skip >> 2) - 1) >> 8), p);
1149 bfd_put_8 (abfd, (skip >> 2) - 1, p + 1);
1150 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1151 }
1152 /* Handle it with a three byte R_NO_RELOCATION entry. */
1153 else
1154 {
1155 bfd_put_8 (abfd, R_NO_RELOCATION + 28 + (((skip >> 2) - 1) >> 16), p);
1156 bfd_put_16 (abfd, (skip >> 2) - 1, p + 1);
1157 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1158 }
1159 }
1160 /* Ugh. Punt and use a 4 byte entry. */
1161 else if (skip > 0)
1162 {
1163 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1164 bfd_put_8 (abfd, skip >> 16, p + 1);
1165 bfd_put_16 (abfd, skip, p + 2);
1166 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1167 }
1168 return p;
1169}
1170
1171/* Emit the proper R_DATA_OVERRIDE fixups to handle a nonzero addend
1172 from a BFD relocation. Update the size of the subspace relocation
1173 stream via SUBSPACE_RELOC_SIZE_P; also return the current pointer
1174 into the relocation stream. */
1175
1176static unsigned char *
1177som_reloc_addend (abfd, addend, p, subspace_reloc_sizep, queue)
1178 bfd *abfd;
1179 int addend;
1180 unsigned char *p;
1181 unsigned int *subspace_reloc_sizep;
1182 struct reloc_queue *queue;
1183{
1184 if ((unsigned)(addend) + 0x80 < 0x100)
1185 {
1186 bfd_put_8 (abfd, R_DATA_OVERRIDE + 1, p);
1187 bfd_put_8 (abfd, addend, p + 1);
1188 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1189 }
1190 else if ((unsigned) (addend) + 0x8000 < 0x10000)
1191 {
1192 bfd_put_8 (abfd, R_DATA_OVERRIDE + 2, p);
1193 bfd_put_16 (abfd, addend, p + 1);
1194 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1195 }
1196 else if ((unsigned) (addend) + 0x800000 < 0x1000000)
1197 {
1198 bfd_put_8 (abfd, R_DATA_OVERRIDE + 3, p);
1199 bfd_put_8 (abfd, addend >> 16, p + 1);
1200 bfd_put_16 (abfd, addend, p + 2);
1201 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1202 }
1203 else
1204 {
1205 bfd_put_8 (abfd, R_DATA_OVERRIDE + 4, p);
1206 bfd_put_32 (abfd, addend, p + 1);
1207 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1208 }
1209 return p;
1210}
1211
7057b78f
JL
1212/* Handle a single function call relocation. */
1213
1214static unsigned char *
1215som_reloc_call (abfd, p, subspace_reloc_sizep, bfd_reloc, sym_num, queue)
1216 bfd *abfd;
1217 unsigned char *p;
1218 unsigned int *subspace_reloc_sizep;
1219 arelent *bfd_reloc;
1220 int sym_num;
1221 struct reloc_queue *queue;
1222{
1223 int arg_bits = HPPA_R_ARG_RELOC (bfd_reloc->addend);
1224 int rtn_bits = arg_bits & 0x3;
1225 int type, done = 0;
1226
1227 /* You'll never believe all this is necessary to handle relocations
1228 for function calls. Having to compute and pack the argument
1229 relocation bits is the real nightmare.
1230
1231 If you're interested in how this works, just forget it. You really
1232 do not want to know about this braindamage. */
1233
1234 /* First see if this can be done with a "simple" relocation. Simple
1235 relocations have a symbol number < 0x100 and have simple encodings
1236 of argument relocations. */
1237
1238 if (sym_num < 0x100)
1239 {
1240 switch (arg_bits)
1241 {
1242 case 0:
1243 case 1:
1244 type = 0;
1245 break;
1246 case 1 << 8:
1247 case 1 << 8 | 1:
1248 type = 1;
1249 break;
1250 case 1 << 8 | 1 << 6:
1251 case 1 << 8 | 1 << 6 | 1:
1252 type = 2;
1253 break;
1254 case 1 << 8 | 1 << 6 | 1 << 4:
1255 case 1 << 8 | 1 << 6 | 1 << 4 | 1:
1256 type = 3;
1257 break;
1258 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2:
1259 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2 | 1:
1260 type = 4;
1261 break;
1262 default:
1263 /* Not one of the easy encodings. This will have to be
1264 handled by the more complex code below. */
1265 type = -1;
1266 break;
1267 }
1268 if (type != -1)
1269 {
1270 /* Account for the return value too. */
1271 if (rtn_bits)
1272 type += 5;
1273
1274 /* Emit a 2 byte relocation. Then see if it can be handled
1275 with a relocation which is already in the relocation queue. */
1276 bfd_put_8 (abfd, bfd_reloc->howto->type + type, p);
1277 bfd_put_8 (abfd, sym_num, p + 1);
1278 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1279 done = 1;
1280 }
1281 }
1282
1283 /* If this could not be handled with a simple relocation, then do a hard
1284 one. Hard relocations occur if the symbol number was too high or if
1285 the encoding of argument relocation bits is too complex. */
1286 if (! done)
1287 {
1288 /* Don't ask about these magic sequences. I took them straight
1289 from gas-1.36 which took them from the a.out man page. */
1290 type = rtn_bits;
1291 if ((arg_bits >> 6 & 0xf) == 0xe)
1292 type += 9 * 40;
1293 else
1294 type += (3 * (arg_bits >> 8 & 3) + (arg_bits >> 6 & 3)) * 40;
1295 if ((arg_bits >> 2 & 0xf) == 0xe)
1296 type += 9 * 4;
1297 else
1298 type += (3 * (arg_bits >> 4 & 3) + (arg_bits >> 2 & 3)) * 4;
1299
1300 /* Output the first two bytes of the relocation. These describe
1301 the length of the relocation and encoding style. */
1302 bfd_put_8 (abfd, bfd_reloc->howto->type + 10
1303 + 2 * (sym_num >= 0x100) + (type >= 0x100),
1304 p);
1305 bfd_put_8 (abfd, type, p + 1);
1306
1307 /* Now output the symbol index and see if this bizarre relocation
1308 just happened to be in the relocation queue. */
1309 if (sym_num < 0x100)
1310 {
1311 bfd_put_8 (abfd, sym_num, p + 2);
1312 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1313 }
1314 else
1315 {
1316 bfd_put_8 (abfd, sym_num >> 16, p + 2);
1317 bfd_put_16 (abfd, sym_num, p + 3);
1318 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1319 }
1320 }
1321 return p;
1322}
1323
1324
9e16fcf1 1325/* Return the logarithm of X, base 2, considering X unsigned.
40249bfb
JL
1326 Abort if X is not a power of two -- this should never happen (FIXME:
1327 It will happen on corrupt executables. GDB should give an error, not
1328 a coredump, in that case). */
9e16fcf1
SG
1329
1330static int
1331log2 (x)
1332 unsigned int x;
1333{
1334 int log = 0;
1335
1336 /* Test for 0 or a power of 2. */
1337 if (x == 0 || x != (x & -x))
1338 abort();
1339
1340 while ((x >>= 1) != 0)
1341 log++;
1342 return log;
1343}
1344
fcb0c846 1345static bfd_reloc_status_type
39961154
JL
1346hppa_som_reloc (abfd, reloc_entry, symbol_in, data,
1347 input_section, output_bfd, error_message)
fcb0c846
JL
1348 bfd *abfd;
1349 arelent *reloc_entry;
1350 asymbol *symbol_in;
1351 PTR data;
1352 asection *input_section;
1353 bfd *output_bfd;
39961154 1354 char **error_message;
fcb0c846
JL
1355{
1356 if (output_bfd)
1357 {
1358 reloc_entry->address += input_section->output_offset;
1359 return bfd_reloc_ok;
1360 }
1361 return bfd_reloc_ok;
1362}
32619c58
JL
1363
1364/* Given a generic HPPA relocation type, the instruction format,
7430a991 1365 and a field selector, return one or more appropriate SOM relocations. */
32619c58
JL
1366
1367int **
1368hppa_som_gen_reloc_type (abfd, base_type, format, field)
1369 bfd *abfd;
1370 int base_type;
1371 int format;
017a52d7 1372 enum hppa_reloc_field_selector_type field;
32619c58
JL
1373{
1374 int *final_type, **final_types;
1375
017a52d7 1376 final_types = (int **) bfd_alloc_by_size_t (abfd, sizeof (int *) * 3);
32619c58 1377 final_type = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
9783e04a
DM
1378 if (!final_types || !final_type)
1379 {
d1ad85a6 1380 bfd_set_error (bfd_error_no_memory);
9783e04a
DM
1381 return NULL;
1382 }
32619c58 1383
017a52d7
JL
1384 /* The field selector may require additional relocations to be
1385 generated. It's impossible to know at this moment if additional
1386 relocations will be needed, so we make them. The code to actually
1387 write the relocation/fixup stream is responsible for removing
1388 any redundant relocations. */
1389 switch (field)
1390 {
1391 case e_fsel:
1392 case e_psel:
1393 case e_lpsel:
1394 case e_rpsel:
a36b6f1d
JL
1395 final_types[0] = final_type;
1396 final_types[1] = NULL;
1397 final_types[2] = NULL;
1398 *final_type = base_type;
1399 break;
1400
017a52d7
JL
1401 case e_tsel:
1402 case e_ltsel:
1403 case e_rtsel:
a36b6f1d 1404 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
9783e04a
DM
1405 if (!final_types[0])
1406 {
d1ad85a6 1407 bfd_set_error (bfd_error_no_memory);
9783e04a
DM
1408 return NULL;
1409 }
39961154
JL
1410 if (field == e_tsel)
1411 *final_types[0] = R_FSEL;
1412 else if (field == e_ltsel)
1413 *final_types[0] = R_LSEL;
1414 else
1415 *final_types[0] = R_RSEL;
a36b6f1d 1416 final_types[1] = final_type;
017a52d7
JL
1417 final_types[2] = NULL;
1418 *final_type = base_type;
1419 break;
1420
1421 case e_lssel:
1422 case e_rssel:
1423 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
9783e04a
DM
1424 if (!final_types[0])
1425 {
d1ad85a6 1426 bfd_set_error (bfd_error_no_memory);
9783e04a
DM
1427 return NULL;
1428 }
017a52d7
JL
1429 *final_types[0] = R_S_MODE;
1430 final_types[1] = final_type;
1431 final_types[2] = NULL;
1432 *final_type = base_type;
1433 break;
32619c58 1434
017a52d7
JL
1435 case e_lsel:
1436 case e_rsel:
1437 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
9783e04a
DM
1438 if (!final_types[0])
1439 {
d1ad85a6 1440 bfd_set_error (bfd_error_no_memory);
9783e04a
DM
1441 return NULL;
1442 }
017a52d7
JL
1443 *final_types[0] = R_N_MODE;
1444 final_types[1] = final_type;
1445 final_types[2] = NULL;
1446 *final_type = base_type;
1447 break;
32619c58 1448
017a52d7
JL
1449 case e_ldsel:
1450 case e_rdsel:
1451 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
9783e04a
DM
1452 if (!final_types[0])
1453 {
d1ad85a6 1454 bfd_set_error (bfd_error_no_memory);
9783e04a
DM
1455 return NULL;
1456 }
017a52d7
JL
1457 *final_types[0] = R_D_MODE;
1458 final_types[1] = final_type;
1459 final_types[2] = NULL;
1460 *final_type = base_type;
1461 break;
32619c58 1462
017a52d7
JL
1463 case e_lrsel:
1464 case e_rrsel:
1465 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
9783e04a
DM
1466 if (!final_types[0])
1467 {
d1ad85a6 1468 bfd_set_error (bfd_error_no_memory);
9783e04a
DM
1469 return NULL;
1470 }
017a52d7
JL
1471 *final_types[0] = R_R_MODE;
1472 final_types[1] = final_type;
1473 final_types[2] = NULL;
1474 *final_type = base_type;
1475 break;
1476 }
1477
32619c58
JL
1478 switch (base_type)
1479 {
1480 case R_HPPA:
1481 /* PLABELs get their own relocation type. */
1482 if (field == e_psel
1483 || field == e_lpsel
1484 || field == e_rpsel)
a36b6f1d
JL
1485 {
1486 /* A PLABEL relocation that has a size of 32 bits must
1487 be a R_DATA_PLABEL. All others are R_CODE_PLABELs. */
1488 if (format == 32)
1489 *final_type = R_DATA_PLABEL;
1490 else
1491 *final_type = R_CODE_PLABEL;
1492 }
1493 /* PIC stuff. */
1494 else if (field == e_tsel
1495 || field == e_ltsel
1496 || field == e_rtsel)
1497 *final_type = R_DLT_REL;
1498 /* A relocation in the data space is always a full 32bits. */
32619c58
JL
1499 else if (format == 32)
1500 *final_type = R_DATA_ONE_SYMBOL;
1501
1502 break;
1503
1504 case R_HPPA_GOTOFF:
1505 /* More PLABEL special cases. */
1506 if (field == e_psel
1507 || field == e_lpsel
1508 || field == e_rpsel)
1509 *final_type = R_DATA_PLABEL;
1510 break;
1511
1512 case R_HPPA_NONE:
1513 case R_HPPA_ABS_CALL:
1514 case R_HPPA_PCREL_CALL:
1515 case R_HPPA_COMPLEX:
1516 case R_HPPA_COMPLEX_PCREL_CALL:
1517 case R_HPPA_COMPLEX_ABS_CALL:
1518 /* Right now we can default all these. */
1519 break;
1520 }
1521 return final_types;
1522}
1523
1524/* Return the address of the correct entry in the PA SOM relocation
1525 howto table. */
1526
91c0bcbb 1527static const reloc_howto_type *
32619c58
JL
1528som_bfd_reloc_type_lookup (arch, code)
1529 bfd_arch_info_type *arch;
1530 bfd_reloc_code_real_type code;
1531{
1532 if ((int) code < (int) R_NO_RELOCATION + 255)
1533 {
1534 BFD_ASSERT ((int) som_hppa_howto_table[(int) code].type == (int) code);
1535 return &som_hppa_howto_table[(int) code];
1536 }
1537
1538 return (reloc_howto_type *) 0;
1539}
1540
9e16fcf1
SG
1541/* Perform some initialization for an object. Save results of this
1542 initialization in the BFD. */
d9ad93bc
KR
1543
1544static bfd_target *
9e16fcf1 1545som_object_setup (abfd, file_hdrp, aux_hdrp)
d9ad93bc
KR
1546 bfd *abfd;
1547 struct header *file_hdrp;
1548 struct som_exec_auxhdr *aux_hdrp;
1549{
9e16fcf1
SG
1550 /* som_mkobject will set bfd_error if som_mkobject fails. */
1551 if (som_mkobject (abfd) != true)
1552 return 0;
d9ad93bc 1553
9e16fcf1
SG
1554 /* Set BFD flags based on what information is available in the SOM. */
1555 abfd->flags = NO_FLAGS;
1556 if (! file_hdrp->entry_offset)
1557 abfd->flags |= HAS_RELOC;
1558 else
1559 abfd->flags |= EXEC_P;
1560 if (file_hdrp->symbol_total)
1561 abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS;
1562
1563 bfd_get_start_address (abfd) = aux_hdrp->exec_entry;
1564 bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 0);
d9ad93bc 1565 bfd_get_symcount (abfd) = file_hdrp->symbol_total;
9e16fcf1
SG
1566
1567 /* Initialize the saved symbol table and string table to NULL.
1568 Save important offsets and sizes from the SOM header into
1569 the BFD. */
1570 obj_som_stringtab (abfd) = (char *) NULL;
1571 obj_som_symtab (abfd) = (som_symbol_type *) NULL;
1572 obj_som_stringtab_size (abfd) = file_hdrp->symbol_strings_size;
1573 obj_som_sym_filepos (abfd) = file_hdrp->symbol_location;
1574 obj_som_str_filepos (abfd) = file_hdrp->symbol_strings_location;
1575 obj_som_reloc_filepos (abfd) = file_hdrp->fixup_request_location;
d9ad93bc
KR
1576
1577 return abfd->xvec;
1578}
1579
1580/* Create a new BFD section for NAME. If NAME already exists, then create a
1581 new unique name, with NAME as the prefix. This exists because SOM .o files
9e16fcf1 1582 may have more than one $CODE$ subspace. */
d9ad93bc
KR
1583
1584static asection *
1585make_unique_section (abfd, name, num)
1586 bfd *abfd;
1587 CONST char *name;
1588 int num;
1589{
1590 asection *sect;
1591 char *newname;
1592 char altname[100];
1593
1594 sect = bfd_make_section (abfd, name);
1595 while (!sect)
1596 {
1597 sprintf (altname, "%s-%d", name, num++);
1598 sect = bfd_make_section (abfd, altname);
1599 }
1600
1601 newname = bfd_alloc (abfd, strlen (sect->name) + 1);
9783e04a
DM
1602 if (!newname)
1603 {
d1ad85a6 1604 bfd_set_error (bfd_error_no_memory);
9783e04a
DM
1605 return NULL;
1606 }
d9ad93bc
KR
1607 strcpy (newname, sect->name);
1608
1609 sect->name = newname;
1610 return sect;
1611}
1612
1613/* Convert all of the space and subspace info into BFD sections. Each space
1614 contains a number of subspaces, which in turn describe the mapping between
1615 regions of the exec file, and the address space that the program runs in.
1616 BFD sections which correspond to spaces will overlap the sections for the
1617 associated subspaces. */
1618
9e16fcf1 1619static boolean
d9ad93bc
KR
1620setup_sections (abfd, file_hdr)
1621 bfd *abfd;
1622 struct header *file_hdr;
1623{
1624 char *space_strings;
1625 int space_index;
9e16fcf1 1626 unsigned int total_subspaces = 0;
d9ad93bc
KR
1627
1628 /* First, read in space names */
1629
1630 space_strings = alloca (file_hdr->space_strings_size);
1631 if (!space_strings)
9e16fcf1 1632 return false;
d9ad93bc
KR
1633
1634 if (bfd_seek (abfd, file_hdr->space_strings_location, SEEK_SET) < 0)
9e16fcf1 1635 return false;
d9ad93bc
KR
1636 if (bfd_read (space_strings, 1, file_hdr->space_strings_size, abfd)
1637 != file_hdr->space_strings_size)
9e16fcf1 1638 return false;
d9ad93bc
KR
1639
1640 /* Loop over all of the space dictionaries, building up sections */
d9ad93bc
KR
1641 for (space_index = 0; space_index < file_hdr->space_total; space_index++)
1642 {
1643 struct space_dictionary_record space;
9e16fcf1
SG
1644 struct subspace_dictionary_record subspace, save_subspace;
1645 int subspace_index;
d9ad93bc
KR
1646 asection *space_asect;
1647
1648 /* Read the space dictionary element */
1649 if (bfd_seek (abfd, file_hdr->space_location
1650 + space_index * sizeof space, SEEK_SET) < 0)
9e16fcf1 1651 return false;
d9ad93bc 1652 if (bfd_read (&space, 1, sizeof space, abfd) != sizeof space)
9e16fcf1 1653 return false;
d9ad93bc
KR
1654
1655 /* Setup the space name string */
1656 space.name.n_name = space.name.n_strx + space_strings;
1657
1658 /* Make a section out of it */
1659 space_asect = make_unique_section (abfd, space.name.n_name, space_index);
1660 if (!space_asect)
9e16fcf1 1661 return false;
d9ad93bc
KR
1662
1663 /* Now, read in the first subspace for this space */
1664 if (bfd_seek (abfd, file_hdr->subspace_location
1665 + space.subspace_index * sizeof subspace,
1666 SEEK_SET) < 0)
9e16fcf1 1667 return false;
d9ad93bc 1668 if (bfd_read (&subspace, 1, sizeof subspace, abfd) != sizeof subspace)
9e16fcf1 1669 return false;
d9ad93bc
KR
1670 /* Seek back to the start of the subspaces for loop below */
1671 if (bfd_seek (abfd, file_hdr->subspace_location
1672 + space.subspace_index * sizeof subspace,
1673 SEEK_SET) < 0)
9e16fcf1 1674 return false;
d9ad93bc
KR
1675
1676 /* Setup the start address and file loc from the first subspace record */
1677 space_asect->vma = subspace.subspace_start;
1678 space_asect->filepos = subspace.file_loc_init_value;
9e16fcf1
SG
1679 space_asect->alignment_power = log2 (subspace.alignment);
1680
1681 /* Initialize save_subspace so we can reliably determine if this
1682 loop placed any useful values into it. */
6e033f86 1683 memset (&save_subspace, 0, sizeof (struct subspace_dictionary_record));
d9ad93bc
KR
1684
1685 /* Loop over the rest of the subspaces, building up more sections */
1686 for (subspace_index = 0; subspace_index < space.subspace_quantity;
1687 subspace_index++)
1688 {
1689 asection *subspace_asect;
1690
1691 /* Read in the next subspace */
1692 if (bfd_read (&subspace, 1, sizeof subspace, abfd)
1693 != sizeof subspace)
9e16fcf1 1694 return false;
d9ad93bc
KR
1695
1696 /* Setup the subspace name string */
1697 subspace.name.n_name = subspace.name.n_strx + space_strings;
1698
1699 /* Make a section out of this subspace */
1700 subspace_asect = make_unique_section (abfd, subspace.name.n_name,
1701 space.subspace_index + subspace_index);
1702
1703 if (!subspace_asect)
9e16fcf1
SG
1704 return false;
1705
1706 /* Keep an easy mapping between subspaces and sections. */
1707 som_section_data (subspace_asect)->subspace_index
1708 = total_subspaces++;
1709
1710 /* Set SEC_READONLY and SEC_CODE/SEC_DATA as specified
1711 by the access_control_bits in the subspace header. */
1712 switch (subspace.access_control_bits >> 4)
1713 {
1714 /* Readonly data. */
1715 case 0x0:
1716 subspace_asect->flags |= SEC_DATA | SEC_READONLY;
1717 break;
1718
1719 /* Normal data. */
1720 case 0x1:
1721 subspace_asect->flags |= SEC_DATA;
1722 break;
1723
1724 /* Readonly code and the gateways.
1725 Gateways have other attributes which do not map
1726 into anything BFD knows about. */
1727 case 0x2:
1728 case 0x4:
1729 case 0x5:
1730 case 0x6:
1731 case 0x7:
1732 subspace_asect->flags |= SEC_CODE | SEC_READONLY;
1733 break;
1734
1735 /* dynamic (writable) code. */
1736 case 0x3:
1737 subspace_asect->flags |= SEC_CODE;
1738 break;
1739 }
1740
1741 if (subspace.dup_common || subspace.is_common)
1742 subspace_asect->flags |= SEC_IS_COMMON;
36456a67 1743 else if (subspace.subspace_length > 0)
9e16fcf1 1744 subspace_asect->flags |= SEC_HAS_CONTENTS;
d9ad93bc
KR
1745 if (subspace.is_loadable)
1746 subspace_asect->flags |= SEC_ALLOC | SEC_LOAD;
1747 if (subspace.code_only)
1748 subspace_asect->flags |= SEC_CODE;
1749
36456a67
JL
1750 /* Both file_loc_init_value and initialization_length will
1751 be zero for a BSS like subspace. */
1752 if (subspace.file_loc_init_value == 0
1753 && subspace.initialization_length == 0)
1754 subspace_asect->flags &= ~(SEC_DATA | SEC_LOAD);
1755
9e16fcf1
SG
1756 /* This subspace has relocations.
1757 The fixup_request_quantity is a byte count for the number of
1758 entries in the relocation stream; it is not the actual number
1759 of relocations in the subspace. */
1760 if (subspace.fixup_request_quantity != 0)
1761 {
1762 subspace_asect->flags |= SEC_RELOC;
1763 subspace_asect->rel_filepos = subspace.fixup_request_index;
1764 som_section_data (subspace_asect)->reloc_size
1765 = subspace.fixup_request_quantity;
1766 /* We can not determine this yet. When we read in the
1767 relocation table the correct value will be filled in. */
1768 subspace_asect->reloc_count = -1;
1769 }
1770
1771 /* Update save_subspace if appropriate. */
1772 if (subspace.file_loc_init_value > save_subspace.file_loc_init_value)
1773 save_subspace = subspace;
1774
d9ad93bc
KR
1775 subspace_asect->vma = subspace.subspace_start;
1776 subspace_asect->_cooked_size = subspace.subspace_length;
36456a67 1777 subspace_asect->_raw_size = subspace.subspace_length;
9e16fcf1 1778 subspace_asect->alignment_power = log2 (subspace.alignment);
d9ad93bc 1779 subspace_asect->filepos = subspace.file_loc_init_value;
d9ad93bc 1780 }
9e16fcf1
SG
1781
1782 /* Yow! there is no subspace within the space which actually
1783 has initialized information in it; this should never happen
1784 as far as I know. */
1785 if (!save_subspace.file_loc_init_value)
1786 abort ();
1787
d9ad93bc 1788 /* Setup the sizes for the space section based upon the info in the
9e16fcf1
SG
1789 last subspace of the space. */
1790 space_asect->_cooked_size = save_subspace.subspace_start
1791 - space_asect->vma + save_subspace.subspace_length;
1792 space_asect->_raw_size = save_subspace.file_loc_init_value
1793 - space_asect->filepos + save_subspace.initialization_length;
d9ad93bc 1794 }
9e16fcf1 1795 return true;
d9ad93bc
KR
1796}
1797
9e16fcf1
SG
1798/* Read in a SOM object and make it into a BFD. */
1799
d9ad93bc 1800static bfd_target *
9e16fcf1 1801som_object_p (abfd)
d9ad93bc
KR
1802 bfd *abfd;
1803{
1804 struct header file_hdr;
1805 struct som_exec_auxhdr aux_hdr;
1806
1807 if (bfd_read ((PTR) & file_hdr, 1, FILE_HDR_SIZE, abfd) != FILE_HDR_SIZE)
9e16fcf1 1808 {
d1ad85a6 1809 bfd_set_error (bfd_error_system_call);
9e16fcf1
SG
1810 return 0;
1811 }
d9ad93bc
KR
1812
1813 if (!_PA_RISC_ID (file_hdr.system_id))
1814 {
d1ad85a6 1815 bfd_set_error (bfd_error_wrong_format);
d9ad93bc
KR
1816 return 0;
1817 }
1818
1819 switch (file_hdr.a_magic)
1820 {
9e16fcf1 1821 case RELOC_MAGIC:
d9ad93bc
KR
1822 case EXEC_MAGIC:
1823 case SHARE_MAGIC:
1824 case DEMAND_MAGIC:
1825#ifdef DL_MAGIC
1826 case DL_MAGIC:
1827#endif
1828#ifdef SHL_MAGIC
1829 case SHL_MAGIC:
9e16fcf1
SG
1830#endif
1831#ifdef EXECLIBMAGIC
1832 case EXECLIBMAGIC:
017a52d7
JL
1833#endif
1834#ifdef SHARED_MAGIC_CNX
1835 case SHARED_MAGIC_CNX:
d9ad93bc
KR
1836#endif
1837 break;
1838 default:
d1ad85a6 1839 bfd_set_error (bfd_error_wrong_format);
d9ad93bc
KR
1840 return 0;
1841 }
1842
1843 if (file_hdr.version_id != VERSION_ID
1844 && file_hdr.version_id != NEW_VERSION_ID)
1845 {
d1ad85a6 1846 bfd_set_error (bfd_error_wrong_format);
d9ad93bc
KR
1847 return 0;
1848 }
1849
9e16fcf1
SG
1850 /* If the aux_header_size field in the file header is zero, then this
1851 object is an incomplete executable (a .o file). Do not try to read
1852 a non-existant auxiliary header. */
6e033f86 1853 memset (&aux_hdr, 0, sizeof (struct som_exec_auxhdr));
9e16fcf1
SG
1854 if (file_hdr.aux_header_size != 0)
1855 {
1856 if (bfd_read ((PTR) & aux_hdr, 1, AUX_HDR_SIZE, abfd) != AUX_HDR_SIZE)
1857 {
d1ad85a6 1858 bfd_set_error (bfd_error_wrong_format);
9e16fcf1
SG
1859 return 0;
1860 }
1861 }
d9ad93bc
KR
1862
1863 if (!setup_sections (abfd, &file_hdr))
9e16fcf1
SG
1864 {
1865 /* setup_sections does not bubble up a bfd error code. */
d1ad85a6 1866 bfd_set_error (bfd_error_bad_value);
9e16fcf1
SG
1867 return 0;
1868 }
d9ad93bc 1869
9e16fcf1
SG
1870 /* This appears to be a valid SOM object. Do some initialization. */
1871 return som_object_setup (abfd, &file_hdr, &aux_hdr);
d9ad93bc
KR
1872}
1873
9e16fcf1
SG
1874/* Create a SOM object. */
1875
d9ad93bc 1876static boolean
9e16fcf1 1877som_mkobject (abfd)
d9ad93bc
KR
1878 bfd *abfd;
1879{
9e16fcf1
SG
1880 /* Allocate memory to hold backend information. */
1881 abfd->tdata.som_data = (struct som_data_struct *)
1882 bfd_zalloc (abfd, sizeof (struct som_data_struct));
1883 if (abfd->tdata.som_data == NULL)
1884 {
d1ad85a6 1885 bfd_set_error (bfd_error_no_memory);
9e16fcf1
SG
1886 return false;
1887 }
a62dd44f
JL
1888 obj_som_file_hdr (abfd)
1889 = (struct header *) bfd_zalloc (abfd, sizeof (struct header));
9e16fcf1
SG
1890 if (obj_som_file_hdr (abfd) == NULL)
1891
1892 {
d1ad85a6 1893 bfd_set_error (bfd_error_no_memory);
9e16fcf1
SG
1894 return false;
1895 }
1896 return true;
d9ad93bc
KR
1897}
1898
0ffa24b9
JL
1899/* Initialize some information in the file header. This routine makes
1900 not attempt at doing the right thing for a full executable; it
1901 is only meant to handle relocatable objects. */
1902
1903static boolean
1904som_prep_headers (abfd)
1905 bfd *abfd;
1906{
1907 struct header *file_hdr = obj_som_file_hdr (abfd);
1908 asection *section;
1909
1910 /* FIXME. This should really be conditional based on whether or not
1911 PA1.1 instructions/registers have been used. */
1912 file_hdr->system_id = HP9000S800_ID;
1913
1914 /* FIXME. Only correct for building relocatable objects. */
1915 if (abfd->flags & EXEC_P)
1916 abort ();
1917 else
1918 file_hdr->a_magic = RELOC_MAGIC;
1919
1920 /* Only new format SOM is supported. */
1921 file_hdr->version_id = NEW_VERSION_ID;
1922
1923 /* These fields are optional, and embedding timestamps is not always
1924 a wise thing to do, it makes comparing objects during a multi-stage
1925 bootstrap difficult. */
1926 file_hdr->file_time.secs = 0;
1927 file_hdr->file_time.nanosecs = 0;
1928
1929 if (abfd->flags & EXEC_P)
1930 abort ();
1931 else
1932 {
1933 file_hdr->entry_space = 0;
1934 file_hdr->entry_subspace = 0;
1935 file_hdr->entry_offset = 0;
1936 }
1937
0ffa24b9
JL
1938 file_hdr->presumed_dp = 0;
1939
1940 /* Now iterate over the sections translating information from
1941 BFD sections to SOM spaces/subspaces. */
1942
1943 for (section = abfd->sections; section != NULL; section = section->next)
1944 {
1945 /* Ignore anything which has not been marked as a space or
1946 subspace. */
1947 if (som_section_data (section)->is_space == 0
1948
1949 && som_section_data (section)->is_subspace == 0)
1950 continue;
1951
1952 if (som_section_data (section)->is_space)
1953 {
1954 /* Set space attributes. Note most attributes of SOM spaces
1955 are set based on the subspaces it contains. */
1956 som_section_data (section)->space_dict.loader_fix_index = -1;
1957 som_section_data (section)->space_dict.init_pointer_index = -1;
1958 }
1959 else
1960 {
1961 /* Set subspace attributes. Basic stuff is done here, additional
1962 attributes are filled in later as more information becomes
1963 available. */
1964 if (section->flags & SEC_IS_COMMON)
1965 {
1966 som_section_data (section)->subspace_dict.dup_common = 1;
1967 som_section_data (section)->subspace_dict.is_common = 1;
1968 }
1969
1970 if (section->flags & SEC_ALLOC)
1971 som_section_data (section)->subspace_dict.is_loadable = 1;
1972
1973 if (section->flags & SEC_CODE)
1974 som_section_data (section)->subspace_dict.code_only = 1;
1975
1976 som_section_data (section)->subspace_dict.subspace_start =
1977 section->vma;
1978 som_section_data (section)->subspace_dict.subspace_length =
1979 bfd_section_size (abfd, section);
1980 som_section_data (section)->subspace_dict.initialization_length =
1981 bfd_section_size (abfd, section);
1982 som_section_data (section)->subspace_dict.alignment =
1983 1 << section->alignment_power;
1984 }
1985 }
1986 return true;
1987}
1988
5532fc5a
JL
1989/* Count and return the number of spaces attached to the given BFD. */
1990
1991static unsigned long
1992som_count_spaces (abfd)
1993 bfd *abfd;
1994{
1995 int count = 0;
1996 asection *section;
1997
1998 for (section = abfd->sections; section != NULL; section = section->next)
1999 count += som_section_data (section)->is_space;
2000
2001 return count;
2002}
2003
2004/* Count the number of subspaces attached to the given BFD. */
2005
2006static unsigned long
2007som_count_subspaces (abfd)
2008 bfd *abfd;
2009{
2010 int count = 0;
2011 asection *section;
2012
2013 for (section = abfd->sections; section != NULL; section = section->next)
2014 count += som_section_data (section)->is_subspace;
2015
2016 return count;
2017}
2018
2019/* Return -1, 0, 1 indicating the relative ordering of sym1 and sym2.
2020
2021 We desire symbols to be ordered starting with the symbol with the
2022 highest relocation count down to the symbol with the lowest relocation
2023 count. Doing so compacts the relocation stream. */
2024
2025static int
2026compare_syms (sym1, sym2)
2027 asymbol **sym1;
2028 asymbol **sym2;
2029
2030{
2031 unsigned int count1, count2;
2032
2033 /* Get relocation count for each symbol. Note that the count
2034 is stored in the udata pointer for section symbols! */
2035 if ((*sym1)->flags & BSF_SECTION_SYM)
2036 count1 = (int)(*sym1)->udata;
2037 else
50c5c4ad 2038 count1 = som_symbol_data (*sym1)->reloc_count;
5532fc5a
JL
2039
2040 if ((*sym2)->flags & BSF_SECTION_SYM)
2041 count2 = (int)(*sym2)->udata;
2042 else
50c5c4ad 2043 count2 = som_symbol_data (*sym2)->reloc_count;
5532fc5a
JL
2044
2045 /* Return the appropriate value. */
2046 if (count1 < count2)
2047 return 1;
2048 else if (count1 > count2)
2049 return -1;
2050 return 0;
2051}
2052
aff97790
JL
2053/* Perform various work in preparation for emitting the fixup stream. */
2054
2055static void
2056som_prep_for_fixups (abfd, syms, num_syms)
2057 bfd *abfd;
2058 asymbol **syms;
2059 unsigned long num_syms;
2060{
2061 int i;
2062 asection *section;
2063
2064 /* Most SOM relocations involving a symbol have a length which is
2065 dependent on the index of the symbol. So symbols which are
2066 used often in relocations should have a small index. */
2067
2068 /* First initialize the counters for each symbol. */
2069 for (i = 0; i < num_syms; i++)
2070 {
2071 /* Handle a section symbol; these have no pointers back to the
2072 SOM symbol info. So we just use the pointer field (udata)
2073 to hold the relocation count.
2074
2075 FIXME. While we're here set the name of any section symbol
2076 to something which will not screw GDB. How do other formats
2077 deal with this?!? */
2078 if (som_symbol_data (syms[i]) == NULL)
2079 {
2080 syms[i]->flags |= BSF_SECTION_SYM;
2081 syms[i]->name = "L$0\002";
2082 syms[i]->udata = (PTR) 0;
2083 }
2084 else
50c5c4ad 2085 som_symbol_data (syms[i])->reloc_count = 0;
aff97790
JL
2086 }
2087
2088 /* Now that the counters are initialized, make a weighted count
2089 of how often a given symbol is used in a relocation. */
2090 for (section = abfd->sections; section != NULL; section = section->next)
2091 {
2092 int i;
2093
2094 /* Does this section have any relocations? */
2095 if (section->reloc_count <= 0)
2096 continue;
2097
2098 /* Walk through each relocation for this section. */
2099 for (i = 1; i < section->reloc_count; i++)
2100 {
2101 arelent *reloc = section->orelocation[i];
2102 int scale;
2103
2104 /* If no symbol, then there is no counter to increase. */
2105 if (reloc->sym_ptr_ptr == NULL)
2106 continue;
2107
2108 /* Scaling to encourage symbols involved in R_DP_RELATIVE
2109 and R_CODE_ONE_SYMBOL relocations to come first. These
2110 two relocations have single byte versions if the symbol
2111 index is very small. */
2112 if (reloc->howto->type == R_DP_RELATIVE
2113 || reloc->howto->type == R_CODE_ONE_SYMBOL)
2114 scale = 2;
2115 else
2116 scale = 1;
2117
2118 /* Handle section symbols by ramming the count in the udata
2119 field. It will not be used and the count is very important
2120 for these symbols. */
2121 if ((*reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2122 {
2123 (*reloc->sym_ptr_ptr)->udata =
2124 (PTR) ((int) (*reloc->sym_ptr_ptr)->udata + scale);
2125 continue;
2126 }
2127
2128 /* A normal symbol. Increment the count. */
50c5c4ad 2129 som_symbol_data (*reloc->sym_ptr_ptr)->reloc_count += scale;
aff97790
JL
2130 }
2131 }
2132
2133 /* Now sort the symbols. */
2134 qsort (syms, num_syms, sizeof (asymbol *), compare_syms);
2135
2136 /* Compute the symbol indexes, they will be needed by the relocation
2137 code. */
2138 for (i = 0; i < num_syms; i++)
2139 {
2140 /* A section symbol. Again, there is no pointer to backend symbol
2141 information, so we reuse (abuse) the udata field again. */
2142 if (syms[i]->flags & BSF_SECTION_SYM)
2143 syms[i]->udata = (PTR) i;
2144 else
50c5c4ad 2145 som_symbol_data (syms[i])->index = i;
aff97790
JL
2146 }
2147}
2148
9d0dea6f
JL
2149static boolean
2150som_write_fixups (abfd, current_offset, total_reloc_sizep)
2151 bfd *abfd;
2152 unsigned long current_offset;
2153 unsigned int *total_reloc_sizep;
2154{
2155 unsigned int i, j;
2156 unsigned char *tmp_space, *p;
2157 unsigned int total_reloc_size = 0;
2158 unsigned int subspace_reloc_size = 0;
2159 unsigned int num_spaces = obj_som_file_hdr (abfd)->space_total;
2160 asection *section = abfd->sections;
2161
2162 /* Get a chunk of memory that we can use as buffer space, then throw
2163 away. */
2164 tmp_space = alloca (SOM_TMP_BUFSIZE);
6e033f86 2165 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
9d0dea6f
JL
2166 p = tmp_space;
2167
2168 /* All the fixups for a particular subspace are emitted in a single
2169 stream. All the subspaces for a particular space are emitted
2170 as a single stream.
2171
2172 So, to get all the locations correct one must iterate through all the
2173 spaces, for each space iterate through its subspaces and output a
2174 fixups stream. */
2175 for (i = 0; i < num_spaces; i++)
2176 {
2177 asection *subsection;
2178
2179 /* Find a space. */
2180 while (som_section_data (section)->is_space == 0)
2181 section = section->next;
2182
2183 /* Now iterate through each of its subspaces. */
2184 for (subsection = abfd->sections;
2185 subsection != NULL;
2186 subsection = subsection->next)
2187 {
017a52d7 2188 int reloc_offset, current_rounding_mode;
9d0dea6f
JL
2189
2190 /* Find a subspace of this space. */
2191 if (som_section_data (subsection)->is_subspace == 0
2192 || som_section_data (subsection)->containing_space != section)
2193 continue;
2194
2195 /* If this subspace had no relocations, then we're finished
2196 with it. */
2197 if (subsection->reloc_count <= 0)
2198 {
2199 som_section_data (subsection)->subspace_dict.fixup_request_index
2200 = -1;
2201 continue;
2202 }
2203
2204 /* This subspace has some relocations. Put the relocation stream
2205 index into the subspace record. */
2206 som_section_data (subsection)->subspace_dict.fixup_request_index
2207 = total_reloc_size;
2208
2209 /* To make life easier start over with a clean slate for
2210 each subspace. Seek to the start of the relocation stream
2211 for this subspace in preparation for writing out its fixup
2212 stream. */
2213 if (bfd_seek (abfd, current_offset + total_reloc_size, SEEK_SET) != 0)
2214 {
d1ad85a6 2215 bfd_set_error (bfd_error_system_call);
9d0dea6f
JL
2216 return false;
2217 }
2218
2219 /* Buffer space has already been allocated. Just perform some
2220 initialization here. */
2221 p = tmp_space;
2222 subspace_reloc_size = 0;
2223 reloc_offset = 0;
2224 som_initialize_reloc_queue (reloc_queue);
017a52d7 2225 current_rounding_mode = R_N_MODE;
9d0dea6f
JL
2226
2227 /* Translate each BFD relocation into one or more SOM
2228 relocations. */
2229 for (j = 0; j < subsection->reloc_count; j++)
2230 {
2231 arelent *bfd_reloc = subsection->orelocation[j];
2232 unsigned int skip;
2233 int sym_num;
2234
2235 /* Get the symbol number. Remember it's stored in a
2236 special place for section symbols. */
2237 if ((*bfd_reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2238 sym_num = (int) (*bfd_reloc->sym_ptr_ptr)->udata;
2239 else
50c5c4ad 2240 sym_num = som_symbol_data (*bfd_reloc->sym_ptr_ptr)->index;
9d0dea6f
JL
2241
2242 /* If there is not enough room for the next couple relocations,
2243 then dump the current buffer contents now. Also reinitialize
2244 the relocation queue.
2245
7430a991
JL
2246 No single BFD relocation could ever translate into more
2247 than 100 bytes of SOM relocations (20bytes is probably the
2248 upper limit, but leave lots of space for growth). */
9d0dea6f
JL
2249 if (p - tmp_space + 100 > SOM_TMP_BUFSIZE)
2250 {
2251 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2252 != p - tmp_space)
2253 {
d1ad85a6 2254 bfd_set_error (bfd_error_system_call);
9d0dea6f
JL
2255 return false;
2256 }
2257 p = tmp_space;
2258 som_initialize_reloc_queue (reloc_queue);
2259 }
2260
2261 /* Emit R_NO_RELOCATION fixups to map any bytes which were
2262 skipped. */
2263 skip = bfd_reloc->address - reloc_offset;
2264 p = som_reloc_skip (abfd, skip, p,
2265 &subspace_reloc_size, reloc_queue);
2266
2267 /* Update reloc_offset for the next iteration.
2268
017a52d7
JL
2269 Many relocations do not consume input bytes. They
2270 are markers, or set state necessary to perform some
2271 later relocation. */
2272 switch (bfd_reloc->howto->type)
2273 {
2274 /* This only needs to handle relocations that may be
2275 made by hppa_som_gen_reloc. */
2276 case R_ENTRY:
2277 case R_EXIT:
2278 case R_N_MODE:
2279 case R_S_MODE:
2280 case R_D_MODE:
2281 case R_R_MODE:
a36b6f1d
JL
2282 case R_FSEL:
2283 case R_LSEL:
2284 case R_RSEL:
017a52d7
JL
2285 reloc_offset = bfd_reloc->address;
2286 break;
9d0dea6f 2287
017a52d7
JL
2288 default:
2289 reloc_offset = bfd_reloc->address + 4;
2290 break;
2291 }
9d0dea6f
JL
2292
2293 /* Now the actual relocation we care about. */
2294 switch (bfd_reloc->howto->type)
2295 {
2296 case R_PCREL_CALL:
2297 case R_ABS_CALL:
2298 p = som_reloc_call (abfd, p, &subspace_reloc_size,
2299 bfd_reloc, sym_num, reloc_queue);
2300 break;
2301
2302 case R_CODE_ONE_SYMBOL:
2303 case R_DP_RELATIVE:
2304 /* Account for any addend. */
2305 if (bfd_reloc->addend)
2306 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2307 &subspace_reloc_size, reloc_queue);
2308
2309 if (sym_num < 0x20)
2310 {
2311 bfd_put_8 (abfd, bfd_reloc->howto->type + sym_num, p);
2312 subspace_reloc_size += 1;
2313 p += 1;
2314 }
2315 else if (sym_num < 0x100)
2316 {
2317 bfd_put_8 (abfd, bfd_reloc->howto->type + 32, p);
2318 bfd_put_8 (abfd, sym_num, p + 1);
2319 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2320 2, reloc_queue);
2321 }
2322 else if (sym_num < 0x10000000)
2323 {
2324 bfd_put_8 (abfd, bfd_reloc->howto->type + 33, p);
2325 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2326 bfd_put_16 (abfd, sym_num, p + 2);
2327 p = try_prev_fixup (abfd, &subspace_reloc_size,
2328 p, 4, reloc_queue);
2329 }
2330 else
2331 abort ();
2332 break;
2333
2334 case R_DATA_ONE_SYMBOL:
2335 case R_DATA_PLABEL:
2336 case R_CODE_PLABEL:
a36b6f1d 2337 case R_DLT_REL:
9d0dea6f
JL
2338 /* Account for any addend. */
2339 if (bfd_reloc->addend)
2340 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2341 &subspace_reloc_size, reloc_queue);
2342
2343 if (sym_num < 0x100)
2344 {
2345 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2346 bfd_put_8 (abfd, sym_num, p + 1);
2347 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2348 2, reloc_queue);
2349 }
2350 else if (sym_num < 0x10000000)
2351 {
2352 bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
2353 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2354 bfd_put_16 (abfd, sym_num, p + 2);
2355 p = try_prev_fixup (abfd, &subspace_reloc_size,
2356 p, 4, reloc_queue);
2357 }
2358 else
2359 abort ();
2360 break;
2361
2362 case R_ENTRY:
2363 {
2364 int *descp
50c5c4ad 2365 = (int *) som_symbol_data (*bfd_reloc->sym_ptr_ptr)->unwind;
9d0dea6f
JL
2366 bfd_put_8 (abfd, R_ENTRY, p);
2367 bfd_put_32 (abfd, descp[0], p + 1);
2368 bfd_put_32 (abfd, descp[1], p + 5);
2369 p = try_prev_fixup (abfd, &subspace_reloc_size,
2370 p, 9, reloc_queue);
2371 break;
2372 }
2373
2374 case R_EXIT:
2375 bfd_put_8 (abfd, R_EXIT, p);
2376 subspace_reloc_size += 1;
2377 p += 1;
2378 break;
2379
017a52d7
JL
2380 case R_N_MODE:
2381 case R_S_MODE:
2382 case R_D_MODE:
2383 case R_R_MODE:
2384 /* If this relocation requests the current rounding
2385 mode, then it is redundant. */
2386 if (bfd_reloc->howto->type != current_rounding_mode)
2387 {
2388 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2389 subspace_reloc_size += 1;
2390 p += 1;
2391 current_rounding_mode = bfd_reloc->howto->type;
2392 }
2393 break;
2394
a36b6f1d
JL
2395 case R_FSEL:
2396 case R_LSEL:
2397 case R_RSEL:
2398 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2399 subspace_reloc_size += 1;
2400 p += 1;
2401 break;
2402
9d0dea6f
JL
2403 /* Put a "R_RESERVED" relocation in the stream if
2404 we hit something we do not understand. The linker
2405 will complain loudly if this ever happens. */
2406 default:
2407 bfd_put_8 (abfd, 0xff, p);
2408 subspace_reloc_size += 1;
2409 p += 1;
017a52d7 2410 break;
9d0dea6f
JL
2411 }
2412 }
2413
2414 /* Last BFD relocation for a subspace has been processed.
2415 Map the rest of the subspace with R_NO_RELOCATION fixups. */
2416 p = som_reloc_skip (abfd, bfd_section_size (abfd, subsection)
2417 - reloc_offset,
2418 p, &subspace_reloc_size, reloc_queue);
2419
2420 /* Scribble out the relocations. */
2421 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2422 != p - tmp_space)
2423 {
d1ad85a6 2424 bfd_set_error (bfd_error_system_call);
9d0dea6f
JL
2425 return false;
2426 }
2427 p = tmp_space;
2428
2429 total_reloc_size += subspace_reloc_size;
2430 som_section_data (subsection)->subspace_dict.fixup_request_quantity
2431 = subspace_reloc_size;
2432 }
2433 section = section->next;
2434 }
2435 *total_reloc_sizep = total_reloc_size;
2436 return true;
2437}
2438
0b35f7ec
JL
2439/* Write out the space/subspace string table. */
2440
2441static boolean
2442som_write_space_strings (abfd, current_offset, string_sizep)
2443 bfd *abfd;
2444 unsigned long current_offset;
2445 unsigned int *string_sizep;
2446{
2447 unsigned char *tmp_space, *p;
2448 unsigned int strings_size = 0;
2449 asection *section;
2450
2451 /* Get a chunk of memory that we can use as buffer space, then throw
2452 away. */
2453 tmp_space = alloca (SOM_TMP_BUFSIZE);
6e033f86 2454 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
0b35f7ec
JL
2455 p = tmp_space;
2456
2457 /* Seek to the start of the space strings in preparation for writing
2458 them out. */
2459 if (bfd_seek (abfd, current_offset, SEEK_SET) != 0)
2460 {
d1ad85a6 2461 bfd_set_error (bfd_error_system_call);
0b35f7ec
JL
2462 return false;
2463 }
2464
2465 /* Walk through all the spaces and subspaces (order is not important)
2466 building up and writing string table entries for their names. */
2467 for (section = abfd->sections; section != NULL; section = section->next)
2468 {
2469 int length;
2470
2471 /* Only work with space/subspaces; avoid any other sections
2472 which might have been made (.text for example). */
2473 if (som_section_data (section)->is_space == 0
2474 && som_section_data (section)->is_subspace == 0)
2475 continue;
2476
2477 /* Get the length of the space/subspace name. */
2478 length = strlen (section->name);
2479
2480 /* If there is not enough room for the next entry, then dump the
2481 current buffer contents now. Each entry will take 4 bytes to
2482 hold the string length + the string itself + null terminator. */
2483 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2484 {
2485 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2486 != p - tmp_space)
2487 {
d1ad85a6 2488 bfd_set_error (bfd_error_system_call);
0b35f7ec
JL
2489 return false;
2490 }
2491 /* Reset to beginning of the buffer space. */
2492 p = tmp_space;
2493 }
2494
2495 /* First element in a string table entry is the length of the
2496 string. Alignment issues are already handled. */
2497 bfd_put_32 (abfd, length, p);
2498 p += 4;
2499 strings_size += 4;
2500
2501 /* Record the index in the space/subspace records. */
2502 if (som_section_data (section)->is_space)
2503 som_section_data (section)->space_dict.name.n_strx = strings_size;
2504 else
2505 som_section_data (section)->subspace_dict.name.n_strx = strings_size;
2506
2507 /* Next comes the string itself + a null terminator. */
2508 strcpy (p, section->name);
2509 p += length + 1;
2510 strings_size += length + 1;
2511
2512 /* Always align up to the next word boundary. */
2513 while (strings_size % 4)
2514 {
2515 bfd_put_8 (abfd, 0, p);
2516 p++;
2517 strings_size++;
2518 }
2519 }
2520
2521 /* Done with the space/subspace strings. Write out any information
2522 contained in a partial block. */
2523 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd) != p - tmp_space)
2524 {
d1ad85a6 2525 bfd_set_error (bfd_error_system_call);
0b35f7ec
JL
2526 return false;
2527 }
2528 *string_sizep = strings_size;
2529 return true;
2530}
2531
2532/* Write out the symbol string table. */
2533
2534static boolean
2535som_write_symbol_strings (abfd, current_offset, syms, num_syms, string_sizep)
2536 bfd *abfd;
2537 unsigned long current_offset;
2538 asymbol **syms;
2539 unsigned int num_syms;
2540 unsigned int *string_sizep;
2541{
2542 unsigned int i;
2543 unsigned char *tmp_space, *p;
2544 unsigned int strings_size = 0;
2545
2546 /* Get a chunk of memory that we can use as buffer space, then throw
2547 away. */
2548 tmp_space = alloca (SOM_TMP_BUFSIZE);
6e033f86 2549 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
0b35f7ec
JL
2550 p = tmp_space;
2551
2552 /* Seek to the start of the space strings in preparation for writing
2553 them out. */
2554 if (bfd_seek (abfd, current_offset, SEEK_SET) != 0)
2555 {
d1ad85a6 2556 bfd_set_error (bfd_error_system_call);
0b35f7ec
JL
2557 return false;
2558 }
2559
2560 for (i = 0; i < num_syms; i++)
2561 {
2562 int length = strlen (syms[i]->name);
2563
2564 /* If there is not enough room for the next entry, then dump the
2565 current buffer contents now. */
2566 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2567 {
2568 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2569 != p - tmp_space)
2570 {
d1ad85a6 2571 bfd_set_error (bfd_error_system_call);
0b35f7ec
JL
2572 return false;
2573 }
2574 /* Reset to beginning of the buffer space. */
2575 p = tmp_space;
2576 }
2577
2578 /* First element in a string table entry is the length of the
2579 string. This must always be 4 byte aligned. This is also
2580 an appropriate time to fill in the string index field in the
2581 symbol table entry. */
2582 bfd_put_32 (abfd, length, p);
2583 strings_size += 4;
2584 p += 4;
2585
2586 /* Next comes the string itself + a null terminator. */
2587 strcpy (p, syms[i]->name);
2588
2589 /* ACK. FIXME. */
2590 syms[i]->name = (char *)strings_size;
2591 p += length + 1;
2592 strings_size += length + 1;
2593
2594 /* Always align up to the next word boundary. */
2595 while (strings_size % 4)
2596 {
2597 bfd_put_8 (abfd, 0, p);
2598 strings_size++;
2599 p++;
2600 }
2601 }
2602
2603 /* Scribble out any partial block. */
2604 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd) != p - tmp_space)
2605 {
d1ad85a6 2606 bfd_set_error (bfd_error_system_call);
0b35f7ec
JL
2607 return false;
2608 }
2609
2610 *string_sizep = strings_size;
2611 return true;
2612}
2613
6eb64408
JL
2614/* Compute variable information to be placed in the SOM headers,
2615 space/subspace dictionaries, relocation streams, etc. Begin
2616 writing parts of the object file. */
2617
2618static boolean
2619som_begin_writing (abfd)
2620 bfd *abfd;
2621{
2622 unsigned long current_offset = 0;
2623 int strings_size = 0;
2624 unsigned int total_reloc_size = 0;
2625 unsigned long num_spaces, num_subspaces, num_syms, i;
2626 asection *section;
2627 asymbol **syms = bfd_get_outsymbols (abfd);
2628 unsigned int total_subspaces = 0;
2629
2630 /* The file header will always be first in an object file,
2631 everything else can be in random locations. To keep things
2632 "simple" BFD will lay out the object file in the manner suggested
2633 by the PRO ABI for PA-RISC Systems. */
2634
2635 /* Before any output can really begin offsets for all the major
2636 portions of the object file must be computed. So, starting
2637 with the initial file header compute (and sometimes write)
2638 each portion of the object file. */
2639
2640 /* Make room for the file header, it's contents are not complete
2641 yet, so it can not be written at this time. */
2642 current_offset += sizeof (struct header);
2643
2644 /* Any auxiliary headers will follow the file header. Right now
f6c2300b 2645 we support only the copyright and version headers. */
6eb64408
JL
2646 obj_som_file_hdr (abfd)->aux_header_location = current_offset;
2647 obj_som_file_hdr (abfd)->aux_header_size = 0;
f6c2300b
JL
2648 if (obj_som_version_hdr (abfd) != NULL)
2649 {
2650 unsigned int len;
2651
2652 bfd_seek (abfd, current_offset, SEEK_SET);
2653
2654 /* Write the aux_id structure and the string length. */
2655 len = sizeof (struct aux_id) + sizeof (unsigned int);
2656 obj_som_file_hdr (abfd)->aux_header_size += len;
2657 current_offset += len;
2658 if (bfd_write ((PTR) obj_som_version_hdr (abfd), len, 1, abfd) != len)
2659 {
d1ad85a6 2660 bfd_set_error (bfd_error_system_call);
f6c2300b
JL
2661 return false;
2662 }
2663
2664 /* Write the version string. */
39961154 2665 len = obj_som_version_hdr (abfd)->header_id.length - sizeof (int);
f6c2300b
JL
2666 obj_som_file_hdr (abfd)->aux_header_size += len;
2667 current_offset += len;
2668 if (bfd_write ((PTR) obj_som_version_hdr (abfd)->user_string,
2669 len, 1, abfd) != len)
2670 {
d1ad85a6 2671 bfd_set_error (bfd_error_system_call);
f6c2300b
JL
2672 return false;
2673 }
2674 }
6eb64408 2675
f6c2300b
JL
2676 if (obj_som_copyright_hdr (abfd) != NULL)
2677 {
2678 unsigned int len;
2679
2680 bfd_seek (abfd, current_offset, SEEK_SET);
2681
2682 /* Write the aux_id structure and the string length. */
2683 len = sizeof (struct aux_id) + sizeof (unsigned int);
2684 obj_som_file_hdr (abfd)->aux_header_size += len;
2685 current_offset += len;
2686 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd), len, 1, abfd) != len)
2687 {
d1ad85a6 2688 bfd_set_error (bfd_error_system_call);
f6c2300b
JL
2689 return false;
2690 }
2691
2692 /* Write the copyright string. */
39961154 2693 len = obj_som_copyright_hdr (abfd)->header_id.length - sizeof (int);
f6c2300b
JL
2694 obj_som_file_hdr (abfd)->aux_header_size += len;
2695 current_offset += len;
2696 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd)->copyright,
2697 len, 1, abfd) != len)
2698 {
d1ad85a6 2699 bfd_set_error (bfd_error_system_call);
f6c2300b
JL
2700 return false;
2701 }
2702 }
2703
2704 /* Next comes the initialization pointers; we have no initialization
2705 pointers, so current offset does not change. */
6eb64408
JL
2706 obj_som_file_hdr (abfd)->init_array_location = current_offset;
2707 obj_som_file_hdr (abfd)->init_array_total = 0;
2708
2709 /* Next are the space records. These are fixed length records.
2710
2711 Count the number of spaces to determine how much room is needed
2712 in the object file for the space records.
2713
2714 The names of the spaces are stored in a separate string table,
2715 and the index for each space into the string table is computed
2716 below. Therefore, it is not possible to write the space headers
2717 at this time. */
2718 num_spaces = som_count_spaces (abfd);
2719 obj_som_file_hdr (abfd)->space_location = current_offset;
2720 obj_som_file_hdr (abfd)->space_total = num_spaces;
2721 current_offset += num_spaces * sizeof (struct space_dictionary_record);
2722
2723 /* Next are the subspace records. These are fixed length records.
2724
2725 Count the number of subspaes to determine how much room is needed
2726 in the object file for the subspace records.
2727
2728 A variety if fields in the subspace record are still unknown at
2729 this time (index into string table, fixup stream location/size, etc). */
2730 num_subspaces = som_count_subspaces (abfd);
2731 obj_som_file_hdr (abfd)->subspace_location = current_offset;
2732 obj_som_file_hdr (abfd)->subspace_total = num_subspaces;
2733 current_offset += num_subspaces * sizeof (struct subspace_dictionary_record);
2734
2735 /* Next is the string table for the space/subspace names. We will
2736 build and write the string table on the fly. At the same time
2737 we will fill in the space/subspace name index fields. */
2738
2739 /* The string table needs to be aligned on a word boundary. */
2740 if (current_offset % 4)
2741 current_offset += (4 - (current_offset % 4));
2742
2743 /* Mark the offset of the space/subspace string table in the
2744 file header. */
2745 obj_som_file_hdr (abfd)->space_strings_location = current_offset;
2746
2747 /* Scribble out the space strings. */
2748 if (som_write_space_strings (abfd, current_offset, &strings_size) == false)
2749 return false;
2750
2751 /* Record total string table size in the header and update the
2752 current offset. */
2753 obj_som_file_hdr (abfd)->space_strings_size = strings_size;
2754 current_offset += strings_size;
2755
2756 /* Next is the symbol table. These are fixed length records.
2757
2758 Count the number of symbols to determine how much room is needed
2759 in the object file for the symbol table.
2760
2761 The names of the symbols are stored in a separate string table,
2762 and the index for each symbol name into the string table is computed
2763 below. Therefore, it is not possible to write the symobl table
2764 at this time. */
2765 num_syms = bfd_get_symcount (abfd);
2766 obj_som_file_hdr (abfd)->symbol_location = current_offset;
2767 obj_som_file_hdr (abfd)->symbol_total = num_syms;
2768 current_offset += num_syms * sizeof (struct symbol_dictionary_record);
2769
2770 /* Do prep work before handling fixups. */
2771 som_prep_for_fixups (abfd, syms, num_syms);
2772
2773 /* Next comes the fixup stream which starts on a word boundary. */
2774 if (current_offset % 4)
2775 current_offset += (4 - (current_offset % 4));
2776 obj_som_file_hdr (abfd)->fixup_request_location = current_offset;
2777
2778 /* Write the fixups and update fields in subspace headers which
2779 relate to the fixup stream. */
2780 if (som_write_fixups (abfd, current_offset, &total_reloc_size) == false)
2781 return false;
2782
2783 /* Record the total size of the fixup stream in the file header. */
2784 obj_som_file_hdr (abfd)->fixup_request_total = total_reloc_size;
2785 current_offset += total_reloc_size;
2786
2787 /* Next are the symbol strings.
2788 Align them to a word boundary. */
2789 if (current_offset % 4)
2790 current_offset += (4 - (current_offset % 4));
2791 obj_som_file_hdr (abfd)->symbol_strings_location = current_offset;
2792
2793 /* Scribble out the symbol strings. */
2794 if (som_write_symbol_strings (abfd, current_offset, syms,
2795 num_syms, &strings_size)
2796 == false)
2797 return false;
2798
2799 /* Record total string table size in header and update the
2800 current offset. */
2801 obj_som_file_hdr (abfd)->symbol_strings_size = strings_size;
2802 current_offset += strings_size;
2803
2804 /* Next is the compiler records. We do not use these. */
2805 obj_som_file_hdr (abfd)->compiler_location = current_offset;
2806 obj_som_file_hdr (abfd)->compiler_total = 0;
2807
2808 /* Now compute the file positions for the loadable subspaces. */
2809
2810 section = abfd->sections;
2811 for (i = 0; i < num_spaces; i++)
2812 {
2813 asection *subsection;
2814
2815 /* Find a space. */
2816 while (som_section_data (section)->is_space == 0)
2817 section = section->next;
2818
2819 /* Now look for all its subspaces. */
2820 for (subsection = abfd->sections;
2821 subsection != NULL;
2822 subsection = subsection->next)
2823 {
2824
2825 if (som_section_data (subsection)->is_subspace == 0
2826 || som_section_data (subsection)->containing_space != section
2827 || (subsection->flags & SEC_ALLOC) == 0)
2828 continue;
2829
2830 som_section_data (subsection)->subspace_index = total_subspaces++;
2831 /* This is real data to be loaded from the file. */
2832 if (subsection->flags & SEC_LOAD)
2833 {
2834 som_section_data (subsection)->subspace_dict.file_loc_init_value
2835 = current_offset;
2836 section->filepos = current_offset;
2837 current_offset += bfd_section_size (abfd, subsection);
2838 }
2839 /* Looks like uninitialized data. */
2840 else
2841 {
2842 som_section_data (subsection)->subspace_dict.file_loc_init_value
2843 = 0;
2844 som_section_data (subsection)->subspace_dict.
2845 initialization_length = 0;
2846 }
2847 }
2848 /* Goto the next section. */
2849 section = section->next;
2850 }
2851
2852 /* Finally compute the file positions for unloadable subspaces. */
2853
2854 obj_som_file_hdr (abfd)->unloadable_sp_location = current_offset;
2855 section = abfd->sections;
2856 for (i = 0; i < num_spaces; i++)
2857 {
2858 asection *subsection;
2859
2860 /* Find a space. */
2861 while (som_section_data (section)->is_space == 0)
2862 section = section->next;
2863
2864 /* Now look for all its subspaces. */
2865 for (subsection = abfd->sections;
2866 subsection != NULL;
2867 subsection = subsection->next)
2868 {
2869
2870 if (som_section_data (subsection)->is_subspace == 0
2871 || som_section_data (subsection)->containing_space != section
2872 || (subsection->flags & SEC_ALLOC) != 0)
2873 continue;
2874
2875 som_section_data (subsection)->subspace_index = total_subspaces++;
2876 /* This is real data to be loaded from the file. */
2877 if ((subsection->flags & SEC_LOAD) == 0)
2878 {
2879 som_section_data (subsection)->subspace_dict.file_loc_init_value
2880 = current_offset;
2881 section->filepos = current_offset;
2882 current_offset += bfd_section_size (abfd, subsection);
2883 }
2884 /* Looks like uninitialized data. */
2885 else
2886 {
2887 som_section_data (subsection)->subspace_dict.file_loc_init_value
2888 = 0;
2889 som_section_data (subsection)->subspace_dict.
2890 initialization_length = bfd_section_size (abfd, subsection);
2891 }
2892 }
2893 /* Goto the next section. */
2894 section = section->next;
2895 }
2896
2897 obj_som_file_hdr (abfd)->unloadable_sp_size
2898 = current_offset - obj_som_file_hdr (abfd)->unloadable_sp_location;
2899
2900 /* Loader fixups are not supported in any way shape or form. */
2901 obj_som_file_hdr (abfd)->loader_fixup_location = 0;
2902 obj_som_file_hdr (abfd)->loader_fixup_total = 0;
2903
2904 /* Done. Store the total size of the SOM. */
2905 obj_som_file_hdr (abfd)->som_length = current_offset;
2906 return true;
2907}
2908
efc0df7c
JL
2909/* Finally, scribble out the various headers to the disk. */
2910
2911static boolean
2912som_write_headers (abfd)
2913 bfd *abfd;
2914{
2915 int num_spaces = som_count_spaces (abfd);
2916 int i;
2917 int subspace_index = 0;
2918 file_ptr location;
2919 asection *section;
2920
2921 /* Subspaces are written first so that we can set up information
2922 about them in their containing spaces as the subspace is written. */
2923
2924 /* Seek to the start of the subspace dictionary records. */
2925 location = obj_som_file_hdr (abfd)->subspace_location;
2926 bfd_seek (abfd, location, SEEK_SET);
2927 section = abfd->sections;
2928 /* Now for each loadable space write out records for its subspaces. */
2929 for (i = 0; i < num_spaces; i++)
2930 {
2931 asection *subsection;
2932
2933 /* Find a space. */
2934 while (som_section_data (section)->is_space == 0)
2935 section = section->next;
2936
2937 /* Now look for all its subspaces. */
2938 for (subsection = abfd->sections;
2939 subsection != NULL;
2940 subsection = subsection->next)
2941 {
2942
2943 /* Skip any section which does not correspond to a space
2944 or subspace. Or does not have SEC_ALLOC set (and therefore
2945 has no real bits on the disk). */
2946 if (som_section_data (subsection)->is_subspace == 0
2947 || som_section_data (subsection)->containing_space != section
2948 || (subsection->flags & SEC_ALLOC) == 0)
2949 continue;
2950
2951 /* If this is the first subspace for this space, then save
2952 the index of the subspace in its containing space. Also
2953 set "is_loadable" in the containing space. */
2954
2955 if (som_section_data (section)->space_dict.subspace_quantity == 0)
2956 {
2957 som_section_data (section)->space_dict.is_loadable = 1;
2958 som_section_data (section)->space_dict.subspace_index
2959 = subspace_index;
2960 }
2961
2962 /* Increment the number of subspaces seen and the number of
2963 subspaces contained within the current space. */
2964 subspace_index++;
2965 som_section_data (section)->space_dict.subspace_quantity++;
2966
2967 /* Mark the index of the current space within the subspace's
2968 dictionary record. */
2969 som_section_data (subsection)->subspace_dict.space_index = i;
2970
2971 /* Dump the current subspace header. */
2972 if (bfd_write ((PTR) &som_section_data (subsection)->subspace_dict,
2973 sizeof (struct subspace_dictionary_record), 1, abfd)
2974 != sizeof (struct subspace_dictionary_record))
2975 {
d1ad85a6 2976 bfd_set_error (bfd_error_system_call);
efc0df7c
JL
2977 return false;
2978 }
2979 }
2980 /* Goto the next section. */
2981 section = section->next;
2982 }
2983
2984 /* Now repeat the process for unloadable subspaces. */
2985 section = abfd->sections;
2986 /* Now for each space write out records for its subspaces. */
2987 for (i = 0; i < num_spaces; i++)
2988 {
2989 asection *subsection;
2990
2991 /* Find a space. */
2992 while (som_section_data (section)->is_space == 0)
2993 section = section->next;
2994
2995 /* Now look for all its subspaces. */
2996 for (subsection = abfd->sections;
2997 subsection != NULL;
2998 subsection = subsection->next)
2999 {
3000
3001 /* Skip any section which does not correspond to a space or
3002 subspace, or which SEC_ALLOC set (and therefore handled
3003 in the loadable spaces/subspaces code above. */
3004
3005 if (som_section_data (subsection)->is_subspace == 0
3006 || som_section_data (subsection)->containing_space != section
3007 || (subsection->flags & SEC_ALLOC) != 0)
3008 continue;
3009
3010 /* If this is the first subspace for this space, then save
3011 the index of the subspace in its containing space. Clear
3012 "is_loadable". */
3013
3014 if (som_section_data (section)->space_dict.subspace_quantity == 0)
3015 {
3016 som_section_data (section)->space_dict.is_loadable = 0;
3017 som_section_data (section)->space_dict.subspace_index
3018 = subspace_index;
3019 }
3020
3021 /* Increment the number of subspaces seen and the number of
3022 subspaces contained within the current space. */
3023 som_section_data (section)->space_dict.subspace_quantity++;
3024 subspace_index++;
3025
3026 /* Mark the index of the current space within the subspace's
3027 dictionary record. */
3028 som_section_data (subsection)->subspace_dict.space_index = i;
3029
3030 /* Dump this subspace header. */
3031 if (bfd_write ((PTR) &som_section_data (subsection)->subspace_dict,
3032 sizeof (struct subspace_dictionary_record), 1, abfd)
3033 != sizeof (struct subspace_dictionary_record))
3034 {
d1ad85a6 3035 bfd_set_error (bfd_error_system_call);
efc0df7c
JL
3036 return false;
3037 }
3038 }
3039 /* Goto the next section. */
3040 section = section->next;
3041 }
3042
3043 /* All the subspace dictiondary records are written, and all the
3044 fields are set up in the space dictionary records.
3045
3046 Seek to the right location and start writing the space
3047 dictionary records. */
3048 location = obj_som_file_hdr (abfd)->space_location;
3049 bfd_seek (abfd, location, SEEK_SET);
3050
3051 section = abfd->sections;
3052 for (i = 0; i < num_spaces; i++)
3053 {
3054
3055 /* Find a space. */
3056 while (som_section_data (section)->is_space == 0)
3057 section = section->next;
3058
3059 /* Dump its header */
3060 if (bfd_write ((PTR) &som_section_data (section)->space_dict,
3061 sizeof (struct space_dictionary_record), 1, abfd)
3062 != sizeof (struct space_dictionary_record))
3063 {
d1ad85a6 3064 bfd_set_error (bfd_error_system_call);
efc0df7c
JL
3065 return false;
3066 }
3067
3068 /* Goto the next section. */
3069 section = section->next;
3070 }
3071
3072 /* Only thing left to do is write out the file header. It is always
3073 at location zero. Seek there and write it. */
3074 bfd_seek (abfd, (file_ptr) 0, SEEK_SET);
3075 if (bfd_write ((PTR) obj_som_file_hdr (abfd),
3076 sizeof (struct header), 1, abfd)
3077 != sizeof (struct header))
3078 {
d1ad85a6 3079 bfd_set_error (bfd_error_system_call);
efc0df7c
JL
3080 return false;
3081 }
3082 return true;
3083}
3084
980bac64
JL
3085/* Compute and return the checksum for a SOM file header. */
3086
5532fc5a
JL
3087static unsigned long
3088som_compute_checksum (abfd)
3089 bfd *abfd;
3090{
3091 unsigned long checksum, count, i;
3092 unsigned long *buffer = (unsigned long *) obj_som_file_hdr (abfd);
3093
3094 checksum = 0;
3095 count = sizeof (struct header) / sizeof (unsigned long);
3096 for (i = 0; i < count; i++)
3097 checksum ^= *(buffer + i);
3098
3099 return checksum;
3100}
3101
6e033f86
JL
3102static void
3103som_bfd_derive_misc_symbol_info (abfd, sym, info)
3104 bfd *abfd;
3105 asymbol *sym;
3106 struct som_misc_symbol_info *info;
3107{
3108 /* Initialize. */
3109 memset (info, 0, sizeof (struct som_misc_symbol_info));
3110
3111 /* The HP SOM linker requires detailed type information about
3112 all symbols (including undefined symbols!). Unfortunately,
3113 the type specified in an import/export statement does not
3114 always match what the linker wants. Severe braindamage. */
3115
3116 /* Section symbols will not have a SOM symbol type assigned to
3117 them yet. Assign all section symbols type ST_DATA. */
3118 if (sym->flags & BSF_SECTION_SYM)
3119 info->symbol_type = ST_DATA;
3120 else
3121 {
3122 /* Common symbols must have scope SS_UNSAT and type
3123 ST_STORAGE or the linker will choke. */
3124 if (sym->section == &bfd_com_section)
3125 {
3126 info->symbol_scope = SS_UNSAT;
3127 info->symbol_type = ST_STORAGE;
3128 }
3129
3130 /* It is possible to have a symbol without an associated
3131 type. This happens if the user imported the symbol
3132 without a type and the symbol was never defined
3133 locally. If BSF_FUNCTION is set for this symbol, then
3134 assign it type ST_CODE (the HP linker requires undefined
3135 external functions to have type ST_CODE rather than ST_ENTRY). */
3136 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3137 && sym->section == &bfd_und_section
3138 && sym->flags & BSF_FUNCTION)
3139 info->symbol_type = ST_CODE;
3140
3141 /* Handle function symbols which were defined in this file.
3142 They should have type ST_ENTRY. Also retrieve the argument
3143 relocation bits from the SOM backend information. */
3144 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ENTRY
3145 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE
3146 && (sym->flags & BSF_FUNCTION))
3147 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3148 && (sym->flags & BSF_FUNCTION)))
3149 {
3150 info->symbol_type = ST_ENTRY;
3151 info->arg_reloc = som_symbol_data (sym)->tc_data.hppa_arg_reloc;
3152 }
3153
3154 /* If the type is unknown at this point, it should be
3155 ST_DATA (functions were handled as special cases above). */
3156 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN)
3157 info->symbol_type = ST_DATA;
3158
3159 /* From now on it's a very simple mapping. */
3160 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ABSOLUTE)
3161 info->symbol_type = ST_ABSOLUTE;
3162 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
3163 info->symbol_type = ST_CODE;
3164 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_DATA)
3165 info->symbol_type = ST_DATA;
3166 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_MILLICODE)
3167 info->symbol_type = ST_MILLICODE;
3168 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PLABEL)
3169 info->symbol_type = ST_PLABEL;
3170 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PRI_PROG)
3171 info->symbol_type = ST_PRI_PROG;
3172 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_SEC_PROG)
3173 info->symbol_type = ST_SEC_PROG;
3174 }
3175
3176 /* Now handle the symbol's scope. Exported data which is not
3177 in the common section has scope SS_UNIVERSAL. Note scope
3178 of common symbols was handled earlier! */
3179 if (sym->flags & BSF_EXPORT && sym->section != &bfd_com_section)
3180 info->symbol_scope = SS_UNIVERSAL;
3181 /* Any undefined symbol at this point has a scope SS_UNSAT. */
3182 else if (sym->section == &bfd_und_section)
3183 info->symbol_scope = SS_UNSAT;
3184 /* Anything else which is not in the common section has scope
3185 SS_LOCAL. */
3186 else if (sym->section != &bfd_com_section)
3187 info->symbol_scope = SS_LOCAL;
3188
3189 /* Now set the symbol_info field. It has no real meaning
3190 for undefined or common symbols, but the HP linker will
3191 choke if it's not set to some "reasonable" value. We
3192 use zero as a reasonable value. */
3193 if (sym->section == &bfd_com_section || sym->section == &bfd_und_section)
3194 info->symbol_info = 0;
3195 /* For all other symbols, the symbol_info field contains the
3196 subspace index of the space this symbol is contained in. */
3197 else
3198 info->symbol_info = som_section_data (sym->section)->subspace_index;
3199
3200 /* Set the symbol's value. */
3201 info->symbol_value = sym->value + sym->section->vma;
3202}
3203
713de7ec
JL
3204/* Build and write, in one big chunk, the entire symbol table for
3205 this BFD. */
3206
3207static boolean
3208som_build_and_write_symbol_table (abfd)
3209 bfd *abfd;
3210{
3211 unsigned int num_syms = bfd_get_symcount (abfd);
3212 file_ptr symtab_location = obj_som_file_hdr (abfd)->symbol_location;
3213 asymbol **bfd_syms = bfd_get_outsymbols (abfd);
3214 struct symbol_dictionary_record *som_symtab;
3215 int i, symtab_size;
3216
3217 /* Compute total symbol table size and allocate a chunk of memory
3218 to hold the symbol table as we build it. */
3219 symtab_size = num_syms * sizeof (struct symbol_dictionary_record);
3220 som_symtab = (struct symbol_dictionary_record *) alloca (symtab_size);
6e033f86 3221 memset (som_symtab, 0, symtab_size);
713de7ec
JL
3222
3223 /* Walk over each symbol. */
3224 for (i = 0; i < num_syms; i++)
3225 {
6e033f86
JL
3226 struct som_misc_symbol_info info;
3227
713de7ec
JL
3228 /* This is really an index into the symbol strings table.
3229 By the time we get here, the index has already been
3230 computed and stored into the name field in the BFD symbol. */
3231 som_symtab[i].name.n_strx = (int) bfd_syms[i]->name;
3232
6e033f86
JL
3233 /* Derive SOM information from the BFD symbol. */
3234 som_bfd_derive_misc_symbol_info (abfd, bfd_syms[i], &info);
713de7ec 3235
6e033f86
JL
3236 /* Now use it. */
3237 som_symtab[i].symbol_type = info.symbol_type;
3238 som_symtab[i].symbol_scope = info.symbol_scope;
3239 som_symtab[i].arg_reloc = info.arg_reloc;
3240 som_symtab[i].symbol_info = info.symbol_info;
3241 som_symtab[i].symbol_value = info.symbol_value;
713de7ec
JL
3242 }
3243
6e033f86 3244 /* Everything is ready, seek to the right location and
713de7ec
JL
3245 scribble out the symbol table. */
3246 if (bfd_seek (abfd, symtab_location, SEEK_SET) != 0)
3247 {
d1ad85a6 3248 bfd_set_error (bfd_error_system_call);
713de7ec
JL
3249 return false;
3250 }
3251
3252 if (bfd_write ((PTR) som_symtab, symtab_size, 1, abfd) != symtab_size)
3253 {
d1ad85a6 3254 bfd_set_error (bfd_error_system_call);
713de7ec
JL
3255 return false;
3256 }
3257 return true;
3258}
3259
980bac64
JL
3260/* Write an object in SOM format. */
3261
3262static boolean
9e16fcf1 3263som_write_object_contents (abfd)
d9ad93bc
KR
3264 bfd *abfd;
3265{
980bac64
JL
3266 if (abfd->output_has_begun == false)
3267 {
3268 /* Set up fixed parts of the file, space, and subspace headers.
3269 Notify the world that output has begun. */
3270 som_prep_headers (abfd);
3271 abfd->output_has_begun = true;
980bac64
JL
3272 /* Start writing the object file. This include all the string
3273 tables, fixup streams, and other portions of the object file. */
3274 som_begin_writing (abfd);
980bac64
JL
3275 }
3276
3277 /* Now that the symbol table information is complete, build and
3278 write the symbol table. */
3279 if (som_build_and_write_symbol_table (abfd) == false)
3280 return false;
3281
3282 /* Compute the checksum for the file header just before writing
3283 the header to disk. */
3284 obj_som_file_hdr (abfd)->checksum = som_compute_checksum (abfd);
3285 return (som_write_headers (abfd));
d9ad93bc 3286}
980bac64
JL
3287
3288\f
9e16fcf1 3289/* Read and save the string table associated with the given BFD. */
d9ad93bc 3290
9e16fcf1
SG
3291static boolean
3292som_slurp_string_table (abfd)
d9ad93bc
KR
3293 bfd *abfd;
3294{
9e16fcf1
SG
3295 char *stringtab;
3296
3297 /* Use the saved version if its available. */
3298 if (obj_som_stringtab (abfd) != NULL)
3299 return true;
3300
3301 /* Allocate and read in the string table. */
3302 stringtab = bfd_zalloc (abfd, obj_som_stringtab_size (abfd));
3303 if (stringtab == NULL)
3304 {
d1ad85a6 3305 bfd_set_error (bfd_error_no_memory);
9e16fcf1
SG
3306 return false;
3307 }
3308
3309 if (bfd_seek (abfd, obj_som_str_filepos (abfd), SEEK_SET) < 0)
3310 {
d1ad85a6 3311 bfd_set_error (bfd_error_system_call);
9e16fcf1
SG
3312 return false;
3313 }
3314
3315 if (bfd_read (stringtab, obj_som_stringtab_size (abfd), 1, abfd)
3316 != obj_som_stringtab_size (abfd))
3317 {
d1ad85a6 3318 bfd_set_error (bfd_error_system_call);
9e16fcf1
SG
3319 return false;
3320 }
3321
3322 /* Save our results and return success. */
3323 obj_som_stringtab (abfd) = stringtab;
3324 return true;
d9ad93bc
KR
3325}
3326
9e16fcf1
SG
3327/* Return the amount of data (in bytes) required to hold the symbol
3328 table for this object. */
3329
d9ad93bc 3330static unsigned int
9e16fcf1 3331som_get_symtab_upper_bound (abfd)
d9ad93bc 3332 bfd *abfd;
d9ad93bc 3333{
9e16fcf1
SG
3334 if (!som_slurp_symbol_table (abfd))
3335 return 0;
3336
3337 return (bfd_get_symcount (abfd) + 1) * (sizeof (som_symbol_type *));
d9ad93bc
KR
3338}
3339
9e16fcf1
SG
3340/* Convert from a SOM subspace index to a BFD section. */
3341
3342static asection *
3343som_section_from_subspace_index (abfd, index)
3344 bfd *abfd;
3345 unsigned int index;
3346{
3347 asection *section;
3348
3349 for (section = abfd->sections; section != NULL; section = section->next)
3350 if (som_section_data (section)->subspace_index == index)
3351 return section;
3352
3353 /* Should never happen. */
3354 abort();
3355}
3356
3357/* Read and save the symbol table associated with the given BFD. */
3358
d9ad93bc 3359static unsigned int
9e16fcf1 3360som_slurp_symbol_table (abfd)
d9ad93bc 3361 bfd *abfd;
d9ad93bc 3362{
9e16fcf1
SG
3363 int symbol_count = bfd_get_symcount (abfd);
3364 int symsize = sizeof (struct symbol_dictionary_record);
3365 char *stringtab;
3366 struct symbol_dictionary_record *buf, *bufp, *endbufp;
3367 som_symbol_type *sym, *symbase;
3368
3369 /* Return saved value if it exists. */
3370 if (obj_som_symtab (abfd) != NULL)
3371 return true;
3372
24a1f6a0 3373 /* Special case. This is *not* an error. */
9e16fcf1 3374 if (symbol_count == 0)
24a1f6a0 3375 return true;
9e16fcf1
SG
3376
3377 if (!som_slurp_string_table (abfd))
3378 return false;
3379
3380 stringtab = obj_som_stringtab (abfd);
3381
3382 symbase = (som_symbol_type *)
3383 bfd_zalloc (abfd, symbol_count * sizeof (som_symbol_type));
3384 if (symbase == NULL)
3385 {
d1ad85a6 3386 bfd_set_error (bfd_error_no_memory);
9e16fcf1
SG
3387 return false;
3388 }
3389
3390 /* Read in the external SOM representation. */
3391 buf = alloca (symbol_count * symsize);
3392 if (buf == NULL)
3393 {
d1ad85a6 3394 bfd_set_error (bfd_error_no_memory);
9e16fcf1
SG
3395 return false;
3396 }
3397 if (bfd_seek (abfd, obj_som_sym_filepos (abfd), SEEK_SET) < 0)
3398 {
d1ad85a6 3399 bfd_set_error (bfd_error_system_call);
9e16fcf1
SG
3400 return false;
3401 }
3402 if (bfd_read (buf, symbol_count * symsize, 1, abfd)
3403 != symbol_count * symsize)
3404 {
d1ad85a6 3405 bfd_set_error (bfd_error_no_symbols);
9e16fcf1
SG
3406 return (false);
3407 }
3408
3409 /* Iterate over all the symbols and internalize them. */
3410 endbufp = buf + symbol_count;
3411 for (bufp = buf, sym = symbase; bufp < endbufp; ++bufp)
3412 {
3413
3414 /* I don't think we care about these. */
3415 if (bufp->symbol_type == ST_SYM_EXT
3416 || bufp->symbol_type == ST_ARG_EXT)
3417 continue;
3418
6e033f86
JL
3419 /* Set some private data we care about. */
3420 if (bufp->symbol_type == ST_NULL)
3421 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
3422 else if (bufp->symbol_type == ST_ABSOLUTE)
3423 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ABSOLUTE;
3424 else if (bufp->symbol_type == ST_DATA)
3425 som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA;
3426 else if (bufp->symbol_type == ST_CODE)
3427 som_symbol_data (sym)->som_type = SYMBOL_TYPE_CODE;
3428 else if (bufp->symbol_type == ST_PRI_PROG)
3429 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PRI_PROG;
3430 else if (bufp->symbol_type == ST_SEC_PROG)
3431 som_symbol_data (sym)->som_type = SYMBOL_TYPE_SEC_PROG;
3432 else if (bufp->symbol_type == ST_ENTRY)
3433 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ENTRY;
3434 else if (bufp->symbol_type == ST_MILLICODE)
3435 som_symbol_data (sym)->som_type = SYMBOL_TYPE_MILLICODE;
3436 else if (bufp->symbol_type == ST_PLABEL)
3437 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PLABEL;
3438 else
3439 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
3440 som_symbol_data (sym)->tc_data.hppa_arg_reloc = bufp->arg_reloc;
3441
9e16fcf1
SG
3442 /* Some reasonable defaults. */
3443 sym->symbol.the_bfd = abfd;
3444 sym->symbol.name = bufp->name.n_strx + stringtab;
3445 sym->symbol.value = bufp->symbol_value;
3446 sym->symbol.section = 0;
3447 sym->symbol.flags = 0;
3448
3449 switch (bufp->symbol_type)
3450 {
3451 case ST_ENTRY:
36456a67
JL
3452 case ST_PRI_PROG:
3453 case ST_SEC_PROG:
3454 case ST_MILLICODE:
9e16fcf1
SG
3455 sym->symbol.flags |= BSF_FUNCTION;
3456 sym->symbol.value &= ~0x3;
3457 break;
3458
9e16fcf1 3459 case ST_STUB:
9e16fcf1
SG
3460 case ST_CODE:
3461 sym->symbol.value &= ~0x3;
3462
3463 default:
3464 break;
3465 }
3466
3467 /* Handle scoping and section information. */
3468 switch (bufp->symbol_scope)
3469 {
3470 /* symbol_info field is undefined for SS_EXTERNAL and SS_UNSAT symbols,
3471 so the section associated with this symbol can't be known. */
3472 case SS_EXTERNAL:
3473 case SS_UNSAT:
017a52d7
JL
3474 if (bufp->symbol_type != ST_STORAGE)
3475 sym->symbol.section = &bfd_und_section;
3476 else
3477 sym->symbol.section = &bfd_com_section;
9e16fcf1
SG
3478 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
3479 break;
3480
3481 case SS_UNIVERSAL:
3482 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
3483 sym->symbol.section
3484 = som_section_from_subspace_index (abfd, bufp->symbol_info);
3485 sym->symbol.value -= sym->symbol.section->vma;
3486 break;
3487
3488#if 0
3489 /* SS_GLOBAL and SS_LOCAL are two names for the same thing.
3490 Sound dumb? It is. */
3491 case SS_GLOBAL:
3492#endif
3493 case SS_LOCAL:
3494 sym->symbol.flags |= BSF_LOCAL;
3495 sym->symbol.section
3496 = som_section_from_subspace_index (abfd, bufp->symbol_info);
3497 sym->symbol.value -= sym->symbol.section->vma;
3498 break;
3499 }
3500
3501 /* Mark symbols left around by the debugger. */
36456a67 3502 if (strlen (sym->symbol.name) >= 2
9e16fcf1 3503 && sym->symbol.name[0] == 'L'
36456a67
JL
3504 && (sym->symbol.name[1] == '$' || sym->symbol.name[2] == '$'
3505 || sym->symbol.name[3] == '$'))
9e16fcf1
SG
3506 sym->symbol.flags |= BSF_DEBUGGING;
3507
3508 /* Note increment at bottom of loop, since we skip some symbols
3509 we can not include it as part of the for statement. */
3510 sym++;
3511 }
3512
3513 /* Save our results and return success. */
3514 obj_som_symtab (abfd) = symbase;
3515 return (true);
d9ad93bc
KR
3516}
3517
9e16fcf1
SG
3518/* Canonicalize a SOM symbol table. Return the number of entries
3519 in the symbol table. */
d9ad93bc
KR
3520
3521static unsigned int
9e16fcf1 3522som_get_symtab (abfd, location)
d9ad93bc
KR
3523 bfd *abfd;
3524 asymbol **location;
3525{
9e16fcf1
SG
3526 int i;
3527 som_symbol_type *symbase;
3528
3529 if (!som_slurp_symbol_table (abfd))
3530 return 0;
3531
3532 i = bfd_get_symcount (abfd);
3533 symbase = obj_som_symtab (abfd);
3534
3535 for (; i > 0; i--, location++, symbase++)
3536 *location = &symbase->symbol;
3537
3538 /* Final null pointer. */
3539 *location = 0;
3540 return (bfd_get_symcount (abfd));
d9ad93bc
KR
3541}
3542
9e16fcf1
SG
3543/* Make a SOM symbol. There is nothing special to do here. */
3544
d9ad93bc 3545static asymbol *
9e16fcf1 3546som_make_empty_symbol (abfd)
d9ad93bc
KR
3547 bfd *abfd;
3548{
9e16fcf1
SG
3549 som_symbol_type *new =
3550 (som_symbol_type *) bfd_zalloc (abfd, sizeof (som_symbol_type));
3551 if (new == NULL)
3552 {
d1ad85a6 3553 bfd_set_error (bfd_error_no_memory);
9e16fcf1
SG
3554 return 0;
3555 }
d9ad93bc
KR
3556 new->symbol.the_bfd = abfd;
3557
3558 return &new->symbol;
3559}
3560
9e16fcf1
SG
3561/* Print symbol information. */
3562
d9ad93bc 3563static void
9e16fcf1 3564som_print_symbol (ignore_abfd, afile, symbol, how)
d9ad93bc
KR
3565 bfd *ignore_abfd;
3566 PTR afile;
3567 asymbol *symbol;
3568 bfd_print_symbol_type how;
3569{
9e16fcf1
SG
3570 FILE *file = (FILE *) afile;
3571 switch (how)
3572 {
3573 case bfd_print_symbol_name:
3574 fprintf (file, "%s", symbol->name);
3575 break;
3576 case bfd_print_symbol_more:
3577 fprintf (file, "som ");
3578 fprintf_vma (file, symbol->value);
3579 fprintf (file, " %lx", (long) symbol->flags);
3580 break;
3581 case bfd_print_symbol_all:
3582 {
3583 CONST char *section_name;
3584 section_name = symbol->section ? symbol->section->name : "(*none*)";
3585 bfd_print_symbol_vandf ((PTR) file, symbol);
3586 fprintf (file, " %s\t%s", section_name, symbol->name);
3587 break;
3588 }
3589 }
3590}
3591
36456a67
JL
3592/* Count or process variable-length SOM fixup records.
3593
3594 To avoid code duplication we use this code both to compute the number
3595 of relocations requested by a stream, and to internalize the stream.
3596
3597 When computing the number of relocations requested by a stream the
3598 variables rptr, section, and symbols have no meaning.
3599
3600 Return the number of relocations requested by the fixup stream. When
3601 not just counting
3602
3603 This needs at least two or three more passes to get it cleaned up. */
3604
3605static unsigned int
3606som_set_reloc_info (fixup, end, internal_relocs, section, symbols, just_count)
3607 unsigned char *fixup;
3608 unsigned int end;
3609 arelent *internal_relocs;
3610 asection *section;
3611 asymbol **symbols;
3612 boolean just_count;
3613{
3614 unsigned int op, varname;
3615 unsigned char *end_fixups = &fixup[end];
3616 const struct fixup_format *fp;
3617 char *cp;
3618 unsigned char *save_fixup;
3619 int variables[26], stack[20], c, v, count, prev_fixup, *sp;
3620 const int *subop;
3621 arelent *rptr= internal_relocs;
3622 unsigned int offset = just_count ? 0 : section->vma;
3623
3624#define var(c) variables[(c) - 'A']
3625#define push(v) (*sp++ = (v))
3626#define pop() (*--sp)
3627#define emptystack() (sp == stack)
3628
3629 som_initialize_reloc_queue (reloc_queue);
6e033f86
JL
3630 memset (variables, 0, sizeof (variables));
3631 memset (stack, 0, sizeof (stack));
36456a67
JL
3632 count = 0;
3633 prev_fixup = 0;
3634 sp = stack;
3635
3636 while (fixup < end_fixups)
3637 {
3638
3639 /* Save pointer to the start of this fixup. We'll use
3640 it later to determine if it is necessary to put this fixup
3641 on the queue. */
3642 save_fixup = fixup;
3643
3644 /* Get the fixup code and its associated format. */
3645 op = *fixup++;
3646 fp = &som_fixup_formats[op];
3647
3648 /* Handle a request for a previous fixup. */
3649 if (*fp->format == 'P')
3650 {
3651 /* Get pointer to the beginning of the prev fixup, move
3652 the repeated fixup to the head of the queue. */
3653 fixup = reloc_queue[fp->D].reloc;
3654 som_reloc_queue_fix (reloc_queue, fp->D);
3655 prev_fixup = 1;
3656
3657 /* Get the fixup code and its associated format. */
3658 op = *fixup++;
3659 fp = &som_fixup_formats[op];
3660 }
3661
3662 /* If we are not just counting, set some reasonable defaults. */
3663 if (! just_count)
3664 {
3665 rptr->address = offset;
3666 rptr->howto = &som_hppa_howto_table[op];
3667 rptr->addend = 0;
6941fd4d 3668 rptr->sym_ptr_ptr = bfd_abs_section.symbol_ptr_ptr;
36456a67
JL
3669 }
3670
3671 /* Set default input length to 0. Get the opcode class index
3672 into D. */
3673 var ('L') = 0;
3674 var ('D') = fp->D;
3675
3676 /* Get the opcode format. */
3677 cp = fp->format;
3678
3679 /* Process the format string. Parsing happens in two phases,
3680 parse RHS, then assign to LHS. Repeat until no more
3681 characters in the format string. */
3682 while (*cp)
3683 {
3684 /* The variable this pass is going to compute a value for. */
3685 varname = *cp++;
3686
3687 /* Start processing RHS. Continue until a NULL or '=' is found. */
3688 do
3689 {
3690 c = *cp++;
3691
3692 /* If this is a variable, push it on the stack. */
3693 if (isupper (c))
3694 push (var (c));
3695
3696 /* If this is a lower case letter, then it represents
3697 additional data from the fixup stream to be pushed onto
3698 the stack. */
3699 else if (islower (c))
3700 {
3701 for (v = 0; c > 'a'; --c)
3702 v = (v << 8) | *fixup++;
3703 push (v);
3704 }
3705
3706 /* A decimal constant. Push it on the stack. */
3707 else if (isdigit (c))
3708 {
3709 v = c - '0';
3710 while (isdigit (*cp))
3711 v = (v * 10) + (*cp++ - '0');
3712 push (v);
3713 }
3714 else
3715
3716 /* An operator. Pop two two values from the stack and
3717 use them as operands to the given operation. Push
3718 the result of the operation back on the stack. */
3719 switch (c)
3720 {
3721 case '+':
3722 v = pop ();
3723 v += pop ();
3724 push (v);
3725 break;
3726 case '*':
3727 v = pop ();
3728 v *= pop ();
3729 push (v);
3730 break;
3731 case '<':
3732 v = pop ();
3733 v = pop () << v;
3734 push (v);
3735 break;
3736 default:
3737 abort ();
3738 }
3739 }
3740 while (*cp && *cp != '=');
3741
3742 /* Move over the equal operator. */
3743 cp++;
3744
3745 /* Pop the RHS off the stack. */
3746 c = pop ();
3747
3748 /* Perform the assignment. */
3749 var (varname) = c;
3750
3751 /* Handle side effects. and special 'O' stack cases. */
3752 switch (varname)
3753 {
3754 /* Consume some bytes from the input space. */
3755 case 'L':
3756 offset += c;
3757 break;
3758 /* A symbol to use in the relocation. Make a note
3759 of this if we are not just counting. */
3760 case 'S':
3761 if (! just_count)
3762 rptr->sym_ptr_ptr = &symbols[c];
3763 break;
3764 /* Handle the linker expression stack. */
3765 case 'O':
3766 switch (op)
3767 {
3768 case R_COMP1:
3769 subop = comp1_opcodes;
3770 break;
3771 case R_COMP2:
3772 subop = comp2_opcodes;
3773 break;
3774 case R_COMP3:
3775 subop = comp3_opcodes;
3776 break;
3777 default:
3778 abort ();
3779 }
3780 while (*subop <= (unsigned char) c)
3781 ++subop;
3782 --subop;
3783 break;
3784 default:
3785 break;
3786 }
3787 }
3788
3789 /* If we used a previous fixup, clean up after it. */
3790 if (prev_fixup)
3791 {
3792 fixup = save_fixup + 1;
3793 prev_fixup = 0;
3794 }
3795 /* Queue it. */
3796 else if (fixup > save_fixup + 1)
3797 som_reloc_queue_insert (save_fixup, fixup - save_fixup, reloc_queue);
3798
3799 /* We do not pass R_DATA_OVERRIDE or R_NO_RELOCATION
3800 fixups to BFD. */
3801 if (som_hppa_howto_table[op].type != R_DATA_OVERRIDE
3802 && som_hppa_howto_table[op].type != R_NO_RELOCATION)
3803 {
3804 /* Done with a single reloction. Loop back to the top. */
3805 if (! just_count)
3806 {
3807 rptr->addend = var ('V');
3808 rptr++;
3809 }
3810 count++;
3811 /* Now that we've handled a "full" relocation, reset
3812 some state. */
6e033f86
JL
3813 memset (variables, 0, sizeof (variables));
3814 memset (stack, 0, sizeof (stack));
36456a67
JL
3815 }
3816 }
3817 return count;
3818
3819#undef var
3820#undef push
3821#undef pop
3822#undef emptystack
3823}
3824
3825/* Read in the relocs (aka fixups in SOM terms) for a section.
3826
3827 som_get_reloc_upper_bound calls this routine with JUST_COUNT
3828 set to true to indicate it only needs a count of the number
3829 of actual relocations. */
3830
3831static boolean
3832som_slurp_reloc_table (abfd, section, symbols, just_count)
3833 bfd *abfd;
3834 asection *section;
3835 asymbol **symbols;
3836 boolean just_count;
3837{
3838 char *external_relocs;
3839 unsigned int fixup_stream_size;
3840 arelent *internal_relocs;
3841 unsigned int num_relocs;
3842
3843 fixup_stream_size = som_section_data (section)->reloc_size;
3844 /* If there were no relocations, then there is nothing to do. */
3845 if (section->reloc_count == 0)
3846 return true;
3847
3848 /* If reloc_count is -1, then the relocation stream has not been
3849 parsed. We must do so now to know how many relocations exist. */
3850 if (section->reloc_count == -1)
3851 {
3852 external_relocs = (char *) bfd_zalloc (abfd, fixup_stream_size);
3853 if (external_relocs == (char *) NULL)
3854 {
d1ad85a6 3855 bfd_set_error (bfd_error_no_memory);
36456a67
JL
3856 return false;
3857 }
3858 /* Read in the external forms. */
3859 if (bfd_seek (abfd,
3860 obj_som_reloc_filepos (abfd) + section->rel_filepos,
3861 SEEK_SET)
3862 != 0)
3863 {
d1ad85a6 3864 bfd_set_error (bfd_error_system_call);
36456a67
JL
3865 return false;
3866 }
3867 if (bfd_read (external_relocs, 1, fixup_stream_size, abfd)
3868 != fixup_stream_size)
3869 {
d1ad85a6 3870 bfd_set_error (bfd_error_system_call);
36456a67
JL
3871 return false;
3872 }
3873 /* Let callers know how many relocations found.
3874 also save the relocation stream as we will
3875 need it again. */
3876 section->reloc_count = som_set_reloc_info (external_relocs,
3877 fixup_stream_size,
3878 NULL, NULL, NULL, true);
3879
3880 som_section_data (section)->reloc_stream = external_relocs;
3881 }
3882
3883 /* If the caller only wanted a count, then return now. */
3884 if (just_count)
3885 return true;
3886
3887 num_relocs = section->reloc_count;
3888 external_relocs = som_section_data (section)->reloc_stream;
3889 /* Return saved information about the relocations if it is available. */
3890 if (section->relocation != (arelent *) NULL)
3891 return true;
3892
3893 internal_relocs = (arelent *) bfd_zalloc (abfd,
3894 num_relocs * sizeof (arelent));
3895 if (internal_relocs == (arelent *) NULL)
3896 {
d1ad85a6 3897 bfd_set_error (bfd_error_no_memory);
36456a67
JL
3898 return false;
3899 }
3900
3901 /* Process and internalize the relocations. */
3902 som_set_reloc_info (external_relocs, fixup_stream_size,
3903 internal_relocs, section, symbols, false);
3904
3905 /* Save our results and return success. */
3906 section->relocation = internal_relocs;
3907 return (true);
3908}
3909
3910/* Return the number of bytes required to store the relocation
3911 information associated with the given section. */
3912
9e16fcf1
SG
3913static unsigned int
3914som_get_reloc_upper_bound (abfd, asect)
3915 bfd *abfd;
3916 sec_ptr asect;
3917{
36456a67
JL
3918 /* If section has relocations, then read in the relocation stream
3919 and parse it to determine how many relocations exist. */
3920 if (asect->flags & SEC_RELOC)
3921 {
3922 if (som_slurp_reloc_table (abfd, asect, NULL, true))
3923 return (asect->reloc_count + 1) * sizeof (arelent);
3924 }
3925 /* Either there are no relocations or an error occurred while
3926 reading and parsing the relocation stream. */
3927 return 0;
d9ad93bc
KR
3928}
3929
36456a67
JL
3930/* Convert relocations from SOM (external) form into BFD internal
3931 form. Return the number of relocations. */
3932
9e16fcf1
SG
3933static unsigned int
3934som_canonicalize_reloc (abfd, section, relptr, symbols)
3935 bfd *abfd;
3936 sec_ptr section;
3937 arelent **relptr;
3938 asymbol **symbols;
3939{
36456a67
JL
3940 arelent *tblptr;
3941 int count;
3942
3943 if (som_slurp_reloc_table (abfd, section, symbols, false) == false)
3944 return 0;
3945
3946 count = section->reloc_count;
3947 tblptr = section->relocation;
3948 if (tblptr == (arelent *) NULL)
3949 return 0;
3950
3951 while (count--)
3952 *relptr++ = tblptr++;
3953
3954 *relptr = (arelent *) NULL;
3955 return section->reloc_count;
9e16fcf1
SG
3956}
3957
3958extern bfd_target som_vec;
3959
3960/* A hook to set up object file dependent section information. */
3961
d9ad93bc 3962static boolean
9e16fcf1 3963som_new_section_hook (abfd, newsect)
d9ad93bc
KR
3964 bfd *abfd;
3965 asection *newsect;
3966{
9783e04a
DM
3967 newsect->used_by_bfd =
3968 (PTR) bfd_zalloc (abfd, sizeof (struct som_section_data_struct));
3969 if (!newsect->used_by_bfd)
3970 {
d1ad85a6 3971 bfd_set_error (bfd_error_no_memory);
9783e04a
DM
3972 return false;
3973 }
d9ad93bc
KR
3974 newsect->alignment_power = 3;
3975
9e16fcf1
SG
3976 /* Initialize the subspace_index field to -1 so that it does
3977 not match a subspace with an index of 0. */
3978 som_section_data (newsect)->subspace_index = -1;
3979
d9ad93bc
KR
3980 /* We allow more than three sections internally */
3981 return true;
3982}
3983
40249bfb
JL
3984/* Set backend info for sections which can not be described
3985 in the BFD data structures. */
3986
3987void
3988bfd_som_set_section_attributes (section, defined, private, sort_key, spnum)
3989 asection *section;
6941fd4d
JL
3990 int defined;
3991 int private;
40249bfb
JL
3992 unsigned char sort_key;
3993 int spnum;
3994{
3995 struct space_dictionary_record *space_dict;
3996
3997 som_section_data (section)->is_space = 1;
3998 space_dict = &som_section_data (section)->space_dict;
3999 space_dict->is_defined = defined;
4000 space_dict->is_private = private;
4001 space_dict->sort_key = sort_key;
4002 space_dict->space_number = spnum;
4003}
4004
4005/* Set backend info for subsections which can not be described
4006 in the BFD data structures. */
4007
4008void
4009bfd_som_set_subsection_attributes (section, container, access,
4010 sort_key, quadrant)
4011 asection *section;
4012 asection *container;
4013 int access;
6941fd4d 4014 unsigned int sort_key;
40249bfb
JL
4015 int quadrant;
4016{
4017 struct subspace_dictionary_record *subspace_dict;
4018 som_section_data (section)->is_subspace = 1;
4019 subspace_dict = &som_section_data (section)->subspace_dict;
4020 subspace_dict->access_control_bits = access;
4021 subspace_dict->sort_key = sort_key;
4022 subspace_dict->quadrant = quadrant;
4023 som_section_data (section)->containing_space = container;
4024}
4025
4026/* Set the full SOM symbol type. SOM needs far more symbol information
4027 than any other object file format I'm aware of. It is mandatory
4028 to be able to know if a symbol is an entry point, millicode, data,
4029 code, absolute, storage request, or procedure label. If you get
4030 the symbol type wrong your program will not link. */
4031
4032void
4033bfd_som_set_symbol_type (symbol, type)
4034 asymbol *symbol;
4035 unsigned int type;
4036{
50c5c4ad 4037 som_symbol_data (symbol)->som_type = type;
40249bfb
JL
4038}
4039
4040/* Attach 64bits of unwind information to a symbol (which hopefully
4041 is a function of some kind!). It would be better to keep this
4042 in the R_ENTRY relocation, but there is not enough space. */
4043
4044void
4045bfd_som_attach_unwind_info (symbol, unwind_desc)
4046 asymbol *symbol;
4047 char *unwind_desc;
4048{
50c5c4ad 4049 som_symbol_data (symbol)->unwind = unwind_desc;
40249bfb
JL
4050}
4051
f6c2300b
JL
4052/* Attach an auxiliary header to the BFD backend so that it may be
4053 written into the object file. */
4054void
4055bfd_som_attach_aux_hdr (abfd, type, string)
4056 bfd *abfd;
4057 int type;
4058 char *string;
4059{
4060 if (type == VERSION_AUX_ID)
4061 {
4062 int len = strlen (string);
39961154 4063 int pad = 0;
f6c2300b
JL
4064
4065 if (len % 4)
39961154 4066 pad = (4 - (len % 4));
a62dd44f
JL
4067 obj_som_version_hdr (abfd) = (struct user_string_aux_hdr *)
4068 bfd_zalloc (abfd, sizeof (struct aux_id)
9783e04a
DM
4069 + sizeof (unsigned int) + len + pad);
4070 if (!obj_som_version_hdr (abfd))
4071 {
d1ad85a6 4072 bfd_set_error (bfd_error_no_memory);
9783e04a
DM
4073 abort(); /* FIXME */
4074 }
f6c2300b 4075 obj_som_version_hdr (abfd)->header_id.type = VERSION_AUX_ID;
39961154
JL
4076 obj_som_version_hdr (abfd)->header_id.length = len + pad;
4077 obj_som_version_hdr (abfd)->header_id.length += sizeof (int);
f6c2300b 4078 obj_som_version_hdr (abfd)->string_length = len;
39961154 4079 strncpy (obj_som_version_hdr (abfd)->user_string, string, len);
f6c2300b
JL
4080 }
4081 else if (type == COPYRIGHT_AUX_ID)
4082 {
4083 int len = strlen (string);
39961154 4084 int pad = 0;
f6c2300b
JL
4085
4086 if (len % 4)
39961154 4087 pad = (4 - (len % 4));
a62dd44f
JL
4088 obj_som_copyright_hdr (abfd) = (struct copyright_aux_hdr *)
4089 bfd_zalloc (abfd, sizeof (struct aux_id)
4090 + sizeof (unsigned int) + len + pad);
9783e04a
DM
4091 if (!obj_som_copyright_hdr (abfd))
4092 {
d1ad85a6 4093 bfd_set_error (bfd_error_no_error);
9783e04a
DM
4094 abort(); /* FIXME */
4095 }
f6c2300b 4096 obj_som_copyright_hdr (abfd)->header_id.type = COPYRIGHT_AUX_ID;
39961154
JL
4097 obj_som_copyright_hdr (abfd)->header_id.length = len + pad;
4098 obj_som_copyright_hdr (abfd)->header_id.length += sizeof (int);
f6c2300b
JL
4099 obj_som_copyright_hdr (abfd)->string_length = len;
4100 strcpy (obj_som_copyright_hdr (abfd)->copyright, string);
4101 }
4102 else
4103 abort ();
4104}
4105
d9ad93bc 4106static boolean
9e16fcf1 4107som_set_section_contents (abfd, section, location, offset, count)
d9ad93bc
KR
4108 bfd *abfd;
4109 sec_ptr section;
4110 PTR location;
4111 file_ptr offset;
4112 bfd_size_type count;
4113{
980bac64
JL
4114 if (abfd->output_has_begun == false)
4115 {
4116 /* Set up fixed parts of the file, space, and subspace headers.
4117 Notify the world that output has begun. */
4118 som_prep_headers (abfd);
4119 abfd->output_has_begun = true;
980bac64
JL
4120 /* Start writing the object file. This include all the string
4121 tables, fixup streams, and other portions of the object file. */
4122 som_begin_writing (abfd);
980bac64
JL
4123 }
4124
4125 /* Only write subspaces which have "real" contents (eg. the contents
4126 are not generated at run time by the OS). */
4127 if (som_section_data (section)->is_subspace != 1
4128 || ((section->flags & (SEC_LOAD | SEC_DEBUGGING)) == 0))
4129 return true;
4130
4131 /* Seek to the proper offset within the object file and write the
4132 data. */
4133 offset += som_section_data (section)->subspace_dict.file_loc_init_value;
4134 if (bfd_seek (abfd, offset, SEEK_SET) == -1)
4135 {
d1ad85a6 4136 bfd_set_error (bfd_error_system_call);
980bac64
JL
4137 return false;
4138 }
4139
4140 if (bfd_write ((PTR) location, 1, count, abfd) != count)
4141 {
d1ad85a6 4142 bfd_set_error (bfd_error_system_call);
980bac64
JL
4143 return false;
4144 }
4145 return true;
d9ad93bc
KR
4146}
4147
4148static boolean
9e16fcf1 4149som_set_arch_mach (abfd, arch, machine)
d9ad93bc
KR
4150 bfd *abfd;
4151 enum bfd_architecture arch;
4152 unsigned long machine;
4153{
2212ff92 4154 /* Allow any architecture to be supported by the SOM backend */
d9ad93bc
KR
4155 return bfd_default_set_arch_mach (abfd, arch, machine);
4156}
4157
4158static boolean
9e16fcf1 4159som_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
d9ad93bc
KR
4160 functionname_ptr, line_ptr)
4161 bfd *abfd;
4162 asection *section;
4163 asymbol **symbols;
4164 bfd_vma offset;
4165 CONST char **filename_ptr;
4166 CONST char **functionname_ptr;
4167 unsigned int *line_ptr;
4168{
9e16fcf1 4169 fprintf (stderr, "som_find_nearest_line unimplemented\n");
d9ad93bc
KR
4170 fflush (stderr);
4171 abort ();
4172 return (false);
4173}
4174
4175static int
9e16fcf1 4176som_sizeof_headers (abfd, reloc)
d9ad93bc
KR
4177 bfd *abfd;
4178 boolean reloc;
4179{
9e16fcf1 4180 fprintf (stderr, "som_sizeof_headers unimplemented\n");
d9ad93bc
KR
4181 fflush (stderr);
4182 abort ();
4183 return (0);
4184}
4185
017a52d7
JL
4186/* Return the single-character symbol type corresponding to
4187 SOM section S, or '?' for an unknown SOM section. */
4188
4189static char
4190som_section_type (s)
4191 const char *s;
4192{
4193 const struct section_to_type *t;
4194
4195 for (t = &stt[0]; t->section; t++)
4196 if (!strcmp (s, t->section))
4197 return t->type;
4198 return '?';
4199}
4200
4201static int
4202som_decode_symclass (symbol)
4203 asymbol *symbol;
4204{
4205 char c;
4206
4207 if (bfd_is_com_section (symbol->section))
4208 return 'C';
4209 if (symbol->section == &bfd_und_section)
4210 return 'U';
4211 if (symbol->section == &bfd_ind_section)
4212 return 'I';
4213 if (!(symbol->flags & (BSF_GLOBAL|BSF_LOCAL)))
4214 return '?';
4215
4216 if (symbol->section == &bfd_abs_section)
4217 c = 'a';
4218 else if (symbol->section)
4219 c = som_section_type (symbol->section->name);
4220 else
4221 return '?';
4222 if (symbol->flags & BSF_GLOBAL)
4223 c = toupper (c);
4224 return c;
4225}
4226
d9ad93bc
KR
4227/* Return information about SOM symbol SYMBOL in RET. */
4228
4229static void
9e16fcf1 4230som_get_symbol_info (ignore_abfd, symbol, ret)
017a52d7 4231 bfd *ignore_abfd;
d9ad93bc
KR
4232 asymbol *symbol;
4233 symbol_info *ret;
4234{
017a52d7
JL
4235 ret->type = som_decode_symclass (symbol);
4236 if (ret->type != 'U')
4237 ret->value = symbol->value+symbol->section->vma;
4238 else
4239 ret->value = 0;
4240 ret->name = symbol->name;
d9ad93bc
KR
4241}
4242
3c37f9ca
JL
4243/* Count the number of symbols in the archive symbol table. Necessary
4244 so that we can allocate space for all the carsyms at once. */
4245
4246static boolean
4247som_bfd_count_ar_symbols (abfd, lst_header, count)
4248 bfd *abfd;
4249 struct lst_header *lst_header;
4250 symindex *count;
4251{
4252 unsigned int i;
4253 unsigned int hash_table[lst_header->hash_size];
4254 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
4255
4256 /* Don't forget to initialize the counter! */
4257 *count = 0;
4258
4259 /* Read in the hash table. The has table is an array of 32bit file offsets
4260 which point to the hash chains. */
4261 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
4262 != lst_header->hash_size * 4)
4263 {
d1ad85a6 4264 bfd_set_error (bfd_error_system_call);
3c37f9ca
JL
4265 return false;
4266 }
4267
4268 /* Walk each chain counting the number of symbols found on that particular
4269 chain. */
4270 for (i = 0; i < lst_header->hash_size; i++)
4271 {
4272 struct lst_symbol_record lst_symbol;
4273
4274 /* An empty chain has zero as it's file offset. */
4275 if (hash_table[i] == 0)
4276 continue;
4277
4278 /* Seek to the first symbol in this hash chain. */
4279 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
4280 {
d1ad85a6 4281 bfd_set_error (bfd_error_system_call);
3c37f9ca
JL
4282 return false;
4283 }
4284
4285 /* Read in this symbol and update the counter. */
4286 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4287 != sizeof (lst_symbol))
4288 {
d1ad85a6 4289 bfd_set_error (bfd_error_system_call);
3c37f9ca
JL
4290 return false;
4291 }
4292 (*count)++;
4293
4294 /* Now iterate through the rest of the symbols on this chain. */
4295 while (lst_symbol.next_entry)
4296 {
4297
4298 /* Seek to the next symbol. */
4299 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
4300 < 0)
4301 {
d1ad85a6 4302 bfd_set_error (bfd_error_system_call);
3c37f9ca
JL
4303 return false;
4304 }
4305
4306 /* Read the symbol in and update the counter. */
4307 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4308 != sizeof (lst_symbol))
4309 {
d1ad85a6 4310 bfd_set_error (bfd_error_system_call);
3c37f9ca
JL
4311 return false;
4312 }
4313 (*count)++;
4314 }
4315 }
4316 return true;
4317}
4318
4319/* Fill in the canonical archive symbols (SYMS) from the archive described
4320 by ABFD and LST_HEADER. */
4321
4322static boolean
4323som_bfd_fill_in_ar_symbols (abfd, lst_header, syms)
4324 bfd *abfd;
4325 struct lst_header *lst_header;
4326 carsym **syms;
4327{
4328 unsigned int i, len;
4329 carsym *set = syms[0];
4330 unsigned int hash_table[lst_header->hash_size];
4331 struct som_entry som_dict[lst_header->module_count];
4332 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
4333
4334 /* Read in the hash table. The has table is an array of 32bit file offsets
4335 which point to the hash chains. */
4336 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
4337 != lst_header->hash_size * 4)
4338 {
d1ad85a6 4339 bfd_set_error (bfd_error_system_call);
3c37f9ca
JL
4340 return false;
4341 }
4342
4343 /* Seek to and read in the SOM dictionary. We will need this to fill
4344 in the carsym's filepos field. */
4345 if (bfd_seek (abfd, lst_filepos + lst_header->dir_loc, SEEK_SET) < 0)
4346 {
d1ad85a6 4347 bfd_set_error (bfd_error_system_call);
3c37f9ca
JL
4348 return false;
4349 }
4350
4351 if (bfd_read ((PTR) som_dict, lst_header->module_count,
4352 sizeof (struct som_entry), abfd)
4353 != lst_header->module_count * sizeof (struct som_entry))
4354 {
d1ad85a6 4355 bfd_set_error (bfd_error_system_call);
3c37f9ca
JL
4356 return false;
4357 }
4358
4359 /* Walk each chain filling in the carsyms as we go along. */
4360 for (i = 0; i < lst_header->hash_size; i++)
4361 {
4362 struct lst_symbol_record lst_symbol;
4363
4364 /* An empty chain has zero as it's file offset. */
4365 if (hash_table[i] == 0)
4366 continue;
4367
4368 /* Seek to and read the first symbol on the chain. */
4369 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
4370 {
d1ad85a6 4371 bfd_set_error (bfd_error_system_call);
3c37f9ca
JL
4372 return false;
4373 }
4374
4375 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4376 != sizeof (lst_symbol))
4377 {
d1ad85a6 4378 bfd_set_error (bfd_error_system_call);
3c37f9ca
JL
4379 return false;
4380 }
4381
4382 /* Get the name of the symbol, first get the length which is stored
4383 as a 32bit integer just before the symbol.
4384
4385 One might ask why we don't just read in the entire string table
4386 and index into it. Well, according to the SOM ABI the string
4387 index can point *anywhere* in the archive to save space, so just
4388 using the string table would not be safe. */
4389 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
4390 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
4391 {
d1ad85a6 4392 bfd_set_error (bfd_error_system_call);
3c37f9ca
JL
4393 return false;
4394 }
4395
4396 if (bfd_read (&len, 1, 4, abfd) != 4)
4397 {
d1ad85a6 4398 bfd_set_error (bfd_error_system_call);
3c37f9ca
JL
4399 return false;
4400 }
4401
4402 /* Allocate space for the name and null terminate it too. */
4403 set->name = bfd_zalloc (abfd, len + 1);
4404 if (!set->name)
4405 {
d1ad85a6 4406 bfd_set_error (bfd_error_no_memory);
3c37f9ca
JL
4407 return false;
4408 }
4409 if (bfd_read (set->name, 1, len, abfd) != len)
4410 {
d1ad85a6 4411 bfd_set_error (bfd_error_system_call);
3c37f9ca
JL
4412 return false;
4413 }
4414 set->name[len] = 0;
4415
4416 /* Fill in the file offset. Note that the "location" field points
4417 to the SOM itself, not the ar_hdr in front of it. */
4418 set->file_offset = som_dict[lst_symbol.som_index].location
4419 - sizeof (struct ar_hdr);
4420
4421 /* Go to the next symbol. */
4422 set++;
4423
4424 /* Iterate through the rest of the chain. */
4425 while (lst_symbol.next_entry)
4426 {
4427 /* Seek to the next symbol and read it in. */
4428 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
4429 < 0)
4430 {
d1ad85a6 4431 bfd_set_error (bfd_error_system_call);
3c37f9ca
JL
4432 return false;
4433 }
4434
4435 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4436 != sizeof (lst_symbol))
4437 {
d1ad85a6 4438 bfd_set_error (bfd_error_system_call);
3c37f9ca
JL
4439 return false;
4440 }
4441
4442 /* Seek to the name length & string and read them in. */
4443 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
4444 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
4445 {
d1ad85a6 4446 bfd_set_error (bfd_error_system_call);
3c37f9ca
JL
4447 return false;
4448 }
4449
4450 if (bfd_read (&len, 1, 4, abfd) != 4)
4451 {
d1ad85a6 4452 bfd_set_error (bfd_error_system_call);
3c37f9ca
JL
4453 return false;
4454 }
4455
4456 /* Allocate space for the name and null terminate it too. */
4457 set->name = bfd_zalloc (abfd, len + 1);
4458 if (!set->name)
4459 {
d1ad85a6 4460 bfd_set_error (bfd_error_no_memory);
3c37f9ca
JL
4461 return false;
4462 }
4463 if (bfd_read (set->name, 1, len, abfd) != len)
4464 {
d1ad85a6 4465 bfd_set_error (bfd_error_system_call);
3c37f9ca
JL
4466 return false;
4467 }
4468 set->name[len] = 0;
4469
4470 /* Fill in the file offset. Note that the "location" field points
4471 to the SOM itself, not the ar_hdr in front of it. */
4472 set->file_offset = som_dict[lst_symbol.som_index].location
4473 - sizeof (struct ar_hdr);
4474
4475 /* Go on to the next symbol. */
4476 set++;
4477 }
4478 }
4479 /* If we haven't died by now, then we successfully read the entire
4480 archive symbol table. */
4481 return true;
4482}
4483
4484/* Read in the LST from the archive. */
4485static boolean
4486som_slurp_armap (abfd)
4487 bfd *abfd;
4488{
4489 struct lst_header lst_header;
4490 struct ar_hdr ar_header;
4491 unsigned int parsed_size;
4492 struct artdata *ardata = bfd_ardata (abfd);
4493 char nextname[17];
4494 int i = bfd_read ((PTR) nextname, 1, 16, abfd);
4495
4496 /* Special cases. */
4497 if (i == 0)
4498 return true;
4499 if (i != 16)
4500 return false;
4501
4502 if (bfd_seek (abfd, (file_ptr) - 16, SEEK_CUR) < 0)
4503 {
d1ad85a6 4504 bfd_set_error (bfd_error_system_call);
3c37f9ca
JL
4505 return false;
4506 }
4507
4508 /* For archives without .o files there is no symbol table. */
4509 if (strncmp (nextname, "/ ", 16))
4510 {
4511 bfd_has_map (abfd) = false;
4512 return true;
4513 }
4514
4515 /* Read in and sanity check the archive header. */
4516 if (bfd_read ((PTR) &ar_header, 1, sizeof (struct ar_hdr), abfd)
4517 != sizeof (struct ar_hdr))
4518 {
d1ad85a6 4519 bfd_set_error (bfd_error_system_call);
3c37f9ca
JL
4520 return false;
4521 }
4522
4523 if (strncmp (ar_header.ar_fmag, ARFMAG, 2))
4524 {
d1ad85a6 4525 bfd_set_error (bfd_error_malformed_archive);
3c37f9ca
JL
4526 return NULL;
4527 }
4528
4529 /* How big is the archive symbol table entry? */
4530 errno = 0;
4531 parsed_size = strtol (ar_header.ar_size, NULL, 10);
4532 if (errno != 0)
4533 {
d1ad85a6 4534 bfd_set_error (bfd_error_malformed_archive);
3c37f9ca
JL
4535 return NULL;
4536 }
4537
4538 /* Save off the file offset of the first real user data. */
4539 ardata->first_file_filepos = bfd_tell (abfd) + parsed_size;
4540
4541 /* Read in the library symbol table. We'll make heavy use of this
4542 in just a minute. */
4543 if (bfd_read ((PTR) & lst_header, 1, sizeof (struct lst_header), abfd)
4544 != sizeof (struct lst_header))
4545 {
d1ad85a6 4546 bfd_set_error (bfd_error_system_call);
3c37f9ca
JL
4547 return false;
4548 }
4549
4550 /* Sanity check. */
4551 if (lst_header.a_magic != LIBMAGIC)
4552 {
d1ad85a6 4553 bfd_set_error (bfd_error_malformed_archive);
3c37f9ca
JL
4554 return NULL;
4555 }
4556
4557 /* Count the number of symbols in the library symbol table. */
4558 if (som_bfd_count_ar_symbols (abfd, &lst_header, &ardata->symdef_count)
4559 == false)
4560 return false;
4561
4562 /* Get back to the start of the library symbol table. */
4563 if (bfd_seek (abfd, ardata->first_file_filepos - parsed_size
4564 + sizeof (struct lst_header), SEEK_SET) < 0)
4565 {
d1ad85a6 4566 bfd_set_error (bfd_error_system_call);
3c37f9ca
JL
4567 return false;
4568 }
4569
4570 /* Initializae the cache and allocate space for the library symbols. */
4571 ardata->cache = 0;
4572 ardata->symdefs = (carsym *) bfd_alloc (abfd,
4573 (ardata->symdef_count
4574 * sizeof (carsym)));
4575 if (!ardata->symdefs)
4576 {
d1ad85a6 4577 bfd_set_error (bfd_error_no_memory);
3c37f9ca
JL
4578 return false;
4579 }
4580
4581 /* Now fill in the canonical archive symbols. */
4582 if (som_bfd_fill_in_ar_symbols (abfd, &lst_header, &ardata->symdefs)
4583 == false)
4584 return false;
4585
4586 /* Notify the generic archive code that we have a symbol map. */
4587 bfd_has_map (abfd) = true;
4588 return true;
4589}
4590
6e033f86
JL
4591/* Begin preparing to write a SOM library symbol table.
4592
4593 As part of the prep work we need to determine the number of symbols
4594 and the size of the associated string section. */
4595
4596static boolean
4597som_bfd_prep_for_ar_write (abfd, num_syms, stringsize)
4598 bfd *abfd;
4599 unsigned int *num_syms, *stringsize;
4600{
4601 bfd *curr_bfd = abfd->archive_head;
4602
4603 /* Some initialization. */
4604 *num_syms = 0;
4605 *stringsize = 0;
4606
4607 /* Iterate over each BFD within this archive. */
4608 while (curr_bfd != NULL)
4609 {
4610 unsigned int curr_count, i;
c6cdb69a 4611 som_symbol_type *sym;
6e033f86
JL
4612
4613 /* Make sure the symbol table has been read, then snag a pointer
4614 to it. It's a little slimey to grab the symbols via obj_som_symtab,
4615 but doing so avoids allocating lots of extra memory. */
4616 if (som_slurp_symbol_table (curr_bfd) == false)
4617 return false;
4618
c6cdb69a 4619 sym = obj_som_symtab (curr_bfd);
6e033f86
JL
4620 curr_count = bfd_get_symcount (curr_bfd);
4621
4622 /* Examine each symbol to determine if it belongs in the
4623 library symbol table. */
4624 for (i = 0; i < curr_count; i++, sym++)
4625 {
4626 struct som_misc_symbol_info info;
4627
4628 /* Derive SOM information from the BFD symbol. */
c6cdb69a 4629 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
6e033f86
JL
4630
4631 /* Should we include this symbol? */
4632 if (info.symbol_type == ST_NULL
4633 || info.symbol_type == ST_SYM_EXT
4634 || info.symbol_type == ST_ARG_EXT)
4635 continue;
4636
4637 /* Only global symbols and unsatisfied commons. */
4638 if (info.symbol_scope != SS_UNIVERSAL
4639 && info.symbol_type != ST_STORAGE)
4640 continue;
4641
4642 /* Do no include undefined symbols. */
c6cdb69a 4643 if (sym->symbol.section == &bfd_und_section)
6e033f86
JL
4644 continue;
4645
4646 /* Bump the various counters, being careful to honor
4647 alignment considerations in the string table. */
4648 (*num_syms)++;
c6cdb69a 4649 *stringsize = *stringsize + strlen (sym->symbol.name) + 5;
6e033f86
JL
4650 while (*stringsize % 4)
4651 (*stringsize)++;
4652 }
4653
4654 curr_bfd = curr_bfd->next;
4655 }
4656 return true;
4657}
4658
4659/* Hash a symbol name based on the hashing algorithm presented in the
4660 SOM ABI. */
4661static unsigned int
4662som_bfd_ar_symbol_hash (symbol)
4663 asymbol *symbol;
4664{
4665 unsigned int len = strlen (symbol->name);
4666
4667 /* Names with length 1 are special. */
4668 if (len == 1)
4669 return 0x1000100 | (symbol->name[0] << 16) | symbol->name[0];
4670
4671 return ((len & 0x7f) << 24) | (symbol->name[1] << 16)
4672 | (symbol->name[len-2] << 8) | symbol->name[len-1];
4673}
4674
4675/* Do the bulk of the work required to write the SOM library
4676 symbol table. */
4677
4678static boolean
4679som_bfd_ar_write_symbol_stuff (abfd, nsyms, string_size, lst)
4680 bfd *abfd;
4681 unsigned int nsyms, string_size;
4682 struct lst_header lst;
4683{
4684 file_ptr lst_filepos;
4685 char *strings, *p;
4686 struct lst_symbol_record *lst_syms, *curr_lst_sym;
4687 bfd *curr_bfd = abfd->archive_head;
4688 unsigned int hash_table[lst.hash_size];
4689 struct som_entry som_dict[lst.module_count];
4690 struct lst_symbol_record *last_hash_entry[lst.hash_size];
4691 unsigned int curr_som_offset, som_index;
4692
4693 /* Lots of fields are file positions relative to the start
4694 of the lst record. So save its location. */
4695 lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
4696
4697 /* Some initialization. */
4698 memset (hash_table, 0, 4 * lst.hash_size);
4699 memset (som_dict, 0, lst.module_count * sizeof (struct som_entry));
4700 memset (last_hash_entry, 0,
4701 lst.hash_size * sizeof (struct lst_symbol_record *));
4702
4703 /* Symbols have som_index fields, so we have to keep track of the
4704 index of each SOM in the archive.
4705
4706 The SOM dictionary has (among other things) the absolute file
4707 position for the SOM which a particular dictionary entry
4708 describes. We have to compute that information as we iterate
4709 through the SOMs/symbols. */
4710 som_index = 0;
4711 curr_som_offset = 8 + 2 * sizeof (struct ar_hdr) + lst.file_end;
4712
4713 /* FIXME should be done with buffers just like everything else... */
4714 lst_syms = alloca (nsyms * sizeof (struct lst_symbol_record));
4715 strings = alloca (string_size);
4716 p = strings;
4717 curr_lst_sym = lst_syms;
4718
4719
4720 while (curr_bfd != NULL)
4721 {
4722 unsigned int curr_count, i;
c6cdb69a 4723 som_symbol_type *sym;
6e033f86
JL
4724
4725 /* Make sure the symbol table has been read, then snag a pointer
4726 to it. It's a little slimey to grab the symbols via obj_som_symtab,
4727 but doing so avoids allocating lots of extra memory. */
4728 if (som_slurp_symbol_table (curr_bfd) == false)
4729 return false;
4730
c6cdb69a 4731 sym = obj_som_symtab (curr_bfd);
6e033f86
JL
4732 curr_count = bfd_get_symcount (curr_bfd);
4733
4734 for (i = 0; i < curr_count; i++, sym++)
4735 {
4736 struct som_misc_symbol_info info;
4737
4738 /* Derive SOM information from the BFD symbol. */
c6cdb69a 4739 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
6e033f86
JL
4740
4741 /* Should we include this symbol? */
4742 if (info.symbol_type == ST_NULL
4743 || info.symbol_type == ST_SYM_EXT
4744 || info.symbol_type == ST_ARG_EXT)
4745 continue;
4746
4747 /* Only global symbols and unsatisfied commons. */
4748 if (info.symbol_scope != SS_UNIVERSAL
4749 && info.symbol_type != ST_STORAGE)
4750 continue;
4751
4752 /* Do no include undefined symbols. */
c6cdb69a 4753 if (sym->symbol.section == &bfd_und_section)
6e033f86
JL
4754 continue;
4755
4756 /* If this is the first symbol from this SOM, then update
4757 the SOM dictionary too. */
4758 if (som_dict[som_index].location == 0)
4759 {
4760 som_dict[som_index].location = curr_som_offset;
4761 som_dict[som_index].length = arelt_size (curr_bfd);
4762 }
4763
4764 /* Fill in the lst symbol record. */
4765 curr_lst_sym->hidden = 0;
4766 curr_lst_sym->secondary_def = 0;
4767 curr_lst_sym->symbol_type = info.symbol_type;
4768 curr_lst_sym->symbol_scope = info.symbol_scope;
4769 curr_lst_sym->check_level = 0;
4770 curr_lst_sym->must_qualify = 0;
4771 curr_lst_sym->initially_frozen = 0;
4772 curr_lst_sym->memory_resident = 0;
c6cdb69a 4773 curr_lst_sym->is_common = (sym->symbol.section == &bfd_com_section);
6e033f86
JL
4774 curr_lst_sym->dup_common = 0;
4775 curr_lst_sym->xleast = 0;
4776 curr_lst_sym->arg_reloc = info.arg_reloc;
4777 curr_lst_sym->name.n_strx = p - strings + 4;
4778 curr_lst_sym->qualifier_name.n_strx = 0;
4779 curr_lst_sym->symbol_info = info.symbol_info;
4780 curr_lst_sym->symbol_value = info.symbol_value;
4781 curr_lst_sym->symbol_descriptor = 0;
4782 curr_lst_sym->reserved = 0;
4783 curr_lst_sym->som_index = som_index;
c6cdb69a 4784 curr_lst_sym->symbol_key = som_bfd_ar_symbol_hash (&sym->symbol);
6e033f86
JL
4785 curr_lst_sym->next_entry = 0;
4786
4787 /* Insert into the hash table. */
4788 if (hash_table[curr_lst_sym->symbol_key % lst.hash_size])
4789 {
4790 struct lst_symbol_record *tmp;
4791
4792 /* There is already something at the head of this hash chain,
4793 so tack this symbol onto the end of the chain. */
4794 tmp = last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size];
4795 tmp->next_entry
4796 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
4797 + lst.hash_size * 4
4798 + lst.module_count * sizeof (struct som_entry)
4799 + sizeof (struct lst_header);
4800 }
4801 else
4802 {
4803 /* First entry in this hash chain. */
4804 hash_table[curr_lst_sym->symbol_key % lst.hash_size]
4805 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
4806 + lst.hash_size * 4
4807 + lst.module_count * sizeof (struct som_entry)
4808 + sizeof (struct lst_header);
4809 }
4810
4811 /* Keep track of the last symbol we added to this chain so we can
4812 easily update its next_entry pointer. */
4813 last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size]
4814 = curr_lst_sym;
4815
4816
4817 /* Update the string table. */
c6cdb69a 4818 bfd_put_32 (abfd, strlen (sym->symbol.name), p);
6e033f86 4819 p += 4;
c6cdb69a
JL
4820 strcpy (p, sym->symbol.name);
4821 p += strlen (sym->symbol.name) + 1;
6e033f86
JL
4822 while ((int)p % 4)
4823 {
4824 bfd_put_8 (abfd, 0, p);
4825 p++;
4826 }
4827
4828 /* Head to the next symbol. */
4829 curr_lst_sym++;
4830 }
4831
4832 /* Keep track of where each SOM will finally reside; then look
4833 at the next BFD. */
4834 curr_som_offset += arelt_size (curr_bfd) + sizeof (struct ar_hdr);
4835 curr_bfd = curr_bfd->next;
4836 som_index++;
4837 }
4838
4839 /* Now scribble out the hash table. */
4840 if (bfd_write ((PTR) hash_table, lst.hash_size, 4, abfd)
4841 != lst.hash_size * 4)
4842 {
d1ad85a6 4843 bfd_set_error (bfd_error_system_call);
6e033f86
JL
4844 return false;
4845 }
4846
4847 /* Then the SOM dictionary. */
4848 if (bfd_write ((PTR) som_dict, lst.module_count,
4849 sizeof (struct som_entry), abfd)
4850 != lst.module_count * sizeof (struct som_entry))
4851 {
d1ad85a6 4852 bfd_set_error (bfd_error_system_call);
6e033f86
JL
4853 return false;
4854 }
4855
4856 /* The library symbols. */
4857 if (bfd_write ((PTR) lst_syms, nsyms, sizeof (struct lst_symbol_record), abfd)
4858 != nsyms * sizeof (struct lst_symbol_record))
4859 {
d1ad85a6 4860 bfd_set_error (bfd_error_system_call);
6e033f86
JL
4861 return false;
4862 }
4863
4864 /* And finally the strings. */
4865 if (bfd_write ((PTR) strings, string_size, 1, abfd) != string_size)
4866 {
d1ad85a6 4867 bfd_set_error (bfd_error_system_call);
6e033f86
JL
4868 return false;
4869 }
4870
4871 return true;
4872}
4873
4874/* Write out the LST for the archive.
4875
4876 You'll never believe this is really how armaps are handled in SOM... */
4877
3c37f9ca
JL
4878static boolean
4879som_write_armap (abfd)
4880 bfd *abfd;
4881{
6e033f86
JL
4882 bfd *curr_bfd;
4883 struct stat statbuf;
4884 unsigned int i, lst_size, nsyms, stringsize;
4885 struct ar_hdr hdr;
4886 struct lst_header lst;
4887 int *p;
4888
4889 /* We'll use this for the archive's date and mode later. */
4890 if (stat (abfd->filename, &statbuf) != 0)
4891 {
d1ad85a6 4892 bfd_set_error (bfd_error_system_call);
6e033f86
JL
4893 return false;
4894 }
4895 /* Fudge factor. */
4896 bfd_ardata (abfd)->armap_timestamp = statbuf.st_mtime + 60;
4897
4898 /* Account for the lst header first. */
4899 lst_size = sizeof (struct lst_header);
4900
4901 /* Start building the LST header. */
4902 lst.system_id = HP9000S800_ID;
4903 lst.a_magic = LIBMAGIC;
4904 lst.version_id = VERSION_ID;
4905 lst.file_time.secs = 0;
4906 lst.file_time.nanosecs = 0;
4907
4908 lst.hash_loc = lst_size;
4909 lst.hash_size = SOM_LST_HASH_SIZE;
4910
4911 /* Hash table is a SOM_LST_HASH_SIZE 32bit offsets. */
4912 lst_size += 4 * SOM_LST_HASH_SIZE;
4913
4914 /* We need to count the number of SOMs in this archive. */
4915 curr_bfd = abfd->archive_head;
4916 lst.module_count = 0;
4917 while (curr_bfd != NULL)
4918 {
4919 lst.module_count++;
4920 curr_bfd = curr_bfd->next;
4921 }
4922 lst.module_limit = lst.module_count;
4923 lst.dir_loc = lst_size;
4924 lst_size += sizeof (struct som_entry) * lst.module_count;
4925
4926 /* We don't support import/export tables, auxiliary headers,
4927 or free lists yet. Make the linker work a little harder
4928 to make our life easier. */
4929
4930 lst.export_loc = 0;
4931 lst.export_count = 0;
4932 lst.import_loc = 0;
4933 lst.aux_loc = 0;
4934 lst.aux_size = 0;
4935
4936 /* Count how many symbols we will have on the hash chains and the
4937 size of the associated string table. */
4938 if (som_bfd_prep_for_ar_write (abfd, &nsyms, &stringsize) == false)
4939 return false;
4940
4941 lst_size += sizeof (struct lst_symbol_record) * nsyms;
4942
4943 /* For the string table. One day we might actually use this info
4944 to avoid small seeks/reads when reading archives. */
4945 lst.string_loc = lst_size;
4946 lst.string_size = stringsize;
4947 lst_size += stringsize;
4948
4949 /* SOM ABI says this must be zero. */
4950 lst.free_list = 0;
4951
4952 lst.file_end = lst_size;
4953
4954 /* Compute the checksum. Must happen after the entire lst header
4955 has filled in. */
4956 p = (int *)&lst;
4957 for (i = 0; i < sizeof (struct lst_header)/sizeof (int) - 1; i++)
4958 lst.checksum ^= *p++;
4959
4960 sprintf (hdr.ar_name, "/ ");
4961 sprintf (hdr.ar_date, "%ld", bfd_ardata (abfd)->armap_timestamp);
4962 sprintf (hdr.ar_uid, "%d", getuid ());
4963 sprintf (hdr.ar_gid, "%d", getgid ());
4964 sprintf (hdr.ar_mode, "%-8o", (unsigned int) statbuf.st_mode);
4965 sprintf (hdr.ar_size, "%-10d", (int) lst_size);
4966 hdr.ar_fmag[0] = '`';
4967 hdr.ar_fmag[1] = '\012';
4968
4969 /* Turn any nulls into spaces. */
4970 for (i = 0; i < sizeof (struct ar_hdr); i++)
4971 if (((char *) (&hdr))[i] == '\0')
4972 (((char *) (&hdr))[i]) = ' ';
4973
4974 /* Scribble out the ar header. */
4975 if (bfd_write ((PTR) &hdr, 1, sizeof (struct ar_hdr), abfd)
4976 != sizeof (struct ar_hdr))
4977 {
d1ad85a6 4978 bfd_set_error (bfd_error_system_call);
6e033f86
JL
4979 return false;
4980 }
4981
4982 /* Now scribble out the lst header. */
4983 if (bfd_write ((PTR) &lst, 1, sizeof (struct lst_header), abfd)
4984 != sizeof (struct lst_header))
4985 {
d1ad85a6 4986 bfd_set_error (bfd_error_system_call);
6e033f86
JL
4987 return false;
4988 }
4989
4990 /* Build and write the armap. */
4991 if (som_bfd_ar_write_symbol_stuff (abfd, nsyms, stringsize, lst) == false)
4992 return false;
4993
4994 /* Done. */
4995 return true;
3c37f9ca
JL
4996}
4997
4998/* Apparently the extened names are never used, even though they appear
4999 in the SOM ABI. Hmmm. */
5000static boolean
5001som_slurp_extended_name_table (abfd)
5002 bfd *abfd;
5003{
5004 bfd_ardata (abfd)->extended_names = NULL;
5005 return true;
5006}
5007
d9ad93bc
KR
5008/* End of miscellaneous support functions. */
5009
9e16fcf1
SG
5010#define som_bfd_debug_info_start bfd_void
5011#define som_bfd_debug_info_end bfd_void
5012#define som_bfd_debug_info_accumulate (PROTO(void,(*),(bfd*, struct sec *))) bfd_void
d9ad93bc 5013
3c37f9ca
JL
5014#define som_openr_next_archived_file bfd_generic_openr_next_archived_file
5015#define som_generic_stat_arch_elt bfd_generic_stat_arch_elt
5016#define som_truncate_arname bfd_bsd_truncate_arname
d9ad93bc 5017
9e16fcf1
SG
5018#define som_get_lineno (struct lineno_cache_entry *(*)())bfd_nullvoidptr
5019#define som_close_and_cleanup bfd_generic_close_and_cleanup
5020#define som_get_section_contents bfd_generic_get_section_contents
d9ad93bc 5021
9e16fcf1 5022#define som_bfd_get_relocated_section_contents \
d9ad93bc 5023 bfd_generic_get_relocated_section_contents
9e16fcf1 5024#define som_bfd_relax_section bfd_generic_relax_section
9e16fcf1 5025#define som_bfd_make_debug_symbol \
d9ad93bc 5026 ((asymbol *(*) PARAMS ((bfd *, void *, unsigned long))) bfd_nullvoidptr)
39961154
JL
5027#define som_bfd_link_hash_table_create _bfd_generic_link_hash_table_create
5028#define som_bfd_link_add_symbols _bfd_generic_link_add_symbols
5029#define som_bfd_final_link _bfd_generic_final_link
d9ad93bc
KR
5030
5031/* Core file support is in the hpux-core backend. */
9e16fcf1
SG
5032#define som_core_file_failing_command _bfd_dummy_core_file_failing_command
5033#define som_core_file_failing_signal _bfd_dummy_core_file_failing_signal
5034#define som_core_file_matches_executable_p _bfd_dummy_core_file_matches_executable_p
d9ad93bc 5035
9e16fcf1 5036bfd_target som_vec =
d9ad93bc 5037{
9e16fcf1
SG
5038 "som", /* name */
5039 bfd_target_som_flavour,
d9ad93bc
KR
5040 true, /* target byte order */
5041 true, /* target headers byte order */
5042 (HAS_RELOC | EXEC_P | /* object flags */
5043 HAS_LINENO | HAS_DEBUG |
40249bfb 5044 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED),
d9ad93bc 5045 (SEC_CODE | SEC_DATA | SEC_ROM | SEC_HAS_CONTENTS
9e16fcf1 5046 | SEC_ALLOC | SEC_LOAD | SEC_RELOC), /* section flags */
d9ad93bc
KR
5047
5048/* leading_symbol_char: is the first char of a user symbol
9e16fcf1 5049 predictable, and if so what is it */
d9ad93bc 5050 0,
6e033f86 5051 '/', /* ar_pad_char */
d9ad93bc
KR
5052 16, /* ar_max_namelen */
5053 3, /* minimum alignment */
9e16fcf1
SG
5054 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
5055 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
5056 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
5057 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
5058 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
5059 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
d9ad93bc 5060 {_bfd_dummy_target,
9e16fcf1 5061 som_object_p, /* bfd_check_format */
d9ad93bc
KR
5062 bfd_generic_archive_p,
5063 _bfd_dummy_target
5064 },
5065 {
5066 bfd_false,
9e16fcf1 5067 som_mkobject,
d9ad93bc
KR
5068 _bfd_generic_mkarchive,
5069 bfd_false
5070 },
5071 {
5072 bfd_false,
9e16fcf1 5073 som_write_object_contents,
d9ad93bc
KR
5074 _bfd_write_archive_contents,
5075 bfd_false,
5076 },
9e16fcf1
SG
5077#undef som
5078 JUMP_TABLE (som),
d9ad93bc
KR
5079 (PTR) 0
5080};
5081
6941fd4d 5082#endif /* HOST_HPPAHPUX || HOST_HPPABSD || HOST_HPPAOSF */
This page took 0.302046 seconds and 4 git commands to generate.