Commit | Line | Data |
---|---|---|
252b5132 | 1 | /* BFD backend for SunOS binaries. |
9553c638 | 2 | Copyright 1990, 1991, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000, |
f13a99db AM |
3 | 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 |
4 | Free Software Foundation, Inc. | |
252b5132 RH |
5 | Written by Cygnus Support. |
6 | ||
116c20d2 | 7 | This file is part of BFD, the Binary File Descriptor library. |
252b5132 | 8 | |
116c20d2 NC |
9 | This program is free software; you can redistribute it and/or modify |
10 | it under the terms of the GNU General Public License as published by | |
cd123cb7 | 11 | the Free Software Foundation; either version 3 of the License, or |
116c20d2 | 12 | (at your option) any later version. |
252b5132 | 13 | |
116c20d2 NC |
14 | This program is distributed in the hope that it will be useful, |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
252b5132 | 18 | |
116c20d2 NC |
19 | You should have received a copy of the GNU General Public License |
20 | along with this program; if not, write to the Free Software | |
cd123cb7 NC |
21 | Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, |
22 | MA 02110-1301, USA. */ | |
252b5132 RH |
23 | |
24 | #define TARGETNAME "a.out-sunos-big" | |
e43d48cc AM |
25 | |
26 | /* Do not "beautify" the CONCAT* macro args. Traditional C will not | |
27 | remove whitespace added here, and thus will fail to concatenate | |
28 | the tokens. */ | |
29 | #define MY(OP) CONCAT2 (sunos_big_,OP) | |
252b5132 RH |
30 | |
31 | #include "bfd.h" | |
32 | #include "bfdlink.h" | |
33 | #include "libaout.h" | |
34 | ||
252b5132 RH |
35 | /* ??? Where should this go? */ |
36 | #define MACHTYPE_OK(mtype) \ | |
37 | (((mtype) == M_SPARC && bfd_lookup_arch (bfd_arch_sparc, 0) != NULL) \ | |
38 | || ((mtype) == M_SPARCLET \ | |
39 | && bfd_lookup_arch (bfd_arch_sparc, bfd_mach_sparc_sparclet) != NULL) \ | |
40 | || ((mtype) == M_SPARCLITE_LE \ | |
41 | && bfd_lookup_arch (bfd_arch_sparc, bfd_mach_sparc_sparclet) != NULL) \ | |
42 | || (((mtype) == M_UNKNOWN || (mtype) == M_68010 || (mtype) == M_68020) \ | |
43 | && bfd_lookup_arch (bfd_arch_m68k, 0) != NULL)) | |
44 | ||
116c20d2 NC |
45 | #define MY_get_dynamic_symtab_upper_bound sunos_get_dynamic_symtab_upper_bound |
46 | #define MY_canonicalize_dynamic_symtab sunos_canonicalize_dynamic_symtab | |
47 | #define MY_get_synthetic_symtab _bfd_nodynamic_get_synthetic_symtab | |
48 | #define MY_get_dynamic_reloc_upper_bound sunos_get_dynamic_reloc_upper_bound | |
49 | #define MY_canonicalize_dynamic_reloc sunos_canonicalize_dynamic_reloc | |
50 | #define MY_bfd_link_hash_table_create sunos_link_hash_table_create | |
51 | #define MY_add_dynamic_symbols sunos_add_dynamic_symbols | |
52 | #define MY_add_one_symbol sunos_add_one_symbol | |
53 | #define MY_link_dynamic_object sunos_link_dynamic_object | |
54 | #define MY_write_dynamic_symbol sunos_write_dynamic_symbol | |
55 | #define MY_check_dynamic_reloc sunos_check_dynamic_reloc | |
56 | #define MY_finish_dynamic_link sunos_finish_dynamic_link | |
57 | ||
58 | static bfd_boolean sunos_add_dynamic_symbols (bfd *, struct bfd_link_info *, struct external_nlist **, bfd_size_type *, char **); | |
59 | static bfd_boolean sunos_add_one_symbol (struct bfd_link_info *, bfd *, const char *, flagword, asection *, bfd_vma, const char *, bfd_boolean, bfd_boolean, struct bfd_link_hash_entry **); | |
60 | static bfd_boolean sunos_link_dynamic_object (struct bfd_link_info *, bfd *); | |
61 | static bfd_boolean sunos_write_dynamic_symbol (bfd *, struct bfd_link_info *, struct aout_link_hash_entry *); | |
62 | static bfd_boolean sunos_check_dynamic_reloc (struct bfd_link_info *, bfd *, asection *, struct aout_link_hash_entry *, void *, bfd_byte *, bfd_boolean *, bfd_vma *); | |
63 | static bfd_boolean sunos_finish_dynamic_link (bfd *, struct bfd_link_info *); | |
64 | static struct bfd_link_hash_table *sunos_link_hash_table_create (bfd *); | |
65 | static long sunos_get_dynamic_symtab_upper_bound (bfd *); | |
66 | static long sunos_canonicalize_dynamic_symtab (bfd *, asymbol **); | |
67 | static long sunos_get_dynamic_reloc_upper_bound (bfd *); | |
68 | static long sunos_canonicalize_dynamic_reloc (bfd *, arelent **, asymbol **); | |
69 | ||
252b5132 RH |
70 | /* Include the usual a.out support. */ |
71 | #include "aoutf1.h" | |
72 | ||
73 | /* The SunOS 4.1.4 /usr/include/locale.h defines valid as a macro. */ | |
74 | #undef valid | |
75 | ||
76 | /* SunOS shared library support. We store a pointer to this structure | |
77 | in obj_aout_dynamic_info (abfd). */ | |
78 | ||
79 | struct sunos_dynamic_info | |
80 | { | |
81 | /* Whether we found any dynamic information. */ | |
b34976b6 | 82 | bfd_boolean valid; |
252b5132 RH |
83 | /* Dynamic information. */ |
84 | struct internal_sun4_dynamic_link dyninfo; | |
85 | /* Number of dynamic symbols. */ | |
86 | unsigned long dynsym_count; | |
87 | /* Read in nlists for dynamic symbols. */ | |
88 | struct external_nlist *dynsym; | |
89 | /* asymbol structures for dynamic symbols. */ | |
90 | aout_symbol_type *canonical_dynsym; | |
91 | /* Read in dynamic string table. */ | |
92 | char *dynstr; | |
93 | /* Number of dynamic relocs. */ | |
94 | unsigned long dynrel_count; | |
95 | /* Read in dynamic relocs. This may be reloc_std_external or | |
96 | reloc_ext_external. */ | |
116c20d2 | 97 | void * dynrel; |
252b5132 RH |
98 | /* arelent structures for dynamic relocs. */ |
99 | arelent *canonical_dynrel; | |
100 | }; | |
101 | ||
102 | /* The hash table of dynamic symbols is composed of two word entries. | |
103 | See include/aout/sun4.h for details. */ | |
104 | ||
105 | #define HASH_ENTRY_SIZE (2 * BYTES_IN_WORD) | |
106 | ||
107 | /* Read in the basic dynamic information. This locates the __DYNAMIC | |
108 | structure and uses it to find the dynamic_link structure. It | |
109 | creates and saves a sunos_dynamic_info structure. If it can't find | |
110 | __DYNAMIC, it sets the valid field of the sunos_dynamic_info | |
b34976b6 | 111 | structure to FALSE to avoid doing this work again. */ |
252b5132 | 112 | |
b34976b6 | 113 | static bfd_boolean |
116c20d2 | 114 | sunos_read_dynamic_info (bfd *abfd) |
252b5132 RH |
115 | { |
116 | struct sunos_dynamic_info *info; | |
117 | asection *dynsec; | |
118 | bfd_vma dynoff; | |
119 | struct external_sun4_dynamic dyninfo; | |
120 | unsigned long dynver; | |
121 | struct external_sun4_dynamic_link linkinfo; | |
dc810e39 | 122 | bfd_size_type amt; |
252b5132 | 123 | |
116c20d2 | 124 | if (obj_aout_dynamic_info (abfd) != NULL) |
b34976b6 | 125 | return TRUE; |
252b5132 RH |
126 | |
127 | if ((abfd->flags & DYNAMIC) == 0) | |
128 | { | |
129 | bfd_set_error (bfd_error_invalid_operation); | |
b34976b6 | 130 | return FALSE; |
252b5132 RH |
131 | } |
132 | ||
dc810e39 | 133 | amt = sizeof (struct sunos_dynamic_info); |
116c20d2 | 134 | info = bfd_zalloc (abfd, amt); |
252b5132 | 135 | if (!info) |
b34976b6 AM |
136 | return FALSE; |
137 | info->valid = FALSE; | |
252b5132 RH |
138 | info->dynsym = NULL; |
139 | info->dynstr = NULL; | |
140 | info->canonical_dynsym = NULL; | |
141 | info->dynrel = NULL; | |
142 | info->canonical_dynrel = NULL; | |
116c20d2 | 143 | obj_aout_dynamic_info (abfd) = (void *) info; |
252b5132 RH |
144 | |
145 | /* This code used to look for the __DYNAMIC symbol to locate the dynamic | |
146 | linking information. | |
147 | However this inhibits recovering the dynamic symbols from a | |
148 | stripped object file, so blindly assume that the dynamic linking | |
149 | information is located at the start of the data section. | |
150 | We could verify this assumption later by looking through the dynamic | |
151 | symbols for the __DYNAMIC symbol. */ | |
152 | if ((abfd->flags & DYNAMIC) == 0) | |
b34976b6 | 153 | return TRUE; |
116c20d2 | 154 | if (! bfd_get_section_contents (abfd, obj_datasec (abfd), (void *) &dyninfo, |
dc810e39 AM |
155 | (file_ptr) 0, |
156 | (bfd_size_type) sizeof dyninfo)) | |
b34976b6 | 157 | return TRUE; |
252b5132 RH |
158 | |
159 | dynver = GET_WORD (abfd, dyninfo.ld_version); | |
160 | if (dynver != 2 && dynver != 3) | |
b34976b6 | 161 | return TRUE; |
252b5132 RH |
162 | |
163 | dynoff = GET_WORD (abfd, dyninfo.ld); | |
164 | ||
165 | /* dynoff is a virtual address. It is probably always in the .data | |
166 | section, but this code should work even if it moves. */ | |
167 | if (dynoff < bfd_get_section_vma (abfd, obj_datasec (abfd))) | |
168 | dynsec = obj_textsec (abfd); | |
169 | else | |
170 | dynsec = obj_datasec (abfd); | |
171 | dynoff -= bfd_get_section_vma (abfd, dynsec); | |
eea6121a | 172 | if (dynoff > dynsec->size) |
b34976b6 | 173 | return TRUE; |
252b5132 RH |
174 | |
175 | /* This executable appears to be dynamically linked in a way that we | |
176 | can understand. */ | |
116c20d2 | 177 | if (! bfd_get_section_contents (abfd, dynsec, (void *) &linkinfo, |
dc810e39 | 178 | (file_ptr) dynoff, |
252b5132 | 179 | (bfd_size_type) sizeof linkinfo)) |
b34976b6 | 180 | return TRUE; |
252b5132 RH |
181 | |
182 | /* Swap in the dynamic link information. */ | |
183 | info->dyninfo.ld_loaded = GET_WORD (abfd, linkinfo.ld_loaded); | |
184 | info->dyninfo.ld_need = GET_WORD (abfd, linkinfo.ld_need); | |
185 | info->dyninfo.ld_rules = GET_WORD (abfd, linkinfo.ld_rules); | |
186 | info->dyninfo.ld_got = GET_WORD (abfd, linkinfo.ld_got); | |
187 | info->dyninfo.ld_plt = GET_WORD (abfd, linkinfo.ld_plt); | |
188 | info->dyninfo.ld_rel = GET_WORD (abfd, linkinfo.ld_rel); | |
189 | info->dyninfo.ld_hash = GET_WORD (abfd, linkinfo.ld_hash); | |
190 | info->dyninfo.ld_stab = GET_WORD (abfd, linkinfo.ld_stab); | |
191 | info->dyninfo.ld_stab_hash = GET_WORD (abfd, linkinfo.ld_stab_hash); | |
192 | info->dyninfo.ld_buckets = GET_WORD (abfd, linkinfo.ld_buckets); | |
193 | info->dyninfo.ld_symbols = GET_WORD (abfd, linkinfo.ld_symbols); | |
194 | info->dyninfo.ld_symb_size = GET_WORD (abfd, linkinfo.ld_symb_size); | |
195 | info->dyninfo.ld_text = GET_WORD (abfd, linkinfo.ld_text); | |
196 | info->dyninfo.ld_plt_sz = GET_WORD (abfd, linkinfo.ld_plt_sz); | |
197 | ||
198 | /* Reportedly the addresses need to be offset by the size of the | |
199 | exec header in an NMAGIC file. */ | |
200 | if (adata (abfd).magic == n_magic) | |
201 | { | |
202 | unsigned long exec_bytes_size = adata (abfd).exec_bytes_size; | |
203 | ||
204 | info->dyninfo.ld_need += exec_bytes_size; | |
205 | info->dyninfo.ld_rules += exec_bytes_size; | |
206 | info->dyninfo.ld_rel += exec_bytes_size; | |
207 | info->dyninfo.ld_hash += exec_bytes_size; | |
208 | info->dyninfo.ld_stab += exec_bytes_size; | |
209 | info->dyninfo.ld_symbols += exec_bytes_size; | |
210 | } | |
211 | ||
212 | /* The only way to get the size of the symbol information appears to | |
213 | be to determine the distance between it and the string table. */ | |
214 | info->dynsym_count = ((info->dyninfo.ld_symbols - info->dyninfo.ld_stab) | |
215 | / EXTERNAL_NLIST_SIZE); | |
216 | BFD_ASSERT (info->dynsym_count * EXTERNAL_NLIST_SIZE | |
217 | == (unsigned long) (info->dyninfo.ld_symbols | |
218 | - info->dyninfo.ld_stab)); | |
219 | ||
220 | /* Similarly, the relocs end at the hash table. */ | |
221 | info->dynrel_count = ((info->dyninfo.ld_hash - info->dyninfo.ld_rel) | |
222 | / obj_reloc_entry_size (abfd)); | |
223 | BFD_ASSERT (info->dynrel_count * obj_reloc_entry_size (abfd) | |
224 | == (unsigned long) (info->dyninfo.ld_hash | |
225 | - info->dyninfo.ld_rel)); | |
226 | ||
b34976b6 | 227 | info->valid = TRUE; |
252b5132 | 228 | |
b34976b6 | 229 | return TRUE; |
252b5132 RH |
230 | } |
231 | ||
232 | /* Return the amount of memory required for the dynamic symbols. */ | |
233 | ||
234 | static long | |
116c20d2 | 235 | sunos_get_dynamic_symtab_upper_bound (bfd *abfd) |
252b5132 RH |
236 | { |
237 | struct sunos_dynamic_info *info; | |
238 | ||
239 | if (! sunos_read_dynamic_info (abfd)) | |
240 | return -1; | |
241 | ||
242 | info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd); | |
243 | if (! info->valid) | |
244 | { | |
245 | bfd_set_error (bfd_error_no_symbols); | |
246 | return -1; | |
247 | } | |
248 | ||
249 | return (info->dynsym_count + 1) * sizeof (asymbol *); | |
250 | } | |
251 | ||
252 | /* Read the external dynamic symbols. */ | |
253 | ||
b34976b6 | 254 | static bfd_boolean |
116c20d2 | 255 | sunos_slurp_dynamic_symtab (bfd *abfd) |
252b5132 RH |
256 | { |
257 | struct sunos_dynamic_info *info; | |
dc810e39 | 258 | bfd_size_type amt; |
252b5132 RH |
259 | |
260 | /* Get the general dynamic information. */ | |
261 | if (obj_aout_dynamic_info (abfd) == NULL) | |
262 | { | |
263 | if (! sunos_read_dynamic_info (abfd)) | |
b34976b6 | 264 | return FALSE; |
252b5132 RH |
265 | } |
266 | ||
267 | info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd); | |
268 | if (! info->valid) | |
269 | { | |
270 | bfd_set_error (bfd_error_no_symbols); | |
b34976b6 | 271 | return FALSE; |
252b5132 RH |
272 | } |
273 | ||
274 | /* Get the dynamic nlist structures. */ | |
116c20d2 | 275 | if (info->dynsym == NULL) |
252b5132 | 276 | { |
dc810e39 | 277 | amt = (bfd_size_type) info->dynsym_count * EXTERNAL_NLIST_SIZE; |
116c20d2 | 278 | info->dynsym = bfd_alloc (abfd, amt); |
252b5132 | 279 | if (info->dynsym == NULL && info->dynsym_count != 0) |
b34976b6 | 280 | return FALSE; |
dc810e39 | 281 | if (bfd_seek (abfd, (file_ptr) info->dyninfo.ld_stab, SEEK_SET) != 0 |
116c20d2 | 282 | || bfd_bread ((void *) info->dynsym, amt, abfd) != amt) |
252b5132 RH |
283 | { |
284 | if (info->dynsym != NULL) | |
285 | { | |
286 | bfd_release (abfd, info->dynsym); | |
287 | info->dynsym = NULL; | |
288 | } | |
b34976b6 | 289 | return FALSE; |
252b5132 RH |
290 | } |
291 | } | |
292 | ||
293 | /* Get the dynamic strings. */ | |
116c20d2 | 294 | if (info->dynstr == NULL) |
252b5132 | 295 | { |
dc810e39 | 296 | amt = info->dyninfo.ld_symb_size; |
116c20d2 | 297 | info->dynstr = bfd_alloc (abfd, amt); |
252b5132 | 298 | if (info->dynstr == NULL && info->dyninfo.ld_symb_size != 0) |
b34976b6 | 299 | return FALSE; |
dc810e39 | 300 | if (bfd_seek (abfd, (file_ptr) info->dyninfo.ld_symbols, SEEK_SET) != 0 |
116c20d2 | 301 | || bfd_bread ((void *) info->dynstr, amt, abfd) != amt) |
252b5132 RH |
302 | { |
303 | if (info->dynstr != NULL) | |
304 | { | |
305 | bfd_release (abfd, info->dynstr); | |
306 | info->dynstr = NULL; | |
307 | } | |
b34976b6 | 308 | return FALSE; |
252b5132 RH |
309 | } |
310 | } | |
311 | ||
b34976b6 | 312 | return TRUE; |
252b5132 RH |
313 | } |
314 | ||
315 | /* Read in the dynamic symbols. */ | |
316 | ||
317 | static long | |
116c20d2 | 318 | sunos_canonicalize_dynamic_symtab (bfd *abfd, asymbol **storage) |
252b5132 RH |
319 | { |
320 | struct sunos_dynamic_info *info; | |
321 | unsigned long i; | |
322 | ||
323 | if (! sunos_slurp_dynamic_symtab (abfd)) | |
324 | return -1; | |
325 | ||
326 | info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd); | |
327 | ||
328 | #ifdef CHECK_DYNAMIC_HASH | |
329 | /* Check my understanding of the dynamic hash table by making sure | |
330 | that each symbol can be located in the hash table. */ | |
331 | { | |
332 | bfd_size_type table_size; | |
333 | bfd_byte *table; | |
334 | bfd_size_type i; | |
335 | ||
336 | if (info->dyninfo.ld_buckets > info->dynsym_count) | |
337 | abort (); | |
338 | table_size = info->dyninfo.ld_stab - info->dyninfo.ld_hash; | |
116c20d2 | 339 | table = bfd_malloc (table_size); |
252b5132 RH |
340 | if (table == NULL && table_size != 0) |
341 | abort (); | |
dc810e39 | 342 | if (bfd_seek (abfd, (file_ptr) info->dyninfo.ld_hash, SEEK_SET) != 0 |
116c20d2 | 343 | || bfd_bread ((void *) table, table_size, abfd) != table_size) |
252b5132 RH |
344 | abort (); |
345 | for (i = 0; i < info->dynsym_count; i++) | |
346 | { | |
347 | unsigned char *name; | |
348 | unsigned long hash; | |
349 | ||
350 | name = ((unsigned char *) info->dynstr | |
351 | + GET_WORD (abfd, info->dynsym[i].e_strx)); | |
352 | hash = 0; | |
353 | while (*name != '\0') | |
354 | hash = (hash << 1) + *name++; | |
355 | hash &= 0x7fffffff; | |
356 | hash %= info->dyninfo.ld_buckets; | |
357 | while (GET_WORD (abfd, table + hash * HASH_ENTRY_SIZE) != i) | |
358 | { | |
359 | hash = GET_WORD (abfd, | |
360 | table + hash * HASH_ENTRY_SIZE + BYTES_IN_WORD); | |
361 | if (hash == 0 || hash >= table_size / HASH_ENTRY_SIZE) | |
362 | abort (); | |
363 | } | |
364 | } | |
365 | free (table); | |
366 | } | |
367 | #endif /* CHECK_DYNAMIC_HASH */ | |
368 | ||
369 | /* Get the asymbol structures corresponding to the dynamic nlist | |
370 | structures. */ | |
116c20d2 | 371 | if (info->canonical_dynsym == NULL) |
252b5132 | 372 | { |
dc810e39 AM |
373 | bfd_size_type size; |
374 | bfd_size_type strsize = info->dyninfo.ld_symb_size; | |
375 | ||
376 | size = (bfd_size_type) info->dynsym_count * sizeof (aout_symbol_type); | |
116c20d2 | 377 | info->canonical_dynsym = bfd_alloc (abfd, size); |
252b5132 RH |
378 | if (info->canonical_dynsym == NULL && info->dynsym_count != 0) |
379 | return -1; | |
380 | ||
381 | if (! aout_32_translate_symbol_table (abfd, info->canonical_dynsym, | |
dc810e39 AM |
382 | info->dynsym, |
383 | (bfd_size_type) info->dynsym_count, | |
b34976b6 | 384 | info->dynstr, strsize, TRUE)) |
252b5132 RH |
385 | { |
386 | if (info->canonical_dynsym != NULL) | |
387 | { | |
388 | bfd_release (abfd, info->canonical_dynsym); | |
389 | info->canonical_dynsym = NULL; | |
390 | } | |
391 | return -1; | |
392 | } | |
393 | } | |
394 | ||
395 | /* Return pointers to the dynamic asymbol structures. */ | |
396 | for (i = 0; i < info->dynsym_count; i++) | |
397 | *storage++ = (asymbol *) (info->canonical_dynsym + i); | |
398 | *storage = NULL; | |
399 | ||
400 | return info->dynsym_count; | |
401 | } | |
402 | ||
403 | /* Return the amount of memory required for the dynamic relocs. */ | |
404 | ||
405 | static long | |
116c20d2 | 406 | sunos_get_dynamic_reloc_upper_bound (bfd *abfd) |
252b5132 RH |
407 | { |
408 | struct sunos_dynamic_info *info; | |
409 | ||
410 | if (! sunos_read_dynamic_info (abfd)) | |
411 | return -1; | |
412 | ||
413 | info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd); | |
414 | if (! info->valid) | |
415 | { | |
416 | bfd_set_error (bfd_error_no_symbols); | |
417 | return -1; | |
418 | } | |
419 | ||
420 | return (info->dynrel_count + 1) * sizeof (arelent *); | |
421 | } | |
422 | ||
423 | /* Read in the dynamic relocs. */ | |
424 | ||
425 | static long | |
116c20d2 | 426 | sunos_canonicalize_dynamic_reloc (bfd *abfd, arelent **storage, asymbol **syms) |
252b5132 RH |
427 | { |
428 | struct sunos_dynamic_info *info; | |
429 | unsigned long i; | |
dc810e39 | 430 | bfd_size_type size; |
252b5132 RH |
431 | |
432 | /* Get the general dynamic information. */ | |
116c20d2 | 433 | if (obj_aout_dynamic_info (abfd) == NULL) |
252b5132 RH |
434 | { |
435 | if (! sunos_read_dynamic_info (abfd)) | |
436 | return -1; | |
437 | } | |
438 | ||
439 | info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd); | |
440 | if (! info->valid) | |
441 | { | |
442 | bfd_set_error (bfd_error_no_symbols); | |
443 | return -1; | |
444 | } | |
445 | ||
446 | /* Get the dynamic reloc information. */ | |
447 | if (info->dynrel == NULL) | |
448 | { | |
dc810e39 | 449 | size = (bfd_size_type) info->dynrel_count * obj_reloc_entry_size (abfd); |
116c20d2 | 450 | info->dynrel = bfd_alloc (abfd, size); |
dc810e39 | 451 | if (info->dynrel == NULL && size != 0) |
252b5132 | 452 | return -1; |
dc810e39 | 453 | if (bfd_seek (abfd, (file_ptr) info->dyninfo.ld_rel, SEEK_SET) != 0 |
116c20d2 | 454 | || bfd_bread ((void *) info->dynrel, size, abfd) != size) |
252b5132 RH |
455 | { |
456 | if (info->dynrel != NULL) | |
457 | { | |
458 | bfd_release (abfd, info->dynrel); | |
459 | info->dynrel = NULL; | |
460 | } | |
461 | return -1; | |
462 | } | |
463 | } | |
464 | ||
465 | /* Get the arelent structures corresponding to the dynamic reloc | |
466 | information. */ | |
116c20d2 | 467 | if (info->canonical_dynrel == NULL) |
252b5132 RH |
468 | { |
469 | arelent *to; | |
470 | ||
dc810e39 | 471 | size = (bfd_size_type) info->dynrel_count * sizeof (arelent); |
116c20d2 | 472 | info->canonical_dynrel = bfd_alloc (abfd, size); |
252b5132 RH |
473 | if (info->canonical_dynrel == NULL && info->dynrel_count != 0) |
474 | return -1; | |
7b82c249 | 475 | |
252b5132 RH |
476 | to = info->canonical_dynrel; |
477 | ||
478 | if (obj_reloc_entry_size (abfd) == RELOC_EXT_SIZE) | |
479 | { | |
116c20d2 | 480 | struct reloc_ext_external *p; |
252b5132 RH |
481 | struct reloc_ext_external *pend; |
482 | ||
483 | p = (struct reloc_ext_external *) info->dynrel; | |
484 | pend = p + info->dynrel_count; | |
485 | for (; p < pend; p++, to++) | |
116c20d2 NC |
486 | NAME (aout, swap_ext_reloc_in) (abfd, p, to, syms, |
487 | (bfd_size_type) info->dynsym_count); | |
252b5132 RH |
488 | } |
489 | else | |
490 | { | |
116c20d2 | 491 | struct reloc_std_external *p; |
252b5132 RH |
492 | struct reloc_std_external *pend; |
493 | ||
494 | p = (struct reloc_std_external *) info->dynrel; | |
495 | pend = p + info->dynrel_count; | |
496 | for (; p < pend; p++, to++) | |
116c20d2 NC |
497 | NAME (aout, swap_std_reloc_in) (abfd, p, to, syms, |
498 | (bfd_size_type) info->dynsym_count); | |
252b5132 RH |
499 | } |
500 | } | |
501 | ||
502 | /* Return pointers to the dynamic arelent structures. */ | |
503 | for (i = 0; i < info->dynrel_count; i++) | |
504 | *storage++ = info->canonical_dynrel + i; | |
505 | *storage = NULL; | |
506 | ||
507 | return info->dynrel_count; | |
508 | } | |
509 | \f | |
510 | /* Code to handle linking of SunOS shared libraries. */ | |
511 | ||
512 | /* A SPARC procedure linkage table entry is 12 bytes. The first entry | |
513 | in the table is a jump which is filled in by the runtime linker. | |
514 | The remaining entries are branches back to the first entry, | |
515 | followed by an index into the relocation table encoded to look like | |
516 | a sethi of %g0. */ | |
517 | ||
518 | #define SPARC_PLT_ENTRY_SIZE (12) | |
519 | ||
520 | static const bfd_byte sparc_plt_first_entry[SPARC_PLT_ENTRY_SIZE] = | |
521 | { | |
522 | /* sethi %hi(0),%g1; address filled in by runtime linker. */ | |
523 | 0x3, 0, 0, 0, | |
524 | /* jmp %g1; offset filled in by runtime linker. */ | |
525 | 0x81, 0xc0, 0x60, 0, | |
526 | /* nop */ | |
527 | 0x1, 0, 0, 0 | |
528 | }; | |
529 | ||
530 | /* save %sp, -96, %sp */ | |
dc810e39 | 531 | #define SPARC_PLT_ENTRY_WORD0 ((bfd_vma) 0x9de3bfa0) |
252b5132 | 532 | /* call; address filled in later. */ |
dc810e39 | 533 | #define SPARC_PLT_ENTRY_WORD1 ((bfd_vma) 0x40000000) |
252b5132 | 534 | /* sethi; reloc index filled in later. */ |
dc810e39 | 535 | #define SPARC_PLT_ENTRY_WORD2 ((bfd_vma) 0x01000000) |
252b5132 RH |
536 | |
537 | /* This sequence is used when for the jump table entry to a defined | |
538 | symbol in a complete executable. It is used when linking PIC | |
539 | compiled code which is not being put into a shared library. */ | |
540 | /* sethi <address to be filled in later>, %g1 */ | |
dc810e39 | 541 | #define SPARC_PLT_PIC_WORD0 ((bfd_vma) 0x03000000) |
252b5132 | 542 | /* jmp %g1 + <address to be filled in later> */ |
dc810e39 | 543 | #define SPARC_PLT_PIC_WORD1 ((bfd_vma) 0x81c06000) |
252b5132 | 544 | /* nop */ |
dc810e39 | 545 | #define SPARC_PLT_PIC_WORD2 ((bfd_vma) 0x01000000) |
252b5132 RH |
546 | |
547 | /* An m68k procedure linkage table entry is 8 bytes. The first entry | |
548 | in the table is a jump which is filled in the by the runtime | |
549 | linker. The remaining entries are branches back to the first | |
550 | entry, followed by a two byte index into the relocation table. */ | |
551 | ||
552 | #define M68K_PLT_ENTRY_SIZE (8) | |
553 | ||
554 | static const bfd_byte m68k_plt_first_entry[M68K_PLT_ENTRY_SIZE] = | |
555 | { | |
556 | /* jmps @# */ | |
557 | 0x4e, 0xf9, | |
558 | /* Filled in by runtime linker with a magic address. */ | |
559 | 0, 0, 0, 0, | |
560 | /* Not used? */ | |
561 | 0, 0 | |
562 | }; | |
563 | ||
564 | /* bsrl */ | |
dc810e39 | 565 | #define M68K_PLT_ENTRY_WORD0 ((bfd_vma) 0x61ff) |
252b5132 RH |
566 | /* Remaining words filled in later. */ |
567 | ||
568 | /* An entry in the SunOS linker hash table. */ | |
569 | ||
570 | struct sunos_link_hash_entry | |
571 | { | |
572 | struct aout_link_hash_entry root; | |
573 | ||
574 | /* If this is a dynamic symbol, this is its index into the dynamic | |
575 | symbol table. This is initialized to -1. As the linker looks at | |
576 | the input files, it changes this to -2 if it will be added to the | |
577 | dynamic symbol table. After all the input files have been seen, | |
578 | the linker will know whether to build a dynamic symbol table; if | |
579 | it does build one, this becomes the index into the table. */ | |
580 | long dynindx; | |
581 | ||
582 | /* If this is a dynamic symbol, this is the index of the name in the | |
583 | dynamic symbol string table. */ | |
584 | long dynstr_index; | |
585 | ||
586 | /* The offset into the global offset table used for this symbol. If | |
587 | the symbol does not require a GOT entry, this is 0. */ | |
588 | bfd_vma got_offset; | |
589 | ||
590 | /* The offset into the procedure linkage table used for this symbol. | |
591 | If the symbol does not require a PLT entry, this is 0. */ | |
592 | bfd_vma plt_offset; | |
593 | ||
594 | /* Some linker flags. */ | |
595 | unsigned char flags; | |
596 | /* Symbol is referenced by a regular object. */ | |
597 | #define SUNOS_REF_REGULAR 01 | |
598 | /* Symbol is defined by a regular object. */ | |
599 | #define SUNOS_DEF_REGULAR 02 | |
600 | /* Symbol is referenced by a dynamic object. */ | |
601 | #define SUNOS_REF_DYNAMIC 04 | |
602 | /* Symbol is defined by a dynamic object. */ | |
603 | #define SUNOS_DEF_DYNAMIC 010 | |
604 | /* Symbol is a constructor symbol in a regular object. */ | |
605 | #define SUNOS_CONSTRUCTOR 020 | |
606 | }; | |
607 | ||
608 | /* The SunOS linker hash table. */ | |
609 | ||
610 | struct sunos_link_hash_table | |
611 | { | |
612 | struct aout_link_hash_table root; | |
613 | ||
614 | /* The object which holds the dynamic sections. */ | |
615 | bfd *dynobj; | |
616 | ||
617 | /* Whether we have created the dynamic sections. */ | |
b34976b6 | 618 | bfd_boolean dynamic_sections_created; |
252b5132 RH |
619 | |
620 | /* Whether we need the dynamic sections. */ | |
b34976b6 | 621 | bfd_boolean dynamic_sections_needed; |
252b5132 RH |
622 | |
623 | /* Whether we need the .got table. */ | |
b34976b6 | 624 | bfd_boolean got_needed; |
252b5132 RH |
625 | |
626 | /* The number of dynamic symbols. */ | |
627 | size_t dynsymcount; | |
628 | ||
629 | /* The number of buckets in the hash table. */ | |
630 | size_t bucketcount; | |
631 | ||
632 | /* The list of dynamic objects needed by dynamic objects included in | |
633 | the link. */ | |
634 | struct bfd_link_needed_list *needed; | |
635 | ||
636 | /* The offset of __GLOBAL_OFFSET_TABLE_ into the .got section. */ | |
637 | bfd_vma got_base; | |
638 | }; | |
639 | ||
640 | /* Routine to create an entry in an SunOS link hash table. */ | |
641 | ||
642 | static struct bfd_hash_entry * | |
116c20d2 NC |
643 | sunos_link_hash_newfunc (struct bfd_hash_entry *entry, |
644 | struct bfd_hash_table *table, | |
645 | const char *string) | |
252b5132 RH |
646 | { |
647 | struct sunos_link_hash_entry *ret = (struct sunos_link_hash_entry *) entry; | |
648 | ||
649 | /* Allocate the structure if it has not already been allocated by a | |
650 | subclass. */ | |
116c20d2 NC |
651 | if (ret == NULL) |
652 | ret = bfd_hash_allocate (table, sizeof (* ret)); | |
653 | if (ret == NULL) | |
654 | return NULL; | |
252b5132 RH |
655 | |
656 | /* Call the allocation method of the superclass. */ | |
657 | ret = ((struct sunos_link_hash_entry *) | |
116c20d2 NC |
658 | NAME (aout, link_hash_newfunc) ((struct bfd_hash_entry *) ret, |
659 | table, string)); | |
252b5132 RH |
660 | if (ret != NULL) |
661 | { | |
662 | /* Set local fields. */ | |
663 | ret->dynindx = -1; | |
664 | ret->dynstr_index = -1; | |
665 | ret->got_offset = 0; | |
666 | ret->plt_offset = 0; | |
667 | ret->flags = 0; | |
668 | } | |
669 | ||
670 | return (struct bfd_hash_entry *) ret; | |
671 | } | |
672 | ||
673 | /* Create a SunOS link hash table. */ | |
674 | ||
675 | static struct bfd_link_hash_table * | |
116c20d2 | 676 | sunos_link_hash_table_create (bfd *abfd) |
252b5132 RH |
677 | { |
678 | struct sunos_link_hash_table *ret; | |
dc810e39 | 679 | bfd_size_type amt = sizeof (struct sunos_link_hash_table); |
252b5132 | 680 | |
116c20d2 NC |
681 | ret = bfd_malloc (amt); |
682 | if (ret == NULL) | |
683 | return NULL; | |
66eb6687 AM |
684 | if (!NAME (aout, link_hash_table_init) (&ret->root, abfd, |
685 | sunos_link_hash_newfunc, | |
686 | sizeof (struct sunos_link_hash_entry))) | |
252b5132 | 687 | { |
e2d34d7d | 688 | free (ret); |
116c20d2 | 689 | return NULL; |
252b5132 RH |
690 | } |
691 | ||
692 | ret->dynobj = NULL; | |
b34976b6 AM |
693 | ret->dynamic_sections_created = FALSE; |
694 | ret->dynamic_sections_needed = FALSE; | |
695 | ret->got_needed = FALSE; | |
252b5132 RH |
696 | ret->dynsymcount = 0; |
697 | ret->bucketcount = 0; | |
698 | ret->needed = NULL; | |
699 | ret->got_base = 0; | |
700 | ||
701 | return &ret->root.root; | |
702 | } | |
703 | ||
704 | /* Look up an entry in an SunOS link hash table. */ | |
705 | ||
706 | #define sunos_link_hash_lookup(table, string, create, copy, follow) \ | |
707 | ((struct sunos_link_hash_entry *) \ | |
708 | aout_link_hash_lookup (&(table)->root, (string), (create), (copy),\ | |
709 | (follow))) | |
710 | ||
711 | /* Traverse a SunOS link hash table. */ | |
712 | ||
713 | #define sunos_link_hash_traverse(table, func, info) \ | |
714 | (aout_link_hash_traverse \ | |
715 | (&(table)->root, \ | |
116c20d2 | 716 | (bfd_boolean (*) (struct aout_link_hash_entry *, void *)) (func), \ |
252b5132 RH |
717 | (info))) |
718 | ||
719 | /* Get the SunOS link hash table from the info structure. This is | |
720 | just a cast. */ | |
721 | ||
722 | #define sunos_hash_table(p) ((struct sunos_link_hash_table *) ((p)->hash)) | |
723 | ||
252b5132 RH |
724 | /* Create the dynamic sections needed if we are linking against a |
725 | dynamic object, or if we are linking PIC compiled code. ABFD is a | |
726 | bfd we can attach the dynamic sections to. The linker script will | |
727 | look for these special sections names and put them in the right | |
728 | place in the output file. See include/aout/sun4.h for more details | |
729 | of the dynamic linking information. */ | |
730 | ||
b34976b6 | 731 | static bfd_boolean |
116c20d2 NC |
732 | sunos_create_dynamic_sections (bfd *abfd, |
733 | struct bfd_link_info *info, | |
734 | bfd_boolean needed) | |
252b5132 RH |
735 | { |
736 | asection *s; | |
737 | ||
738 | if (! sunos_hash_table (info)->dynamic_sections_created) | |
739 | { | |
740 | flagword flags; | |
741 | ||
742 | sunos_hash_table (info)->dynobj = abfd; | |
743 | ||
744 | flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | |
745 | | SEC_LINKER_CREATED); | |
746 | ||
747 | /* The .dynamic section holds the basic dynamic information: the | |
748 | sun4_dynamic structure, the dynamic debugger information, and | |
749 | the sun4_dynamic_link structure. */ | |
117ed4f8 | 750 | s = bfd_make_section_with_flags (abfd, ".dynamic", flags); |
252b5132 | 751 | if (s == NULL |
252b5132 | 752 | || ! bfd_set_section_alignment (abfd, s, 2)) |
b34976b6 | 753 | return FALSE; |
252b5132 RH |
754 | |
755 | /* The .got section holds the global offset table. The address | |
756 | is put in the ld_got field. */ | |
117ed4f8 | 757 | s = bfd_make_section_with_flags (abfd, ".got", flags); |
252b5132 | 758 | if (s == NULL |
252b5132 | 759 | || ! bfd_set_section_alignment (abfd, s, 2)) |
b34976b6 | 760 | return FALSE; |
252b5132 RH |
761 | |
762 | /* The .plt section holds the procedure linkage table. The | |
763 | address is put in the ld_plt field. */ | |
117ed4f8 | 764 | s = bfd_make_section_with_flags (abfd, ".plt", flags | SEC_CODE); |
252b5132 | 765 | if (s == NULL |
252b5132 | 766 | || ! bfd_set_section_alignment (abfd, s, 2)) |
b34976b6 | 767 | return FALSE; |
252b5132 RH |
768 | |
769 | /* The .dynrel section holds the dynamic relocs. The address is | |
770 | put in the ld_rel field. */ | |
117ed4f8 | 771 | s = bfd_make_section_with_flags (abfd, ".dynrel", flags | SEC_READONLY); |
252b5132 | 772 | if (s == NULL |
252b5132 | 773 | || ! bfd_set_section_alignment (abfd, s, 2)) |
b34976b6 | 774 | return FALSE; |
252b5132 RH |
775 | |
776 | /* The .hash section holds the dynamic hash table. The address | |
777 | is put in the ld_hash field. */ | |
117ed4f8 | 778 | s = bfd_make_section_with_flags (abfd, ".hash", flags | SEC_READONLY); |
252b5132 | 779 | if (s == NULL |
252b5132 | 780 | || ! bfd_set_section_alignment (abfd, s, 2)) |
b34976b6 | 781 | return FALSE; |
252b5132 RH |
782 | |
783 | /* The .dynsym section holds the dynamic symbols. The address | |
784 | is put in the ld_stab field. */ | |
117ed4f8 | 785 | s = bfd_make_section_with_flags (abfd, ".dynsym", flags | SEC_READONLY); |
252b5132 | 786 | if (s == NULL |
252b5132 | 787 | || ! bfd_set_section_alignment (abfd, s, 2)) |
b34976b6 | 788 | return FALSE; |
252b5132 RH |
789 | |
790 | /* The .dynstr section holds the dynamic symbol string table. | |
791 | The address is put in the ld_symbols field. */ | |
117ed4f8 | 792 | s = bfd_make_section_with_flags (abfd, ".dynstr", flags | SEC_READONLY); |
252b5132 | 793 | if (s == NULL |
252b5132 | 794 | || ! bfd_set_section_alignment (abfd, s, 2)) |
b34976b6 | 795 | return FALSE; |
252b5132 | 796 | |
b34976b6 | 797 | sunos_hash_table (info)->dynamic_sections_created = TRUE; |
252b5132 RH |
798 | } |
799 | ||
800 | if ((needed && ! sunos_hash_table (info)->dynamic_sections_needed) | |
801 | || info->shared) | |
802 | { | |
803 | bfd *dynobj; | |
804 | ||
805 | dynobj = sunos_hash_table (info)->dynobj; | |
806 | ||
807 | s = bfd_get_section_by_name (dynobj, ".got"); | |
eea6121a AM |
808 | if (s->size == 0) |
809 | s->size = BYTES_IN_WORD; | |
252b5132 | 810 | |
b34976b6 AM |
811 | sunos_hash_table (info)->dynamic_sections_needed = TRUE; |
812 | sunos_hash_table (info)->got_needed = TRUE; | |
252b5132 RH |
813 | } |
814 | ||
b34976b6 | 815 | return TRUE; |
252b5132 RH |
816 | } |
817 | ||
818 | /* Add dynamic symbols during a link. This is called by the a.out | |
819 | backend linker for each object it encounters. */ | |
820 | ||
b34976b6 | 821 | static bfd_boolean |
116c20d2 NC |
822 | sunos_add_dynamic_symbols (bfd *abfd, |
823 | struct bfd_link_info *info, | |
824 | struct external_nlist **symsp, | |
825 | bfd_size_type *sym_countp, | |
826 | char **stringsp) | |
252b5132 | 827 | { |
252b5132 RH |
828 | bfd *dynobj; |
829 | struct sunos_dynamic_info *dinfo; | |
830 | unsigned long need; | |
831 | ||
832 | /* Make sure we have all the required sections. */ | |
f13a99db | 833 | if (info->output_bfd->xvec == abfd->xvec) |
252b5132 RH |
834 | { |
835 | if (! sunos_create_dynamic_sections (abfd, info, | |
b34976b6 | 836 | ((abfd->flags & DYNAMIC) != 0 |
1049f94e | 837 | && !info->relocatable))) |
b34976b6 | 838 | return FALSE; |
252b5132 RH |
839 | } |
840 | ||
841 | /* There is nothing else to do for a normal object. */ | |
842 | if ((abfd->flags & DYNAMIC) == 0) | |
b34976b6 | 843 | return TRUE; |
252b5132 RH |
844 | |
845 | dynobj = sunos_hash_table (info)->dynobj; | |
846 | ||
847 | /* We do not want to include the sections in a dynamic object in the | |
848 | output file. We hack by simply clobbering the list of sections | |
849 | in the BFD. This could be handled more cleanly by, say, a new | |
850 | section flag; the existing SEC_NEVER_LOAD flag is not the one we | |
851 | want, because that one still implies that the section takes up | |
852 | space in the output file. If this is the first object we have | |
853 | seen, we must preserve the dynamic sections we just created. */ | |
5daa8fe7 L |
854 | if (abfd != dynobj) |
855 | abfd->sections = NULL; | |
856 | else | |
252b5132 | 857 | { |
04dd1667 | 858 | asection *s; |
5daa8fe7 | 859 | |
04dd1667 | 860 | for (s = abfd->sections; s != NULL; s = s->next) |
5daa8fe7 | 861 | { |
5daa8fe7 L |
862 | if ((s->flags & SEC_LINKER_CREATED) == 0) |
863 | bfd_section_list_remove (abfd, s); | |
864 | } | |
252b5132 RH |
865 | } |
866 | ||
867 | /* The native linker seems to just ignore dynamic objects when -r is | |
868 | used. */ | |
1049f94e | 869 | if (info->relocatable) |
b34976b6 | 870 | return TRUE; |
252b5132 RH |
871 | |
872 | /* There's no hope of using a dynamic object which does not exactly | |
873 | match the format of the output file. */ | |
f13a99db | 874 | if (info->output_bfd->xvec != abfd->xvec) |
252b5132 RH |
875 | { |
876 | bfd_set_error (bfd_error_invalid_operation); | |
b34976b6 | 877 | return FALSE; |
252b5132 RH |
878 | } |
879 | ||
880 | /* Make sure we have a .need and a .rules sections. These are only | |
881 | needed if there really is a dynamic object in the link, so they | |
882 | are not added by sunos_create_dynamic_sections. */ | |
883 | if (bfd_get_section_by_name (dynobj, ".need") == NULL) | |
884 | { | |
885 | /* The .need section holds the list of names of shared objets | |
886 | which must be included at runtime. The address of this | |
887 | section is put in the ld_need field. */ | |
117ed4f8 AM |
888 | flagword flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS |
889 | | SEC_IN_MEMORY | SEC_READONLY); | |
890 | asection *s = bfd_make_section_with_flags (dynobj, ".need", flags); | |
252b5132 | 891 | if (s == NULL |
252b5132 | 892 | || ! bfd_set_section_alignment (dynobj, s, 2)) |
b34976b6 | 893 | return FALSE; |
252b5132 RH |
894 | } |
895 | ||
896 | if (bfd_get_section_by_name (dynobj, ".rules") == NULL) | |
897 | { | |
898 | /* The .rules section holds the path to search for shared | |
899 | objects. The address of this section is put in the ld_rules | |
900 | field. */ | |
117ed4f8 AM |
901 | flagword flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS |
902 | | SEC_IN_MEMORY | SEC_READONLY); | |
903 | asection *s = bfd_make_section_with_flags (dynobj, ".rules", flags); | |
252b5132 | 904 | if (s == NULL |
252b5132 | 905 | || ! bfd_set_section_alignment (dynobj, s, 2)) |
b34976b6 | 906 | return FALSE; |
252b5132 RH |
907 | } |
908 | ||
909 | /* Pick up the dynamic symbols and return them to the caller. */ | |
910 | if (! sunos_slurp_dynamic_symtab (abfd)) | |
b34976b6 | 911 | return FALSE; |
252b5132 RH |
912 | |
913 | dinfo = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd); | |
914 | *symsp = dinfo->dynsym; | |
915 | *sym_countp = dinfo->dynsym_count; | |
916 | *stringsp = dinfo->dynstr; | |
917 | ||
918 | /* Record information about any other objects needed by this one. */ | |
919 | need = dinfo->dyninfo.ld_need; | |
920 | while (need != 0) | |
921 | { | |
922 | bfd_byte buf[16]; | |
923 | unsigned long name, flags; | |
924 | unsigned short major_vno, minor_vno; | |
925 | struct bfd_link_needed_list *needed, **pp; | |
926 | char *namebuf, *p; | |
dc810e39 | 927 | bfd_size_type alc; |
252b5132 RH |
928 | bfd_byte b; |
929 | char *namecopy; | |
930 | ||
dc810e39 AM |
931 | if (bfd_seek (abfd, (file_ptr) need, SEEK_SET) != 0 |
932 | || bfd_bread (buf, (bfd_size_type) 16, abfd) != 16) | |
b34976b6 | 933 | return FALSE; |
252b5132 RH |
934 | |
935 | /* For the format of an ld_need entry, see aout/sun4.h. We | |
b34976b6 | 936 | should probably define structs for this manipulation. */ |
252b5132 RH |
937 | name = bfd_get_32 (abfd, buf); |
938 | flags = bfd_get_32 (abfd, buf + 4); | |
dc810e39 AM |
939 | major_vno = (unsigned short) bfd_get_16 (abfd, buf + 8); |
940 | minor_vno = (unsigned short) bfd_get_16 (abfd, buf + 10); | |
252b5132 RH |
941 | need = bfd_get_32 (abfd, buf + 12); |
942 | ||
dc810e39 | 943 | alc = sizeof (struct bfd_link_needed_list); |
116c20d2 | 944 | needed = bfd_alloc (abfd, alc); |
252b5132 | 945 | if (needed == NULL) |
b34976b6 | 946 | return FALSE; |
252b5132 RH |
947 | needed->by = abfd; |
948 | ||
949 | /* We return the name as [-l]name[.maj][.min]. */ | |
950 | alc = 30; | |
116c20d2 | 951 | namebuf = bfd_malloc (alc + 1); |
252b5132 | 952 | if (namebuf == NULL) |
b34976b6 | 953 | return FALSE; |
252b5132 RH |
954 | p = namebuf; |
955 | ||
956 | if ((flags & 0x80000000) != 0) | |
957 | { | |
958 | *p++ = '-'; | |
959 | *p++ = 'l'; | |
960 | } | |
dc810e39 | 961 | if (bfd_seek (abfd, (file_ptr) name, SEEK_SET) != 0) |
252b5132 RH |
962 | { |
963 | free (namebuf); | |
b34976b6 | 964 | return FALSE; |
252b5132 RH |
965 | } |
966 | ||
967 | do | |
968 | { | |
dc810e39 | 969 | if (bfd_bread (&b, (bfd_size_type) 1, abfd) != 1) |
252b5132 RH |
970 | { |
971 | free (namebuf); | |
b34976b6 | 972 | return FALSE; |
252b5132 RH |
973 | } |
974 | ||
dc810e39 | 975 | if ((bfd_size_type) (p - namebuf) >= alc) |
252b5132 RH |
976 | { |
977 | char *n; | |
978 | ||
979 | alc *= 2; | |
116c20d2 | 980 | n = bfd_realloc (namebuf, alc + 1); |
252b5132 RH |
981 | if (n == NULL) |
982 | { | |
983 | free (namebuf); | |
b34976b6 | 984 | return FALSE; |
252b5132 RH |
985 | } |
986 | p = n + (p - namebuf); | |
987 | namebuf = n; | |
988 | } | |
989 | ||
990 | *p++ = b; | |
991 | } | |
992 | while (b != '\0'); | |
993 | ||
994 | if (major_vno == 0) | |
995 | *p = '\0'; | |
996 | else | |
997 | { | |
998 | char majbuf[30]; | |
999 | char minbuf[30]; | |
1000 | ||
1001 | sprintf (majbuf, ".%d", major_vno); | |
1002 | if (minor_vno == 0) | |
1003 | minbuf[0] = '\0'; | |
1004 | else | |
1005 | sprintf (minbuf, ".%d", minor_vno); | |
1006 | ||
1007 | if ((p - namebuf) + strlen (majbuf) + strlen (minbuf) >= alc) | |
1008 | { | |
1009 | char *n; | |
1010 | ||
1011 | alc = (p - namebuf) + strlen (majbuf) + strlen (minbuf); | |
116c20d2 | 1012 | n = bfd_realloc (namebuf, alc + 1); |
252b5132 RH |
1013 | if (n == NULL) |
1014 | { | |
1015 | free (namebuf); | |
b34976b6 | 1016 | return FALSE; |
252b5132 RH |
1017 | } |
1018 | p = n + (p - namebuf); | |
1019 | namebuf = n; | |
1020 | } | |
1021 | ||
1022 | strcpy (p, majbuf); | |
1023 | strcat (p, minbuf); | |
1024 | } | |
1025 | ||
dc810e39 | 1026 | namecopy = bfd_alloc (abfd, (bfd_size_type) strlen (namebuf) + 1); |
252b5132 RH |
1027 | if (namecopy == NULL) |
1028 | { | |
1029 | free (namebuf); | |
b34976b6 | 1030 | return FALSE; |
252b5132 RH |
1031 | } |
1032 | strcpy (namecopy, namebuf); | |
1033 | free (namebuf); | |
1034 | needed->name = namecopy; | |
1035 | ||
1036 | needed->next = NULL; | |
1037 | ||
1038 | for (pp = &sunos_hash_table (info)->needed; | |
1039 | *pp != NULL; | |
1040 | pp = &(*pp)->next) | |
1041 | ; | |
1042 | *pp = needed; | |
1043 | } | |
1044 | ||
b34976b6 | 1045 | return TRUE; |
252b5132 RH |
1046 | } |
1047 | ||
1048 | /* Function to add a single symbol to the linker hash table. This is | |
1049 | a wrapper around _bfd_generic_link_add_one_symbol which handles the | |
1050 | tweaking needed for dynamic linking support. */ | |
1051 | ||
b34976b6 | 1052 | static bfd_boolean |
116c20d2 NC |
1053 | sunos_add_one_symbol (struct bfd_link_info *info, |
1054 | bfd *abfd, | |
1055 | const char *name, | |
1056 | flagword flags, | |
1057 | asection *section, | |
1058 | bfd_vma value, | |
1059 | const char *string, | |
1060 | bfd_boolean copy, | |
1061 | bfd_boolean collect, | |
1062 | struct bfd_link_hash_entry **hashp) | |
252b5132 RH |
1063 | { |
1064 | struct sunos_link_hash_entry *h; | |
1065 | int new_flag; | |
1066 | ||
1067 | if ((flags & (BSF_INDIRECT | BSF_WARNING | BSF_CONSTRUCTOR)) != 0 | |
1068 | || ! bfd_is_und_section (section)) | |
b34976b6 AM |
1069 | h = sunos_link_hash_lookup (sunos_hash_table (info), name, TRUE, copy, |
1070 | FALSE); | |
252b5132 RH |
1071 | else |
1072 | h = ((struct sunos_link_hash_entry *) | |
b34976b6 | 1073 | bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, copy, FALSE)); |
252b5132 | 1074 | if (h == NULL) |
b34976b6 | 1075 | return FALSE; |
252b5132 RH |
1076 | |
1077 | if (hashp != NULL) | |
1078 | *hashp = (struct bfd_link_hash_entry *) h; | |
1079 | ||
1080 | /* Treat a common symbol in a dynamic object as defined in the .bss | |
1081 | section of the dynamic object. We don't want to allocate space | |
1082 | for it in our process image. */ | |
1083 | if ((abfd->flags & DYNAMIC) != 0 | |
1084 | && bfd_is_com_section (section)) | |
1085 | section = obj_bsssec (abfd); | |
1086 | ||
1087 | if (! bfd_is_und_section (section) | |
1088 | && h->root.root.type != bfd_link_hash_new | |
1089 | && h->root.root.type != bfd_link_hash_undefined | |
1090 | && h->root.root.type != bfd_link_hash_defweak) | |
1091 | { | |
1092 | /* We are defining the symbol, and it is already defined. This | |
1093 | is a potential multiple definition error. */ | |
1094 | if ((abfd->flags & DYNAMIC) != 0) | |
1095 | { | |
1096 | /* The definition we are adding is from a dynamic object. | |
1097 | We do not want this new definition to override the | |
1098 | existing definition, so we pretend it is just a | |
1099 | reference. */ | |
1100 | section = bfd_und_section_ptr; | |
1101 | } | |
1102 | else if (h->root.root.type == bfd_link_hash_defined | |
1103 | && h->root.root.u.def.section->owner != NULL | |
1104 | && (h->root.root.u.def.section->owner->flags & DYNAMIC) != 0) | |
1105 | { | |
1106 | /* The existing definition is from a dynamic object. We | |
1107 | want to override it with the definition we just found. | |
1108 | Clobber the existing definition. */ | |
1109 | h->root.root.type = bfd_link_hash_undefined; | |
1110 | h->root.root.u.undef.abfd = h->root.root.u.def.section->owner; | |
1111 | } | |
1112 | else if (h->root.root.type == bfd_link_hash_common | |
1113 | && (h->root.root.u.c.p->section->owner->flags & DYNAMIC) != 0) | |
1114 | { | |
1115 | /* The existing definition is from a dynamic object. We | |
1116 | want to override it with the definition we just found. | |
1117 | Clobber the existing definition. We can't set it to new, | |
1118 | because it is on the undefined list. */ | |
1119 | h->root.root.type = bfd_link_hash_undefined; | |
1120 | h->root.root.u.undef.abfd = h->root.root.u.c.p->section->owner; | |
1121 | } | |
1122 | } | |
1123 | ||
1124 | if ((abfd->flags & DYNAMIC) != 0 | |
f13a99db | 1125 | && abfd->xvec == info->output_bfd->xvec |
252b5132 | 1126 | && (h->flags & SUNOS_CONSTRUCTOR) != 0) |
116c20d2 NC |
1127 | /* The existing symbol is a constructor symbol, and this symbol |
1128 | is from a dynamic object. A constructor symbol is actually a | |
1129 | definition, although the type will be bfd_link_hash_undefined | |
1130 | at this point. We want to ignore the definition from the | |
1131 | dynamic object. */ | |
1132 | section = bfd_und_section_ptr; | |
252b5132 RH |
1133 | else if ((flags & BSF_CONSTRUCTOR) != 0 |
1134 | && (abfd->flags & DYNAMIC) == 0 | |
1135 | && h->root.root.type == bfd_link_hash_defined | |
1136 | && h->root.root.u.def.section->owner != NULL | |
1137 | && (h->root.root.u.def.section->owner->flags & DYNAMIC) != 0) | |
116c20d2 NC |
1138 | /* The existing symbol is defined by a dynamic object, and this |
1139 | is a constructor symbol. As above, we want to force the use | |
1140 | of the constructor symbol from the regular object. */ | |
1141 | h->root.root.type = bfd_link_hash_new; | |
252b5132 RH |
1142 | |
1143 | /* Do the usual procedure for adding a symbol. */ | |
1144 | if (! _bfd_generic_link_add_one_symbol (info, abfd, name, flags, section, | |
1145 | value, string, copy, collect, | |
1146 | hashp)) | |
b34976b6 | 1147 | return FALSE; |
252b5132 | 1148 | |
f13a99db | 1149 | if (abfd->xvec == info->output_bfd->xvec) |
252b5132 RH |
1150 | { |
1151 | /* Set a flag in the hash table entry indicating the type of | |
1152 | reference or definition we just found. Keep a count of the | |
1153 | number of dynamic symbols we find. A dynamic symbol is one | |
1154 | which is referenced or defined by both a regular object and a | |
1155 | shared object. */ | |
1156 | if ((abfd->flags & DYNAMIC) == 0) | |
1157 | { | |
1158 | if (bfd_is_und_section (section)) | |
1159 | new_flag = SUNOS_REF_REGULAR; | |
1160 | else | |
1161 | new_flag = SUNOS_DEF_REGULAR; | |
1162 | } | |
1163 | else | |
1164 | { | |
1165 | if (bfd_is_und_section (section)) | |
1166 | new_flag = SUNOS_REF_DYNAMIC; | |
1167 | else | |
1168 | new_flag = SUNOS_DEF_DYNAMIC; | |
1169 | } | |
1170 | h->flags |= new_flag; | |
1171 | ||
1172 | if (h->dynindx == -1 | |
1173 | && (h->flags & (SUNOS_DEF_REGULAR | SUNOS_REF_REGULAR)) != 0) | |
1174 | { | |
1175 | ++sunos_hash_table (info)->dynsymcount; | |
1176 | h->dynindx = -2; | |
1177 | } | |
1178 | ||
1179 | if ((flags & BSF_CONSTRUCTOR) != 0 | |
1180 | && (abfd->flags & DYNAMIC) == 0) | |
1181 | h->flags |= SUNOS_CONSTRUCTOR; | |
1182 | } | |
1183 | ||
b34976b6 | 1184 | return TRUE; |
252b5132 RH |
1185 | } |
1186 | ||
116c20d2 NC |
1187 | extern const bfd_target MY (vec); |
1188 | ||
252b5132 RH |
1189 | /* Return the list of objects needed by BFD. */ |
1190 | ||
252b5132 | 1191 | struct bfd_link_needed_list * |
116c20d2 NC |
1192 | bfd_sunos_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED, |
1193 | struct bfd_link_info *info) | |
252b5132 | 1194 | { |
f13a99db | 1195 | if (info->output_bfd->xvec != &MY (vec)) |
252b5132 RH |
1196 | return NULL; |
1197 | return sunos_hash_table (info)->needed; | |
1198 | } | |
1199 | ||
1200 | /* Record an assignment made to a symbol by a linker script. We need | |
1201 | this in case some dynamic object refers to this symbol. */ | |
1202 | ||
b34976b6 | 1203 | bfd_boolean |
116c20d2 NC |
1204 | bfd_sunos_record_link_assignment (bfd *output_bfd, |
1205 | struct bfd_link_info *info, | |
1206 | const char *name) | |
252b5132 RH |
1207 | { |
1208 | struct sunos_link_hash_entry *h; | |
1209 | ||
1210 | if (output_bfd->xvec != &MY(vec)) | |
b34976b6 | 1211 | return TRUE; |
252b5132 RH |
1212 | |
1213 | /* This is called after we have examined all the input objects. If | |
1214 | the symbol does not exist, it merely means that no object refers | |
1215 | to it, and we can just ignore it at this point. */ | |
1216 | h = sunos_link_hash_lookup (sunos_hash_table (info), name, | |
b34976b6 | 1217 | FALSE, FALSE, FALSE); |
252b5132 | 1218 | if (h == NULL) |
b34976b6 | 1219 | return TRUE; |
252b5132 RH |
1220 | |
1221 | /* In a shared library, the __DYNAMIC symbol does not appear in the | |
1222 | dynamic symbol table. */ | |
1223 | if (! info->shared || strcmp (name, "__DYNAMIC") != 0) | |
1224 | { | |
1225 | h->flags |= SUNOS_DEF_REGULAR; | |
1226 | ||
1227 | if (h->dynindx == -1) | |
1228 | { | |
1229 | ++sunos_hash_table (info)->dynsymcount; | |
1230 | h->dynindx = -2; | |
1231 | } | |
1232 | } | |
1233 | ||
b34976b6 | 1234 | return TRUE; |
252b5132 RH |
1235 | } |
1236 | ||
116c20d2 NC |
1237 | /* Scan the relocs for an input section using standard relocs. We |
1238 | need to figure out what to do for each reloc against a dynamic | |
1239 | symbol. If the symbol is in the .text section, an entry is made in | |
1240 | the procedure linkage table. Note that this will do the wrong | |
1241 | thing if the symbol is actually data; I don't think the Sun 3 | |
1242 | native linker handles this case correctly either. If the symbol is | |
1243 | not in the .text section, we must preserve the reloc as a dynamic | |
1244 | reloc. FIXME: We should also handle the PIC relocs here by | |
1245 | building global offset table entries. */ | |
252b5132 | 1246 | |
116c20d2 NC |
1247 | static bfd_boolean |
1248 | sunos_scan_std_relocs (struct bfd_link_info *info, | |
1249 | bfd *abfd, | |
1250 | asection *sec ATTRIBUTE_UNUSED, | |
1251 | const struct reloc_std_external *relocs, | |
1252 | bfd_size_type rel_size) | |
252b5132 RH |
1253 | { |
1254 | bfd *dynobj; | |
116c20d2 NC |
1255 | asection *splt = NULL; |
1256 | asection *srel = NULL; | |
1257 | struct sunos_link_hash_entry **sym_hashes; | |
1258 | const struct reloc_std_external *rel, *relend; | |
252b5132 | 1259 | |
116c20d2 NC |
1260 | /* We only know how to handle m68k plt entries. */ |
1261 | if (bfd_get_arch (abfd) != bfd_arch_m68k) | |
252b5132 | 1262 | { |
116c20d2 NC |
1263 | bfd_set_error (bfd_error_invalid_target); |
1264 | return FALSE; | |
252b5132 RH |
1265 | } |
1266 | ||
116c20d2 | 1267 | dynobj = NULL; |
252b5132 | 1268 | |
116c20d2 | 1269 | sym_hashes = (struct sunos_link_hash_entry **) obj_aout_sym_hashes (abfd); |
252b5132 | 1270 | |
116c20d2 NC |
1271 | relend = relocs + rel_size / RELOC_STD_SIZE; |
1272 | for (rel = relocs; rel < relend; rel++) | |
252b5132 | 1273 | { |
116c20d2 NC |
1274 | int r_index; |
1275 | struct sunos_link_hash_entry *h; | |
1276 | ||
1277 | /* We only want relocs against external symbols. */ | |
1278 | if (bfd_header_big_endian (abfd)) | |
252b5132 | 1279 | { |
116c20d2 NC |
1280 | if ((rel->r_type[0] & RELOC_STD_BITS_EXTERN_BIG) == 0) |
1281 | continue; | |
252b5132 | 1282 | } |
252b5132 | 1283 | else |
116c20d2 NC |
1284 | { |
1285 | if ((rel->r_type[0] & RELOC_STD_BITS_EXTERN_LITTLE) == 0) | |
1286 | continue; | |
1287 | } | |
7b82c249 | 1288 | |
116c20d2 NC |
1289 | /* Get the symbol index. */ |
1290 | if (bfd_header_big_endian (abfd)) | |
1291 | r_index = ((rel->r_index[0] << 16) | |
1292 | | (rel->r_index[1] << 8) | |
1293 | | rel->r_index[2]); | |
252b5132 | 1294 | else |
116c20d2 NC |
1295 | r_index = ((rel->r_index[2] << 16) |
1296 | | (rel->r_index[1] << 8) | |
1297 | | rel->r_index[0]); | |
252b5132 | 1298 | |
116c20d2 NC |
1299 | /* Get the hash table entry. */ |
1300 | h = sym_hashes[r_index]; | |
1301 | if (h == NULL) | |
1302 | /* This should not normally happen, but it will in any case | |
1303 | be caught in the relocation phase. */ | |
1304 | continue; | |
252b5132 | 1305 | |
116c20d2 NC |
1306 | /* At this point common symbols have already been allocated, so |
1307 | we don't have to worry about them. We need to consider that | |
1308 | we may have already seen this symbol and marked it undefined; | |
1309 | if the symbol is really undefined, then SUNOS_DEF_DYNAMIC | |
1310 | will be zero. */ | |
1311 | if (h->root.root.type != bfd_link_hash_defined | |
1312 | && h->root.root.type != bfd_link_hash_defweak | |
1313 | && h->root.root.type != bfd_link_hash_undefined) | |
1314 | continue; | |
252b5132 | 1315 | |
116c20d2 NC |
1316 | if ((h->flags & SUNOS_DEF_DYNAMIC) == 0 |
1317 | || (h->flags & SUNOS_DEF_REGULAR) != 0) | |
1318 | continue; | |
1319 | ||
1320 | if (dynobj == NULL) | |
252b5132 | 1321 | { |
116c20d2 | 1322 | asection *sgot; |
252b5132 | 1323 | |
116c20d2 | 1324 | if (! sunos_create_dynamic_sections (abfd, info, FALSE)) |
b34976b6 | 1325 | return FALSE; |
116c20d2 NC |
1326 | dynobj = sunos_hash_table (info)->dynobj; |
1327 | splt = bfd_get_section_by_name (dynobj, ".plt"); | |
1328 | srel = bfd_get_section_by_name (dynobj, ".dynrel"); | |
1329 | BFD_ASSERT (splt != NULL && srel != NULL); | |
1330 | ||
1331 | sgot = bfd_get_section_by_name (dynobj, ".got"); | |
1332 | BFD_ASSERT (sgot != NULL); | |
1333 | if (sgot->size == 0) | |
1334 | sgot->size = BYTES_IN_WORD; | |
1335 | sunos_hash_table (info)->got_needed = TRUE; | |
252b5132 | 1336 | } |
252b5132 | 1337 | |
116c20d2 NC |
1338 | BFD_ASSERT ((h->flags & SUNOS_REF_REGULAR) != 0); |
1339 | BFD_ASSERT (h->plt_offset != 0 | |
1340 | || ((h->root.root.type == bfd_link_hash_defined | |
1341 | || h->root.root.type == bfd_link_hash_defweak) | |
1342 | ? (h->root.root.u.def.section->owner->flags | |
1343 | & DYNAMIC) != 0 | |
1344 | : (h->root.root.u.undef.abfd->flags & DYNAMIC) != 0)); | |
252b5132 | 1345 | |
116c20d2 NC |
1346 | /* This reloc is against a symbol defined only by a dynamic |
1347 | object. */ | |
1348 | if (h->root.root.type == bfd_link_hash_undefined) | |
1349 | /* Presumably this symbol was marked as being undefined by | |
1350 | an earlier reloc. */ | |
1351 | srel->size += RELOC_STD_SIZE; | |
1352 | else if ((h->root.root.u.def.section->flags & SEC_CODE) == 0) | |
252b5132 | 1353 | { |
116c20d2 | 1354 | bfd *sub; |
252b5132 RH |
1355 | |
1356 | /* This reloc is not in the .text section. It must be | |
1357 | copied into the dynamic relocs. We mark the symbol as | |
1358 | being undefined. */ | |
eea6121a | 1359 | srel->size += RELOC_STD_SIZE; |
252b5132 RH |
1360 | sub = h->root.root.u.def.section->owner; |
1361 | h->root.root.type = bfd_link_hash_undefined; | |
1362 | h->root.root.u.undef.abfd = sub; | |
1363 | } | |
1364 | else | |
1365 | { | |
1366 | /* This symbol is in the .text section. We must give it an | |
1367 | entry in the procedure linkage table, if we have not | |
1368 | already done so. We change the definition of the symbol | |
1369 | to the .plt section; this will cause relocs against it to | |
1370 | be handled correctly. */ | |
1371 | if (h->plt_offset == 0) | |
1372 | { | |
eea6121a AM |
1373 | if (splt->size == 0) |
1374 | splt->size = M68K_PLT_ENTRY_SIZE; | |
1375 | h->plt_offset = splt->size; | |
252b5132 RH |
1376 | |
1377 | if ((h->flags & SUNOS_DEF_REGULAR) == 0) | |
1378 | { | |
1379 | h->root.root.u.def.section = splt; | |
eea6121a | 1380 | h->root.root.u.def.value = splt->size; |
252b5132 RH |
1381 | } |
1382 | ||
eea6121a | 1383 | splt->size += M68K_PLT_ENTRY_SIZE; |
252b5132 RH |
1384 | |
1385 | /* We may also need a dynamic reloc entry. */ | |
1386 | if ((h->flags & SUNOS_DEF_REGULAR) == 0) | |
eea6121a | 1387 | srel->size += RELOC_STD_SIZE; |
252b5132 RH |
1388 | } |
1389 | } | |
1390 | } | |
1391 | ||
b34976b6 | 1392 | return TRUE; |
252b5132 RH |
1393 | } |
1394 | ||
1395 | /* Scan the relocs for an input section using extended relocs. We | |
1396 | need to figure out what to do for each reloc against a dynamic | |
1397 | symbol. If the reloc is a WDISP30, and the symbol is in the .text | |
1398 | section, an entry is made in the procedure linkage table. | |
1399 | Otherwise, we must preserve the reloc as a dynamic reloc. */ | |
1400 | ||
b34976b6 | 1401 | static bfd_boolean |
116c20d2 NC |
1402 | sunos_scan_ext_relocs (struct bfd_link_info *info, |
1403 | bfd *abfd, | |
1404 | asection *sec ATTRIBUTE_UNUSED, | |
1405 | const struct reloc_ext_external *relocs, | |
1406 | bfd_size_type rel_size) | |
252b5132 RH |
1407 | { |
1408 | bfd *dynobj; | |
1409 | struct sunos_link_hash_entry **sym_hashes; | |
1410 | const struct reloc_ext_external *rel, *relend; | |
1411 | asection *splt = NULL; | |
1412 | asection *sgot = NULL; | |
1413 | asection *srel = NULL; | |
dc810e39 | 1414 | bfd_size_type amt; |
252b5132 RH |
1415 | |
1416 | /* We only know how to handle SPARC plt entries. */ | |
1417 | if (bfd_get_arch (abfd) != bfd_arch_sparc) | |
1418 | { | |
1419 | bfd_set_error (bfd_error_invalid_target); | |
b34976b6 | 1420 | return FALSE; |
252b5132 RH |
1421 | } |
1422 | ||
1423 | dynobj = NULL; | |
1424 | ||
1425 | sym_hashes = (struct sunos_link_hash_entry **) obj_aout_sym_hashes (abfd); | |
1426 | ||
1427 | relend = relocs + rel_size / RELOC_EXT_SIZE; | |
1428 | for (rel = relocs; rel < relend; rel++) | |
1429 | { | |
1430 | unsigned int r_index; | |
1431 | int r_extern; | |
1432 | int r_type; | |
1433 | struct sunos_link_hash_entry *h = NULL; | |
1434 | ||
1435 | /* Swap in the reloc information. */ | |
1436 | if (bfd_header_big_endian (abfd)) | |
1437 | { | |
1438 | r_index = ((rel->r_index[0] << 16) | |
1439 | | (rel->r_index[1] << 8) | |
1440 | | rel->r_index[2]); | |
1441 | r_extern = (0 != (rel->r_type[0] & RELOC_EXT_BITS_EXTERN_BIG)); | |
1442 | r_type = ((rel->r_type[0] & RELOC_EXT_BITS_TYPE_BIG) | |
1443 | >> RELOC_EXT_BITS_TYPE_SH_BIG); | |
1444 | } | |
1445 | else | |
1446 | { | |
1447 | r_index = ((rel->r_index[2] << 16) | |
1448 | | (rel->r_index[1] << 8) | |
1449 | | rel->r_index[0]); | |
1450 | r_extern = (0 != (rel->r_type[0] & RELOC_EXT_BITS_EXTERN_LITTLE)); | |
1451 | r_type = ((rel->r_type[0] & RELOC_EXT_BITS_TYPE_LITTLE) | |
1452 | >> RELOC_EXT_BITS_TYPE_SH_LITTLE); | |
1453 | } | |
1454 | ||
1455 | if (r_extern) | |
1456 | { | |
1457 | h = sym_hashes[r_index]; | |
1458 | if (h == NULL) | |
1459 | { | |
1460 | /* This should not normally happen, but it will in any | |
1461 | case be caught in the relocation phase. */ | |
1462 | continue; | |
1463 | } | |
1464 | } | |
1465 | ||
1466 | /* If this is a base relative reloc, we need to make an entry in | |
b34976b6 | 1467 | the .got section. */ |
252b5132 RH |
1468 | if (r_type == RELOC_BASE10 |
1469 | || r_type == RELOC_BASE13 | |
1470 | || r_type == RELOC_BASE22) | |
1471 | { | |
1472 | if (dynobj == NULL) | |
1473 | { | |
b34976b6 AM |
1474 | if (! sunos_create_dynamic_sections (abfd, info, FALSE)) |
1475 | return FALSE; | |
252b5132 RH |
1476 | dynobj = sunos_hash_table (info)->dynobj; |
1477 | splt = bfd_get_section_by_name (dynobj, ".plt"); | |
1478 | sgot = bfd_get_section_by_name (dynobj, ".got"); | |
1479 | srel = bfd_get_section_by_name (dynobj, ".dynrel"); | |
1480 | BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL); | |
1481 | ||
1482 | /* Make sure we have an initial entry in the .got table. */ | |
eea6121a AM |
1483 | if (sgot->size == 0) |
1484 | sgot->size = BYTES_IN_WORD; | |
b34976b6 | 1485 | sunos_hash_table (info)->got_needed = TRUE; |
252b5132 RH |
1486 | } |
1487 | ||
1488 | if (r_extern) | |
1489 | { | |
1490 | if (h->got_offset != 0) | |
1491 | continue; | |
1492 | ||
eea6121a | 1493 | h->got_offset = sgot->size; |
252b5132 RH |
1494 | } |
1495 | else | |
1496 | { | |
1497 | if (r_index >= bfd_get_symcount (abfd)) | |
116c20d2 NC |
1498 | /* This is abnormal, but should be caught in the |
1499 | relocation phase. */ | |
1500 | continue; | |
252b5132 RH |
1501 | |
1502 | if (adata (abfd).local_got_offsets == NULL) | |
1503 | { | |
dc810e39 AM |
1504 | amt = bfd_get_symcount (abfd); |
1505 | amt *= sizeof (bfd_vma); | |
116c20d2 | 1506 | adata (abfd).local_got_offsets = bfd_zalloc (abfd, amt); |
252b5132 | 1507 | if (adata (abfd).local_got_offsets == NULL) |
b34976b6 | 1508 | return FALSE; |
252b5132 RH |
1509 | } |
1510 | ||
1511 | if (adata (abfd).local_got_offsets[r_index] != 0) | |
1512 | continue; | |
1513 | ||
eea6121a | 1514 | adata (abfd).local_got_offsets[r_index] = sgot->size; |
252b5132 RH |
1515 | } |
1516 | ||
eea6121a | 1517 | sgot->size += BYTES_IN_WORD; |
252b5132 RH |
1518 | |
1519 | /* If we are making a shared library, or if the symbol is | |
1520 | defined by a dynamic object, we will need a dynamic reloc | |
1521 | entry. */ | |
1522 | if (info->shared | |
1523 | || (h != NULL | |
1524 | && (h->flags & SUNOS_DEF_DYNAMIC) != 0 | |
1525 | && (h->flags & SUNOS_DEF_REGULAR) == 0)) | |
eea6121a | 1526 | srel->size += RELOC_EXT_SIZE; |
252b5132 RH |
1527 | |
1528 | continue; | |
1529 | } | |
1530 | ||
1531 | /* Otherwise, we are only interested in relocs against symbols | |
b34976b6 AM |
1532 | defined in dynamic objects but not in regular objects. We |
1533 | only need to consider relocs against external symbols. */ | |
252b5132 RH |
1534 | if (! r_extern) |
1535 | { | |
1536 | /* But, if we are creating a shared library, we need to | |
b34976b6 | 1537 | generate an absolute reloc. */ |
252b5132 RH |
1538 | if (info->shared) |
1539 | { | |
1540 | if (dynobj == NULL) | |
1541 | { | |
b34976b6 AM |
1542 | if (! sunos_create_dynamic_sections (abfd, info, TRUE)) |
1543 | return FALSE; | |
252b5132 RH |
1544 | dynobj = sunos_hash_table (info)->dynobj; |
1545 | splt = bfd_get_section_by_name (dynobj, ".plt"); | |
1546 | sgot = bfd_get_section_by_name (dynobj, ".got"); | |
1547 | srel = bfd_get_section_by_name (dynobj, ".dynrel"); | |
1548 | BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL); | |
1549 | } | |
1550 | ||
eea6121a | 1551 | srel->size += RELOC_EXT_SIZE; |
252b5132 RH |
1552 | } |
1553 | ||
1554 | continue; | |
1555 | } | |
1556 | ||
1557 | /* At this point common symbols have already been allocated, so | |
1558 | we don't have to worry about them. We need to consider that | |
1559 | we may have already seen this symbol and marked it undefined; | |
1560 | if the symbol is really undefined, then SUNOS_DEF_DYNAMIC | |
1561 | will be zero. */ | |
1562 | if (h->root.root.type != bfd_link_hash_defined | |
1563 | && h->root.root.type != bfd_link_hash_defweak | |
1564 | && h->root.root.type != bfd_link_hash_undefined) | |
1565 | continue; | |
1566 | ||
1567 | if (r_type != RELOC_JMP_TBL | |
1568 | && ! info->shared | |
1569 | && ((h->flags & SUNOS_DEF_DYNAMIC) == 0 | |
1570 | || (h->flags & SUNOS_DEF_REGULAR) != 0)) | |
1571 | continue; | |
1572 | ||
1573 | if (r_type == RELOC_JMP_TBL | |
1574 | && ! info->shared | |
1575 | && (h->flags & SUNOS_DEF_DYNAMIC) == 0 | |
1576 | && (h->flags & SUNOS_DEF_REGULAR) == 0) | |
1577 | { | |
1578 | /* This symbol is apparently undefined. Don't do anything | |
b34976b6 AM |
1579 | here; just let the relocation routine report an undefined |
1580 | symbol. */ | |
252b5132 RH |
1581 | continue; |
1582 | } | |
1583 | ||
1584 | if (strcmp (h->root.root.root.string, "__GLOBAL_OFFSET_TABLE_") == 0) | |
1585 | continue; | |
1586 | ||
1587 | if (dynobj == NULL) | |
1588 | { | |
b34976b6 AM |
1589 | if (! sunos_create_dynamic_sections (abfd, info, FALSE)) |
1590 | return FALSE; | |
252b5132 RH |
1591 | dynobj = sunos_hash_table (info)->dynobj; |
1592 | splt = bfd_get_section_by_name (dynobj, ".plt"); | |
1593 | sgot = bfd_get_section_by_name (dynobj, ".got"); | |
1594 | srel = bfd_get_section_by_name (dynobj, ".dynrel"); | |
1595 | BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL); | |
1596 | ||
1597 | /* Make sure we have an initial entry in the .got table. */ | |
eea6121a AM |
1598 | if (sgot->size == 0) |
1599 | sgot->size = BYTES_IN_WORD; | |
b34976b6 | 1600 | sunos_hash_table (info)->got_needed = TRUE; |
252b5132 RH |
1601 | } |
1602 | ||
1603 | BFD_ASSERT (r_type == RELOC_JMP_TBL | |
1604 | || info->shared | |
1605 | || (h->flags & SUNOS_REF_REGULAR) != 0); | |
1606 | BFD_ASSERT (r_type == RELOC_JMP_TBL | |
1607 | || info->shared | |
1608 | || h->plt_offset != 0 | |
1609 | || ((h->root.root.type == bfd_link_hash_defined | |
1610 | || h->root.root.type == bfd_link_hash_defweak) | |
1611 | ? (h->root.root.u.def.section->owner->flags | |
1612 | & DYNAMIC) != 0 | |
1613 | : (h->root.root.u.undef.abfd->flags & DYNAMIC) != 0)); | |
1614 | ||
1615 | /* This reloc is against a symbol defined only by a dynamic | |
1616 | object, or it is a jump table reloc from PIC compiled code. */ | |
1617 | ||
1618 | if (r_type != RELOC_JMP_TBL | |
1619 | && h->root.root.type == bfd_link_hash_undefined) | |
116c20d2 NC |
1620 | /* Presumably this symbol was marked as being undefined by |
1621 | an earlier reloc. */ | |
1622 | srel->size += RELOC_EXT_SIZE; | |
1623 | ||
252b5132 RH |
1624 | else if (r_type != RELOC_JMP_TBL |
1625 | && (h->root.root.u.def.section->flags & SEC_CODE) == 0) | |
1626 | { | |
1627 | bfd *sub; | |
1628 | ||
1629 | /* This reloc is not in the .text section. It must be | |
1630 | copied into the dynamic relocs. We mark the symbol as | |
1631 | being undefined. */ | |
eea6121a | 1632 | srel->size += RELOC_EXT_SIZE; |
252b5132 RH |
1633 | if ((h->flags & SUNOS_DEF_REGULAR) == 0) |
1634 | { | |
1635 | sub = h->root.root.u.def.section->owner; | |
1636 | h->root.root.type = bfd_link_hash_undefined; | |
1637 | h->root.root.u.undef.abfd = sub; | |
1638 | } | |
1639 | } | |
1640 | else | |
1641 | { | |
1642 | /* This symbol is in the .text section. We must give it an | |
1643 | entry in the procedure linkage table, if we have not | |
1644 | already done so. We change the definition of the symbol | |
1645 | to the .plt section; this will cause relocs against it to | |
1646 | be handled correctly. */ | |
1647 | if (h->plt_offset == 0) | |
1648 | { | |
eea6121a AM |
1649 | if (splt->size == 0) |
1650 | splt->size = SPARC_PLT_ENTRY_SIZE; | |
1651 | h->plt_offset = splt->size; | |
252b5132 RH |
1652 | |
1653 | if ((h->flags & SUNOS_DEF_REGULAR) == 0) | |
1654 | { | |
1655 | if (h->root.root.type == bfd_link_hash_undefined) | |
1656 | h->root.root.type = bfd_link_hash_defined; | |
1657 | h->root.root.u.def.section = splt; | |
eea6121a | 1658 | h->root.root.u.def.value = splt->size; |
252b5132 RH |
1659 | } |
1660 | ||
eea6121a | 1661 | splt->size += SPARC_PLT_ENTRY_SIZE; |
252b5132 RH |
1662 | |
1663 | /* We will also need a dynamic reloc entry, unless this | |
b34976b6 AM |
1664 | is a JMP_TBL reloc produced by linking PIC compiled |
1665 | code, and we are not making a shared library. */ | |
252b5132 | 1666 | if (info->shared || (h->flags & SUNOS_DEF_REGULAR) == 0) |
eea6121a | 1667 | srel->size += RELOC_EXT_SIZE; |
252b5132 RH |
1668 | } |
1669 | ||
1670 | /* If we are creating a shared library, we need to copy over | |
b34976b6 | 1671 | any reloc other than a jump table reloc. */ |
252b5132 | 1672 | if (info->shared && r_type != RELOC_JMP_TBL) |
eea6121a | 1673 | srel->size += RELOC_EXT_SIZE; |
252b5132 RH |
1674 | } |
1675 | } | |
1676 | ||
b34976b6 | 1677 | return TRUE; |
252b5132 RH |
1678 | } |
1679 | ||
116c20d2 NC |
1680 | /* Scan the relocs for an input section. */ |
1681 | ||
1682 | static bfd_boolean | |
1683 | sunos_scan_relocs (struct bfd_link_info *info, | |
1684 | bfd *abfd, | |
1685 | asection *sec, | |
1686 | bfd_size_type rel_size) | |
1687 | { | |
1688 | void * relocs; | |
1689 | void * free_relocs = NULL; | |
1690 | ||
1691 | if (rel_size == 0) | |
1692 | return TRUE; | |
1693 | ||
1694 | if (! info->keep_memory) | |
1695 | relocs = free_relocs = bfd_malloc (rel_size); | |
1696 | else | |
1697 | { | |
1698 | struct aout_section_data_struct *n; | |
1699 | bfd_size_type amt = sizeof (struct aout_section_data_struct); | |
1700 | ||
1701 | n = bfd_alloc (abfd, amt); | |
1702 | if (n == NULL) | |
1703 | relocs = NULL; | |
1704 | else | |
1705 | { | |
1706 | set_aout_section_data (sec, n); | |
1707 | relocs = bfd_malloc (rel_size); | |
1708 | aout_section_data (sec)->relocs = relocs; | |
1709 | } | |
1710 | } | |
1711 | if (relocs == NULL) | |
1712 | return FALSE; | |
1713 | ||
1714 | if (bfd_seek (abfd, sec->rel_filepos, SEEK_SET) != 0 | |
1715 | || bfd_bread (relocs, rel_size, abfd) != rel_size) | |
1716 | goto error_return; | |
1717 | ||
1718 | if (obj_reloc_entry_size (abfd) == RELOC_STD_SIZE) | |
1719 | { | |
1720 | if (! sunos_scan_std_relocs (info, abfd, sec, | |
1721 | (struct reloc_std_external *) relocs, | |
1722 | rel_size)) | |
1723 | goto error_return; | |
1724 | } | |
1725 | else | |
1726 | { | |
1727 | if (! sunos_scan_ext_relocs (info, abfd, sec, | |
1728 | (struct reloc_ext_external *) relocs, | |
1729 | rel_size)) | |
1730 | goto error_return; | |
1731 | } | |
1732 | ||
1733 | if (free_relocs != NULL) | |
1734 | free (free_relocs); | |
1735 | ||
1736 | return TRUE; | |
1737 | ||
1738 | error_return: | |
1739 | if (free_relocs != NULL) | |
1740 | free (free_relocs); | |
1741 | return FALSE; | |
1742 | } | |
1743 | ||
252b5132 RH |
1744 | /* Build the hash table of dynamic symbols, and to mark as written all |
1745 | symbols from dynamic objects which we do not plan to write out. */ | |
1746 | ||
b34976b6 | 1747 | static bfd_boolean |
116c20d2 | 1748 | sunos_scan_dynamic_symbol (struct sunos_link_hash_entry *h, void * data) |
252b5132 RH |
1749 | { |
1750 | struct bfd_link_info *info = (struct bfd_link_info *) data; | |
1751 | ||
e92d460e AM |
1752 | if (h->root.root.type == bfd_link_hash_warning) |
1753 | h = (struct sunos_link_hash_entry *) h->root.root.u.i.link; | |
1754 | ||
252b5132 RH |
1755 | /* Set the written flag for symbols we do not want to write out as |
1756 | part of the regular symbol table. This is all symbols which are | |
1757 | not defined in a regular object file. For some reason symbols | |
1758 | which are referenced by a regular object and defined by a dynamic | |
1759 | object do not seem to show up in the regular symbol table. It is | |
1760 | possible for a symbol to have only SUNOS_REF_REGULAR set here, it | |
1761 | is an undefined symbol which was turned into a common symbol | |
1762 | because it was found in an archive object which was not included | |
1763 | in the link. */ | |
1764 | if ((h->flags & SUNOS_DEF_REGULAR) == 0 | |
1765 | && (h->flags & SUNOS_DEF_DYNAMIC) != 0 | |
1766 | && strcmp (h->root.root.root.string, "__DYNAMIC") != 0) | |
b34976b6 | 1767 | h->root.written = TRUE; |
252b5132 RH |
1768 | |
1769 | /* If this symbol is defined by a dynamic object and referenced by a | |
1770 | regular object, see whether we gave it a reasonable value while | |
1771 | scanning the relocs. */ | |
252b5132 RH |
1772 | if ((h->flags & SUNOS_DEF_REGULAR) == 0 |
1773 | && (h->flags & SUNOS_DEF_DYNAMIC) != 0 | |
1774 | && (h->flags & SUNOS_REF_REGULAR) != 0) | |
1775 | { | |
1776 | if ((h->root.root.type == bfd_link_hash_defined | |
1777 | || h->root.root.type == bfd_link_hash_defweak) | |
1778 | && ((h->root.root.u.def.section->owner->flags & DYNAMIC) != 0) | |
1779 | && h->root.root.u.def.section->output_section == NULL) | |
1780 | { | |
1781 | bfd *sub; | |
1782 | ||
1783 | /* This symbol is currently defined in a dynamic section | |
1784 | which is not being put into the output file. This | |
1785 | implies that there is no reloc against the symbol. I'm | |
1786 | not sure why this case would ever occur. In any case, we | |
1787 | change the symbol to be undefined. */ | |
1788 | sub = h->root.root.u.def.section->owner; | |
1789 | h->root.root.type = bfd_link_hash_undefined; | |
1790 | h->root.root.u.undef.abfd = sub; | |
1791 | } | |
1792 | } | |
1793 | ||
1794 | /* If this symbol is defined or referenced by a regular file, add it | |
1795 | to the dynamic symbols. */ | |
1796 | if ((h->flags & (SUNOS_DEF_REGULAR | SUNOS_REF_REGULAR)) != 0) | |
1797 | { | |
1798 | asection *s; | |
1799 | size_t len; | |
1800 | bfd_byte *contents; | |
1801 | unsigned char *name; | |
1802 | unsigned long hash; | |
1803 | bfd *dynobj; | |
1804 | ||
1805 | BFD_ASSERT (h->dynindx == -2); | |
1806 | ||
1807 | dynobj = sunos_hash_table (info)->dynobj; | |
1808 | ||
1809 | h->dynindx = sunos_hash_table (info)->dynsymcount; | |
1810 | ++sunos_hash_table (info)->dynsymcount; | |
1811 | ||
1812 | len = strlen (h->root.root.root.string); | |
1813 | ||
1814 | /* We don't bother to construct a BFD hash table for the strings | |
1815 | which are the names of the dynamic symbols. Using a hash | |
1816 | table for the regular symbols is beneficial, because the | |
1817 | regular symbols includes the debugging symbols, which have | |
1818 | long names and are often duplicated in several object files. | |
1819 | There are no debugging symbols in the dynamic symbols. */ | |
1820 | s = bfd_get_section_by_name (dynobj, ".dynstr"); | |
1821 | BFD_ASSERT (s != NULL); | |
116c20d2 | 1822 | contents = bfd_realloc (s->contents, s->size + len + 1); |
252b5132 | 1823 | if (contents == NULL) |
b34976b6 | 1824 | return FALSE; |
252b5132 RH |
1825 | s->contents = contents; |
1826 | ||
eea6121a AM |
1827 | h->dynstr_index = s->size; |
1828 | strcpy ((char *) contents + s->size, h->root.root.root.string); | |
1829 | s->size += len + 1; | |
252b5132 RH |
1830 | |
1831 | /* Add it to the dynamic hash table. */ | |
1832 | name = (unsigned char *) h->root.root.root.string; | |
1833 | hash = 0; | |
1834 | while (*name != '\0') | |
1835 | hash = (hash << 1) + *name++; | |
1836 | hash &= 0x7fffffff; | |
1837 | hash %= sunos_hash_table (info)->bucketcount; | |
1838 | ||
1839 | s = bfd_get_section_by_name (dynobj, ".hash"); | |
1840 | BFD_ASSERT (s != NULL); | |
1841 | ||
1842 | if (GET_SWORD (dynobj, s->contents + hash * HASH_ENTRY_SIZE) == -1) | |
1843 | PUT_WORD (dynobj, h->dynindx, s->contents + hash * HASH_ENTRY_SIZE); | |
1844 | else | |
1845 | { | |
1846 | bfd_vma next; | |
1847 | ||
1848 | next = GET_WORD (dynobj, | |
1849 | (s->contents | |
1850 | + hash * HASH_ENTRY_SIZE | |
1851 | + BYTES_IN_WORD)); | |
eea6121a | 1852 | PUT_WORD (dynobj, s->size / HASH_ENTRY_SIZE, |
252b5132 | 1853 | s->contents + hash * HASH_ENTRY_SIZE + BYTES_IN_WORD); |
eea6121a AM |
1854 | PUT_WORD (dynobj, h->dynindx, s->contents + s->size); |
1855 | PUT_WORD (dynobj, next, s->contents + s->size + BYTES_IN_WORD); | |
1856 | s->size += HASH_ENTRY_SIZE; | |
252b5132 RH |
1857 | } |
1858 | } | |
1859 | ||
b34976b6 | 1860 | return TRUE; |
252b5132 RH |
1861 | } |
1862 | ||
116c20d2 NC |
1863 | /* Set up the sizes and contents of the dynamic sections created in |
1864 | sunos_add_dynamic_symbols. This is called by the SunOS linker | |
1865 | emulation before_allocation routine. We must set the sizes of the | |
1866 | sections before the linker sets the addresses of the various | |
1867 | sections. This unfortunately requires reading all the relocs so | |
1868 | that we can work out which ones need to become dynamic relocs. If | |
1869 | info->keep_memory is TRUE, we keep the relocs in memory; otherwise, | |
1870 | we discard them, and will read them again later. */ | |
1871 | ||
1872 | bfd_boolean | |
1873 | bfd_sunos_size_dynamic_sections (bfd *output_bfd, | |
1874 | struct bfd_link_info *info, | |
1875 | asection **sdynptr, | |
1876 | asection **sneedptr, | |
1877 | asection **srulesptr) | |
1878 | { | |
1879 | bfd *dynobj; | |
1880 | bfd_size_type dynsymcount; | |
1881 | struct sunos_link_hash_entry *h; | |
1882 | asection *s; | |
1883 | size_t bucketcount; | |
1884 | bfd_size_type hashalloc; | |
1885 | size_t i; | |
1886 | bfd *sub; | |
1887 | ||
1888 | *sdynptr = NULL; | |
1889 | *sneedptr = NULL; | |
1890 | *srulesptr = NULL; | |
1891 | ||
1892 | if (info->relocatable) | |
1893 | return TRUE; | |
1894 | ||
1895 | if (output_bfd->xvec != &MY(vec)) | |
1896 | return TRUE; | |
1897 | ||
1898 | /* Look through all the input BFD's and read their relocs. It would | |
1899 | be better if we didn't have to do this, but there is no other way | |
1900 | to determine the number of dynamic relocs we need, and, more | |
1901 | importantly, there is no other way to know which symbols should | |
1902 | get an entry in the procedure linkage table. */ | |
1903 | for (sub = info->input_bfds; sub != NULL; sub = sub->link_next) | |
1904 | { | |
1905 | if ((sub->flags & DYNAMIC) == 0 | |
1906 | && sub->xvec == output_bfd->xvec) | |
1907 | { | |
1908 | if (! sunos_scan_relocs (info, sub, obj_textsec (sub), | |
1909 | exec_hdr (sub)->a_trsize) | |
1910 | || ! sunos_scan_relocs (info, sub, obj_datasec (sub), | |
1911 | exec_hdr (sub)->a_drsize)) | |
1912 | return FALSE; | |
1913 | } | |
1914 | } | |
1915 | ||
1916 | dynobj = sunos_hash_table (info)->dynobj; | |
1917 | dynsymcount = sunos_hash_table (info)->dynsymcount; | |
1918 | ||
1919 | /* If there were no dynamic objects in the link, and we don't need | |
1920 | to build a global offset table, there is nothing to do here. */ | |
1921 | if (! sunos_hash_table (info)->dynamic_sections_needed | |
1922 | && ! sunos_hash_table (info)->got_needed) | |
1923 | return TRUE; | |
1924 | ||
1925 | /* If __GLOBAL_OFFSET_TABLE_ was mentioned, define it. */ | |
1926 | h = sunos_link_hash_lookup (sunos_hash_table (info), | |
1927 | "__GLOBAL_OFFSET_TABLE_", FALSE, FALSE, FALSE); | |
1928 | if (h != NULL && (h->flags & SUNOS_REF_REGULAR) != 0) | |
1929 | { | |
1930 | h->flags |= SUNOS_DEF_REGULAR; | |
1931 | if (h->dynindx == -1) | |
1932 | { | |
1933 | ++sunos_hash_table (info)->dynsymcount; | |
1934 | h->dynindx = -2; | |
1935 | } | |
1936 | h->root.root.type = bfd_link_hash_defined; | |
1937 | h->root.root.u.def.section = bfd_get_section_by_name (dynobj, ".got"); | |
1938 | ||
1939 | /* If the .got section is more than 0x1000 bytes, we set | |
1940 | __GLOBAL_OFFSET_TABLE_ to be 0x1000 bytes into the section, | |
1941 | so that 13 bit relocations have a greater chance of working. */ | |
1942 | s = bfd_get_section_by_name (dynobj, ".got"); | |
1943 | BFD_ASSERT (s != NULL); | |
1944 | if (s->size >= 0x1000) | |
1945 | h->root.root.u.def.value = 0x1000; | |
1946 | else | |
1947 | h->root.root.u.def.value = 0; | |
1948 | ||
1949 | sunos_hash_table (info)->got_base = h->root.root.u.def.value; | |
1950 | } | |
1951 | ||
1952 | /* If there are any shared objects in the link, then we need to set | |
1953 | up the dynamic linking information. */ | |
1954 | if (sunos_hash_table (info)->dynamic_sections_needed) | |
1955 | { | |
1956 | *sdynptr = bfd_get_section_by_name (dynobj, ".dynamic"); | |
1957 | ||
1958 | /* The .dynamic section is always the same size. */ | |
1959 | s = *sdynptr; | |
1960 | BFD_ASSERT (s != NULL); | |
1961 | s->size = (sizeof (struct external_sun4_dynamic) | |
1962 | + EXTERNAL_SUN4_DYNAMIC_DEBUGGER_SIZE | |
1963 | + sizeof (struct external_sun4_dynamic_link)); | |
1964 | ||
1965 | /* Set the size of the .dynsym and .hash sections. We counted | |
1966 | the number of dynamic symbols as we read the input files. We | |
1967 | will build the dynamic symbol table (.dynsym) and the hash | |
1968 | table (.hash) when we build the final symbol table, because | |
1969 | until then we do not know the correct value to give the | |
1970 | symbols. We build the dynamic symbol string table (.dynstr) | |
1971 | in a traversal of the symbol table using | |
1972 | sunos_scan_dynamic_symbol. */ | |
1973 | s = bfd_get_section_by_name (dynobj, ".dynsym"); | |
1974 | BFD_ASSERT (s != NULL); | |
1975 | s->size = dynsymcount * sizeof (struct external_nlist); | |
1976 | s->contents = bfd_alloc (output_bfd, s->size); | |
1977 | if (s->contents == NULL && s->size != 0) | |
1978 | return FALSE; | |
1979 | ||
1980 | /* The number of buckets is just the number of symbols divided | |
1981 | by four. To compute the final size of the hash table, we | |
1982 | must actually compute the hash table. Normally we need | |
1983 | exactly as many entries in the hash table as there are | |
1984 | dynamic symbols, but if some of the buckets are not used we | |
1985 | will need additional entries. In the worst case, every | |
1986 | symbol will hash to the same bucket, and we will need | |
1987 | BUCKETCOUNT - 1 extra entries. */ | |
1988 | if (dynsymcount >= 4) | |
1989 | bucketcount = dynsymcount / 4; | |
1990 | else if (dynsymcount > 0) | |
1991 | bucketcount = dynsymcount; | |
1992 | else | |
1993 | bucketcount = 1; | |
1994 | s = bfd_get_section_by_name (dynobj, ".hash"); | |
1995 | BFD_ASSERT (s != NULL); | |
1996 | hashalloc = (dynsymcount + bucketcount - 1) * HASH_ENTRY_SIZE; | |
1997 | s->contents = bfd_zalloc (dynobj, hashalloc); | |
1998 | if (s->contents == NULL && dynsymcount > 0) | |
1999 | return FALSE; | |
2000 | for (i = 0; i < bucketcount; i++) | |
2001 | PUT_WORD (output_bfd, (bfd_vma) -1, s->contents + i * HASH_ENTRY_SIZE); | |
2002 | s->size = bucketcount * HASH_ENTRY_SIZE; | |
2003 | ||
2004 | sunos_hash_table (info)->bucketcount = bucketcount; | |
2005 | ||
2006 | /* Scan all the symbols, place them in the dynamic symbol table, | |
2007 | and build the dynamic hash table. We reuse dynsymcount as a | |
2008 | counter for the number of symbols we have added so far. */ | |
2009 | sunos_hash_table (info)->dynsymcount = 0; | |
2010 | sunos_link_hash_traverse (sunos_hash_table (info), | |
2011 | sunos_scan_dynamic_symbol, | |
2012 | (void *) info); | |
2013 | BFD_ASSERT (sunos_hash_table (info)->dynsymcount == dynsymcount); | |
2014 | ||
2015 | /* The SunOS native linker seems to align the total size of the | |
2016 | symbol strings to a multiple of 8. I don't know if this is | |
2017 | important, but it can't hurt much. */ | |
2018 | s = bfd_get_section_by_name (dynobj, ".dynstr"); | |
2019 | BFD_ASSERT (s != NULL); | |
2020 | if ((s->size & 7) != 0) | |
2021 | { | |
2022 | bfd_size_type add; | |
2023 | bfd_byte *contents; | |
2024 | ||
2025 | add = 8 - (s->size & 7); | |
2026 | contents = bfd_realloc (s->contents, s->size + add); | |
2027 | if (contents == NULL) | |
2028 | return FALSE; | |
2029 | memset (contents + s->size, 0, (size_t) add); | |
2030 | s->contents = contents; | |
2031 | s->size += add; | |
2032 | } | |
2033 | } | |
2034 | ||
2035 | /* Now that we have worked out the sizes of the procedure linkage | |
2036 | table and the dynamic relocs, allocate storage for them. */ | |
2037 | s = bfd_get_section_by_name (dynobj, ".plt"); | |
2038 | BFD_ASSERT (s != NULL); | |
2039 | if (s->size != 0) | |
2040 | { | |
2041 | s->contents = bfd_alloc (dynobj, s->size); | |
2042 | if (s->contents == NULL) | |
2043 | return FALSE; | |
2044 | ||
2045 | /* Fill in the first entry in the table. */ | |
2046 | switch (bfd_get_arch (dynobj)) | |
2047 | { | |
2048 | case bfd_arch_sparc: | |
2049 | memcpy (s->contents, sparc_plt_first_entry, SPARC_PLT_ENTRY_SIZE); | |
2050 | break; | |
2051 | ||
2052 | case bfd_arch_m68k: | |
2053 | memcpy (s->contents, m68k_plt_first_entry, M68K_PLT_ENTRY_SIZE); | |
2054 | break; | |
2055 | ||
2056 | default: | |
2057 | abort (); | |
2058 | } | |
2059 | } | |
2060 | ||
2061 | s = bfd_get_section_by_name (dynobj, ".dynrel"); | |
2062 | if (s->size != 0) | |
2063 | { | |
2064 | s->contents = bfd_alloc (dynobj, s->size); | |
2065 | if (s->contents == NULL) | |
2066 | return FALSE; | |
2067 | } | |
2068 | /* We use the reloc_count field to keep track of how many of the | |
2069 | relocs we have output so far. */ | |
2070 | s->reloc_count = 0; | |
2071 | ||
2072 | /* Make space for the global offset table. */ | |
2073 | s = bfd_get_section_by_name (dynobj, ".got"); | |
2074 | s->contents = bfd_alloc (dynobj, s->size); | |
2075 | if (s->contents == NULL) | |
2076 | return FALSE; | |
2077 | ||
2078 | *sneedptr = bfd_get_section_by_name (dynobj, ".need"); | |
2079 | *srulesptr = bfd_get_section_by_name (dynobj, ".rules"); | |
2080 | ||
2081 | return TRUE; | |
2082 | } | |
2083 | ||
252b5132 RH |
2084 | /* Link a dynamic object. We actually don't have anything to do at |
2085 | this point. This entry point exists to prevent the regular linker | |
2086 | code from doing anything with the object. */ | |
2087 | ||
b34976b6 | 2088 | static bfd_boolean |
116c20d2 NC |
2089 | sunos_link_dynamic_object (struct bfd_link_info *info ATTRIBUTE_UNUSED, |
2090 | bfd *abfd ATTRIBUTE_UNUSED) | |
252b5132 | 2091 | { |
b34976b6 | 2092 | return TRUE; |
252b5132 RH |
2093 | } |
2094 | ||
2095 | /* Write out a dynamic symbol. This is called by the final traversal | |
2096 | over the symbol table. */ | |
2097 | ||
b34976b6 | 2098 | static bfd_boolean |
116c20d2 NC |
2099 | sunos_write_dynamic_symbol (bfd *output_bfd, |
2100 | struct bfd_link_info *info, | |
2101 | struct aout_link_hash_entry *harg) | |
252b5132 RH |
2102 | { |
2103 | struct sunos_link_hash_entry *h = (struct sunos_link_hash_entry *) harg; | |
2104 | int type; | |
2105 | bfd_vma val; | |
2106 | asection *s; | |
2107 | struct external_nlist *outsym; | |
2108 | ||
2109 | /* If this symbol is in the procedure linkage table, fill in the | |
2110 | table entry. */ | |
2111 | if (h->plt_offset != 0) | |
2112 | { | |
2113 | bfd *dynobj; | |
2114 | asection *splt; | |
2115 | bfd_byte *p; | |
252b5132 RH |
2116 | bfd_vma r_address; |
2117 | ||
2118 | dynobj = sunos_hash_table (info)->dynobj; | |
2119 | splt = bfd_get_section_by_name (dynobj, ".plt"); | |
2120 | p = splt->contents + h->plt_offset; | |
2121 | ||
2122 | s = bfd_get_section_by_name (dynobj, ".dynrel"); | |
2123 | ||
2124 | r_address = (splt->output_section->vma | |
2125 | + splt->output_offset | |
2126 | + h->plt_offset); | |
2127 | ||
2128 | switch (bfd_get_arch (output_bfd)) | |
2129 | { | |
2130 | case bfd_arch_sparc: | |
2131 | if (info->shared || (h->flags & SUNOS_DEF_REGULAR) == 0) | |
2132 | { | |
2133 | bfd_put_32 (output_bfd, SPARC_PLT_ENTRY_WORD0, p); | |
2134 | bfd_put_32 (output_bfd, | |
2135 | (SPARC_PLT_ENTRY_WORD1 | |
2136 | + (((- (h->plt_offset + 4) >> 2) | |
2137 | & 0x3fffffff))), | |
2138 | p + 4); | |
2139 | bfd_put_32 (output_bfd, SPARC_PLT_ENTRY_WORD2 + s->reloc_count, | |
2140 | p + 8); | |
2141 | } | |
2142 | else | |
2143 | { | |
252b5132 RH |
2144 | val = (h->root.root.u.def.section->output_section->vma |
2145 | + h->root.root.u.def.section->output_offset | |
2146 | + h->root.root.u.def.value); | |
2147 | bfd_put_32 (output_bfd, | |
2148 | SPARC_PLT_PIC_WORD0 + ((val >> 10) & 0x3fffff), | |
2149 | p); | |
2150 | bfd_put_32 (output_bfd, | |
2151 | SPARC_PLT_PIC_WORD1 + (val & 0x3ff), | |
2152 | p + 4); | |
2153 | bfd_put_32 (output_bfd, SPARC_PLT_PIC_WORD2, p + 8); | |
2154 | } | |
2155 | break; | |
2156 | ||
2157 | case bfd_arch_m68k: | |
2158 | if (! info->shared && (h->flags & SUNOS_DEF_REGULAR) != 0) | |
2159 | abort (); | |
2160 | bfd_put_16 (output_bfd, M68K_PLT_ENTRY_WORD0, p); | |
2161 | bfd_put_32 (output_bfd, (- (h->plt_offset + 2)), p + 2); | |
dc810e39 | 2162 | bfd_put_16 (output_bfd, (bfd_vma) s->reloc_count, p + 6); |
252b5132 RH |
2163 | r_address += 2; |
2164 | break; | |
2165 | ||
2166 | default: | |
2167 | abort (); | |
2168 | } | |
2169 | ||
2170 | /* We also need to add a jump table reloc, unless this is the | |
b34976b6 | 2171 | result of a JMP_TBL reloc from PIC compiled code. */ |
252b5132 RH |
2172 | if (info->shared || (h->flags & SUNOS_DEF_REGULAR) == 0) |
2173 | { | |
2174 | BFD_ASSERT (h->dynindx >= 0); | |
2175 | BFD_ASSERT (s->reloc_count * obj_reloc_entry_size (dynobj) | |
eea6121a | 2176 | < s->size); |
252b5132 RH |
2177 | p = s->contents + s->reloc_count * obj_reloc_entry_size (output_bfd); |
2178 | if (obj_reloc_entry_size (output_bfd) == RELOC_STD_SIZE) | |
2179 | { | |
2180 | struct reloc_std_external *srel; | |
2181 | ||
2182 | srel = (struct reloc_std_external *) p; | |
2183 | PUT_WORD (output_bfd, r_address, srel->r_address); | |
2184 | if (bfd_header_big_endian (output_bfd)) | |
2185 | { | |
7b82c249 KH |
2186 | srel->r_index[0] = (bfd_byte) (h->dynindx >> 16); |
2187 | srel->r_index[1] = (bfd_byte) (h->dynindx >> 8); | |
2188 | srel->r_index[2] = (bfd_byte) (h->dynindx); | |
252b5132 RH |
2189 | srel->r_type[0] = (RELOC_STD_BITS_EXTERN_BIG |
2190 | | RELOC_STD_BITS_JMPTABLE_BIG); | |
2191 | } | |
2192 | else | |
2193 | { | |
7b82c249 KH |
2194 | srel->r_index[2] = (bfd_byte) (h->dynindx >> 16); |
2195 | srel->r_index[1] = (bfd_byte) (h->dynindx >> 8); | |
252b5132 RH |
2196 | srel->r_index[0] = (bfd_byte)h->dynindx; |
2197 | srel->r_type[0] = (RELOC_STD_BITS_EXTERN_LITTLE | |
2198 | | RELOC_STD_BITS_JMPTABLE_LITTLE); | |
2199 | } | |
2200 | } | |
2201 | else | |
2202 | { | |
2203 | struct reloc_ext_external *erel; | |
2204 | ||
2205 | erel = (struct reloc_ext_external *) p; | |
2206 | PUT_WORD (output_bfd, r_address, erel->r_address); | |
2207 | if (bfd_header_big_endian (output_bfd)) | |
2208 | { | |
7b82c249 KH |
2209 | erel->r_index[0] = (bfd_byte) (h->dynindx >> 16); |
2210 | erel->r_index[1] = (bfd_byte) (h->dynindx >> 8); | |
252b5132 RH |
2211 | erel->r_index[2] = (bfd_byte)h->dynindx; |
2212 | erel->r_type[0] = | |
2213 | (RELOC_EXT_BITS_EXTERN_BIG | |
2214 | | (RELOC_JMP_SLOT << RELOC_EXT_BITS_TYPE_SH_BIG)); | |
2215 | } | |
2216 | else | |
2217 | { | |
7b82c249 KH |
2218 | erel->r_index[2] = (bfd_byte) (h->dynindx >> 16); |
2219 | erel->r_index[1] = (bfd_byte) (h->dynindx >> 8); | |
252b5132 RH |
2220 | erel->r_index[0] = (bfd_byte)h->dynindx; |
2221 | erel->r_type[0] = | |
2222 | (RELOC_EXT_BITS_EXTERN_LITTLE | |
2223 | | (RELOC_JMP_SLOT << RELOC_EXT_BITS_TYPE_SH_LITTLE)); | |
2224 | } | |
2225 | PUT_WORD (output_bfd, (bfd_vma) 0, erel->r_addend); | |
2226 | } | |
2227 | ||
2228 | ++s->reloc_count; | |
2229 | } | |
2230 | } | |
2231 | ||
2232 | /* If this is not a dynamic symbol, we don't have to do anything | |
2233 | else. We only check this after handling the PLT entry, because | |
2234 | we can have a PLT entry for a nondynamic symbol when linking PIC | |
2235 | compiled code from a regular object. */ | |
2236 | if (h->dynindx < 0) | |
b34976b6 | 2237 | return TRUE; |
252b5132 RH |
2238 | |
2239 | switch (h->root.root.type) | |
2240 | { | |
2241 | default: | |
2242 | case bfd_link_hash_new: | |
2243 | abort (); | |
2244 | /* Avoid variable not initialized warnings. */ | |
b34976b6 | 2245 | return TRUE; |
252b5132 RH |
2246 | case bfd_link_hash_undefined: |
2247 | type = N_UNDF | N_EXT; | |
2248 | val = 0; | |
2249 | break; | |
2250 | case bfd_link_hash_defined: | |
2251 | case bfd_link_hash_defweak: | |
2252 | { | |
2253 | asection *sec; | |
2254 | asection *output_section; | |
2255 | ||
2256 | sec = h->root.root.u.def.section; | |
2257 | output_section = sec->output_section; | |
2258 | BFD_ASSERT (bfd_is_abs_section (output_section) | |
2259 | || output_section->owner == output_bfd); | |
2260 | if (h->plt_offset != 0 | |
2261 | && (h->flags & SUNOS_DEF_REGULAR) == 0) | |
2262 | { | |
2263 | type = N_UNDF | N_EXT; | |
2264 | val = 0; | |
2265 | } | |
2266 | else | |
2267 | { | |
2268 | if (output_section == obj_textsec (output_bfd)) | |
2269 | type = (h->root.root.type == bfd_link_hash_defined | |
2270 | ? N_TEXT | |
2271 | : N_WEAKT); | |
2272 | else if (output_section == obj_datasec (output_bfd)) | |
2273 | type = (h->root.root.type == bfd_link_hash_defined | |
2274 | ? N_DATA | |
2275 | : N_WEAKD); | |
2276 | else if (output_section == obj_bsssec (output_bfd)) | |
2277 | type = (h->root.root.type == bfd_link_hash_defined | |
2278 | ? N_BSS | |
2279 | : N_WEAKB); | |
2280 | else | |
2281 | type = (h->root.root.type == bfd_link_hash_defined | |
2282 | ? N_ABS | |
2283 | : N_WEAKA); | |
2284 | type |= N_EXT; | |
2285 | val = (h->root.root.u.def.value | |
2286 | + output_section->vma | |
2287 | + sec->output_offset); | |
2288 | } | |
2289 | } | |
2290 | break; | |
2291 | case bfd_link_hash_common: | |
2292 | type = N_UNDF | N_EXT; | |
2293 | val = h->root.root.u.c.size; | |
2294 | break; | |
2295 | case bfd_link_hash_undefweak: | |
2296 | type = N_WEAKU; | |
2297 | val = 0; | |
2298 | break; | |
2299 | case bfd_link_hash_indirect: | |
2300 | case bfd_link_hash_warning: | |
2301 | /* FIXME: Ignore these for now. The circumstances under which | |
2302 | they should be written out are not clear to me. */ | |
b34976b6 | 2303 | return TRUE; |
252b5132 RH |
2304 | } |
2305 | ||
2306 | s = bfd_get_section_by_name (sunos_hash_table (info)->dynobj, ".dynsym"); | |
2307 | BFD_ASSERT (s != NULL); | |
2308 | outsym = ((struct external_nlist *) | |
2309 | (s->contents + h->dynindx * EXTERNAL_NLIST_SIZE)); | |
2310 | ||
dc810e39 AM |
2311 | H_PUT_8 (output_bfd, type, outsym->e_type); |
2312 | H_PUT_8 (output_bfd, 0, outsym->e_other); | |
252b5132 RH |
2313 | |
2314 | /* FIXME: The native linker doesn't use 0 for desc. It seems to use | |
2315 | one less than the desc value in the shared library, although that | |
2316 | seems unlikely. */ | |
dc810e39 | 2317 | H_PUT_16 (output_bfd, 0, outsym->e_desc); |
252b5132 RH |
2318 | |
2319 | PUT_WORD (output_bfd, h->dynstr_index, outsym->e_strx); | |
2320 | PUT_WORD (output_bfd, val, outsym->e_value); | |
2321 | ||
b34976b6 | 2322 | return TRUE; |
252b5132 RH |
2323 | } |
2324 | ||
2325 | /* This is called for each reloc against an external symbol. If this | |
2326 | is a reloc which are are going to copy as a dynamic reloc, then | |
2327 | copy it over, and tell the caller to not bother processing this | |
2328 | reloc. */ | |
2329 | ||
b34976b6 | 2330 | static bfd_boolean |
116c20d2 NC |
2331 | sunos_check_dynamic_reloc (struct bfd_link_info *info, |
2332 | bfd *input_bfd, | |
2333 | asection *input_section, | |
2334 | struct aout_link_hash_entry *harg, | |
2335 | void * reloc, | |
2336 | bfd_byte *contents ATTRIBUTE_UNUSED, | |
2337 | bfd_boolean *skip, | |
2338 | bfd_vma *relocationp) | |
252b5132 RH |
2339 | { |
2340 | struct sunos_link_hash_entry *h = (struct sunos_link_hash_entry *) harg; | |
2341 | bfd *dynobj; | |
b34976b6 AM |
2342 | bfd_boolean baserel; |
2343 | bfd_boolean jmptbl; | |
2344 | bfd_boolean pcrel; | |
252b5132 RH |
2345 | asection *s; |
2346 | bfd_byte *p; | |
2347 | long indx; | |
2348 | ||
b34976b6 | 2349 | *skip = FALSE; |
252b5132 RH |
2350 | |
2351 | dynobj = sunos_hash_table (info)->dynobj; | |
2352 | ||
2353 | if (h != NULL | |
2354 | && h->plt_offset != 0 | |
2355 | && (info->shared | |
2356 | || (h->flags & SUNOS_DEF_REGULAR) == 0)) | |
2357 | { | |
2358 | asection *splt; | |
2359 | ||
2360 | /* Redirect the relocation to the PLT entry. */ | |
2361 | splt = bfd_get_section_by_name (dynobj, ".plt"); | |
2362 | *relocationp = (splt->output_section->vma | |
2363 | + splt->output_offset | |
2364 | + h->plt_offset); | |
2365 | } | |
2366 | ||
2367 | if (obj_reloc_entry_size (input_bfd) == RELOC_STD_SIZE) | |
2368 | { | |
2369 | struct reloc_std_external *srel; | |
2370 | ||
2371 | srel = (struct reloc_std_external *) reloc; | |
2372 | if (bfd_header_big_endian (input_bfd)) | |
2373 | { | |
2374 | baserel = (0 != (srel->r_type[0] & RELOC_STD_BITS_BASEREL_BIG)); | |
2375 | jmptbl = (0 != (srel->r_type[0] & RELOC_STD_BITS_JMPTABLE_BIG)); | |
2376 | pcrel = (0 != (srel->r_type[0] & RELOC_STD_BITS_PCREL_BIG)); | |
2377 | } | |
2378 | else | |
2379 | { | |
2380 | baserel = (0 != (srel->r_type[0] & RELOC_STD_BITS_BASEREL_LITTLE)); | |
2381 | jmptbl = (0 != (srel->r_type[0] & RELOC_STD_BITS_JMPTABLE_LITTLE)); | |
2382 | pcrel = (0 != (srel->r_type[0] & RELOC_STD_BITS_PCREL_LITTLE)); | |
2383 | } | |
2384 | } | |
2385 | else | |
2386 | { | |
2387 | struct reloc_ext_external *erel; | |
2388 | int r_type; | |
2389 | ||
2390 | erel = (struct reloc_ext_external *) reloc; | |
2391 | if (bfd_header_big_endian (input_bfd)) | |
2392 | r_type = ((erel->r_type[0] & RELOC_EXT_BITS_TYPE_BIG) | |
2393 | >> RELOC_EXT_BITS_TYPE_SH_BIG); | |
2394 | else | |
2395 | r_type = ((erel->r_type[0] & RELOC_EXT_BITS_TYPE_LITTLE) | |
2396 | >> RELOC_EXT_BITS_TYPE_SH_LITTLE); | |
2397 | baserel = (r_type == RELOC_BASE10 | |
2398 | || r_type == RELOC_BASE13 | |
2399 | || r_type == RELOC_BASE22); | |
2400 | jmptbl = r_type == RELOC_JMP_TBL; | |
2401 | pcrel = (r_type == RELOC_DISP8 | |
2402 | || r_type == RELOC_DISP16 | |
2403 | || r_type == RELOC_DISP32 | |
2404 | || r_type == RELOC_WDISP30 | |
2405 | || r_type == RELOC_WDISP22); | |
2406 | /* We don't consider the PC10 and PC22 types to be PC relative, | |
b34976b6 | 2407 | because they are pcrel_offset. */ |
252b5132 RH |
2408 | } |
2409 | ||
2410 | if (baserel) | |
2411 | { | |
2412 | bfd_vma *got_offsetp; | |
2413 | asection *sgot; | |
2414 | ||
2415 | if (h != NULL) | |
2416 | got_offsetp = &h->got_offset; | |
2417 | else if (adata (input_bfd).local_got_offsets == NULL) | |
2418 | got_offsetp = NULL; | |
2419 | else | |
2420 | { | |
2421 | struct reloc_std_external *srel; | |
2422 | int r_index; | |
2423 | ||
2424 | srel = (struct reloc_std_external *) reloc; | |
2425 | if (obj_reloc_entry_size (input_bfd) == RELOC_STD_SIZE) | |
2426 | { | |
2427 | if (bfd_header_big_endian (input_bfd)) | |
2428 | r_index = ((srel->r_index[0] << 16) | |
2429 | | (srel->r_index[1] << 8) | |
2430 | | srel->r_index[2]); | |
2431 | else | |
2432 | r_index = ((srel->r_index[2] << 16) | |
2433 | | (srel->r_index[1] << 8) | |
2434 | | srel->r_index[0]); | |
2435 | } | |
2436 | else | |
2437 | { | |
2438 | struct reloc_ext_external *erel; | |
2439 | ||
2440 | erel = (struct reloc_ext_external *) reloc; | |
2441 | if (bfd_header_big_endian (input_bfd)) | |
2442 | r_index = ((erel->r_index[0] << 16) | |
2443 | | (erel->r_index[1] << 8) | |
2444 | | erel->r_index[2]); | |
2445 | else | |
2446 | r_index = ((erel->r_index[2] << 16) | |
2447 | | (erel->r_index[1] << 8) | |
2448 | | erel->r_index[0]); | |
2449 | } | |
2450 | ||
2451 | got_offsetp = adata (input_bfd).local_got_offsets + r_index; | |
2452 | } | |
2453 | ||
2454 | BFD_ASSERT (got_offsetp != NULL && *got_offsetp != 0); | |
2455 | ||
2456 | sgot = bfd_get_section_by_name (dynobj, ".got"); | |
2457 | ||
2458 | /* We set the least significant bit to indicate whether we have | |
2459 | already initialized the GOT entry. */ | |
2460 | if ((*got_offsetp & 1) == 0) | |
2461 | { | |
2462 | if (h == NULL | |
2463 | || (! info->shared | |
2464 | && ((h->flags & SUNOS_DEF_DYNAMIC) == 0 | |
2465 | || (h->flags & SUNOS_DEF_REGULAR) != 0))) | |
2466 | PUT_WORD (dynobj, *relocationp, sgot->contents + *got_offsetp); | |
2467 | else | |
2468 | PUT_WORD (dynobj, 0, sgot->contents + *got_offsetp); | |
2469 | ||
2470 | if (info->shared | |
2471 | || (h != NULL | |
2472 | && (h->flags & SUNOS_DEF_DYNAMIC) != 0 | |
2473 | && (h->flags & SUNOS_DEF_REGULAR) == 0)) | |
2474 | { | |
2475 | /* We need to create a GLOB_DAT or 32 reloc to tell the | |
b34976b6 | 2476 | dynamic linker to fill in this entry in the table. */ |
252b5132 RH |
2477 | |
2478 | s = bfd_get_section_by_name (dynobj, ".dynrel"); | |
2479 | BFD_ASSERT (s != NULL); | |
2480 | BFD_ASSERT (s->reloc_count * obj_reloc_entry_size (dynobj) | |
eea6121a | 2481 | < s->size); |
252b5132 RH |
2482 | |
2483 | p = (s->contents | |
2484 | + s->reloc_count * obj_reloc_entry_size (dynobj)); | |
2485 | ||
2486 | if (h != NULL) | |
2487 | indx = h->dynindx; | |
2488 | else | |
2489 | indx = 0; | |
2490 | ||
2491 | if (obj_reloc_entry_size (dynobj) == RELOC_STD_SIZE) | |
2492 | { | |
2493 | struct reloc_std_external *srel; | |
2494 | ||
2495 | srel = (struct reloc_std_external *) p; | |
2496 | PUT_WORD (dynobj, | |
2497 | (*got_offsetp | |
2498 | + sgot->output_section->vma | |
2499 | + sgot->output_offset), | |
2500 | srel->r_address); | |
2501 | if (bfd_header_big_endian (dynobj)) | |
2502 | { | |
7b82c249 KH |
2503 | srel->r_index[0] = (bfd_byte) (indx >> 16); |
2504 | srel->r_index[1] = (bfd_byte) (indx >> 8); | |
252b5132 RH |
2505 | srel->r_index[2] = (bfd_byte)indx; |
2506 | if (h == NULL) | |
2507 | srel->r_type[0] = 2 << RELOC_STD_BITS_LENGTH_SH_BIG; | |
2508 | else | |
2509 | srel->r_type[0] = | |
2510 | (RELOC_STD_BITS_EXTERN_BIG | |
2511 | | RELOC_STD_BITS_BASEREL_BIG | |
2512 | | RELOC_STD_BITS_RELATIVE_BIG | |
2513 | | (2 << RELOC_STD_BITS_LENGTH_SH_BIG)); | |
2514 | } | |
2515 | else | |
2516 | { | |
7b82c249 KH |
2517 | srel->r_index[2] = (bfd_byte) (indx >> 16); |
2518 | srel->r_index[1] = (bfd_byte) (indx >> 8); | |
252b5132 RH |
2519 | srel->r_index[0] = (bfd_byte)indx; |
2520 | if (h == NULL) | |
2521 | srel->r_type[0] = 2 << RELOC_STD_BITS_LENGTH_SH_LITTLE; | |
2522 | else | |
2523 | srel->r_type[0] = | |
2524 | (RELOC_STD_BITS_EXTERN_LITTLE | |
2525 | | RELOC_STD_BITS_BASEREL_LITTLE | |
2526 | | RELOC_STD_BITS_RELATIVE_LITTLE | |
2527 | | (2 << RELOC_STD_BITS_LENGTH_SH_LITTLE)); | |
2528 | } | |
2529 | } | |
2530 | else | |
2531 | { | |
2532 | struct reloc_ext_external *erel; | |
2533 | ||
2534 | erel = (struct reloc_ext_external *) p; | |
2535 | PUT_WORD (dynobj, | |
2536 | (*got_offsetp | |
2537 | + sgot->output_section->vma | |
2538 | + sgot->output_offset), | |
2539 | erel->r_address); | |
2540 | if (bfd_header_big_endian (dynobj)) | |
2541 | { | |
7b82c249 KH |
2542 | erel->r_index[0] = (bfd_byte) (indx >> 16); |
2543 | erel->r_index[1] = (bfd_byte) (indx >> 8); | |
252b5132 RH |
2544 | erel->r_index[2] = (bfd_byte)indx; |
2545 | if (h == NULL) | |
2546 | erel->r_type[0] = | |
2547 | RELOC_32 << RELOC_EXT_BITS_TYPE_SH_BIG; | |
2548 | else | |
2549 | erel->r_type[0] = | |
2550 | (RELOC_EXT_BITS_EXTERN_BIG | |
2551 | | (RELOC_GLOB_DAT << RELOC_EXT_BITS_TYPE_SH_BIG)); | |
2552 | } | |
2553 | else | |
2554 | { | |
7b82c249 KH |
2555 | erel->r_index[2] = (bfd_byte) (indx >> 16); |
2556 | erel->r_index[1] = (bfd_byte) (indx >> 8); | |
252b5132 RH |
2557 | erel->r_index[0] = (bfd_byte)indx; |
2558 | if (h == NULL) | |
2559 | erel->r_type[0] = | |
2560 | RELOC_32 << RELOC_EXT_BITS_TYPE_SH_LITTLE; | |
2561 | else | |
2562 | erel->r_type[0] = | |
2563 | (RELOC_EXT_BITS_EXTERN_LITTLE | |
2564 | | (RELOC_GLOB_DAT | |
2565 | << RELOC_EXT_BITS_TYPE_SH_LITTLE)); | |
2566 | } | |
2567 | PUT_WORD (dynobj, 0, erel->r_addend); | |
2568 | } | |
2569 | ||
2570 | ++s->reloc_count; | |
2571 | } | |
2572 | ||
2573 | *got_offsetp |= 1; | |
2574 | } | |
2575 | ||
2576 | *relocationp = (sgot->vma | |
dc810e39 | 2577 | + (*got_offsetp &~ (bfd_vma) 1) |
252b5132 RH |
2578 | - sunos_hash_table (info)->got_base); |
2579 | ||
2580 | /* There is nothing else to do for a base relative reloc. */ | |
b34976b6 | 2581 | return TRUE; |
252b5132 RH |
2582 | } |
2583 | ||
2584 | if (! sunos_hash_table (info)->dynamic_sections_needed) | |
b34976b6 | 2585 | return TRUE; |
252b5132 RH |
2586 | if (! info->shared) |
2587 | { | |
2588 | if (h == NULL | |
2589 | || h->dynindx == -1 | |
2590 | || h->root.root.type != bfd_link_hash_undefined | |
2591 | || (h->flags & SUNOS_DEF_REGULAR) != 0 | |
2592 | || (h->flags & SUNOS_DEF_DYNAMIC) == 0 | |
2593 | || (h->root.root.u.undef.abfd->flags & DYNAMIC) == 0) | |
b34976b6 | 2594 | return TRUE; |
252b5132 RH |
2595 | } |
2596 | else | |
2597 | { | |
2598 | if (h != NULL | |
2599 | && (h->dynindx == -1 | |
2600 | || jmptbl | |
2601 | || strcmp (h->root.root.root.string, | |
2602 | "__GLOBAL_OFFSET_TABLE_") == 0)) | |
b34976b6 | 2603 | return TRUE; |
252b5132 RH |
2604 | } |
2605 | ||
2606 | /* It looks like this is a reloc we are supposed to copy. */ | |
2607 | ||
2608 | s = bfd_get_section_by_name (dynobj, ".dynrel"); | |
2609 | BFD_ASSERT (s != NULL); | |
eea6121a | 2610 | BFD_ASSERT (s->reloc_count * obj_reloc_entry_size (dynobj) < s->size); |
252b5132 RH |
2611 | |
2612 | p = s->contents + s->reloc_count * obj_reloc_entry_size (dynobj); | |
2613 | ||
2614 | /* Copy the reloc over. */ | |
2615 | memcpy (p, reloc, obj_reloc_entry_size (dynobj)); | |
2616 | ||
2617 | if (h != NULL) | |
2618 | indx = h->dynindx; | |
2619 | else | |
2620 | indx = 0; | |
2621 | ||
2622 | /* Adjust the address and symbol index. */ | |
2623 | if (obj_reloc_entry_size (dynobj) == RELOC_STD_SIZE) | |
2624 | { | |
2625 | struct reloc_std_external *srel; | |
2626 | ||
2627 | srel = (struct reloc_std_external *) p; | |
2628 | PUT_WORD (dynobj, | |
2629 | (GET_WORD (dynobj, srel->r_address) | |
2630 | + input_section->output_section->vma | |
2631 | + input_section->output_offset), | |
2632 | srel->r_address); | |
2633 | if (bfd_header_big_endian (dynobj)) | |
2634 | { | |
7b82c249 KH |
2635 | srel->r_index[0] = (bfd_byte) (indx >> 16); |
2636 | srel->r_index[1] = (bfd_byte) (indx >> 8); | |
252b5132 RH |
2637 | srel->r_index[2] = (bfd_byte)indx; |
2638 | } | |
2639 | else | |
2640 | { | |
7b82c249 KH |
2641 | srel->r_index[2] = (bfd_byte) (indx >> 16); |
2642 | srel->r_index[1] = (bfd_byte) (indx >> 8); | |
252b5132 RH |
2643 | srel->r_index[0] = (bfd_byte)indx; |
2644 | } | |
2645 | /* FIXME: We may have to change the addend for a PC relative | |
b34976b6 | 2646 | reloc. */ |
252b5132 RH |
2647 | } |
2648 | else | |
2649 | { | |
2650 | struct reloc_ext_external *erel; | |
2651 | ||
2652 | erel = (struct reloc_ext_external *) p; | |
2653 | PUT_WORD (dynobj, | |
2654 | (GET_WORD (dynobj, erel->r_address) | |
2655 | + input_section->output_section->vma | |
2656 | + input_section->output_offset), | |
2657 | erel->r_address); | |
2658 | if (bfd_header_big_endian (dynobj)) | |
2659 | { | |
7b82c249 KH |
2660 | erel->r_index[0] = (bfd_byte) (indx >> 16); |
2661 | erel->r_index[1] = (bfd_byte) (indx >> 8); | |
252b5132 RH |
2662 | erel->r_index[2] = (bfd_byte)indx; |
2663 | } | |
2664 | else | |
2665 | { | |
7b82c249 KH |
2666 | erel->r_index[2] = (bfd_byte) (indx >> 16); |
2667 | erel->r_index[1] = (bfd_byte) (indx >> 8); | |
252b5132 RH |
2668 | erel->r_index[0] = (bfd_byte)indx; |
2669 | } | |
2670 | if (pcrel && h != NULL) | |
2671 | { | |
2672 | /* Adjust the addend for the change in address. */ | |
2673 | PUT_WORD (dynobj, | |
2674 | (GET_WORD (dynobj, erel->r_addend) | |
2675 | - (input_section->output_section->vma | |
2676 | + input_section->output_offset | |
2677 | - input_section->vma)), | |
2678 | erel->r_addend); | |
2679 | } | |
2680 | } | |
2681 | ||
2682 | ++s->reloc_count; | |
2683 | ||
2684 | if (h != NULL) | |
b34976b6 | 2685 | *skip = TRUE; |
252b5132 | 2686 | |
b34976b6 | 2687 | return TRUE; |
252b5132 RH |
2688 | } |
2689 | ||
2690 | /* Finish up the dynamic linking information. */ | |
2691 | ||
b34976b6 | 2692 | static bfd_boolean |
116c20d2 | 2693 | sunos_finish_dynamic_link (bfd *abfd, struct bfd_link_info *info) |
252b5132 RH |
2694 | { |
2695 | bfd *dynobj; | |
2696 | asection *o; | |
2697 | asection *s; | |
2698 | asection *sdyn; | |
2699 | ||
2700 | if (! sunos_hash_table (info)->dynamic_sections_needed | |
2701 | && ! sunos_hash_table (info)->got_needed) | |
b34976b6 | 2702 | return TRUE; |
252b5132 RH |
2703 | |
2704 | dynobj = sunos_hash_table (info)->dynobj; | |
2705 | ||
2706 | sdyn = bfd_get_section_by_name (dynobj, ".dynamic"); | |
2707 | BFD_ASSERT (sdyn != NULL); | |
2708 | ||
2709 | /* Finish up the .need section. The linker emulation code filled it | |
2710 | in, but with offsets from the start of the section instead of | |
2711 | real addresses. Now that we know the section location, we can | |
2712 | fill in the final values. */ | |
2713 | s = bfd_get_section_by_name (dynobj, ".need"); | |
eea6121a | 2714 | if (s != NULL && s->size != 0) |
252b5132 RH |
2715 | { |
2716 | file_ptr filepos; | |
2717 | bfd_byte *p; | |
2718 | ||
2719 | filepos = s->output_section->filepos + s->output_offset; | |
2720 | p = s->contents; | |
2721 | while (1) | |
2722 | { | |
2723 | bfd_vma val; | |
2724 | ||
2725 | PUT_WORD (dynobj, GET_WORD (dynobj, p) + filepos, p); | |
2726 | val = GET_WORD (dynobj, p + 12); | |
2727 | if (val == 0) | |
2728 | break; | |
2729 | PUT_WORD (dynobj, val + filepos, p + 12); | |
2730 | p += 16; | |
2731 | } | |
2732 | } | |
2733 | ||
2734 | /* The first entry in the .got section is the address of the | |
2735 | dynamic information, unless this is a shared library. */ | |
2736 | s = bfd_get_section_by_name (dynobj, ".got"); | |
2737 | BFD_ASSERT (s != NULL); | |
eea6121a | 2738 | if (info->shared || sdyn->size == 0) |
252b5132 RH |
2739 | PUT_WORD (dynobj, 0, s->contents); |
2740 | else | |
2741 | PUT_WORD (dynobj, sdyn->output_section->vma + sdyn->output_offset, | |
2742 | s->contents); | |
2743 | ||
2744 | for (o = dynobj->sections; o != NULL; o = o->next) | |
2745 | { | |
2746 | if ((o->flags & SEC_HAS_CONTENTS) != 0 | |
2747 | && o->contents != NULL) | |
2748 | { | |
2749 | BFD_ASSERT (o->output_section != NULL | |
2750 | && o->output_section->owner == abfd); | |
2751 | if (! bfd_set_section_contents (abfd, o->output_section, | |
dc810e39 AM |
2752 | o->contents, |
2753 | (file_ptr) o->output_offset, | |
eea6121a | 2754 | o->size)) |
b34976b6 | 2755 | return FALSE; |
252b5132 RH |
2756 | } |
2757 | } | |
2758 | ||
eea6121a | 2759 | if (sdyn->size > 0) |
252b5132 RH |
2760 | { |
2761 | struct external_sun4_dynamic esd; | |
2762 | struct external_sun4_dynamic_link esdl; | |
dc810e39 | 2763 | file_ptr pos; |
252b5132 RH |
2764 | |
2765 | /* Finish up the dynamic link information. */ | |
2766 | PUT_WORD (dynobj, (bfd_vma) 3, esd.ld_version); | |
2767 | PUT_WORD (dynobj, | |
2768 | sdyn->output_section->vma + sdyn->output_offset + sizeof esd, | |
2769 | esd.ldd); | |
2770 | PUT_WORD (dynobj, | |
2771 | (sdyn->output_section->vma | |
2772 | + sdyn->output_offset | |
2773 | + sizeof esd | |
2774 | + EXTERNAL_SUN4_DYNAMIC_DEBUGGER_SIZE), | |
2775 | esd.ld); | |
2776 | ||
2777 | if (! bfd_set_section_contents (abfd, sdyn->output_section, &esd, | |
dc810e39 AM |
2778 | (file_ptr) sdyn->output_offset, |
2779 | (bfd_size_type) sizeof esd)) | |
b34976b6 | 2780 | return FALSE; |
252b5132 RH |
2781 | |
2782 | PUT_WORD (dynobj, (bfd_vma) 0, esdl.ld_loaded); | |
2783 | ||
2784 | s = bfd_get_section_by_name (dynobj, ".need"); | |
eea6121a | 2785 | if (s == NULL || s->size == 0) |
252b5132 RH |
2786 | PUT_WORD (dynobj, (bfd_vma) 0, esdl.ld_need); |
2787 | else | |
2788 | PUT_WORD (dynobj, s->output_section->filepos + s->output_offset, | |
2789 | esdl.ld_need); | |
2790 | ||
2791 | s = bfd_get_section_by_name (dynobj, ".rules"); | |
eea6121a | 2792 | if (s == NULL || s->size == 0) |
252b5132 RH |
2793 | PUT_WORD (dynobj, (bfd_vma) 0, esdl.ld_rules); |
2794 | else | |
2795 | PUT_WORD (dynobj, s->output_section->filepos + s->output_offset, | |
2796 | esdl.ld_rules); | |
2797 | ||
2798 | s = bfd_get_section_by_name (dynobj, ".got"); | |
2799 | BFD_ASSERT (s != NULL); | |
2800 | PUT_WORD (dynobj, s->output_section->vma + s->output_offset, | |
2801 | esdl.ld_got); | |
2802 | ||
2803 | s = bfd_get_section_by_name (dynobj, ".plt"); | |
2804 | BFD_ASSERT (s != NULL); | |
2805 | PUT_WORD (dynobj, s->output_section->vma + s->output_offset, | |
2806 | esdl.ld_plt); | |
eea6121a | 2807 | PUT_WORD (dynobj, s->size, esdl.ld_plt_sz); |
252b5132 RH |
2808 | |
2809 | s = bfd_get_section_by_name (dynobj, ".dynrel"); | |
2810 | BFD_ASSERT (s != NULL); | |
2811 | BFD_ASSERT (s->reloc_count * obj_reloc_entry_size (dynobj) | |
eea6121a | 2812 | == s->size); |
252b5132 RH |
2813 | PUT_WORD (dynobj, s->output_section->filepos + s->output_offset, |
2814 | esdl.ld_rel); | |
2815 | ||
2816 | s = bfd_get_section_by_name (dynobj, ".hash"); | |
2817 | BFD_ASSERT (s != NULL); | |
2818 | PUT_WORD (dynobj, s->output_section->filepos + s->output_offset, | |
2819 | esdl.ld_hash); | |
2820 | ||
2821 | s = bfd_get_section_by_name (dynobj, ".dynsym"); | |
2822 | BFD_ASSERT (s != NULL); | |
2823 | PUT_WORD (dynobj, s->output_section->filepos + s->output_offset, | |
2824 | esdl.ld_stab); | |
2825 | ||
2826 | PUT_WORD (dynobj, (bfd_vma) 0, esdl.ld_stab_hash); | |
2827 | ||
2828 | PUT_WORD (dynobj, (bfd_vma) sunos_hash_table (info)->bucketcount, | |
2829 | esdl.ld_buckets); | |
2830 | ||
2831 | s = bfd_get_section_by_name (dynobj, ".dynstr"); | |
2832 | BFD_ASSERT (s != NULL); | |
2833 | PUT_WORD (dynobj, s->output_section->filepos + s->output_offset, | |
2834 | esdl.ld_symbols); | |
eea6121a | 2835 | PUT_WORD (dynobj, s->size, esdl.ld_symb_size); |
252b5132 RH |
2836 | |
2837 | /* The size of the text area is the size of the .text section | |
2838 | rounded up to a page boundary. FIXME: Should the page size be | |
2839 | conditional on something? */ | |
2840 | PUT_WORD (dynobj, | |
eea6121a | 2841 | BFD_ALIGN (obj_textsec (abfd)->size, 0x2000), |
252b5132 | 2842 | esdl.ld_text); |
7b82c249 | 2843 | |
dc810e39 AM |
2844 | pos = sdyn->output_offset; |
2845 | pos += sizeof esd + EXTERNAL_SUN4_DYNAMIC_DEBUGGER_SIZE; | |
252b5132 | 2846 | if (! bfd_set_section_contents (abfd, sdyn->output_section, &esdl, |
dc810e39 | 2847 | pos, (bfd_size_type) sizeof esdl)) |
b34976b6 | 2848 | return FALSE; |
252b5132 RH |
2849 | |
2850 | abfd->flags |= DYNAMIC; | |
2851 | } | |
2852 | ||
b34976b6 | 2853 | return TRUE; |
252b5132 | 2854 | } |