Commit | Line | Data |
---|---|---|
252b5132 RH |
1 | /* BFD backend for SunOS binaries. |
2 | Copyright (C) 1990, 91, 92, 93, 94, 95, 96, 97, 1998 | |
3 | Free Software Foundation, Inc. | |
4 | Written by Cygnus Support. | |
5 | ||
6 | This file is part of BFD, the Binary File Descriptor library. | |
7 | ||
8 | This program is free software; you can redistribute it and/or modify | |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 2 of the License, or | |
11 | (at your option) any later version. | |
12 | ||
13 | This program is distributed in the hope that it will be useful, | |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
17 | ||
18 | You should have received a copy of the GNU General Public License | |
19 | along with this program; if not, write to the Free Software | |
20 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ | |
21 | ||
22 | #define TARGETNAME "a.out-sunos-big" | |
23 | #define MY(OP) CAT(sunos_big_,OP) | |
24 | ||
25 | #include "bfd.h" | |
26 | #include "bfdlink.h" | |
27 | #include "libaout.h" | |
28 | ||
29 | /* Static routines defined in this file. */ | |
30 | ||
31 | static boolean sunos_read_dynamic_info PARAMS ((bfd *)); | |
32 | static long sunos_get_dynamic_symtab_upper_bound PARAMS ((bfd *)); | |
33 | static boolean sunos_slurp_dynamic_symtab PARAMS ((bfd *)); | |
34 | static long sunos_canonicalize_dynamic_symtab PARAMS ((bfd *, asymbol **)); | |
35 | static long sunos_get_dynamic_reloc_upper_bound PARAMS ((bfd *)); | |
36 | static long sunos_canonicalize_dynamic_reloc | |
37 | PARAMS ((bfd *, arelent **, asymbol **)); | |
38 | static struct bfd_hash_entry *sunos_link_hash_newfunc | |
39 | PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *)); | |
40 | static struct bfd_link_hash_table *sunos_link_hash_table_create | |
41 | PARAMS ((bfd *)); | |
42 | static boolean sunos_create_dynamic_sections | |
43 | PARAMS ((bfd *, struct bfd_link_info *, boolean)); | |
44 | static boolean sunos_add_dynamic_symbols | |
45 | PARAMS ((bfd *, struct bfd_link_info *, struct external_nlist **, | |
46 | bfd_size_type *, char **)); | |
47 | static boolean sunos_add_one_symbol | |
48 | PARAMS ((struct bfd_link_info *, bfd *, const char *, flagword, asection *, | |
49 | bfd_vma, const char *, boolean, boolean, | |
50 | struct bfd_link_hash_entry **)); | |
51 | static boolean sunos_scan_relocs | |
52 | PARAMS ((struct bfd_link_info *, bfd *, asection *, bfd_size_type)); | |
53 | static boolean sunos_scan_std_relocs | |
54 | PARAMS ((struct bfd_link_info *, bfd *, asection *, | |
55 | const struct reloc_std_external *, bfd_size_type)); | |
56 | static boolean sunos_scan_ext_relocs | |
57 | PARAMS ((struct bfd_link_info *, bfd *, asection *, | |
58 | const struct reloc_ext_external *, bfd_size_type)); | |
59 | static boolean sunos_link_dynamic_object | |
60 | PARAMS ((struct bfd_link_info *, bfd *)); | |
61 | static boolean sunos_write_dynamic_symbol | |
62 | PARAMS ((bfd *, struct bfd_link_info *, struct aout_link_hash_entry *)); | |
63 | static boolean sunos_check_dynamic_reloc | |
64 | PARAMS ((struct bfd_link_info *, bfd *, asection *, | |
65 | struct aout_link_hash_entry *, PTR, bfd_byte *, boolean *, | |
66 | bfd_vma *)); | |
67 | static boolean sunos_finish_dynamic_link | |
68 | PARAMS ((bfd *, struct bfd_link_info *)); | |
69 | ||
70 | #define MY_get_dynamic_symtab_upper_bound sunos_get_dynamic_symtab_upper_bound | |
71 | #define MY_canonicalize_dynamic_symtab sunos_canonicalize_dynamic_symtab | |
72 | #define MY_get_dynamic_reloc_upper_bound sunos_get_dynamic_reloc_upper_bound | |
73 | #define MY_canonicalize_dynamic_reloc sunos_canonicalize_dynamic_reloc | |
74 | #define MY_bfd_link_hash_table_create sunos_link_hash_table_create | |
75 | #define MY_add_dynamic_symbols sunos_add_dynamic_symbols | |
76 | #define MY_add_one_symbol sunos_add_one_symbol | |
77 | #define MY_link_dynamic_object sunos_link_dynamic_object | |
78 | #define MY_write_dynamic_symbol sunos_write_dynamic_symbol | |
79 | #define MY_check_dynamic_reloc sunos_check_dynamic_reloc | |
80 | #define MY_finish_dynamic_link sunos_finish_dynamic_link | |
81 | ||
82 | /* ??? Where should this go? */ | |
83 | #define MACHTYPE_OK(mtype) \ | |
84 | (((mtype) == M_SPARC && bfd_lookup_arch (bfd_arch_sparc, 0) != NULL) \ | |
85 | || ((mtype) == M_SPARCLET \ | |
86 | && bfd_lookup_arch (bfd_arch_sparc, bfd_mach_sparc_sparclet) != NULL) \ | |
87 | || ((mtype) == M_SPARCLITE_LE \ | |
88 | && bfd_lookup_arch (bfd_arch_sparc, bfd_mach_sparc_sparclet) != NULL) \ | |
89 | || (((mtype) == M_UNKNOWN || (mtype) == M_68010 || (mtype) == M_68020) \ | |
90 | && bfd_lookup_arch (bfd_arch_m68k, 0) != NULL)) | |
91 | ||
92 | /* Include the usual a.out support. */ | |
93 | #include "aoutf1.h" | |
94 | ||
95 | /* The SunOS 4.1.4 /usr/include/locale.h defines valid as a macro. */ | |
96 | #undef valid | |
97 | ||
98 | /* SunOS shared library support. We store a pointer to this structure | |
99 | in obj_aout_dynamic_info (abfd). */ | |
100 | ||
101 | struct sunos_dynamic_info | |
102 | { | |
103 | /* Whether we found any dynamic information. */ | |
104 | boolean valid; | |
105 | /* Dynamic information. */ | |
106 | struct internal_sun4_dynamic_link dyninfo; | |
107 | /* Number of dynamic symbols. */ | |
108 | unsigned long dynsym_count; | |
109 | /* Read in nlists for dynamic symbols. */ | |
110 | struct external_nlist *dynsym; | |
111 | /* asymbol structures for dynamic symbols. */ | |
112 | aout_symbol_type *canonical_dynsym; | |
113 | /* Read in dynamic string table. */ | |
114 | char *dynstr; | |
115 | /* Number of dynamic relocs. */ | |
116 | unsigned long dynrel_count; | |
117 | /* Read in dynamic relocs. This may be reloc_std_external or | |
118 | reloc_ext_external. */ | |
119 | PTR dynrel; | |
120 | /* arelent structures for dynamic relocs. */ | |
121 | arelent *canonical_dynrel; | |
122 | }; | |
123 | ||
124 | /* The hash table of dynamic symbols is composed of two word entries. | |
125 | See include/aout/sun4.h for details. */ | |
126 | ||
127 | #define HASH_ENTRY_SIZE (2 * BYTES_IN_WORD) | |
128 | ||
129 | /* Read in the basic dynamic information. This locates the __DYNAMIC | |
130 | structure and uses it to find the dynamic_link structure. It | |
131 | creates and saves a sunos_dynamic_info structure. If it can't find | |
132 | __DYNAMIC, it sets the valid field of the sunos_dynamic_info | |
133 | structure to false to avoid doing this work again. */ | |
134 | ||
135 | static boolean | |
136 | sunos_read_dynamic_info (abfd) | |
137 | bfd *abfd; | |
138 | { | |
139 | struct sunos_dynamic_info *info; | |
140 | asection *dynsec; | |
141 | bfd_vma dynoff; | |
142 | struct external_sun4_dynamic dyninfo; | |
143 | unsigned long dynver; | |
144 | struct external_sun4_dynamic_link linkinfo; | |
145 | ||
146 | if (obj_aout_dynamic_info (abfd) != (PTR) NULL) | |
147 | return true; | |
148 | ||
149 | if ((abfd->flags & DYNAMIC) == 0) | |
150 | { | |
151 | bfd_set_error (bfd_error_invalid_operation); | |
152 | return false; | |
153 | } | |
154 | ||
155 | info = ((struct sunos_dynamic_info *) | |
156 | bfd_zalloc (abfd, sizeof (struct sunos_dynamic_info))); | |
157 | if (!info) | |
158 | return false; | |
159 | info->valid = false; | |
160 | info->dynsym = NULL; | |
161 | info->dynstr = NULL; | |
162 | info->canonical_dynsym = NULL; | |
163 | info->dynrel = NULL; | |
164 | info->canonical_dynrel = NULL; | |
165 | obj_aout_dynamic_info (abfd) = (PTR) info; | |
166 | ||
167 | /* This code used to look for the __DYNAMIC symbol to locate the dynamic | |
168 | linking information. | |
169 | However this inhibits recovering the dynamic symbols from a | |
170 | stripped object file, so blindly assume that the dynamic linking | |
171 | information is located at the start of the data section. | |
172 | We could verify this assumption later by looking through the dynamic | |
173 | symbols for the __DYNAMIC symbol. */ | |
174 | if ((abfd->flags & DYNAMIC) == 0) | |
175 | return true; | |
176 | if (! bfd_get_section_contents (abfd, obj_datasec (abfd), (PTR) &dyninfo, | |
177 | (file_ptr) 0, sizeof dyninfo)) | |
178 | return true; | |
179 | ||
180 | dynver = GET_WORD (abfd, dyninfo.ld_version); | |
181 | if (dynver != 2 && dynver != 3) | |
182 | return true; | |
183 | ||
184 | dynoff = GET_WORD (abfd, dyninfo.ld); | |
185 | ||
186 | /* dynoff is a virtual address. It is probably always in the .data | |
187 | section, but this code should work even if it moves. */ | |
188 | if (dynoff < bfd_get_section_vma (abfd, obj_datasec (abfd))) | |
189 | dynsec = obj_textsec (abfd); | |
190 | else | |
191 | dynsec = obj_datasec (abfd); | |
192 | dynoff -= bfd_get_section_vma (abfd, dynsec); | |
193 | if (dynoff > bfd_section_size (abfd, dynsec)) | |
194 | return true; | |
195 | ||
196 | /* This executable appears to be dynamically linked in a way that we | |
197 | can understand. */ | |
198 | if (! bfd_get_section_contents (abfd, dynsec, (PTR) &linkinfo, dynoff, | |
199 | (bfd_size_type) sizeof linkinfo)) | |
200 | return true; | |
201 | ||
202 | /* Swap in the dynamic link information. */ | |
203 | info->dyninfo.ld_loaded = GET_WORD (abfd, linkinfo.ld_loaded); | |
204 | info->dyninfo.ld_need = GET_WORD (abfd, linkinfo.ld_need); | |
205 | info->dyninfo.ld_rules = GET_WORD (abfd, linkinfo.ld_rules); | |
206 | info->dyninfo.ld_got = GET_WORD (abfd, linkinfo.ld_got); | |
207 | info->dyninfo.ld_plt = GET_WORD (abfd, linkinfo.ld_plt); | |
208 | info->dyninfo.ld_rel = GET_WORD (abfd, linkinfo.ld_rel); | |
209 | info->dyninfo.ld_hash = GET_WORD (abfd, linkinfo.ld_hash); | |
210 | info->dyninfo.ld_stab = GET_WORD (abfd, linkinfo.ld_stab); | |
211 | info->dyninfo.ld_stab_hash = GET_WORD (abfd, linkinfo.ld_stab_hash); | |
212 | info->dyninfo.ld_buckets = GET_WORD (abfd, linkinfo.ld_buckets); | |
213 | info->dyninfo.ld_symbols = GET_WORD (abfd, linkinfo.ld_symbols); | |
214 | info->dyninfo.ld_symb_size = GET_WORD (abfd, linkinfo.ld_symb_size); | |
215 | info->dyninfo.ld_text = GET_WORD (abfd, linkinfo.ld_text); | |
216 | info->dyninfo.ld_plt_sz = GET_WORD (abfd, linkinfo.ld_plt_sz); | |
217 | ||
218 | /* Reportedly the addresses need to be offset by the size of the | |
219 | exec header in an NMAGIC file. */ | |
220 | if (adata (abfd).magic == n_magic) | |
221 | { | |
222 | unsigned long exec_bytes_size = adata (abfd).exec_bytes_size; | |
223 | ||
224 | info->dyninfo.ld_need += exec_bytes_size; | |
225 | info->dyninfo.ld_rules += exec_bytes_size; | |
226 | info->dyninfo.ld_rel += exec_bytes_size; | |
227 | info->dyninfo.ld_hash += exec_bytes_size; | |
228 | info->dyninfo.ld_stab += exec_bytes_size; | |
229 | info->dyninfo.ld_symbols += exec_bytes_size; | |
230 | } | |
231 | ||
232 | /* The only way to get the size of the symbol information appears to | |
233 | be to determine the distance between it and the string table. */ | |
234 | info->dynsym_count = ((info->dyninfo.ld_symbols - info->dyninfo.ld_stab) | |
235 | / EXTERNAL_NLIST_SIZE); | |
236 | BFD_ASSERT (info->dynsym_count * EXTERNAL_NLIST_SIZE | |
237 | == (unsigned long) (info->dyninfo.ld_symbols | |
238 | - info->dyninfo.ld_stab)); | |
239 | ||
240 | /* Similarly, the relocs end at the hash table. */ | |
241 | info->dynrel_count = ((info->dyninfo.ld_hash - info->dyninfo.ld_rel) | |
242 | / obj_reloc_entry_size (abfd)); | |
243 | BFD_ASSERT (info->dynrel_count * obj_reloc_entry_size (abfd) | |
244 | == (unsigned long) (info->dyninfo.ld_hash | |
245 | - info->dyninfo.ld_rel)); | |
246 | ||
247 | info->valid = true; | |
248 | ||
249 | return true; | |
250 | } | |
251 | ||
252 | /* Return the amount of memory required for the dynamic symbols. */ | |
253 | ||
254 | static long | |
255 | sunos_get_dynamic_symtab_upper_bound (abfd) | |
256 | bfd *abfd; | |
257 | { | |
258 | struct sunos_dynamic_info *info; | |
259 | ||
260 | if (! sunos_read_dynamic_info (abfd)) | |
261 | return -1; | |
262 | ||
263 | info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd); | |
264 | if (! info->valid) | |
265 | { | |
266 | bfd_set_error (bfd_error_no_symbols); | |
267 | return -1; | |
268 | } | |
269 | ||
270 | return (info->dynsym_count + 1) * sizeof (asymbol *); | |
271 | } | |
272 | ||
273 | /* Read the external dynamic symbols. */ | |
274 | ||
275 | static boolean | |
276 | sunos_slurp_dynamic_symtab (abfd) | |
277 | bfd *abfd; | |
278 | { | |
279 | struct sunos_dynamic_info *info; | |
280 | ||
281 | /* Get the general dynamic information. */ | |
282 | if (obj_aout_dynamic_info (abfd) == NULL) | |
283 | { | |
284 | if (! sunos_read_dynamic_info (abfd)) | |
285 | return false; | |
286 | } | |
287 | ||
288 | info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd); | |
289 | if (! info->valid) | |
290 | { | |
291 | bfd_set_error (bfd_error_no_symbols); | |
292 | return false; | |
293 | } | |
294 | ||
295 | /* Get the dynamic nlist structures. */ | |
296 | if (info->dynsym == (struct external_nlist *) NULL) | |
297 | { | |
298 | info->dynsym = ((struct external_nlist *) | |
299 | bfd_alloc (abfd, | |
300 | (info->dynsym_count | |
301 | * EXTERNAL_NLIST_SIZE))); | |
302 | if (info->dynsym == NULL && info->dynsym_count != 0) | |
303 | return false; | |
304 | if (bfd_seek (abfd, info->dyninfo.ld_stab, SEEK_SET) != 0 | |
305 | || (bfd_read ((PTR) info->dynsym, info->dynsym_count, | |
306 | EXTERNAL_NLIST_SIZE, abfd) | |
307 | != info->dynsym_count * EXTERNAL_NLIST_SIZE)) | |
308 | { | |
309 | if (info->dynsym != NULL) | |
310 | { | |
311 | bfd_release (abfd, info->dynsym); | |
312 | info->dynsym = NULL; | |
313 | } | |
314 | return false; | |
315 | } | |
316 | } | |
317 | ||
318 | /* Get the dynamic strings. */ | |
319 | if (info->dynstr == (char *) NULL) | |
320 | { | |
321 | info->dynstr = (char *) bfd_alloc (abfd, info->dyninfo.ld_symb_size); | |
322 | if (info->dynstr == NULL && info->dyninfo.ld_symb_size != 0) | |
323 | return false; | |
324 | if (bfd_seek (abfd, info->dyninfo.ld_symbols, SEEK_SET) != 0 | |
325 | || (bfd_read ((PTR) info->dynstr, 1, info->dyninfo.ld_symb_size, | |
326 | abfd) | |
327 | != info->dyninfo.ld_symb_size)) | |
328 | { | |
329 | if (info->dynstr != NULL) | |
330 | { | |
331 | bfd_release (abfd, info->dynstr); | |
332 | info->dynstr = NULL; | |
333 | } | |
334 | return false; | |
335 | } | |
336 | } | |
337 | ||
338 | return true; | |
339 | } | |
340 | ||
341 | /* Read in the dynamic symbols. */ | |
342 | ||
343 | static long | |
344 | sunos_canonicalize_dynamic_symtab (abfd, storage) | |
345 | bfd *abfd; | |
346 | asymbol **storage; | |
347 | { | |
348 | struct sunos_dynamic_info *info; | |
349 | unsigned long i; | |
350 | ||
351 | if (! sunos_slurp_dynamic_symtab (abfd)) | |
352 | return -1; | |
353 | ||
354 | info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd); | |
355 | ||
356 | #ifdef CHECK_DYNAMIC_HASH | |
357 | /* Check my understanding of the dynamic hash table by making sure | |
358 | that each symbol can be located in the hash table. */ | |
359 | { | |
360 | bfd_size_type table_size; | |
361 | bfd_byte *table; | |
362 | bfd_size_type i; | |
363 | ||
364 | if (info->dyninfo.ld_buckets > info->dynsym_count) | |
365 | abort (); | |
366 | table_size = info->dyninfo.ld_stab - info->dyninfo.ld_hash; | |
367 | table = (bfd_byte *) bfd_malloc (table_size); | |
368 | if (table == NULL && table_size != 0) | |
369 | abort (); | |
370 | if (bfd_seek (abfd, info->dyninfo.ld_hash, SEEK_SET) != 0 | |
371 | || bfd_read ((PTR) table, 1, table_size, abfd) != table_size) | |
372 | abort (); | |
373 | for (i = 0; i < info->dynsym_count; i++) | |
374 | { | |
375 | unsigned char *name; | |
376 | unsigned long hash; | |
377 | ||
378 | name = ((unsigned char *) info->dynstr | |
379 | + GET_WORD (abfd, info->dynsym[i].e_strx)); | |
380 | hash = 0; | |
381 | while (*name != '\0') | |
382 | hash = (hash << 1) + *name++; | |
383 | hash &= 0x7fffffff; | |
384 | hash %= info->dyninfo.ld_buckets; | |
385 | while (GET_WORD (abfd, table + hash * HASH_ENTRY_SIZE) != i) | |
386 | { | |
387 | hash = GET_WORD (abfd, | |
388 | table + hash * HASH_ENTRY_SIZE + BYTES_IN_WORD); | |
389 | if (hash == 0 || hash >= table_size / HASH_ENTRY_SIZE) | |
390 | abort (); | |
391 | } | |
392 | } | |
393 | free (table); | |
394 | } | |
395 | #endif /* CHECK_DYNAMIC_HASH */ | |
396 | ||
397 | /* Get the asymbol structures corresponding to the dynamic nlist | |
398 | structures. */ | |
399 | if (info->canonical_dynsym == (aout_symbol_type *) NULL) | |
400 | { | |
401 | info->canonical_dynsym = ((aout_symbol_type *) | |
402 | bfd_alloc (abfd, | |
403 | (info->dynsym_count | |
404 | * sizeof (aout_symbol_type)))); | |
405 | if (info->canonical_dynsym == NULL && info->dynsym_count != 0) | |
406 | return -1; | |
407 | ||
408 | if (! aout_32_translate_symbol_table (abfd, info->canonical_dynsym, | |
409 | info->dynsym, info->dynsym_count, | |
410 | info->dynstr, | |
411 | info->dyninfo.ld_symb_size, | |
412 | true)) | |
413 | { | |
414 | if (info->canonical_dynsym != NULL) | |
415 | { | |
416 | bfd_release (abfd, info->canonical_dynsym); | |
417 | info->canonical_dynsym = NULL; | |
418 | } | |
419 | return -1; | |
420 | } | |
421 | } | |
422 | ||
423 | /* Return pointers to the dynamic asymbol structures. */ | |
424 | for (i = 0; i < info->dynsym_count; i++) | |
425 | *storage++ = (asymbol *) (info->canonical_dynsym + i); | |
426 | *storage = NULL; | |
427 | ||
428 | return info->dynsym_count; | |
429 | } | |
430 | ||
431 | /* Return the amount of memory required for the dynamic relocs. */ | |
432 | ||
433 | static long | |
434 | sunos_get_dynamic_reloc_upper_bound (abfd) | |
435 | bfd *abfd; | |
436 | { | |
437 | struct sunos_dynamic_info *info; | |
438 | ||
439 | if (! sunos_read_dynamic_info (abfd)) | |
440 | return -1; | |
441 | ||
442 | info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd); | |
443 | if (! info->valid) | |
444 | { | |
445 | bfd_set_error (bfd_error_no_symbols); | |
446 | return -1; | |
447 | } | |
448 | ||
449 | return (info->dynrel_count + 1) * sizeof (arelent *); | |
450 | } | |
451 | ||
452 | /* Read in the dynamic relocs. */ | |
453 | ||
454 | static long | |
455 | sunos_canonicalize_dynamic_reloc (abfd, storage, syms) | |
456 | bfd *abfd; | |
457 | arelent **storage; | |
458 | asymbol **syms; | |
459 | { | |
460 | struct sunos_dynamic_info *info; | |
461 | unsigned long i; | |
462 | ||
463 | /* Get the general dynamic information. */ | |
464 | if (obj_aout_dynamic_info (abfd) == (PTR) NULL) | |
465 | { | |
466 | if (! sunos_read_dynamic_info (abfd)) | |
467 | return -1; | |
468 | } | |
469 | ||
470 | info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd); | |
471 | if (! info->valid) | |
472 | { | |
473 | bfd_set_error (bfd_error_no_symbols); | |
474 | return -1; | |
475 | } | |
476 | ||
477 | /* Get the dynamic reloc information. */ | |
478 | if (info->dynrel == NULL) | |
479 | { | |
480 | info->dynrel = (PTR) bfd_alloc (abfd, | |
481 | (info->dynrel_count | |
482 | * obj_reloc_entry_size (abfd))); | |
483 | if (info->dynrel == NULL && info->dynrel_count != 0) | |
484 | return -1; | |
485 | if (bfd_seek (abfd, info->dyninfo.ld_rel, SEEK_SET) != 0 | |
486 | || (bfd_read ((PTR) info->dynrel, info->dynrel_count, | |
487 | obj_reloc_entry_size (abfd), abfd) | |
488 | != info->dynrel_count * obj_reloc_entry_size (abfd))) | |
489 | { | |
490 | if (info->dynrel != NULL) | |
491 | { | |
492 | bfd_release (abfd, info->dynrel); | |
493 | info->dynrel = NULL; | |
494 | } | |
495 | return -1; | |
496 | } | |
497 | } | |
498 | ||
499 | /* Get the arelent structures corresponding to the dynamic reloc | |
500 | information. */ | |
501 | if (info->canonical_dynrel == (arelent *) NULL) | |
502 | { | |
503 | arelent *to; | |
504 | ||
505 | info->canonical_dynrel = ((arelent *) | |
506 | bfd_alloc (abfd, | |
507 | (info->dynrel_count | |
508 | * sizeof (arelent)))); | |
509 | if (info->canonical_dynrel == NULL && info->dynrel_count != 0) | |
510 | return -1; | |
511 | ||
512 | to = info->canonical_dynrel; | |
513 | ||
514 | if (obj_reloc_entry_size (abfd) == RELOC_EXT_SIZE) | |
515 | { | |
516 | register struct reloc_ext_external *p; | |
517 | struct reloc_ext_external *pend; | |
518 | ||
519 | p = (struct reloc_ext_external *) info->dynrel; | |
520 | pend = p + info->dynrel_count; | |
521 | for (; p < pend; p++, to++) | |
522 | NAME(aout,swap_ext_reloc_in) (abfd, p, to, syms, | |
523 | info->dynsym_count); | |
524 | } | |
525 | else | |
526 | { | |
527 | register struct reloc_std_external *p; | |
528 | struct reloc_std_external *pend; | |
529 | ||
530 | p = (struct reloc_std_external *) info->dynrel; | |
531 | pend = p + info->dynrel_count; | |
532 | for (; p < pend; p++, to++) | |
533 | NAME(aout,swap_std_reloc_in) (abfd, p, to, syms, | |
534 | info->dynsym_count); | |
535 | } | |
536 | } | |
537 | ||
538 | /* Return pointers to the dynamic arelent structures. */ | |
539 | for (i = 0; i < info->dynrel_count; i++) | |
540 | *storage++ = info->canonical_dynrel + i; | |
541 | *storage = NULL; | |
542 | ||
543 | return info->dynrel_count; | |
544 | } | |
545 | \f | |
546 | /* Code to handle linking of SunOS shared libraries. */ | |
547 | ||
548 | /* A SPARC procedure linkage table entry is 12 bytes. The first entry | |
549 | in the table is a jump which is filled in by the runtime linker. | |
550 | The remaining entries are branches back to the first entry, | |
551 | followed by an index into the relocation table encoded to look like | |
552 | a sethi of %g0. */ | |
553 | ||
554 | #define SPARC_PLT_ENTRY_SIZE (12) | |
555 | ||
556 | static const bfd_byte sparc_plt_first_entry[SPARC_PLT_ENTRY_SIZE] = | |
557 | { | |
558 | /* sethi %hi(0),%g1; address filled in by runtime linker. */ | |
559 | 0x3, 0, 0, 0, | |
560 | /* jmp %g1; offset filled in by runtime linker. */ | |
561 | 0x81, 0xc0, 0x60, 0, | |
562 | /* nop */ | |
563 | 0x1, 0, 0, 0 | |
564 | }; | |
565 | ||
566 | /* save %sp, -96, %sp */ | |
567 | #define SPARC_PLT_ENTRY_WORD0 0x9de3bfa0 | |
568 | /* call; address filled in later. */ | |
569 | #define SPARC_PLT_ENTRY_WORD1 0x40000000 | |
570 | /* sethi; reloc index filled in later. */ | |
571 | #define SPARC_PLT_ENTRY_WORD2 0x01000000 | |
572 | ||
573 | /* This sequence is used when for the jump table entry to a defined | |
574 | symbol in a complete executable. It is used when linking PIC | |
575 | compiled code which is not being put into a shared library. */ | |
576 | /* sethi <address to be filled in later>, %g1 */ | |
577 | #define SPARC_PLT_PIC_WORD0 0x03000000 | |
578 | /* jmp %g1 + <address to be filled in later> */ | |
579 | #define SPARC_PLT_PIC_WORD1 0x81c06000 | |
580 | /* nop */ | |
581 | #define SPARC_PLT_PIC_WORD2 0x01000000 | |
582 | ||
583 | /* An m68k procedure linkage table entry is 8 bytes. The first entry | |
584 | in the table is a jump which is filled in the by the runtime | |
585 | linker. The remaining entries are branches back to the first | |
586 | entry, followed by a two byte index into the relocation table. */ | |
587 | ||
588 | #define M68K_PLT_ENTRY_SIZE (8) | |
589 | ||
590 | static const bfd_byte m68k_plt_first_entry[M68K_PLT_ENTRY_SIZE] = | |
591 | { | |
592 | /* jmps @# */ | |
593 | 0x4e, 0xf9, | |
594 | /* Filled in by runtime linker with a magic address. */ | |
595 | 0, 0, 0, 0, | |
596 | /* Not used? */ | |
597 | 0, 0 | |
598 | }; | |
599 | ||
600 | /* bsrl */ | |
601 | #define M68K_PLT_ENTRY_WORD0 (0x61ff) | |
602 | /* Remaining words filled in later. */ | |
603 | ||
604 | /* An entry in the SunOS linker hash table. */ | |
605 | ||
606 | struct sunos_link_hash_entry | |
607 | { | |
608 | struct aout_link_hash_entry root; | |
609 | ||
610 | /* If this is a dynamic symbol, this is its index into the dynamic | |
611 | symbol table. This is initialized to -1. As the linker looks at | |
612 | the input files, it changes this to -2 if it will be added to the | |
613 | dynamic symbol table. After all the input files have been seen, | |
614 | the linker will know whether to build a dynamic symbol table; if | |
615 | it does build one, this becomes the index into the table. */ | |
616 | long dynindx; | |
617 | ||
618 | /* If this is a dynamic symbol, this is the index of the name in the | |
619 | dynamic symbol string table. */ | |
620 | long dynstr_index; | |
621 | ||
622 | /* The offset into the global offset table used for this symbol. If | |
623 | the symbol does not require a GOT entry, this is 0. */ | |
624 | bfd_vma got_offset; | |
625 | ||
626 | /* The offset into the procedure linkage table used for this symbol. | |
627 | If the symbol does not require a PLT entry, this is 0. */ | |
628 | bfd_vma plt_offset; | |
629 | ||
630 | /* Some linker flags. */ | |
631 | unsigned char flags; | |
632 | /* Symbol is referenced by a regular object. */ | |
633 | #define SUNOS_REF_REGULAR 01 | |
634 | /* Symbol is defined by a regular object. */ | |
635 | #define SUNOS_DEF_REGULAR 02 | |
636 | /* Symbol is referenced by a dynamic object. */ | |
637 | #define SUNOS_REF_DYNAMIC 04 | |
638 | /* Symbol is defined by a dynamic object. */ | |
639 | #define SUNOS_DEF_DYNAMIC 010 | |
640 | /* Symbol is a constructor symbol in a regular object. */ | |
641 | #define SUNOS_CONSTRUCTOR 020 | |
642 | }; | |
643 | ||
644 | /* The SunOS linker hash table. */ | |
645 | ||
646 | struct sunos_link_hash_table | |
647 | { | |
648 | struct aout_link_hash_table root; | |
649 | ||
650 | /* The object which holds the dynamic sections. */ | |
651 | bfd *dynobj; | |
652 | ||
653 | /* Whether we have created the dynamic sections. */ | |
654 | boolean dynamic_sections_created; | |
655 | ||
656 | /* Whether we need the dynamic sections. */ | |
657 | boolean dynamic_sections_needed; | |
658 | ||
659 | /* Whether we need the .got table. */ | |
660 | boolean got_needed; | |
661 | ||
662 | /* The number of dynamic symbols. */ | |
663 | size_t dynsymcount; | |
664 | ||
665 | /* The number of buckets in the hash table. */ | |
666 | size_t bucketcount; | |
667 | ||
668 | /* The list of dynamic objects needed by dynamic objects included in | |
669 | the link. */ | |
670 | struct bfd_link_needed_list *needed; | |
671 | ||
672 | /* The offset of __GLOBAL_OFFSET_TABLE_ into the .got section. */ | |
673 | bfd_vma got_base; | |
674 | }; | |
675 | ||
676 | /* Routine to create an entry in an SunOS link hash table. */ | |
677 | ||
678 | static struct bfd_hash_entry * | |
679 | sunos_link_hash_newfunc (entry, table, string) | |
680 | struct bfd_hash_entry *entry; | |
681 | struct bfd_hash_table *table; | |
682 | const char *string; | |
683 | { | |
684 | struct sunos_link_hash_entry *ret = (struct sunos_link_hash_entry *) entry; | |
685 | ||
686 | /* Allocate the structure if it has not already been allocated by a | |
687 | subclass. */ | |
688 | if (ret == (struct sunos_link_hash_entry *) NULL) | |
689 | ret = ((struct sunos_link_hash_entry *) | |
690 | bfd_hash_allocate (table, sizeof (struct sunos_link_hash_entry))); | |
691 | if (ret == (struct sunos_link_hash_entry *) NULL) | |
692 | return (struct bfd_hash_entry *) ret; | |
693 | ||
694 | /* Call the allocation method of the superclass. */ | |
695 | ret = ((struct sunos_link_hash_entry *) | |
696 | NAME(aout,link_hash_newfunc) ((struct bfd_hash_entry *) ret, | |
697 | table, string)); | |
698 | if (ret != NULL) | |
699 | { | |
700 | /* Set local fields. */ | |
701 | ret->dynindx = -1; | |
702 | ret->dynstr_index = -1; | |
703 | ret->got_offset = 0; | |
704 | ret->plt_offset = 0; | |
705 | ret->flags = 0; | |
706 | } | |
707 | ||
708 | return (struct bfd_hash_entry *) ret; | |
709 | } | |
710 | ||
711 | /* Create a SunOS link hash table. */ | |
712 | ||
713 | static struct bfd_link_hash_table * | |
714 | sunos_link_hash_table_create (abfd) | |
715 | bfd *abfd; | |
716 | { | |
717 | struct sunos_link_hash_table *ret; | |
718 | ||
719 | ret = ((struct sunos_link_hash_table *) | |
720 | bfd_alloc (abfd, sizeof (struct sunos_link_hash_table))); | |
721 | if (ret == (struct sunos_link_hash_table *) NULL) | |
722 | return (struct bfd_link_hash_table *) NULL; | |
723 | if (! NAME(aout,link_hash_table_init) (&ret->root, abfd, | |
724 | sunos_link_hash_newfunc)) | |
725 | { | |
726 | bfd_release (abfd, ret); | |
727 | return (struct bfd_link_hash_table *) NULL; | |
728 | } | |
729 | ||
730 | ret->dynobj = NULL; | |
731 | ret->dynamic_sections_created = false; | |
732 | ret->dynamic_sections_needed = false; | |
733 | ret->got_needed = false; | |
734 | ret->dynsymcount = 0; | |
735 | ret->bucketcount = 0; | |
736 | ret->needed = NULL; | |
737 | ret->got_base = 0; | |
738 | ||
739 | return &ret->root.root; | |
740 | } | |
741 | ||
742 | /* Look up an entry in an SunOS link hash table. */ | |
743 | ||
744 | #define sunos_link_hash_lookup(table, string, create, copy, follow) \ | |
745 | ((struct sunos_link_hash_entry *) \ | |
746 | aout_link_hash_lookup (&(table)->root, (string), (create), (copy),\ | |
747 | (follow))) | |
748 | ||
749 | /* Traverse a SunOS link hash table. */ | |
750 | ||
751 | #define sunos_link_hash_traverse(table, func, info) \ | |
752 | (aout_link_hash_traverse \ | |
753 | (&(table)->root, \ | |
754 | (boolean (*) PARAMS ((struct aout_link_hash_entry *, PTR))) (func), \ | |
755 | (info))) | |
756 | ||
757 | /* Get the SunOS link hash table from the info structure. This is | |
758 | just a cast. */ | |
759 | ||
760 | #define sunos_hash_table(p) ((struct sunos_link_hash_table *) ((p)->hash)) | |
761 | ||
762 | static boolean sunos_scan_dynamic_symbol | |
763 | PARAMS ((struct sunos_link_hash_entry *, PTR)); | |
764 | ||
765 | /* Create the dynamic sections needed if we are linking against a | |
766 | dynamic object, or if we are linking PIC compiled code. ABFD is a | |
767 | bfd we can attach the dynamic sections to. The linker script will | |
768 | look for these special sections names and put them in the right | |
769 | place in the output file. See include/aout/sun4.h for more details | |
770 | of the dynamic linking information. */ | |
771 | ||
772 | static boolean | |
773 | sunos_create_dynamic_sections (abfd, info, needed) | |
774 | bfd *abfd; | |
775 | struct bfd_link_info *info; | |
776 | boolean needed; | |
777 | { | |
778 | asection *s; | |
779 | ||
780 | if (! sunos_hash_table (info)->dynamic_sections_created) | |
781 | { | |
782 | flagword flags; | |
783 | ||
784 | sunos_hash_table (info)->dynobj = abfd; | |
785 | ||
786 | flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | |
787 | | SEC_LINKER_CREATED); | |
788 | ||
789 | /* The .dynamic section holds the basic dynamic information: the | |
790 | sun4_dynamic structure, the dynamic debugger information, and | |
791 | the sun4_dynamic_link structure. */ | |
792 | s = bfd_make_section (abfd, ".dynamic"); | |
793 | if (s == NULL | |
794 | || ! bfd_set_section_flags (abfd, s, flags) | |
795 | || ! bfd_set_section_alignment (abfd, s, 2)) | |
796 | return false; | |
797 | ||
798 | /* The .got section holds the global offset table. The address | |
799 | is put in the ld_got field. */ | |
800 | s = bfd_make_section (abfd, ".got"); | |
801 | if (s == NULL | |
802 | || ! bfd_set_section_flags (abfd, s, flags) | |
803 | || ! bfd_set_section_alignment (abfd, s, 2)) | |
804 | return false; | |
805 | ||
806 | /* The .plt section holds the procedure linkage table. The | |
807 | address is put in the ld_plt field. */ | |
808 | s = bfd_make_section (abfd, ".plt"); | |
809 | if (s == NULL | |
810 | || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE) | |
811 | || ! bfd_set_section_alignment (abfd, s, 2)) | |
812 | return false; | |
813 | ||
814 | /* The .dynrel section holds the dynamic relocs. The address is | |
815 | put in the ld_rel field. */ | |
816 | s = bfd_make_section (abfd, ".dynrel"); | |
817 | if (s == NULL | |
818 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
819 | || ! bfd_set_section_alignment (abfd, s, 2)) | |
820 | return false; | |
821 | ||
822 | /* The .hash section holds the dynamic hash table. The address | |
823 | is put in the ld_hash field. */ | |
824 | s = bfd_make_section (abfd, ".hash"); | |
825 | if (s == NULL | |
826 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
827 | || ! bfd_set_section_alignment (abfd, s, 2)) | |
828 | return false; | |
829 | ||
830 | /* The .dynsym section holds the dynamic symbols. The address | |
831 | is put in the ld_stab field. */ | |
832 | s = bfd_make_section (abfd, ".dynsym"); | |
833 | if (s == NULL | |
834 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
835 | || ! bfd_set_section_alignment (abfd, s, 2)) | |
836 | return false; | |
837 | ||
838 | /* The .dynstr section holds the dynamic symbol string table. | |
839 | The address is put in the ld_symbols field. */ | |
840 | s = bfd_make_section (abfd, ".dynstr"); | |
841 | if (s == NULL | |
842 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
843 | || ! bfd_set_section_alignment (abfd, s, 2)) | |
844 | return false; | |
845 | ||
846 | sunos_hash_table (info)->dynamic_sections_created = true; | |
847 | } | |
848 | ||
849 | if ((needed && ! sunos_hash_table (info)->dynamic_sections_needed) | |
850 | || info->shared) | |
851 | { | |
852 | bfd *dynobj; | |
853 | ||
854 | dynobj = sunos_hash_table (info)->dynobj; | |
855 | ||
856 | s = bfd_get_section_by_name (dynobj, ".got"); | |
857 | if (s->_raw_size == 0) | |
858 | s->_raw_size = BYTES_IN_WORD; | |
859 | ||
860 | sunos_hash_table (info)->dynamic_sections_needed = true; | |
861 | sunos_hash_table (info)->got_needed = true; | |
862 | } | |
863 | ||
864 | return true; | |
865 | } | |
866 | ||
867 | /* Add dynamic symbols during a link. This is called by the a.out | |
868 | backend linker for each object it encounters. */ | |
869 | ||
870 | static boolean | |
871 | sunos_add_dynamic_symbols (abfd, info, symsp, sym_countp, stringsp) | |
872 | bfd *abfd; | |
873 | struct bfd_link_info *info; | |
874 | struct external_nlist **symsp; | |
875 | bfd_size_type *sym_countp; | |
876 | char **stringsp; | |
877 | { | |
878 | asection *s; | |
879 | bfd *dynobj; | |
880 | struct sunos_dynamic_info *dinfo; | |
881 | unsigned long need; | |
882 | ||
883 | /* Make sure we have all the required sections. */ | |
884 | if (info->hash->creator == abfd->xvec) | |
885 | { | |
886 | if (! sunos_create_dynamic_sections (abfd, info, | |
887 | (((abfd->flags & DYNAMIC) != 0 | |
888 | && ! info->relocateable) | |
889 | ? true | |
890 | : false))) | |
891 | return false; | |
892 | } | |
893 | ||
894 | /* There is nothing else to do for a normal object. */ | |
895 | if ((abfd->flags & DYNAMIC) == 0) | |
896 | return true; | |
897 | ||
898 | dynobj = sunos_hash_table (info)->dynobj; | |
899 | ||
900 | /* We do not want to include the sections in a dynamic object in the | |
901 | output file. We hack by simply clobbering the list of sections | |
902 | in the BFD. This could be handled more cleanly by, say, a new | |
903 | section flag; the existing SEC_NEVER_LOAD flag is not the one we | |
904 | want, because that one still implies that the section takes up | |
905 | space in the output file. If this is the first object we have | |
906 | seen, we must preserve the dynamic sections we just created. */ | |
907 | if (abfd != dynobj) | |
908 | abfd->sections = NULL; | |
909 | else | |
910 | { | |
911 | asection *s; | |
912 | ||
913 | for (s = abfd->sections; | |
914 | (s->flags & SEC_LINKER_CREATED) == 0; | |
915 | s = s->next) | |
916 | ; | |
917 | abfd->sections = s; | |
918 | } | |
919 | ||
920 | /* The native linker seems to just ignore dynamic objects when -r is | |
921 | used. */ | |
922 | if (info->relocateable) | |
923 | return true; | |
924 | ||
925 | /* There's no hope of using a dynamic object which does not exactly | |
926 | match the format of the output file. */ | |
927 | if (info->hash->creator != abfd->xvec) | |
928 | { | |
929 | bfd_set_error (bfd_error_invalid_operation); | |
930 | return false; | |
931 | } | |
932 | ||
933 | /* Make sure we have a .need and a .rules sections. These are only | |
934 | needed if there really is a dynamic object in the link, so they | |
935 | are not added by sunos_create_dynamic_sections. */ | |
936 | if (bfd_get_section_by_name (dynobj, ".need") == NULL) | |
937 | { | |
938 | /* The .need section holds the list of names of shared objets | |
939 | which must be included at runtime. The address of this | |
940 | section is put in the ld_need field. */ | |
941 | s = bfd_make_section (dynobj, ".need"); | |
942 | if (s == NULL | |
943 | || ! bfd_set_section_flags (dynobj, s, | |
944 | (SEC_ALLOC | |
945 | | SEC_LOAD | |
946 | | SEC_HAS_CONTENTS | |
947 | | SEC_IN_MEMORY | |
948 | | SEC_READONLY)) | |
949 | || ! bfd_set_section_alignment (dynobj, s, 2)) | |
950 | return false; | |
951 | } | |
952 | ||
953 | if (bfd_get_section_by_name (dynobj, ".rules") == NULL) | |
954 | { | |
955 | /* The .rules section holds the path to search for shared | |
956 | objects. The address of this section is put in the ld_rules | |
957 | field. */ | |
958 | s = bfd_make_section (dynobj, ".rules"); | |
959 | if (s == NULL | |
960 | || ! bfd_set_section_flags (dynobj, s, | |
961 | (SEC_ALLOC | |
962 | | SEC_LOAD | |
963 | | SEC_HAS_CONTENTS | |
964 | | SEC_IN_MEMORY | |
965 | | SEC_READONLY)) | |
966 | || ! bfd_set_section_alignment (dynobj, s, 2)) | |
967 | return false; | |
968 | } | |
969 | ||
970 | /* Pick up the dynamic symbols and return them to the caller. */ | |
971 | if (! sunos_slurp_dynamic_symtab (abfd)) | |
972 | return false; | |
973 | ||
974 | dinfo = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd); | |
975 | *symsp = dinfo->dynsym; | |
976 | *sym_countp = dinfo->dynsym_count; | |
977 | *stringsp = dinfo->dynstr; | |
978 | ||
979 | /* Record information about any other objects needed by this one. */ | |
980 | need = dinfo->dyninfo.ld_need; | |
981 | while (need != 0) | |
982 | { | |
983 | bfd_byte buf[16]; | |
984 | unsigned long name, flags; | |
985 | unsigned short major_vno, minor_vno; | |
986 | struct bfd_link_needed_list *needed, **pp; | |
987 | char *namebuf, *p; | |
988 | size_t alc; | |
989 | bfd_byte b; | |
990 | char *namecopy; | |
991 | ||
992 | if (bfd_seek (abfd, need, SEEK_SET) != 0 | |
993 | || bfd_read (buf, 1, 16, abfd) != 16) | |
994 | return false; | |
995 | ||
996 | /* For the format of an ld_need entry, see aout/sun4.h. We | |
997 | should probably define structs for this manipulation. */ | |
998 | ||
999 | name = bfd_get_32 (abfd, buf); | |
1000 | flags = bfd_get_32 (abfd, buf + 4); | |
1001 | major_vno = (unsigned short)bfd_get_16 (abfd, buf + 8); | |
1002 | minor_vno = (unsigned short)bfd_get_16 (abfd, buf + 10); | |
1003 | need = bfd_get_32 (abfd, buf + 12); | |
1004 | ||
1005 | needed = ((struct bfd_link_needed_list *) | |
1006 | bfd_alloc (abfd, sizeof (struct bfd_link_needed_list))); | |
1007 | if (needed == NULL) | |
1008 | return false; | |
1009 | needed->by = abfd; | |
1010 | ||
1011 | /* We return the name as [-l]name[.maj][.min]. */ | |
1012 | alc = 30; | |
1013 | namebuf = (char *) bfd_malloc (alc + 1); | |
1014 | if (namebuf == NULL) | |
1015 | return false; | |
1016 | p = namebuf; | |
1017 | ||
1018 | if ((flags & 0x80000000) != 0) | |
1019 | { | |
1020 | *p++ = '-'; | |
1021 | *p++ = 'l'; | |
1022 | } | |
1023 | if (bfd_seek (abfd, name, SEEK_SET) != 0) | |
1024 | { | |
1025 | free (namebuf); | |
1026 | return false; | |
1027 | } | |
1028 | ||
1029 | do | |
1030 | { | |
1031 | if (bfd_read (&b, 1, 1, abfd) != 1) | |
1032 | { | |
1033 | free (namebuf); | |
1034 | return false; | |
1035 | } | |
1036 | ||
1037 | if ((size_t) (p - namebuf) >= alc) | |
1038 | { | |
1039 | char *n; | |
1040 | ||
1041 | alc *= 2; | |
1042 | n = (char *) bfd_realloc (namebuf, alc + 1); | |
1043 | if (n == NULL) | |
1044 | { | |
1045 | free (namebuf); | |
1046 | return false; | |
1047 | } | |
1048 | p = n + (p - namebuf); | |
1049 | namebuf = n; | |
1050 | } | |
1051 | ||
1052 | *p++ = b; | |
1053 | } | |
1054 | while (b != '\0'); | |
1055 | ||
1056 | if (major_vno == 0) | |
1057 | *p = '\0'; | |
1058 | else | |
1059 | { | |
1060 | char majbuf[30]; | |
1061 | char minbuf[30]; | |
1062 | ||
1063 | sprintf (majbuf, ".%d", major_vno); | |
1064 | if (minor_vno == 0) | |
1065 | minbuf[0] = '\0'; | |
1066 | else | |
1067 | sprintf (minbuf, ".%d", minor_vno); | |
1068 | ||
1069 | if ((p - namebuf) + strlen (majbuf) + strlen (minbuf) >= alc) | |
1070 | { | |
1071 | char *n; | |
1072 | ||
1073 | alc = (p - namebuf) + strlen (majbuf) + strlen (minbuf); | |
1074 | n = (char *) bfd_realloc (namebuf, alc + 1); | |
1075 | if (n == NULL) | |
1076 | { | |
1077 | free (namebuf); | |
1078 | return false; | |
1079 | } | |
1080 | p = n + (p - namebuf); | |
1081 | namebuf = n; | |
1082 | } | |
1083 | ||
1084 | strcpy (p, majbuf); | |
1085 | strcat (p, minbuf); | |
1086 | } | |
1087 | ||
1088 | namecopy = bfd_alloc (abfd, strlen (namebuf) + 1); | |
1089 | if (namecopy == NULL) | |
1090 | { | |
1091 | free (namebuf); | |
1092 | return false; | |
1093 | } | |
1094 | strcpy (namecopy, namebuf); | |
1095 | free (namebuf); | |
1096 | needed->name = namecopy; | |
1097 | ||
1098 | needed->next = NULL; | |
1099 | ||
1100 | for (pp = &sunos_hash_table (info)->needed; | |
1101 | *pp != NULL; | |
1102 | pp = &(*pp)->next) | |
1103 | ; | |
1104 | *pp = needed; | |
1105 | } | |
1106 | ||
1107 | return true; | |
1108 | } | |
1109 | ||
1110 | /* Function to add a single symbol to the linker hash table. This is | |
1111 | a wrapper around _bfd_generic_link_add_one_symbol which handles the | |
1112 | tweaking needed for dynamic linking support. */ | |
1113 | ||
1114 | static boolean | |
1115 | sunos_add_one_symbol (info, abfd, name, flags, section, value, string, | |
1116 | copy, collect, hashp) | |
1117 | struct bfd_link_info *info; | |
1118 | bfd *abfd; | |
1119 | const char *name; | |
1120 | flagword flags; | |
1121 | asection *section; | |
1122 | bfd_vma value; | |
1123 | const char *string; | |
1124 | boolean copy; | |
1125 | boolean collect; | |
1126 | struct bfd_link_hash_entry **hashp; | |
1127 | { | |
1128 | struct sunos_link_hash_entry *h; | |
1129 | int new_flag; | |
1130 | ||
1131 | if ((flags & (BSF_INDIRECT | BSF_WARNING | BSF_CONSTRUCTOR)) != 0 | |
1132 | || ! bfd_is_und_section (section)) | |
1133 | h = sunos_link_hash_lookup (sunos_hash_table (info), name, true, copy, | |
1134 | false); | |
1135 | else | |
1136 | h = ((struct sunos_link_hash_entry *) | |
1137 | bfd_wrapped_link_hash_lookup (abfd, info, name, true, copy, false)); | |
1138 | if (h == NULL) | |
1139 | return false; | |
1140 | ||
1141 | if (hashp != NULL) | |
1142 | *hashp = (struct bfd_link_hash_entry *) h; | |
1143 | ||
1144 | /* Treat a common symbol in a dynamic object as defined in the .bss | |
1145 | section of the dynamic object. We don't want to allocate space | |
1146 | for it in our process image. */ | |
1147 | if ((abfd->flags & DYNAMIC) != 0 | |
1148 | && bfd_is_com_section (section)) | |
1149 | section = obj_bsssec (abfd); | |
1150 | ||
1151 | if (! bfd_is_und_section (section) | |
1152 | && h->root.root.type != bfd_link_hash_new | |
1153 | && h->root.root.type != bfd_link_hash_undefined | |
1154 | && h->root.root.type != bfd_link_hash_defweak) | |
1155 | { | |
1156 | /* We are defining the symbol, and it is already defined. This | |
1157 | is a potential multiple definition error. */ | |
1158 | if ((abfd->flags & DYNAMIC) != 0) | |
1159 | { | |
1160 | /* The definition we are adding is from a dynamic object. | |
1161 | We do not want this new definition to override the | |
1162 | existing definition, so we pretend it is just a | |
1163 | reference. */ | |
1164 | section = bfd_und_section_ptr; | |
1165 | } | |
1166 | else if (h->root.root.type == bfd_link_hash_defined | |
1167 | && h->root.root.u.def.section->owner != NULL | |
1168 | && (h->root.root.u.def.section->owner->flags & DYNAMIC) != 0) | |
1169 | { | |
1170 | /* The existing definition is from a dynamic object. We | |
1171 | want to override it with the definition we just found. | |
1172 | Clobber the existing definition. */ | |
1173 | h->root.root.type = bfd_link_hash_undefined; | |
1174 | h->root.root.u.undef.abfd = h->root.root.u.def.section->owner; | |
1175 | } | |
1176 | else if (h->root.root.type == bfd_link_hash_common | |
1177 | && (h->root.root.u.c.p->section->owner->flags & DYNAMIC) != 0) | |
1178 | { | |
1179 | /* The existing definition is from a dynamic object. We | |
1180 | want to override it with the definition we just found. | |
1181 | Clobber the existing definition. We can't set it to new, | |
1182 | because it is on the undefined list. */ | |
1183 | h->root.root.type = bfd_link_hash_undefined; | |
1184 | h->root.root.u.undef.abfd = h->root.root.u.c.p->section->owner; | |
1185 | } | |
1186 | } | |
1187 | ||
1188 | if ((abfd->flags & DYNAMIC) != 0 | |
1189 | && abfd->xvec == info->hash->creator | |
1190 | && (h->flags & SUNOS_CONSTRUCTOR) != 0) | |
1191 | { | |
1192 | /* The existing symbol is a constructor symbol, and this symbol | |
1193 | is from a dynamic object. A constructor symbol is actually a | |
1194 | definition, although the type will be bfd_link_hash_undefined | |
1195 | at this point. We want to ignore the definition from the | |
1196 | dynamic object. */ | |
1197 | section = bfd_und_section_ptr; | |
1198 | } | |
1199 | else if ((flags & BSF_CONSTRUCTOR) != 0 | |
1200 | && (abfd->flags & DYNAMIC) == 0 | |
1201 | && h->root.root.type == bfd_link_hash_defined | |
1202 | && h->root.root.u.def.section->owner != NULL | |
1203 | && (h->root.root.u.def.section->owner->flags & DYNAMIC) != 0) | |
1204 | { | |
1205 | /* The existing symbol is defined by a dynamic object, and this | |
1206 | is a constructor symbol. As above, we want to force the use | |
1207 | of the constructor symbol from the regular object. */ | |
1208 | h->root.root.type = bfd_link_hash_new; | |
1209 | } | |
1210 | ||
1211 | /* Do the usual procedure for adding a symbol. */ | |
1212 | if (! _bfd_generic_link_add_one_symbol (info, abfd, name, flags, section, | |
1213 | value, string, copy, collect, | |
1214 | hashp)) | |
1215 | return false; | |
1216 | ||
1217 | if (abfd->xvec == info->hash->creator) | |
1218 | { | |
1219 | /* Set a flag in the hash table entry indicating the type of | |
1220 | reference or definition we just found. Keep a count of the | |
1221 | number of dynamic symbols we find. A dynamic symbol is one | |
1222 | which is referenced or defined by both a regular object and a | |
1223 | shared object. */ | |
1224 | if ((abfd->flags & DYNAMIC) == 0) | |
1225 | { | |
1226 | if (bfd_is_und_section (section)) | |
1227 | new_flag = SUNOS_REF_REGULAR; | |
1228 | else | |
1229 | new_flag = SUNOS_DEF_REGULAR; | |
1230 | } | |
1231 | else | |
1232 | { | |
1233 | if (bfd_is_und_section (section)) | |
1234 | new_flag = SUNOS_REF_DYNAMIC; | |
1235 | else | |
1236 | new_flag = SUNOS_DEF_DYNAMIC; | |
1237 | } | |
1238 | h->flags |= new_flag; | |
1239 | ||
1240 | if (h->dynindx == -1 | |
1241 | && (h->flags & (SUNOS_DEF_REGULAR | SUNOS_REF_REGULAR)) != 0) | |
1242 | { | |
1243 | ++sunos_hash_table (info)->dynsymcount; | |
1244 | h->dynindx = -2; | |
1245 | } | |
1246 | ||
1247 | if ((flags & BSF_CONSTRUCTOR) != 0 | |
1248 | && (abfd->flags & DYNAMIC) == 0) | |
1249 | h->flags |= SUNOS_CONSTRUCTOR; | |
1250 | } | |
1251 | ||
1252 | return true; | |
1253 | } | |
1254 | ||
1255 | /* Return the list of objects needed by BFD. */ | |
1256 | ||
1257 | /*ARGSUSED*/ | |
1258 | struct bfd_link_needed_list * | |
1259 | bfd_sunos_get_needed_list (abfd, info) | |
1260 | bfd *abfd; | |
1261 | struct bfd_link_info *info; | |
1262 | { | |
1263 | if (info->hash->creator != &MY(vec)) | |
1264 | return NULL; | |
1265 | return sunos_hash_table (info)->needed; | |
1266 | } | |
1267 | ||
1268 | /* Record an assignment made to a symbol by a linker script. We need | |
1269 | this in case some dynamic object refers to this symbol. */ | |
1270 | ||
1271 | boolean | |
1272 | bfd_sunos_record_link_assignment (output_bfd, info, name) | |
1273 | bfd *output_bfd; | |
1274 | struct bfd_link_info *info; | |
1275 | const char *name; | |
1276 | { | |
1277 | struct sunos_link_hash_entry *h; | |
1278 | ||
1279 | if (output_bfd->xvec != &MY(vec)) | |
1280 | return true; | |
1281 | ||
1282 | /* This is called after we have examined all the input objects. If | |
1283 | the symbol does not exist, it merely means that no object refers | |
1284 | to it, and we can just ignore it at this point. */ | |
1285 | h = sunos_link_hash_lookup (sunos_hash_table (info), name, | |
1286 | false, false, false); | |
1287 | if (h == NULL) | |
1288 | return true; | |
1289 | ||
1290 | /* In a shared library, the __DYNAMIC symbol does not appear in the | |
1291 | dynamic symbol table. */ | |
1292 | if (! info->shared || strcmp (name, "__DYNAMIC") != 0) | |
1293 | { | |
1294 | h->flags |= SUNOS_DEF_REGULAR; | |
1295 | ||
1296 | if (h->dynindx == -1) | |
1297 | { | |
1298 | ++sunos_hash_table (info)->dynsymcount; | |
1299 | h->dynindx = -2; | |
1300 | } | |
1301 | } | |
1302 | ||
1303 | return true; | |
1304 | } | |
1305 | ||
1306 | /* Set up the sizes and contents of the dynamic sections created in | |
1307 | sunos_add_dynamic_symbols. This is called by the SunOS linker | |
1308 | emulation before_allocation routine. We must set the sizes of the | |
1309 | sections before the linker sets the addresses of the various | |
1310 | sections. This unfortunately requires reading all the relocs so | |
1311 | that we can work out which ones need to become dynamic relocs. If | |
1312 | info->keep_memory is true, we keep the relocs in memory; otherwise, | |
1313 | we discard them, and will read them again later. */ | |
1314 | ||
1315 | boolean | |
1316 | bfd_sunos_size_dynamic_sections (output_bfd, info, sdynptr, sneedptr, | |
1317 | srulesptr) | |
1318 | bfd *output_bfd; | |
1319 | struct bfd_link_info *info; | |
1320 | asection **sdynptr; | |
1321 | asection **sneedptr; | |
1322 | asection **srulesptr; | |
1323 | { | |
1324 | bfd *dynobj; | |
1325 | size_t dynsymcount; | |
1326 | struct sunos_link_hash_entry *h; | |
1327 | asection *s; | |
1328 | size_t bucketcount; | |
1329 | size_t hashalloc; | |
1330 | size_t i; | |
1331 | bfd *sub; | |
1332 | ||
1333 | *sdynptr = NULL; | |
1334 | *sneedptr = NULL; | |
1335 | *srulesptr = NULL; | |
1336 | ||
1337 | if (info->relocateable) | |
1338 | return true; | |
1339 | ||
1340 | if (output_bfd->xvec != &MY(vec)) | |
1341 | return true; | |
1342 | ||
1343 | /* Look through all the input BFD's and read their relocs. It would | |
1344 | be better if we didn't have to do this, but there is no other way | |
1345 | to determine the number of dynamic relocs we need, and, more | |
1346 | importantly, there is no other way to know which symbols should | |
1347 | get an entry in the procedure linkage table. */ | |
1348 | for (sub = info->input_bfds; sub != NULL; sub = sub->link_next) | |
1349 | { | |
1350 | if ((sub->flags & DYNAMIC) == 0 | |
1351 | && sub->xvec == output_bfd->xvec) | |
1352 | { | |
1353 | if (! sunos_scan_relocs (info, sub, obj_textsec (sub), | |
1354 | exec_hdr (sub)->a_trsize) | |
1355 | || ! sunos_scan_relocs (info, sub, obj_datasec (sub), | |
1356 | exec_hdr (sub)->a_drsize)) | |
1357 | return false; | |
1358 | } | |
1359 | } | |
1360 | ||
1361 | dynobj = sunos_hash_table (info)->dynobj; | |
1362 | dynsymcount = sunos_hash_table (info)->dynsymcount; | |
1363 | ||
1364 | /* If there were no dynamic objects in the link, and we don't need | |
1365 | to build a global offset table, there is nothing to do here. */ | |
1366 | if (! sunos_hash_table (info)->dynamic_sections_needed | |
1367 | && ! sunos_hash_table (info)->got_needed) | |
1368 | return true; | |
1369 | ||
1370 | /* If __GLOBAL_OFFSET_TABLE_ was mentioned, define it. */ | |
1371 | h = sunos_link_hash_lookup (sunos_hash_table (info), | |
1372 | "__GLOBAL_OFFSET_TABLE_", false, false, false); | |
1373 | if (h != NULL && (h->flags & SUNOS_REF_REGULAR) != 0) | |
1374 | { | |
1375 | h->flags |= SUNOS_DEF_REGULAR; | |
1376 | if (h->dynindx == -1) | |
1377 | { | |
1378 | ++sunos_hash_table (info)->dynsymcount; | |
1379 | h->dynindx = -2; | |
1380 | } | |
1381 | h->root.root.type = bfd_link_hash_defined; | |
1382 | h->root.root.u.def.section = bfd_get_section_by_name (dynobj, ".got"); | |
1383 | ||
1384 | /* If the .got section is more than 0x1000 bytes, we set | |
1385 | __GLOBAL_OFFSET_TABLE_ to be 0x1000 bytes into the section, | |
1386 | so that 13 bit relocations have a greater chance of working. */ | |
1387 | s = bfd_get_section_by_name (dynobj, ".got"); | |
1388 | BFD_ASSERT (s != NULL); | |
1389 | if (s->_raw_size >= 0x1000) | |
1390 | h->root.root.u.def.value = 0x1000; | |
1391 | else | |
1392 | h->root.root.u.def.value = 0; | |
1393 | ||
1394 | sunos_hash_table (info)->got_base = h->root.root.u.def.value; | |
1395 | } | |
1396 | ||
1397 | /* If there are any shared objects in the link, then we need to set | |
1398 | up the dynamic linking information. */ | |
1399 | if (sunos_hash_table (info)->dynamic_sections_needed) | |
1400 | { | |
1401 | *sdynptr = bfd_get_section_by_name (dynobj, ".dynamic"); | |
1402 | ||
1403 | /* The .dynamic section is always the same size. */ | |
1404 | s = *sdynptr; | |
1405 | BFD_ASSERT (s != NULL); | |
1406 | s->_raw_size = (sizeof (struct external_sun4_dynamic) | |
1407 | + EXTERNAL_SUN4_DYNAMIC_DEBUGGER_SIZE | |
1408 | + sizeof (struct external_sun4_dynamic_link)); | |
1409 | ||
1410 | /* Set the size of the .dynsym and .hash sections. We counted | |
1411 | the number of dynamic symbols as we read the input files. We | |
1412 | will build the dynamic symbol table (.dynsym) and the hash | |
1413 | table (.hash) when we build the final symbol table, because | |
1414 | until then we do not know the correct value to give the | |
1415 | symbols. We build the dynamic symbol string table (.dynstr) | |
1416 | in a traversal of the symbol table using | |
1417 | sunos_scan_dynamic_symbol. */ | |
1418 | s = bfd_get_section_by_name (dynobj, ".dynsym"); | |
1419 | BFD_ASSERT (s != NULL); | |
1420 | s->_raw_size = dynsymcount * sizeof (struct external_nlist); | |
1421 | s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size); | |
1422 | if (s->contents == NULL && s->_raw_size != 0) | |
1423 | return false; | |
1424 | ||
1425 | /* The number of buckets is just the number of symbols divided | |
1426 | by four. To compute the final size of the hash table, we | |
1427 | must actually compute the hash table. Normally we need | |
1428 | exactly as many entries in the hash table as there are | |
1429 | dynamic symbols, but if some of the buckets are not used we | |
1430 | will need additional entries. In the worst case, every | |
1431 | symbol will hash to the same bucket, and we will need | |
1432 | BUCKETCOUNT - 1 extra entries. */ | |
1433 | if (dynsymcount >= 4) | |
1434 | bucketcount = dynsymcount / 4; | |
1435 | else if (dynsymcount > 0) | |
1436 | bucketcount = dynsymcount; | |
1437 | else | |
1438 | bucketcount = 1; | |
1439 | s = bfd_get_section_by_name (dynobj, ".hash"); | |
1440 | BFD_ASSERT (s != NULL); | |
1441 | hashalloc = (dynsymcount + bucketcount - 1) * HASH_ENTRY_SIZE; | |
1442 | s->contents = (bfd_byte *) bfd_alloc (dynobj, hashalloc); | |
1443 | if (s->contents == NULL && dynsymcount > 0) | |
1444 | return false; | |
1445 | memset (s->contents, 0, hashalloc); | |
1446 | for (i = 0; i < bucketcount; i++) | |
1447 | PUT_WORD (output_bfd, (bfd_vma) -1, s->contents + i * HASH_ENTRY_SIZE); | |
1448 | s->_raw_size = bucketcount * HASH_ENTRY_SIZE; | |
1449 | ||
1450 | sunos_hash_table (info)->bucketcount = bucketcount; | |
1451 | ||
1452 | /* Scan all the symbols, place them in the dynamic symbol table, | |
1453 | and build the dynamic hash table. We reuse dynsymcount as a | |
1454 | counter for the number of symbols we have added so far. */ | |
1455 | sunos_hash_table (info)->dynsymcount = 0; | |
1456 | sunos_link_hash_traverse (sunos_hash_table (info), | |
1457 | sunos_scan_dynamic_symbol, | |
1458 | (PTR) info); | |
1459 | BFD_ASSERT (sunos_hash_table (info)->dynsymcount == dynsymcount); | |
1460 | ||
1461 | /* The SunOS native linker seems to align the total size of the | |
1462 | symbol strings to a multiple of 8. I don't know if this is | |
1463 | important, but it can't hurt much. */ | |
1464 | s = bfd_get_section_by_name (dynobj, ".dynstr"); | |
1465 | BFD_ASSERT (s != NULL); | |
1466 | if ((s->_raw_size & 7) != 0) | |
1467 | { | |
1468 | bfd_size_type add; | |
1469 | bfd_byte *contents; | |
1470 | ||
1471 | add = 8 - (s->_raw_size & 7); | |
1472 | contents = (bfd_byte *) bfd_realloc (s->contents, | |
1473 | (size_t) (s->_raw_size + add)); | |
1474 | if (contents == NULL) | |
1475 | return false; | |
1476 | memset (contents + s->_raw_size, 0, (size_t) add); | |
1477 | s->contents = contents; | |
1478 | s->_raw_size += add; | |
1479 | } | |
1480 | } | |
1481 | ||
1482 | /* Now that we have worked out the sizes of the procedure linkage | |
1483 | table and the dynamic relocs, allocate storage for them. */ | |
1484 | s = bfd_get_section_by_name (dynobj, ".plt"); | |
1485 | BFD_ASSERT (s != NULL); | |
1486 | if (s->_raw_size != 0) | |
1487 | { | |
1488 | s->contents = (bfd_byte *) bfd_alloc (dynobj, s->_raw_size); | |
1489 | if (s->contents == NULL) | |
1490 | return false; | |
1491 | ||
1492 | /* Fill in the first entry in the table. */ | |
1493 | switch (bfd_get_arch (dynobj)) | |
1494 | { | |
1495 | case bfd_arch_sparc: | |
1496 | memcpy (s->contents, sparc_plt_first_entry, SPARC_PLT_ENTRY_SIZE); | |
1497 | break; | |
1498 | ||
1499 | case bfd_arch_m68k: | |
1500 | memcpy (s->contents, m68k_plt_first_entry, M68K_PLT_ENTRY_SIZE); | |
1501 | break; | |
1502 | ||
1503 | default: | |
1504 | abort (); | |
1505 | } | |
1506 | } | |
1507 | ||
1508 | s = bfd_get_section_by_name (dynobj, ".dynrel"); | |
1509 | if (s->_raw_size != 0) | |
1510 | { | |
1511 | s->contents = (bfd_byte *) bfd_alloc (dynobj, s->_raw_size); | |
1512 | if (s->contents == NULL) | |
1513 | return false; | |
1514 | } | |
1515 | /* We use the reloc_count field to keep track of how many of the | |
1516 | relocs we have output so far. */ | |
1517 | s->reloc_count = 0; | |
1518 | ||
1519 | /* Make space for the global offset table. */ | |
1520 | s = bfd_get_section_by_name (dynobj, ".got"); | |
1521 | s->contents = (bfd_byte *) bfd_alloc (dynobj, s->_raw_size); | |
1522 | if (s->contents == NULL) | |
1523 | return false; | |
1524 | ||
1525 | *sneedptr = bfd_get_section_by_name (dynobj, ".need"); | |
1526 | *srulesptr = bfd_get_section_by_name (dynobj, ".rules"); | |
1527 | ||
1528 | return true; | |
1529 | } | |
1530 | ||
1531 | /* Scan the relocs for an input section. */ | |
1532 | ||
1533 | static boolean | |
1534 | sunos_scan_relocs (info, abfd, sec, rel_size) | |
1535 | struct bfd_link_info *info; | |
1536 | bfd *abfd; | |
1537 | asection *sec; | |
1538 | bfd_size_type rel_size; | |
1539 | { | |
1540 | PTR relocs; | |
1541 | PTR free_relocs = NULL; | |
1542 | ||
1543 | if (rel_size == 0) | |
1544 | return true; | |
1545 | ||
1546 | if (! info->keep_memory) | |
1547 | relocs = free_relocs = bfd_malloc ((size_t) rel_size); | |
1548 | else | |
1549 | { | |
1550 | struct aout_section_data_struct *n; | |
1551 | ||
1552 | n = ((struct aout_section_data_struct *) | |
1553 | bfd_alloc (abfd, sizeof (struct aout_section_data_struct))); | |
1554 | if (n == NULL) | |
1555 | relocs = NULL; | |
1556 | else | |
1557 | { | |
1558 | set_aout_section_data (sec, n); | |
1559 | relocs = bfd_malloc ((size_t) rel_size); | |
1560 | aout_section_data (sec)->relocs = relocs; | |
1561 | } | |
1562 | } | |
1563 | if (relocs == NULL) | |
1564 | return false; | |
1565 | ||
1566 | if (bfd_seek (abfd, sec->rel_filepos, SEEK_SET) != 0 | |
1567 | || bfd_read (relocs, 1, rel_size, abfd) != rel_size) | |
1568 | goto error_return; | |
1569 | ||
1570 | if (obj_reloc_entry_size (abfd) == RELOC_STD_SIZE) | |
1571 | { | |
1572 | if (! sunos_scan_std_relocs (info, abfd, sec, | |
1573 | (struct reloc_std_external *) relocs, | |
1574 | rel_size)) | |
1575 | goto error_return; | |
1576 | } | |
1577 | else | |
1578 | { | |
1579 | if (! sunos_scan_ext_relocs (info, abfd, sec, | |
1580 | (struct reloc_ext_external *) relocs, | |
1581 | rel_size)) | |
1582 | goto error_return; | |
1583 | } | |
1584 | ||
1585 | if (free_relocs != NULL) | |
1586 | free (free_relocs); | |
1587 | ||
1588 | return true; | |
1589 | ||
1590 | error_return: | |
1591 | if (free_relocs != NULL) | |
1592 | free (free_relocs); | |
1593 | return false; | |
1594 | } | |
1595 | ||
1596 | /* Scan the relocs for an input section using standard relocs. We | |
1597 | need to figure out what to do for each reloc against a dynamic | |
1598 | symbol. If the symbol is in the .text section, an entry is made in | |
1599 | the procedure linkage table. Note that this will do the wrong | |
1600 | thing if the symbol is actually data; I don't think the Sun 3 | |
1601 | native linker handles this case correctly either. If the symbol is | |
1602 | not in the .text section, we must preserve the reloc as a dynamic | |
1603 | reloc. FIXME: We should also handle the PIC relocs here by | |
1604 | building global offset table entries. */ | |
1605 | ||
1606 | static boolean | |
1607 | sunos_scan_std_relocs (info, abfd, sec, relocs, rel_size) | |
1608 | struct bfd_link_info *info; | |
1609 | bfd *abfd; | |
1610 | asection *sec; | |
1611 | const struct reloc_std_external *relocs; | |
1612 | bfd_size_type rel_size; | |
1613 | { | |
1614 | bfd *dynobj; | |
1615 | asection *splt = NULL; | |
1616 | asection *srel = NULL; | |
1617 | struct sunos_link_hash_entry **sym_hashes; | |
1618 | const struct reloc_std_external *rel, *relend; | |
1619 | ||
1620 | /* We only know how to handle m68k plt entries. */ | |
1621 | if (bfd_get_arch (abfd) != bfd_arch_m68k) | |
1622 | { | |
1623 | bfd_set_error (bfd_error_invalid_target); | |
1624 | return false; | |
1625 | } | |
1626 | ||
1627 | dynobj = NULL; | |
1628 | ||
1629 | sym_hashes = (struct sunos_link_hash_entry **) obj_aout_sym_hashes (abfd); | |
1630 | ||
1631 | relend = relocs + rel_size / RELOC_STD_SIZE; | |
1632 | for (rel = relocs; rel < relend; rel++) | |
1633 | { | |
1634 | int r_index; | |
1635 | struct sunos_link_hash_entry *h; | |
1636 | ||
1637 | /* We only want relocs against external symbols. */ | |
1638 | if (bfd_header_big_endian (abfd)) | |
1639 | { | |
1640 | if ((rel->r_type[0] & RELOC_STD_BITS_EXTERN_BIG) == 0) | |
1641 | continue; | |
1642 | } | |
1643 | else | |
1644 | { | |
1645 | if ((rel->r_type[0] & RELOC_STD_BITS_EXTERN_LITTLE) == 0) | |
1646 | continue; | |
1647 | } | |
1648 | ||
1649 | /* Get the symbol index. */ | |
1650 | if (bfd_header_big_endian (abfd)) | |
1651 | r_index = ((rel->r_index[0] << 16) | |
1652 | | (rel->r_index[1] << 8) | |
1653 | | rel->r_index[2]); | |
1654 | else | |
1655 | r_index = ((rel->r_index[2] << 16) | |
1656 | | (rel->r_index[1] << 8) | |
1657 | | rel->r_index[0]); | |
1658 | ||
1659 | /* Get the hash table entry. */ | |
1660 | h = sym_hashes[r_index]; | |
1661 | if (h == NULL) | |
1662 | { | |
1663 | /* This should not normally happen, but it will in any case | |
1664 | be caught in the relocation phase. */ | |
1665 | continue; | |
1666 | } | |
1667 | ||
1668 | /* At this point common symbols have already been allocated, so | |
1669 | we don't have to worry about them. We need to consider that | |
1670 | we may have already seen this symbol and marked it undefined; | |
1671 | if the symbol is really undefined, then SUNOS_DEF_DYNAMIC | |
1672 | will be zero. */ | |
1673 | if (h->root.root.type != bfd_link_hash_defined | |
1674 | && h->root.root.type != bfd_link_hash_defweak | |
1675 | && h->root.root.type != bfd_link_hash_undefined) | |
1676 | continue; | |
1677 | ||
1678 | if ((h->flags & SUNOS_DEF_DYNAMIC) == 0 | |
1679 | || (h->flags & SUNOS_DEF_REGULAR) != 0) | |
1680 | continue; | |
1681 | ||
1682 | if (dynobj == NULL) | |
1683 | { | |
1684 | asection *sgot; | |
1685 | ||
1686 | if (! sunos_create_dynamic_sections (abfd, info, false)) | |
1687 | return false; | |
1688 | dynobj = sunos_hash_table (info)->dynobj; | |
1689 | splt = bfd_get_section_by_name (dynobj, ".plt"); | |
1690 | srel = bfd_get_section_by_name (dynobj, ".dynrel"); | |
1691 | BFD_ASSERT (splt != NULL && srel != NULL); | |
1692 | ||
1693 | sgot = bfd_get_section_by_name (dynobj, ".got"); | |
1694 | BFD_ASSERT (sgot != NULL); | |
1695 | if (sgot->_raw_size == 0) | |
1696 | sgot->_raw_size = BYTES_IN_WORD; | |
1697 | sunos_hash_table (info)->got_needed = true; | |
1698 | } | |
1699 | ||
1700 | BFD_ASSERT ((h->flags & SUNOS_REF_REGULAR) != 0); | |
1701 | BFD_ASSERT (h->plt_offset != 0 | |
1702 | || ((h->root.root.type == bfd_link_hash_defined | |
1703 | || h->root.root.type == bfd_link_hash_defweak) | |
1704 | ? (h->root.root.u.def.section->owner->flags | |
1705 | & DYNAMIC) != 0 | |
1706 | : (h->root.root.u.undef.abfd->flags & DYNAMIC) != 0)); | |
1707 | ||
1708 | /* This reloc is against a symbol defined only by a dynamic | |
1709 | object. */ | |
1710 | ||
1711 | if (h->root.root.type == bfd_link_hash_undefined) | |
1712 | { | |
1713 | /* Presumably this symbol was marked as being undefined by | |
1714 | an earlier reloc. */ | |
1715 | srel->_raw_size += RELOC_STD_SIZE; | |
1716 | } | |
1717 | else if ((h->root.root.u.def.section->flags & SEC_CODE) == 0) | |
1718 | { | |
1719 | bfd *sub; | |
1720 | ||
1721 | /* This reloc is not in the .text section. It must be | |
1722 | copied into the dynamic relocs. We mark the symbol as | |
1723 | being undefined. */ | |
1724 | srel->_raw_size += RELOC_STD_SIZE; | |
1725 | sub = h->root.root.u.def.section->owner; | |
1726 | h->root.root.type = bfd_link_hash_undefined; | |
1727 | h->root.root.u.undef.abfd = sub; | |
1728 | } | |
1729 | else | |
1730 | { | |
1731 | /* This symbol is in the .text section. We must give it an | |
1732 | entry in the procedure linkage table, if we have not | |
1733 | already done so. We change the definition of the symbol | |
1734 | to the .plt section; this will cause relocs against it to | |
1735 | be handled correctly. */ | |
1736 | if (h->plt_offset == 0) | |
1737 | { | |
1738 | if (splt->_raw_size == 0) | |
1739 | splt->_raw_size = M68K_PLT_ENTRY_SIZE; | |
1740 | h->plt_offset = splt->_raw_size; | |
1741 | ||
1742 | if ((h->flags & SUNOS_DEF_REGULAR) == 0) | |
1743 | { | |
1744 | h->root.root.u.def.section = splt; | |
1745 | h->root.root.u.def.value = splt->_raw_size; | |
1746 | } | |
1747 | ||
1748 | splt->_raw_size += M68K_PLT_ENTRY_SIZE; | |
1749 | ||
1750 | /* We may also need a dynamic reloc entry. */ | |
1751 | if ((h->flags & SUNOS_DEF_REGULAR) == 0) | |
1752 | srel->_raw_size += RELOC_STD_SIZE; | |
1753 | } | |
1754 | } | |
1755 | } | |
1756 | ||
1757 | return true; | |
1758 | } | |
1759 | ||
1760 | /* Scan the relocs for an input section using extended relocs. We | |
1761 | need to figure out what to do for each reloc against a dynamic | |
1762 | symbol. If the reloc is a WDISP30, and the symbol is in the .text | |
1763 | section, an entry is made in the procedure linkage table. | |
1764 | Otherwise, we must preserve the reloc as a dynamic reloc. */ | |
1765 | ||
1766 | static boolean | |
1767 | sunos_scan_ext_relocs (info, abfd, sec, relocs, rel_size) | |
1768 | struct bfd_link_info *info; | |
1769 | bfd *abfd; | |
1770 | asection *sec; | |
1771 | const struct reloc_ext_external *relocs; | |
1772 | bfd_size_type rel_size; | |
1773 | { | |
1774 | bfd *dynobj; | |
1775 | struct sunos_link_hash_entry **sym_hashes; | |
1776 | const struct reloc_ext_external *rel, *relend; | |
1777 | asection *splt = NULL; | |
1778 | asection *sgot = NULL; | |
1779 | asection *srel = NULL; | |
1780 | ||
1781 | /* We only know how to handle SPARC plt entries. */ | |
1782 | if (bfd_get_arch (abfd) != bfd_arch_sparc) | |
1783 | { | |
1784 | bfd_set_error (bfd_error_invalid_target); | |
1785 | return false; | |
1786 | } | |
1787 | ||
1788 | dynobj = NULL; | |
1789 | ||
1790 | sym_hashes = (struct sunos_link_hash_entry **) obj_aout_sym_hashes (abfd); | |
1791 | ||
1792 | relend = relocs + rel_size / RELOC_EXT_SIZE; | |
1793 | for (rel = relocs; rel < relend; rel++) | |
1794 | { | |
1795 | unsigned int r_index; | |
1796 | int r_extern; | |
1797 | int r_type; | |
1798 | struct sunos_link_hash_entry *h = NULL; | |
1799 | ||
1800 | /* Swap in the reloc information. */ | |
1801 | if (bfd_header_big_endian (abfd)) | |
1802 | { | |
1803 | r_index = ((rel->r_index[0] << 16) | |
1804 | | (rel->r_index[1] << 8) | |
1805 | | rel->r_index[2]); | |
1806 | r_extern = (0 != (rel->r_type[0] & RELOC_EXT_BITS_EXTERN_BIG)); | |
1807 | r_type = ((rel->r_type[0] & RELOC_EXT_BITS_TYPE_BIG) | |
1808 | >> RELOC_EXT_BITS_TYPE_SH_BIG); | |
1809 | } | |
1810 | else | |
1811 | { | |
1812 | r_index = ((rel->r_index[2] << 16) | |
1813 | | (rel->r_index[1] << 8) | |
1814 | | rel->r_index[0]); | |
1815 | r_extern = (0 != (rel->r_type[0] & RELOC_EXT_BITS_EXTERN_LITTLE)); | |
1816 | r_type = ((rel->r_type[0] & RELOC_EXT_BITS_TYPE_LITTLE) | |
1817 | >> RELOC_EXT_BITS_TYPE_SH_LITTLE); | |
1818 | } | |
1819 | ||
1820 | if (r_extern) | |
1821 | { | |
1822 | h = sym_hashes[r_index]; | |
1823 | if (h == NULL) | |
1824 | { | |
1825 | /* This should not normally happen, but it will in any | |
1826 | case be caught in the relocation phase. */ | |
1827 | continue; | |
1828 | } | |
1829 | } | |
1830 | ||
1831 | /* If this is a base relative reloc, we need to make an entry in | |
1832 | the .got section. */ | |
1833 | if (r_type == RELOC_BASE10 | |
1834 | || r_type == RELOC_BASE13 | |
1835 | || r_type == RELOC_BASE22) | |
1836 | { | |
1837 | if (dynobj == NULL) | |
1838 | { | |
1839 | if (! sunos_create_dynamic_sections (abfd, info, false)) | |
1840 | return false; | |
1841 | dynobj = sunos_hash_table (info)->dynobj; | |
1842 | splt = bfd_get_section_by_name (dynobj, ".plt"); | |
1843 | sgot = bfd_get_section_by_name (dynobj, ".got"); | |
1844 | srel = bfd_get_section_by_name (dynobj, ".dynrel"); | |
1845 | BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL); | |
1846 | ||
1847 | /* Make sure we have an initial entry in the .got table. */ | |
1848 | if (sgot->_raw_size == 0) | |
1849 | sgot->_raw_size = BYTES_IN_WORD; | |
1850 | sunos_hash_table (info)->got_needed = true; | |
1851 | } | |
1852 | ||
1853 | if (r_extern) | |
1854 | { | |
1855 | if (h->got_offset != 0) | |
1856 | continue; | |
1857 | ||
1858 | h->got_offset = sgot->_raw_size; | |
1859 | } | |
1860 | else | |
1861 | { | |
1862 | if (r_index >= bfd_get_symcount (abfd)) | |
1863 | { | |
1864 | /* This is abnormal, but should be caught in the | |
1865 | relocation phase. */ | |
1866 | continue; | |
1867 | } | |
1868 | ||
1869 | if (adata (abfd).local_got_offsets == NULL) | |
1870 | { | |
1871 | adata (abfd).local_got_offsets = | |
1872 | (bfd_vma *) bfd_zalloc (abfd, | |
1873 | (bfd_get_symcount (abfd) | |
1874 | * sizeof (bfd_vma))); | |
1875 | if (adata (abfd).local_got_offsets == NULL) | |
1876 | return false; | |
1877 | } | |
1878 | ||
1879 | if (adata (abfd).local_got_offsets[r_index] != 0) | |
1880 | continue; | |
1881 | ||
1882 | adata (abfd).local_got_offsets[r_index] = sgot->_raw_size; | |
1883 | } | |
1884 | ||
1885 | sgot->_raw_size += BYTES_IN_WORD; | |
1886 | ||
1887 | /* If we are making a shared library, or if the symbol is | |
1888 | defined by a dynamic object, we will need a dynamic reloc | |
1889 | entry. */ | |
1890 | if (info->shared | |
1891 | || (h != NULL | |
1892 | && (h->flags & SUNOS_DEF_DYNAMIC) != 0 | |
1893 | && (h->flags & SUNOS_DEF_REGULAR) == 0)) | |
1894 | srel->_raw_size += RELOC_EXT_SIZE; | |
1895 | ||
1896 | continue; | |
1897 | } | |
1898 | ||
1899 | /* Otherwise, we are only interested in relocs against symbols | |
1900 | defined in dynamic objects but not in regular objects. We | |
1901 | only need to consider relocs against external symbols. */ | |
1902 | if (! r_extern) | |
1903 | { | |
1904 | /* But, if we are creating a shared library, we need to | |
1905 | generate an absolute reloc. */ | |
1906 | if (info->shared) | |
1907 | { | |
1908 | if (dynobj == NULL) | |
1909 | { | |
1910 | if (! sunos_create_dynamic_sections (abfd, info, true)) | |
1911 | return false; | |
1912 | dynobj = sunos_hash_table (info)->dynobj; | |
1913 | splt = bfd_get_section_by_name (dynobj, ".plt"); | |
1914 | sgot = bfd_get_section_by_name (dynobj, ".got"); | |
1915 | srel = bfd_get_section_by_name (dynobj, ".dynrel"); | |
1916 | BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL); | |
1917 | } | |
1918 | ||
1919 | srel->_raw_size += RELOC_EXT_SIZE; | |
1920 | } | |
1921 | ||
1922 | continue; | |
1923 | } | |
1924 | ||
1925 | /* At this point common symbols have already been allocated, so | |
1926 | we don't have to worry about them. We need to consider that | |
1927 | we may have already seen this symbol and marked it undefined; | |
1928 | if the symbol is really undefined, then SUNOS_DEF_DYNAMIC | |
1929 | will be zero. */ | |
1930 | if (h->root.root.type != bfd_link_hash_defined | |
1931 | && h->root.root.type != bfd_link_hash_defweak | |
1932 | && h->root.root.type != bfd_link_hash_undefined) | |
1933 | continue; | |
1934 | ||
1935 | if (r_type != RELOC_JMP_TBL | |
1936 | && ! info->shared | |
1937 | && ((h->flags & SUNOS_DEF_DYNAMIC) == 0 | |
1938 | || (h->flags & SUNOS_DEF_REGULAR) != 0)) | |
1939 | continue; | |
1940 | ||
1941 | if (r_type == RELOC_JMP_TBL | |
1942 | && ! info->shared | |
1943 | && (h->flags & SUNOS_DEF_DYNAMIC) == 0 | |
1944 | && (h->flags & SUNOS_DEF_REGULAR) == 0) | |
1945 | { | |
1946 | /* This symbol is apparently undefined. Don't do anything | |
1947 | here; just let the relocation routine report an undefined | |
1948 | symbol. */ | |
1949 | continue; | |
1950 | } | |
1951 | ||
1952 | if (strcmp (h->root.root.root.string, "__GLOBAL_OFFSET_TABLE_") == 0) | |
1953 | continue; | |
1954 | ||
1955 | if (dynobj == NULL) | |
1956 | { | |
1957 | if (! sunos_create_dynamic_sections (abfd, info, false)) | |
1958 | return false; | |
1959 | dynobj = sunos_hash_table (info)->dynobj; | |
1960 | splt = bfd_get_section_by_name (dynobj, ".plt"); | |
1961 | sgot = bfd_get_section_by_name (dynobj, ".got"); | |
1962 | srel = bfd_get_section_by_name (dynobj, ".dynrel"); | |
1963 | BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL); | |
1964 | ||
1965 | /* Make sure we have an initial entry in the .got table. */ | |
1966 | if (sgot->_raw_size == 0) | |
1967 | sgot->_raw_size = BYTES_IN_WORD; | |
1968 | sunos_hash_table (info)->got_needed = true; | |
1969 | } | |
1970 | ||
1971 | BFD_ASSERT (r_type == RELOC_JMP_TBL | |
1972 | || info->shared | |
1973 | || (h->flags & SUNOS_REF_REGULAR) != 0); | |
1974 | BFD_ASSERT (r_type == RELOC_JMP_TBL | |
1975 | || info->shared | |
1976 | || h->plt_offset != 0 | |
1977 | || ((h->root.root.type == bfd_link_hash_defined | |
1978 | || h->root.root.type == bfd_link_hash_defweak) | |
1979 | ? (h->root.root.u.def.section->owner->flags | |
1980 | & DYNAMIC) != 0 | |
1981 | : (h->root.root.u.undef.abfd->flags & DYNAMIC) != 0)); | |
1982 | ||
1983 | /* This reloc is against a symbol defined only by a dynamic | |
1984 | object, or it is a jump table reloc from PIC compiled code. */ | |
1985 | ||
1986 | if (r_type != RELOC_JMP_TBL | |
1987 | && h->root.root.type == bfd_link_hash_undefined) | |
1988 | { | |
1989 | /* Presumably this symbol was marked as being undefined by | |
1990 | an earlier reloc. */ | |
1991 | srel->_raw_size += RELOC_EXT_SIZE; | |
1992 | } | |
1993 | else if (r_type != RELOC_JMP_TBL | |
1994 | && (h->root.root.u.def.section->flags & SEC_CODE) == 0) | |
1995 | { | |
1996 | bfd *sub; | |
1997 | ||
1998 | /* This reloc is not in the .text section. It must be | |
1999 | copied into the dynamic relocs. We mark the symbol as | |
2000 | being undefined. */ | |
2001 | srel->_raw_size += RELOC_EXT_SIZE; | |
2002 | if ((h->flags & SUNOS_DEF_REGULAR) == 0) | |
2003 | { | |
2004 | sub = h->root.root.u.def.section->owner; | |
2005 | h->root.root.type = bfd_link_hash_undefined; | |
2006 | h->root.root.u.undef.abfd = sub; | |
2007 | } | |
2008 | } | |
2009 | else | |
2010 | { | |
2011 | /* This symbol is in the .text section. We must give it an | |
2012 | entry in the procedure linkage table, if we have not | |
2013 | already done so. We change the definition of the symbol | |
2014 | to the .plt section; this will cause relocs against it to | |
2015 | be handled correctly. */ | |
2016 | if (h->plt_offset == 0) | |
2017 | { | |
2018 | if (splt->_raw_size == 0) | |
2019 | splt->_raw_size = SPARC_PLT_ENTRY_SIZE; | |
2020 | h->plt_offset = splt->_raw_size; | |
2021 | ||
2022 | if ((h->flags & SUNOS_DEF_REGULAR) == 0) | |
2023 | { | |
2024 | if (h->root.root.type == bfd_link_hash_undefined) | |
2025 | h->root.root.type = bfd_link_hash_defined; | |
2026 | h->root.root.u.def.section = splt; | |
2027 | h->root.root.u.def.value = splt->_raw_size; | |
2028 | } | |
2029 | ||
2030 | splt->_raw_size += SPARC_PLT_ENTRY_SIZE; | |
2031 | ||
2032 | /* We will also need a dynamic reloc entry, unless this | |
2033 | is a JMP_TBL reloc produced by linking PIC compiled | |
2034 | code, and we are not making a shared library. */ | |
2035 | if (info->shared || (h->flags & SUNOS_DEF_REGULAR) == 0) | |
2036 | srel->_raw_size += RELOC_EXT_SIZE; | |
2037 | } | |
2038 | ||
2039 | /* If we are creating a shared library, we need to copy over | |
2040 | any reloc other than a jump table reloc. */ | |
2041 | if (info->shared && r_type != RELOC_JMP_TBL) | |
2042 | srel->_raw_size += RELOC_EXT_SIZE; | |
2043 | } | |
2044 | } | |
2045 | ||
2046 | return true; | |
2047 | } | |
2048 | ||
2049 | /* Build the hash table of dynamic symbols, and to mark as written all | |
2050 | symbols from dynamic objects which we do not plan to write out. */ | |
2051 | ||
2052 | static boolean | |
2053 | sunos_scan_dynamic_symbol (h, data) | |
2054 | struct sunos_link_hash_entry *h; | |
2055 | PTR data; | |
2056 | { | |
2057 | struct bfd_link_info *info = (struct bfd_link_info *) data; | |
2058 | ||
2059 | /* Set the written flag for symbols we do not want to write out as | |
2060 | part of the regular symbol table. This is all symbols which are | |
2061 | not defined in a regular object file. For some reason symbols | |
2062 | which are referenced by a regular object and defined by a dynamic | |
2063 | object do not seem to show up in the regular symbol table. It is | |
2064 | possible for a symbol to have only SUNOS_REF_REGULAR set here, it | |
2065 | is an undefined symbol which was turned into a common symbol | |
2066 | because it was found in an archive object which was not included | |
2067 | in the link. */ | |
2068 | if ((h->flags & SUNOS_DEF_REGULAR) == 0 | |
2069 | && (h->flags & SUNOS_DEF_DYNAMIC) != 0 | |
2070 | && strcmp (h->root.root.root.string, "__DYNAMIC") != 0) | |
2071 | h->root.written = true; | |
2072 | ||
2073 | /* If this symbol is defined by a dynamic object and referenced by a | |
2074 | regular object, see whether we gave it a reasonable value while | |
2075 | scanning the relocs. */ | |
2076 | ||
2077 | if ((h->flags & SUNOS_DEF_REGULAR) == 0 | |
2078 | && (h->flags & SUNOS_DEF_DYNAMIC) != 0 | |
2079 | && (h->flags & SUNOS_REF_REGULAR) != 0) | |
2080 | { | |
2081 | if ((h->root.root.type == bfd_link_hash_defined | |
2082 | || h->root.root.type == bfd_link_hash_defweak) | |
2083 | && ((h->root.root.u.def.section->owner->flags & DYNAMIC) != 0) | |
2084 | && h->root.root.u.def.section->output_section == NULL) | |
2085 | { | |
2086 | bfd *sub; | |
2087 | ||
2088 | /* This symbol is currently defined in a dynamic section | |
2089 | which is not being put into the output file. This | |
2090 | implies that there is no reloc against the symbol. I'm | |
2091 | not sure why this case would ever occur. In any case, we | |
2092 | change the symbol to be undefined. */ | |
2093 | sub = h->root.root.u.def.section->owner; | |
2094 | h->root.root.type = bfd_link_hash_undefined; | |
2095 | h->root.root.u.undef.abfd = sub; | |
2096 | } | |
2097 | } | |
2098 | ||
2099 | /* If this symbol is defined or referenced by a regular file, add it | |
2100 | to the dynamic symbols. */ | |
2101 | if ((h->flags & (SUNOS_DEF_REGULAR | SUNOS_REF_REGULAR)) != 0) | |
2102 | { | |
2103 | asection *s; | |
2104 | size_t len; | |
2105 | bfd_byte *contents; | |
2106 | unsigned char *name; | |
2107 | unsigned long hash; | |
2108 | bfd *dynobj; | |
2109 | ||
2110 | BFD_ASSERT (h->dynindx == -2); | |
2111 | ||
2112 | dynobj = sunos_hash_table (info)->dynobj; | |
2113 | ||
2114 | h->dynindx = sunos_hash_table (info)->dynsymcount; | |
2115 | ++sunos_hash_table (info)->dynsymcount; | |
2116 | ||
2117 | len = strlen (h->root.root.root.string); | |
2118 | ||
2119 | /* We don't bother to construct a BFD hash table for the strings | |
2120 | which are the names of the dynamic symbols. Using a hash | |
2121 | table for the regular symbols is beneficial, because the | |
2122 | regular symbols includes the debugging symbols, which have | |
2123 | long names and are often duplicated in several object files. | |
2124 | There are no debugging symbols in the dynamic symbols. */ | |
2125 | s = bfd_get_section_by_name (dynobj, ".dynstr"); | |
2126 | BFD_ASSERT (s != NULL); | |
2127 | contents = (bfd_byte *) bfd_realloc (s->contents, | |
2128 | s->_raw_size + len + 1); | |
2129 | if (contents == NULL) | |
2130 | return false; | |
2131 | s->contents = contents; | |
2132 | ||
2133 | h->dynstr_index = s->_raw_size; | |
2134 | strcpy ((char *) contents + s->_raw_size, h->root.root.root.string); | |
2135 | s->_raw_size += len + 1; | |
2136 | ||
2137 | /* Add it to the dynamic hash table. */ | |
2138 | name = (unsigned char *) h->root.root.root.string; | |
2139 | hash = 0; | |
2140 | while (*name != '\0') | |
2141 | hash = (hash << 1) + *name++; | |
2142 | hash &= 0x7fffffff; | |
2143 | hash %= sunos_hash_table (info)->bucketcount; | |
2144 | ||
2145 | s = bfd_get_section_by_name (dynobj, ".hash"); | |
2146 | BFD_ASSERT (s != NULL); | |
2147 | ||
2148 | if (GET_SWORD (dynobj, s->contents + hash * HASH_ENTRY_SIZE) == -1) | |
2149 | PUT_WORD (dynobj, h->dynindx, s->contents + hash * HASH_ENTRY_SIZE); | |
2150 | else | |
2151 | { | |
2152 | bfd_vma next; | |
2153 | ||
2154 | next = GET_WORD (dynobj, | |
2155 | (s->contents | |
2156 | + hash * HASH_ENTRY_SIZE | |
2157 | + BYTES_IN_WORD)); | |
2158 | PUT_WORD (dynobj, s->_raw_size / HASH_ENTRY_SIZE, | |
2159 | s->contents + hash * HASH_ENTRY_SIZE + BYTES_IN_WORD); | |
2160 | PUT_WORD (dynobj, h->dynindx, s->contents + s->_raw_size); | |
2161 | PUT_WORD (dynobj, next, s->contents + s->_raw_size + BYTES_IN_WORD); | |
2162 | s->_raw_size += HASH_ENTRY_SIZE; | |
2163 | } | |
2164 | } | |
2165 | ||
2166 | return true; | |
2167 | } | |
2168 | ||
2169 | /* Link a dynamic object. We actually don't have anything to do at | |
2170 | this point. This entry point exists to prevent the regular linker | |
2171 | code from doing anything with the object. */ | |
2172 | ||
2173 | /*ARGSUSED*/ | |
2174 | static boolean | |
2175 | sunos_link_dynamic_object (info, abfd) | |
2176 | struct bfd_link_info *info; | |
2177 | bfd *abfd; | |
2178 | { | |
2179 | return true; | |
2180 | } | |
2181 | ||
2182 | /* Write out a dynamic symbol. This is called by the final traversal | |
2183 | over the symbol table. */ | |
2184 | ||
2185 | static boolean | |
2186 | sunos_write_dynamic_symbol (output_bfd, info, harg) | |
2187 | bfd *output_bfd; | |
2188 | struct bfd_link_info *info; | |
2189 | struct aout_link_hash_entry *harg; | |
2190 | { | |
2191 | struct sunos_link_hash_entry *h = (struct sunos_link_hash_entry *) harg; | |
2192 | int type; | |
2193 | bfd_vma val; | |
2194 | asection *s; | |
2195 | struct external_nlist *outsym; | |
2196 | ||
2197 | /* If this symbol is in the procedure linkage table, fill in the | |
2198 | table entry. */ | |
2199 | if (h->plt_offset != 0) | |
2200 | { | |
2201 | bfd *dynobj; | |
2202 | asection *splt; | |
2203 | bfd_byte *p; | |
2204 | asection *s; | |
2205 | bfd_vma r_address; | |
2206 | ||
2207 | dynobj = sunos_hash_table (info)->dynobj; | |
2208 | splt = bfd_get_section_by_name (dynobj, ".plt"); | |
2209 | p = splt->contents + h->plt_offset; | |
2210 | ||
2211 | s = bfd_get_section_by_name (dynobj, ".dynrel"); | |
2212 | ||
2213 | r_address = (splt->output_section->vma | |
2214 | + splt->output_offset | |
2215 | + h->plt_offset); | |
2216 | ||
2217 | switch (bfd_get_arch (output_bfd)) | |
2218 | { | |
2219 | case bfd_arch_sparc: | |
2220 | if (info->shared || (h->flags & SUNOS_DEF_REGULAR) == 0) | |
2221 | { | |
2222 | bfd_put_32 (output_bfd, SPARC_PLT_ENTRY_WORD0, p); | |
2223 | bfd_put_32 (output_bfd, | |
2224 | (SPARC_PLT_ENTRY_WORD1 | |
2225 | + (((- (h->plt_offset + 4) >> 2) | |
2226 | & 0x3fffffff))), | |
2227 | p + 4); | |
2228 | bfd_put_32 (output_bfd, SPARC_PLT_ENTRY_WORD2 + s->reloc_count, | |
2229 | p + 8); | |
2230 | } | |
2231 | else | |
2232 | { | |
2233 | bfd_vma val; | |
2234 | ||
2235 | val = (h->root.root.u.def.section->output_section->vma | |
2236 | + h->root.root.u.def.section->output_offset | |
2237 | + h->root.root.u.def.value); | |
2238 | bfd_put_32 (output_bfd, | |
2239 | SPARC_PLT_PIC_WORD0 + ((val >> 10) & 0x3fffff), | |
2240 | p); | |
2241 | bfd_put_32 (output_bfd, | |
2242 | SPARC_PLT_PIC_WORD1 + (val & 0x3ff), | |
2243 | p + 4); | |
2244 | bfd_put_32 (output_bfd, SPARC_PLT_PIC_WORD2, p + 8); | |
2245 | } | |
2246 | break; | |
2247 | ||
2248 | case bfd_arch_m68k: | |
2249 | if (! info->shared && (h->flags & SUNOS_DEF_REGULAR) != 0) | |
2250 | abort (); | |
2251 | bfd_put_16 (output_bfd, M68K_PLT_ENTRY_WORD0, p); | |
2252 | bfd_put_32 (output_bfd, (- (h->plt_offset + 2)), p + 2); | |
2253 | bfd_put_16 (output_bfd, s->reloc_count, p + 6); | |
2254 | r_address += 2; | |
2255 | break; | |
2256 | ||
2257 | default: | |
2258 | abort (); | |
2259 | } | |
2260 | ||
2261 | /* We also need to add a jump table reloc, unless this is the | |
2262 | result of a JMP_TBL reloc from PIC compiled code. */ | |
2263 | if (info->shared || (h->flags & SUNOS_DEF_REGULAR) == 0) | |
2264 | { | |
2265 | BFD_ASSERT (h->dynindx >= 0); | |
2266 | BFD_ASSERT (s->reloc_count * obj_reloc_entry_size (dynobj) | |
2267 | < s->_raw_size); | |
2268 | p = s->contents + s->reloc_count * obj_reloc_entry_size (output_bfd); | |
2269 | if (obj_reloc_entry_size (output_bfd) == RELOC_STD_SIZE) | |
2270 | { | |
2271 | struct reloc_std_external *srel; | |
2272 | ||
2273 | srel = (struct reloc_std_external *) p; | |
2274 | PUT_WORD (output_bfd, r_address, srel->r_address); | |
2275 | if (bfd_header_big_endian (output_bfd)) | |
2276 | { | |
2277 | srel->r_index[0] = (bfd_byte)(h->dynindx >> 16); | |
2278 | srel->r_index[1] = (bfd_byte)(h->dynindx >> 8); | |
2279 | srel->r_index[2] = (bfd_byte)(h->dynindx); | |
2280 | srel->r_type[0] = (RELOC_STD_BITS_EXTERN_BIG | |
2281 | | RELOC_STD_BITS_JMPTABLE_BIG); | |
2282 | } | |
2283 | else | |
2284 | { | |
2285 | srel->r_index[2] = (bfd_byte)(h->dynindx >> 16); | |
2286 | srel->r_index[1] = (bfd_byte)(h->dynindx >> 8); | |
2287 | srel->r_index[0] = (bfd_byte)h->dynindx; | |
2288 | srel->r_type[0] = (RELOC_STD_BITS_EXTERN_LITTLE | |
2289 | | RELOC_STD_BITS_JMPTABLE_LITTLE); | |
2290 | } | |
2291 | } | |
2292 | else | |
2293 | { | |
2294 | struct reloc_ext_external *erel; | |
2295 | ||
2296 | erel = (struct reloc_ext_external *) p; | |
2297 | PUT_WORD (output_bfd, r_address, erel->r_address); | |
2298 | if (bfd_header_big_endian (output_bfd)) | |
2299 | { | |
2300 | erel->r_index[0] = (bfd_byte)(h->dynindx >> 16); | |
2301 | erel->r_index[1] = (bfd_byte)(h->dynindx >> 8); | |
2302 | erel->r_index[2] = (bfd_byte)h->dynindx; | |
2303 | erel->r_type[0] = | |
2304 | (RELOC_EXT_BITS_EXTERN_BIG | |
2305 | | (RELOC_JMP_SLOT << RELOC_EXT_BITS_TYPE_SH_BIG)); | |
2306 | } | |
2307 | else | |
2308 | { | |
2309 | erel->r_index[2] = (bfd_byte)(h->dynindx >> 16); | |
2310 | erel->r_index[1] = (bfd_byte)(h->dynindx >> 8); | |
2311 | erel->r_index[0] = (bfd_byte)h->dynindx; | |
2312 | erel->r_type[0] = | |
2313 | (RELOC_EXT_BITS_EXTERN_LITTLE | |
2314 | | (RELOC_JMP_SLOT << RELOC_EXT_BITS_TYPE_SH_LITTLE)); | |
2315 | } | |
2316 | PUT_WORD (output_bfd, (bfd_vma) 0, erel->r_addend); | |
2317 | } | |
2318 | ||
2319 | ++s->reloc_count; | |
2320 | } | |
2321 | } | |
2322 | ||
2323 | /* If this is not a dynamic symbol, we don't have to do anything | |
2324 | else. We only check this after handling the PLT entry, because | |
2325 | we can have a PLT entry for a nondynamic symbol when linking PIC | |
2326 | compiled code from a regular object. */ | |
2327 | if (h->dynindx < 0) | |
2328 | return true; | |
2329 | ||
2330 | switch (h->root.root.type) | |
2331 | { | |
2332 | default: | |
2333 | case bfd_link_hash_new: | |
2334 | abort (); | |
2335 | /* Avoid variable not initialized warnings. */ | |
2336 | return true; | |
2337 | case bfd_link_hash_undefined: | |
2338 | type = N_UNDF | N_EXT; | |
2339 | val = 0; | |
2340 | break; | |
2341 | case bfd_link_hash_defined: | |
2342 | case bfd_link_hash_defweak: | |
2343 | { | |
2344 | asection *sec; | |
2345 | asection *output_section; | |
2346 | ||
2347 | sec = h->root.root.u.def.section; | |
2348 | output_section = sec->output_section; | |
2349 | BFD_ASSERT (bfd_is_abs_section (output_section) | |
2350 | || output_section->owner == output_bfd); | |
2351 | if (h->plt_offset != 0 | |
2352 | && (h->flags & SUNOS_DEF_REGULAR) == 0) | |
2353 | { | |
2354 | type = N_UNDF | N_EXT; | |
2355 | val = 0; | |
2356 | } | |
2357 | else | |
2358 | { | |
2359 | if (output_section == obj_textsec (output_bfd)) | |
2360 | type = (h->root.root.type == bfd_link_hash_defined | |
2361 | ? N_TEXT | |
2362 | : N_WEAKT); | |
2363 | else if (output_section == obj_datasec (output_bfd)) | |
2364 | type = (h->root.root.type == bfd_link_hash_defined | |
2365 | ? N_DATA | |
2366 | : N_WEAKD); | |
2367 | else if (output_section == obj_bsssec (output_bfd)) | |
2368 | type = (h->root.root.type == bfd_link_hash_defined | |
2369 | ? N_BSS | |
2370 | : N_WEAKB); | |
2371 | else | |
2372 | type = (h->root.root.type == bfd_link_hash_defined | |
2373 | ? N_ABS | |
2374 | : N_WEAKA); | |
2375 | type |= N_EXT; | |
2376 | val = (h->root.root.u.def.value | |
2377 | + output_section->vma | |
2378 | + sec->output_offset); | |
2379 | } | |
2380 | } | |
2381 | break; | |
2382 | case bfd_link_hash_common: | |
2383 | type = N_UNDF | N_EXT; | |
2384 | val = h->root.root.u.c.size; | |
2385 | break; | |
2386 | case bfd_link_hash_undefweak: | |
2387 | type = N_WEAKU; | |
2388 | val = 0; | |
2389 | break; | |
2390 | case bfd_link_hash_indirect: | |
2391 | case bfd_link_hash_warning: | |
2392 | /* FIXME: Ignore these for now. The circumstances under which | |
2393 | they should be written out are not clear to me. */ | |
2394 | return true; | |
2395 | } | |
2396 | ||
2397 | s = bfd_get_section_by_name (sunos_hash_table (info)->dynobj, ".dynsym"); | |
2398 | BFD_ASSERT (s != NULL); | |
2399 | outsym = ((struct external_nlist *) | |
2400 | (s->contents + h->dynindx * EXTERNAL_NLIST_SIZE)); | |
2401 | ||
2402 | bfd_h_put_8 (output_bfd, type, outsym->e_type); | |
2403 | bfd_h_put_8 (output_bfd, 0, outsym->e_other); | |
2404 | ||
2405 | /* FIXME: The native linker doesn't use 0 for desc. It seems to use | |
2406 | one less than the desc value in the shared library, although that | |
2407 | seems unlikely. */ | |
2408 | bfd_h_put_16 (output_bfd, 0, outsym->e_desc); | |
2409 | ||
2410 | PUT_WORD (output_bfd, h->dynstr_index, outsym->e_strx); | |
2411 | PUT_WORD (output_bfd, val, outsym->e_value); | |
2412 | ||
2413 | return true; | |
2414 | } | |
2415 | ||
2416 | /* This is called for each reloc against an external symbol. If this | |
2417 | is a reloc which are are going to copy as a dynamic reloc, then | |
2418 | copy it over, and tell the caller to not bother processing this | |
2419 | reloc. */ | |
2420 | ||
2421 | /*ARGSUSED*/ | |
2422 | static boolean | |
2423 | sunos_check_dynamic_reloc (info, input_bfd, input_section, harg, reloc, | |
2424 | contents, skip, relocationp) | |
2425 | struct bfd_link_info *info; | |
2426 | bfd *input_bfd; | |
2427 | asection *input_section; | |
2428 | struct aout_link_hash_entry *harg; | |
2429 | PTR reloc; | |
2430 | bfd_byte *contents; | |
2431 | boolean *skip; | |
2432 | bfd_vma *relocationp; | |
2433 | { | |
2434 | struct sunos_link_hash_entry *h = (struct sunos_link_hash_entry *) harg; | |
2435 | bfd *dynobj; | |
2436 | boolean baserel; | |
2437 | boolean jmptbl; | |
2438 | boolean pcrel; | |
2439 | asection *s; | |
2440 | bfd_byte *p; | |
2441 | long indx; | |
2442 | ||
2443 | *skip = false; | |
2444 | ||
2445 | dynobj = sunos_hash_table (info)->dynobj; | |
2446 | ||
2447 | if (h != NULL | |
2448 | && h->plt_offset != 0 | |
2449 | && (info->shared | |
2450 | || (h->flags & SUNOS_DEF_REGULAR) == 0)) | |
2451 | { | |
2452 | asection *splt; | |
2453 | ||
2454 | /* Redirect the relocation to the PLT entry. */ | |
2455 | splt = bfd_get_section_by_name (dynobj, ".plt"); | |
2456 | *relocationp = (splt->output_section->vma | |
2457 | + splt->output_offset | |
2458 | + h->plt_offset); | |
2459 | } | |
2460 | ||
2461 | if (obj_reloc_entry_size (input_bfd) == RELOC_STD_SIZE) | |
2462 | { | |
2463 | struct reloc_std_external *srel; | |
2464 | ||
2465 | srel = (struct reloc_std_external *) reloc; | |
2466 | if (bfd_header_big_endian (input_bfd)) | |
2467 | { | |
2468 | baserel = (0 != (srel->r_type[0] & RELOC_STD_BITS_BASEREL_BIG)); | |
2469 | jmptbl = (0 != (srel->r_type[0] & RELOC_STD_BITS_JMPTABLE_BIG)); | |
2470 | pcrel = (0 != (srel->r_type[0] & RELOC_STD_BITS_PCREL_BIG)); | |
2471 | } | |
2472 | else | |
2473 | { | |
2474 | baserel = (0 != (srel->r_type[0] & RELOC_STD_BITS_BASEREL_LITTLE)); | |
2475 | jmptbl = (0 != (srel->r_type[0] & RELOC_STD_BITS_JMPTABLE_LITTLE)); | |
2476 | pcrel = (0 != (srel->r_type[0] & RELOC_STD_BITS_PCREL_LITTLE)); | |
2477 | } | |
2478 | } | |
2479 | else | |
2480 | { | |
2481 | struct reloc_ext_external *erel; | |
2482 | int r_type; | |
2483 | ||
2484 | erel = (struct reloc_ext_external *) reloc; | |
2485 | if (bfd_header_big_endian (input_bfd)) | |
2486 | r_type = ((erel->r_type[0] & RELOC_EXT_BITS_TYPE_BIG) | |
2487 | >> RELOC_EXT_BITS_TYPE_SH_BIG); | |
2488 | else | |
2489 | r_type = ((erel->r_type[0] & RELOC_EXT_BITS_TYPE_LITTLE) | |
2490 | >> RELOC_EXT_BITS_TYPE_SH_LITTLE); | |
2491 | baserel = (r_type == RELOC_BASE10 | |
2492 | || r_type == RELOC_BASE13 | |
2493 | || r_type == RELOC_BASE22); | |
2494 | jmptbl = r_type == RELOC_JMP_TBL; | |
2495 | pcrel = (r_type == RELOC_DISP8 | |
2496 | || r_type == RELOC_DISP16 | |
2497 | || r_type == RELOC_DISP32 | |
2498 | || r_type == RELOC_WDISP30 | |
2499 | || r_type == RELOC_WDISP22); | |
2500 | /* We don't consider the PC10 and PC22 types to be PC relative, | |
2501 | because they are pcrel_offset. */ | |
2502 | } | |
2503 | ||
2504 | if (baserel) | |
2505 | { | |
2506 | bfd_vma *got_offsetp; | |
2507 | asection *sgot; | |
2508 | ||
2509 | if (h != NULL) | |
2510 | got_offsetp = &h->got_offset; | |
2511 | else if (adata (input_bfd).local_got_offsets == NULL) | |
2512 | got_offsetp = NULL; | |
2513 | else | |
2514 | { | |
2515 | struct reloc_std_external *srel; | |
2516 | int r_index; | |
2517 | ||
2518 | srel = (struct reloc_std_external *) reloc; | |
2519 | if (obj_reloc_entry_size (input_bfd) == RELOC_STD_SIZE) | |
2520 | { | |
2521 | if (bfd_header_big_endian (input_bfd)) | |
2522 | r_index = ((srel->r_index[0] << 16) | |
2523 | | (srel->r_index[1] << 8) | |
2524 | | srel->r_index[2]); | |
2525 | else | |
2526 | r_index = ((srel->r_index[2] << 16) | |
2527 | | (srel->r_index[1] << 8) | |
2528 | | srel->r_index[0]); | |
2529 | } | |
2530 | else | |
2531 | { | |
2532 | struct reloc_ext_external *erel; | |
2533 | ||
2534 | erel = (struct reloc_ext_external *) reloc; | |
2535 | if (bfd_header_big_endian (input_bfd)) | |
2536 | r_index = ((erel->r_index[0] << 16) | |
2537 | | (erel->r_index[1] << 8) | |
2538 | | erel->r_index[2]); | |
2539 | else | |
2540 | r_index = ((erel->r_index[2] << 16) | |
2541 | | (erel->r_index[1] << 8) | |
2542 | | erel->r_index[0]); | |
2543 | } | |
2544 | ||
2545 | got_offsetp = adata (input_bfd).local_got_offsets + r_index; | |
2546 | } | |
2547 | ||
2548 | BFD_ASSERT (got_offsetp != NULL && *got_offsetp != 0); | |
2549 | ||
2550 | sgot = bfd_get_section_by_name (dynobj, ".got"); | |
2551 | ||
2552 | /* We set the least significant bit to indicate whether we have | |
2553 | already initialized the GOT entry. */ | |
2554 | if ((*got_offsetp & 1) == 0) | |
2555 | { | |
2556 | if (h == NULL | |
2557 | || (! info->shared | |
2558 | && ((h->flags & SUNOS_DEF_DYNAMIC) == 0 | |
2559 | || (h->flags & SUNOS_DEF_REGULAR) != 0))) | |
2560 | PUT_WORD (dynobj, *relocationp, sgot->contents + *got_offsetp); | |
2561 | else | |
2562 | PUT_WORD (dynobj, 0, sgot->contents + *got_offsetp); | |
2563 | ||
2564 | if (info->shared | |
2565 | || (h != NULL | |
2566 | && (h->flags & SUNOS_DEF_DYNAMIC) != 0 | |
2567 | && (h->flags & SUNOS_DEF_REGULAR) == 0)) | |
2568 | { | |
2569 | /* We need to create a GLOB_DAT or 32 reloc to tell the | |
2570 | dynamic linker to fill in this entry in the table. */ | |
2571 | ||
2572 | s = bfd_get_section_by_name (dynobj, ".dynrel"); | |
2573 | BFD_ASSERT (s != NULL); | |
2574 | BFD_ASSERT (s->reloc_count * obj_reloc_entry_size (dynobj) | |
2575 | < s->_raw_size); | |
2576 | ||
2577 | p = (s->contents | |
2578 | + s->reloc_count * obj_reloc_entry_size (dynobj)); | |
2579 | ||
2580 | if (h != NULL) | |
2581 | indx = h->dynindx; | |
2582 | else | |
2583 | indx = 0; | |
2584 | ||
2585 | if (obj_reloc_entry_size (dynobj) == RELOC_STD_SIZE) | |
2586 | { | |
2587 | struct reloc_std_external *srel; | |
2588 | ||
2589 | srel = (struct reloc_std_external *) p; | |
2590 | PUT_WORD (dynobj, | |
2591 | (*got_offsetp | |
2592 | + sgot->output_section->vma | |
2593 | + sgot->output_offset), | |
2594 | srel->r_address); | |
2595 | if (bfd_header_big_endian (dynobj)) | |
2596 | { | |
2597 | srel->r_index[0] = (bfd_byte)(indx >> 16); | |
2598 | srel->r_index[1] = (bfd_byte)(indx >> 8); | |
2599 | srel->r_index[2] = (bfd_byte)indx; | |
2600 | if (h == NULL) | |
2601 | srel->r_type[0] = 2 << RELOC_STD_BITS_LENGTH_SH_BIG; | |
2602 | else | |
2603 | srel->r_type[0] = | |
2604 | (RELOC_STD_BITS_EXTERN_BIG | |
2605 | | RELOC_STD_BITS_BASEREL_BIG | |
2606 | | RELOC_STD_BITS_RELATIVE_BIG | |
2607 | | (2 << RELOC_STD_BITS_LENGTH_SH_BIG)); | |
2608 | } | |
2609 | else | |
2610 | { | |
2611 | srel->r_index[2] = (bfd_byte)(indx >> 16); | |
2612 | srel->r_index[1] = (bfd_byte)(indx >> 8); | |
2613 | srel->r_index[0] = (bfd_byte)indx; | |
2614 | if (h == NULL) | |
2615 | srel->r_type[0] = 2 << RELOC_STD_BITS_LENGTH_SH_LITTLE; | |
2616 | else | |
2617 | srel->r_type[0] = | |
2618 | (RELOC_STD_BITS_EXTERN_LITTLE | |
2619 | | RELOC_STD_BITS_BASEREL_LITTLE | |
2620 | | RELOC_STD_BITS_RELATIVE_LITTLE | |
2621 | | (2 << RELOC_STD_BITS_LENGTH_SH_LITTLE)); | |
2622 | } | |
2623 | } | |
2624 | else | |
2625 | { | |
2626 | struct reloc_ext_external *erel; | |
2627 | ||
2628 | erel = (struct reloc_ext_external *) p; | |
2629 | PUT_WORD (dynobj, | |
2630 | (*got_offsetp | |
2631 | + sgot->output_section->vma | |
2632 | + sgot->output_offset), | |
2633 | erel->r_address); | |
2634 | if (bfd_header_big_endian (dynobj)) | |
2635 | { | |
2636 | erel->r_index[0] = (bfd_byte)(indx >> 16); | |
2637 | erel->r_index[1] = (bfd_byte)(indx >> 8); | |
2638 | erel->r_index[2] = (bfd_byte)indx; | |
2639 | if (h == NULL) | |
2640 | erel->r_type[0] = | |
2641 | RELOC_32 << RELOC_EXT_BITS_TYPE_SH_BIG; | |
2642 | else | |
2643 | erel->r_type[0] = | |
2644 | (RELOC_EXT_BITS_EXTERN_BIG | |
2645 | | (RELOC_GLOB_DAT << RELOC_EXT_BITS_TYPE_SH_BIG)); | |
2646 | } | |
2647 | else | |
2648 | { | |
2649 | erel->r_index[2] = (bfd_byte)(indx >> 16); | |
2650 | erel->r_index[1] = (bfd_byte)(indx >> 8); | |
2651 | erel->r_index[0] = (bfd_byte)indx; | |
2652 | if (h == NULL) | |
2653 | erel->r_type[0] = | |
2654 | RELOC_32 << RELOC_EXT_BITS_TYPE_SH_LITTLE; | |
2655 | else | |
2656 | erel->r_type[0] = | |
2657 | (RELOC_EXT_BITS_EXTERN_LITTLE | |
2658 | | (RELOC_GLOB_DAT | |
2659 | << RELOC_EXT_BITS_TYPE_SH_LITTLE)); | |
2660 | } | |
2661 | PUT_WORD (dynobj, 0, erel->r_addend); | |
2662 | } | |
2663 | ||
2664 | ++s->reloc_count; | |
2665 | } | |
2666 | ||
2667 | *got_offsetp |= 1; | |
2668 | } | |
2669 | ||
2670 | *relocationp = (sgot->vma | |
2671 | + (*got_offsetp &~ 1) | |
2672 | - sunos_hash_table (info)->got_base); | |
2673 | ||
2674 | /* There is nothing else to do for a base relative reloc. */ | |
2675 | return true; | |
2676 | } | |
2677 | ||
2678 | if (! sunos_hash_table (info)->dynamic_sections_needed) | |
2679 | return true; | |
2680 | if (! info->shared) | |
2681 | { | |
2682 | if (h == NULL | |
2683 | || h->dynindx == -1 | |
2684 | || h->root.root.type != bfd_link_hash_undefined | |
2685 | || (h->flags & SUNOS_DEF_REGULAR) != 0 | |
2686 | || (h->flags & SUNOS_DEF_DYNAMIC) == 0 | |
2687 | || (h->root.root.u.undef.abfd->flags & DYNAMIC) == 0) | |
2688 | return true; | |
2689 | } | |
2690 | else | |
2691 | { | |
2692 | if (h != NULL | |
2693 | && (h->dynindx == -1 | |
2694 | || jmptbl | |
2695 | || strcmp (h->root.root.root.string, | |
2696 | "__GLOBAL_OFFSET_TABLE_") == 0)) | |
2697 | return true; | |
2698 | } | |
2699 | ||
2700 | /* It looks like this is a reloc we are supposed to copy. */ | |
2701 | ||
2702 | s = bfd_get_section_by_name (dynobj, ".dynrel"); | |
2703 | BFD_ASSERT (s != NULL); | |
2704 | BFD_ASSERT (s->reloc_count * obj_reloc_entry_size (dynobj) < s->_raw_size); | |
2705 | ||
2706 | p = s->contents + s->reloc_count * obj_reloc_entry_size (dynobj); | |
2707 | ||
2708 | /* Copy the reloc over. */ | |
2709 | memcpy (p, reloc, obj_reloc_entry_size (dynobj)); | |
2710 | ||
2711 | if (h != NULL) | |
2712 | indx = h->dynindx; | |
2713 | else | |
2714 | indx = 0; | |
2715 | ||
2716 | /* Adjust the address and symbol index. */ | |
2717 | if (obj_reloc_entry_size (dynobj) == RELOC_STD_SIZE) | |
2718 | { | |
2719 | struct reloc_std_external *srel; | |
2720 | ||
2721 | srel = (struct reloc_std_external *) p; | |
2722 | PUT_WORD (dynobj, | |
2723 | (GET_WORD (dynobj, srel->r_address) | |
2724 | + input_section->output_section->vma | |
2725 | + input_section->output_offset), | |
2726 | srel->r_address); | |
2727 | if (bfd_header_big_endian (dynobj)) | |
2728 | { | |
2729 | srel->r_index[0] = (bfd_byte)(indx >> 16); | |
2730 | srel->r_index[1] = (bfd_byte)(indx >> 8); | |
2731 | srel->r_index[2] = (bfd_byte)indx; | |
2732 | } | |
2733 | else | |
2734 | { | |
2735 | srel->r_index[2] = (bfd_byte)(indx >> 16); | |
2736 | srel->r_index[1] = (bfd_byte)(indx >> 8); | |
2737 | srel->r_index[0] = (bfd_byte)indx; | |
2738 | } | |
2739 | /* FIXME: We may have to change the addend for a PC relative | |
2740 | reloc. */ | |
2741 | } | |
2742 | else | |
2743 | { | |
2744 | struct reloc_ext_external *erel; | |
2745 | ||
2746 | erel = (struct reloc_ext_external *) p; | |
2747 | PUT_WORD (dynobj, | |
2748 | (GET_WORD (dynobj, erel->r_address) | |
2749 | + input_section->output_section->vma | |
2750 | + input_section->output_offset), | |
2751 | erel->r_address); | |
2752 | if (bfd_header_big_endian (dynobj)) | |
2753 | { | |
2754 | erel->r_index[0] = (bfd_byte)(indx >> 16); | |
2755 | erel->r_index[1] = (bfd_byte)(indx >> 8); | |
2756 | erel->r_index[2] = (bfd_byte)indx; | |
2757 | } | |
2758 | else | |
2759 | { | |
2760 | erel->r_index[2] = (bfd_byte)(indx >> 16); | |
2761 | erel->r_index[1] = (bfd_byte)(indx >> 8); | |
2762 | erel->r_index[0] = (bfd_byte)indx; | |
2763 | } | |
2764 | if (pcrel && h != NULL) | |
2765 | { | |
2766 | /* Adjust the addend for the change in address. */ | |
2767 | PUT_WORD (dynobj, | |
2768 | (GET_WORD (dynobj, erel->r_addend) | |
2769 | - (input_section->output_section->vma | |
2770 | + input_section->output_offset | |
2771 | - input_section->vma)), | |
2772 | erel->r_addend); | |
2773 | } | |
2774 | } | |
2775 | ||
2776 | ++s->reloc_count; | |
2777 | ||
2778 | if (h != NULL) | |
2779 | *skip = true; | |
2780 | ||
2781 | return true; | |
2782 | } | |
2783 | ||
2784 | /* Finish up the dynamic linking information. */ | |
2785 | ||
2786 | static boolean | |
2787 | sunos_finish_dynamic_link (abfd, info) | |
2788 | bfd *abfd; | |
2789 | struct bfd_link_info *info; | |
2790 | { | |
2791 | bfd *dynobj; | |
2792 | asection *o; | |
2793 | asection *s; | |
2794 | asection *sdyn; | |
2795 | ||
2796 | if (! sunos_hash_table (info)->dynamic_sections_needed | |
2797 | && ! sunos_hash_table (info)->got_needed) | |
2798 | return true; | |
2799 | ||
2800 | dynobj = sunos_hash_table (info)->dynobj; | |
2801 | ||
2802 | sdyn = bfd_get_section_by_name (dynobj, ".dynamic"); | |
2803 | BFD_ASSERT (sdyn != NULL); | |
2804 | ||
2805 | /* Finish up the .need section. The linker emulation code filled it | |
2806 | in, but with offsets from the start of the section instead of | |
2807 | real addresses. Now that we know the section location, we can | |
2808 | fill in the final values. */ | |
2809 | s = bfd_get_section_by_name (dynobj, ".need"); | |
2810 | if (s != NULL && s->_raw_size != 0) | |
2811 | { | |
2812 | file_ptr filepos; | |
2813 | bfd_byte *p; | |
2814 | ||
2815 | filepos = s->output_section->filepos + s->output_offset; | |
2816 | p = s->contents; | |
2817 | while (1) | |
2818 | { | |
2819 | bfd_vma val; | |
2820 | ||
2821 | PUT_WORD (dynobj, GET_WORD (dynobj, p) + filepos, p); | |
2822 | val = GET_WORD (dynobj, p + 12); | |
2823 | if (val == 0) | |
2824 | break; | |
2825 | PUT_WORD (dynobj, val + filepos, p + 12); | |
2826 | p += 16; | |
2827 | } | |
2828 | } | |
2829 | ||
2830 | /* The first entry in the .got section is the address of the | |
2831 | dynamic information, unless this is a shared library. */ | |
2832 | s = bfd_get_section_by_name (dynobj, ".got"); | |
2833 | BFD_ASSERT (s != NULL); | |
2834 | if (info->shared || sdyn->_raw_size == 0) | |
2835 | PUT_WORD (dynobj, 0, s->contents); | |
2836 | else | |
2837 | PUT_WORD (dynobj, sdyn->output_section->vma + sdyn->output_offset, | |
2838 | s->contents); | |
2839 | ||
2840 | for (o = dynobj->sections; o != NULL; o = o->next) | |
2841 | { | |
2842 | if ((o->flags & SEC_HAS_CONTENTS) != 0 | |
2843 | && o->contents != NULL) | |
2844 | { | |
2845 | BFD_ASSERT (o->output_section != NULL | |
2846 | && o->output_section->owner == abfd); | |
2847 | if (! bfd_set_section_contents (abfd, o->output_section, | |
2848 | o->contents, o->output_offset, | |
2849 | o->_raw_size)) | |
2850 | return false; | |
2851 | } | |
2852 | } | |
2853 | ||
2854 | if (sdyn->_raw_size > 0) | |
2855 | { | |
2856 | struct external_sun4_dynamic esd; | |
2857 | struct external_sun4_dynamic_link esdl; | |
2858 | ||
2859 | /* Finish up the dynamic link information. */ | |
2860 | PUT_WORD (dynobj, (bfd_vma) 3, esd.ld_version); | |
2861 | PUT_WORD (dynobj, | |
2862 | sdyn->output_section->vma + sdyn->output_offset + sizeof esd, | |
2863 | esd.ldd); | |
2864 | PUT_WORD (dynobj, | |
2865 | (sdyn->output_section->vma | |
2866 | + sdyn->output_offset | |
2867 | + sizeof esd | |
2868 | + EXTERNAL_SUN4_DYNAMIC_DEBUGGER_SIZE), | |
2869 | esd.ld); | |
2870 | ||
2871 | if (! bfd_set_section_contents (abfd, sdyn->output_section, &esd, | |
2872 | sdyn->output_offset, sizeof esd)) | |
2873 | return false; | |
2874 | ||
2875 | PUT_WORD (dynobj, (bfd_vma) 0, esdl.ld_loaded); | |
2876 | ||
2877 | s = bfd_get_section_by_name (dynobj, ".need"); | |
2878 | if (s == NULL || s->_raw_size == 0) | |
2879 | PUT_WORD (dynobj, (bfd_vma) 0, esdl.ld_need); | |
2880 | else | |
2881 | PUT_WORD (dynobj, s->output_section->filepos + s->output_offset, | |
2882 | esdl.ld_need); | |
2883 | ||
2884 | s = bfd_get_section_by_name (dynobj, ".rules"); | |
2885 | if (s == NULL || s->_raw_size == 0) | |
2886 | PUT_WORD (dynobj, (bfd_vma) 0, esdl.ld_rules); | |
2887 | else | |
2888 | PUT_WORD (dynobj, s->output_section->filepos + s->output_offset, | |
2889 | esdl.ld_rules); | |
2890 | ||
2891 | s = bfd_get_section_by_name (dynobj, ".got"); | |
2892 | BFD_ASSERT (s != NULL); | |
2893 | PUT_WORD (dynobj, s->output_section->vma + s->output_offset, | |
2894 | esdl.ld_got); | |
2895 | ||
2896 | s = bfd_get_section_by_name (dynobj, ".plt"); | |
2897 | BFD_ASSERT (s != NULL); | |
2898 | PUT_WORD (dynobj, s->output_section->vma + s->output_offset, | |
2899 | esdl.ld_plt); | |
2900 | PUT_WORD (dynobj, s->_raw_size, esdl.ld_plt_sz); | |
2901 | ||
2902 | s = bfd_get_section_by_name (dynobj, ".dynrel"); | |
2903 | BFD_ASSERT (s != NULL); | |
2904 | BFD_ASSERT (s->reloc_count * obj_reloc_entry_size (dynobj) | |
2905 | == s->_raw_size); | |
2906 | PUT_WORD (dynobj, s->output_section->filepos + s->output_offset, | |
2907 | esdl.ld_rel); | |
2908 | ||
2909 | s = bfd_get_section_by_name (dynobj, ".hash"); | |
2910 | BFD_ASSERT (s != NULL); | |
2911 | PUT_WORD (dynobj, s->output_section->filepos + s->output_offset, | |
2912 | esdl.ld_hash); | |
2913 | ||
2914 | s = bfd_get_section_by_name (dynobj, ".dynsym"); | |
2915 | BFD_ASSERT (s != NULL); | |
2916 | PUT_WORD (dynobj, s->output_section->filepos + s->output_offset, | |
2917 | esdl.ld_stab); | |
2918 | ||
2919 | PUT_WORD (dynobj, (bfd_vma) 0, esdl.ld_stab_hash); | |
2920 | ||
2921 | PUT_WORD (dynobj, (bfd_vma) sunos_hash_table (info)->bucketcount, | |
2922 | esdl.ld_buckets); | |
2923 | ||
2924 | s = bfd_get_section_by_name (dynobj, ".dynstr"); | |
2925 | BFD_ASSERT (s != NULL); | |
2926 | PUT_WORD (dynobj, s->output_section->filepos + s->output_offset, | |
2927 | esdl.ld_symbols); | |
2928 | PUT_WORD (dynobj, s->_raw_size, esdl.ld_symb_size); | |
2929 | ||
2930 | /* The size of the text area is the size of the .text section | |
2931 | rounded up to a page boundary. FIXME: Should the page size be | |
2932 | conditional on something? */ | |
2933 | PUT_WORD (dynobj, | |
2934 | BFD_ALIGN (obj_textsec (abfd)->_raw_size, 0x2000), | |
2935 | esdl.ld_text); | |
2936 | ||
2937 | if (! bfd_set_section_contents (abfd, sdyn->output_section, &esdl, | |
2938 | (sdyn->output_offset | |
2939 | + sizeof esd | |
2940 | + EXTERNAL_SUN4_DYNAMIC_DEBUGGER_SIZE), | |
2941 | sizeof esdl)) | |
2942 | return false; | |
2943 | ||
2944 | abfd->flags |= DYNAMIC; | |
2945 | } | |
2946 | ||
2947 | return true; | |
2948 | } |