mwifiex: use SYNC flag for canceling host sleep
[deliverable/linux.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
320ae51f 19#include <linux/blk-mq.h>
1da177e4
LT
20#include <linux/highmem.h>
21#include <linux/mm.h>
22#include <linux/kernel_stat.h>
23#include <linux/string.h>
24#include <linux/init.h>
1da177e4
LT
25#include <linux/completion.h>
26#include <linux/slab.h>
27#include <linux/swap.h>
28#include <linux/writeback.h>
faccbd4b 29#include <linux/task_io_accounting_ops.h>
c17bb495 30#include <linux/fault-inject.h>
73c10101 31#include <linux/list_sort.h>
e3c78ca5 32#include <linux/delay.h>
aaf7c680 33#include <linux/ratelimit.h>
6c954667 34#include <linux/pm_runtime.h>
eea8f41c 35#include <linux/blk-cgroup.h>
55782138
LZ
36
37#define CREATE_TRACE_POINTS
38#include <trace/events/block.h>
1da177e4 39
8324aa91 40#include "blk.h"
43a5e4e2 41#include "blk-mq.h"
8324aa91 42
d07335e5 43EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 44EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 45EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
3291fa57 46EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
cbae8d45 47EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
0bfc2455 48
a73f730d
TH
49DEFINE_IDA(blk_queue_ida);
50
1da177e4
LT
51/*
52 * For the allocated request tables
53 */
320ae51f 54struct kmem_cache *request_cachep = NULL;
1da177e4
LT
55
56/*
57 * For queue allocation
58 */
6728cb0e 59struct kmem_cache *blk_requestq_cachep;
1da177e4 60
1da177e4
LT
61/*
62 * Controlling structure to kblockd
63 */
ff856bad 64static struct workqueue_struct *kblockd_workqueue;
1da177e4 65
d40f75a0
TH
66static void blk_clear_congested(struct request_list *rl, int sync)
67{
d40f75a0
TH
68#ifdef CONFIG_CGROUP_WRITEBACK
69 clear_wb_congested(rl->blkg->wb_congested, sync);
70#else
482cf79c
TH
71 /*
72 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
73 * flip its congestion state for events on other blkcgs.
74 */
75 if (rl == &rl->q->root_rl)
76 clear_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
d40f75a0
TH
77#endif
78}
79
80static void blk_set_congested(struct request_list *rl, int sync)
81{
d40f75a0
TH
82#ifdef CONFIG_CGROUP_WRITEBACK
83 set_wb_congested(rl->blkg->wb_congested, sync);
84#else
482cf79c
TH
85 /* see blk_clear_congested() */
86 if (rl == &rl->q->root_rl)
87 set_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
d40f75a0
TH
88#endif
89}
90
8324aa91 91void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
92{
93 int nr;
94
95 nr = q->nr_requests - (q->nr_requests / 8) + 1;
96 if (nr > q->nr_requests)
97 nr = q->nr_requests;
98 q->nr_congestion_on = nr;
99
100 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
101 if (nr < 1)
102 nr = 1;
103 q->nr_congestion_off = nr;
104}
105
1da177e4
LT
106/**
107 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
108 * @bdev: device
109 *
110 * Locates the passed device's request queue and returns the address of its
ff9ea323
TH
111 * backing_dev_info. This function can only be called if @bdev is opened
112 * and the return value is never NULL.
1da177e4
LT
113 */
114struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
115{
165125e1 116 struct request_queue *q = bdev_get_queue(bdev);
1da177e4 117
ff9ea323 118 return &q->backing_dev_info;
1da177e4 119}
1da177e4
LT
120EXPORT_SYMBOL(blk_get_backing_dev_info);
121
2a4aa30c 122void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 123{
1afb20f3
FT
124 memset(rq, 0, sizeof(*rq));
125
1da177e4 126 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 127 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 128 rq->cpu = -1;
63a71386 129 rq->q = q;
a2dec7b3 130 rq->__sector = (sector_t) -1;
2e662b65
JA
131 INIT_HLIST_NODE(&rq->hash);
132 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 133 rq->cmd = rq->__cmd;
e2494e1b 134 rq->cmd_len = BLK_MAX_CDB;
63a71386 135 rq->tag = -1;
b243ddcb 136 rq->start_time = jiffies;
9195291e 137 set_start_time_ns(rq);
09e099d4 138 rq->part = NULL;
1da177e4 139}
2a4aa30c 140EXPORT_SYMBOL(blk_rq_init);
1da177e4 141
5bb23a68
N
142static void req_bio_endio(struct request *rq, struct bio *bio,
143 unsigned int nbytes, int error)
1da177e4 144{
78d8e58a 145 if (error)
4246a0b6 146 bio->bi_error = error;
797e7dbb 147
143a87f4 148 if (unlikely(rq->cmd_flags & REQ_QUIET))
b7c44ed9 149 bio_set_flag(bio, BIO_QUIET);
08bafc03 150
f79ea416 151 bio_advance(bio, nbytes);
7ba1ba12 152
143a87f4 153 /* don't actually finish bio if it's part of flush sequence */
78d8e58a 154 if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
4246a0b6 155 bio_endio(bio);
1da177e4 156}
1da177e4 157
1da177e4
LT
158void blk_dump_rq_flags(struct request *rq, char *msg)
159{
160 int bit;
161
5953316d 162 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
4aff5e23 163 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
5953316d 164 (unsigned long long) rq->cmd_flags);
1da177e4 165
83096ebf
TH
166 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
167 (unsigned long long)blk_rq_pos(rq),
168 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
b4f42e28
JA
169 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
170 rq->bio, rq->biotail, blk_rq_bytes(rq));
1da177e4 171
33659ebb 172 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
6728cb0e 173 printk(KERN_INFO " cdb: ");
d34c87e4 174 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
175 printk("%02x ", rq->cmd[bit]);
176 printk("\n");
177 }
178}
1da177e4
LT
179EXPORT_SYMBOL(blk_dump_rq_flags);
180
3cca6dc1 181static void blk_delay_work(struct work_struct *work)
1da177e4 182{
3cca6dc1 183 struct request_queue *q;
1da177e4 184
3cca6dc1
JA
185 q = container_of(work, struct request_queue, delay_work.work);
186 spin_lock_irq(q->queue_lock);
24ecfbe2 187 __blk_run_queue(q);
3cca6dc1 188 spin_unlock_irq(q->queue_lock);
1da177e4 189}
1da177e4
LT
190
191/**
3cca6dc1
JA
192 * blk_delay_queue - restart queueing after defined interval
193 * @q: The &struct request_queue in question
194 * @msecs: Delay in msecs
1da177e4
LT
195 *
196 * Description:
3cca6dc1
JA
197 * Sometimes queueing needs to be postponed for a little while, to allow
198 * resources to come back. This function will make sure that queueing is
70460571 199 * restarted around the specified time. Queue lock must be held.
3cca6dc1
JA
200 */
201void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 202{
70460571
BVA
203 if (likely(!blk_queue_dead(q)))
204 queue_delayed_work(kblockd_workqueue, &q->delay_work,
205 msecs_to_jiffies(msecs));
2ad8b1ef 206}
3cca6dc1 207EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 208
21491412
JA
209/**
210 * blk_start_queue_async - asynchronously restart a previously stopped queue
211 * @q: The &struct request_queue in question
212 *
213 * Description:
214 * blk_start_queue_async() will clear the stop flag on the queue, and
215 * ensure that the request_fn for the queue is run from an async
216 * context.
217 **/
218void blk_start_queue_async(struct request_queue *q)
219{
220 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
221 blk_run_queue_async(q);
222}
223EXPORT_SYMBOL(blk_start_queue_async);
224
1da177e4
LT
225/**
226 * blk_start_queue - restart a previously stopped queue
165125e1 227 * @q: The &struct request_queue in question
1da177e4
LT
228 *
229 * Description:
230 * blk_start_queue() will clear the stop flag on the queue, and call
231 * the request_fn for the queue if it was in a stopped state when
232 * entered. Also see blk_stop_queue(). Queue lock must be held.
233 **/
165125e1 234void blk_start_queue(struct request_queue *q)
1da177e4 235{
a038e253
PBG
236 WARN_ON(!irqs_disabled());
237
75ad23bc 238 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 239 __blk_run_queue(q);
1da177e4 240}
1da177e4
LT
241EXPORT_SYMBOL(blk_start_queue);
242
243/**
244 * blk_stop_queue - stop a queue
165125e1 245 * @q: The &struct request_queue in question
1da177e4
LT
246 *
247 * Description:
248 * The Linux block layer assumes that a block driver will consume all
249 * entries on the request queue when the request_fn strategy is called.
250 * Often this will not happen, because of hardware limitations (queue
251 * depth settings). If a device driver gets a 'queue full' response,
252 * or if it simply chooses not to queue more I/O at one point, it can
253 * call this function to prevent the request_fn from being called until
254 * the driver has signalled it's ready to go again. This happens by calling
255 * blk_start_queue() to restart queue operations. Queue lock must be held.
256 **/
165125e1 257void blk_stop_queue(struct request_queue *q)
1da177e4 258{
136b5721 259 cancel_delayed_work(&q->delay_work);
75ad23bc 260 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
261}
262EXPORT_SYMBOL(blk_stop_queue);
263
264/**
265 * blk_sync_queue - cancel any pending callbacks on a queue
266 * @q: the queue
267 *
268 * Description:
269 * The block layer may perform asynchronous callback activity
270 * on a queue, such as calling the unplug function after a timeout.
271 * A block device may call blk_sync_queue to ensure that any
272 * such activity is cancelled, thus allowing it to release resources
59c51591 273 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
274 * that its ->make_request_fn will not re-add plugging prior to calling
275 * this function.
276 *
da527770 277 * This function does not cancel any asynchronous activity arising
da3dae54 278 * out of elevator or throttling code. That would require elevator_exit()
5efd6113 279 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 280 *
1da177e4
LT
281 */
282void blk_sync_queue(struct request_queue *q)
283{
70ed28b9 284 del_timer_sync(&q->timeout);
f04c1fe7
ML
285
286 if (q->mq_ops) {
287 struct blk_mq_hw_ctx *hctx;
288 int i;
289
70f4db63
CH
290 queue_for_each_hw_ctx(q, hctx, i) {
291 cancel_delayed_work_sync(&hctx->run_work);
292 cancel_delayed_work_sync(&hctx->delay_work);
293 }
f04c1fe7
ML
294 } else {
295 cancel_delayed_work_sync(&q->delay_work);
296 }
1da177e4
LT
297}
298EXPORT_SYMBOL(blk_sync_queue);
299
c246e80d
BVA
300/**
301 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
302 * @q: The queue to run
303 *
304 * Description:
305 * Invoke request handling on a queue if there are any pending requests.
306 * May be used to restart request handling after a request has completed.
307 * This variant runs the queue whether or not the queue has been
308 * stopped. Must be called with the queue lock held and interrupts
309 * disabled. See also @blk_run_queue.
310 */
311inline void __blk_run_queue_uncond(struct request_queue *q)
312{
313 if (unlikely(blk_queue_dead(q)))
314 return;
315
24faf6f6
BVA
316 /*
317 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
318 * the queue lock internally. As a result multiple threads may be
319 * running such a request function concurrently. Keep track of the
320 * number of active request_fn invocations such that blk_drain_queue()
321 * can wait until all these request_fn calls have finished.
322 */
323 q->request_fn_active++;
c246e80d 324 q->request_fn(q);
24faf6f6 325 q->request_fn_active--;
c246e80d 326}
a7928c15 327EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
c246e80d 328
1da177e4 329/**
80a4b58e 330 * __blk_run_queue - run a single device queue
1da177e4 331 * @q: The queue to run
80a4b58e
JA
332 *
333 * Description:
334 * See @blk_run_queue. This variant must be called with the queue lock
24ecfbe2 335 * held and interrupts disabled.
1da177e4 336 */
24ecfbe2 337void __blk_run_queue(struct request_queue *q)
1da177e4 338{
a538cd03
TH
339 if (unlikely(blk_queue_stopped(q)))
340 return;
341
c246e80d 342 __blk_run_queue_uncond(q);
75ad23bc
NP
343}
344EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 345
24ecfbe2
CH
346/**
347 * blk_run_queue_async - run a single device queue in workqueue context
348 * @q: The queue to run
349 *
350 * Description:
351 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
70460571 352 * of us. The caller must hold the queue lock.
24ecfbe2
CH
353 */
354void blk_run_queue_async(struct request_queue *q)
355{
70460571 356 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
e7c2f967 357 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
24ecfbe2 358}
c21e6beb 359EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 360
75ad23bc
NP
361/**
362 * blk_run_queue - run a single device queue
363 * @q: The queue to run
80a4b58e
JA
364 *
365 * Description:
366 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 367 * May be used to restart queueing when a request has completed.
75ad23bc
NP
368 */
369void blk_run_queue(struct request_queue *q)
370{
371 unsigned long flags;
372
373 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 374 __blk_run_queue(q);
1da177e4
LT
375 spin_unlock_irqrestore(q->queue_lock, flags);
376}
377EXPORT_SYMBOL(blk_run_queue);
378
165125e1 379void blk_put_queue(struct request_queue *q)
483f4afc
AV
380{
381 kobject_put(&q->kobj);
382}
d86e0e83 383EXPORT_SYMBOL(blk_put_queue);
483f4afc 384
e3c78ca5 385/**
807592a4 386 * __blk_drain_queue - drain requests from request_queue
e3c78ca5 387 * @q: queue to drain
c9a929dd 388 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 389 *
c9a929dd
TH
390 * Drain requests from @q. If @drain_all is set, all requests are drained.
391 * If not, only ELVPRIV requests are drained. The caller is responsible
392 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 393 */
807592a4
BVA
394static void __blk_drain_queue(struct request_queue *q, bool drain_all)
395 __releases(q->queue_lock)
396 __acquires(q->queue_lock)
e3c78ca5 397{
458f27a9
AH
398 int i;
399
807592a4
BVA
400 lockdep_assert_held(q->queue_lock);
401
e3c78ca5 402 while (true) {
481a7d64 403 bool drain = false;
e3c78ca5 404
b855b04a
TH
405 /*
406 * The caller might be trying to drain @q before its
407 * elevator is initialized.
408 */
409 if (q->elevator)
410 elv_drain_elevator(q);
411
5efd6113 412 blkcg_drain_queue(q);
e3c78ca5 413
4eabc941
TH
414 /*
415 * This function might be called on a queue which failed
b855b04a
TH
416 * driver init after queue creation or is not yet fully
417 * active yet. Some drivers (e.g. fd and loop) get unhappy
418 * in such cases. Kick queue iff dispatch queue has
419 * something on it and @q has request_fn set.
4eabc941 420 */
b855b04a 421 if (!list_empty(&q->queue_head) && q->request_fn)
4eabc941 422 __blk_run_queue(q);
c9a929dd 423
8a5ecdd4 424 drain |= q->nr_rqs_elvpriv;
24faf6f6 425 drain |= q->request_fn_active;
481a7d64
TH
426
427 /*
428 * Unfortunately, requests are queued at and tracked from
429 * multiple places and there's no single counter which can
430 * be drained. Check all the queues and counters.
431 */
432 if (drain_all) {
e97c293c 433 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
481a7d64
TH
434 drain |= !list_empty(&q->queue_head);
435 for (i = 0; i < 2; i++) {
8a5ecdd4 436 drain |= q->nr_rqs[i];
481a7d64 437 drain |= q->in_flight[i];
7c94e1c1
ML
438 if (fq)
439 drain |= !list_empty(&fq->flush_queue[i]);
481a7d64
TH
440 }
441 }
e3c78ca5 442
481a7d64 443 if (!drain)
e3c78ca5 444 break;
807592a4
BVA
445
446 spin_unlock_irq(q->queue_lock);
447
e3c78ca5 448 msleep(10);
807592a4
BVA
449
450 spin_lock_irq(q->queue_lock);
e3c78ca5 451 }
458f27a9
AH
452
453 /*
454 * With queue marked dead, any woken up waiter will fail the
455 * allocation path, so the wakeup chaining is lost and we're
456 * left with hung waiters. We need to wake up those waiters.
457 */
458 if (q->request_fn) {
a051661c
TH
459 struct request_list *rl;
460
a051661c
TH
461 blk_queue_for_each_rl(rl, q)
462 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
463 wake_up_all(&rl->wait[i]);
458f27a9 464 }
e3c78ca5
TH
465}
466
d732580b
TH
467/**
468 * blk_queue_bypass_start - enter queue bypass mode
469 * @q: queue of interest
470 *
471 * In bypass mode, only the dispatch FIFO queue of @q is used. This
472 * function makes @q enter bypass mode and drains all requests which were
6ecf23af 473 * throttled or issued before. On return, it's guaranteed that no request
80fd9979
TH
474 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
475 * inside queue or RCU read lock.
d732580b
TH
476 */
477void blk_queue_bypass_start(struct request_queue *q)
478{
479 spin_lock_irq(q->queue_lock);
776687bc 480 q->bypass_depth++;
d732580b
TH
481 queue_flag_set(QUEUE_FLAG_BYPASS, q);
482 spin_unlock_irq(q->queue_lock);
483
776687bc
TH
484 /*
485 * Queues start drained. Skip actual draining till init is
486 * complete. This avoids lenghty delays during queue init which
487 * can happen many times during boot.
488 */
489 if (blk_queue_init_done(q)) {
807592a4
BVA
490 spin_lock_irq(q->queue_lock);
491 __blk_drain_queue(q, false);
492 spin_unlock_irq(q->queue_lock);
493
b82d4b19
TH
494 /* ensure blk_queue_bypass() is %true inside RCU read lock */
495 synchronize_rcu();
496 }
d732580b
TH
497}
498EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
499
500/**
501 * blk_queue_bypass_end - leave queue bypass mode
502 * @q: queue of interest
503 *
504 * Leave bypass mode and restore the normal queueing behavior.
505 */
506void blk_queue_bypass_end(struct request_queue *q)
507{
508 spin_lock_irq(q->queue_lock);
509 if (!--q->bypass_depth)
510 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
511 WARN_ON_ONCE(q->bypass_depth < 0);
512 spin_unlock_irq(q->queue_lock);
513}
514EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
515
aed3ea94
JA
516void blk_set_queue_dying(struct request_queue *q)
517{
518 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
519
520 if (q->mq_ops)
521 blk_mq_wake_waiters(q);
522 else {
523 struct request_list *rl;
524
525 blk_queue_for_each_rl(rl, q) {
526 if (rl->rq_pool) {
527 wake_up(&rl->wait[BLK_RW_SYNC]);
528 wake_up(&rl->wait[BLK_RW_ASYNC]);
529 }
530 }
531 }
532}
533EXPORT_SYMBOL_GPL(blk_set_queue_dying);
534
c9a929dd
TH
535/**
536 * blk_cleanup_queue - shutdown a request queue
537 * @q: request queue to shutdown
538 *
c246e80d
BVA
539 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
540 * put it. All future requests will be failed immediately with -ENODEV.
c94a96ac 541 */
6728cb0e 542void blk_cleanup_queue(struct request_queue *q)
483f4afc 543{
c9a929dd 544 spinlock_t *lock = q->queue_lock;
e3335de9 545
3f3299d5 546 /* mark @q DYING, no new request or merges will be allowed afterwards */
483f4afc 547 mutex_lock(&q->sysfs_lock);
aed3ea94 548 blk_set_queue_dying(q);
c9a929dd 549 spin_lock_irq(lock);
6ecf23af 550
80fd9979 551 /*
3f3299d5 552 * A dying queue is permanently in bypass mode till released. Note
80fd9979
TH
553 * that, unlike blk_queue_bypass_start(), we aren't performing
554 * synchronize_rcu() after entering bypass mode to avoid the delay
555 * as some drivers create and destroy a lot of queues while
556 * probing. This is still safe because blk_release_queue() will be
557 * called only after the queue refcnt drops to zero and nothing,
558 * RCU or not, would be traversing the queue by then.
559 */
6ecf23af
TH
560 q->bypass_depth++;
561 queue_flag_set(QUEUE_FLAG_BYPASS, q);
562
c9a929dd
TH
563 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
564 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
3f3299d5 565 queue_flag_set(QUEUE_FLAG_DYING, q);
c9a929dd
TH
566 spin_unlock_irq(lock);
567 mutex_unlock(&q->sysfs_lock);
568
c246e80d
BVA
569 /*
570 * Drain all requests queued before DYING marking. Set DEAD flag to
571 * prevent that q->request_fn() gets invoked after draining finished.
572 */
3ef28e83
DW
573 blk_freeze_queue(q);
574 spin_lock_irq(lock);
575 if (!q->mq_ops)
43a5e4e2 576 __blk_drain_queue(q, true);
c246e80d 577 queue_flag_set(QUEUE_FLAG_DEAD, q);
807592a4 578 spin_unlock_irq(lock);
c9a929dd 579
5a48fc14
DW
580 /* for synchronous bio-based driver finish in-flight integrity i/o */
581 blk_flush_integrity();
582
c9a929dd
TH
583 /* @q won't process any more request, flush async actions */
584 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
585 blk_sync_queue(q);
586
45a9c9d9
BVA
587 if (q->mq_ops)
588 blk_mq_free_queue(q);
3ef28e83 589 percpu_ref_exit(&q->q_usage_counter);
45a9c9d9 590
5e5cfac0
AH
591 spin_lock_irq(lock);
592 if (q->queue_lock != &q->__queue_lock)
593 q->queue_lock = &q->__queue_lock;
594 spin_unlock_irq(lock);
595
b02176f3 596 bdi_unregister(&q->backing_dev_info);
6cd18e71 597
c9a929dd 598 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
599 blk_put_queue(q);
600}
1da177e4
LT
601EXPORT_SYMBOL(blk_cleanup_queue);
602
271508db
DR
603/* Allocate memory local to the request queue */
604static void *alloc_request_struct(gfp_t gfp_mask, void *data)
605{
606 int nid = (int)(long)data;
607 return kmem_cache_alloc_node(request_cachep, gfp_mask, nid);
608}
609
610static void free_request_struct(void *element, void *unused)
611{
612 kmem_cache_free(request_cachep, element);
613}
614
5b788ce3
TH
615int blk_init_rl(struct request_list *rl, struct request_queue *q,
616 gfp_t gfp_mask)
1da177e4 617{
1abec4fd
MS
618 if (unlikely(rl->rq_pool))
619 return 0;
620
5b788ce3 621 rl->q = q;
1faa16d2
JA
622 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
623 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
1faa16d2
JA
624 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
625 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 626
271508db
DR
627 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct,
628 free_request_struct,
629 (void *)(long)q->node, gfp_mask,
630 q->node);
1da177e4
LT
631 if (!rl->rq_pool)
632 return -ENOMEM;
633
634 return 0;
635}
636
5b788ce3
TH
637void blk_exit_rl(struct request_list *rl)
638{
639 if (rl->rq_pool)
640 mempool_destroy(rl->rq_pool);
641}
642
165125e1 643struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 644{
c304a51b 645 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
1946089a
CL
646}
647EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 648
3ef28e83
DW
649int blk_queue_enter(struct request_queue *q, gfp_t gfp)
650{
651 while (true) {
652 int ret;
653
654 if (percpu_ref_tryget_live(&q->q_usage_counter))
655 return 0;
656
71baba4b 657 if (!gfpflags_allow_blocking(gfp))
3ef28e83
DW
658 return -EBUSY;
659
660 ret = wait_event_interruptible(q->mq_freeze_wq,
661 !atomic_read(&q->mq_freeze_depth) ||
662 blk_queue_dying(q));
663 if (blk_queue_dying(q))
664 return -ENODEV;
665 if (ret)
666 return ret;
667 }
668}
669
670void blk_queue_exit(struct request_queue *q)
671{
672 percpu_ref_put(&q->q_usage_counter);
673}
674
675static void blk_queue_usage_counter_release(struct percpu_ref *ref)
676{
677 struct request_queue *q =
678 container_of(ref, struct request_queue, q_usage_counter);
679
680 wake_up_all(&q->mq_freeze_wq);
681}
682
165125e1 683struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 684{
165125e1 685 struct request_queue *q;
e0bf68dd 686 int err;
1946089a 687
8324aa91 688 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 689 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
690 if (!q)
691 return NULL;
692
00380a40 693 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
a73f730d 694 if (q->id < 0)
3d2936f4 695 goto fail_q;
a73f730d 696
54efd50b
KO
697 q->bio_split = bioset_create(BIO_POOL_SIZE, 0);
698 if (!q->bio_split)
699 goto fail_id;
700
0989a025
JA
701 q->backing_dev_info.ra_pages =
702 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
89e9b9e0 703 q->backing_dev_info.capabilities = BDI_CAP_CGROUP_WRITEBACK;
d993831f 704 q->backing_dev_info.name = "block";
5151412d 705 q->node = node_id;
0989a025 706
e0bf68dd 707 err = bdi_init(&q->backing_dev_info);
a73f730d 708 if (err)
54efd50b 709 goto fail_split;
e0bf68dd 710
31373d09
MG
711 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
712 laptop_mode_timer_fn, (unsigned long) q);
242f9dcb 713 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
b855b04a 714 INIT_LIST_HEAD(&q->queue_head);
242f9dcb 715 INIT_LIST_HEAD(&q->timeout_list);
a612fddf 716 INIT_LIST_HEAD(&q->icq_list);
4eef3049 717#ifdef CONFIG_BLK_CGROUP
e8989fae 718 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 719#endif
3cca6dc1 720 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 721
8324aa91 722 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 723
483f4afc 724 mutex_init(&q->sysfs_lock);
e7e72bf6 725 spin_lock_init(&q->__queue_lock);
483f4afc 726
c94a96ac
VG
727 /*
728 * By default initialize queue_lock to internal lock and driver can
729 * override it later if need be.
730 */
731 q->queue_lock = &q->__queue_lock;
732
b82d4b19
TH
733 /*
734 * A queue starts its life with bypass turned on to avoid
735 * unnecessary bypass on/off overhead and nasty surprises during
749fefe6
TH
736 * init. The initial bypass will be finished when the queue is
737 * registered by blk_register_queue().
b82d4b19
TH
738 */
739 q->bypass_depth = 1;
740 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
741
320ae51f
JA
742 init_waitqueue_head(&q->mq_freeze_wq);
743
3ef28e83
DW
744 /*
745 * Init percpu_ref in atomic mode so that it's faster to shutdown.
746 * See blk_register_queue() for details.
747 */
748 if (percpu_ref_init(&q->q_usage_counter,
749 blk_queue_usage_counter_release,
750 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
fff4996b 751 goto fail_bdi;
f51b802c 752
3ef28e83
DW
753 if (blkcg_init_queue(q))
754 goto fail_ref;
755
1da177e4 756 return q;
a73f730d 757
3ef28e83
DW
758fail_ref:
759 percpu_ref_exit(&q->q_usage_counter);
fff4996b
MP
760fail_bdi:
761 bdi_destroy(&q->backing_dev_info);
54efd50b
KO
762fail_split:
763 bioset_free(q->bio_split);
a73f730d
TH
764fail_id:
765 ida_simple_remove(&blk_queue_ida, q->id);
766fail_q:
767 kmem_cache_free(blk_requestq_cachep, q);
768 return NULL;
1da177e4 769}
1946089a 770EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
771
772/**
773 * blk_init_queue - prepare a request queue for use with a block device
774 * @rfn: The function to be called to process requests that have been
775 * placed on the queue.
776 * @lock: Request queue spin lock
777 *
778 * Description:
779 * If a block device wishes to use the standard request handling procedures,
780 * which sorts requests and coalesces adjacent requests, then it must
781 * call blk_init_queue(). The function @rfn will be called when there
782 * are requests on the queue that need to be processed. If the device
783 * supports plugging, then @rfn may not be called immediately when requests
784 * are available on the queue, but may be called at some time later instead.
785 * Plugged queues are generally unplugged when a buffer belonging to one
786 * of the requests on the queue is needed, or due to memory pressure.
787 *
788 * @rfn is not required, or even expected, to remove all requests off the
789 * queue, but only as many as it can handle at a time. If it does leave
790 * requests on the queue, it is responsible for arranging that the requests
791 * get dealt with eventually.
792 *
793 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
794 * request queue; this lock will be taken also from interrupt context, so irq
795 * disabling is needed for it.
1da177e4 796 *
710027a4 797 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
798 * it didn't succeed.
799 *
800 * Note:
801 * blk_init_queue() must be paired with a blk_cleanup_queue() call
802 * when the block device is deactivated (such as at module unload).
803 **/
1946089a 804
165125e1 805struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 806{
c304a51b 807 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1946089a
CL
808}
809EXPORT_SYMBOL(blk_init_queue);
810
165125e1 811struct request_queue *
1946089a
CL
812blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
813{
c86d1b8a 814 struct request_queue *uninit_q, *q;
1da177e4 815
c86d1b8a
MS
816 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
817 if (!uninit_q)
818 return NULL;
819
5151412d 820 q = blk_init_allocated_queue(uninit_q, rfn, lock);
c86d1b8a 821 if (!q)
7982e90c 822 blk_cleanup_queue(uninit_q);
18741986 823
7982e90c 824 return q;
01effb0d
MS
825}
826EXPORT_SYMBOL(blk_init_queue_node);
827
dece1635 828static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
336b7e1f 829
01effb0d
MS
830struct request_queue *
831blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
832 spinlock_t *lock)
01effb0d 833{
1da177e4
LT
834 if (!q)
835 return NULL;
836
f70ced09 837 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0);
ba483388 838 if (!q->fq)
7982e90c
MS
839 return NULL;
840
a051661c 841 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
708f04d2 842 goto fail;
1da177e4
LT
843
844 q->request_fn = rfn;
1da177e4 845 q->prep_rq_fn = NULL;
28018c24 846 q->unprep_rq_fn = NULL;
60ea8226 847 q->queue_flags |= QUEUE_FLAG_DEFAULT;
c94a96ac
VG
848
849 /* Override internal queue lock with supplied lock pointer */
850 if (lock)
851 q->queue_lock = lock;
1da177e4 852
f3b144aa
JA
853 /*
854 * This also sets hw/phys segments, boundary and size
855 */
c20e8de2 856 blk_queue_make_request(q, blk_queue_bio);
1da177e4 857
44ec9542
AS
858 q->sg_reserved_size = INT_MAX;
859
eb1c160b
TS
860 /* Protect q->elevator from elevator_change */
861 mutex_lock(&q->sysfs_lock);
862
b82d4b19 863 /* init elevator */
eb1c160b
TS
864 if (elevator_init(q, NULL)) {
865 mutex_unlock(&q->sysfs_lock);
708f04d2 866 goto fail;
eb1c160b
TS
867 }
868
869 mutex_unlock(&q->sysfs_lock);
870
b82d4b19 871 return q;
708f04d2
DJ
872
873fail:
ba483388 874 blk_free_flush_queue(q->fq);
708f04d2 875 return NULL;
1da177e4 876}
5151412d 877EXPORT_SYMBOL(blk_init_allocated_queue);
1da177e4 878
09ac46c4 879bool blk_get_queue(struct request_queue *q)
1da177e4 880{
3f3299d5 881 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
882 __blk_get_queue(q);
883 return true;
1da177e4
LT
884 }
885
09ac46c4 886 return false;
1da177e4 887}
d86e0e83 888EXPORT_SYMBOL(blk_get_queue);
1da177e4 889
5b788ce3 890static inline void blk_free_request(struct request_list *rl, struct request *rq)
1da177e4 891{
f1f8cc94 892 if (rq->cmd_flags & REQ_ELVPRIV) {
5b788ce3 893 elv_put_request(rl->q, rq);
f1f8cc94 894 if (rq->elv.icq)
11a3122f 895 put_io_context(rq->elv.icq->ioc);
f1f8cc94
TH
896 }
897
5b788ce3 898 mempool_free(rq, rl->rq_pool);
1da177e4
LT
899}
900
1da177e4
LT
901/*
902 * ioc_batching returns true if the ioc is a valid batching request and
903 * should be given priority access to a request.
904 */
165125e1 905static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
906{
907 if (!ioc)
908 return 0;
909
910 /*
911 * Make sure the process is able to allocate at least 1 request
912 * even if the batch times out, otherwise we could theoretically
913 * lose wakeups.
914 */
915 return ioc->nr_batch_requests == q->nr_batching ||
916 (ioc->nr_batch_requests > 0
917 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
918}
919
920/*
921 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
922 * will cause the process to be a "batcher" on all queues in the system. This
923 * is the behaviour we want though - once it gets a wakeup it should be given
924 * a nice run.
925 */
165125e1 926static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
927{
928 if (!ioc || ioc_batching(q, ioc))
929 return;
930
931 ioc->nr_batch_requests = q->nr_batching;
932 ioc->last_waited = jiffies;
933}
934
5b788ce3 935static void __freed_request(struct request_list *rl, int sync)
1da177e4 936{
5b788ce3 937 struct request_queue *q = rl->q;
1da177e4 938
d40f75a0
TH
939 if (rl->count[sync] < queue_congestion_off_threshold(q))
940 blk_clear_congested(rl, sync);
1da177e4 941
1faa16d2
JA
942 if (rl->count[sync] + 1 <= q->nr_requests) {
943 if (waitqueue_active(&rl->wait[sync]))
944 wake_up(&rl->wait[sync]);
1da177e4 945
5b788ce3 946 blk_clear_rl_full(rl, sync);
1da177e4
LT
947 }
948}
949
950/*
951 * A request has just been released. Account for it, update the full and
952 * congestion status, wake up any waiters. Called under q->queue_lock.
953 */
5b788ce3 954static void freed_request(struct request_list *rl, unsigned int flags)
1da177e4 955{
5b788ce3 956 struct request_queue *q = rl->q;
75eb6c37 957 int sync = rw_is_sync(flags);
1da177e4 958
8a5ecdd4 959 q->nr_rqs[sync]--;
1faa16d2 960 rl->count[sync]--;
75eb6c37 961 if (flags & REQ_ELVPRIV)
8a5ecdd4 962 q->nr_rqs_elvpriv--;
1da177e4 963
5b788ce3 964 __freed_request(rl, sync);
1da177e4 965
1faa16d2 966 if (unlikely(rl->starved[sync ^ 1]))
5b788ce3 967 __freed_request(rl, sync ^ 1);
1da177e4
LT
968}
969
e3a2b3f9
JA
970int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
971{
972 struct request_list *rl;
d40f75a0 973 int on_thresh, off_thresh;
e3a2b3f9
JA
974
975 spin_lock_irq(q->queue_lock);
976 q->nr_requests = nr;
977 blk_queue_congestion_threshold(q);
d40f75a0
TH
978 on_thresh = queue_congestion_on_threshold(q);
979 off_thresh = queue_congestion_off_threshold(q);
e3a2b3f9 980
d40f75a0
TH
981 blk_queue_for_each_rl(rl, q) {
982 if (rl->count[BLK_RW_SYNC] >= on_thresh)
983 blk_set_congested(rl, BLK_RW_SYNC);
984 else if (rl->count[BLK_RW_SYNC] < off_thresh)
985 blk_clear_congested(rl, BLK_RW_SYNC);
e3a2b3f9 986
d40f75a0
TH
987 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
988 blk_set_congested(rl, BLK_RW_ASYNC);
989 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
990 blk_clear_congested(rl, BLK_RW_ASYNC);
e3a2b3f9 991
e3a2b3f9
JA
992 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
993 blk_set_rl_full(rl, BLK_RW_SYNC);
994 } else {
995 blk_clear_rl_full(rl, BLK_RW_SYNC);
996 wake_up(&rl->wait[BLK_RW_SYNC]);
997 }
998
999 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1000 blk_set_rl_full(rl, BLK_RW_ASYNC);
1001 } else {
1002 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1003 wake_up(&rl->wait[BLK_RW_ASYNC]);
1004 }
1005 }
1006
1007 spin_unlock_irq(q->queue_lock);
1008 return 0;
1009}
1010
9d5a4e94
MS
1011/*
1012 * Determine if elevator data should be initialized when allocating the
1013 * request associated with @bio.
1014 */
1015static bool blk_rq_should_init_elevator(struct bio *bio)
1016{
1017 if (!bio)
1018 return true;
1019
1020 /*
1021 * Flush requests do not use the elevator so skip initialization.
1022 * This allows a request to share the flush and elevator data.
1023 */
1024 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
1025 return false;
1026
1027 return true;
1028}
1029
852c788f
TH
1030/**
1031 * rq_ioc - determine io_context for request allocation
1032 * @bio: request being allocated is for this bio (can be %NULL)
1033 *
1034 * Determine io_context to use for request allocation for @bio. May return
1035 * %NULL if %current->io_context doesn't exist.
1036 */
1037static struct io_context *rq_ioc(struct bio *bio)
1038{
1039#ifdef CONFIG_BLK_CGROUP
1040 if (bio && bio->bi_ioc)
1041 return bio->bi_ioc;
1042#endif
1043 return current->io_context;
1044}
1045
da8303c6 1046/**
a06e05e6 1047 * __get_request - get a free request
5b788ce3 1048 * @rl: request list to allocate from
da8303c6
TH
1049 * @rw_flags: RW and SYNC flags
1050 * @bio: bio to allocate request for (can be %NULL)
1051 * @gfp_mask: allocation mask
1052 *
1053 * Get a free request from @q. This function may fail under memory
1054 * pressure or if @q is dead.
1055 *
da3dae54 1056 * Must be called with @q->queue_lock held and,
a492f075
JL
1057 * Returns ERR_PTR on failure, with @q->queue_lock held.
1058 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1059 */
5b788ce3 1060static struct request *__get_request(struct request_list *rl, int rw_flags,
a06e05e6 1061 struct bio *bio, gfp_t gfp_mask)
1da177e4 1062{
5b788ce3 1063 struct request_queue *q = rl->q;
b679281a 1064 struct request *rq;
7f4b35d1
TH
1065 struct elevator_type *et = q->elevator->type;
1066 struct io_context *ioc = rq_ioc(bio);
f1f8cc94 1067 struct io_cq *icq = NULL;
1faa16d2 1068 const bool is_sync = rw_is_sync(rw_flags) != 0;
75eb6c37 1069 int may_queue;
88ee5ef1 1070
3f3299d5 1071 if (unlikely(blk_queue_dying(q)))
a492f075 1072 return ERR_PTR(-ENODEV);
da8303c6 1073
7749a8d4 1074 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
1075 if (may_queue == ELV_MQUEUE_NO)
1076 goto rq_starved;
1077
1faa16d2
JA
1078 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1079 if (rl->count[is_sync]+1 >= q->nr_requests) {
88ee5ef1
JA
1080 /*
1081 * The queue will fill after this allocation, so set
1082 * it as full, and mark this process as "batching".
1083 * This process will be allowed to complete a batch of
1084 * requests, others will be blocked.
1085 */
5b788ce3 1086 if (!blk_rl_full(rl, is_sync)) {
88ee5ef1 1087 ioc_set_batching(q, ioc);
5b788ce3 1088 blk_set_rl_full(rl, is_sync);
88ee5ef1
JA
1089 } else {
1090 if (may_queue != ELV_MQUEUE_MUST
1091 && !ioc_batching(q, ioc)) {
1092 /*
1093 * The queue is full and the allocating
1094 * process is not a "batcher", and not
1095 * exempted by the IO scheduler
1096 */
a492f075 1097 return ERR_PTR(-ENOMEM);
88ee5ef1
JA
1098 }
1099 }
1da177e4 1100 }
d40f75a0 1101 blk_set_congested(rl, is_sync);
1da177e4
LT
1102 }
1103
082cf69e
JA
1104 /*
1105 * Only allow batching queuers to allocate up to 50% over the defined
1106 * limit of requests, otherwise we could have thousands of requests
1107 * allocated with any setting of ->nr_requests
1108 */
1faa16d2 1109 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
a492f075 1110 return ERR_PTR(-ENOMEM);
fd782a4a 1111
8a5ecdd4 1112 q->nr_rqs[is_sync]++;
1faa16d2
JA
1113 rl->count[is_sync]++;
1114 rl->starved[is_sync] = 0;
cb98fc8b 1115
f1f8cc94
TH
1116 /*
1117 * Decide whether the new request will be managed by elevator. If
1118 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
1119 * prevent the current elevator from being destroyed until the new
1120 * request is freed. This guarantees icq's won't be destroyed and
1121 * makes creating new ones safe.
1122 *
1123 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1124 * it will be created after releasing queue_lock.
1125 */
d732580b 1126 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
75eb6c37 1127 rw_flags |= REQ_ELVPRIV;
8a5ecdd4 1128 q->nr_rqs_elvpriv++;
f1f8cc94
TH
1129 if (et->icq_cache && ioc)
1130 icq = ioc_lookup_icq(ioc, q);
9d5a4e94 1131 }
cb98fc8b 1132
f253b86b
JA
1133 if (blk_queue_io_stat(q))
1134 rw_flags |= REQ_IO_STAT;
1da177e4
LT
1135 spin_unlock_irq(q->queue_lock);
1136
29e2b09a 1137 /* allocate and init request */
5b788ce3 1138 rq = mempool_alloc(rl->rq_pool, gfp_mask);
29e2b09a 1139 if (!rq)
b679281a 1140 goto fail_alloc;
1da177e4 1141
29e2b09a 1142 blk_rq_init(q, rq);
a051661c 1143 blk_rq_set_rl(rq, rl);
29e2b09a
TH
1144 rq->cmd_flags = rw_flags | REQ_ALLOCED;
1145
aaf7c680 1146 /* init elvpriv */
29e2b09a 1147 if (rw_flags & REQ_ELVPRIV) {
aaf7c680 1148 if (unlikely(et->icq_cache && !icq)) {
7f4b35d1
TH
1149 if (ioc)
1150 icq = ioc_create_icq(ioc, q, gfp_mask);
aaf7c680
TH
1151 if (!icq)
1152 goto fail_elvpriv;
29e2b09a 1153 }
aaf7c680
TH
1154
1155 rq->elv.icq = icq;
1156 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1157 goto fail_elvpriv;
1158
1159 /* @rq->elv.icq holds io_context until @rq is freed */
29e2b09a
TH
1160 if (icq)
1161 get_io_context(icq->ioc);
1162 }
aaf7c680 1163out:
88ee5ef1
JA
1164 /*
1165 * ioc may be NULL here, and ioc_batching will be false. That's
1166 * OK, if the queue is under the request limit then requests need
1167 * not count toward the nr_batch_requests limit. There will always
1168 * be some limit enforced by BLK_BATCH_TIME.
1169 */
1da177e4
LT
1170 if (ioc_batching(q, ioc))
1171 ioc->nr_batch_requests--;
6728cb0e 1172
1faa16d2 1173 trace_block_getrq(q, bio, rw_flags & 1);
1da177e4 1174 return rq;
b679281a 1175
aaf7c680
TH
1176fail_elvpriv:
1177 /*
1178 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1179 * and may fail indefinitely under memory pressure and thus
1180 * shouldn't stall IO. Treat this request as !elvpriv. This will
1181 * disturb iosched and blkcg but weird is bettern than dead.
1182 */
7b2b10e0
RE
1183 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1184 __func__, dev_name(q->backing_dev_info.dev));
aaf7c680
TH
1185
1186 rq->cmd_flags &= ~REQ_ELVPRIV;
1187 rq->elv.icq = NULL;
1188
1189 spin_lock_irq(q->queue_lock);
8a5ecdd4 1190 q->nr_rqs_elvpriv--;
aaf7c680
TH
1191 spin_unlock_irq(q->queue_lock);
1192 goto out;
1193
b679281a
TH
1194fail_alloc:
1195 /*
1196 * Allocation failed presumably due to memory. Undo anything we
1197 * might have messed up.
1198 *
1199 * Allocating task should really be put onto the front of the wait
1200 * queue, but this is pretty rare.
1201 */
1202 spin_lock_irq(q->queue_lock);
5b788ce3 1203 freed_request(rl, rw_flags);
b679281a
TH
1204
1205 /*
1206 * in the very unlikely event that allocation failed and no
1207 * requests for this direction was pending, mark us starved so that
1208 * freeing of a request in the other direction will notice
1209 * us. another possible fix would be to split the rq mempool into
1210 * READ and WRITE
1211 */
1212rq_starved:
1213 if (unlikely(rl->count[is_sync] == 0))
1214 rl->starved[is_sync] = 1;
a492f075 1215 return ERR_PTR(-ENOMEM);
1da177e4
LT
1216}
1217
da8303c6 1218/**
a06e05e6 1219 * get_request - get a free request
da8303c6
TH
1220 * @q: request_queue to allocate request from
1221 * @rw_flags: RW and SYNC flags
1222 * @bio: bio to allocate request for (can be %NULL)
a06e05e6 1223 * @gfp_mask: allocation mask
da8303c6 1224 *
d0164adc
MG
1225 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1226 * this function keeps retrying under memory pressure and fails iff @q is dead.
d6344532 1227 *
da3dae54 1228 * Must be called with @q->queue_lock held and,
a492f075
JL
1229 * Returns ERR_PTR on failure, with @q->queue_lock held.
1230 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1231 */
a06e05e6
TH
1232static struct request *get_request(struct request_queue *q, int rw_flags,
1233 struct bio *bio, gfp_t gfp_mask)
1da177e4 1234{
1faa16d2 1235 const bool is_sync = rw_is_sync(rw_flags) != 0;
a06e05e6 1236 DEFINE_WAIT(wait);
a051661c 1237 struct request_list *rl;
1da177e4 1238 struct request *rq;
a051661c
TH
1239
1240 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
a06e05e6 1241retry:
a051661c 1242 rq = __get_request(rl, rw_flags, bio, gfp_mask);
a492f075 1243 if (!IS_ERR(rq))
a06e05e6 1244 return rq;
1da177e4 1245
d0164adc 1246 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
a051661c 1247 blk_put_rl(rl);
a492f075 1248 return rq;
a051661c 1249 }
1da177e4 1250
a06e05e6
TH
1251 /* wait on @rl and retry */
1252 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1253 TASK_UNINTERRUPTIBLE);
1da177e4 1254
a06e05e6 1255 trace_block_sleeprq(q, bio, rw_flags & 1);
1da177e4 1256
a06e05e6
TH
1257 spin_unlock_irq(q->queue_lock);
1258 io_schedule();
d6344532 1259
a06e05e6
TH
1260 /*
1261 * After sleeping, we become a "batching" process and will be able
1262 * to allocate at least one request, and up to a big batch of them
1263 * for a small period time. See ioc_batching, ioc_set_batching
1264 */
a06e05e6 1265 ioc_set_batching(q, current->io_context);
05caf8db 1266
a06e05e6
TH
1267 spin_lock_irq(q->queue_lock);
1268 finish_wait(&rl->wait[is_sync], &wait);
1da177e4 1269
a06e05e6 1270 goto retry;
1da177e4
LT
1271}
1272
320ae51f
JA
1273static struct request *blk_old_get_request(struct request_queue *q, int rw,
1274 gfp_t gfp_mask)
1da177e4
LT
1275{
1276 struct request *rq;
1277
1278 BUG_ON(rw != READ && rw != WRITE);
1279
7f4b35d1
TH
1280 /* create ioc upfront */
1281 create_io_context(gfp_mask, q->node);
1282
d6344532 1283 spin_lock_irq(q->queue_lock);
a06e05e6 1284 rq = get_request(q, rw, NULL, gfp_mask);
a492f075 1285 if (IS_ERR(rq))
da8303c6 1286 spin_unlock_irq(q->queue_lock);
d6344532 1287 /* q->queue_lock is unlocked at this point */
1da177e4
LT
1288
1289 return rq;
1290}
320ae51f
JA
1291
1292struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1293{
1294 if (q->mq_ops)
4ce01dd1 1295 return blk_mq_alloc_request(q, rw, gfp_mask, false);
320ae51f
JA
1296 else
1297 return blk_old_get_request(q, rw, gfp_mask);
1298}
1da177e4
LT
1299EXPORT_SYMBOL(blk_get_request);
1300
dc72ef4a 1301/**
79eb63e9 1302 * blk_make_request - given a bio, allocate a corresponding struct request.
8ebf9756 1303 * @q: target request queue
79eb63e9
BH
1304 * @bio: The bio describing the memory mappings that will be submitted for IO.
1305 * It may be a chained-bio properly constructed by block/bio layer.
8ebf9756 1306 * @gfp_mask: gfp flags to be used for memory allocation
dc72ef4a 1307 *
79eb63e9
BH
1308 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1309 * type commands. Where the struct request needs to be farther initialized by
1310 * the caller. It is passed a &struct bio, which describes the memory info of
1311 * the I/O transfer.
dc72ef4a 1312 *
79eb63e9
BH
1313 * The caller of blk_make_request must make sure that bi_io_vec
1314 * are set to describe the memory buffers. That bio_data_dir() will return
1315 * the needed direction of the request. (And all bio's in the passed bio-chain
1316 * are properly set accordingly)
1317 *
1318 * If called under none-sleepable conditions, mapped bio buffers must not
1319 * need bouncing, by calling the appropriate masked or flagged allocator,
1320 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1321 * BUG.
53674ac5
JA
1322 *
1323 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
d0164adc
MG
1324 * given to how you allocate bios. In particular, you cannot use
1325 * __GFP_DIRECT_RECLAIM for anything but the first bio in the chain. Otherwise
1326 * you risk waiting for IO completion of a bio that hasn't been submitted yet,
1327 * thus resulting in a deadlock. Alternatively bios should be allocated using
1328 * bio_kmalloc() instead of bio_alloc(), as that avoids the mempool deadlock.
53674ac5
JA
1329 * If possible a big IO should be split into smaller parts when allocation
1330 * fails. Partial allocation should not be an error, or you risk a live-lock.
dc72ef4a 1331 */
79eb63e9
BH
1332struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1333 gfp_t gfp_mask)
dc72ef4a 1334{
79eb63e9
BH
1335 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1336
a492f075
JL
1337 if (IS_ERR(rq))
1338 return rq;
79eb63e9 1339
f27b087b
JA
1340 blk_rq_set_block_pc(rq);
1341
79eb63e9
BH
1342 for_each_bio(bio) {
1343 struct bio *bounce_bio = bio;
1344 int ret;
1345
1346 blk_queue_bounce(q, &bounce_bio);
1347 ret = blk_rq_append_bio(q, rq, bounce_bio);
1348 if (unlikely(ret)) {
1349 blk_put_request(rq);
1350 return ERR_PTR(ret);
1351 }
1352 }
1353
1354 return rq;
dc72ef4a 1355}
79eb63e9 1356EXPORT_SYMBOL(blk_make_request);
dc72ef4a 1357
f27b087b 1358/**
da3dae54 1359 * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
f27b087b
JA
1360 * @rq: request to be initialized
1361 *
1362 */
1363void blk_rq_set_block_pc(struct request *rq)
1364{
1365 rq->cmd_type = REQ_TYPE_BLOCK_PC;
1366 rq->__data_len = 0;
1367 rq->__sector = (sector_t) -1;
1368 rq->bio = rq->biotail = NULL;
1369 memset(rq->__cmd, 0, sizeof(rq->__cmd));
f27b087b
JA
1370}
1371EXPORT_SYMBOL(blk_rq_set_block_pc);
1372
1da177e4
LT
1373/**
1374 * blk_requeue_request - put a request back on queue
1375 * @q: request queue where request should be inserted
1376 * @rq: request to be inserted
1377 *
1378 * Description:
1379 * Drivers often keep queueing requests until the hardware cannot accept
1380 * more, when that condition happens we need to put the request back
1381 * on the queue. Must be called with queue lock held.
1382 */
165125e1 1383void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1384{
242f9dcb
JA
1385 blk_delete_timer(rq);
1386 blk_clear_rq_complete(rq);
5f3ea37c 1387 trace_block_rq_requeue(q, rq);
2056a782 1388
125c99bc 1389 if (rq->cmd_flags & REQ_QUEUED)
1da177e4
LT
1390 blk_queue_end_tag(q, rq);
1391
ba396a6c
JB
1392 BUG_ON(blk_queued_rq(rq));
1393
1da177e4
LT
1394 elv_requeue_request(q, rq);
1395}
1da177e4
LT
1396EXPORT_SYMBOL(blk_requeue_request);
1397
73c10101
JA
1398static void add_acct_request(struct request_queue *q, struct request *rq,
1399 int where)
1400{
320ae51f 1401 blk_account_io_start(rq, true);
7eaceacc 1402 __elv_add_request(q, rq, where);
73c10101
JA
1403}
1404
074a7aca
TH
1405static void part_round_stats_single(int cpu, struct hd_struct *part,
1406 unsigned long now)
1407{
7276d02e
JA
1408 int inflight;
1409
074a7aca
TH
1410 if (now == part->stamp)
1411 return;
1412
7276d02e
JA
1413 inflight = part_in_flight(part);
1414 if (inflight) {
074a7aca 1415 __part_stat_add(cpu, part, time_in_queue,
7276d02e 1416 inflight * (now - part->stamp));
074a7aca
TH
1417 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1418 }
1419 part->stamp = now;
1420}
1421
1422/**
496aa8a9
RD
1423 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1424 * @cpu: cpu number for stats access
1425 * @part: target partition
1da177e4
LT
1426 *
1427 * The average IO queue length and utilisation statistics are maintained
1428 * by observing the current state of the queue length and the amount of
1429 * time it has been in this state for.
1430 *
1431 * Normally, that accounting is done on IO completion, but that can result
1432 * in more than a second's worth of IO being accounted for within any one
1433 * second, leading to >100% utilisation. To deal with that, we call this
1434 * function to do a round-off before returning the results when reading
1435 * /proc/diskstats. This accounts immediately for all queue usage up to
1436 * the current jiffies and restarts the counters again.
1437 */
c9959059 1438void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1439{
1440 unsigned long now = jiffies;
1441
074a7aca
TH
1442 if (part->partno)
1443 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1444 part_round_stats_single(cpu, part, now);
6f2576af 1445}
074a7aca 1446EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1447
47fafbc7 1448#ifdef CONFIG_PM
c8158819
LM
1449static void blk_pm_put_request(struct request *rq)
1450{
1451 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1452 pm_runtime_mark_last_busy(rq->q->dev);
1453}
1454#else
1455static inline void blk_pm_put_request(struct request *rq) {}
1456#endif
1457
1da177e4
LT
1458/*
1459 * queue lock must be held
1460 */
165125e1 1461void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1462{
1da177e4
LT
1463 if (unlikely(!q))
1464 return;
1da177e4 1465
6f5ba581
CH
1466 if (q->mq_ops) {
1467 blk_mq_free_request(req);
1468 return;
1469 }
1470
c8158819
LM
1471 blk_pm_put_request(req);
1472
8922e16c
TH
1473 elv_completed_request(q, req);
1474
1cd96c24
BH
1475 /* this is a bio leak */
1476 WARN_ON(req->bio != NULL);
1477
1da177e4
LT
1478 /*
1479 * Request may not have originated from ll_rw_blk. if not,
1480 * it didn't come out of our reserved rq pools
1481 */
49171e5c 1482 if (req->cmd_flags & REQ_ALLOCED) {
75eb6c37 1483 unsigned int flags = req->cmd_flags;
a051661c 1484 struct request_list *rl = blk_rq_rl(req);
1da177e4 1485
1da177e4 1486 BUG_ON(!list_empty(&req->queuelist));
360f92c2 1487 BUG_ON(ELV_ON_HASH(req));
1da177e4 1488
a051661c
TH
1489 blk_free_request(rl, req);
1490 freed_request(rl, flags);
1491 blk_put_rl(rl);
1da177e4
LT
1492 }
1493}
6e39b69e
MC
1494EXPORT_SYMBOL_GPL(__blk_put_request);
1495
1da177e4
LT
1496void blk_put_request(struct request *req)
1497{
165125e1 1498 struct request_queue *q = req->q;
8922e16c 1499
320ae51f
JA
1500 if (q->mq_ops)
1501 blk_mq_free_request(req);
1502 else {
1503 unsigned long flags;
1504
1505 spin_lock_irqsave(q->queue_lock, flags);
1506 __blk_put_request(q, req);
1507 spin_unlock_irqrestore(q->queue_lock, flags);
1508 }
1da177e4 1509}
1da177e4
LT
1510EXPORT_SYMBOL(blk_put_request);
1511
66ac0280
CH
1512/**
1513 * blk_add_request_payload - add a payload to a request
1514 * @rq: request to update
1515 * @page: page backing the payload
1516 * @len: length of the payload.
1517 *
1518 * This allows to later add a payload to an already submitted request by
1519 * a block driver. The driver needs to take care of freeing the payload
1520 * itself.
1521 *
1522 * Note that this is a quite horrible hack and nothing but handling of
1523 * discard requests should ever use it.
1524 */
1525void blk_add_request_payload(struct request *rq, struct page *page,
1526 unsigned int len)
1527{
1528 struct bio *bio = rq->bio;
1529
1530 bio->bi_io_vec->bv_page = page;
1531 bio->bi_io_vec->bv_offset = 0;
1532 bio->bi_io_vec->bv_len = len;
1533
4f024f37 1534 bio->bi_iter.bi_size = len;
66ac0280
CH
1535 bio->bi_vcnt = 1;
1536 bio->bi_phys_segments = 1;
1537
1538 rq->__data_len = rq->resid_len = len;
1539 rq->nr_phys_segments = 1;
66ac0280
CH
1540}
1541EXPORT_SYMBOL_GPL(blk_add_request_payload);
1542
320ae51f
JA
1543bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1544 struct bio *bio)
73c10101
JA
1545{
1546 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1547
73c10101
JA
1548 if (!ll_back_merge_fn(q, req, bio))
1549 return false;
1550
8c1cf6bb 1551 trace_block_bio_backmerge(q, req, bio);
73c10101
JA
1552
1553 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1554 blk_rq_set_mixed_merge(req);
1555
1556 req->biotail->bi_next = bio;
1557 req->biotail = bio;
4f024f37 1558 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1559 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1560
320ae51f 1561 blk_account_io_start(req, false);
73c10101
JA
1562 return true;
1563}
1564
320ae51f
JA
1565bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1566 struct bio *bio)
73c10101
JA
1567{
1568 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
73c10101 1569
73c10101
JA
1570 if (!ll_front_merge_fn(q, req, bio))
1571 return false;
1572
8c1cf6bb 1573 trace_block_bio_frontmerge(q, req, bio);
73c10101
JA
1574
1575 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1576 blk_rq_set_mixed_merge(req);
1577
73c10101
JA
1578 bio->bi_next = req->bio;
1579 req->bio = bio;
1580
4f024f37
KO
1581 req->__sector = bio->bi_iter.bi_sector;
1582 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1583 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1584
320ae51f 1585 blk_account_io_start(req, false);
73c10101
JA
1586 return true;
1587}
1588
bd87b589 1589/**
320ae51f 1590 * blk_attempt_plug_merge - try to merge with %current's plugged list
bd87b589
TH
1591 * @q: request_queue new bio is being queued at
1592 * @bio: new bio being queued
1593 * @request_count: out parameter for number of traversed plugged requests
ccc2600b
RD
1594 * @same_queue_rq: pointer to &struct request that gets filled in when
1595 * another request associated with @q is found on the plug list
1596 * (optional, may be %NULL)
bd87b589
TH
1597 *
1598 * Determine whether @bio being queued on @q can be merged with a request
1599 * on %current's plugged list. Returns %true if merge was successful,
1600 * otherwise %false.
1601 *
07c2bd37
TH
1602 * Plugging coalesces IOs from the same issuer for the same purpose without
1603 * going through @q->queue_lock. As such it's more of an issuing mechanism
1604 * than scheduling, and the request, while may have elvpriv data, is not
1605 * added on the elevator at this point. In addition, we don't have
1606 * reliable access to the elevator outside queue lock. Only check basic
1607 * merging parameters without querying the elevator.
da41a589
RE
1608 *
1609 * Caller must ensure !blk_queue_nomerges(q) beforehand.
73c10101 1610 */
320ae51f 1611bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
5b3f341f
SL
1612 unsigned int *request_count,
1613 struct request **same_queue_rq)
73c10101
JA
1614{
1615 struct blk_plug *plug;
1616 struct request *rq;
1617 bool ret = false;
92f399c7 1618 struct list_head *plug_list;
73c10101 1619
bd87b589 1620 plug = current->plug;
73c10101
JA
1621 if (!plug)
1622 goto out;
56ebdaf2 1623 *request_count = 0;
73c10101 1624
92f399c7
SL
1625 if (q->mq_ops)
1626 plug_list = &plug->mq_list;
1627 else
1628 plug_list = &plug->list;
1629
1630 list_for_each_entry_reverse(rq, plug_list, queuelist) {
73c10101
JA
1631 int el_ret;
1632
5b3f341f 1633 if (rq->q == q) {
1b2e19f1 1634 (*request_count)++;
5b3f341f
SL
1635 /*
1636 * Only blk-mq multiple hardware queues case checks the
1637 * rq in the same queue, there should be only one such
1638 * rq in a queue
1639 **/
1640 if (same_queue_rq)
1641 *same_queue_rq = rq;
1642 }
56ebdaf2 1643
07c2bd37 1644 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
1645 continue;
1646
050c8ea8 1647 el_ret = blk_try_merge(rq, bio);
73c10101
JA
1648 if (el_ret == ELEVATOR_BACK_MERGE) {
1649 ret = bio_attempt_back_merge(q, rq, bio);
1650 if (ret)
1651 break;
1652 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1653 ret = bio_attempt_front_merge(q, rq, bio);
1654 if (ret)
1655 break;
1656 }
1657 }
1658out:
1659 return ret;
1660}
1661
0809e3ac
JM
1662unsigned int blk_plug_queued_count(struct request_queue *q)
1663{
1664 struct blk_plug *plug;
1665 struct request *rq;
1666 struct list_head *plug_list;
1667 unsigned int ret = 0;
1668
1669 plug = current->plug;
1670 if (!plug)
1671 goto out;
1672
1673 if (q->mq_ops)
1674 plug_list = &plug->mq_list;
1675 else
1676 plug_list = &plug->list;
1677
1678 list_for_each_entry(rq, plug_list, queuelist) {
1679 if (rq->q == q)
1680 ret++;
1681 }
1682out:
1683 return ret;
1684}
1685
86db1e29 1686void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1687{
4aff5e23 1688 req->cmd_type = REQ_TYPE_FS;
52d9e675 1689
7b6d91da
CH
1690 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1691 if (bio->bi_rw & REQ_RAHEAD)
a82afdfc 1692 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1693
52d9e675 1694 req->errors = 0;
4f024f37 1695 req->__sector = bio->bi_iter.bi_sector;
52d9e675 1696 req->ioprio = bio_prio(bio);
bc1c56fd 1697 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1698}
1699
dece1635 1700static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1701{
5e00d1b5 1702 const bool sync = !!(bio->bi_rw & REQ_SYNC);
73c10101
JA
1703 struct blk_plug *plug;
1704 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1705 struct request *req;
56ebdaf2 1706 unsigned int request_count = 0;
1da177e4 1707
1da177e4
LT
1708 /*
1709 * low level driver can indicate that it wants pages above a
1710 * certain limit bounced to low memory (ie for highmem, or even
1711 * ISA dma in theory)
1712 */
1713 blk_queue_bounce(q, &bio);
1714
23688bf4
JN
1715 blk_queue_split(q, &bio, q->bio_split);
1716
ffecfd1a 1717 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
4246a0b6
CH
1718 bio->bi_error = -EIO;
1719 bio_endio(bio);
dece1635 1720 return BLK_QC_T_NONE;
ffecfd1a
DW
1721 }
1722
4fed947c 1723 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
73c10101 1724 spin_lock_irq(q->queue_lock);
ae1b1539 1725 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1726 goto get_rq;
1727 }
1728
73c10101
JA
1729 /*
1730 * Check if we can merge with the plugged list before grabbing
1731 * any locks.
1732 */
0809e3ac
JM
1733 if (!blk_queue_nomerges(q)) {
1734 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
dece1635 1735 return BLK_QC_T_NONE;
0809e3ac
JM
1736 } else
1737 request_count = blk_plug_queued_count(q);
1da177e4 1738
73c10101 1739 spin_lock_irq(q->queue_lock);
2056a782 1740
73c10101
JA
1741 el_ret = elv_merge(q, &req, bio);
1742 if (el_ret == ELEVATOR_BACK_MERGE) {
73c10101 1743 if (bio_attempt_back_merge(q, req, bio)) {
07c2bd37 1744 elv_bio_merged(q, req, bio);
73c10101
JA
1745 if (!attempt_back_merge(q, req))
1746 elv_merged_request(q, req, el_ret);
1747 goto out_unlock;
1748 }
1749 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
73c10101 1750 if (bio_attempt_front_merge(q, req, bio)) {
07c2bd37 1751 elv_bio_merged(q, req, bio);
73c10101
JA
1752 if (!attempt_front_merge(q, req))
1753 elv_merged_request(q, req, el_ret);
1754 goto out_unlock;
80a761fd 1755 }
1da177e4
LT
1756 }
1757
450991bc 1758get_rq:
7749a8d4
JA
1759 /*
1760 * This sync check and mask will be re-done in init_request_from_bio(),
1761 * but we need to set it earlier to expose the sync flag to the
1762 * rq allocator and io schedulers.
1763 */
1764 rw_flags = bio_data_dir(bio);
1765 if (sync)
7b6d91da 1766 rw_flags |= REQ_SYNC;
7749a8d4 1767
1da177e4 1768 /*
450991bc 1769 * Grab a free request. This is might sleep but can not fail.
d6344532 1770 * Returns with the queue unlocked.
450991bc 1771 */
a06e05e6 1772 req = get_request(q, rw_flags, bio, GFP_NOIO);
a492f075 1773 if (IS_ERR(req)) {
4246a0b6
CH
1774 bio->bi_error = PTR_ERR(req);
1775 bio_endio(bio);
da8303c6
TH
1776 goto out_unlock;
1777 }
d6344532 1778
450991bc
NP
1779 /*
1780 * After dropping the lock and possibly sleeping here, our request
1781 * may now be mergeable after it had proven unmergeable (above).
1782 * We don't worry about that case for efficiency. It won't happen
1783 * often, and the elevators are able to handle it.
1da177e4 1784 */
52d9e675 1785 init_request_from_bio(req, bio);
1da177e4 1786
9562ad9a 1787 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 1788 req->cpu = raw_smp_processor_id();
73c10101
JA
1789
1790 plug = current->plug;
721a9602 1791 if (plug) {
dc6d36c9
JA
1792 /*
1793 * If this is the first request added after a plug, fire
7aef2e78 1794 * of a plug trace.
dc6d36c9 1795 */
7aef2e78 1796 if (!request_count)
dc6d36c9 1797 trace_block_plug(q);
3540d5e8 1798 else {
019ceb7d 1799 if (request_count >= BLK_MAX_REQUEST_COUNT) {
3540d5e8 1800 blk_flush_plug_list(plug, false);
019ceb7d
SL
1801 trace_block_plug(q);
1802 }
73c10101 1803 }
73c10101 1804 list_add_tail(&req->queuelist, &plug->list);
320ae51f 1805 blk_account_io_start(req, true);
73c10101
JA
1806 } else {
1807 spin_lock_irq(q->queue_lock);
1808 add_acct_request(q, req, where);
24ecfbe2 1809 __blk_run_queue(q);
73c10101
JA
1810out_unlock:
1811 spin_unlock_irq(q->queue_lock);
1812 }
dece1635
JA
1813
1814 return BLK_QC_T_NONE;
1da177e4
LT
1815}
1816
1817/*
1818 * If bio->bi_dev is a partition, remap the location
1819 */
1820static inline void blk_partition_remap(struct bio *bio)
1821{
1822 struct block_device *bdev = bio->bi_bdev;
1823
bf2de6f5 1824 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1825 struct hd_struct *p = bdev->bd_part;
1826
4f024f37 1827 bio->bi_iter.bi_sector += p->start_sect;
1da177e4 1828 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1829
d07335e5
MS
1830 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1831 bdev->bd_dev,
4f024f37 1832 bio->bi_iter.bi_sector - p->start_sect);
1da177e4
LT
1833 }
1834}
1835
1da177e4
LT
1836static void handle_bad_sector(struct bio *bio)
1837{
1838 char b[BDEVNAME_SIZE];
1839
1840 printk(KERN_INFO "attempt to access beyond end of device\n");
1841 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1842 bdevname(bio->bi_bdev, b),
1843 bio->bi_rw,
f73a1c7d 1844 (unsigned long long)bio_end_sector(bio),
77304d2a 1845 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1da177e4
LT
1846}
1847
c17bb495
AM
1848#ifdef CONFIG_FAIL_MAKE_REQUEST
1849
1850static DECLARE_FAULT_ATTR(fail_make_request);
1851
1852static int __init setup_fail_make_request(char *str)
1853{
1854 return setup_fault_attr(&fail_make_request, str);
1855}
1856__setup("fail_make_request=", setup_fail_make_request);
1857
b2c9cd37 1858static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 1859{
b2c9cd37 1860 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
1861}
1862
1863static int __init fail_make_request_debugfs(void)
1864{
dd48c085
AM
1865 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1866 NULL, &fail_make_request);
1867
21f9fcd8 1868 return PTR_ERR_OR_ZERO(dir);
c17bb495
AM
1869}
1870
1871late_initcall(fail_make_request_debugfs);
1872
1873#else /* CONFIG_FAIL_MAKE_REQUEST */
1874
b2c9cd37
AM
1875static inline bool should_fail_request(struct hd_struct *part,
1876 unsigned int bytes)
c17bb495 1877{
b2c9cd37 1878 return false;
c17bb495
AM
1879}
1880
1881#endif /* CONFIG_FAIL_MAKE_REQUEST */
1882
c07e2b41
JA
1883/*
1884 * Check whether this bio extends beyond the end of the device.
1885 */
1886static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1887{
1888 sector_t maxsector;
1889
1890 if (!nr_sectors)
1891 return 0;
1892
1893 /* Test device or partition size, when known. */
77304d2a 1894 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
c07e2b41 1895 if (maxsector) {
4f024f37 1896 sector_t sector = bio->bi_iter.bi_sector;
c07e2b41
JA
1897
1898 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1899 /*
1900 * This may well happen - the kernel calls bread()
1901 * without checking the size of the device, e.g., when
1902 * mounting a device.
1903 */
1904 handle_bad_sector(bio);
1905 return 1;
1906 }
1907 }
1908
1909 return 0;
1910}
1911
27a84d54
CH
1912static noinline_for_stack bool
1913generic_make_request_checks(struct bio *bio)
1da177e4 1914{
165125e1 1915 struct request_queue *q;
5a7bbad2 1916 int nr_sectors = bio_sectors(bio);
51fd77bd 1917 int err = -EIO;
5a7bbad2
CH
1918 char b[BDEVNAME_SIZE];
1919 struct hd_struct *part;
1da177e4
LT
1920
1921 might_sleep();
1da177e4 1922
c07e2b41
JA
1923 if (bio_check_eod(bio, nr_sectors))
1924 goto end_io;
1da177e4 1925
5a7bbad2
CH
1926 q = bdev_get_queue(bio->bi_bdev);
1927 if (unlikely(!q)) {
1928 printk(KERN_ERR
1929 "generic_make_request: Trying to access "
1930 "nonexistent block-device %s (%Lu)\n",
1931 bdevname(bio->bi_bdev, b),
4f024f37 1932 (long long) bio->bi_iter.bi_sector);
5a7bbad2
CH
1933 goto end_io;
1934 }
c17bb495 1935
5a7bbad2 1936 part = bio->bi_bdev->bd_part;
4f024f37 1937 if (should_fail_request(part, bio->bi_iter.bi_size) ||
5a7bbad2 1938 should_fail_request(&part_to_disk(part)->part0,
4f024f37 1939 bio->bi_iter.bi_size))
5a7bbad2 1940 goto end_io;
2056a782 1941
5a7bbad2
CH
1942 /*
1943 * If this device has partitions, remap block n
1944 * of partition p to block n+start(p) of the disk.
1945 */
1946 blk_partition_remap(bio);
2056a782 1947
5a7bbad2
CH
1948 if (bio_check_eod(bio, nr_sectors))
1949 goto end_io;
1e87901e 1950
5a7bbad2
CH
1951 /*
1952 * Filter flush bio's early so that make_request based
1953 * drivers without flush support don't have to worry
1954 * about them.
1955 */
1956 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1957 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1958 if (!nr_sectors) {
1959 err = 0;
51fd77bd
JA
1960 goto end_io;
1961 }
5a7bbad2 1962 }
5ddfe969 1963
5a7bbad2
CH
1964 if ((bio->bi_rw & REQ_DISCARD) &&
1965 (!blk_queue_discard(q) ||
e2a60da7 1966 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
5a7bbad2
CH
1967 err = -EOPNOTSUPP;
1968 goto end_io;
1969 }
01edede4 1970
4363ac7c 1971 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
5a7bbad2
CH
1972 err = -EOPNOTSUPP;
1973 goto end_io;
1974 }
01edede4 1975
7f4b35d1
TH
1976 /*
1977 * Various block parts want %current->io_context and lazy ioc
1978 * allocation ends up trading a lot of pain for a small amount of
1979 * memory. Just allocate it upfront. This may fail and block
1980 * layer knows how to live with it.
1981 */
1982 create_io_context(GFP_ATOMIC, q->node);
1983
ae118896
TH
1984 if (!blkcg_bio_issue_check(q, bio))
1985 return false;
27a84d54 1986
5a7bbad2 1987 trace_block_bio_queue(q, bio);
27a84d54 1988 return true;
a7384677
TH
1989
1990end_io:
4246a0b6
CH
1991 bio->bi_error = err;
1992 bio_endio(bio);
27a84d54 1993 return false;
1da177e4
LT
1994}
1995
27a84d54
CH
1996/**
1997 * generic_make_request - hand a buffer to its device driver for I/O
1998 * @bio: The bio describing the location in memory and on the device.
1999 *
2000 * generic_make_request() is used to make I/O requests of block
2001 * devices. It is passed a &struct bio, which describes the I/O that needs
2002 * to be done.
2003 *
2004 * generic_make_request() does not return any status. The
2005 * success/failure status of the request, along with notification of
2006 * completion, is delivered asynchronously through the bio->bi_end_io
2007 * function described (one day) else where.
2008 *
2009 * The caller of generic_make_request must make sure that bi_io_vec
2010 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2011 * set to describe the device address, and the
2012 * bi_end_io and optionally bi_private are set to describe how
2013 * completion notification should be signaled.
2014 *
2015 * generic_make_request and the drivers it calls may use bi_next if this
2016 * bio happens to be merged with someone else, and may resubmit the bio to
2017 * a lower device by calling into generic_make_request recursively, which
2018 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796 2019 */
dece1635 2020blk_qc_t generic_make_request(struct bio *bio)
d89d8796 2021{
bddd87c7 2022 struct bio_list bio_list_on_stack;
dece1635 2023 blk_qc_t ret = BLK_QC_T_NONE;
bddd87c7 2024
27a84d54 2025 if (!generic_make_request_checks(bio))
dece1635 2026 goto out;
27a84d54
CH
2027
2028 /*
2029 * We only want one ->make_request_fn to be active at a time, else
2030 * stack usage with stacked devices could be a problem. So use
2031 * current->bio_list to keep a list of requests submited by a
2032 * make_request_fn function. current->bio_list is also used as a
2033 * flag to say if generic_make_request is currently active in this
2034 * task or not. If it is NULL, then no make_request is active. If
2035 * it is non-NULL, then a make_request is active, and new requests
2036 * should be added at the tail
2037 */
bddd87c7 2038 if (current->bio_list) {
bddd87c7 2039 bio_list_add(current->bio_list, bio);
dece1635 2040 goto out;
d89d8796 2041 }
27a84d54 2042
d89d8796
NB
2043 /* following loop may be a bit non-obvious, and so deserves some
2044 * explanation.
2045 * Before entering the loop, bio->bi_next is NULL (as all callers
2046 * ensure that) so we have a list with a single bio.
2047 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
2048 * we assign bio_list to a pointer to the bio_list_on_stack,
2049 * thus initialising the bio_list of new bios to be
27a84d54 2050 * added. ->make_request() may indeed add some more bios
d89d8796
NB
2051 * through a recursive call to generic_make_request. If it
2052 * did, we find a non-NULL value in bio_list and re-enter the loop
2053 * from the top. In this case we really did just take the bio
bddd87c7 2054 * of the top of the list (no pretending) and so remove it from
27a84d54 2055 * bio_list, and call into ->make_request() again.
d89d8796
NB
2056 */
2057 BUG_ON(bio->bi_next);
bddd87c7
AM
2058 bio_list_init(&bio_list_on_stack);
2059 current->bio_list = &bio_list_on_stack;
d89d8796 2060 do {
27a84d54
CH
2061 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2062
71baba4b 2063 if (likely(blk_queue_enter(q, __GFP_DIRECT_RECLAIM) == 0)) {
3ef28e83 2064
dece1635 2065 ret = q->make_request_fn(q, bio);
3ef28e83
DW
2066
2067 blk_queue_exit(q);
27a84d54 2068
3ef28e83
DW
2069 bio = bio_list_pop(current->bio_list);
2070 } else {
2071 struct bio *bio_next = bio_list_pop(current->bio_list);
2072
2073 bio_io_error(bio);
2074 bio = bio_next;
2075 }
d89d8796 2076 } while (bio);
bddd87c7 2077 current->bio_list = NULL; /* deactivate */
dece1635
JA
2078
2079out:
2080 return ret;
d89d8796 2081}
1da177e4
LT
2082EXPORT_SYMBOL(generic_make_request);
2083
2084/**
710027a4 2085 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
2086 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
2087 * @bio: The &struct bio which describes the I/O
2088 *
2089 * submit_bio() is very similar in purpose to generic_make_request(), and
2090 * uses that function to do most of the work. Both are fairly rough
710027a4 2091 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
2092 *
2093 */
dece1635 2094blk_qc_t submit_bio(int rw, struct bio *bio)
1da177e4 2095{
22e2c507 2096 bio->bi_rw |= rw;
1da177e4 2097
bf2de6f5
JA
2098 /*
2099 * If it's a regular read/write or a barrier with data attached,
2100 * go through the normal accounting stuff before submission.
2101 */
e2a60da7 2102 if (bio_has_data(bio)) {
4363ac7c
MP
2103 unsigned int count;
2104
2105 if (unlikely(rw & REQ_WRITE_SAME))
2106 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2107 else
2108 count = bio_sectors(bio);
2109
bf2de6f5
JA
2110 if (rw & WRITE) {
2111 count_vm_events(PGPGOUT, count);
2112 } else {
4f024f37 2113 task_io_account_read(bio->bi_iter.bi_size);
bf2de6f5
JA
2114 count_vm_events(PGPGIN, count);
2115 }
2116
2117 if (unlikely(block_dump)) {
2118 char b[BDEVNAME_SIZE];
8dcbdc74 2119 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 2120 current->comm, task_pid_nr(current),
bf2de6f5 2121 (rw & WRITE) ? "WRITE" : "READ",
4f024f37 2122 (unsigned long long)bio->bi_iter.bi_sector,
8dcbdc74
SM
2123 bdevname(bio->bi_bdev, b),
2124 count);
bf2de6f5 2125 }
1da177e4
LT
2126 }
2127
dece1635 2128 return generic_make_request(bio);
1da177e4 2129}
1da177e4
LT
2130EXPORT_SYMBOL(submit_bio);
2131
82124d60 2132/**
bf4e6b4e
HR
2133 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2134 * for new the queue limits
82124d60
KU
2135 * @q: the queue
2136 * @rq: the request being checked
2137 *
2138 * Description:
2139 * @rq may have been made based on weaker limitations of upper-level queues
2140 * in request stacking drivers, and it may violate the limitation of @q.
2141 * Since the block layer and the underlying device driver trust @rq
2142 * after it is inserted to @q, it should be checked against @q before
2143 * the insertion using this generic function.
2144 *
82124d60 2145 * Request stacking drivers like request-based dm may change the queue
bf4e6b4e
HR
2146 * limits when retrying requests on other queues. Those requests need
2147 * to be checked against the new queue limits again during dispatch.
82124d60 2148 */
bf4e6b4e
HR
2149static int blk_cloned_rq_check_limits(struct request_queue *q,
2150 struct request *rq)
82124d60 2151{
f31dc1cd 2152 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
82124d60
KU
2153 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2154 return -EIO;
2155 }
2156
2157 /*
2158 * queue's settings related to segment counting like q->bounce_pfn
2159 * may differ from that of other stacking queues.
2160 * Recalculate it to check the request correctly on this queue's
2161 * limitation.
2162 */
2163 blk_recalc_rq_segments(rq);
8a78362c 2164 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
2165 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2166 return -EIO;
2167 }
2168
2169 return 0;
2170}
82124d60
KU
2171
2172/**
2173 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2174 * @q: the queue to submit the request
2175 * @rq: the request being queued
2176 */
2177int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2178{
2179 unsigned long flags;
4853abaa 2180 int where = ELEVATOR_INSERT_BACK;
82124d60 2181
bf4e6b4e 2182 if (blk_cloned_rq_check_limits(q, rq))
82124d60
KU
2183 return -EIO;
2184
b2c9cd37
AM
2185 if (rq->rq_disk &&
2186 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
82124d60 2187 return -EIO;
82124d60 2188
7fb4898e
KB
2189 if (q->mq_ops) {
2190 if (blk_queue_io_stat(q))
2191 blk_account_io_start(rq, true);
2192 blk_mq_insert_request(rq, false, true, true);
2193 return 0;
2194 }
2195
82124d60 2196 spin_lock_irqsave(q->queue_lock, flags);
3f3299d5 2197 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
2198 spin_unlock_irqrestore(q->queue_lock, flags);
2199 return -ENODEV;
2200 }
82124d60
KU
2201
2202 /*
2203 * Submitting request must be dequeued before calling this function
2204 * because it will be linked to another request_queue
2205 */
2206 BUG_ON(blk_queued_rq(rq));
2207
4853abaa
JM
2208 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
2209 where = ELEVATOR_INSERT_FLUSH;
2210
2211 add_acct_request(q, rq, where);
e67b77c7
JM
2212 if (where == ELEVATOR_INSERT_FLUSH)
2213 __blk_run_queue(q);
82124d60
KU
2214 spin_unlock_irqrestore(q->queue_lock, flags);
2215
2216 return 0;
2217}
2218EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2219
80a761fd
TH
2220/**
2221 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2222 * @rq: request to examine
2223 *
2224 * Description:
2225 * A request could be merge of IOs which require different failure
2226 * handling. This function determines the number of bytes which
2227 * can be failed from the beginning of the request without
2228 * crossing into area which need to be retried further.
2229 *
2230 * Return:
2231 * The number of bytes to fail.
2232 *
2233 * Context:
2234 * queue_lock must be held.
2235 */
2236unsigned int blk_rq_err_bytes(const struct request *rq)
2237{
2238 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2239 unsigned int bytes = 0;
2240 struct bio *bio;
2241
2242 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2243 return blk_rq_bytes(rq);
2244
2245 /*
2246 * Currently the only 'mixing' which can happen is between
2247 * different fastfail types. We can safely fail portions
2248 * which have all the failfast bits that the first one has -
2249 * the ones which are at least as eager to fail as the first
2250 * one.
2251 */
2252 for (bio = rq->bio; bio; bio = bio->bi_next) {
2253 if ((bio->bi_rw & ff) != ff)
2254 break;
4f024f37 2255 bytes += bio->bi_iter.bi_size;
80a761fd
TH
2256 }
2257
2258 /* this could lead to infinite loop */
2259 BUG_ON(blk_rq_bytes(rq) && !bytes);
2260 return bytes;
2261}
2262EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2263
320ae51f 2264void blk_account_io_completion(struct request *req, unsigned int bytes)
bc58ba94 2265{
c2553b58 2266 if (blk_do_io_stat(req)) {
bc58ba94
JA
2267 const int rw = rq_data_dir(req);
2268 struct hd_struct *part;
2269 int cpu;
2270
2271 cpu = part_stat_lock();
09e099d4 2272 part = req->part;
bc58ba94
JA
2273 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2274 part_stat_unlock();
2275 }
2276}
2277
320ae51f 2278void blk_account_io_done(struct request *req)
bc58ba94 2279{
bc58ba94 2280 /*
dd4c133f
TH
2281 * Account IO completion. flush_rq isn't accounted as a
2282 * normal IO on queueing nor completion. Accounting the
2283 * containing request is enough.
bc58ba94 2284 */
414b4ff5 2285 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
bc58ba94
JA
2286 unsigned long duration = jiffies - req->start_time;
2287 const int rw = rq_data_dir(req);
2288 struct hd_struct *part;
2289 int cpu;
2290
2291 cpu = part_stat_lock();
09e099d4 2292 part = req->part;
bc58ba94
JA
2293
2294 part_stat_inc(cpu, part, ios[rw]);
2295 part_stat_add(cpu, part, ticks[rw], duration);
2296 part_round_stats(cpu, part);
316d315b 2297 part_dec_in_flight(part, rw);
bc58ba94 2298
6c23a968 2299 hd_struct_put(part);
bc58ba94
JA
2300 part_stat_unlock();
2301 }
2302}
2303
47fafbc7 2304#ifdef CONFIG_PM
c8158819
LM
2305/*
2306 * Don't process normal requests when queue is suspended
2307 * or in the process of suspending/resuming
2308 */
2309static struct request *blk_pm_peek_request(struct request_queue *q,
2310 struct request *rq)
2311{
2312 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2313 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2314 return NULL;
2315 else
2316 return rq;
2317}
2318#else
2319static inline struct request *blk_pm_peek_request(struct request_queue *q,
2320 struct request *rq)
2321{
2322 return rq;
2323}
2324#endif
2325
320ae51f
JA
2326void blk_account_io_start(struct request *rq, bool new_io)
2327{
2328 struct hd_struct *part;
2329 int rw = rq_data_dir(rq);
2330 int cpu;
2331
2332 if (!blk_do_io_stat(rq))
2333 return;
2334
2335 cpu = part_stat_lock();
2336
2337 if (!new_io) {
2338 part = rq->part;
2339 part_stat_inc(cpu, part, merges[rw]);
2340 } else {
2341 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2342 if (!hd_struct_try_get(part)) {
2343 /*
2344 * The partition is already being removed,
2345 * the request will be accounted on the disk only
2346 *
2347 * We take a reference on disk->part0 although that
2348 * partition will never be deleted, so we can treat
2349 * it as any other partition.
2350 */
2351 part = &rq->rq_disk->part0;
2352 hd_struct_get(part);
2353 }
2354 part_round_stats(cpu, part);
2355 part_inc_in_flight(part, rw);
2356 rq->part = part;
2357 }
2358
2359 part_stat_unlock();
2360}
2361
3bcddeac 2362/**
9934c8c0
TH
2363 * blk_peek_request - peek at the top of a request queue
2364 * @q: request queue to peek at
2365 *
2366 * Description:
2367 * Return the request at the top of @q. The returned request
2368 * should be started using blk_start_request() before LLD starts
2369 * processing it.
2370 *
2371 * Return:
2372 * Pointer to the request at the top of @q if available. Null
2373 * otherwise.
2374 *
2375 * Context:
2376 * queue_lock must be held.
2377 */
2378struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
2379{
2380 struct request *rq;
2381 int ret;
2382
2383 while ((rq = __elv_next_request(q)) != NULL) {
c8158819
LM
2384
2385 rq = blk_pm_peek_request(q, rq);
2386 if (!rq)
2387 break;
2388
158dbda0
TH
2389 if (!(rq->cmd_flags & REQ_STARTED)) {
2390 /*
2391 * This is the first time the device driver
2392 * sees this request (possibly after
2393 * requeueing). Notify IO scheduler.
2394 */
33659ebb 2395 if (rq->cmd_flags & REQ_SORTED)
158dbda0
TH
2396 elv_activate_rq(q, rq);
2397
2398 /*
2399 * just mark as started even if we don't start
2400 * it, a request that has been delayed should
2401 * not be passed by new incoming requests
2402 */
2403 rq->cmd_flags |= REQ_STARTED;
2404 trace_block_rq_issue(q, rq);
2405 }
2406
2407 if (!q->boundary_rq || q->boundary_rq == rq) {
2408 q->end_sector = rq_end_sector(rq);
2409 q->boundary_rq = NULL;
2410 }
2411
2412 if (rq->cmd_flags & REQ_DONTPREP)
2413 break;
2414
2e46e8b2 2415 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
2416 /*
2417 * make sure space for the drain appears we
2418 * know we can do this because max_hw_segments
2419 * has been adjusted to be one fewer than the
2420 * device can handle
2421 */
2422 rq->nr_phys_segments++;
2423 }
2424
2425 if (!q->prep_rq_fn)
2426 break;
2427
2428 ret = q->prep_rq_fn(q, rq);
2429 if (ret == BLKPREP_OK) {
2430 break;
2431 } else if (ret == BLKPREP_DEFER) {
2432 /*
2433 * the request may have been (partially) prepped.
2434 * we need to keep this request in the front to
2435 * avoid resource deadlock. REQ_STARTED will
2436 * prevent other fs requests from passing this one.
2437 */
2e46e8b2 2438 if (q->dma_drain_size && blk_rq_bytes(rq) &&
158dbda0
TH
2439 !(rq->cmd_flags & REQ_DONTPREP)) {
2440 /*
2441 * remove the space for the drain we added
2442 * so that we don't add it again
2443 */
2444 --rq->nr_phys_segments;
2445 }
2446
2447 rq = NULL;
2448 break;
2449 } else if (ret == BLKPREP_KILL) {
2450 rq->cmd_flags |= REQ_QUIET;
c143dc90
JB
2451 /*
2452 * Mark this request as started so we don't trigger
2453 * any debug logic in the end I/O path.
2454 */
2455 blk_start_request(rq);
40cbbb78 2456 __blk_end_request_all(rq, -EIO);
158dbda0
TH
2457 } else {
2458 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2459 break;
2460 }
2461 }
2462
2463 return rq;
2464}
9934c8c0 2465EXPORT_SYMBOL(blk_peek_request);
158dbda0 2466
9934c8c0 2467void blk_dequeue_request(struct request *rq)
158dbda0 2468{
9934c8c0
TH
2469 struct request_queue *q = rq->q;
2470
158dbda0
TH
2471 BUG_ON(list_empty(&rq->queuelist));
2472 BUG_ON(ELV_ON_HASH(rq));
2473
2474 list_del_init(&rq->queuelist);
2475
2476 /*
2477 * the time frame between a request being removed from the lists
2478 * and to it is freed is accounted as io that is in progress at
2479 * the driver side.
2480 */
9195291e 2481 if (blk_account_rq(rq)) {
0a7ae2ff 2482 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
2483 set_io_start_time_ns(rq);
2484 }
158dbda0
TH
2485}
2486
9934c8c0
TH
2487/**
2488 * blk_start_request - start request processing on the driver
2489 * @req: request to dequeue
2490 *
2491 * Description:
2492 * Dequeue @req and start timeout timer on it. This hands off the
2493 * request to the driver.
2494 *
2495 * Block internal functions which don't want to start timer should
2496 * call blk_dequeue_request().
2497 *
2498 * Context:
2499 * queue_lock must be held.
2500 */
2501void blk_start_request(struct request *req)
2502{
2503 blk_dequeue_request(req);
2504
2505 /*
5f49f631
TH
2506 * We are now handing the request to the hardware, initialize
2507 * resid_len to full count and add the timeout handler.
9934c8c0 2508 */
5f49f631 2509 req->resid_len = blk_rq_bytes(req);
dbb66c4b
FT
2510 if (unlikely(blk_bidi_rq(req)))
2511 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2512
4912aa6c 2513 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
9934c8c0
TH
2514 blk_add_timer(req);
2515}
2516EXPORT_SYMBOL(blk_start_request);
2517
2518/**
2519 * blk_fetch_request - fetch a request from a request queue
2520 * @q: request queue to fetch a request from
2521 *
2522 * Description:
2523 * Return the request at the top of @q. The request is started on
2524 * return and LLD can start processing it immediately.
2525 *
2526 * Return:
2527 * Pointer to the request at the top of @q if available. Null
2528 * otherwise.
2529 *
2530 * Context:
2531 * queue_lock must be held.
2532 */
2533struct request *blk_fetch_request(struct request_queue *q)
2534{
2535 struct request *rq;
2536
2537 rq = blk_peek_request(q);
2538 if (rq)
2539 blk_start_request(rq);
2540 return rq;
2541}
2542EXPORT_SYMBOL(blk_fetch_request);
2543
3bcddeac 2544/**
2e60e022 2545 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2546 * @req: the request being processed
710027a4 2547 * @error: %0 for success, < %0 for error
8ebf9756 2548 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2549 *
2550 * Description:
8ebf9756
RD
2551 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2552 * the request structure even if @req doesn't have leftover.
2553 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2554 *
2555 * This special helper function is only for request stacking drivers
2556 * (e.g. request-based dm) so that they can handle partial completion.
2557 * Actual device drivers should use blk_end_request instead.
2558 *
2559 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2560 * %false return from this function.
3bcddeac
KU
2561 *
2562 * Return:
2e60e022
TH
2563 * %false - this request doesn't have any more data
2564 * %true - this request has more data
3bcddeac 2565 **/
2e60e022 2566bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 2567{
f79ea416 2568 int total_bytes;
1da177e4 2569
4a0efdc9
HR
2570 trace_block_rq_complete(req->q, req, nr_bytes);
2571
2e60e022
TH
2572 if (!req->bio)
2573 return false;
2574
1da177e4 2575 /*
6f41469c
TH
2576 * For fs requests, rq is just carrier of independent bio's
2577 * and each partial completion should be handled separately.
2578 * Reset per-request error on each partial completion.
2579 *
2580 * TODO: tj: This is too subtle. It would be better to let
2581 * low level drivers do what they see fit.
1da177e4 2582 */
33659ebb 2583 if (req->cmd_type == REQ_TYPE_FS)
1da177e4
LT
2584 req->errors = 0;
2585
33659ebb
CH
2586 if (error && req->cmd_type == REQ_TYPE_FS &&
2587 !(req->cmd_flags & REQ_QUIET)) {
79775567
HR
2588 char *error_type;
2589
2590 switch (error) {
2591 case -ENOLINK:
2592 error_type = "recoverable transport";
2593 break;
2594 case -EREMOTEIO:
2595 error_type = "critical target";
2596 break;
2597 case -EBADE:
2598 error_type = "critical nexus";
2599 break;
d1ffc1f8
HR
2600 case -ETIMEDOUT:
2601 error_type = "timeout";
2602 break;
a9d6ceb8
HR
2603 case -ENOSPC:
2604 error_type = "critical space allocation";
2605 break;
7e782af5
HR
2606 case -ENODATA:
2607 error_type = "critical medium";
2608 break;
79775567
HR
2609 case -EIO:
2610 default:
2611 error_type = "I/O";
2612 break;
2613 }
ef3ecb66
RE
2614 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2615 __func__, error_type, req->rq_disk ?
37d7b34f
YZ
2616 req->rq_disk->disk_name : "?",
2617 (unsigned long long)blk_rq_pos(req));
2618
1da177e4
LT
2619 }
2620
bc58ba94 2621 blk_account_io_completion(req, nr_bytes);
d72d904a 2622
f79ea416
KO
2623 total_bytes = 0;
2624 while (req->bio) {
2625 struct bio *bio = req->bio;
4f024f37 2626 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1da177e4 2627
4f024f37 2628 if (bio_bytes == bio->bi_iter.bi_size)
1da177e4 2629 req->bio = bio->bi_next;
1da177e4 2630
f79ea416 2631 req_bio_endio(req, bio, bio_bytes, error);
1da177e4 2632
f79ea416
KO
2633 total_bytes += bio_bytes;
2634 nr_bytes -= bio_bytes;
1da177e4 2635
f79ea416
KO
2636 if (!nr_bytes)
2637 break;
1da177e4
LT
2638 }
2639
2640 /*
2641 * completely done
2642 */
2e60e022
TH
2643 if (!req->bio) {
2644 /*
2645 * Reset counters so that the request stacking driver
2646 * can find how many bytes remain in the request
2647 * later.
2648 */
a2dec7b3 2649 req->__data_len = 0;
2e60e022
TH
2650 return false;
2651 }
1da177e4 2652
a2dec7b3 2653 req->__data_len -= total_bytes;
2e46e8b2
TH
2654
2655 /* update sector only for requests with clear definition of sector */
e2a60da7 2656 if (req->cmd_type == REQ_TYPE_FS)
a2dec7b3 2657 req->__sector += total_bytes >> 9;
2e46e8b2 2658
80a761fd
TH
2659 /* mixed attributes always follow the first bio */
2660 if (req->cmd_flags & REQ_MIXED_MERGE) {
2661 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2662 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2663 }
2664
2e46e8b2
TH
2665 /*
2666 * If total number of sectors is less than the first segment
2667 * size, something has gone terribly wrong.
2668 */
2669 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
8182924b 2670 blk_dump_rq_flags(req, "request botched");
a2dec7b3 2671 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2672 }
2673
2674 /* recalculate the number of segments */
1da177e4 2675 blk_recalc_rq_segments(req);
2e46e8b2 2676
2e60e022 2677 return true;
1da177e4 2678}
2e60e022 2679EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2680
2e60e022
TH
2681static bool blk_update_bidi_request(struct request *rq, int error,
2682 unsigned int nr_bytes,
2683 unsigned int bidi_bytes)
5efccd17 2684{
2e60e022
TH
2685 if (blk_update_request(rq, error, nr_bytes))
2686 return true;
5efccd17 2687
2e60e022
TH
2688 /* Bidi request must be completed as a whole */
2689 if (unlikely(blk_bidi_rq(rq)) &&
2690 blk_update_request(rq->next_rq, error, bidi_bytes))
2691 return true;
5efccd17 2692
e2e1a148
JA
2693 if (blk_queue_add_random(rq->q))
2694 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2695
2696 return false;
1da177e4
LT
2697}
2698
28018c24
JB
2699/**
2700 * blk_unprep_request - unprepare a request
2701 * @req: the request
2702 *
2703 * This function makes a request ready for complete resubmission (or
2704 * completion). It happens only after all error handling is complete,
2705 * so represents the appropriate moment to deallocate any resources
2706 * that were allocated to the request in the prep_rq_fn. The queue
2707 * lock is held when calling this.
2708 */
2709void blk_unprep_request(struct request *req)
2710{
2711 struct request_queue *q = req->q;
2712
2713 req->cmd_flags &= ~REQ_DONTPREP;
2714 if (q->unprep_rq_fn)
2715 q->unprep_rq_fn(q, req);
2716}
2717EXPORT_SYMBOL_GPL(blk_unprep_request);
2718
1da177e4
LT
2719/*
2720 * queue lock must be held
2721 */
12120077 2722void blk_finish_request(struct request *req, int error)
1da177e4 2723{
125c99bc 2724 if (req->cmd_flags & REQ_QUEUED)
b8286239
KU
2725 blk_queue_end_tag(req->q, req);
2726
ba396a6c 2727 BUG_ON(blk_queued_rq(req));
1da177e4 2728
33659ebb 2729 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
31373d09 2730 laptop_io_completion(&req->q->backing_dev_info);
1da177e4 2731
e78042e5
MA
2732 blk_delete_timer(req);
2733
28018c24
JB
2734 if (req->cmd_flags & REQ_DONTPREP)
2735 blk_unprep_request(req);
2736
bc58ba94 2737 blk_account_io_done(req);
b8286239 2738
1da177e4 2739 if (req->end_io)
8ffdc655 2740 req->end_io(req, error);
b8286239
KU
2741 else {
2742 if (blk_bidi_rq(req))
2743 __blk_put_request(req->next_rq->q, req->next_rq);
2744
1da177e4 2745 __blk_put_request(req->q, req);
b8286239 2746 }
1da177e4 2747}
12120077 2748EXPORT_SYMBOL(blk_finish_request);
1da177e4 2749
3b11313a 2750/**
2e60e022
TH
2751 * blk_end_bidi_request - Complete a bidi request
2752 * @rq: the request to complete
2753 * @error: %0 for success, < %0 for error
2754 * @nr_bytes: number of bytes to complete @rq
2755 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2756 *
2757 * Description:
e3a04fe3 2758 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2759 * Drivers that supports bidi can safely call this member for any
2760 * type of request, bidi or uni. In the later case @bidi_bytes is
2761 * just ignored.
336cdb40
KU
2762 *
2763 * Return:
2e60e022
TH
2764 * %false - we are done with this request
2765 * %true - still buffers pending for this request
a0cd1285 2766 **/
b1f74493 2767static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2768 unsigned int nr_bytes, unsigned int bidi_bytes)
2769{
336cdb40 2770 struct request_queue *q = rq->q;
2e60e022 2771 unsigned long flags;
32fab448 2772
2e60e022
TH
2773 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2774 return true;
32fab448 2775
336cdb40 2776 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2777 blk_finish_request(rq, error);
336cdb40
KU
2778 spin_unlock_irqrestore(q->queue_lock, flags);
2779
2e60e022 2780 return false;
32fab448
KU
2781}
2782
336cdb40 2783/**
2e60e022
TH
2784 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2785 * @rq: the request to complete
710027a4 2786 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2787 * @nr_bytes: number of bytes to complete @rq
2788 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2789 *
2790 * Description:
2e60e022
TH
2791 * Identical to blk_end_bidi_request() except that queue lock is
2792 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2793 *
2794 * Return:
2e60e022
TH
2795 * %false - we are done with this request
2796 * %true - still buffers pending for this request
336cdb40 2797 **/
4853abaa 2798bool __blk_end_bidi_request(struct request *rq, int error,
b1f74493 2799 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2800{
2e60e022
TH
2801 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2802 return true;
336cdb40 2803
2e60e022 2804 blk_finish_request(rq, error);
336cdb40 2805
2e60e022 2806 return false;
336cdb40 2807}
e19a3ab0
KU
2808
2809/**
2810 * blk_end_request - Helper function for drivers to complete the request.
2811 * @rq: the request being processed
710027a4 2812 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2813 * @nr_bytes: number of bytes to complete
2814 *
2815 * Description:
2816 * Ends I/O on a number of bytes attached to @rq.
2817 * If @rq has leftover, sets it up for the next range of segments.
2818 *
2819 * Return:
b1f74493
FT
2820 * %false - we are done with this request
2821 * %true - still buffers pending for this request
e19a3ab0 2822 **/
b1f74493 2823bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2824{
b1f74493 2825 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2826}
56ad1740 2827EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2828
2829/**
b1f74493
FT
2830 * blk_end_request_all - Helper function for drives to finish the request.
2831 * @rq: the request to finish
8ebf9756 2832 * @error: %0 for success, < %0 for error
336cdb40
KU
2833 *
2834 * Description:
b1f74493
FT
2835 * Completely finish @rq.
2836 */
2837void blk_end_request_all(struct request *rq, int error)
336cdb40 2838{
b1f74493
FT
2839 bool pending;
2840 unsigned int bidi_bytes = 0;
336cdb40 2841
b1f74493
FT
2842 if (unlikely(blk_bidi_rq(rq)))
2843 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2844
b1f74493
FT
2845 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2846 BUG_ON(pending);
2847}
56ad1740 2848EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2849
b1f74493
FT
2850/**
2851 * blk_end_request_cur - Helper function to finish the current request chunk.
2852 * @rq: the request to finish the current chunk for
8ebf9756 2853 * @error: %0 for success, < %0 for error
b1f74493
FT
2854 *
2855 * Description:
2856 * Complete the current consecutively mapped chunk from @rq.
2857 *
2858 * Return:
2859 * %false - we are done with this request
2860 * %true - still buffers pending for this request
2861 */
2862bool blk_end_request_cur(struct request *rq, int error)
2863{
2864 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2865}
56ad1740 2866EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2867
80a761fd
TH
2868/**
2869 * blk_end_request_err - Finish a request till the next failure boundary.
2870 * @rq: the request to finish till the next failure boundary for
2871 * @error: must be negative errno
2872 *
2873 * Description:
2874 * Complete @rq till the next failure boundary.
2875 *
2876 * Return:
2877 * %false - we are done with this request
2878 * %true - still buffers pending for this request
2879 */
2880bool blk_end_request_err(struct request *rq, int error)
2881{
2882 WARN_ON(error >= 0);
2883 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2884}
2885EXPORT_SYMBOL_GPL(blk_end_request_err);
2886
e3a04fe3 2887/**
b1f74493
FT
2888 * __blk_end_request - Helper function for drivers to complete the request.
2889 * @rq: the request being processed
2890 * @error: %0 for success, < %0 for error
2891 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2892 *
2893 * Description:
b1f74493 2894 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2895 *
2896 * Return:
b1f74493
FT
2897 * %false - we are done with this request
2898 * %true - still buffers pending for this request
e3a04fe3 2899 **/
b1f74493 2900bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2901{
b1f74493 2902 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2903}
56ad1740 2904EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2905
32fab448 2906/**
b1f74493
FT
2907 * __blk_end_request_all - Helper function for drives to finish the request.
2908 * @rq: the request to finish
8ebf9756 2909 * @error: %0 for success, < %0 for error
32fab448
KU
2910 *
2911 * Description:
b1f74493 2912 * Completely finish @rq. Must be called with queue lock held.
32fab448 2913 */
b1f74493 2914void __blk_end_request_all(struct request *rq, int error)
32fab448 2915{
b1f74493
FT
2916 bool pending;
2917 unsigned int bidi_bytes = 0;
2918
2919 if (unlikely(blk_bidi_rq(rq)))
2920 bidi_bytes = blk_rq_bytes(rq->next_rq);
2921
2922 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2923 BUG_ON(pending);
32fab448 2924}
56ad1740 2925EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2926
e19a3ab0 2927/**
b1f74493
FT
2928 * __blk_end_request_cur - Helper function to finish the current request chunk.
2929 * @rq: the request to finish the current chunk for
8ebf9756 2930 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2931 *
2932 * Description:
b1f74493
FT
2933 * Complete the current consecutively mapped chunk from @rq. Must
2934 * be called with queue lock held.
e19a3ab0
KU
2935 *
2936 * Return:
b1f74493
FT
2937 * %false - we are done with this request
2938 * %true - still buffers pending for this request
2939 */
2940bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2941{
b1f74493 2942 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2943}
56ad1740 2944EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2945
80a761fd
TH
2946/**
2947 * __blk_end_request_err - Finish a request till the next failure boundary.
2948 * @rq: the request to finish till the next failure boundary for
2949 * @error: must be negative errno
2950 *
2951 * Description:
2952 * Complete @rq till the next failure boundary. Must be called
2953 * with queue lock held.
2954 *
2955 * Return:
2956 * %false - we are done with this request
2957 * %true - still buffers pending for this request
2958 */
2959bool __blk_end_request_err(struct request *rq, int error)
2960{
2961 WARN_ON(error >= 0);
2962 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2963}
2964EXPORT_SYMBOL_GPL(__blk_end_request_err);
2965
86db1e29
JA
2966void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2967 struct bio *bio)
1da177e4 2968{
a82afdfc 2969 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
7b6d91da 2970 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
1da177e4 2971
b4f42e28 2972 if (bio_has_data(bio))
fb2dce86 2973 rq->nr_phys_segments = bio_phys_segments(q, bio);
b4f42e28 2974
4f024f37 2975 rq->__data_len = bio->bi_iter.bi_size;
1da177e4 2976 rq->bio = rq->biotail = bio;
1da177e4 2977
66846572
N
2978 if (bio->bi_bdev)
2979 rq->rq_disk = bio->bi_bdev->bd_disk;
2980}
1da177e4 2981
2d4dc890
IL
2982#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2983/**
2984 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2985 * @rq: the request to be flushed
2986 *
2987 * Description:
2988 * Flush all pages in @rq.
2989 */
2990void rq_flush_dcache_pages(struct request *rq)
2991{
2992 struct req_iterator iter;
7988613b 2993 struct bio_vec bvec;
2d4dc890
IL
2994
2995 rq_for_each_segment(bvec, rq, iter)
7988613b 2996 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
2997}
2998EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2999#endif
3000
ef9e3fac
KU
3001/**
3002 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3003 * @q : the queue of the device being checked
3004 *
3005 * Description:
3006 * Check if underlying low-level drivers of a device are busy.
3007 * If the drivers want to export their busy state, they must set own
3008 * exporting function using blk_queue_lld_busy() first.
3009 *
3010 * Basically, this function is used only by request stacking drivers
3011 * to stop dispatching requests to underlying devices when underlying
3012 * devices are busy. This behavior helps more I/O merging on the queue
3013 * of the request stacking driver and prevents I/O throughput regression
3014 * on burst I/O load.
3015 *
3016 * Return:
3017 * 0 - Not busy (The request stacking driver should dispatch request)
3018 * 1 - Busy (The request stacking driver should stop dispatching request)
3019 */
3020int blk_lld_busy(struct request_queue *q)
3021{
3022 if (q->lld_busy_fn)
3023 return q->lld_busy_fn(q);
3024
3025 return 0;
3026}
3027EXPORT_SYMBOL_GPL(blk_lld_busy);
3028
78d8e58a
MS
3029/**
3030 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3031 * @rq: the clone request to be cleaned up
3032 *
3033 * Description:
3034 * Free all bios in @rq for a cloned request.
3035 */
3036void blk_rq_unprep_clone(struct request *rq)
3037{
3038 struct bio *bio;
3039
3040 while ((bio = rq->bio) != NULL) {
3041 rq->bio = bio->bi_next;
3042
3043 bio_put(bio);
3044 }
3045}
3046EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3047
3048/*
3049 * Copy attributes of the original request to the clone request.
3050 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3051 */
3052static void __blk_rq_prep_clone(struct request *dst, struct request *src)
b0fd271d
KU
3053{
3054 dst->cpu = src->cpu;
78d8e58a 3055 dst->cmd_flags |= (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
b0fd271d
KU
3056 dst->cmd_type = src->cmd_type;
3057 dst->__sector = blk_rq_pos(src);
3058 dst->__data_len = blk_rq_bytes(src);
3059 dst->nr_phys_segments = src->nr_phys_segments;
3060 dst->ioprio = src->ioprio;
3061 dst->extra_len = src->extra_len;
78d8e58a
MS
3062}
3063
3064/**
3065 * blk_rq_prep_clone - Helper function to setup clone request
3066 * @rq: the request to be setup
3067 * @rq_src: original request to be cloned
3068 * @bs: bio_set that bios for clone are allocated from
3069 * @gfp_mask: memory allocation mask for bio
3070 * @bio_ctr: setup function to be called for each clone bio.
3071 * Returns %0 for success, non %0 for failure.
3072 * @data: private data to be passed to @bio_ctr
3073 *
3074 * Description:
3075 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3076 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3077 * are not copied, and copying such parts is the caller's responsibility.
3078 * Also, pages which the original bios are pointing to are not copied
3079 * and the cloned bios just point same pages.
3080 * So cloned bios must be completed before original bios, which means
3081 * the caller must complete @rq before @rq_src.
3082 */
3083int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3084 struct bio_set *bs, gfp_t gfp_mask,
3085 int (*bio_ctr)(struct bio *, struct bio *, void *),
3086 void *data)
3087{
3088 struct bio *bio, *bio_src;
3089
3090 if (!bs)
3091 bs = fs_bio_set;
3092
3093 __rq_for_each_bio(bio_src, rq_src) {
3094 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3095 if (!bio)
3096 goto free_and_out;
3097
3098 if (bio_ctr && bio_ctr(bio, bio_src, data))
3099 goto free_and_out;
3100
3101 if (rq->bio) {
3102 rq->biotail->bi_next = bio;
3103 rq->biotail = bio;
3104 } else
3105 rq->bio = rq->biotail = bio;
3106 }
3107
3108 __blk_rq_prep_clone(rq, rq_src);
3109
3110 return 0;
3111
3112free_and_out:
3113 if (bio)
3114 bio_put(bio);
3115 blk_rq_unprep_clone(rq);
3116
3117 return -ENOMEM;
b0fd271d
KU
3118}
3119EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3120
59c3d45e 3121int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
3122{
3123 return queue_work(kblockd_workqueue, work);
3124}
1da177e4
LT
3125EXPORT_SYMBOL(kblockd_schedule_work);
3126
59c3d45e
JA
3127int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3128 unsigned long delay)
e43473b7
VG
3129{
3130 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3131}
3132EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3133
8ab14595
JA
3134int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3135 unsigned long delay)
3136{
3137 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3138}
3139EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3140
75df7136
SJ
3141/**
3142 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3143 * @plug: The &struct blk_plug that needs to be initialized
3144 *
3145 * Description:
3146 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3147 * pending I/O should the task end up blocking between blk_start_plug() and
3148 * blk_finish_plug(). This is important from a performance perspective, but
3149 * also ensures that we don't deadlock. For instance, if the task is blocking
3150 * for a memory allocation, memory reclaim could end up wanting to free a
3151 * page belonging to that request that is currently residing in our private
3152 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3153 * this kind of deadlock.
3154 */
73c10101
JA
3155void blk_start_plug(struct blk_plug *plug)
3156{
3157 struct task_struct *tsk = current;
3158
dd6cf3e1
SL
3159 /*
3160 * If this is a nested plug, don't actually assign it.
3161 */
3162 if (tsk->plug)
3163 return;
3164
73c10101 3165 INIT_LIST_HEAD(&plug->list);
320ae51f 3166 INIT_LIST_HEAD(&plug->mq_list);
048c9374 3167 INIT_LIST_HEAD(&plug->cb_list);
73c10101 3168 /*
dd6cf3e1
SL
3169 * Store ordering should not be needed here, since a potential
3170 * preempt will imply a full memory barrier
73c10101 3171 */
dd6cf3e1 3172 tsk->plug = plug;
73c10101
JA
3173}
3174EXPORT_SYMBOL(blk_start_plug);
3175
3176static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3177{
3178 struct request *rqa = container_of(a, struct request, queuelist);
3179 struct request *rqb = container_of(b, struct request, queuelist);
3180
975927b9
JM
3181 return !(rqa->q < rqb->q ||
3182 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
73c10101
JA
3183}
3184
49cac01e
JA
3185/*
3186 * If 'from_schedule' is true, then postpone the dispatch of requests
3187 * until a safe kblockd context. We due this to avoid accidental big
3188 * additional stack usage in driver dispatch, in places where the originally
3189 * plugger did not intend it.
3190 */
f6603783 3191static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 3192 bool from_schedule)
99e22598 3193 __releases(q->queue_lock)
94b5eb28 3194{
49cac01e 3195 trace_block_unplug(q, depth, !from_schedule);
99e22598 3196
70460571 3197 if (from_schedule)
24ecfbe2 3198 blk_run_queue_async(q);
70460571 3199 else
24ecfbe2 3200 __blk_run_queue(q);
70460571 3201 spin_unlock(q->queue_lock);
94b5eb28
JA
3202}
3203
74018dc3 3204static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
3205{
3206 LIST_HEAD(callbacks);
3207
2a7d5559
SL
3208 while (!list_empty(&plug->cb_list)) {
3209 list_splice_init(&plug->cb_list, &callbacks);
048c9374 3210
2a7d5559
SL
3211 while (!list_empty(&callbacks)) {
3212 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
3213 struct blk_plug_cb,
3214 list);
2a7d5559 3215 list_del(&cb->list);
74018dc3 3216 cb->callback(cb, from_schedule);
2a7d5559 3217 }
048c9374
N
3218 }
3219}
3220
9cbb1750
N
3221struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3222 int size)
3223{
3224 struct blk_plug *plug = current->plug;
3225 struct blk_plug_cb *cb;
3226
3227 if (!plug)
3228 return NULL;
3229
3230 list_for_each_entry(cb, &plug->cb_list, list)
3231 if (cb->callback == unplug && cb->data == data)
3232 return cb;
3233
3234 /* Not currently on the callback list */
3235 BUG_ON(size < sizeof(*cb));
3236 cb = kzalloc(size, GFP_ATOMIC);
3237 if (cb) {
3238 cb->data = data;
3239 cb->callback = unplug;
3240 list_add(&cb->list, &plug->cb_list);
3241 }
3242 return cb;
3243}
3244EXPORT_SYMBOL(blk_check_plugged);
3245
49cac01e 3246void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
3247{
3248 struct request_queue *q;
3249 unsigned long flags;
3250 struct request *rq;
109b8129 3251 LIST_HEAD(list);
94b5eb28 3252 unsigned int depth;
73c10101 3253
74018dc3 3254 flush_plug_callbacks(plug, from_schedule);
320ae51f
JA
3255
3256 if (!list_empty(&plug->mq_list))
3257 blk_mq_flush_plug_list(plug, from_schedule);
3258
73c10101
JA
3259 if (list_empty(&plug->list))
3260 return;
3261
109b8129
N
3262 list_splice_init(&plug->list, &list);
3263
422765c2 3264 list_sort(NULL, &list, plug_rq_cmp);
73c10101
JA
3265
3266 q = NULL;
94b5eb28 3267 depth = 0;
18811272
JA
3268
3269 /*
3270 * Save and disable interrupts here, to avoid doing it for every
3271 * queue lock we have to take.
3272 */
73c10101 3273 local_irq_save(flags);
109b8129
N
3274 while (!list_empty(&list)) {
3275 rq = list_entry_rq(list.next);
73c10101 3276 list_del_init(&rq->queuelist);
73c10101
JA
3277 BUG_ON(!rq->q);
3278 if (rq->q != q) {
99e22598
JA
3279 /*
3280 * This drops the queue lock
3281 */
3282 if (q)
49cac01e 3283 queue_unplugged(q, depth, from_schedule);
73c10101 3284 q = rq->q;
94b5eb28 3285 depth = 0;
73c10101
JA
3286 spin_lock(q->queue_lock);
3287 }
8ba61435
TH
3288
3289 /*
3290 * Short-circuit if @q is dead
3291 */
3f3299d5 3292 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
3293 __blk_end_request_all(rq, -ENODEV);
3294 continue;
3295 }
3296
73c10101
JA
3297 /*
3298 * rq is already accounted, so use raw insert
3299 */
401a18e9
JA
3300 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3301 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3302 else
3303 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
3304
3305 depth++;
73c10101
JA
3306 }
3307
99e22598
JA
3308 /*
3309 * This drops the queue lock
3310 */
3311 if (q)
49cac01e 3312 queue_unplugged(q, depth, from_schedule);
73c10101 3313
73c10101
JA
3314 local_irq_restore(flags);
3315}
73c10101
JA
3316
3317void blk_finish_plug(struct blk_plug *plug)
3318{
dd6cf3e1
SL
3319 if (plug != current->plug)
3320 return;
f6603783 3321 blk_flush_plug_list(plug, false);
73c10101 3322
dd6cf3e1 3323 current->plug = NULL;
73c10101 3324}
88b996cd 3325EXPORT_SYMBOL(blk_finish_plug);
73c10101 3326
05229bee
JA
3327bool blk_poll(struct request_queue *q, blk_qc_t cookie)
3328{
3329 struct blk_plug *plug;
3330 long state;
3331
3332 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
3333 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3334 return false;
3335
3336 plug = current->plug;
3337 if (plug)
3338 blk_flush_plug_list(plug, false);
3339
3340 state = current->state;
3341 while (!need_resched()) {
3342 unsigned int queue_num = blk_qc_t_to_queue_num(cookie);
3343 struct blk_mq_hw_ctx *hctx = q->queue_hw_ctx[queue_num];
3344 int ret;
3345
3346 hctx->poll_invoked++;
3347
3348 ret = q->mq_ops->poll(hctx, blk_qc_t_to_tag(cookie));
3349 if (ret > 0) {
3350 hctx->poll_success++;
3351 set_current_state(TASK_RUNNING);
3352 return true;
3353 }
3354
3355 if (signal_pending_state(state, current))
3356 set_current_state(TASK_RUNNING);
3357
3358 if (current->state == TASK_RUNNING)
3359 return true;
3360 if (ret < 0)
3361 break;
3362 cpu_relax();
3363 }
3364
3365 return false;
3366}
3367
47fafbc7 3368#ifdef CONFIG_PM
6c954667
LM
3369/**
3370 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3371 * @q: the queue of the device
3372 * @dev: the device the queue belongs to
3373 *
3374 * Description:
3375 * Initialize runtime-PM-related fields for @q and start auto suspend for
3376 * @dev. Drivers that want to take advantage of request-based runtime PM
3377 * should call this function after @dev has been initialized, and its
3378 * request queue @q has been allocated, and runtime PM for it can not happen
3379 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3380 * cases, driver should call this function before any I/O has taken place.
3381 *
3382 * This function takes care of setting up using auto suspend for the device,
3383 * the autosuspend delay is set to -1 to make runtime suspend impossible
3384 * until an updated value is either set by user or by driver. Drivers do
3385 * not need to touch other autosuspend settings.
3386 *
3387 * The block layer runtime PM is request based, so only works for drivers
3388 * that use request as their IO unit instead of those directly use bio's.
3389 */
3390void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3391{
3392 q->dev = dev;
3393 q->rpm_status = RPM_ACTIVE;
3394 pm_runtime_set_autosuspend_delay(q->dev, -1);
3395 pm_runtime_use_autosuspend(q->dev);
3396}
3397EXPORT_SYMBOL(blk_pm_runtime_init);
3398
3399/**
3400 * blk_pre_runtime_suspend - Pre runtime suspend check
3401 * @q: the queue of the device
3402 *
3403 * Description:
3404 * This function will check if runtime suspend is allowed for the device
3405 * by examining if there are any requests pending in the queue. If there
3406 * are requests pending, the device can not be runtime suspended; otherwise,
3407 * the queue's status will be updated to SUSPENDING and the driver can
3408 * proceed to suspend the device.
3409 *
3410 * For the not allowed case, we mark last busy for the device so that
3411 * runtime PM core will try to autosuspend it some time later.
3412 *
3413 * This function should be called near the start of the device's
3414 * runtime_suspend callback.
3415 *
3416 * Return:
3417 * 0 - OK to runtime suspend the device
3418 * -EBUSY - Device should not be runtime suspended
3419 */
3420int blk_pre_runtime_suspend(struct request_queue *q)
3421{
3422 int ret = 0;
3423
4fd41a85
KX
3424 if (!q->dev)
3425 return ret;
3426
6c954667
LM
3427 spin_lock_irq(q->queue_lock);
3428 if (q->nr_pending) {
3429 ret = -EBUSY;
3430 pm_runtime_mark_last_busy(q->dev);
3431 } else {
3432 q->rpm_status = RPM_SUSPENDING;
3433 }
3434 spin_unlock_irq(q->queue_lock);
3435 return ret;
3436}
3437EXPORT_SYMBOL(blk_pre_runtime_suspend);
3438
3439/**
3440 * blk_post_runtime_suspend - Post runtime suspend processing
3441 * @q: the queue of the device
3442 * @err: return value of the device's runtime_suspend function
3443 *
3444 * Description:
3445 * Update the queue's runtime status according to the return value of the
3446 * device's runtime suspend function and mark last busy for the device so
3447 * that PM core will try to auto suspend the device at a later time.
3448 *
3449 * This function should be called near the end of the device's
3450 * runtime_suspend callback.
3451 */
3452void blk_post_runtime_suspend(struct request_queue *q, int err)
3453{
4fd41a85
KX
3454 if (!q->dev)
3455 return;
3456
6c954667
LM
3457 spin_lock_irq(q->queue_lock);
3458 if (!err) {
3459 q->rpm_status = RPM_SUSPENDED;
3460 } else {
3461 q->rpm_status = RPM_ACTIVE;
3462 pm_runtime_mark_last_busy(q->dev);
3463 }
3464 spin_unlock_irq(q->queue_lock);
3465}
3466EXPORT_SYMBOL(blk_post_runtime_suspend);
3467
3468/**
3469 * blk_pre_runtime_resume - Pre runtime resume processing
3470 * @q: the queue of the device
3471 *
3472 * Description:
3473 * Update the queue's runtime status to RESUMING in preparation for the
3474 * runtime resume of the device.
3475 *
3476 * This function should be called near the start of the device's
3477 * runtime_resume callback.
3478 */
3479void blk_pre_runtime_resume(struct request_queue *q)
3480{
4fd41a85
KX
3481 if (!q->dev)
3482 return;
3483
6c954667
LM
3484 spin_lock_irq(q->queue_lock);
3485 q->rpm_status = RPM_RESUMING;
3486 spin_unlock_irq(q->queue_lock);
3487}
3488EXPORT_SYMBOL(blk_pre_runtime_resume);
3489
3490/**
3491 * blk_post_runtime_resume - Post runtime resume processing
3492 * @q: the queue of the device
3493 * @err: return value of the device's runtime_resume function
3494 *
3495 * Description:
3496 * Update the queue's runtime status according to the return value of the
3497 * device's runtime_resume function. If it is successfully resumed, process
3498 * the requests that are queued into the device's queue when it is resuming
3499 * and then mark last busy and initiate autosuspend for it.
3500 *
3501 * This function should be called near the end of the device's
3502 * runtime_resume callback.
3503 */
3504void blk_post_runtime_resume(struct request_queue *q, int err)
3505{
4fd41a85
KX
3506 if (!q->dev)
3507 return;
3508
6c954667
LM
3509 spin_lock_irq(q->queue_lock);
3510 if (!err) {
3511 q->rpm_status = RPM_ACTIVE;
3512 __blk_run_queue(q);
3513 pm_runtime_mark_last_busy(q->dev);
c60855cd 3514 pm_request_autosuspend(q->dev);
6c954667
LM
3515 } else {
3516 q->rpm_status = RPM_SUSPENDED;
3517 }
3518 spin_unlock_irq(q->queue_lock);
3519}
3520EXPORT_SYMBOL(blk_post_runtime_resume);
3521#endif
3522
1da177e4
LT
3523int __init blk_dev_init(void)
3524{
9eb55b03 3525 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
0762b23d 3526 FIELD_SIZEOF(struct request, cmd_flags));
9eb55b03 3527
89b90be2
TH
3528 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3529 kblockd_workqueue = alloc_workqueue("kblockd",
28747fcd 3530 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
3531 if (!kblockd_workqueue)
3532 panic("Failed to create kblockd\n");
3533
3534 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3535 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 3536
8324aa91 3537 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 3538 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 3539
d38ecf93 3540 return 0;
1da177e4 3541}
This page took 1.030324 seconds and 5 git commands to generate.