blkcg: don't use blkg->plid in stat related functions
[deliverable/linux.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/highmem.h>
20#include <linux/mm.h>
21#include <linux/kernel_stat.h>
22#include <linux/string.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
c17bb495 29#include <linux/fault-inject.h>
73c10101 30#include <linux/list_sort.h>
e3c78ca5 31#include <linux/delay.h>
55782138
LZ
32
33#define CREATE_TRACE_POINTS
34#include <trace/events/block.h>
1da177e4 35
8324aa91 36#include "blk.h"
5efd6113 37#include "blk-cgroup.h"
8324aa91 38
d07335e5 39EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 40EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
55782138 41EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
0bfc2455 42
a73f730d
TH
43DEFINE_IDA(blk_queue_ida);
44
1da177e4
LT
45/*
46 * For the allocated request tables
47 */
5ece6c52 48static struct kmem_cache *request_cachep;
1da177e4
LT
49
50/*
51 * For queue allocation
52 */
6728cb0e 53struct kmem_cache *blk_requestq_cachep;
1da177e4 54
1da177e4
LT
55/*
56 * Controlling structure to kblockd
57 */
ff856bad 58static struct workqueue_struct *kblockd_workqueue;
1da177e4 59
26b8256e
JA
60static void drive_stat_acct(struct request *rq, int new_io)
61{
28f13702 62 struct hd_struct *part;
26b8256e 63 int rw = rq_data_dir(rq);
c9959059 64 int cpu;
26b8256e 65
c2553b58 66 if (!blk_do_io_stat(rq))
26b8256e
JA
67 return;
68
074a7aca 69 cpu = part_stat_lock();
c9959059 70
09e099d4
JM
71 if (!new_io) {
72 part = rq->part;
074a7aca 73 part_stat_inc(cpu, part, merges[rw]);
09e099d4
JM
74 } else {
75 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
6c23a968 76 if (!hd_struct_try_get(part)) {
09e099d4
JM
77 /*
78 * The partition is already being removed,
79 * the request will be accounted on the disk only
80 *
81 * We take a reference on disk->part0 although that
82 * partition will never be deleted, so we can treat
83 * it as any other partition.
84 */
85 part = &rq->rq_disk->part0;
6c23a968 86 hd_struct_get(part);
09e099d4 87 }
074a7aca 88 part_round_stats(cpu, part);
316d315b 89 part_inc_in_flight(part, rw);
09e099d4 90 rq->part = part;
26b8256e 91 }
e71bf0d0 92
074a7aca 93 part_stat_unlock();
26b8256e
JA
94}
95
8324aa91 96void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
97{
98 int nr;
99
100 nr = q->nr_requests - (q->nr_requests / 8) + 1;
101 if (nr > q->nr_requests)
102 nr = q->nr_requests;
103 q->nr_congestion_on = nr;
104
105 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
106 if (nr < 1)
107 nr = 1;
108 q->nr_congestion_off = nr;
109}
110
1da177e4
LT
111/**
112 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
113 * @bdev: device
114 *
115 * Locates the passed device's request queue and returns the address of its
116 * backing_dev_info
117 *
118 * Will return NULL if the request queue cannot be located.
119 */
120struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
121{
122 struct backing_dev_info *ret = NULL;
165125e1 123 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
124
125 if (q)
126 ret = &q->backing_dev_info;
127 return ret;
128}
1da177e4
LT
129EXPORT_SYMBOL(blk_get_backing_dev_info);
130
2a4aa30c 131void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 132{
1afb20f3
FT
133 memset(rq, 0, sizeof(*rq));
134
1da177e4 135 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 136 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 137 rq->cpu = -1;
63a71386 138 rq->q = q;
a2dec7b3 139 rq->__sector = (sector_t) -1;
2e662b65
JA
140 INIT_HLIST_NODE(&rq->hash);
141 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 142 rq->cmd = rq->__cmd;
e2494e1b 143 rq->cmd_len = BLK_MAX_CDB;
63a71386 144 rq->tag = -1;
1da177e4 145 rq->ref_count = 1;
b243ddcb 146 rq->start_time = jiffies;
9195291e 147 set_start_time_ns(rq);
09e099d4 148 rq->part = NULL;
1da177e4 149}
2a4aa30c 150EXPORT_SYMBOL(blk_rq_init);
1da177e4 151
5bb23a68
N
152static void req_bio_endio(struct request *rq, struct bio *bio,
153 unsigned int nbytes, int error)
1da177e4 154{
143a87f4
TH
155 if (error)
156 clear_bit(BIO_UPTODATE, &bio->bi_flags);
157 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
158 error = -EIO;
797e7dbb 159
143a87f4
TH
160 if (unlikely(nbytes > bio->bi_size)) {
161 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
162 __func__, nbytes, bio->bi_size);
163 nbytes = bio->bi_size;
5bb23a68 164 }
797e7dbb 165
143a87f4
TH
166 if (unlikely(rq->cmd_flags & REQ_QUIET))
167 set_bit(BIO_QUIET, &bio->bi_flags);
08bafc03 168
143a87f4
TH
169 bio->bi_size -= nbytes;
170 bio->bi_sector += (nbytes >> 9);
7ba1ba12 171
143a87f4
TH
172 if (bio_integrity(bio))
173 bio_integrity_advance(bio, nbytes);
7ba1ba12 174
143a87f4
TH
175 /* don't actually finish bio if it's part of flush sequence */
176 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
177 bio_endio(bio, error);
1da177e4 178}
1da177e4 179
1da177e4
LT
180void blk_dump_rq_flags(struct request *rq, char *msg)
181{
182 int bit;
183
6728cb0e 184 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
4aff5e23
JA
185 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
186 rq->cmd_flags);
1da177e4 187
83096ebf
TH
188 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
189 (unsigned long long)blk_rq_pos(rq),
190 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
731ec497 191 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
2e46e8b2 192 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
1da177e4 193
33659ebb 194 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
6728cb0e 195 printk(KERN_INFO " cdb: ");
d34c87e4 196 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
197 printk("%02x ", rq->cmd[bit]);
198 printk("\n");
199 }
200}
1da177e4
LT
201EXPORT_SYMBOL(blk_dump_rq_flags);
202
3cca6dc1 203static void blk_delay_work(struct work_struct *work)
1da177e4 204{
3cca6dc1 205 struct request_queue *q;
1da177e4 206
3cca6dc1
JA
207 q = container_of(work, struct request_queue, delay_work.work);
208 spin_lock_irq(q->queue_lock);
24ecfbe2 209 __blk_run_queue(q);
3cca6dc1 210 spin_unlock_irq(q->queue_lock);
1da177e4 211}
1da177e4
LT
212
213/**
3cca6dc1
JA
214 * blk_delay_queue - restart queueing after defined interval
215 * @q: The &struct request_queue in question
216 * @msecs: Delay in msecs
1da177e4
LT
217 *
218 * Description:
3cca6dc1
JA
219 * Sometimes queueing needs to be postponed for a little while, to allow
220 * resources to come back. This function will make sure that queueing is
221 * restarted around the specified time.
222 */
223void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 224{
4521cc4e
JA
225 queue_delayed_work(kblockd_workqueue, &q->delay_work,
226 msecs_to_jiffies(msecs));
2ad8b1ef 227}
3cca6dc1 228EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 229
1da177e4
LT
230/**
231 * blk_start_queue - restart a previously stopped queue
165125e1 232 * @q: The &struct request_queue in question
1da177e4
LT
233 *
234 * Description:
235 * blk_start_queue() will clear the stop flag on the queue, and call
236 * the request_fn for the queue if it was in a stopped state when
237 * entered. Also see blk_stop_queue(). Queue lock must be held.
238 **/
165125e1 239void blk_start_queue(struct request_queue *q)
1da177e4 240{
a038e253
PBG
241 WARN_ON(!irqs_disabled());
242
75ad23bc 243 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 244 __blk_run_queue(q);
1da177e4 245}
1da177e4
LT
246EXPORT_SYMBOL(blk_start_queue);
247
248/**
249 * blk_stop_queue - stop a queue
165125e1 250 * @q: The &struct request_queue in question
1da177e4
LT
251 *
252 * Description:
253 * The Linux block layer assumes that a block driver will consume all
254 * entries on the request queue when the request_fn strategy is called.
255 * Often this will not happen, because of hardware limitations (queue
256 * depth settings). If a device driver gets a 'queue full' response,
257 * or if it simply chooses not to queue more I/O at one point, it can
258 * call this function to prevent the request_fn from being called until
259 * the driver has signalled it's ready to go again. This happens by calling
260 * blk_start_queue() to restart queue operations. Queue lock must be held.
261 **/
165125e1 262void blk_stop_queue(struct request_queue *q)
1da177e4 263{
ad3d9d7e 264 __cancel_delayed_work(&q->delay_work);
75ad23bc 265 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
266}
267EXPORT_SYMBOL(blk_stop_queue);
268
269/**
270 * blk_sync_queue - cancel any pending callbacks on a queue
271 * @q: the queue
272 *
273 * Description:
274 * The block layer may perform asynchronous callback activity
275 * on a queue, such as calling the unplug function after a timeout.
276 * A block device may call blk_sync_queue to ensure that any
277 * such activity is cancelled, thus allowing it to release resources
59c51591 278 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
279 * that its ->make_request_fn will not re-add plugging prior to calling
280 * this function.
281 *
da527770
VG
282 * This function does not cancel any asynchronous activity arising
283 * out of elevator or throttling code. That would require elevaotor_exit()
5efd6113 284 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 285 *
1da177e4
LT
286 */
287void blk_sync_queue(struct request_queue *q)
288{
70ed28b9 289 del_timer_sync(&q->timeout);
3cca6dc1 290 cancel_delayed_work_sync(&q->delay_work);
1da177e4
LT
291}
292EXPORT_SYMBOL(blk_sync_queue);
293
294/**
80a4b58e 295 * __blk_run_queue - run a single device queue
1da177e4 296 * @q: The queue to run
80a4b58e
JA
297 *
298 * Description:
299 * See @blk_run_queue. This variant must be called with the queue lock
24ecfbe2 300 * held and interrupts disabled.
1da177e4 301 */
24ecfbe2 302void __blk_run_queue(struct request_queue *q)
1da177e4 303{
a538cd03
TH
304 if (unlikely(blk_queue_stopped(q)))
305 return;
306
c21e6beb 307 q->request_fn(q);
75ad23bc
NP
308}
309EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 310
24ecfbe2
CH
311/**
312 * blk_run_queue_async - run a single device queue in workqueue context
313 * @q: The queue to run
314 *
315 * Description:
316 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
317 * of us.
318 */
319void blk_run_queue_async(struct request_queue *q)
320{
3ec717b7
SL
321 if (likely(!blk_queue_stopped(q))) {
322 __cancel_delayed_work(&q->delay_work);
24ecfbe2 323 queue_delayed_work(kblockd_workqueue, &q->delay_work, 0);
3ec717b7 324 }
24ecfbe2 325}
c21e6beb 326EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 327
75ad23bc
NP
328/**
329 * blk_run_queue - run a single device queue
330 * @q: The queue to run
80a4b58e
JA
331 *
332 * Description:
333 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 334 * May be used to restart queueing when a request has completed.
75ad23bc
NP
335 */
336void blk_run_queue(struct request_queue *q)
337{
338 unsigned long flags;
339
340 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 341 __blk_run_queue(q);
1da177e4
LT
342 spin_unlock_irqrestore(q->queue_lock, flags);
343}
344EXPORT_SYMBOL(blk_run_queue);
345
165125e1 346void blk_put_queue(struct request_queue *q)
483f4afc
AV
347{
348 kobject_put(&q->kobj);
349}
d86e0e83 350EXPORT_SYMBOL(blk_put_queue);
483f4afc 351
e3c78ca5
TH
352/**
353 * blk_drain_queue - drain requests from request_queue
354 * @q: queue to drain
c9a929dd 355 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 356 *
c9a929dd
TH
357 * Drain requests from @q. If @drain_all is set, all requests are drained.
358 * If not, only ELVPRIV requests are drained. The caller is responsible
359 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 360 */
c9a929dd 361void blk_drain_queue(struct request_queue *q, bool drain_all)
e3c78ca5
TH
362{
363 while (true) {
481a7d64
TH
364 bool drain = false;
365 int i;
e3c78ca5
TH
366
367 spin_lock_irq(q->queue_lock);
368
b855b04a
TH
369 /*
370 * The caller might be trying to drain @q before its
371 * elevator is initialized.
372 */
373 if (q->elevator)
374 elv_drain_elevator(q);
375
5efd6113 376 blkcg_drain_queue(q);
e3c78ca5 377
4eabc941
TH
378 /*
379 * This function might be called on a queue which failed
b855b04a
TH
380 * driver init after queue creation or is not yet fully
381 * active yet. Some drivers (e.g. fd and loop) get unhappy
382 * in such cases. Kick queue iff dispatch queue has
383 * something on it and @q has request_fn set.
4eabc941 384 */
b855b04a 385 if (!list_empty(&q->queue_head) && q->request_fn)
4eabc941 386 __blk_run_queue(q);
c9a929dd 387
481a7d64
TH
388 drain |= q->rq.elvpriv;
389
390 /*
391 * Unfortunately, requests are queued at and tracked from
392 * multiple places and there's no single counter which can
393 * be drained. Check all the queues and counters.
394 */
395 if (drain_all) {
396 drain |= !list_empty(&q->queue_head);
397 for (i = 0; i < 2; i++) {
398 drain |= q->rq.count[i];
399 drain |= q->in_flight[i];
400 drain |= !list_empty(&q->flush_queue[i]);
401 }
402 }
e3c78ca5
TH
403
404 spin_unlock_irq(q->queue_lock);
405
481a7d64 406 if (!drain)
e3c78ca5
TH
407 break;
408 msleep(10);
409 }
410}
411
d732580b
TH
412/**
413 * blk_queue_bypass_start - enter queue bypass mode
414 * @q: queue of interest
415 *
416 * In bypass mode, only the dispatch FIFO queue of @q is used. This
417 * function makes @q enter bypass mode and drains all requests which were
6ecf23af
TH
418 * throttled or issued before. On return, it's guaranteed that no request
419 * is being throttled or has ELVPRIV set.
d732580b
TH
420 */
421void blk_queue_bypass_start(struct request_queue *q)
422{
423 spin_lock_irq(q->queue_lock);
424 q->bypass_depth++;
425 queue_flag_set(QUEUE_FLAG_BYPASS, q);
426 spin_unlock_irq(q->queue_lock);
427
428 blk_drain_queue(q, false);
429}
430EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
431
432/**
433 * blk_queue_bypass_end - leave queue bypass mode
434 * @q: queue of interest
435 *
436 * Leave bypass mode and restore the normal queueing behavior.
437 */
438void blk_queue_bypass_end(struct request_queue *q)
439{
440 spin_lock_irq(q->queue_lock);
441 if (!--q->bypass_depth)
442 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
443 WARN_ON_ONCE(q->bypass_depth < 0);
444 spin_unlock_irq(q->queue_lock);
445}
446EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
447
c9a929dd
TH
448/**
449 * blk_cleanup_queue - shutdown a request queue
450 * @q: request queue to shutdown
451 *
452 * Mark @q DEAD, drain all pending requests, destroy and put it. All
453 * future requests will be failed immediately with -ENODEV.
c94a96ac 454 */
6728cb0e 455void blk_cleanup_queue(struct request_queue *q)
483f4afc 456{
c9a929dd 457 spinlock_t *lock = q->queue_lock;
e3335de9 458
c9a929dd 459 /* mark @q DEAD, no new request or merges will be allowed afterwards */
483f4afc 460 mutex_lock(&q->sysfs_lock);
75ad23bc 461 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
c9a929dd
TH
462
463 spin_lock_irq(lock);
6ecf23af
TH
464
465 /* dead queue is permanently in bypass mode till released */
466 q->bypass_depth++;
467 queue_flag_set(QUEUE_FLAG_BYPASS, q);
468
c9a929dd
TH
469 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
470 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
471 queue_flag_set(QUEUE_FLAG_DEAD, q);
483f4afc 472
777eb1bf
HR
473 if (q->queue_lock != &q->__queue_lock)
474 q->queue_lock = &q->__queue_lock;
da527770 475
c9a929dd
TH
476 spin_unlock_irq(lock);
477 mutex_unlock(&q->sysfs_lock);
478
b855b04a
TH
479 /* drain all requests queued before DEAD marking */
480 blk_drain_queue(q, true);
c9a929dd
TH
481
482 /* @q won't process any more request, flush async actions */
483 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
484 blk_sync_queue(q);
485
486 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
487 blk_put_queue(q);
488}
1da177e4
LT
489EXPORT_SYMBOL(blk_cleanup_queue);
490
165125e1 491static int blk_init_free_list(struct request_queue *q)
1da177e4
LT
492{
493 struct request_list *rl = &q->rq;
494
1abec4fd
MS
495 if (unlikely(rl->rq_pool))
496 return 0;
497
1faa16d2
JA
498 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
499 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
cb98fc8b 500 rl->elvpriv = 0;
1faa16d2
JA
501 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
502 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 503
1946089a
CL
504 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
505 mempool_free_slab, request_cachep, q->node);
1da177e4
LT
506
507 if (!rl->rq_pool)
508 return -ENOMEM;
509
510 return 0;
511}
512
165125e1 513struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 514{
1946089a
CL
515 return blk_alloc_queue_node(gfp_mask, -1);
516}
517EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 518
165125e1 519struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 520{
165125e1 521 struct request_queue *q;
e0bf68dd 522 int err;
1946089a 523
8324aa91 524 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 525 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
526 if (!q)
527 return NULL;
528
a73f730d
TH
529 q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
530 if (q->id < 0)
531 goto fail_q;
532
0989a025
JA
533 q->backing_dev_info.ra_pages =
534 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
535 q->backing_dev_info.state = 0;
536 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
d993831f 537 q->backing_dev_info.name = "block";
5151412d 538 q->node = node_id;
0989a025 539
e0bf68dd 540 err = bdi_init(&q->backing_dev_info);
a73f730d
TH
541 if (err)
542 goto fail_id;
e0bf68dd 543
31373d09
MG
544 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
545 laptop_mode_timer_fn, (unsigned long) q);
242f9dcb 546 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
b855b04a 547 INIT_LIST_HEAD(&q->queue_head);
242f9dcb 548 INIT_LIST_HEAD(&q->timeout_list);
a612fddf 549 INIT_LIST_HEAD(&q->icq_list);
ae1b1539
TH
550 INIT_LIST_HEAD(&q->flush_queue[0]);
551 INIT_LIST_HEAD(&q->flush_queue[1]);
552 INIT_LIST_HEAD(&q->flush_data_in_flight);
3cca6dc1 553 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 554
8324aa91 555 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 556
483f4afc 557 mutex_init(&q->sysfs_lock);
e7e72bf6 558 spin_lock_init(&q->__queue_lock);
483f4afc 559
c94a96ac
VG
560 /*
561 * By default initialize queue_lock to internal lock and driver can
562 * override it later if need be.
563 */
564 q->queue_lock = &q->__queue_lock;
565
5efd6113 566 if (blkcg_init_queue(q))
f51b802c
TH
567 goto fail_id;
568
1da177e4 569 return q;
a73f730d
TH
570
571fail_id:
572 ida_simple_remove(&blk_queue_ida, q->id);
573fail_q:
574 kmem_cache_free(blk_requestq_cachep, q);
575 return NULL;
1da177e4 576}
1946089a 577EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
578
579/**
580 * blk_init_queue - prepare a request queue for use with a block device
581 * @rfn: The function to be called to process requests that have been
582 * placed on the queue.
583 * @lock: Request queue spin lock
584 *
585 * Description:
586 * If a block device wishes to use the standard request handling procedures,
587 * which sorts requests and coalesces adjacent requests, then it must
588 * call blk_init_queue(). The function @rfn will be called when there
589 * are requests on the queue that need to be processed. If the device
590 * supports plugging, then @rfn may not be called immediately when requests
591 * are available on the queue, but may be called at some time later instead.
592 * Plugged queues are generally unplugged when a buffer belonging to one
593 * of the requests on the queue is needed, or due to memory pressure.
594 *
595 * @rfn is not required, or even expected, to remove all requests off the
596 * queue, but only as many as it can handle at a time. If it does leave
597 * requests on the queue, it is responsible for arranging that the requests
598 * get dealt with eventually.
599 *
600 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
601 * request queue; this lock will be taken also from interrupt context, so irq
602 * disabling is needed for it.
1da177e4 603 *
710027a4 604 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
605 * it didn't succeed.
606 *
607 * Note:
608 * blk_init_queue() must be paired with a blk_cleanup_queue() call
609 * when the block device is deactivated (such as at module unload).
610 **/
1946089a 611
165125e1 612struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 613{
1946089a
CL
614 return blk_init_queue_node(rfn, lock, -1);
615}
616EXPORT_SYMBOL(blk_init_queue);
617
165125e1 618struct request_queue *
1946089a
CL
619blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
620{
c86d1b8a 621 struct request_queue *uninit_q, *q;
1da177e4 622
c86d1b8a
MS
623 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
624 if (!uninit_q)
625 return NULL;
626
5151412d 627 q = blk_init_allocated_queue(uninit_q, rfn, lock);
c86d1b8a
MS
628 if (!q)
629 blk_cleanup_queue(uninit_q);
630
631 return q;
01effb0d
MS
632}
633EXPORT_SYMBOL(blk_init_queue_node);
634
635struct request_queue *
636blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
637 spinlock_t *lock)
01effb0d 638{
1da177e4
LT
639 if (!q)
640 return NULL;
641
c86d1b8a 642 if (blk_init_free_list(q))
8669aafd 643 return NULL;
1da177e4
LT
644
645 q->request_fn = rfn;
1da177e4 646 q->prep_rq_fn = NULL;
28018c24 647 q->unprep_rq_fn = NULL;
bc58ba94 648 q->queue_flags = QUEUE_FLAG_DEFAULT;
c94a96ac
VG
649
650 /* Override internal queue lock with supplied lock pointer */
651 if (lock)
652 q->queue_lock = lock;
1da177e4 653
f3b144aa
JA
654 /*
655 * This also sets hw/phys segments, boundary and size
656 */
c20e8de2 657 blk_queue_make_request(q, blk_queue_bio);
1da177e4 658
44ec9542
AS
659 q->sg_reserved_size = INT_MAX;
660
1da177e4
LT
661 /*
662 * all done
663 */
664 if (!elevator_init(q, NULL)) {
665 blk_queue_congestion_threshold(q);
666 return q;
667 }
668
1da177e4
LT
669 return NULL;
670}
5151412d 671EXPORT_SYMBOL(blk_init_allocated_queue);
1da177e4 672
09ac46c4 673bool blk_get_queue(struct request_queue *q)
1da177e4 674{
34f6055c 675 if (likely(!blk_queue_dead(q))) {
09ac46c4
TH
676 __blk_get_queue(q);
677 return true;
1da177e4
LT
678 }
679
09ac46c4 680 return false;
1da177e4 681}
d86e0e83 682EXPORT_SYMBOL(blk_get_queue);
1da177e4 683
165125e1 684static inline void blk_free_request(struct request_queue *q, struct request *rq)
1da177e4 685{
f1f8cc94 686 if (rq->cmd_flags & REQ_ELVPRIV) {
cb98fc8b 687 elv_put_request(q, rq);
f1f8cc94 688 if (rq->elv.icq)
11a3122f 689 put_io_context(rq->elv.icq->ioc);
f1f8cc94
TH
690 }
691
1da177e4
LT
692 mempool_free(rq, q->rq.rq_pool);
693}
694
1ea25ecb 695static struct request *
f1f8cc94
TH
696blk_alloc_request(struct request_queue *q, struct io_cq *icq,
697 unsigned int flags, gfp_t gfp_mask)
1da177e4
LT
698{
699 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
700
701 if (!rq)
702 return NULL;
703
2a4aa30c 704 blk_rq_init(q, rq);
1afb20f3 705
42dad764 706 rq->cmd_flags = flags | REQ_ALLOCED;
1da177e4 707
f1f8cc94
TH
708 if (flags & REQ_ELVPRIV) {
709 rq->elv.icq = icq;
710 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
711 mempool_free(rq, q->rq.rq_pool);
712 return NULL;
713 }
714 /* @rq->elv.icq holds on to io_context until @rq is freed */
715 if (icq)
716 get_io_context(icq->ioc);
cb98fc8b 717 }
1da177e4 718
cb98fc8b 719 return rq;
1da177e4
LT
720}
721
722/*
723 * ioc_batching returns true if the ioc is a valid batching request and
724 * should be given priority access to a request.
725 */
165125e1 726static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
727{
728 if (!ioc)
729 return 0;
730
731 /*
732 * Make sure the process is able to allocate at least 1 request
733 * even if the batch times out, otherwise we could theoretically
734 * lose wakeups.
735 */
736 return ioc->nr_batch_requests == q->nr_batching ||
737 (ioc->nr_batch_requests > 0
738 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
739}
740
741/*
742 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
743 * will cause the process to be a "batcher" on all queues in the system. This
744 * is the behaviour we want though - once it gets a wakeup it should be given
745 * a nice run.
746 */
165125e1 747static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
748{
749 if (!ioc || ioc_batching(q, ioc))
750 return;
751
752 ioc->nr_batch_requests = q->nr_batching;
753 ioc->last_waited = jiffies;
754}
755
1faa16d2 756static void __freed_request(struct request_queue *q, int sync)
1da177e4
LT
757{
758 struct request_list *rl = &q->rq;
759
1faa16d2
JA
760 if (rl->count[sync] < queue_congestion_off_threshold(q))
761 blk_clear_queue_congested(q, sync);
1da177e4 762
1faa16d2
JA
763 if (rl->count[sync] + 1 <= q->nr_requests) {
764 if (waitqueue_active(&rl->wait[sync]))
765 wake_up(&rl->wait[sync]);
1da177e4 766
1faa16d2 767 blk_clear_queue_full(q, sync);
1da177e4
LT
768 }
769}
770
771/*
772 * A request has just been released. Account for it, update the full and
773 * congestion status, wake up any waiters. Called under q->queue_lock.
774 */
75eb6c37 775static void freed_request(struct request_queue *q, unsigned int flags)
1da177e4
LT
776{
777 struct request_list *rl = &q->rq;
75eb6c37 778 int sync = rw_is_sync(flags);
1da177e4 779
1faa16d2 780 rl->count[sync]--;
75eb6c37 781 if (flags & REQ_ELVPRIV)
cb98fc8b 782 rl->elvpriv--;
1da177e4 783
1faa16d2 784 __freed_request(q, sync);
1da177e4 785
1faa16d2
JA
786 if (unlikely(rl->starved[sync ^ 1]))
787 __freed_request(q, sync ^ 1);
1da177e4
LT
788}
789
9d5a4e94
MS
790/*
791 * Determine if elevator data should be initialized when allocating the
792 * request associated with @bio.
793 */
794static bool blk_rq_should_init_elevator(struct bio *bio)
795{
796 if (!bio)
797 return true;
798
799 /*
800 * Flush requests do not use the elevator so skip initialization.
801 * This allows a request to share the flush and elevator data.
802 */
803 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
804 return false;
805
806 return true;
807}
808
da8303c6
TH
809/**
810 * get_request - get a free request
811 * @q: request_queue to allocate request from
812 * @rw_flags: RW and SYNC flags
813 * @bio: bio to allocate request for (can be %NULL)
814 * @gfp_mask: allocation mask
815 *
816 * Get a free request from @q. This function may fail under memory
817 * pressure or if @q is dead.
818 *
819 * Must be callled with @q->queue_lock held and,
820 * Returns %NULL on failure, with @q->queue_lock held.
821 * Returns !%NULL on success, with @q->queue_lock *not held*.
1da177e4 822 */
165125e1 823static struct request *get_request(struct request_queue *q, int rw_flags,
7749a8d4 824 struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
825{
826 struct request *rq = NULL;
827 struct request_list *rl = &q->rq;
f1f8cc94 828 struct elevator_type *et;
f2dbd76a 829 struct io_context *ioc;
f1f8cc94 830 struct io_cq *icq = NULL;
1faa16d2 831 const bool is_sync = rw_is_sync(rw_flags) != 0;
f2dbd76a 832 bool retried = false;
75eb6c37 833 int may_queue;
f2dbd76a 834retry:
f1f8cc94 835 et = q->elevator->type;
f2dbd76a 836 ioc = current->io_context;
88ee5ef1 837
34f6055c 838 if (unlikely(blk_queue_dead(q)))
da8303c6
TH
839 return NULL;
840
7749a8d4 841 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
842 if (may_queue == ELV_MQUEUE_NO)
843 goto rq_starved;
844
1faa16d2
JA
845 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
846 if (rl->count[is_sync]+1 >= q->nr_requests) {
f2dbd76a
TH
847 /*
848 * We want ioc to record batching state. If it's
849 * not already there, creating a new one requires
850 * dropping queue_lock, which in turn requires
851 * retesting conditions to avoid queue hang.
852 */
853 if (!ioc && !retried) {
854 spin_unlock_irq(q->queue_lock);
855 create_io_context(current, gfp_mask, q->node);
856 spin_lock_irq(q->queue_lock);
857 retried = true;
858 goto retry;
859 }
860
88ee5ef1
JA
861 /*
862 * The queue will fill after this allocation, so set
863 * it as full, and mark this process as "batching".
864 * This process will be allowed to complete a batch of
865 * requests, others will be blocked.
866 */
1faa16d2 867 if (!blk_queue_full(q, is_sync)) {
88ee5ef1 868 ioc_set_batching(q, ioc);
1faa16d2 869 blk_set_queue_full(q, is_sync);
88ee5ef1
JA
870 } else {
871 if (may_queue != ELV_MQUEUE_MUST
872 && !ioc_batching(q, ioc)) {
873 /*
874 * The queue is full and the allocating
875 * process is not a "batcher", and not
876 * exempted by the IO scheduler
877 */
878 goto out;
879 }
880 }
1da177e4 881 }
1faa16d2 882 blk_set_queue_congested(q, is_sync);
1da177e4
LT
883 }
884
082cf69e
JA
885 /*
886 * Only allow batching queuers to allocate up to 50% over the defined
887 * limit of requests, otherwise we could have thousands of requests
888 * allocated with any setting of ->nr_requests
889 */
1faa16d2 890 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
082cf69e 891 goto out;
fd782a4a 892
1faa16d2
JA
893 rl->count[is_sync]++;
894 rl->starved[is_sync] = 0;
cb98fc8b 895
f1f8cc94
TH
896 /*
897 * Decide whether the new request will be managed by elevator. If
898 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
899 * prevent the current elevator from being destroyed until the new
900 * request is freed. This guarantees icq's won't be destroyed and
901 * makes creating new ones safe.
902 *
903 * Also, lookup icq while holding queue_lock. If it doesn't exist,
904 * it will be created after releasing queue_lock.
905 */
d732580b 906 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
75eb6c37
TH
907 rw_flags |= REQ_ELVPRIV;
908 rl->elvpriv++;
f1f8cc94
TH
909 if (et->icq_cache && ioc)
910 icq = ioc_lookup_icq(ioc, q);
9d5a4e94 911 }
cb98fc8b 912
f253b86b
JA
913 if (blk_queue_io_stat(q))
914 rw_flags |= REQ_IO_STAT;
1da177e4
LT
915 spin_unlock_irq(q->queue_lock);
916
f1f8cc94 917 /* create icq if missing */
05c30b95 918 if ((rw_flags & REQ_ELVPRIV) && unlikely(et->icq_cache && !icq)) {
f1f8cc94 919 icq = ioc_create_icq(q, gfp_mask);
05c30b95
SL
920 if (!icq)
921 goto fail_icq;
922 }
f1f8cc94 923
05c30b95 924 rq = blk_alloc_request(q, icq, rw_flags, gfp_mask);
f1f8cc94 925
05c30b95 926fail_icq:
88ee5ef1 927 if (unlikely(!rq)) {
1da177e4
LT
928 /*
929 * Allocation failed presumably due to memory. Undo anything
930 * we might have messed up.
931 *
932 * Allocating task should really be put onto the front of the
933 * wait queue, but this is pretty rare.
934 */
935 spin_lock_irq(q->queue_lock);
75eb6c37 936 freed_request(q, rw_flags);
1da177e4
LT
937
938 /*
939 * in the very unlikely event that allocation failed and no
940 * requests for this direction was pending, mark us starved
941 * so that freeing of a request in the other direction will
942 * notice us. another possible fix would be to split the
943 * rq mempool into READ and WRITE
944 */
945rq_starved:
1faa16d2
JA
946 if (unlikely(rl->count[is_sync] == 0))
947 rl->starved[is_sync] = 1;
1da177e4 948
1da177e4
LT
949 goto out;
950 }
951
88ee5ef1
JA
952 /*
953 * ioc may be NULL here, and ioc_batching will be false. That's
954 * OK, if the queue is under the request limit then requests need
955 * not count toward the nr_batch_requests limit. There will always
956 * be some limit enforced by BLK_BATCH_TIME.
957 */
1da177e4
LT
958 if (ioc_batching(q, ioc))
959 ioc->nr_batch_requests--;
6728cb0e 960
1faa16d2 961 trace_block_getrq(q, bio, rw_flags & 1);
1da177e4 962out:
1da177e4
LT
963 return rq;
964}
965
da8303c6
TH
966/**
967 * get_request_wait - get a free request with retry
968 * @q: request_queue to allocate request from
969 * @rw_flags: RW and SYNC flags
970 * @bio: bio to allocate request for (can be %NULL)
971 *
972 * Get a free request from @q. This function keeps retrying under memory
973 * pressure and fails iff @q is dead.
d6344532 974 *
da8303c6
TH
975 * Must be callled with @q->queue_lock held and,
976 * Returns %NULL on failure, with @q->queue_lock held.
977 * Returns !%NULL on success, with @q->queue_lock *not held*.
1da177e4 978 */
165125e1 979static struct request *get_request_wait(struct request_queue *q, int rw_flags,
22e2c507 980 struct bio *bio)
1da177e4 981{
1faa16d2 982 const bool is_sync = rw_is_sync(rw_flags) != 0;
1da177e4
LT
983 struct request *rq;
984
7749a8d4 985 rq = get_request(q, rw_flags, bio, GFP_NOIO);
450991bc
NP
986 while (!rq) {
987 DEFINE_WAIT(wait);
1da177e4
LT
988 struct request_list *rl = &q->rq;
989
34f6055c 990 if (unlikely(blk_queue_dead(q)))
da8303c6
TH
991 return NULL;
992
1faa16d2 993 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1da177e4
LT
994 TASK_UNINTERRUPTIBLE);
995
1faa16d2 996 trace_block_sleeprq(q, bio, rw_flags & 1);
1da177e4 997
05caf8db
ZY
998 spin_unlock_irq(q->queue_lock);
999 io_schedule();
1da177e4 1000
05caf8db
ZY
1001 /*
1002 * After sleeping, we become a "batching" process and
1003 * will be able to allocate at least one request, and
1004 * up to a big batch of them for a small period time.
1005 * See ioc_batching, ioc_set_batching
1006 */
f2dbd76a
TH
1007 create_io_context(current, GFP_NOIO, q->node);
1008 ioc_set_batching(q, current->io_context);
d6344532 1009
05caf8db 1010 spin_lock_irq(q->queue_lock);
1faa16d2 1011 finish_wait(&rl->wait[is_sync], &wait);
05caf8db
ZY
1012
1013 rq = get_request(q, rw_flags, bio, GFP_NOIO);
1014 };
1da177e4
LT
1015
1016 return rq;
1017}
1018
165125e1 1019struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
1020{
1021 struct request *rq;
1022
1023 BUG_ON(rw != READ && rw != WRITE);
1024
d6344532 1025 spin_lock_irq(q->queue_lock);
da8303c6 1026 if (gfp_mask & __GFP_WAIT)
22e2c507 1027 rq = get_request_wait(q, rw, NULL);
da8303c6 1028 else
22e2c507 1029 rq = get_request(q, rw, NULL, gfp_mask);
da8303c6
TH
1030 if (!rq)
1031 spin_unlock_irq(q->queue_lock);
d6344532 1032 /* q->queue_lock is unlocked at this point */
1da177e4
LT
1033
1034 return rq;
1035}
1da177e4
LT
1036EXPORT_SYMBOL(blk_get_request);
1037
dc72ef4a 1038/**
79eb63e9 1039 * blk_make_request - given a bio, allocate a corresponding struct request.
8ebf9756 1040 * @q: target request queue
79eb63e9
BH
1041 * @bio: The bio describing the memory mappings that will be submitted for IO.
1042 * It may be a chained-bio properly constructed by block/bio layer.
8ebf9756 1043 * @gfp_mask: gfp flags to be used for memory allocation
dc72ef4a 1044 *
79eb63e9
BH
1045 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1046 * type commands. Where the struct request needs to be farther initialized by
1047 * the caller. It is passed a &struct bio, which describes the memory info of
1048 * the I/O transfer.
dc72ef4a 1049 *
79eb63e9
BH
1050 * The caller of blk_make_request must make sure that bi_io_vec
1051 * are set to describe the memory buffers. That bio_data_dir() will return
1052 * the needed direction of the request. (And all bio's in the passed bio-chain
1053 * are properly set accordingly)
1054 *
1055 * If called under none-sleepable conditions, mapped bio buffers must not
1056 * need bouncing, by calling the appropriate masked or flagged allocator,
1057 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1058 * BUG.
53674ac5
JA
1059 *
1060 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1061 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1062 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1063 * completion of a bio that hasn't been submitted yet, thus resulting in a
1064 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1065 * of bio_alloc(), as that avoids the mempool deadlock.
1066 * If possible a big IO should be split into smaller parts when allocation
1067 * fails. Partial allocation should not be an error, or you risk a live-lock.
dc72ef4a 1068 */
79eb63e9
BH
1069struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1070 gfp_t gfp_mask)
dc72ef4a 1071{
79eb63e9
BH
1072 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1073
1074 if (unlikely(!rq))
1075 return ERR_PTR(-ENOMEM);
1076
1077 for_each_bio(bio) {
1078 struct bio *bounce_bio = bio;
1079 int ret;
1080
1081 blk_queue_bounce(q, &bounce_bio);
1082 ret = blk_rq_append_bio(q, rq, bounce_bio);
1083 if (unlikely(ret)) {
1084 blk_put_request(rq);
1085 return ERR_PTR(ret);
1086 }
1087 }
1088
1089 return rq;
dc72ef4a 1090}
79eb63e9 1091EXPORT_SYMBOL(blk_make_request);
dc72ef4a 1092
1da177e4
LT
1093/**
1094 * blk_requeue_request - put a request back on queue
1095 * @q: request queue where request should be inserted
1096 * @rq: request to be inserted
1097 *
1098 * Description:
1099 * Drivers often keep queueing requests until the hardware cannot accept
1100 * more, when that condition happens we need to put the request back
1101 * on the queue. Must be called with queue lock held.
1102 */
165125e1 1103void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1104{
242f9dcb
JA
1105 blk_delete_timer(rq);
1106 blk_clear_rq_complete(rq);
5f3ea37c 1107 trace_block_rq_requeue(q, rq);
2056a782 1108
1da177e4
LT
1109 if (blk_rq_tagged(rq))
1110 blk_queue_end_tag(q, rq);
1111
ba396a6c
JB
1112 BUG_ON(blk_queued_rq(rq));
1113
1da177e4
LT
1114 elv_requeue_request(q, rq);
1115}
1da177e4
LT
1116EXPORT_SYMBOL(blk_requeue_request);
1117
73c10101
JA
1118static void add_acct_request(struct request_queue *q, struct request *rq,
1119 int where)
1120{
1121 drive_stat_acct(rq, 1);
7eaceacc 1122 __elv_add_request(q, rq, where);
73c10101
JA
1123}
1124
074a7aca
TH
1125static void part_round_stats_single(int cpu, struct hd_struct *part,
1126 unsigned long now)
1127{
1128 if (now == part->stamp)
1129 return;
1130
316d315b 1131 if (part_in_flight(part)) {
074a7aca 1132 __part_stat_add(cpu, part, time_in_queue,
316d315b 1133 part_in_flight(part) * (now - part->stamp));
074a7aca
TH
1134 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1135 }
1136 part->stamp = now;
1137}
1138
1139/**
496aa8a9
RD
1140 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1141 * @cpu: cpu number for stats access
1142 * @part: target partition
1da177e4
LT
1143 *
1144 * The average IO queue length and utilisation statistics are maintained
1145 * by observing the current state of the queue length and the amount of
1146 * time it has been in this state for.
1147 *
1148 * Normally, that accounting is done on IO completion, but that can result
1149 * in more than a second's worth of IO being accounted for within any one
1150 * second, leading to >100% utilisation. To deal with that, we call this
1151 * function to do a round-off before returning the results when reading
1152 * /proc/diskstats. This accounts immediately for all queue usage up to
1153 * the current jiffies and restarts the counters again.
1154 */
c9959059 1155void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1156{
1157 unsigned long now = jiffies;
1158
074a7aca
TH
1159 if (part->partno)
1160 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1161 part_round_stats_single(cpu, part, now);
6f2576af 1162}
074a7aca 1163EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1164
1da177e4
LT
1165/*
1166 * queue lock must be held
1167 */
165125e1 1168void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1169{
1da177e4
LT
1170 if (unlikely(!q))
1171 return;
1172 if (unlikely(--req->ref_count))
1173 return;
1174
8922e16c
TH
1175 elv_completed_request(q, req);
1176
1cd96c24
BH
1177 /* this is a bio leak */
1178 WARN_ON(req->bio != NULL);
1179
1da177e4
LT
1180 /*
1181 * Request may not have originated from ll_rw_blk. if not,
1182 * it didn't come out of our reserved rq pools
1183 */
49171e5c 1184 if (req->cmd_flags & REQ_ALLOCED) {
75eb6c37 1185 unsigned int flags = req->cmd_flags;
1da177e4 1186
1da177e4 1187 BUG_ON(!list_empty(&req->queuelist));
9817064b 1188 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4
LT
1189
1190 blk_free_request(q, req);
75eb6c37 1191 freed_request(q, flags);
1da177e4
LT
1192 }
1193}
6e39b69e
MC
1194EXPORT_SYMBOL_GPL(__blk_put_request);
1195
1da177e4
LT
1196void blk_put_request(struct request *req)
1197{
8922e16c 1198 unsigned long flags;
165125e1 1199 struct request_queue *q = req->q;
8922e16c 1200
52a93ba8
FT
1201 spin_lock_irqsave(q->queue_lock, flags);
1202 __blk_put_request(q, req);
1203 spin_unlock_irqrestore(q->queue_lock, flags);
1da177e4 1204}
1da177e4
LT
1205EXPORT_SYMBOL(blk_put_request);
1206
66ac0280
CH
1207/**
1208 * blk_add_request_payload - add a payload to a request
1209 * @rq: request to update
1210 * @page: page backing the payload
1211 * @len: length of the payload.
1212 *
1213 * This allows to later add a payload to an already submitted request by
1214 * a block driver. The driver needs to take care of freeing the payload
1215 * itself.
1216 *
1217 * Note that this is a quite horrible hack and nothing but handling of
1218 * discard requests should ever use it.
1219 */
1220void blk_add_request_payload(struct request *rq, struct page *page,
1221 unsigned int len)
1222{
1223 struct bio *bio = rq->bio;
1224
1225 bio->bi_io_vec->bv_page = page;
1226 bio->bi_io_vec->bv_offset = 0;
1227 bio->bi_io_vec->bv_len = len;
1228
1229 bio->bi_size = len;
1230 bio->bi_vcnt = 1;
1231 bio->bi_phys_segments = 1;
1232
1233 rq->__data_len = rq->resid_len = len;
1234 rq->nr_phys_segments = 1;
1235 rq->buffer = bio_data(bio);
1236}
1237EXPORT_SYMBOL_GPL(blk_add_request_payload);
1238
73c10101
JA
1239static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1240 struct bio *bio)
1241{
1242 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1243
73c10101
JA
1244 if (!ll_back_merge_fn(q, req, bio))
1245 return false;
1246
1247 trace_block_bio_backmerge(q, bio);
1248
1249 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1250 blk_rq_set_mixed_merge(req);
1251
1252 req->biotail->bi_next = bio;
1253 req->biotail = bio;
1254 req->__data_len += bio->bi_size;
1255 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1256
1257 drive_stat_acct(req, 0);
1258 return true;
1259}
1260
1261static bool bio_attempt_front_merge(struct request_queue *q,
1262 struct request *req, struct bio *bio)
1263{
1264 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
73c10101 1265
73c10101
JA
1266 if (!ll_front_merge_fn(q, req, bio))
1267 return false;
1268
1269 trace_block_bio_frontmerge(q, bio);
1270
1271 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1272 blk_rq_set_mixed_merge(req);
1273
73c10101
JA
1274 bio->bi_next = req->bio;
1275 req->bio = bio;
1276
1277 /*
1278 * may not be valid. if the low level driver said
1279 * it didn't need a bounce buffer then it better
1280 * not touch req->buffer either...
1281 */
1282 req->buffer = bio_data(bio);
1283 req->__sector = bio->bi_sector;
1284 req->__data_len += bio->bi_size;
1285 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1286
1287 drive_stat_acct(req, 0);
1288 return true;
1289}
1290
bd87b589
TH
1291/**
1292 * attempt_plug_merge - try to merge with %current's plugged list
1293 * @q: request_queue new bio is being queued at
1294 * @bio: new bio being queued
1295 * @request_count: out parameter for number of traversed plugged requests
1296 *
1297 * Determine whether @bio being queued on @q can be merged with a request
1298 * on %current's plugged list. Returns %true if merge was successful,
1299 * otherwise %false.
1300 *
07c2bd37
TH
1301 * Plugging coalesces IOs from the same issuer for the same purpose without
1302 * going through @q->queue_lock. As such it's more of an issuing mechanism
1303 * than scheduling, and the request, while may have elvpriv data, is not
1304 * added on the elevator at this point. In addition, we don't have
1305 * reliable access to the elevator outside queue lock. Only check basic
1306 * merging parameters without querying the elevator.
73c10101 1307 */
bd87b589
TH
1308static bool attempt_plug_merge(struct request_queue *q, struct bio *bio,
1309 unsigned int *request_count)
73c10101
JA
1310{
1311 struct blk_plug *plug;
1312 struct request *rq;
1313 bool ret = false;
1314
bd87b589 1315 plug = current->plug;
73c10101
JA
1316 if (!plug)
1317 goto out;
56ebdaf2 1318 *request_count = 0;
73c10101
JA
1319
1320 list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1321 int el_ret;
1322
56ebdaf2
SL
1323 (*request_count)++;
1324
07c2bd37 1325 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
1326 continue;
1327
050c8ea8 1328 el_ret = blk_try_merge(rq, bio);
73c10101
JA
1329 if (el_ret == ELEVATOR_BACK_MERGE) {
1330 ret = bio_attempt_back_merge(q, rq, bio);
1331 if (ret)
1332 break;
1333 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1334 ret = bio_attempt_front_merge(q, rq, bio);
1335 if (ret)
1336 break;
1337 }
1338 }
1339out:
1340 return ret;
1341}
1342
86db1e29 1343void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1344{
4aff5e23 1345 req->cmd_type = REQ_TYPE_FS;
52d9e675 1346
7b6d91da
CH
1347 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1348 if (bio->bi_rw & REQ_RAHEAD)
a82afdfc 1349 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1350
52d9e675 1351 req->errors = 0;
a2dec7b3 1352 req->__sector = bio->bi_sector;
52d9e675 1353 req->ioprio = bio_prio(bio);
bc1c56fd 1354 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1355}
1356
5a7bbad2 1357void blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1358{
5e00d1b5 1359 const bool sync = !!(bio->bi_rw & REQ_SYNC);
73c10101
JA
1360 struct blk_plug *plug;
1361 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1362 struct request *req;
56ebdaf2 1363 unsigned int request_count = 0;
1da177e4 1364
1da177e4
LT
1365 /*
1366 * low level driver can indicate that it wants pages above a
1367 * certain limit bounced to low memory (ie for highmem, or even
1368 * ISA dma in theory)
1369 */
1370 blk_queue_bounce(q, &bio);
1371
4fed947c 1372 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
73c10101 1373 spin_lock_irq(q->queue_lock);
ae1b1539 1374 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1375 goto get_rq;
1376 }
1377
73c10101
JA
1378 /*
1379 * Check if we can merge with the plugged list before grabbing
1380 * any locks.
1381 */
bd87b589 1382 if (attempt_plug_merge(q, bio, &request_count))
5a7bbad2 1383 return;
1da177e4 1384
73c10101 1385 spin_lock_irq(q->queue_lock);
2056a782 1386
73c10101
JA
1387 el_ret = elv_merge(q, &req, bio);
1388 if (el_ret == ELEVATOR_BACK_MERGE) {
73c10101 1389 if (bio_attempt_back_merge(q, req, bio)) {
07c2bd37 1390 elv_bio_merged(q, req, bio);
73c10101
JA
1391 if (!attempt_back_merge(q, req))
1392 elv_merged_request(q, req, el_ret);
1393 goto out_unlock;
1394 }
1395 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
73c10101 1396 if (bio_attempt_front_merge(q, req, bio)) {
07c2bd37 1397 elv_bio_merged(q, req, bio);
73c10101
JA
1398 if (!attempt_front_merge(q, req))
1399 elv_merged_request(q, req, el_ret);
1400 goto out_unlock;
80a761fd 1401 }
1da177e4
LT
1402 }
1403
450991bc 1404get_rq:
7749a8d4
JA
1405 /*
1406 * This sync check and mask will be re-done in init_request_from_bio(),
1407 * but we need to set it earlier to expose the sync flag to the
1408 * rq allocator and io schedulers.
1409 */
1410 rw_flags = bio_data_dir(bio);
1411 if (sync)
7b6d91da 1412 rw_flags |= REQ_SYNC;
7749a8d4 1413
1da177e4 1414 /*
450991bc 1415 * Grab a free request. This is might sleep but can not fail.
d6344532 1416 * Returns with the queue unlocked.
450991bc 1417 */
7749a8d4 1418 req = get_request_wait(q, rw_flags, bio);
da8303c6
TH
1419 if (unlikely(!req)) {
1420 bio_endio(bio, -ENODEV); /* @q is dead */
1421 goto out_unlock;
1422 }
d6344532 1423
450991bc
NP
1424 /*
1425 * After dropping the lock and possibly sleeping here, our request
1426 * may now be mergeable after it had proven unmergeable (above).
1427 * We don't worry about that case for efficiency. It won't happen
1428 * often, and the elevators are able to handle it.
1da177e4 1429 */
52d9e675 1430 init_request_from_bio(req, bio);
1da177e4 1431
9562ad9a 1432 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 1433 req->cpu = raw_smp_processor_id();
73c10101
JA
1434
1435 plug = current->plug;
721a9602 1436 if (plug) {
dc6d36c9
JA
1437 /*
1438 * If this is the first request added after a plug, fire
1439 * of a plug trace. If others have been added before, check
1440 * if we have multiple devices in this plug. If so, make a
1441 * note to sort the list before dispatch.
1442 */
1443 if (list_empty(&plug->list))
1444 trace_block_plug(q);
3540d5e8
SL
1445 else {
1446 if (!plug->should_sort) {
1447 struct request *__rq;
73c10101 1448
3540d5e8
SL
1449 __rq = list_entry_rq(plug->list.prev);
1450 if (__rq->q != q)
1451 plug->should_sort = 1;
1452 }
019ceb7d 1453 if (request_count >= BLK_MAX_REQUEST_COUNT) {
3540d5e8 1454 blk_flush_plug_list(plug, false);
019ceb7d
SL
1455 trace_block_plug(q);
1456 }
73c10101 1457 }
73c10101
JA
1458 list_add_tail(&req->queuelist, &plug->list);
1459 drive_stat_acct(req, 1);
1460 } else {
1461 spin_lock_irq(q->queue_lock);
1462 add_acct_request(q, req, where);
24ecfbe2 1463 __blk_run_queue(q);
73c10101
JA
1464out_unlock:
1465 spin_unlock_irq(q->queue_lock);
1466 }
1da177e4 1467}
c20e8de2 1468EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1da177e4
LT
1469
1470/*
1471 * If bio->bi_dev is a partition, remap the location
1472 */
1473static inline void blk_partition_remap(struct bio *bio)
1474{
1475 struct block_device *bdev = bio->bi_bdev;
1476
bf2de6f5 1477 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1478 struct hd_struct *p = bdev->bd_part;
1479
1da177e4
LT
1480 bio->bi_sector += p->start_sect;
1481 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1482
d07335e5
MS
1483 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1484 bdev->bd_dev,
1485 bio->bi_sector - p->start_sect);
1da177e4
LT
1486 }
1487}
1488
1da177e4
LT
1489static void handle_bad_sector(struct bio *bio)
1490{
1491 char b[BDEVNAME_SIZE];
1492
1493 printk(KERN_INFO "attempt to access beyond end of device\n");
1494 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1495 bdevname(bio->bi_bdev, b),
1496 bio->bi_rw,
1497 (unsigned long long)bio->bi_sector + bio_sectors(bio),
77304d2a 1498 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1da177e4
LT
1499
1500 set_bit(BIO_EOF, &bio->bi_flags);
1501}
1502
c17bb495
AM
1503#ifdef CONFIG_FAIL_MAKE_REQUEST
1504
1505static DECLARE_FAULT_ATTR(fail_make_request);
1506
1507static int __init setup_fail_make_request(char *str)
1508{
1509 return setup_fault_attr(&fail_make_request, str);
1510}
1511__setup("fail_make_request=", setup_fail_make_request);
1512
b2c9cd37 1513static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 1514{
b2c9cd37 1515 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
1516}
1517
1518static int __init fail_make_request_debugfs(void)
1519{
dd48c085
AM
1520 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1521 NULL, &fail_make_request);
1522
1523 return IS_ERR(dir) ? PTR_ERR(dir) : 0;
c17bb495
AM
1524}
1525
1526late_initcall(fail_make_request_debugfs);
1527
1528#else /* CONFIG_FAIL_MAKE_REQUEST */
1529
b2c9cd37
AM
1530static inline bool should_fail_request(struct hd_struct *part,
1531 unsigned int bytes)
c17bb495 1532{
b2c9cd37 1533 return false;
c17bb495
AM
1534}
1535
1536#endif /* CONFIG_FAIL_MAKE_REQUEST */
1537
c07e2b41
JA
1538/*
1539 * Check whether this bio extends beyond the end of the device.
1540 */
1541static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1542{
1543 sector_t maxsector;
1544
1545 if (!nr_sectors)
1546 return 0;
1547
1548 /* Test device or partition size, when known. */
77304d2a 1549 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
c07e2b41
JA
1550 if (maxsector) {
1551 sector_t sector = bio->bi_sector;
1552
1553 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1554 /*
1555 * This may well happen - the kernel calls bread()
1556 * without checking the size of the device, e.g., when
1557 * mounting a device.
1558 */
1559 handle_bad_sector(bio);
1560 return 1;
1561 }
1562 }
1563
1564 return 0;
1565}
1566
27a84d54
CH
1567static noinline_for_stack bool
1568generic_make_request_checks(struct bio *bio)
1da177e4 1569{
165125e1 1570 struct request_queue *q;
5a7bbad2 1571 int nr_sectors = bio_sectors(bio);
51fd77bd 1572 int err = -EIO;
5a7bbad2
CH
1573 char b[BDEVNAME_SIZE];
1574 struct hd_struct *part;
1da177e4
LT
1575
1576 might_sleep();
1da177e4 1577
c07e2b41
JA
1578 if (bio_check_eod(bio, nr_sectors))
1579 goto end_io;
1da177e4 1580
5a7bbad2
CH
1581 q = bdev_get_queue(bio->bi_bdev);
1582 if (unlikely(!q)) {
1583 printk(KERN_ERR
1584 "generic_make_request: Trying to access "
1585 "nonexistent block-device %s (%Lu)\n",
1586 bdevname(bio->bi_bdev, b),
1587 (long long) bio->bi_sector);
1588 goto end_io;
1589 }
c17bb495 1590
5a7bbad2
CH
1591 if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
1592 nr_sectors > queue_max_hw_sectors(q))) {
1593 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1594 bdevname(bio->bi_bdev, b),
1595 bio_sectors(bio),
1596 queue_max_hw_sectors(q));
1597 goto end_io;
1598 }
1da177e4 1599
5a7bbad2
CH
1600 part = bio->bi_bdev->bd_part;
1601 if (should_fail_request(part, bio->bi_size) ||
1602 should_fail_request(&part_to_disk(part)->part0,
1603 bio->bi_size))
1604 goto end_io;
2056a782 1605
5a7bbad2
CH
1606 /*
1607 * If this device has partitions, remap block n
1608 * of partition p to block n+start(p) of the disk.
1609 */
1610 blk_partition_remap(bio);
2056a782 1611
5a7bbad2
CH
1612 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1613 goto end_io;
a7384677 1614
5a7bbad2
CH
1615 if (bio_check_eod(bio, nr_sectors))
1616 goto end_io;
1e87901e 1617
5a7bbad2
CH
1618 /*
1619 * Filter flush bio's early so that make_request based
1620 * drivers without flush support don't have to worry
1621 * about them.
1622 */
1623 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1624 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1625 if (!nr_sectors) {
1626 err = 0;
51fd77bd
JA
1627 goto end_io;
1628 }
5a7bbad2 1629 }
5ddfe969 1630
5a7bbad2
CH
1631 if ((bio->bi_rw & REQ_DISCARD) &&
1632 (!blk_queue_discard(q) ||
1633 ((bio->bi_rw & REQ_SECURE) &&
1634 !blk_queue_secdiscard(q)))) {
1635 err = -EOPNOTSUPP;
1636 goto end_io;
1637 }
01edede4 1638
bc16a4f9
TH
1639 if (blk_throtl_bio(q, bio))
1640 return false; /* throttled, will be resubmitted later */
27a84d54 1641
5a7bbad2 1642 trace_block_bio_queue(q, bio);
27a84d54 1643 return true;
a7384677
TH
1644
1645end_io:
1646 bio_endio(bio, err);
27a84d54 1647 return false;
1da177e4
LT
1648}
1649
27a84d54
CH
1650/**
1651 * generic_make_request - hand a buffer to its device driver for I/O
1652 * @bio: The bio describing the location in memory and on the device.
1653 *
1654 * generic_make_request() is used to make I/O requests of block
1655 * devices. It is passed a &struct bio, which describes the I/O that needs
1656 * to be done.
1657 *
1658 * generic_make_request() does not return any status. The
1659 * success/failure status of the request, along with notification of
1660 * completion, is delivered asynchronously through the bio->bi_end_io
1661 * function described (one day) else where.
1662 *
1663 * The caller of generic_make_request must make sure that bi_io_vec
1664 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1665 * set to describe the device address, and the
1666 * bi_end_io and optionally bi_private are set to describe how
1667 * completion notification should be signaled.
1668 *
1669 * generic_make_request and the drivers it calls may use bi_next if this
1670 * bio happens to be merged with someone else, and may resubmit the bio to
1671 * a lower device by calling into generic_make_request recursively, which
1672 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796
NB
1673 */
1674void generic_make_request(struct bio *bio)
1675{
bddd87c7
AM
1676 struct bio_list bio_list_on_stack;
1677
27a84d54
CH
1678 if (!generic_make_request_checks(bio))
1679 return;
1680
1681 /*
1682 * We only want one ->make_request_fn to be active at a time, else
1683 * stack usage with stacked devices could be a problem. So use
1684 * current->bio_list to keep a list of requests submited by a
1685 * make_request_fn function. current->bio_list is also used as a
1686 * flag to say if generic_make_request is currently active in this
1687 * task or not. If it is NULL, then no make_request is active. If
1688 * it is non-NULL, then a make_request is active, and new requests
1689 * should be added at the tail
1690 */
bddd87c7 1691 if (current->bio_list) {
bddd87c7 1692 bio_list_add(current->bio_list, bio);
d89d8796
NB
1693 return;
1694 }
27a84d54 1695
d89d8796
NB
1696 /* following loop may be a bit non-obvious, and so deserves some
1697 * explanation.
1698 * Before entering the loop, bio->bi_next is NULL (as all callers
1699 * ensure that) so we have a list with a single bio.
1700 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
1701 * we assign bio_list to a pointer to the bio_list_on_stack,
1702 * thus initialising the bio_list of new bios to be
27a84d54 1703 * added. ->make_request() may indeed add some more bios
d89d8796
NB
1704 * through a recursive call to generic_make_request. If it
1705 * did, we find a non-NULL value in bio_list and re-enter the loop
1706 * from the top. In this case we really did just take the bio
bddd87c7 1707 * of the top of the list (no pretending) and so remove it from
27a84d54 1708 * bio_list, and call into ->make_request() again.
d89d8796
NB
1709 */
1710 BUG_ON(bio->bi_next);
bddd87c7
AM
1711 bio_list_init(&bio_list_on_stack);
1712 current->bio_list = &bio_list_on_stack;
d89d8796 1713 do {
27a84d54
CH
1714 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1715
1716 q->make_request_fn(q, bio);
1717
bddd87c7 1718 bio = bio_list_pop(current->bio_list);
d89d8796 1719 } while (bio);
bddd87c7 1720 current->bio_list = NULL; /* deactivate */
d89d8796 1721}
1da177e4
LT
1722EXPORT_SYMBOL(generic_make_request);
1723
1724/**
710027a4 1725 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1726 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1727 * @bio: The &struct bio which describes the I/O
1728 *
1729 * submit_bio() is very similar in purpose to generic_make_request(), and
1730 * uses that function to do most of the work. Both are fairly rough
710027a4 1731 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1732 *
1733 */
1734void submit_bio(int rw, struct bio *bio)
1735{
1736 int count = bio_sectors(bio);
1737
22e2c507 1738 bio->bi_rw |= rw;
1da177e4 1739
bf2de6f5
JA
1740 /*
1741 * If it's a regular read/write or a barrier with data attached,
1742 * go through the normal accounting stuff before submission.
1743 */
3ffb52e7 1744 if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
bf2de6f5
JA
1745 if (rw & WRITE) {
1746 count_vm_events(PGPGOUT, count);
1747 } else {
1748 task_io_account_read(bio->bi_size);
1749 count_vm_events(PGPGIN, count);
1750 }
1751
1752 if (unlikely(block_dump)) {
1753 char b[BDEVNAME_SIZE];
8dcbdc74 1754 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 1755 current->comm, task_pid_nr(current),
bf2de6f5
JA
1756 (rw & WRITE) ? "WRITE" : "READ",
1757 (unsigned long long)bio->bi_sector,
8dcbdc74
SM
1758 bdevname(bio->bi_bdev, b),
1759 count);
bf2de6f5 1760 }
1da177e4
LT
1761 }
1762
1763 generic_make_request(bio);
1764}
1da177e4
LT
1765EXPORT_SYMBOL(submit_bio);
1766
82124d60
KU
1767/**
1768 * blk_rq_check_limits - Helper function to check a request for the queue limit
1769 * @q: the queue
1770 * @rq: the request being checked
1771 *
1772 * Description:
1773 * @rq may have been made based on weaker limitations of upper-level queues
1774 * in request stacking drivers, and it may violate the limitation of @q.
1775 * Since the block layer and the underlying device driver trust @rq
1776 * after it is inserted to @q, it should be checked against @q before
1777 * the insertion using this generic function.
1778 *
1779 * This function should also be useful for request stacking drivers
eef35c2d 1780 * in some cases below, so export this function.
82124d60
KU
1781 * Request stacking drivers like request-based dm may change the queue
1782 * limits while requests are in the queue (e.g. dm's table swapping).
1783 * Such request stacking drivers should check those requests agaist
1784 * the new queue limits again when they dispatch those requests,
1785 * although such checkings are also done against the old queue limits
1786 * when submitting requests.
1787 */
1788int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1789{
3383977f
S
1790 if (rq->cmd_flags & REQ_DISCARD)
1791 return 0;
1792
ae03bf63
MP
1793 if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1794 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
82124d60
KU
1795 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1796 return -EIO;
1797 }
1798
1799 /*
1800 * queue's settings related to segment counting like q->bounce_pfn
1801 * may differ from that of other stacking queues.
1802 * Recalculate it to check the request correctly on this queue's
1803 * limitation.
1804 */
1805 blk_recalc_rq_segments(rq);
8a78362c 1806 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
1807 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1808 return -EIO;
1809 }
1810
1811 return 0;
1812}
1813EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1814
1815/**
1816 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1817 * @q: the queue to submit the request
1818 * @rq: the request being queued
1819 */
1820int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1821{
1822 unsigned long flags;
4853abaa 1823 int where = ELEVATOR_INSERT_BACK;
82124d60
KU
1824
1825 if (blk_rq_check_limits(q, rq))
1826 return -EIO;
1827
b2c9cd37
AM
1828 if (rq->rq_disk &&
1829 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
82124d60 1830 return -EIO;
82124d60
KU
1831
1832 spin_lock_irqsave(q->queue_lock, flags);
8ba61435
TH
1833 if (unlikely(blk_queue_dead(q))) {
1834 spin_unlock_irqrestore(q->queue_lock, flags);
1835 return -ENODEV;
1836 }
82124d60
KU
1837
1838 /*
1839 * Submitting request must be dequeued before calling this function
1840 * because it will be linked to another request_queue
1841 */
1842 BUG_ON(blk_queued_rq(rq));
1843
4853abaa
JM
1844 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1845 where = ELEVATOR_INSERT_FLUSH;
1846
1847 add_acct_request(q, rq, where);
e67b77c7
JM
1848 if (where == ELEVATOR_INSERT_FLUSH)
1849 __blk_run_queue(q);
82124d60
KU
1850 spin_unlock_irqrestore(q->queue_lock, flags);
1851
1852 return 0;
1853}
1854EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1855
80a761fd
TH
1856/**
1857 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1858 * @rq: request to examine
1859 *
1860 * Description:
1861 * A request could be merge of IOs which require different failure
1862 * handling. This function determines the number of bytes which
1863 * can be failed from the beginning of the request without
1864 * crossing into area which need to be retried further.
1865 *
1866 * Return:
1867 * The number of bytes to fail.
1868 *
1869 * Context:
1870 * queue_lock must be held.
1871 */
1872unsigned int blk_rq_err_bytes(const struct request *rq)
1873{
1874 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1875 unsigned int bytes = 0;
1876 struct bio *bio;
1877
1878 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1879 return blk_rq_bytes(rq);
1880
1881 /*
1882 * Currently the only 'mixing' which can happen is between
1883 * different fastfail types. We can safely fail portions
1884 * which have all the failfast bits that the first one has -
1885 * the ones which are at least as eager to fail as the first
1886 * one.
1887 */
1888 for (bio = rq->bio; bio; bio = bio->bi_next) {
1889 if ((bio->bi_rw & ff) != ff)
1890 break;
1891 bytes += bio->bi_size;
1892 }
1893
1894 /* this could lead to infinite loop */
1895 BUG_ON(blk_rq_bytes(rq) && !bytes);
1896 return bytes;
1897}
1898EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1899
bc58ba94
JA
1900static void blk_account_io_completion(struct request *req, unsigned int bytes)
1901{
c2553b58 1902 if (blk_do_io_stat(req)) {
bc58ba94
JA
1903 const int rw = rq_data_dir(req);
1904 struct hd_struct *part;
1905 int cpu;
1906
1907 cpu = part_stat_lock();
09e099d4 1908 part = req->part;
bc58ba94
JA
1909 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1910 part_stat_unlock();
1911 }
1912}
1913
1914static void blk_account_io_done(struct request *req)
1915{
bc58ba94 1916 /*
dd4c133f
TH
1917 * Account IO completion. flush_rq isn't accounted as a
1918 * normal IO on queueing nor completion. Accounting the
1919 * containing request is enough.
bc58ba94 1920 */
414b4ff5 1921 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
bc58ba94
JA
1922 unsigned long duration = jiffies - req->start_time;
1923 const int rw = rq_data_dir(req);
1924 struct hd_struct *part;
1925 int cpu;
1926
1927 cpu = part_stat_lock();
09e099d4 1928 part = req->part;
bc58ba94
JA
1929
1930 part_stat_inc(cpu, part, ios[rw]);
1931 part_stat_add(cpu, part, ticks[rw], duration);
1932 part_round_stats(cpu, part);
316d315b 1933 part_dec_in_flight(part, rw);
bc58ba94 1934
6c23a968 1935 hd_struct_put(part);
bc58ba94
JA
1936 part_stat_unlock();
1937 }
1938}
1939
3bcddeac 1940/**
9934c8c0
TH
1941 * blk_peek_request - peek at the top of a request queue
1942 * @q: request queue to peek at
1943 *
1944 * Description:
1945 * Return the request at the top of @q. The returned request
1946 * should be started using blk_start_request() before LLD starts
1947 * processing it.
1948 *
1949 * Return:
1950 * Pointer to the request at the top of @q if available. Null
1951 * otherwise.
1952 *
1953 * Context:
1954 * queue_lock must be held.
1955 */
1956struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
1957{
1958 struct request *rq;
1959 int ret;
1960
1961 while ((rq = __elv_next_request(q)) != NULL) {
1962 if (!(rq->cmd_flags & REQ_STARTED)) {
1963 /*
1964 * This is the first time the device driver
1965 * sees this request (possibly after
1966 * requeueing). Notify IO scheduler.
1967 */
33659ebb 1968 if (rq->cmd_flags & REQ_SORTED)
158dbda0
TH
1969 elv_activate_rq(q, rq);
1970
1971 /*
1972 * just mark as started even if we don't start
1973 * it, a request that has been delayed should
1974 * not be passed by new incoming requests
1975 */
1976 rq->cmd_flags |= REQ_STARTED;
1977 trace_block_rq_issue(q, rq);
1978 }
1979
1980 if (!q->boundary_rq || q->boundary_rq == rq) {
1981 q->end_sector = rq_end_sector(rq);
1982 q->boundary_rq = NULL;
1983 }
1984
1985 if (rq->cmd_flags & REQ_DONTPREP)
1986 break;
1987
2e46e8b2 1988 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
1989 /*
1990 * make sure space for the drain appears we
1991 * know we can do this because max_hw_segments
1992 * has been adjusted to be one fewer than the
1993 * device can handle
1994 */
1995 rq->nr_phys_segments++;
1996 }
1997
1998 if (!q->prep_rq_fn)
1999 break;
2000
2001 ret = q->prep_rq_fn(q, rq);
2002 if (ret == BLKPREP_OK) {
2003 break;
2004 } else if (ret == BLKPREP_DEFER) {
2005 /*
2006 * the request may have been (partially) prepped.
2007 * we need to keep this request in the front to
2008 * avoid resource deadlock. REQ_STARTED will
2009 * prevent other fs requests from passing this one.
2010 */
2e46e8b2 2011 if (q->dma_drain_size && blk_rq_bytes(rq) &&
158dbda0
TH
2012 !(rq->cmd_flags & REQ_DONTPREP)) {
2013 /*
2014 * remove the space for the drain we added
2015 * so that we don't add it again
2016 */
2017 --rq->nr_phys_segments;
2018 }
2019
2020 rq = NULL;
2021 break;
2022 } else if (ret == BLKPREP_KILL) {
2023 rq->cmd_flags |= REQ_QUIET;
c143dc90
JB
2024 /*
2025 * Mark this request as started so we don't trigger
2026 * any debug logic in the end I/O path.
2027 */
2028 blk_start_request(rq);
40cbbb78 2029 __blk_end_request_all(rq, -EIO);
158dbda0
TH
2030 } else {
2031 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2032 break;
2033 }
2034 }
2035
2036 return rq;
2037}
9934c8c0 2038EXPORT_SYMBOL(blk_peek_request);
158dbda0 2039
9934c8c0 2040void blk_dequeue_request(struct request *rq)
158dbda0 2041{
9934c8c0
TH
2042 struct request_queue *q = rq->q;
2043
158dbda0
TH
2044 BUG_ON(list_empty(&rq->queuelist));
2045 BUG_ON(ELV_ON_HASH(rq));
2046
2047 list_del_init(&rq->queuelist);
2048
2049 /*
2050 * the time frame between a request being removed from the lists
2051 * and to it is freed is accounted as io that is in progress at
2052 * the driver side.
2053 */
9195291e 2054 if (blk_account_rq(rq)) {
0a7ae2ff 2055 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
2056 set_io_start_time_ns(rq);
2057 }
158dbda0
TH
2058}
2059
9934c8c0
TH
2060/**
2061 * blk_start_request - start request processing on the driver
2062 * @req: request to dequeue
2063 *
2064 * Description:
2065 * Dequeue @req and start timeout timer on it. This hands off the
2066 * request to the driver.
2067 *
2068 * Block internal functions which don't want to start timer should
2069 * call blk_dequeue_request().
2070 *
2071 * Context:
2072 * queue_lock must be held.
2073 */
2074void blk_start_request(struct request *req)
2075{
2076 blk_dequeue_request(req);
2077
2078 /*
5f49f631
TH
2079 * We are now handing the request to the hardware, initialize
2080 * resid_len to full count and add the timeout handler.
9934c8c0 2081 */
5f49f631 2082 req->resid_len = blk_rq_bytes(req);
dbb66c4b
FT
2083 if (unlikely(blk_bidi_rq(req)))
2084 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2085
9934c8c0
TH
2086 blk_add_timer(req);
2087}
2088EXPORT_SYMBOL(blk_start_request);
2089
2090/**
2091 * blk_fetch_request - fetch a request from a request queue
2092 * @q: request queue to fetch a request from
2093 *
2094 * Description:
2095 * Return the request at the top of @q. The request is started on
2096 * return and LLD can start processing it immediately.
2097 *
2098 * Return:
2099 * Pointer to the request at the top of @q if available. Null
2100 * otherwise.
2101 *
2102 * Context:
2103 * queue_lock must be held.
2104 */
2105struct request *blk_fetch_request(struct request_queue *q)
2106{
2107 struct request *rq;
2108
2109 rq = blk_peek_request(q);
2110 if (rq)
2111 blk_start_request(rq);
2112 return rq;
2113}
2114EXPORT_SYMBOL(blk_fetch_request);
2115
3bcddeac 2116/**
2e60e022 2117 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2118 * @req: the request being processed
710027a4 2119 * @error: %0 for success, < %0 for error
8ebf9756 2120 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2121 *
2122 * Description:
8ebf9756
RD
2123 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2124 * the request structure even if @req doesn't have leftover.
2125 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2126 *
2127 * This special helper function is only for request stacking drivers
2128 * (e.g. request-based dm) so that they can handle partial completion.
2129 * Actual device drivers should use blk_end_request instead.
2130 *
2131 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2132 * %false return from this function.
3bcddeac
KU
2133 *
2134 * Return:
2e60e022
TH
2135 * %false - this request doesn't have any more data
2136 * %true - this request has more data
3bcddeac 2137 **/
2e60e022 2138bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 2139{
5450d3e1 2140 int total_bytes, bio_nbytes, next_idx = 0;
1da177e4
LT
2141 struct bio *bio;
2142
2e60e022
TH
2143 if (!req->bio)
2144 return false;
2145
5f3ea37c 2146 trace_block_rq_complete(req->q, req);
2056a782 2147
1da177e4 2148 /*
6f41469c
TH
2149 * For fs requests, rq is just carrier of independent bio's
2150 * and each partial completion should be handled separately.
2151 * Reset per-request error on each partial completion.
2152 *
2153 * TODO: tj: This is too subtle. It would be better to let
2154 * low level drivers do what they see fit.
1da177e4 2155 */
33659ebb 2156 if (req->cmd_type == REQ_TYPE_FS)
1da177e4
LT
2157 req->errors = 0;
2158
33659ebb
CH
2159 if (error && req->cmd_type == REQ_TYPE_FS &&
2160 !(req->cmd_flags & REQ_QUIET)) {
79775567
HR
2161 char *error_type;
2162
2163 switch (error) {
2164 case -ENOLINK:
2165 error_type = "recoverable transport";
2166 break;
2167 case -EREMOTEIO:
2168 error_type = "critical target";
2169 break;
2170 case -EBADE:
2171 error_type = "critical nexus";
2172 break;
2173 case -EIO:
2174 default:
2175 error_type = "I/O";
2176 break;
2177 }
2178 printk(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2179 error_type, req->rq_disk ? req->rq_disk->disk_name : "?",
2180 (unsigned long long)blk_rq_pos(req));
1da177e4
LT
2181 }
2182
bc58ba94 2183 blk_account_io_completion(req, nr_bytes);
d72d904a 2184
1da177e4
LT
2185 total_bytes = bio_nbytes = 0;
2186 while ((bio = req->bio) != NULL) {
2187 int nbytes;
2188
2189 if (nr_bytes >= bio->bi_size) {
2190 req->bio = bio->bi_next;
2191 nbytes = bio->bi_size;
5bb23a68 2192 req_bio_endio(req, bio, nbytes, error);
1da177e4
LT
2193 next_idx = 0;
2194 bio_nbytes = 0;
2195 } else {
2196 int idx = bio->bi_idx + next_idx;
2197
af498d7f 2198 if (unlikely(idx >= bio->bi_vcnt)) {
1da177e4 2199 blk_dump_rq_flags(req, "__end_that");
6728cb0e 2200 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
af498d7f 2201 __func__, idx, bio->bi_vcnt);
1da177e4
LT
2202 break;
2203 }
2204
2205 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2206 BIO_BUG_ON(nbytes > bio->bi_size);
2207
2208 /*
2209 * not a complete bvec done
2210 */
2211 if (unlikely(nbytes > nr_bytes)) {
2212 bio_nbytes += nr_bytes;
2213 total_bytes += nr_bytes;
2214 break;
2215 }
2216
2217 /*
2218 * advance to the next vector
2219 */
2220 next_idx++;
2221 bio_nbytes += nbytes;
2222 }
2223
2224 total_bytes += nbytes;
2225 nr_bytes -= nbytes;
2226
6728cb0e
JA
2227 bio = req->bio;
2228 if (bio) {
1da177e4
LT
2229 /*
2230 * end more in this run, or just return 'not-done'
2231 */
2232 if (unlikely(nr_bytes <= 0))
2233 break;
2234 }
2235 }
2236
2237 /*
2238 * completely done
2239 */
2e60e022
TH
2240 if (!req->bio) {
2241 /*
2242 * Reset counters so that the request stacking driver
2243 * can find how many bytes remain in the request
2244 * later.
2245 */
a2dec7b3 2246 req->__data_len = 0;
2e60e022
TH
2247 return false;
2248 }
1da177e4
LT
2249
2250 /*
2251 * if the request wasn't completed, update state
2252 */
2253 if (bio_nbytes) {
5bb23a68 2254 req_bio_endio(req, bio, bio_nbytes, error);
1da177e4
LT
2255 bio->bi_idx += next_idx;
2256 bio_iovec(bio)->bv_offset += nr_bytes;
2257 bio_iovec(bio)->bv_len -= nr_bytes;
2258 }
2259
a2dec7b3 2260 req->__data_len -= total_bytes;
2e46e8b2
TH
2261 req->buffer = bio_data(req->bio);
2262
2263 /* update sector only for requests with clear definition of sector */
33659ebb 2264 if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
a2dec7b3 2265 req->__sector += total_bytes >> 9;
2e46e8b2 2266
80a761fd
TH
2267 /* mixed attributes always follow the first bio */
2268 if (req->cmd_flags & REQ_MIXED_MERGE) {
2269 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2270 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2271 }
2272
2e46e8b2
TH
2273 /*
2274 * If total number of sectors is less than the first segment
2275 * size, something has gone terribly wrong.
2276 */
2277 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
8182924b 2278 blk_dump_rq_flags(req, "request botched");
a2dec7b3 2279 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2280 }
2281
2282 /* recalculate the number of segments */
1da177e4 2283 blk_recalc_rq_segments(req);
2e46e8b2 2284
2e60e022 2285 return true;
1da177e4 2286}
2e60e022 2287EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2288
2e60e022
TH
2289static bool blk_update_bidi_request(struct request *rq, int error,
2290 unsigned int nr_bytes,
2291 unsigned int bidi_bytes)
5efccd17 2292{
2e60e022
TH
2293 if (blk_update_request(rq, error, nr_bytes))
2294 return true;
5efccd17 2295
2e60e022
TH
2296 /* Bidi request must be completed as a whole */
2297 if (unlikely(blk_bidi_rq(rq)) &&
2298 blk_update_request(rq->next_rq, error, bidi_bytes))
2299 return true;
5efccd17 2300
e2e1a148
JA
2301 if (blk_queue_add_random(rq->q))
2302 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2303
2304 return false;
1da177e4
LT
2305}
2306
28018c24
JB
2307/**
2308 * blk_unprep_request - unprepare a request
2309 * @req: the request
2310 *
2311 * This function makes a request ready for complete resubmission (or
2312 * completion). It happens only after all error handling is complete,
2313 * so represents the appropriate moment to deallocate any resources
2314 * that were allocated to the request in the prep_rq_fn. The queue
2315 * lock is held when calling this.
2316 */
2317void blk_unprep_request(struct request *req)
2318{
2319 struct request_queue *q = req->q;
2320
2321 req->cmd_flags &= ~REQ_DONTPREP;
2322 if (q->unprep_rq_fn)
2323 q->unprep_rq_fn(q, req);
2324}
2325EXPORT_SYMBOL_GPL(blk_unprep_request);
2326
1da177e4
LT
2327/*
2328 * queue lock must be held
2329 */
2e60e022 2330static void blk_finish_request(struct request *req, int error)
1da177e4 2331{
b8286239
KU
2332 if (blk_rq_tagged(req))
2333 blk_queue_end_tag(req->q, req);
2334
ba396a6c 2335 BUG_ON(blk_queued_rq(req));
1da177e4 2336
33659ebb 2337 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
31373d09 2338 laptop_io_completion(&req->q->backing_dev_info);
1da177e4 2339
e78042e5
MA
2340 blk_delete_timer(req);
2341
28018c24
JB
2342 if (req->cmd_flags & REQ_DONTPREP)
2343 blk_unprep_request(req);
2344
2345
bc58ba94 2346 blk_account_io_done(req);
b8286239 2347
1da177e4 2348 if (req->end_io)
8ffdc655 2349 req->end_io(req, error);
b8286239
KU
2350 else {
2351 if (blk_bidi_rq(req))
2352 __blk_put_request(req->next_rq->q, req->next_rq);
2353
1da177e4 2354 __blk_put_request(req->q, req);
b8286239 2355 }
1da177e4
LT
2356}
2357
3b11313a 2358/**
2e60e022
TH
2359 * blk_end_bidi_request - Complete a bidi request
2360 * @rq: the request to complete
2361 * @error: %0 for success, < %0 for error
2362 * @nr_bytes: number of bytes to complete @rq
2363 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2364 *
2365 * Description:
e3a04fe3 2366 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2367 * Drivers that supports bidi can safely call this member for any
2368 * type of request, bidi or uni. In the later case @bidi_bytes is
2369 * just ignored.
336cdb40
KU
2370 *
2371 * Return:
2e60e022
TH
2372 * %false - we are done with this request
2373 * %true - still buffers pending for this request
a0cd1285 2374 **/
b1f74493 2375static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2376 unsigned int nr_bytes, unsigned int bidi_bytes)
2377{
336cdb40 2378 struct request_queue *q = rq->q;
2e60e022 2379 unsigned long flags;
32fab448 2380
2e60e022
TH
2381 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2382 return true;
32fab448 2383
336cdb40 2384 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2385 blk_finish_request(rq, error);
336cdb40
KU
2386 spin_unlock_irqrestore(q->queue_lock, flags);
2387
2e60e022 2388 return false;
32fab448
KU
2389}
2390
336cdb40 2391/**
2e60e022
TH
2392 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2393 * @rq: the request to complete
710027a4 2394 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2395 * @nr_bytes: number of bytes to complete @rq
2396 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2397 *
2398 * Description:
2e60e022
TH
2399 * Identical to blk_end_bidi_request() except that queue lock is
2400 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2401 *
2402 * Return:
2e60e022
TH
2403 * %false - we are done with this request
2404 * %true - still buffers pending for this request
336cdb40 2405 **/
4853abaa 2406bool __blk_end_bidi_request(struct request *rq, int error,
b1f74493 2407 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2408{
2e60e022
TH
2409 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2410 return true;
336cdb40 2411
2e60e022 2412 blk_finish_request(rq, error);
336cdb40 2413
2e60e022 2414 return false;
336cdb40 2415}
e19a3ab0
KU
2416
2417/**
2418 * blk_end_request - Helper function for drivers to complete the request.
2419 * @rq: the request being processed
710027a4 2420 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2421 * @nr_bytes: number of bytes to complete
2422 *
2423 * Description:
2424 * Ends I/O on a number of bytes attached to @rq.
2425 * If @rq has leftover, sets it up for the next range of segments.
2426 *
2427 * Return:
b1f74493
FT
2428 * %false - we are done with this request
2429 * %true - still buffers pending for this request
e19a3ab0 2430 **/
b1f74493 2431bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2432{
b1f74493 2433 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2434}
56ad1740 2435EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2436
2437/**
b1f74493
FT
2438 * blk_end_request_all - Helper function for drives to finish the request.
2439 * @rq: the request to finish
8ebf9756 2440 * @error: %0 for success, < %0 for error
336cdb40
KU
2441 *
2442 * Description:
b1f74493
FT
2443 * Completely finish @rq.
2444 */
2445void blk_end_request_all(struct request *rq, int error)
336cdb40 2446{
b1f74493
FT
2447 bool pending;
2448 unsigned int bidi_bytes = 0;
336cdb40 2449
b1f74493
FT
2450 if (unlikely(blk_bidi_rq(rq)))
2451 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2452
b1f74493
FT
2453 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2454 BUG_ON(pending);
2455}
56ad1740 2456EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2457
b1f74493
FT
2458/**
2459 * blk_end_request_cur - Helper function to finish the current request chunk.
2460 * @rq: the request to finish the current chunk for
8ebf9756 2461 * @error: %0 for success, < %0 for error
b1f74493
FT
2462 *
2463 * Description:
2464 * Complete the current consecutively mapped chunk from @rq.
2465 *
2466 * Return:
2467 * %false - we are done with this request
2468 * %true - still buffers pending for this request
2469 */
2470bool blk_end_request_cur(struct request *rq, int error)
2471{
2472 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2473}
56ad1740 2474EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2475
80a761fd
TH
2476/**
2477 * blk_end_request_err - Finish a request till the next failure boundary.
2478 * @rq: the request to finish till the next failure boundary for
2479 * @error: must be negative errno
2480 *
2481 * Description:
2482 * Complete @rq till the next failure boundary.
2483 *
2484 * Return:
2485 * %false - we are done with this request
2486 * %true - still buffers pending for this request
2487 */
2488bool blk_end_request_err(struct request *rq, int error)
2489{
2490 WARN_ON(error >= 0);
2491 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2492}
2493EXPORT_SYMBOL_GPL(blk_end_request_err);
2494
e3a04fe3 2495/**
b1f74493
FT
2496 * __blk_end_request - Helper function for drivers to complete the request.
2497 * @rq: the request being processed
2498 * @error: %0 for success, < %0 for error
2499 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2500 *
2501 * Description:
b1f74493 2502 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2503 *
2504 * Return:
b1f74493
FT
2505 * %false - we are done with this request
2506 * %true - still buffers pending for this request
e3a04fe3 2507 **/
b1f74493 2508bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2509{
b1f74493 2510 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2511}
56ad1740 2512EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2513
32fab448 2514/**
b1f74493
FT
2515 * __blk_end_request_all - Helper function for drives to finish the request.
2516 * @rq: the request to finish
8ebf9756 2517 * @error: %0 for success, < %0 for error
32fab448
KU
2518 *
2519 * Description:
b1f74493 2520 * Completely finish @rq. Must be called with queue lock held.
32fab448 2521 */
b1f74493 2522void __blk_end_request_all(struct request *rq, int error)
32fab448 2523{
b1f74493
FT
2524 bool pending;
2525 unsigned int bidi_bytes = 0;
2526
2527 if (unlikely(blk_bidi_rq(rq)))
2528 bidi_bytes = blk_rq_bytes(rq->next_rq);
2529
2530 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2531 BUG_ON(pending);
32fab448 2532}
56ad1740 2533EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2534
e19a3ab0 2535/**
b1f74493
FT
2536 * __blk_end_request_cur - Helper function to finish the current request chunk.
2537 * @rq: the request to finish the current chunk for
8ebf9756 2538 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2539 *
2540 * Description:
b1f74493
FT
2541 * Complete the current consecutively mapped chunk from @rq. Must
2542 * be called with queue lock held.
e19a3ab0
KU
2543 *
2544 * Return:
b1f74493
FT
2545 * %false - we are done with this request
2546 * %true - still buffers pending for this request
2547 */
2548bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2549{
b1f74493 2550 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2551}
56ad1740 2552EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2553
80a761fd
TH
2554/**
2555 * __blk_end_request_err - Finish a request till the next failure boundary.
2556 * @rq: the request to finish till the next failure boundary for
2557 * @error: must be negative errno
2558 *
2559 * Description:
2560 * Complete @rq till the next failure boundary. Must be called
2561 * with queue lock held.
2562 *
2563 * Return:
2564 * %false - we are done with this request
2565 * %true - still buffers pending for this request
2566 */
2567bool __blk_end_request_err(struct request *rq, int error)
2568{
2569 WARN_ON(error >= 0);
2570 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2571}
2572EXPORT_SYMBOL_GPL(__blk_end_request_err);
2573
86db1e29
JA
2574void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2575 struct bio *bio)
1da177e4 2576{
a82afdfc 2577 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
7b6d91da 2578 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
1da177e4 2579
fb2dce86
DW
2580 if (bio_has_data(bio)) {
2581 rq->nr_phys_segments = bio_phys_segments(q, bio);
fb2dce86
DW
2582 rq->buffer = bio_data(bio);
2583 }
a2dec7b3 2584 rq->__data_len = bio->bi_size;
1da177e4 2585 rq->bio = rq->biotail = bio;
1da177e4 2586
66846572
N
2587 if (bio->bi_bdev)
2588 rq->rq_disk = bio->bi_bdev->bd_disk;
2589}
1da177e4 2590
2d4dc890
IL
2591#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2592/**
2593 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2594 * @rq: the request to be flushed
2595 *
2596 * Description:
2597 * Flush all pages in @rq.
2598 */
2599void rq_flush_dcache_pages(struct request *rq)
2600{
2601 struct req_iterator iter;
2602 struct bio_vec *bvec;
2603
2604 rq_for_each_segment(bvec, rq, iter)
2605 flush_dcache_page(bvec->bv_page);
2606}
2607EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2608#endif
2609
ef9e3fac
KU
2610/**
2611 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2612 * @q : the queue of the device being checked
2613 *
2614 * Description:
2615 * Check if underlying low-level drivers of a device are busy.
2616 * If the drivers want to export their busy state, they must set own
2617 * exporting function using blk_queue_lld_busy() first.
2618 *
2619 * Basically, this function is used only by request stacking drivers
2620 * to stop dispatching requests to underlying devices when underlying
2621 * devices are busy. This behavior helps more I/O merging on the queue
2622 * of the request stacking driver and prevents I/O throughput regression
2623 * on burst I/O load.
2624 *
2625 * Return:
2626 * 0 - Not busy (The request stacking driver should dispatch request)
2627 * 1 - Busy (The request stacking driver should stop dispatching request)
2628 */
2629int blk_lld_busy(struct request_queue *q)
2630{
2631 if (q->lld_busy_fn)
2632 return q->lld_busy_fn(q);
2633
2634 return 0;
2635}
2636EXPORT_SYMBOL_GPL(blk_lld_busy);
2637
b0fd271d
KU
2638/**
2639 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2640 * @rq: the clone request to be cleaned up
2641 *
2642 * Description:
2643 * Free all bios in @rq for a cloned request.
2644 */
2645void blk_rq_unprep_clone(struct request *rq)
2646{
2647 struct bio *bio;
2648
2649 while ((bio = rq->bio) != NULL) {
2650 rq->bio = bio->bi_next;
2651
2652 bio_put(bio);
2653 }
2654}
2655EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2656
2657/*
2658 * Copy attributes of the original request to the clone request.
2659 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2660 */
2661static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2662{
2663 dst->cpu = src->cpu;
3a2edd0d 2664 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
b0fd271d
KU
2665 dst->cmd_type = src->cmd_type;
2666 dst->__sector = blk_rq_pos(src);
2667 dst->__data_len = blk_rq_bytes(src);
2668 dst->nr_phys_segments = src->nr_phys_segments;
2669 dst->ioprio = src->ioprio;
2670 dst->extra_len = src->extra_len;
2671}
2672
2673/**
2674 * blk_rq_prep_clone - Helper function to setup clone request
2675 * @rq: the request to be setup
2676 * @rq_src: original request to be cloned
2677 * @bs: bio_set that bios for clone are allocated from
2678 * @gfp_mask: memory allocation mask for bio
2679 * @bio_ctr: setup function to be called for each clone bio.
2680 * Returns %0 for success, non %0 for failure.
2681 * @data: private data to be passed to @bio_ctr
2682 *
2683 * Description:
2684 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2685 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2686 * are not copied, and copying such parts is the caller's responsibility.
2687 * Also, pages which the original bios are pointing to are not copied
2688 * and the cloned bios just point same pages.
2689 * So cloned bios must be completed before original bios, which means
2690 * the caller must complete @rq before @rq_src.
2691 */
2692int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2693 struct bio_set *bs, gfp_t gfp_mask,
2694 int (*bio_ctr)(struct bio *, struct bio *, void *),
2695 void *data)
2696{
2697 struct bio *bio, *bio_src;
2698
2699 if (!bs)
2700 bs = fs_bio_set;
2701
2702 blk_rq_init(NULL, rq);
2703
2704 __rq_for_each_bio(bio_src, rq_src) {
2705 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2706 if (!bio)
2707 goto free_and_out;
2708
2709 __bio_clone(bio, bio_src);
2710
2711 if (bio_integrity(bio_src) &&
7878cba9 2712 bio_integrity_clone(bio, bio_src, gfp_mask, bs))
b0fd271d
KU
2713 goto free_and_out;
2714
2715 if (bio_ctr && bio_ctr(bio, bio_src, data))
2716 goto free_and_out;
2717
2718 if (rq->bio) {
2719 rq->biotail->bi_next = bio;
2720 rq->biotail = bio;
2721 } else
2722 rq->bio = rq->biotail = bio;
2723 }
2724
2725 __blk_rq_prep_clone(rq, rq_src);
2726
2727 return 0;
2728
2729free_and_out:
2730 if (bio)
2731 bio_free(bio, bs);
2732 blk_rq_unprep_clone(rq);
2733
2734 return -ENOMEM;
2735}
2736EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2737
18887ad9 2738int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
1da177e4
LT
2739{
2740 return queue_work(kblockd_workqueue, work);
2741}
1da177e4
LT
2742EXPORT_SYMBOL(kblockd_schedule_work);
2743
e43473b7
VG
2744int kblockd_schedule_delayed_work(struct request_queue *q,
2745 struct delayed_work *dwork, unsigned long delay)
2746{
2747 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2748}
2749EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2750
73c10101
JA
2751#define PLUG_MAGIC 0x91827364
2752
75df7136
SJ
2753/**
2754 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2755 * @plug: The &struct blk_plug that needs to be initialized
2756 *
2757 * Description:
2758 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2759 * pending I/O should the task end up blocking between blk_start_plug() and
2760 * blk_finish_plug(). This is important from a performance perspective, but
2761 * also ensures that we don't deadlock. For instance, if the task is blocking
2762 * for a memory allocation, memory reclaim could end up wanting to free a
2763 * page belonging to that request that is currently residing in our private
2764 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2765 * this kind of deadlock.
2766 */
73c10101
JA
2767void blk_start_plug(struct blk_plug *plug)
2768{
2769 struct task_struct *tsk = current;
2770
2771 plug->magic = PLUG_MAGIC;
2772 INIT_LIST_HEAD(&plug->list);
048c9374 2773 INIT_LIST_HEAD(&plug->cb_list);
73c10101
JA
2774 plug->should_sort = 0;
2775
2776 /*
2777 * If this is a nested plug, don't actually assign it. It will be
2778 * flushed on its own.
2779 */
2780 if (!tsk->plug) {
2781 /*
2782 * Store ordering should not be needed here, since a potential
2783 * preempt will imply a full memory barrier
2784 */
2785 tsk->plug = plug;
2786 }
2787}
2788EXPORT_SYMBOL(blk_start_plug);
2789
2790static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2791{
2792 struct request *rqa = container_of(a, struct request, queuelist);
2793 struct request *rqb = container_of(b, struct request, queuelist);
2794
f83e8261 2795 return !(rqa->q <= rqb->q);
73c10101
JA
2796}
2797
49cac01e
JA
2798/*
2799 * If 'from_schedule' is true, then postpone the dispatch of requests
2800 * until a safe kblockd context. We due this to avoid accidental big
2801 * additional stack usage in driver dispatch, in places where the originally
2802 * plugger did not intend it.
2803 */
f6603783 2804static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 2805 bool from_schedule)
99e22598 2806 __releases(q->queue_lock)
94b5eb28 2807{
49cac01e 2808 trace_block_unplug(q, depth, !from_schedule);
99e22598 2809
8ba61435
TH
2810 /*
2811 * Don't mess with dead queue.
2812 */
2813 if (unlikely(blk_queue_dead(q))) {
2814 spin_unlock(q->queue_lock);
2815 return;
2816 }
2817
99e22598
JA
2818 /*
2819 * If we are punting this to kblockd, then we can safely drop
2820 * the queue_lock before waking kblockd (which needs to take
2821 * this lock).
2822 */
2823 if (from_schedule) {
2824 spin_unlock(q->queue_lock);
24ecfbe2 2825 blk_run_queue_async(q);
99e22598 2826 } else {
24ecfbe2 2827 __blk_run_queue(q);
99e22598
JA
2828 spin_unlock(q->queue_lock);
2829 }
2830
94b5eb28
JA
2831}
2832
048c9374
N
2833static void flush_plug_callbacks(struct blk_plug *plug)
2834{
2835 LIST_HEAD(callbacks);
2836
2837 if (list_empty(&plug->cb_list))
2838 return;
2839
2840 list_splice_init(&plug->cb_list, &callbacks);
2841
2842 while (!list_empty(&callbacks)) {
2843 struct blk_plug_cb *cb = list_first_entry(&callbacks,
2844 struct blk_plug_cb,
2845 list);
2846 list_del(&cb->list);
2847 cb->callback(cb);
2848 }
2849}
2850
49cac01e 2851void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
2852{
2853 struct request_queue *q;
2854 unsigned long flags;
2855 struct request *rq;
109b8129 2856 LIST_HEAD(list);
94b5eb28 2857 unsigned int depth;
73c10101
JA
2858
2859 BUG_ON(plug->magic != PLUG_MAGIC);
2860
048c9374 2861 flush_plug_callbacks(plug);
73c10101
JA
2862 if (list_empty(&plug->list))
2863 return;
2864
109b8129
N
2865 list_splice_init(&plug->list, &list);
2866
2867 if (plug->should_sort) {
2868 list_sort(NULL, &list, plug_rq_cmp);
2869 plug->should_sort = 0;
2870 }
73c10101
JA
2871
2872 q = NULL;
94b5eb28 2873 depth = 0;
18811272
JA
2874
2875 /*
2876 * Save and disable interrupts here, to avoid doing it for every
2877 * queue lock we have to take.
2878 */
73c10101 2879 local_irq_save(flags);
109b8129
N
2880 while (!list_empty(&list)) {
2881 rq = list_entry_rq(list.next);
73c10101 2882 list_del_init(&rq->queuelist);
73c10101
JA
2883 BUG_ON(!rq->q);
2884 if (rq->q != q) {
99e22598
JA
2885 /*
2886 * This drops the queue lock
2887 */
2888 if (q)
49cac01e 2889 queue_unplugged(q, depth, from_schedule);
73c10101 2890 q = rq->q;
94b5eb28 2891 depth = 0;
73c10101
JA
2892 spin_lock(q->queue_lock);
2893 }
8ba61435
TH
2894
2895 /*
2896 * Short-circuit if @q is dead
2897 */
2898 if (unlikely(blk_queue_dead(q))) {
2899 __blk_end_request_all(rq, -ENODEV);
2900 continue;
2901 }
2902
73c10101
JA
2903 /*
2904 * rq is already accounted, so use raw insert
2905 */
401a18e9
JA
2906 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
2907 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
2908 else
2909 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
2910
2911 depth++;
73c10101
JA
2912 }
2913
99e22598
JA
2914 /*
2915 * This drops the queue lock
2916 */
2917 if (q)
49cac01e 2918 queue_unplugged(q, depth, from_schedule);
73c10101 2919
73c10101
JA
2920 local_irq_restore(flags);
2921}
73c10101
JA
2922
2923void blk_finish_plug(struct blk_plug *plug)
2924{
f6603783 2925 blk_flush_plug_list(plug, false);
73c10101 2926
88b996cd
CH
2927 if (plug == current->plug)
2928 current->plug = NULL;
73c10101 2929}
88b996cd 2930EXPORT_SYMBOL(blk_finish_plug);
73c10101 2931
1da177e4
LT
2932int __init blk_dev_init(void)
2933{
9eb55b03
NK
2934 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2935 sizeof(((struct request *)0)->cmd_flags));
2936
89b90be2
TH
2937 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
2938 kblockd_workqueue = alloc_workqueue("kblockd",
2939 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
2940 if (!kblockd_workqueue)
2941 panic("Failed to create kblockd\n");
2942
2943 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 2944 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 2945
8324aa91 2946 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 2947 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 2948
d38ecf93 2949 return 0;
1da177e4 2950}
This page took 0.913447 seconds and 5 git commands to generate.