Merge branch 'for-linus' into for-3.18/core
[deliverable/linux.git] / block / blk-mq.c
CommitLineData
75bb4625
JA
1/*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
320ae51f
JA
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/backing-dev.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
12#include <linux/mm.h>
13#include <linux/init.h>
14#include <linux/slab.h>
15#include <linux/workqueue.h>
16#include <linux/smp.h>
17#include <linux/llist.h>
18#include <linux/list_sort.h>
19#include <linux/cpu.h>
20#include <linux/cache.h>
21#include <linux/sched/sysctl.h>
22#include <linux/delay.h>
23
24#include <trace/events/block.h>
25
26#include <linux/blk-mq.h>
27#include "blk.h"
28#include "blk-mq.h"
29#include "blk-mq-tag.h"
30
31static DEFINE_MUTEX(all_q_mutex);
32static LIST_HEAD(all_q_list);
33
34static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
35
320ae51f
JA
36/*
37 * Check if any of the ctx's have pending work in this hardware queue
38 */
39static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
40{
41 unsigned int i;
42
1429d7c9
JA
43 for (i = 0; i < hctx->ctx_map.map_size; i++)
44 if (hctx->ctx_map.map[i].word)
320ae51f
JA
45 return true;
46
47 return false;
48}
49
1429d7c9
JA
50static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
51 struct blk_mq_ctx *ctx)
52{
53 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
54}
55
56#define CTX_TO_BIT(hctx, ctx) \
57 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
58
320ae51f
JA
59/*
60 * Mark this ctx as having pending work in this hardware queue
61 */
62static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
63 struct blk_mq_ctx *ctx)
64{
1429d7c9
JA
65 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
66
67 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
68 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
69}
70
71static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
72 struct blk_mq_ctx *ctx)
73{
74 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
75
76 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
320ae51f
JA
77}
78
320ae51f
JA
79static int blk_mq_queue_enter(struct request_queue *q)
80{
add703fd
TH
81 while (true) {
82 int ret;
320ae51f 83
add703fd
TH
84 if (percpu_ref_tryget_live(&q->mq_usage_counter))
85 return 0;
320ae51f 86
add703fd
TH
87 ret = wait_event_interruptible(q->mq_freeze_wq,
88 !q->mq_freeze_depth || blk_queue_dying(q));
89 if (blk_queue_dying(q))
90 return -ENODEV;
91 if (ret)
92 return ret;
93 }
320ae51f
JA
94}
95
96static void blk_mq_queue_exit(struct request_queue *q)
97{
add703fd
TH
98 percpu_ref_put(&q->mq_usage_counter);
99}
100
101static void blk_mq_usage_counter_release(struct percpu_ref *ref)
102{
103 struct request_queue *q =
104 container_of(ref, struct request_queue, mq_usage_counter);
105
106 wake_up_all(&q->mq_freeze_wq);
320ae51f
JA
107}
108
72d6f02a
TH
109/*
110 * Guarantee no request is in use, so we can change any data structure of
111 * the queue afterward.
112 */
113void blk_mq_freeze_queue(struct request_queue *q)
43a5e4e2 114{
cddd5d17
TH
115 bool freeze;
116
72d6f02a 117 spin_lock_irq(q->queue_lock);
cddd5d17 118 freeze = !q->mq_freeze_depth++;
72d6f02a
TH
119 spin_unlock_irq(q->queue_lock);
120
cddd5d17
TH
121 if (freeze) {
122 percpu_ref_kill(&q->mq_usage_counter);
123 blk_mq_run_queues(q, false);
124 }
add703fd 125 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter));
43a5e4e2
ML
126}
127
320ae51f
JA
128static void blk_mq_unfreeze_queue(struct request_queue *q)
129{
cddd5d17 130 bool wake;
320ae51f
JA
131
132 spin_lock_irq(q->queue_lock);
780db207
TH
133 wake = !--q->mq_freeze_depth;
134 WARN_ON_ONCE(q->mq_freeze_depth < 0);
320ae51f 135 spin_unlock_irq(q->queue_lock);
add703fd
TH
136 if (wake) {
137 percpu_ref_reinit(&q->mq_usage_counter);
320ae51f 138 wake_up_all(&q->mq_freeze_wq);
add703fd 139 }
320ae51f
JA
140}
141
142bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
143{
144 return blk_mq_has_free_tags(hctx->tags);
145}
146EXPORT_SYMBOL(blk_mq_can_queue);
147
94eddfbe
JA
148static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
149 struct request *rq, unsigned int rw_flags)
320ae51f 150{
94eddfbe
JA
151 if (blk_queue_io_stat(q))
152 rw_flags |= REQ_IO_STAT;
153
af76e555
CH
154 INIT_LIST_HEAD(&rq->queuelist);
155 /* csd/requeue_work/fifo_time is initialized before use */
156 rq->q = q;
320ae51f 157 rq->mq_ctx = ctx;
0d2602ca 158 rq->cmd_flags |= rw_flags;
af76e555
CH
159 /* do not touch atomic flags, it needs atomic ops against the timer */
160 rq->cpu = -1;
af76e555
CH
161 INIT_HLIST_NODE(&rq->hash);
162 RB_CLEAR_NODE(&rq->rb_node);
af76e555
CH
163 rq->rq_disk = NULL;
164 rq->part = NULL;
3ee32372 165 rq->start_time = jiffies;
af76e555
CH
166#ifdef CONFIG_BLK_CGROUP
167 rq->rl = NULL;
0fec08b4 168 set_start_time_ns(rq);
af76e555
CH
169 rq->io_start_time_ns = 0;
170#endif
171 rq->nr_phys_segments = 0;
172#if defined(CONFIG_BLK_DEV_INTEGRITY)
173 rq->nr_integrity_segments = 0;
174#endif
af76e555
CH
175 rq->special = NULL;
176 /* tag was already set */
177 rq->errors = 0;
af76e555 178
6f4a1626
TB
179 rq->cmd = rq->__cmd;
180
af76e555
CH
181 rq->extra_len = 0;
182 rq->sense_len = 0;
183 rq->resid_len = 0;
184 rq->sense = NULL;
185
af76e555 186 INIT_LIST_HEAD(&rq->timeout_list);
f6be4fb4
JA
187 rq->timeout = 0;
188
af76e555
CH
189 rq->end_io = NULL;
190 rq->end_io_data = NULL;
191 rq->next_rq = NULL;
192
320ae51f
JA
193 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
194}
195
5dee8577 196static struct request *
cb96a42c 197__blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
5dee8577
CH
198{
199 struct request *rq;
200 unsigned int tag;
201
cb96a42c 202 tag = blk_mq_get_tag(data);
5dee8577 203 if (tag != BLK_MQ_TAG_FAIL) {
cb96a42c 204 rq = data->hctx->tags->rqs[tag];
5dee8577 205
cb96a42c 206 if (blk_mq_tag_busy(data->hctx)) {
5dee8577 207 rq->cmd_flags = REQ_MQ_INFLIGHT;
cb96a42c 208 atomic_inc(&data->hctx->nr_active);
5dee8577
CH
209 }
210
211 rq->tag = tag;
cb96a42c 212 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
5dee8577
CH
213 return rq;
214 }
215
216 return NULL;
217}
218
4ce01dd1
CH
219struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
220 bool reserved)
320ae51f 221{
d852564f
CH
222 struct blk_mq_ctx *ctx;
223 struct blk_mq_hw_ctx *hctx;
320ae51f 224 struct request *rq;
cb96a42c 225 struct blk_mq_alloc_data alloc_data;
a492f075 226 int ret;
320ae51f 227
a492f075
JL
228 ret = blk_mq_queue_enter(q);
229 if (ret)
230 return ERR_PTR(ret);
320ae51f 231
d852564f
CH
232 ctx = blk_mq_get_ctx(q);
233 hctx = q->mq_ops->map_queue(q, ctx->cpu);
cb96a42c
ML
234 blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
235 reserved, ctx, hctx);
d852564f 236
cb96a42c 237 rq = __blk_mq_alloc_request(&alloc_data, rw);
d852564f
CH
238 if (!rq && (gfp & __GFP_WAIT)) {
239 __blk_mq_run_hw_queue(hctx);
240 blk_mq_put_ctx(ctx);
241
242 ctx = blk_mq_get_ctx(q);
243 hctx = q->mq_ops->map_queue(q, ctx->cpu);
cb96a42c
ML
244 blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
245 hctx);
246 rq = __blk_mq_alloc_request(&alloc_data, rw);
247 ctx = alloc_data.ctx;
d852564f
CH
248 }
249 blk_mq_put_ctx(ctx);
a492f075
JL
250 if (!rq)
251 return ERR_PTR(-EWOULDBLOCK);
320ae51f
JA
252 return rq;
253}
4bb659b1 254EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 255
320ae51f
JA
256static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
257 struct blk_mq_ctx *ctx, struct request *rq)
258{
259 const int tag = rq->tag;
260 struct request_queue *q = rq->q;
261
0d2602ca
JA
262 if (rq->cmd_flags & REQ_MQ_INFLIGHT)
263 atomic_dec(&hctx->nr_active);
683d0e12 264 rq->cmd_flags = 0;
0d2602ca 265
af76e555 266 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
0d2602ca 267 blk_mq_put_tag(hctx, tag, &ctx->last_tag);
320ae51f
JA
268 blk_mq_queue_exit(q);
269}
270
271void blk_mq_free_request(struct request *rq)
272{
273 struct blk_mq_ctx *ctx = rq->mq_ctx;
274 struct blk_mq_hw_ctx *hctx;
275 struct request_queue *q = rq->q;
276
277 ctx->rq_completed[rq_is_sync(rq)]++;
278
279 hctx = q->mq_ops->map_queue(q, ctx->cpu);
280 __blk_mq_free_request(hctx, ctx, rq);
281}
282
8727af4b
CH
283/*
284 * Clone all relevant state from a request that has been put on hold in
285 * the flush state machine into the preallocated flush request that hangs
286 * off the request queue.
287 *
288 * For a driver the flush request should be invisible, that's why we are
289 * impersonating the original request here.
290 */
291void blk_mq_clone_flush_request(struct request *flush_rq,
292 struct request *orig_rq)
293{
294 struct blk_mq_hw_ctx *hctx =
295 orig_rq->q->mq_ops->map_queue(orig_rq->q, orig_rq->mq_ctx->cpu);
296
297 flush_rq->mq_ctx = orig_rq->mq_ctx;
298 flush_rq->tag = orig_rq->tag;
299 memcpy(blk_mq_rq_to_pdu(flush_rq), blk_mq_rq_to_pdu(orig_rq),
300 hctx->cmd_size);
301}
302
63151a44 303inline void __blk_mq_end_io(struct request *rq, int error)
320ae51f 304{
0d11e6ac
ML
305 blk_account_io_done(rq);
306
91b63639 307 if (rq->end_io) {
320ae51f 308 rq->end_io(rq, error);
91b63639
CH
309 } else {
310 if (unlikely(blk_bidi_rq(rq)))
311 blk_mq_free_request(rq->next_rq);
320ae51f 312 blk_mq_free_request(rq);
91b63639 313 }
320ae51f 314}
63151a44
CH
315EXPORT_SYMBOL(__blk_mq_end_io);
316
317void blk_mq_end_io(struct request *rq, int error)
318{
319 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
320 BUG();
321 __blk_mq_end_io(rq, error);
322}
323EXPORT_SYMBOL(blk_mq_end_io);
320ae51f 324
30a91cb4 325static void __blk_mq_complete_request_remote(void *data)
320ae51f 326{
3d6efbf6 327 struct request *rq = data;
320ae51f 328
30a91cb4 329 rq->q->softirq_done_fn(rq);
320ae51f 330}
320ae51f 331
ed851860 332static void blk_mq_ipi_complete_request(struct request *rq)
320ae51f
JA
333{
334 struct blk_mq_ctx *ctx = rq->mq_ctx;
38535201 335 bool shared = false;
320ae51f
JA
336 int cpu;
337
38535201 338 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
30a91cb4
CH
339 rq->q->softirq_done_fn(rq);
340 return;
341 }
320ae51f
JA
342
343 cpu = get_cpu();
38535201
CH
344 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
345 shared = cpus_share_cache(cpu, ctx->cpu);
346
347 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 348 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
349 rq->csd.info = rq;
350 rq->csd.flags = 0;
c46fff2a 351 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 352 } else {
30a91cb4 353 rq->q->softirq_done_fn(rq);
3d6efbf6 354 }
320ae51f
JA
355 put_cpu();
356}
30a91cb4 357
ed851860
JA
358void __blk_mq_complete_request(struct request *rq)
359{
360 struct request_queue *q = rq->q;
361
362 if (!q->softirq_done_fn)
363 blk_mq_end_io(rq, rq->errors);
364 else
365 blk_mq_ipi_complete_request(rq);
366}
367
30a91cb4
CH
368/**
369 * blk_mq_complete_request - end I/O on a request
370 * @rq: the request being processed
371 *
372 * Description:
373 * Ends all I/O on a request. It does not handle partial completions.
374 * The actual completion happens out-of-order, through a IPI handler.
375 **/
376void blk_mq_complete_request(struct request *rq)
377{
95f09684
JA
378 struct request_queue *q = rq->q;
379
380 if (unlikely(blk_should_fake_timeout(q)))
30a91cb4 381 return;
ed851860
JA
382 if (!blk_mark_rq_complete(rq))
383 __blk_mq_complete_request(rq);
30a91cb4
CH
384}
385EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 386
49f5baa5 387static void blk_mq_start_request(struct request *rq, bool last)
320ae51f
JA
388{
389 struct request_queue *q = rq->q;
390
391 trace_block_rq_issue(q, rq);
392
742ee69b 393 rq->resid_len = blk_rq_bytes(rq);
91b63639
CH
394 if (unlikely(blk_bidi_rq(rq)))
395 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
742ee69b 396
2b8393b4 397 blk_add_timer(rq);
87ee7b11 398
538b7534
JA
399 /*
400 * Ensure that ->deadline is visible before set the started
401 * flag and clear the completed flag.
402 */
403 smp_mb__before_atomic();
404
87ee7b11
JA
405 /*
406 * Mark us as started and clear complete. Complete might have been
407 * set if requeue raced with timeout, which then marked it as
408 * complete. So be sure to clear complete again when we start
409 * the request, otherwise we'll ignore the completion event.
410 */
4b570521
JA
411 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
412 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
413 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
414 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
49f5baa5
CH
415
416 if (q->dma_drain_size && blk_rq_bytes(rq)) {
417 /*
418 * Make sure space for the drain appears. We know we can do
419 * this because max_hw_segments has been adjusted to be one
420 * fewer than the device can handle.
421 */
422 rq->nr_phys_segments++;
423 }
424
425 /*
426 * Flag the last request in the series so that drivers know when IO
427 * should be kicked off, if they don't do it on a per-request basis.
428 *
429 * Note: the flag isn't the only condition drivers should do kick off.
430 * If drive is busy, the last request might not have the bit set.
431 */
432 if (last)
433 rq->cmd_flags |= REQ_END;
320ae51f
JA
434}
435
ed0791b2 436static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
437{
438 struct request_queue *q = rq->q;
439
440 trace_block_rq_requeue(q, rq);
441 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
49f5baa5
CH
442
443 rq->cmd_flags &= ~REQ_END;
444
445 if (q->dma_drain_size && blk_rq_bytes(rq))
446 rq->nr_phys_segments--;
320ae51f
JA
447}
448
ed0791b2
CH
449void blk_mq_requeue_request(struct request *rq)
450{
ed0791b2
CH
451 __blk_mq_requeue_request(rq);
452 blk_clear_rq_complete(rq);
453
ed0791b2 454 BUG_ON(blk_queued_rq(rq));
6fca6a61 455 blk_mq_add_to_requeue_list(rq, true);
ed0791b2
CH
456}
457EXPORT_SYMBOL(blk_mq_requeue_request);
458
6fca6a61
CH
459static void blk_mq_requeue_work(struct work_struct *work)
460{
461 struct request_queue *q =
462 container_of(work, struct request_queue, requeue_work);
463 LIST_HEAD(rq_list);
464 struct request *rq, *next;
465 unsigned long flags;
466
467 spin_lock_irqsave(&q->requeue_lock, flags);
468 list_splice_init(&q->requeue_list, &rq_list);
469 spin_unlock_irqrestore(&q->requeue_lock, flags);
470
471 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
472 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
473 continue;
474
475 rq->cmd_flags &= ~REQ_SOFTBARRIER;
476 list_del_init(&rq->queuelist);
477 blk_mq_insert_request(rq, true, false, false);
478 }
479
480 while (!list_empty(&rq_list)) {
481 rq = list_entry(rq_list.next, struct request, queuelist);
482 list_del_init(&rq->queuelist);
483 blk_mq_insert_request(rq, false, false, false);
484 }
485
8b957415
JA
486 /*
487 * Use the start variant of queue running here, so that running
488 * the requeue work will kick stopped queues.
489 */
490 blk_mq_start_hw_queues(q);
6fca6a61
CH
491}
492
493void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
494{
495 struct request_queue *q = rq->q;
496 unsigned long flags;
497
498 /*
499 * We abuse this flag that is otherwise used by the I/O scheduler to
500 * request head insertation from the workqueue.
501 */
502 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
503
504 spin_lock_irqsave(&q->requeue_lock, flags);
505 if (at_head) {
506 rq->cmd_flags |= REQ_SOFTBARRIER;
507 list_add(&rq->queuelist, &q->requeue_list);
508 } else {
509 list_add_tail(&rq->queuelist, &q->requeue_list);
510 }
511 spin_unlock_irqrestore(&q->requeue_lock, flags);
512}
513EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
514
515void blk_mq_kick_requeue_list(struct request_queue *q)
516{
517 kblockd_schedule_work(&q->requeue_work);
518}
519EXPORT_SYMBOL(blk_mq_kick_requeue_list);
520
0e62f51f 521static inline bool is_flush_request(struct request *rq, unsigned int tag)
24d2f903 522{
0e62f51f
JA
523 return ((rq->cmd_flags & REQ_FLUSH_SEQ) &&
524 rq->q->flush_rq->tag == tag);
525}
526
527struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
528{
529 struct request *rq = tags->rqs[tag];
22302375 530
0e62f51f
JA
531 if (!is_flush_request(rq, tag))
532 return rq;
22302375 533
0e62f51f 534 return rq->q->flush_rq;
24d2f903
CH
535}
536EXPORT_SYMBOL(blk_mq_tag_to_rq);
537
320ae51f
JA
538struct blk_mq_timeout_data {
539 struct blk_mq_hw_ctx *hctx;
540 unsigned long *next;
541 unsigned int *next_set;
542};
543
544static void blk_mq_timeout_check(void *__data, unsigned long *free_tags)
545{
546 struct blk_mq_timeout_data *data = __data;
547 struct blk_mq_hw_ctx *hctx = data->hctx;
548 unsigned int tag;
549
550 /* It may not be in flight yet (this is where
551 * the REQ_ATOMIC_STARTED flag comes in). The requests are
552 * statically allocated, so we know it's always safe to access the
553 * memory associated with a bit offset into ->rqs[].
554 */
555 tag = 0;
556 do {
557 struct request *rq;
558
24d2f903
CH
559 tag = find_next_zero_bit(free_tags, hctx->tags->nr_tags, tag);
560 if (tag >= hctx->tags->nr_tags)
320ae51f
JA
561 break;
562
0e62f51f 563 rq = blk_mq_tag_to_rq(hctx->tags, tag++);
24d2f903
CH
564 if (rq->q != hctx->queue)
565 continue;
320ae51f
JA
566 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
567 continue;
568
569 blk_rq_check_expired(rq, data->next, data->next_set);
570 } while (1);
571}
572
573static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx *hctx,
574 unsigned long *next,
575 unsigned int *next_set)
576{
577 struct blk_mq_timeout_data data = {
578 .hctx = hctx,
579 .next = next,
580 .next_set = next_set,
581 };
582
583 /*
584 * Ask the tagging code to iterate busy requests, so we can
585 * check them for timeout.
586 */
587 blk_mq_tag_busy_iter(hctx->tags, blk_mq_timeout_check, &data);
588}
589
87ee7b11
JA
590static enum blk_eh_timer_return blk_mq_rq_timed_out(struct request *rq)
591{
592 struct request_queue *q = rq->q;
593
594 /*
595 * We know that complete is set at this point. If STARTED isn't set
596 * anymore, then the request isn't active and the "timeout" should
597 * just be ignored. This can happen due to the bitflag ordering.
598 * Timeout first checks if STARTED is set, and if it is, assumes
599 * the request is active. But if we race with completion, then
600 * we both flags will get cleared. So check here again, and ignore
601 * a timeout event with a request that isn't active.
602 */
603 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
604 return BLK_EH_NOT_HANDLED;
605
606 if (!q->mq_ops->timeout)
607 return BLK_EH_RESET_TIMER;
608
609 return q->mq_ops->timeout(rq);
610}
611
320ae51f
JA
612static void blk_mq_rq_timer(unsigned long data)
613{
614 struct request_queue *q = (struct request_queue *) data;
615 struct blk_mq_hw_ctx *hctx;
616 unsigned long next = 0;
617 int i, next_set = 0;
618
484b4061
JA
619 queue_for_each_hw_ctx(q, hctx, i) {
620 /*
621 * If not software queues are currently mapped to this
622 * hardware queue, there's nothing to check
623 */
624 if (!hctx->nr_ctx || !hctx->tags)
625 continue;
626
320ae51f 627 blk_mq_hw_ctx_check_timeout(hctx, &next, &next_set);
484b4061 628 }
320ae51f 629
0d2602ca
JA
630 if (next_set) {
631 next = blk_rq_timeout(round_jiffies_up(next));
632 mod_timer(&q->timeout, next);
633 } else {
634 queue_for_each_hw_ctx(q, hctx, i)
635 blk_mq_tag_idle(hctx);
636 }
320ae51f
JA
637}
638
639/*
640 * Reverse check our software queue for entries that we could potentially
641 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
642 * too much time checking for merges.
643 */
644static bool blk_mq_attempt_merge(struct request_queue *q,
645 struct blk_mq_ctx *ctx, struct bio *bio)
646{
647 struct request *rq;
648 int checked = 8;
649
650 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
651 int el_ret;
652
653 if (!checked--)
654 break;
655
656 if (!blk_rq_merge_ok(rq, bio))
657 continue;
658
659 el_ret = blk_try_merge(rq, bio);
660 if (el_ret == ELEVATOR_BACK_MERGE) {
661 if (bio_attempt_back_merge(q, rq, bio)) {
662 ctx->rq_merged++;
663 return true;
664 }
665 break;
666 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
667 if (bio_attempt_front_merge(q, rq, bio)) {
668 ctx->rq_merged++;
669 return true;
670 }
671 break;
672 }
673 }
674
675 return false;
676}
677
1429d7c9
JA
678/*
679 * Process software queues that have been marked busy, splicing them
680 * to the for-dispatch
681 */
682static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
683{
684 struct blk_mq_ctx *ctx;
685 int i;
686
687 for (i = 0; i < hctx->ctx_map.map_size; i++) {
688 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
689 unsigned int off, bit;
690
691 if (!bm->word)
692 continue;
693
694 bit = 0;
695 off = i * hctx->ctx_map.bits_per_word;
696 do {
697 bit = find_next_bit(&bm->word, bm->depth, bit);
698 if (bit >= bm->depth)
699 break;
700
701 ctx = hctx->ctxs[bit + off];
702 clear_bit(bit, &bm->word);
703 spin_lock(&ctx->lock);
704 list_splice_tail_init(&ctx->rq_list, list);
705 spin_unlock(&ctx->lock);
706
707 bit++;
708 } while (1);
709 }
710}
711
320ae51f
JA
712/*
713 * Run this hardware queue, pulling any software queues mapped to it in.
714 * Note that this function currently has various problems around ordering
715 * of IO. In particular, we'd like FIFO behaviour on handling existing
716 * items on the hctx->dispatch list. Ignore that for now.
717 */
718static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
719{
720 struct request_queue *q = hctx->queue;
320ae51f
JA
721 struct request *rq;
722 LIST_HEAD(rq_list);
1429d7c9 723 int queued;
320ae51f 724
fd1270d5 725 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
e4043dcf 726
5d12f905 727 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
320ae51f
JA
728 return;
729
730 hctx->run++;
731
732 /*
733 * Touch any software queue that has pending entries.
734 */
1429d7c9 735 flush_busy_ctxs(hctx, &rq_list);
320ae51f
JA
736
737 /*
738 * If we have previous entries on our dispatch list, grab them
739 * and stuff them at the front for more fair dispatch.
740 */
741 if (!list_empty_careful(&hctx->dispatch)) {
742 spin_lock(&hctx->lock);
743 if (!list_empty(&hctx->dispatch))
744 list_splice_init(&hctx->dispatch, &rq_list);
745 spin_unlock(&hctx->lock);
746 }
747
320ae51f
JA
748 /*
749 * Now process all the entries, sending them to the driver.
750 */
1429d7c9 751 queued = 0;
320ae51f
JA
752 while (!list_empty(&rq_list)) {
753 int ret;
754
755 rq = list_first_entry(&rq_list, struct request, queuelist);
756 list_del_init(&rq->queuelist);
320ae51f 757
49f5baa5 758 blk_mq_start_request(rq, list_empty(&rq_list));
320ae51f
JA
759
760 ret = q->mq_ops->queue_rq(hctx, rq);
761 switch (ret) {
762 case BLK_MQ_RQ_QUEUE_OK:
763 queued++;
764 continue;
765 case BLK_MQ_RQ_QUEUE_BUSY:
320ae51f 766 list_add(&rq->queuelist, &rq_list);
ed0791b2 767 __blk_mq_requeue_request(rq);
320ae51f
JA
768 break;
769 default:
770 pr_err("blk-mq: bad return on queue: %d\n", ret);
320ae51f 771 case BLK_MQ_RQ_QUEUE_ERROR:
1e93b8c2 772 rq->errors = -EIO;
320ae51f
JA
773 blk_mq_end_io(rq, rq->errors);
774 break;
775 }
776
777 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
778 break;
779 }
780
781 if (!queued)
782 hctx->dispatched[0]++;
783 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
784 hctx->dispatched[ilog2(queued) + 1]++;
785
786 /*
787 * Any items that need requeuing? Stuff them into hctx->dispatch,
788 * that is where we will continue on next queue run.
789 */
790 if (!list_empty(&rq_list)) {
791 spin_lock(&hctx->lock);
792 list_splice(&rq_list, &hctx->dispatch);
793 spin_unlock(&hctx->lock);
794 }
795}
796
506e931f
JA
797/*
798 * It'd be great if the workqueue API had a way to pass
799 * in a mask and had some smarts for more clever placement.
800 * For now we just round-robin here, switching for every
801 * BLK_MQ_CPU_WORK_BATCH queued items.
802 */
803static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
804{
805 int cpu = hctx->next_cpu;
806
807 if (--hctx->next_cpu_batch <= 0) {
808 int next_cpu;
809
810 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
811 if (next_cpu >= nr_cpu_ids)
812 next_cpu = cpumask_first(hctx->cpumask);
813
814 hctx->next_cpu = next_cpu;
815 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
816 }
817
818 return cpu;
819}
820
320ae51f
JA
821void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
822{
5d12f905 823 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
320ae51f
JA
824 return;
825
e4043dcf 826 if (!async && cpumask_test_cpu(smp_processor_id(), hctx->cpumask))
320ae51f 827 __blk_mq_run_hw_queue(hctx);
e4043dcf 828 else if (hctx->queue->nr_hw_queues == 1)
70f4db63 829 kblockd_schedule_delayed_work(&hctx->run_work, 0);
e4043dcf
JA
830 else {
831 unsigned int cpu;
832
506e931f 833 cpu = blk_mq_hctx_next_cpu(hctx);
70f4db63 834 kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0);
e4043dcf 835 }
320ae51f
JA
836}
837
838void blk_mq_run_queues(struct request_queue *q, bool async)
839{
840 struct blk_mq_hw_ctx *hctx;
841 int i;
842
843 queue_for_each_hw_ctx(q, hctx, i) {
844 if ((!blk_mq_hctx_has_pending(hctx) &&
845 list_empty_careful(&hctx->dispatch)) ||
5d12f905 846 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
320ae51f
JA
847 continue;
848
e4043dcf 849 preempt_disable();
320ae51f 850 blk_mq_run_hw_queue(hctx, async);
e4043dcf 851 preempt_enable();
320ae51f
JA
852 }
853}
854EXPORT_SYMBOL(blk_mq_run_queues);
855
856void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
857{
70f4db63
CH
858 cancel_delayed_work(&hctx->run_work);
859 cancel_delayed_work(&hctx->delay_work);
320ae51f
JA
860 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
861}
862EXPORT_SYMBOL(blk_mq_stop_hw_queue);
863
280d45f6
CH
864void blk_mq_stop_hw_queues(struct request_queue *q)
865{
866 struct blk_mq_hw_ctx *hctx;
867 int i;
868
869 queue_for_each_hw_ctx(q, hctx, i)
870 blk_mq_stop_hw_queue(hctx);
871}
872EXPORT_SYMBOL(blk_mq_stop_hw_queues);
873
320ae51f
JA
874void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
875{
876 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf
JA
877
878 preempt_disable();
0ffbce80 879 blk_mq_run_hw_queue(hctx, false);
e4043dcf 880 preempt_enable();
320ae51f
JA
881}
882EXPORT_SYMBOL(blk_mq_start_hw_queue);
883
2f268556
CH
884void blk_mq_start_hw_queues(struct request_queue *q)
885{
886 struct blk_mq_hw_ctx *hctx;
887 int i;
888
889 queue_for_each_hw_ctx(q, hctx, i)
890 blk_mq_start_hw_queue(hctx);
891}
892EXPORT_SYMBOL(blk_mq_start_hw_queues);
893
894
1b4a3258 895void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
896{
897 struct blk_mq_hw_ctx *hctx;
898 int i;
899
900 queue_for_each_hw_ctx(q, hctx, i) {
901 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
902 continue;
903
904 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 905 preempt_disable();
1b4a3258 906 blk_mq_run_hw_queue(hctx, async);
e4043dcf 907 preempt_enable();
320ae51f
JA
908 }
909}
910EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
911
70f4db63 912static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
913{
914 struct blk_mq_hw_ctx *hctx;
915
70f4db63 916 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
e4043dcf 917
320ae51f
JA
918 __blk_mq_run_hw_queue(hctx);
919}
920
70f4db63
CH
921static void blk_mq_delay_work_fn(struct work_struct *work)
922{
923 struct blk_mq_hw_ctx *hctx;
924
925 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
926
927 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
928 __blk_mq_run_hw_queue(hctx);
929}
930
931void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
932{
933 unsigned long tmo = msecs_to_jiffies(msecs);
934
935 if (hctx->queue->nr_hw_queues == 1)
936 kblockd_schedule_delayed_work(&hctx->delay_work, tmo);
937 else {
938 unsigned int cpu;
939
506e931f 940 cpu = blk_mq_hctx_next_cpu(hctx);
70f4db63
CH
941 kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo);
942 }
943}
944EXPORT_SYMBOL(blk_mq_delay_queue);
945
320ae51f 946static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
72a0a36e 947 struct request *rq, bool at_head)
320ae51f
JA
948{
949 struct blk_mq_ctx *ctx = rq->mq_ctx;
950
01b983c9
JA
951 trace_block_rq_insert(hctx->queue, rq);
952
72a0a36e
CH
953 if (at_head)
954 list_add(&rq->queuelist, &ctx->rq_list);
955 else
956 list_add_tail(&rq->queuelist, &ctx->rq_list);
4bb659b1 957
320ae51f 958 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
959}
960
eeabc850
CH
961void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
962 bool async)
320ae51f 963{
eeabc850 964 struct request_queue *q = rq->q;
320ae51f 965 struct blk_mq_hw_ctx *hctx;
eeabc850
CH
966 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
967
968 current_ctx = blk_mq_get_ctx(q);
969 if (!cpu_online(ctx->cpu))
970 rq->mq_ctx = ctx = current_ctx;
320ae51f 971
320ae51f
JA
972 hctx = q->mq_ops->map_queue(q, ctx->cpu);
973
a57a178a
CH
974 spin_lock(&ctx->lock);
975 __blk_mq_insert_request(hctx, rq, at_head);
976 spin_unlock(&ctx->lock);
320ae51f 977
320ae51f
JA
978 if (run_queue)
979 blk_mq_run_hw_queue(hctx, async);
e4043dcf
JA
980
981 blk_mq_put_ctx(current_ctx);
320ae51f
JA
982}
983
984static void blk_mq_insert_requests(struct request_queue *q,
985 struct blk_mq_ctx *ctx,
986 struct list_head *list,
987 int depth,
988 bool from_schedule)
989
990{
991 struct blk_mq_hw_ctx *hctx;
992 struct blk_mq_ctx *current_ctx;
993
994 trace_block_unplug(q, depth, !from_schedule);
995
996 current_ctx = blk_mq_get_ctx(q);
997
998 if (!cpu_online(ctx->cpu))
999 ctx = current_ctx;
1000 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1001
1002 /*
1003 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1004 * offline now
1005 */
1006 spin_lock(&ctx->lock);
1007 while (!list_empty(list)) {
1008 struct request *rq;
1009
1010 rq = list_first_entry(list, struct request, queuelist);
1011 list_del_init(&rq->queuelist);
1012 rq->mq_ctx = ctx;
72a0a36e 1013 __blk_mq_insert_request(hctx, rq, false);
320ae51f
JA
1014 }
1015 spin_unlock(&ctx->lock);
1016
320ae51f 1017 blk_mq_run_hw_queue(hctx, from_schedule);
e4043dcf 1018 blk_mq_put_ctx(current_ctx);
320ae51f
JA
1019}
1020
1021static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1022{
1023 struct request *rqa = container_of(a, struct request, queuelist);
1024 struct request *rqb = container_of(b, struct request, queuelist);
1025
1026 return !(rqa->mq_ctx < rqb->mq_ctx ||
1027 (rqa->mq_ctx == rqb->mq_ctx &&
1028 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1029}
1030
1031void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1032{
1033 struct blk_mq_ctx *this_ctx;
1034 struct request_queue *this_q;
1035 struct request *rq;
1036 LIST_HEAD(list);
1037 LIST_HEAD(ctx_list);
1038 unsigned int depth;
1039
1040 list_splice_init(&plug->mq_list, &list);
1041
1042 list_sort(NULL, &list, plug_ctx_cmp);
1043
1044 this_q = NULL;
1045 this_ctx = NULL;
1046 depth = 0;
1047
1048 while (!list_empty(&list)) {
1049 rq = list_entry_rq(list.next);
1050 list_del_init(&rq->queuelist);
1051 BUG_ON(!rq->q);
1052 if (rq->mq_ctx != this_ctx) {
1053 if (this_ctx) {
1054 blk_mq_insert_requests(this_q, this_ctx,
1055 &ctx_list, depth,
1056 from_schedule);
1057 }
1058
1059 this_ctx = rq->mq_ctx;
1060 this_q = rq->q;
1061 depth = 0;
1062 }
1063
1064 depth++;
1065 list_add_tail(&rq->queuelist, &ctx_list);
1066 }
1067
1068 /*
1069 * If 'this_ctx' is set, we know we have entries to complete
1070 * on 'ctx_list'. Do those.
1071 */
1072 if (this_ctx) {
1073 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1074 from_schedule);
1075 }
1076}
1077
1078static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1079{
1080 init_request_from_bio(rq, bio);
4b570521 1081
3ee32372 1082 if (blk_do_io_stat(rq))
4b570521 1083 blk_account_io_start(rq, 1);
320ae51f
JA
1084}
1085
274a5843
JA
1086static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1087{
1088 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1089 !blk_queue_nomerges(hctx->queue);
1090}
1091
07068d5b
JA
1092static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1093 struct blk_mq_ctx *ctx,
1094 struct request *rq, struct bio *bio)
320ae51f 1095{
274a5843 1096 if (!hctx_allow_merges(hctx)) {
07068d5b
JA
1097 blk_mq_bio_to_request(rq, bio);
1098 spin_lock(&ctx->lock);
1099insert_rq:
1100 __blk_mq_insert_request(hctx, rq, false);
1101 spin_unlock(&ctx->lock);
1102 return false;
1103 } else {
274a5843
JA
1104 struct request_queue *q = hctx->queue;
1105
07068d5b
JA
1106 spin_lock(&ctx->lock);
1107 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1108 blk_mq_bio_to_request(rq, bio);
1109 goto insert_rq;
1110 }
320ae51f 1111
07068d5b
JA
1112 spin_unlock(&ctx->lock);
1113 __blk_mq_free_request(hctx, ctx, rq);
1114 return true;
14ec77f3 1115 }
07068d5b 1116}
14ec77f3 1117
07068d5b
JA
1118struct blk_map_ctx {
1119 struct blk_mq_hw_ctx *hctx;
1120 struct blk_mq_ctx *ctx;
1121};
1122
1123static struct request *blk_mq_map_request(struct request_queue *q,
1124 struct bio *bio,
1125 struct blk_map_ctx *data)
1126{
1127 struct blk_mq_hw_ctx *hctx;
1128 struct blk_mq_ctx *ctx;
1129 struct request *rq;
1130 int rw = bio_data_dir(bio);
cb96a42c 1131 struct blk_mq_alloc_data alloc_data;
320ae51f 1132
07068d5b 1133 if (unlikely(blk_mq_queue_enter(q))) {
320ae51f 1134 bio_endio(bio, -EIO);
07068d5b 1135 return NULL;
320ae51f
JA
1136 }
1137
1138 ctx = blk_mq_get_ctx(q);
1139 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1140
07068d5b 1141 if (rw_is_sync(bio->bi_rw))
27fbf4e8 1142 rw |= REQ_SYNC;
07068d5b 1143
320ae51f 1144 trace_block_getrq(q, bio, rw);
cb96a42c
ML
1145 blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
1146 hctx);
1147 rq = __blk_mq_alloc_request(&alloc_data, rw);
5dee8577 1148 if (unlikely(!rq)) {
793597a6 1149 __blk_mq_run_hw_queue(hctx);
320ae51f
JA
1150 blk_mq_put_ctx(ctx);
1151 trace_block_sleeprq(q, bio, rw);
793597a6
CH
1152
1153 ctx = blk_mq_get_ctx(q);
320ae51f 1154 hctx = q->mq_ops->map_queue(q, ctx->cpu);
cb96a42c
ML
1155 blk_mq_set_alloc_data(&alloc_data, q,
1156 __GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
1157 rq = __blk_mq_alloc_request(&alloc_data, rw);
1158 ctx = alloc_data.ctx;
1159 hctx = alloc_data.hctx;
320ae51f
JA
1160 }
1161
1162 hctx->queued++;
07068d5b
JA
1163 data->hctx = hctx;
1164 data->ctx = ctx;
1165 return rq;
1166}
1167
1168/*
1169 * Multiple hardware queue variant. This will not use per-process plugs,
1170 * but will attempt to bypass the hctx queueing if we can go straight to
1171 * hardware for SYNC IO.
1172 */
1173static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1174{
1175 const int is_sync = rw_is_sync(bio->bi_rw);
1176 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1177 struct blk_map_ctx data;
1178 struct request *rq;
1179
1180 blk_queue_bounce(q, &bio);
1181
1182 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1183 bio_endio(bio, -EIO);
1184 return;
1185 }
1186
1187 rq = blk_mq_map_request(q, bio, &data);
1188 if (unlikely(!rq))
1189 return;
1190
1191 if (unlikely(is_flush_fua)) {
1192 blk_mq_bio_to_request(rq, bio);
1193 blk_insert_flush(rq);
1194 goto run_queue;
1195 }
1196
1197 if (is_sync) {
1198 int ret;
1199
1200 blk_mq_bio_to_request(rq, bio);
1201 blk_mq_start_request(rq, true);
1202
1203 /*
1204 * For OK queue, we are done. For error, kill it. Any other
1205 * error (busy), just add it to our list as we previously
1206 * would have done
1207 */
1208 ret = q->mq_ops->queue_rq(data.hctx, rq);
1209 if (ret == BLK_MQ_RQ_QUEUE_OK)
1210 goto done;
1211 else {
1212 __blk_mq_requeue_request(rq);
1213
1214 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1215 rq->errors = -EIO;
1216 blk_mq_end_io(rq, rq->errors);
1217 goto done;
1218 }
1219 }
1220 }
1221
1222 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1223 /*
1224 * For a SYNC request, send it to the hardware immediately. For
1225 * an ASYNC request, just ensure that we run it later on. The
1226 * latter allows for merging opportunities and more efficient
1227 * dispatching.
1228 */
1229run_queue:
1230 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1231 }
1232done:
1233 blk_mq_put_ctx(data.ctx);
1234}
1235
1236/*
1237 * Single hardware queue variant. This will attempt to use any per-process
1238 * plug for merging and IO deferral.
1239 */
1240static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1241{
1242 const int is_sync = rw_is_sync(bio->bi_rw);
1243 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1244 unsigned int use_plug, request_count = 0;
1245 struct blk_map_ctx data;
1246 struct request *rq;
1247
1248 /*
1249 * If we have multiple hardware queues, just go directly to
1250 * one of those for sync IO.
1251 */
1252 use_plug = !is_flush_fua && !is_sync;
1253
1254 blk_queue_bounce(q, &bio);
1255
1256 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1257 bio_endio(bio, -EIO);
1258 return;
1259 }
1260
1261 if (use_plug && !blk_queue_nomerges(q) &&
1262 blk_attempt_plug_merge(q, bio, &request_count))
1263 return;
1264
1265 rq = blk_mq_map_request(q, bio, &data);
ff87bcec
JA
1266 if (unlikely(!rq))
1267 return;
320ae51f
JA
1268
1269 if (unlikely(is_flush_fua)) {
1270 blk_mq_bio_to_request(rq, bio);
320ae51f
JA
1271 blk_insert_flush(rq);
1272 goto run_queue;
1273 }
1274
1275 /*
1276 * A task plug currently exists. Since this is completely lockless,
1277 * utilize that to temporarily store requests until the task is
1278 * either done or scheduled away.
1279 */
1280 if (use_plug) {
1281 struct blk_plug *plug = current->plug;
1282
1283 if (plug) {
1284 blk_mq_bio_to_request(rq, bio);
92f399c7 1285 if (list_empty(&plug->mq_list))
320ae51f
JA
1286 trace_block_plug(q);
1287 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1288 blk_flush_plug_list(plug, false);
1289 trace_block_plug(q);
1290 }
1291 list_add_tail(&rq->queuelist, &plug->mq_list);
07068d5b 1292 blk_mq_put_ctx(data.ctx);
320ae51f
JA
1293 return;
1294 }
1295 }
1296
07068d5b
JA
1297 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1298 /*
1299 * For a SYNC request, send it to the hardware immediately. For
1300 * an ASYNC request, just ensure that we run it later on. The
1301 * latter allows for merging opportunities and more efficient
1302 * dispatching.
1303 */
1304run_queue:
1305 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
320ae51f
JA
1306 }
1307
07068d5b 1308 blk_mq_put_ctx(data.ctx);
320ae51f
JA
1309}
1310
1311/*
1312 * Default mapping to a software queue, since we use one per CPU.
1313 */
1314struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1315{
1316 return q->queue_hw_ctx[q->mq_map[cpu]];
1317}
1318EXPORT_SYMBOL(blk_mq_map_queue);
1319
24d2f903
CH
1320static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1321 struct blk_mq_tags *tags, unsigned int hctx_idx)
95363efd 1322{
e9b267d9 1323 struct page *page;
320ae51f 1324
24d2f903 1325 if (tags->rqs && set->ops->exit_request) {
e9b267d9 1326 int i;
320ae51f 1327
24d2f903
CH
1328 for (i = 0; i < tags->nr_tags; i++) {
1329 if (!tags->rqs[i])
e9b267d9 1330 continue;
24d2f903
CH
1331 set->ops->exit_request(set->driver_data, tags->rqs[i],
1332 hctx_idx, i);
a5164405 1333 tags->rqs[i] = NULL;
e9b267d9 1334 }
320ae51f 1335 }
320ae51f 1336
24d2f903
CH
1337 while (!list_empty(&tags->page_list)) {
1338 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 1339 list_del_init(&page->lru);
320ae51f
JA
1340 __free_pages(page, page->private);
1341 }
1342
24d2f903 1343 kfree(tags->rqs);
320ae51f 1344
24d2f903 1345 blk_mq_free_tags(tags);
320ae51f
JA
1346}
1347
1348static size_t order_to_size(unsigned int order)
1349{
4ca08500 1350 return (size_t)PAGE_SIZE << order;
320ae51f
JA
1351}
1352
24d2f903
CH
1353static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1354 unsigned int hctx_idx)
320ae51f 1355{
24d2f903 1356 struct blk_mq_tags *tags;
320ae51f
JA
1357 unsigned int i, j, entries_per_page, max_order = 4;
1358 size_t rq_size, left;
1359
24d2f903
CH
1360 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1361 set->numa_node);
1362 if (!tags)
1363 return NULL;
320ae51f 1364
24d2f903
CH
1365 INIT_LIST_HEAD(&tags->page_list);
1366
a5164405
JA
1367 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1368 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1369 set->numa_node);
24d2f903
CH
1370 if (!tags->rqs) {
1371 blk_mq_free_tags(tags);
1372 return NULL;
1373 }
320ae51f
JA
1374
1375 /*
1376 * rq_size is the size of the request plus driver payload, rounded
1377 * to the cacheline size
1378 */
24d2f903 1379 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 1380 cache_line_size());
24d2f903 1381 left = rq_size * set->queue_depth;
320ae51f 1382
24d2f903 1383 for (i = 0; i < set->queue_depth; ) {
320ae51f
JA
1384 int this_order = max_order;
1385 struct page *page;
1386 int to_do;
1387 void *p;
1388
1389 while (left < order_to_size(this_order - 1) && this_order)
1390 this_order--;
1391
1392 do {
a5164405
JA
1393 page = alloc_pages_node(set->numa_node,
1394 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1395 this_order);
320ae51f
JA
1396 if (page)
1397 break;
1398 if (!this_order--)
1399 break;
1400 if (order_to_size(this_order) < rq_size)
1401 break;
1402 } while (1);
1403
1404 if (!page)
24d2f903 1405 goto fail;
320ae51f
JA
1406
1407 page->private = this_order;
24d2f903 1408 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
1409
1410 p = page_address(page);
1411 entries_per_page = order_to_size(this_order) / rq_size;
24d2f903 1412 to_do = min(entries_per_page, set->queue_depth - i);
320ae51f
JA
1413 left -= to_do * rq_size;
1414 for (j = 0; j < to_do; j++) {
24d2f903 1415 tags->rqs[i] = p;
683d0e12
DH
1416 tags->rqs[i]->atomic_flags = 0;
1417 tags->rqs[i]->cmd_flags = 0;
24d2f903
CH
1418 if (set->ops->init_request) {
1419 if (set->ops->init_request(set->driver_data,
1420 tags->rqs[i], hctx_idx, i,
a5164405
JA
1421 set->numa_node)) {
1422 tags->rqs[i] = NULL;
24d2f903 1423 goto fail;
a5164405 1424 }
e9b267d9
CH
1425 }
1426
320ae51f
JA
1427 p += rq_size;
1428 i++;
1429 }
1430 }
1431
24d2f903 1432 return tags;
320ae51f 1433
24d2f903 1434fail:
24d2f903
CH
1435 blk_mq_free_rq_map(set, tags, hctx_idx);
1436 return NULL;
320ae51f
JA
1437}
1438
1429d7c9
JA
1439static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1440{
1441 kfree(bitmap->map);
1442}
1443
1444static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1445{
1446 unsigned int bpw = 8, total, num_maps, i;
1447
1448 bitmap->bits_per_word = bpw;
1449
1450 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1451 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1452 GFP_KERNEL, node);
1453 if (!bitmap->map)
1454 return -ENOMEM;
1455
1456 bitmap->map_size = num_maps;
1457
1458 total = nr_cpu_ids;
1459 for (i = 0; i < num_maps; i++) {
1460 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1461 total -= bitmap->map[i].depth;
1462 }
1463
1464 return 0;
1465}
1466
484b4061
JA
1467static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1468{
1469 struct request_queue *q = hctx->queue;
1470 struct blk_mq_ctx *ctx;
1471 LIST_HEAD(tmp);
1472
1473 /*
1474 * Move ctx entries to new CPU, if this one is going away.
1475 */
1476 ctx = __blk_mq_get_ctx(q, cpu);
1477
1478 spin_lock(&ctx->lock);
1479 if (!list_empty(&ctx->rq_list)) {
1480 list_splice_init(&ctx->rq_list, &tmp);
1481 blk_mq_hctx_clear_pending(hctx, ctx);
1482 }
1483 spin_unlock(&ctx->lock);
1484
1485 if (list_empty(&tmp))
1486 return NOTIFY_OK;
1487
1488 ctx = blk_mq_get_ctx(q);
1489 spin_lock(&ctx->lock);
1490
1491 while (!list_empty(&tmp)) {
1492 struct request *rq;
1493
1494 rq = list_first_entry(&tmp, struct request, queuelist);
1495 rq->mq_ctx = ctx;
1496 list_move_tail(&rq->queuelist, &ctx->rq_list);
1497 }
1498
1499 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1500 blk_mq_hctx_mark_pending(hctx, ctx);
1501
1502 spin_unlock(&ctx->lock);
1503
1504 blk_mq_run_hw_queue(hctx, true);
1505 blk_mq_put_ctx(ctx);
1506 return NOTIFY_OK;
1507}
1508
1509static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
1510{
1511 struct request_queue *q = hctx->queue;
1512 struct blk_mq_tag_set *set = q->tag_set;
1513
1514 if (set->tags[hctx->queue_num])
1515 return NOTIFY_OK;
1516
1517 set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
1518 if (!set->tags[hctx->queue_num])
1519 return NOTIFY_STOP;
1520
1521 hctx->tags = set->tags[hctx->queue_num];
1522 return NOTIFY_OK;
1523}
1524
1525static int blk_mq_hctx_notify(void *data, unsigned long action,
1526 unsigned int cpu)
1527{
1528 struct blk_mq_hw_ctx *hctx = data;
1529
1530 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1531 return blk_mq_hctx_cpu_offline(hctx, cpu);
1532 else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
1533 return blk_mq_hctx_cpu_online(hctx, cpu);
1534
1535 return NOTIFY_OK;
1536}
1537
624dbe47
ML
1538static void blk_mq_exit_hw_queues(struct request_queue *q,
1539 struct blk_mq_tag_set *set, int nr_queue)
1540{
1541 struct blk_mq_hw_ctx *hctx;
1542 unsigned int i;
1543
1544 queue_for_each_hw_ctx(q, hctx, i) {
1545 if (i == nr_queue)
1546 break;
1547
f899fed4
JA
1548 blk_mq_tag_idle(hctx);
1549
624dbe47
ML
1550 if (set->ops->exit_hctx)
1551 set->ops->exit_hctx(hctx, i);
1552
1553 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1554 kfree(hctx->ctxs);
1555 blk_mq_free_bitmap(&hctx->ctx_map);
1556 }
1557
1558}
1559
1560static void blk_mq_free_hw_queues(struct request_queue *q,
1561 struct blk_mq_tag_set *set)
1562{
1563 struct blk_mq_hw_ctx *hctx;
1564 unsigned int i;
1565
1566 queue_for_each_hw_ctx(q, hctx, i) {
1567 free_cpumask_var(hctx->cpumask);
cdef54dd 1568 kfree(hctx);
624dbe47
ML
1569 }
1570}
1571
320ae51f 1572static int blk_mq_init_hw_queues(struct request_queue *q,
24d2f903 1573 struct blk_mq_tag_set *set)
320ae51f
JA
1574{
1575 struct blk_mq_hw_ctx *hctx;
624dbe47 1576 unsigned int i;
320ae51f
JA
1577
1578 /*
1579 * Initialize hardware queues
1580 */
1581 queue_for_each_hw_ctx(q, hctx, i) {
320ae51f
JA
1582 int node;
1583
1584 node = hctx->numa_node;
1585 if (node == NUMA_NO_NODE)
24d2f903 1586 node = hctx->numa_node = set->numa_node;
320ae51f 1587
70f4db63
CH
1588 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1589 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
320ae51f
JA
1590 spin_lock_init(&hctx->lock);
1591 INIT_LIST_HEAD(&hctx->dispatch);
1592 hctx->queue = q;
1593 hctx->queue_num = i;
24d2f903
CH
1594 hctx->flags = set->flags;
1595 hctx->cmd_size = set->cmd_size;
320ae51f
JA
1596
1597 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1598 blk_mq_hctx_notify, hctx);
1599 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1600
24d2f903 1601 hctx->tags = set->tags[i];
320ae51f
JA
1602
1603 /*
a68aafa5 1604 * Allocate space for all possible cpus to avoid allocation at
320ae51f
JA
1605 * runtime
1606 */
1607 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1608 GFP_KERNEL, node);
1609 if (!hctx->ctxs)
1610 break;
1611
1429d7c9 1612 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
320ae51f
JA
1613 break;
1614
320ae51f
JA
1615 hctx->nr_ctx = 0;
1616
24d2f903
CH
1617 if (set->ops->init_hctx &&
1618 set->ops->init_hctx(hctx, set->driver_data, i))
320ae51f
JA
1619 break;
1620 }
1621
1622 if (i == q->nr_hw_queues)
1623 return 0;
1624
1625 /*
1626 * Init failed
1627 */
624dbe47 1628 blk_mq_exit_hw_queues(q, set, i);
320ae51f
JA
1629
1630 return 1;
1631}
1632
1633static void blk_mq_init_cpu_queues(struct request_queue *q,
1634 unsigned int nr_hw_queues)
1635{
1636 unsigned int i;
1637
1638 for_each_possible_cpu(i) {
1639 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1640 struct blk_mq_hw_ctx *hctx;
1641
1642 memset(__ctx, 0, sizeof(*__ctx));
1643 __ctx->cpu = i;
1644 spin_lock_init(&__ctx->lock);
1645 INIT_LIST_HEAD(&__ctx->rq_list);
1646 __ctx->queue = q;
1647
1648 /* If the cpu isn't online, the cpu is mapped to first hctx */
320ae51f
JA
1649 if (!cpu_online(i))
1650 continue;
1651
e4043dcf
JA
1652 hctx = q->mq_ops->map_queue(q, i);
1653 cpumask_set_cpu(i, hctx->cpumask);
1654 hctx->nr_ctx++;
1655
320ae51f
JA
1656 /*
1657 * Set local node, IFF we have more than one hw queue. If
1658 * not, we remain on the home node of the device
1659 */
1660 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1661 hctx->numa_node = cpu_to_node(i);
1662 }
1663}
1664
1665static void blk_mq_map_swqueue(struct request_queue *q)
1666{
1667 unsigned int i;
1668 struct blk_mq_hw_ctx *hctx;
1669 struct blk_mq_ctx *ctx;
1670
1671 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 1672 cpumask_clear(hctx->cpumask);
320ae51f
JA
1673 hctx->nr_ctx = 0;
1674 }
1675
1676 /*
1677 * Map software to hardware queues
1678 */
1679 queue_for_each_ctx(q, ctx, i) {
1680 /* If the cpu isn't online, the cpu is mapped to first hctx */
e4043dcf
JA
1681 if (!cpu_online(i))
1682 continue;
1683
320ae51f 1684 hctx = q->mq_ops->map_queue(q, i);
e4043dcf 1685 cpumask_set_cpu(i, hctx->cpumask);
320ae51f
JA
1686 ctx->index_hw = hctx->nr_ctx;
1687 hctx->ctxs[hctx->nr_ctx++] = ctx;
1688 }
506e931f
JA
1689
1690 queue_for_each_hw_ctx(q, hctx, i) {
484b4061 1691 /*
a68aafa5
JA
1692 * If no software queues are mapped to this hardware queue,
1693 * disable it and free the request entries.
484b4061
JA
1694 */
1695 if (!hctx->nr_ctx) {
1696 struct blk_mq_tag_set *set = q->tag_set;
1697
1698 if (set->tags[i]) {
1699 blk_mq_free_rq_map(set, set->tags[i], i);
1700 set->tags[i] = NULL;
1701 hctx->tags = NULL;
1702 }
1703 continue;
1704 }
1705
1706 /*
1707 * Initialize batch roundrobin counts
1708 */
506e931f
JA
1709 hctx->next_cpu = cpumask_first(hctx->cpumask);
1710 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1711 }
320ae51f
JA
1712}
1713
0d2602ca
JA
1714static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1715{
1716 struct blk_mq_hw_ctx *hctx;
1717 struct request_queue *q;
1718 bool shared;
1719 int i;
1720
1721 if (set->tag_list.next == set->tag_list.prev)
1722 shared = false;
1723 else
1724 shared = true;
1725
1726 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1727 blk_mq_freeze_queue(q);
1728
1729 queue_for_each_hw_ctx(q, hctx, i) {
1730 if (shared)
1731 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1732 else
1733 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1734 }
1735 blk_mq_unfreeze_queue(q);
1736 }
1737}
1738
1739static void blk_mq_del_queue_tag_set(struct request_queue *q)
1740{
1741 struct blk_mq_tag_set *set = q->tag_set;
1742
0d2602ca
JA
1743 mutex_lock(&set->tag_list_lock);
1744 list_del_init(&q->tag_set_list);
1745 blk_mq_update_tag_set_depth(set);
1746 mutex_unlock(&set->tag_list_lock);
0d2602ca
JA
1747}
1748
1749static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1750 struct request_queue *q)
1751{
1752 q->tag_set = set;
1753
1754 mutex_lock(&set->tag_list_lock);
1755 list_add_tail(&q->tag_set_list, &set->tag_list);
1756 blk_mq_update_tag_set_depth(set);
1757 mutex_unlock(&set->tag_list_lock);
1758}
1759
24d2f903 1760struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
320ae51f
JA
1761{
1762 struct blk_mq_hw_ctx **hctxs;
e6cdb092 1763 struct blk_mq_ctx __percpu *ctx;
320ae51f 1764 struct request_queue *q;
f14bbe77 1765 unsigned int *map;
320ae51f
JA
1766 int i;
1767
320ae51f
JA
1768 ctx = alloc_percpu(struct blk_mq_ctx);
1769 if (!ctx)
1770 return ERR_PTR(-ENOMEM);
1771
24d2f903
CH
1772 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1773 set->numa_node);
320ae51f
JA
1774
1775 if (!hctxs)
1776 goto err_percpu;
1777
f14bbe77
JA
1778 map = blk_mq_make_queue_map(set);
1779 if (!map)
1780 goto err_map;
1781
24d2f903 1782 for (i = 0; i < set->nr_hw_queues; i++) {
f14bbe77
JA
1783 int node = blk_mq_hw_queue_to_node(map, i);
1784
cdef54dd
CH
1785 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1786 GFP_KERNEL, node);
320ae51f
JA
1787 if (!hctxs[i])
1788 goto err_hctxs;
1789
e4043dcf
JA
1790 if (!zalloc_cpumask_var(&hctxs[i]->cpumask, GFP_KERNEL))
1791 goto err_hctxs;
1792
0d2602ca 1793 atomic_set(&hctxs[i]->nr_active, 0);
f14bbe77 1794 hctxs[i]->numa_node = node;
320ae51f
JA
1795 hctxs[i]->queue_num = i;
1796 }
1797
24d2f903 1798 q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
320ae51f
JA
1799 if (!q)
1800 goto err_hctxs;
1801
add703fd 1802 if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release))
3d2936f4
ML
1803 goto err_map;
1804
320ae51f
JA
1805 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1806 blk_queue_rq_timeout(q, 30000);
1807
1808 q->nr_queues = nr_cpu_ids;
24d2f903 1809 q->nr_hw_queues = set->nr_hw_queues;
f14bbe77 1810 q->mq_map = map;
320ae51f
JA
1811
1812 q->queue_ctx = ctx;
1813 q->queue_hw_ctx = hctxs;
1814
24d2f903 1815 q->mq_ops = set->ops;
94eddfbe 1816 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f 1817
05f1dd53
JA
1818 if (!(set->flags & BLK_MQ_F_SG_MERGE))
1819 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
1820
1be036e9
CH
1821 q->sg_reserved_size = INT_MAX;
1822
6fca6a61
CH
1823 INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
1824 INIT_LIST_HEAD(&q->requeue_list);
1825 spin_lock_init(&q->requeue_lock);
1826
07068d5b
JA
1827 if (q->nr_hw_queues > 1)
1828 blk_queue_make_request(q, blk_mq_make_request);
1829 else
1830 blk_queue_make_request(q, blk_sq_make_request);
1831
87ee7b11 1832 blk_queue_rq_timed_out(q, blk_mq_rq_timed_out);
24d2f903
CH
1833 if (set->timeout)
1834 blk_queue_rq_timeout(q, set->timeout);
320ae51f 1835
eba71768
JA
1836 /*
1837 * Do this after blk_queue_make_request() overrides it...
1838 */
1839 q->nr_requests = set->queue_depth;
1840
24d2f903
CH
1841 if (set->ops->complete)
1842 blk_queue_softirq_done(q, set->ops->complete);
30a91cb4 1843
320ae51f 1844 blk_mq_init_flush(q);
24d2f903 1845 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
320ae51f 1846
24d2f903
CH
1847 q->flush_rq = kzalloc(round_up(sizeof(struct request) +
1848 set->cmd_size, cache_line_size()),
1849 GFP_KERNEL);
18741986 1850 if (!q->flush_rq)
320ae51f
JA
1851 goto err_hw;
1852
24d2f903 1853 if (blk_mq_init_hw_queues(q, set))
18741986
CH
1854 goto err_flush_rq;
1855
320ae51f
JA
1856 mutex_lock(&all_q_mutex);
1857 list_add_tail(&q->all_q_node, &all_q_list);
1858 mutex_unlock(&all_q_mutex);
1859
0d2602ca
JA
1860 blk_mq_add_queue_tag_set(set, q);
1861
484b4061
JA
1862 blk_mq_map_swqueue(q);
1863
320ae51f 1864 return q;
18741986
CH
1865
1866err_flush_rq:
1867 kfree(q->flush_rq);
320ae51f 1868err_hw:
320ae51f
JA
1869 blk_cleanup_queue(q);
1870err_hctxs:
f14bbe77 1871 kfree(map);
24d2f903 1872 for (i = 0; i < set->nr_hw_queues; i++) {
320ae51f
JA
1873 if (!hctxs[i])
1874 break;
e4043dcf 1875 free_cpumask_var(hctxs[i]->cpumask);
cdef54dd 1876 kfree(hctxs[i]);
320ae51f 1877 }
f14bbe77 1878err_map:
320ae51f
JA
1879 kfree(hctxs);
1880err_percpu:
1881 free_percpu(ctx);
1882 return ERR_PTR(-ENOMEM);
1883}
1884EXPORT_SYMBOL(blk_mq_init_queue);
1885
1886void blk_mq_free_queue(struct request_queue *q)
1887{
624dbe47 1888 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 1889
0d2602ca
JA
1890 blk_mq_del_queue_tag_set(q);
1891
624dbe47
ML
1892 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
1893 blk_mq_free_hw_queues(q, set);
320ae51f 1894
add703fd 1895 percpu_ref_exit(&q->mq_usage_counter);
3d2936f4 1896
320ae51f
JA
1897 free_percpu(q->queue_ctx);
1898 kfree(q->queue_hw_ctx);
1899 kfree(q->mq_map);
1900
1901 q->queue_ctx = NULL;
1902 q->queue_hw_ctx = NULL;
1903 q->mq_map = NULL;
1904
1905 mutex_lock(&all_q_mutex);
1906 list_del_init(&q->all_q_node);
1907 mutex_unlock(&all_q_mutex);
1908}
320ae51f
JA
1909
1910/* Basically redo blk_mq_init_queue with queue frozen */
f618ef7c 1911static void blk_mq_queue_reinit(struct request_queue *q)
320ae51f
JA
1912{
1913 blk_mq_freeze_queue(q);
1914
67aec14c
JA
1915 blk_mq_sysfs_unregister(q);
1916
320ae51f
JA
1917 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1918
1919 /*
1920 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1921 * we should change hctx numa_node according to new topology (this
1922 * involves free and re-allocate memory, worthy doing?)
1923 */
1924
1925 blk_mq_map_swqueue(q);
1926
67aec14c
JA
1927 blk_mq_sysfs_register(q);
1928
320ae51f
JA
1929 blk_mq_unfreeze_queue(q);
1930}
1931
f618ef7c
PG
1932static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1933 unsigned long action, void *hcpu)
320ae51f
JA
1934{
1935 struct request_queue *q;
1936
1937 /*
9fccfed8
JA
1938 * Before new mappings are established, hotadded cpu might already
1939 * start handling requests. This doesn't break anything as we map
1940 * offline CPUs to first hardware queue. We will re-init the queue
1941 * below to get optimal settings.
320ae51f
JA
1942 */
1943 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
1944 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
1945 return NOTIFY_OK;
1946
1947 mutex_lock(&all_q_mutex);
1948 list_for_each_entry(q, &all_q_list, all_q_node)
1949 blk_mq_queue_reinit(q);
1950 mutex_unlock(&all_q_mutex);
1951 return NOTIFY_OK;
1952}
1953
a5164405
JA
1954static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
1955{
1956 int i;
1957
1958 for (i = 0; i < set->nr_hw_queues; i++) {
1959 set->tags[i] = blk_mq_init_rq_map(set, i);
1960 if (!set->tags[i])
1961 goto out_unwind;
1962 }
1963
1964 return 0;
1965
1966out_unwind:
1967 while (--i >= 0)
1968 blk_mq_free_rq_map(set, set->tags[i], i);
1969
a5164405
JA
1970 return -ENOMEM;
1971}
1972
1973/*
1974 * Allocate the request maps associated with this tag_set. Note that this
1975 * may reduce the depth asked for, if memory is tight. set->queue_depth
1976 * will be updated to reflect the allocated depth.
1977 */
1978static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
1979{
1980 unsigned int depth;
1981 int err;
1982
1983 depth = set->queue_depth;
1984 do {
1985 err = __blk_mq_alloc_rq_maps(set);
1986 if (!err)
1987 break;
1988
1989 set->queue_depth >>= 1;
1990 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
1991 err = -ENOMEM;
1992 break;
1993 }
1994 } while (set->queue_depth);
1995
1996 if (!set->queue_depth || err) {
1997 pr_err("blk-mq: failed to allocate request map\n");
1998 return -ENOMEM;
1999 }
2000
2001 if (depth != set->queue_depth)
2002 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2003 depth, set->queue_depth);
2004
2005 return 0;
2006}
2007
a4391c64
JA
2008/*
2009 * Alloc a tag set to be associated with one or more request queues.
2010 * May fail with EINVAL for various error conditions. May adjust the
2011 * requested depth down, if if it too large. In that case, the set
2012 * value will be stored in set->queue_depth.
2013 */
24d2f903
CH
2014int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2015{
24d2f903
CH
2016 if (!set->nr_hw_queues)
2017 return -EINVAL;
a4391c64 2018 if (!set->queue_depth)
24d2f903
CH
2019 return -EINVAL;
2020 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2021 return -EINVAL;
2022
cdef54dd 2023 if (!set->nr_hw_queues || !set->ops->queue_rq || !set->ops->map_queue)
24d2f903
CH
2024 return -EINVAL;
2025
a4391c64
JA
2026 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2027 pr_info("blk-mq: reduced tag depth to %u\n",
2028 BLK_MQ_MAX_DEPTH);
2029 set->queue_depth = BLK_MQ_MAX_DEPTH;
2030 }
24d2f903 2031
48479005
ML
2032 set->tags = kmalloc_node(set->nr_hw_queues *
2033 sizeof(struct blk_mq_tags *),
24d2f903
CH
2034 GFP_KERNEL, set->numa_node);
2035 if (!set->tags)
a5164405 2036 return -ENOMEM;
24d2f903 2037
a5164405
JA
2038 if (blk_mq_alloc_rq_maps(set))
2039 goto enomem;
24d2f903 2040
0d2602ca
JA
2041 mutex_init(&set->tag_list_lock);
2042 INIT_LIST_HEAD(&set->tag_list);
2043
24d2f903 2044 return 0;
a5164405 2045enomem:
5676e7b6
RE
2046 kfree(set->tags);
2047 set->tags = NULL;
24d2f903
CH
2048 return -ENOMEM;
2049}
2050EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2051
2052void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2053{
2054 int i;
2055
484b4061
JA
2056 for (i = 0; i < set->nr_hw_queues; i++) {
2057 if (set->tags[i])
2058 blk_mq_free_rq_map(set, set->tags[i], i);
2059 }
2060
981bd189 2061 kfree(set->tags);
5676e7b6 2062 set->tags = NULL;
24d2f903
CH
2063}
2064EXPORT_SYMBOL(blk_mq_free_tag_set);
2065
e3a2b3f9
JA
2066int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2067{
2068 struct blk_mq_tag_set *set = q->tag_set;
2069 struct blk_mq_hw_ctx *hctx;
2070 int i, ret;
2071
2072 if (!set || nr > set->queue_depth)
2073 return -EINVAL;
2074
2075 ret = 0;
2076 queue_for_each_hw_ctx(q, hctx, i) {
2077 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2078 if (ret)
2079 break;
2080 }
2081
2082 if (!ret)
2083 q->nr_requests = nr;
2084
2085 return ret;
2086}
2087
676141e4
JA
2088void blk_mq_disable_hotplug(void)
2089{
2090 mutex_lock(&all_q_mutex);
2091}
2092
2093void blk_mq_enable_hotplug(void)
2094{
2095 mutex_unlock(&all_q_mutex);
2096}
2097
320ae51f
JA
2098static int __init blk_mq_init(void)
2099{
320ae51f
JA
2100 blk_mq_cpu_init();
2101
add703fd 2102 hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
320ae51f
JA
2103
2104 return 0;
2105}
2106subsys_initcall(blk_mq_init);
This page took 0.174036 seconds and 5 git commands to generate.