blkio: Group time used accounting and workload context save restore
[deliverable/linux.git] / block / cfq-iosched.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
0fe23479 7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
1da177e4 8 */
1da177e4 9#include <linux/module.h>
1cc9be68
AV
10#include <linux/blkdev.h>
11#include <linux/elevator.h>
ad5ebd2f 12#include <linux/jiffies.h>
1da177e4 13#include <linux/rbtree.h>
22e2c507 14#include <linux/ioprio.h>
7b679138 15#include <linux/blktrace_api.h>
25bc6b07 16#include "blk-cgroup.h"
1da177e4
LT
17
18/*
19 * tunables
20 */
fe094d98
JA
21/* max queue in one round of service */
22static const int cfq_quantum = 4;
64100099 23static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
fe094d98
JA
24/* maximum backwards seek, in KiB */
25static const int cfq_back_max = 16 * 1024;
26/* penalty of a backwards seek */
27static const int cfq_back_penalty = 2;
64100099 28static const int cfq_slice_sync = HZ / 10;
3b18152c 29static int cfq_slice_async = HZ / 25;
64100099 30static const int cfq_slice_async_rq = 2;
caaa5f9f 31static int cfq_slice_idle = HZ / 125;
5db5d642
CZ
32static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
33static const int cfq_hist_divisor = 4;
22e2c507 34
d9e7620e 35/*
0871714e 36 * offset from end of service tree
d9e7620e 37 */
0871714e 38#define CFQ_IDLE_DELAY (HZ / 5)
d9e7620e
JA
39
40/*
41 * below this threshold, we consider thinktime immediate
42 */
43#define CFQ_MIN_TT (2)
44
e6c5bc73
JM
45/*
46 * Allow merged cfqqs to perform this amount of seeky I/O before
47 * deciding to break the queues up again.
48 */
49#define CFQQ_COOP_TOUT (HZ)
50
22e2c507 51#define CFQ_SLICE_SCALE (5)
45333d5a 52#define CFQ_HW_QUEUE_MIN (5)
25bc6b07 53#define CFQ_SERVICE_SHIFT 12
22e2c507 54
fe094d98
JA
55#define RQ_CIC(rq) \
56 ((struct cfq_io_context *) (rq)->elevator_private)
7b679138 57#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
1da177e4 58
e18b890b
CL
59static struct kmem_cache *cfq_pool;
60static struct kmem_cache *cfq_ioc_pool;
1da177e4 61
245b2e70 62static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
334e94de 63static struct completion *ioc_gone;
9a11b4ed 64static DEFINE_SPINLOCK(ioc_gone_lock);
334e94de 65
22e2c507
JA
66#define CFQ_PRIO_LISTS IOPRIO_BE_NR
67#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
22e2c507
JA
68#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
69
206dc69b 70#define sample_valid(samples) ((samples) > 80)
1fa8f6d6 71#define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
206dc69b 72
cc09e299
JA
73/*
74 * Most of our rbtree usage is for sorting with min extraction, so
75 * if we cache the leftmost node we don't have to walk down the tree
76 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
77 * move this into the elevator for the rq sorting as well.
78 */
79struct cfq_rb_root {
80 struct rb_root rb;
81 struct rb_node *left;
aa6f6a3d 82 unsigned count;
1fa8f6d6 83 u64 min_vdisktime;
25bc6b07 84 struct rb_node *active;
58ff82f3 85 unsigned total_weight;
cc09e299 86};
1fa8f6d6 87#define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, 0, 0, }
cc09e299 88
6118b70b
JA
89/*
90 * Per process-grouping structure
91 */
92struct cfq_queue {
93 /* reference count */
94 atomic_t ref;
95 /* various state flags, see below */
96 unsigned int flags;
97 /* parent cfq_data */
98 struct cfq_data *cfqd;
99 /* service_tree member */
100 struct rb_node rb_node;
101 /* service_tree key */
102 unsigned long rb_key;
103 /* prio tree member */
104 struct rb_node p_node;
105 /* prio tree root we belong to, if any */
106 struct rb_root *p_root;
107 /* sorted list of pending requests */
108 struct rb_root sort_list;
109 /* if fifo isn't expired, next request to serve */
110 struct request *next_rq;
111 /* requests queued in sort_list */
112 int queued[2];
113 /* currently allocated requests */
114 int allocated[2];
115 /* fifo list of requests in sort_list */
116 struct list_head fifo;
117
dae739eb
VG
118 /* time when queue got scheduled in to dispatch first request. */
119 unsigned long dispatch_start;
120 /* time when first request from queue completed and slice started. */
121 unsigned long slice_start;
6118b70b
JA
122 unsigned long slice_end;
123 long slice_resid;
124 unsigned int slice_dispatch;
125
126 /* pending metadata requests */
127 int meta_pending;
128 /* number of requests that are on the dispatch list or inside driver */
129 int dispatched;
130
131 /* io prio of this group */
132 unsigned short ioprio, org_ioprio;
133 unsigned short ioprio_class, org_ioprio_class;
134
b2c18e1e
JM
135 unsigned int seek_samples;
136 u64 seek_total;
137 sector_t seek_mean;
138 sector_t last_request_pos;
e6c5bc73 139 unsigned long seeky_start;
b2c18e1e 140
6118b70b 141 pid_t pid;
df5fe3e8 142
aa6f6a3d 143 struct cfq_rb_root *service_tree;
df5fe3e8 144 struct cfq_queue *new_cfqq;
cdb16e8f 145 struct cfq_group *cfqg;
6118b70b
JA
146};
147
c0324a02 148/*
718eee05 149 * First index in the service_trees.
c0324a02
CZ
150 * IDLE is handled separately, so it has negative index
151 */
152enum wl_prio_t {
c0324a02 153 BE_WORKLOAD = 0,
615f0259
VG
154 RT_WORKLOAD = 1,
155 IDLE_WORKLOAD = 2,
c0324a02
CZ
156};
157
718eee05
CZ
158/*
159 * Second index in the service_trees.
160 */
161enum wl_type_t {
162 ASYNC_WORKLOAD = 0,
163 SYNC_NOIDLE_WORKLOAD = 1,
164 SYNC_WORKLOAD = 2
165};
166
cdb16e8f
VG
167/* This is per cgroup per device grouping structure */
168struct cfq_group {
1fa8f6d6
VG
169 /* group service_tree member */
170 struct rb_node rb_node;
171
172 /* group service_tree key */
173 u64 vdisktime;
25bc6b07 174 unsigned int weight;
1fa8f6d6
VG
175 bool on_st;
176
177 /* number of cfqq currently on this group */
178 int nr_cfqq;
179
58ff82f3
VG
180 /* Per group busy queus average. Useful for workload slice calc. */
181 unsigned int busy_queues_avg[2];
cdb16e8f
VG
182 /*
183 * rr lists of queues with requests, onle rr for each priority class.
184 * Counts are embedded in the cfq_rb_root
185 */
186 struct cfq_rb_root service_trees[2][3];
187 struct cfq_rb_root service_tree_idle;
dae739eb
VG
188
189 unsigned long saved_workload_slice;
190 enum wl_type_t saved_workload;
191 enum wl_prio_t saved_serving_prio;
cdb16e8f 192};
718eee05 193
22e2c507
JA
194/*
195 * Per block device queue structure
196 */
1da177e4 197struct cfq_data {
165125e1 198 struct request_queue *queue;
1fa8f6d6
VG
199 /* Root service tree for cfq_groups */
200 struct cfq_rb_root grp_service_tree;
cdb16e8f 201 struct cfq_group root_group;
58ff82f3
VG
202 /* Number of active cfq groups on group service tree */
203 int nr_groups;
22e2c507 204
c0324a02
CZ
205 /*
206 * The priority currently being served
22e2c507 207 */
c0324a02 208 enum wl_prio_t serving_prio;
718eee05
CZ
209 enum wl_type_t serving_type;
210 unsigned long workload_expires;
cdb16e8f 211 struct cfq_group *serving_group;
8e550632 212 bool noidle_tree_requires_idle;
a36e71f9
JA
213
214 /*
215 * Each priority tree is sorted by next_request position. These
216 * trees are used when determining if two or more queues are
217 * interleaving requests (see cfq_close_cooperator).
218 */
219 struct rb_root prio_trees[CFQ_PRIO_LISTS];
220
22e2c507
JA
221 unsigned int busy_queues;
222
5ad531db 223 int rq_in_driver[2];
3ed9a296 224 int sync_flight;
45333d5a
AC
225
226 /*
227 * queue-depth detection
228 */
229 int rq_queued;
25776e35 230 int hw_tag;
e459dd08
CZ
231 /*
232 * hw_tag can be
233 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
234 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
235 * 0 => no NCQ
236 */
237 int hw_tag_est_depth;
238 unsigned int hw_tag_samples;
1da177e4 239
22e2c507
JA
240 /*
241 * idle window management
242 */
243 struct timer_list idle_slice_timer;
23e018a1 244 struct work_struct unplug_work;
1da177e4 245
22e2c507
JA
246 struct cfq_queue *active_queue;
247 struct cfq_io_context *active_cic;
22e2c507 248
c2dea2d1
VT
249 /*
250 * async queue for each priority case
251 */
252 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
253 struct cfq_queue *async_idle_cfqq;
15c31be4 254
6d048f53 255 sector_t last_position;
1da177e4 256
1da177e4
LT
257 /*
258 * tunables, see top of file
259 */
260 unsigned int cfq_quantum;
22e2c507 261 unsigned int cfq_fifo_expire[2];
1da177e4
LT
262 unsigned int cfq_back_penalty;
263 unsigned int cfq_back_max;
22e2c507
JA
264 unsigned int cfq_slice[2];
265 unsigned int cfq_slice_async_rq;
266 unsigned int cfq_slice_idle;
963b72fc 267 unsigned int cfq_latency;
d9ff4187
AV
268
269 struct list_head cic_list;
1da177e4 270
6118b70b
JA
271 /*
272 * Fallback dummy cfqq for extreme OOM conditions
273 */
274 struct cfq_queue oom_cfqq;
365722bb
VG
275
276 unsigned long last_end_sync_rq;
1da177e4
LT
277};
278
cdb16e8f
VG
279static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
280 enum wl_prio_t prio,
718eee05 281 enum wl_type_t type,
c0324a02
CZ
282 struct cfq_data *cfqd)
283{
1fa8f6d6
VG
284 if (!cfqg)
285 return NULL;
286
c0324a02 287 if (prio == IDLE_WORKLOAD)
cdb16e8f 288 return &cfqg->service_tree_idle;
c0324a02 289
cdb16e8f 290 return &cfqg->service_trees[prio][type];
c0324a02
CZ
291}
292
3b18152c 293enum cfqq_state_flags {
b0b8d749
JA
294 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
295 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
b029195d 296 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
b0b8d749 297 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
b0b8d749
JA
298 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
299 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
300 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
44f7c160 301 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
91fac317 302 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
b3b6d040 303 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
76280aff 304 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
3b18152c
JA
305};
306
307#define CFQ_CFQQ_FNS(name) \
308static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
309{ \
fe094d98 310 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
311} \
312static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
313{ \
fe094d98 314 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
315} \
316static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
317{ \
fe094d98 318 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
3b18152c
JA
319}
320
321CFQ_CFQQ_FNS(on_rr);
322CFQ_CFQQ_FNS(wait_request);
b029195d 323CFQ_CFQQ_FNS(must_dispatch);
3b18152c 324CFQ_CFQQ_FNS(must_alloc_slice);
3b18152c
JA
325CFQ_CFQQ_FNS(fifo_expire);
326CFQ_CFQQ_FNS(idle_window);
327CFQ_CFQQ_FNS(prio_changed);
44f7c160 328CFQ_CFQQ_FNS(slice_new);
91fac317 329CFQ_CFQQ_FNS(sync);
a36e71f9 330CFQ_CFQQ_FNS(coop);
76280aff 331CFQ_CFQQ_FNS(deep);
3b18152c
JA
332#undef CFQ_CFQQ_FNS
333
7b679138
JA
334#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
335 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
336#define cfq_log(cfqd, fmt, args...) \
337 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
338
615f0259
VG
339/* Traverses through cfq group service trees */
340#define for_each_cfqg_st(cfqg, i, j, st) \
341 for (i = 0; i <= IDLE_WORKLOAD; i++) \
342 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
343 : &cfqg->service_tree_idle; \
344 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
345 (i == IDLE_WORKLOAD && j == 0); \
346 j++, st = i < IDLE_WORKLOAD ? \
347 &cfqg->service_trees[i][j]: NULL) \
348
349
c0324a02
CZ
350static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
351{
352 if (cfq_class_idle(cfqq))
353 return IDLE_WORKLOAD;
354 if (cfq_class_rt(cfqq))
355 return RT_WORKLOAD;
356 return BE_WORKLOAD;
357}
358
718eee05
CZ
359
360static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
361{
362 if (!cfq_cfqq_sync(cfqq))
363 return ASYNC_WORKLOAD;
364 if (!cfq_cfqq_idle_window(cfqq))
365 return SYNC_NOIDLE_WORKLOAD;
366 return SYNC_WORKLOAD;
367}
368
58ff82f3
VG
369static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
370 struct cfq_data *cfqd,
371 struct cfq_group *cfqg)
c0324a02
CZ
372{
373 if (wl == IDLE_WORKLOAD)
cdb16e8f 374 return cfqg->service_tree_idle.count;
c0324a02 375
cdb16e8f
VG
376 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
377 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
378 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
c0324a02
CZ
379}
380
165125e1 381static void cfq_dispatch_insert(struct request_queue *, struct request *);
a6151c3a 382static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
fd0928df 383 struct io_context *, gfp_t);
4ac845a2 384static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
91fac317
VT
385 struct io_context *);
386
5ad531db
JA
387static inline int rq_in_driver(struct cfq_data *cfqd)
388{
389 return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
390}
391
91fac317 392static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
a6151c3a 393 bool is_sync)
91fac317 394{
a6151c3a 395 return cic->cfqq[is_sync];
91fac317
VT
396}
397
398static inline void cic_set_cfqq(struct cfq_io_context *cic,
a6151c3a 399 struct cfq_queue *cfqq, bool is_sync)
91fac317 400{
a6151c3a 401 cic->cfqq[is_sync] = cfqq;
91fac317
VT
402}
403
404/*
405 * We regard a request as SYNC, if it's either a read or has the SYNC bit
406 * set (in which case it could also be direct WRITE).
407 */
a6151c3a 408static inline bool cfq_bio_sync(struct bio *bio)
91fac317 409{
a6151c3a 410 return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
91fac317 411}
1da177e4 412
99f95e52
AM
413/*
414 * scheduler run of queue, if there are requests pending and no one in the
415 * driver that will restart queueing
416 */
23e018a1 417static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
99f95e52 418{
7b679138
JA
419 if (cfqd->busy_queues) {
420 cfq_log(cfqd, "schedule dispatch");
23e018a1 421 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
7b679138 422 }
99f95e52
AM
423}
424
165125e1 425static int cfq_queue_empty(struct request_queue *q)
99f95e52
AM
426{
427 struct cfq_data *cfqd = q->elevator->elevator_data;
428
f04a6424 429 return !cfqd->rq_queued;
99f95e52
AM
430}
431
44f7c160
JA
432/*
433 * Scale schedule slice based on io priority. Use the sync time slice only
434 * if a queue is marked sync and has sync io queued. A sync queue with async
435 * io only, should not get full sync slice length.
436 */
a6151c3a 437static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
d9e7620e 438 unsigned short prio)
44f7c160 439{
d9e7620e 440 const int base_slice = cfqd->cfq_slice[sync];
44f7c160 441
d9e7620e
JA
442 WARN_ON(prio >= IOPRIO_BE_NR);
443
444 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
445}
44f7c160 446
d9e7620e
JA
447static inline int
448cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
449{
450 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
44f7c160
JA
451}
452
25bc6b07
VG
453static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
454{
455 u64 d = delta << CFQ_SERVICE_SHIFT;
456
457 d = d * BLKIO_WEIGHT_DEFAULT;
458 do_div(d, cfqg->weight);
459 return d;
460}
461
462static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
463{
464 s64 delta = (s64)(vdisktime - min_vdisktime);
465 if (delta > 0)
466 min_vdisktime = vdisktime;
467
468 return min_vdisktime;
469}
470
471static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
472{
473 s64 delta = (s64)(vdisktime - min_vdisktime);
474 if (delta < 0)
475 min_vdisktime = vdisktime;
476
477 return min_vdisktime;
478}
479
480static void update_min_vdisktime(struct cfq_rb_root *st)
481{
482 u64 vdisktime = st->min_vdisktime;
483 struct cfq_group *cfqg;
484
485 if (st->active) {
486 cfqg = rb_entry_cfqg(st->active);
487 vdisktime = cfqg->vdisktime;
488 }
489
490 if (st->left) {
491 cfqg = rb_entry_cfqg(st->left);
492 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
493 }
494
495 st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
496}
497
5db5d642
CZ
498/*
499 * get averaged number of queues of RT/BE priority.
500 * average is updated, with a formula that gives more weight to higher numbers,
501 * to quickly follows sudden increases and decrease slowly
502 */
503
58ff82f3
VG
504static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
505 struct cfq_group *cfqg, bool rt)
5869619c 506{
5db5d642
CZ
507 unsigned min_q, max_q;
508 unsigned mult = cfq_hist_divisor - 1;
509 unsigned round = cfq_hist_divisor / 2;
58ff82f3 510 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
5db5d642 511
58ff82f3
VG
512 min_q = min(cfqg->busy_queues_avg[rt], busy);
513 max_q = max(cfqg->busy_queues_avg[rt], busy);
514 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
5db5d642 515 cfq_hist_divisor;
58ff82f3
VG
516 return cfqg->busy_queues_avg[rt];
517}
518
519static inline unsigned
520cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
521{
522 struct cfq_rb_root *st = &cfqd->grp_service_tree;
523
524 return cfq_target_latency * cfqg->weight / st->total_weight;
5db5d642
CZ
525}
526
44f7c160
JA
527static inline void
528cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
529{
5db5d642
CZ
530 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
531 if (cfqd->cfq_latency) {
58ff82f3
VG
532 /*
533 * interested queues (we consider only the ones with the same
534 * priority class in the cfq group)
535 */
536 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
537 cfq_class_rt(cfqq));
5db5d642
CZ
538 unsigned sync_slice = cfqd->cfq_slice[1];
539 unsigned expect_latency = sync_slice * iq;
58ff82f3
VG
540 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
541
542 if (expect_latency > group_slice) {
5db5d642
CZ
543 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
544 /* scale low_slice according to IO priority
545 * and sync vs async */
546 unsigned low_slice =
547 min(slice, base_low_slice * slice / sync_slice);
548 /* the adapted slice value is scaled to fit all iqs
549 * into the target latency */
58ff82f3 550 slice = max(slice * group_slice / expect_latency,
5db5d642
CZ
551 low_slice);
552 }
553 }
dae739eb 554 cfqq->slice_start = jiffies;
5db5d642 555 cfqq->slice_end = jiffies + slice;
7b679138 556 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
44f7c160
JA
557}
558
559/*
560 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
561 * isn't valid until the first request from the dispatch is activated
562 * and the slice time set.
563 */
a6151c3a 564static inline bool cfq_slice_used(struct cfq_queue *cfqq)
44f7c160
JA
565{
566 if (cfq_cfqq_slice_new(cfqq))
567 return 0;
568 if (time_before(jiffies, cfqq->slice_end))
569 return 0;
570
571 return 1;
572}
573
1da177e4 574/*
5e705374 575 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1da177e4 576 * We choose the request that is closest to the head right now. Distance
e8a99053 577 * behind the head is penalized and only allowed to a certain extent.
1da177e4 578 */
5e705374 579static struct request *
cf7c25cf 580cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1da177e4 581{
cf7c25cf 582 sector_t s1, s2, d1 = 0, d2 = 0;
1da177e4 583 unsigned long back_max;
e8a99053
AM
584#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
585#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
586 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1da177e4 587
5e705374
JA
588 if (rq1 == NULL || rq1 == rq2)
589 return rq2;
590 if (rq2 == NULL)
591 return rq1;
9c2c38a1 592
5e705374
JA
593 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
594 return rq1;
595 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
596 return rq2;
374f84ac
JA
597 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
598 return rq1;
599 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
600 return rq2;
1da177e4 601
83096ebf
TH
602 s1 = blk_rq_pos(rq1);
603 s2 = blk_rq_pos(rq2);
1da177e4 604
1da177e4
LT
605 /*
606 * by definition, 1KiB is 2 sectors
607 */
608 back_max = cfqd->cfq_back_max * 2;
609
610 /*
611 * Strict one way elevator _except_ in the case where we allow
612 * short backward seeks which are biased as twice the cost of a
613 * similar forward seek.
614 */
615 if (s1 >= last)
616 d1 = s1 - last;
617 else if (s1 + back_max >= last)
618 d1 = (last - s1) * cfqd->cfq_back_penalty;
619 else
e8a99053 620 wrap |= CFQ_RQ1_WRAP;
1da177e4
LT
621
622 if (s2 >= last)
623 d2 = s2 - last;
624 else if (s2 + back_max >= last)
625 d2 = (last - s2) * cfqd->cfq_back_penalty;
626 else
e8a99053 627 wrap |= CFQ_RQ2_WRAP;
1da177e4
LT
628
629 /* Found required data */
e8a99053
AM
630
631 /*
632 * By doing switch() on the bit mask "wrap" we avoid having to
633 * check two variables for all permutations: --> faster!
634 */
635 switch (wrap) {
5e705374 636 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
e8a99053 637 if (d1 < d2)
5e705374 638 return rq1;
e8a99053 639 else if (d2 < d1)
5e705374 640 return rq2;
e8a99053
AM
641 else {
642 if (s1 >= s2)
5e705374 643 return rq1;
e8a99053 644 else
5e705374 645 return rq2;
e8a99053 646 }
1da177e4 647
e8a99053 648 case CFQ_RQ2_WRAP:
5e705374 649 return rq1;
e8a99053 650 case CFQ_RQ1_WRAP:
5e705374
JA
651 return rq2;
652 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
e8a99053
AM
653 default:
654 /*
655 * Since both rqs are wrapped,
656 * start with the one that's further behind head
657 * (--> only *one* back seek required),
658 * since back seek takes more time than forward.
659 */
660 if (s1 <= s2)
5e705374 661 return rq1;
1da177e4 662 else
5e705374 663 return rq2;
1da177e4
LT
664 }
665}
666
498d3aa2
JA
667/*
668 * The below is leftmost cache rbtree addon
669 */
0871714e 670static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
cc09e299 671{
615f0259
VG
672 /* Service tree is empty */
673 if (!root->count)
674 return NULL;
675
cc09e299
JA
676 if (!root->left)
677 root->left = rb_first(&root->rb);
678
0871714e
JA
679 if (root->left)
680 return rb_entry(root->left, struct cfq_queue, rb_node);
681
682 return NULL;
cc09e299
JA
683}
684
1fa8f6d6
VG
685static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
686{
687 if (!root->left)
688 root->left = rb_first(&root->rb);
689
690 if (root->left)
691 return rb_entry_cfqg(root->left);
692
693 return NULL;
694}
695
a36e71f9
JA
696static void rb_erase_init(struct rb_node *n, struct rb_root *root)
697{
698 rb_erase(n, root);
699 RB_CLEAR_NODE(n);
700}
701
cc09e299
JA
702static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
703{
704 if (root->left == n)
705 root->left = NULL;
a36e71f9 706 rb_erase_init(n, &root->rb);
aa6f6a3d 707 --root->count;
cc09e299
JA
708}
709
1da177e4
LT
710/*
711 * would be nice to take fifo expire time into account as well
712 */
5e705374
JA
713static struct request *
714cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
715 struct request *last)
1da177e4 716{
21183b07
JA
717 struct rb_node *rbnext = rb_next(&last->rb_node);
718 struct rb_node *rbprev = rb_prev(&last->rb_node);
5e705374 719 struct request *next = NULL, *prev = NULL;
1da177e4 720
21183b07 721 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1da177e4
LT
722
723 if (rbprev)
5e705374 724 prev = rb_entry_rq(rbprev);
1da177e4 725
21183b07 726 if (rbnext)
5e705374 727 next = rb_entry_rq(rbnext);
21183b07
JA
728 else {
729 rbnext = rb_first(&cfqq->sort_list);
730 if (rbnext && rbnext != &last->rb_node)
5e705374 731 next = rb_entry_rq(rbnext);
21183b07 732 }
1da177e4 733
cf7c25cf 734 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1da177e4
LT
735}
736
d9e7620e
JA
737static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
738 struct cfq_queue *cfqq)
1da177e4 739{
d9e7620e
JA
740 /*
741 * just an approximation, should be ok.
742 */
cdb16e8f 743 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
464191c6 744 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
d9e7620e
JA
745}
746
1fa8f6d6
VG
747static inline s64
748cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
749{
750 return cfqg->vdisktime - st->min_vdisktime;
751}
752
753static void
754__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
755{
756 struct rb_node **node = &st->rb.rb_node;
757 struct rb_node *parent = NULL;
758 struct cfq_group *__cfqg;
759 s64 key = cfqg_key(st, cfqg);
760 int left = 1;
761
762 while (*node != NULL) {
763 parent = *node;
764 __cfqg = rb_entry_cfqg(parent);
765
766 if (key < cfqg_key(st, __cfqg))
767 node = &parent->rb_left;
768 else {
769 node = &parent->rb_right;
770 left = 0;
771 }
772 }
773
774 if (left)
775 st->left = &cfqg->rb_node;
776
777 rb_link_node(&cfqg->rb_node, parent, node);
778 rb_insert_color(&cfqg->rb_node, &st->rb);
779}
780
781static void
782cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
783{
784 struct cfq_rb_root *st = &cfqd->grp_service_tree;
785 struct cfq_group *__cfqg;
786 struct rb_node *n;
787
788 cfqg->nr_cfqq++;
789 if (cfqg->on_st)
790 return;
791
792 /*
793 * Currently put the group at the end. Later implement something
794 * so that groups get lesser vtime based on their weights, so that
795 * if group does not loose all if it was not continously backlogged.
796 */
797 n = rb_last(&st->rb);
798 if (n) {
799 __cfqg = rb_entry_cfqg(n);
800 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
801 } else
802 cfqg->vdisktime = st->min_vdisktime;
803
804 __cfq_group_service_tree_add(st, cfqg);
805 cfqg->on_st = true;
58ff82f3
VG
806 cfqd->nr_groups++;
807 st->total_weight += cfqg->weight;
1fa8f6d6
VG
808}
809
810static void
811cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
812{
813 struct cfq_rb_root *st = &cfqd->grp_service_tree;
814
25bc6b07
VG
815 if (st->active == &cfqg->rb_node)
816 st->active = NULL;
817
1fa8f6d6
VG
818 BUG_ON(cfqg->nr_cfqq < 1);
819 cfqg->nr_cfqq--;
25bc6b07 820
1fa8f6d6
VG
821 /* If there are other cfq queues under this group, don't delete it */
822 if (cfqg->nr_cfqq)
823 return;
824
825 cfqg->on_st = false;
58ff82f3
VG
826 cfqd->nr_groups--;
827 st->total_weight -= cfqg->weight;
1fa8f6d6
VG
828 if (!RB_EMPTY_NODE(&cfqg->rb_node))
829 cfq_rb_erase(&cfqg->rb_node, st);
dae739eb
VG
830 cfqg->saved_workload_slice = 0;
831}
832
833static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
834{
835 unsigned int slice_used, allocated_slice;
836
837 /*
838 * Queue got expired before even a single request completed or
839 * got expired immediately after first request completion.
840 */
841 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
842 /*
843 * Also charge the seek time incurred to the group, otherwise
844 * if there are mutiple queues in the group, each can dispatch
845 * a single request on seeky media and cause lots of seek time
846 * and group will never know it.
847 */
848 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
849 1);
850 } else {
851 slice_used = jiffies - cfqq->slice_start;
852 allocated_slice = cfqq->slice_end - cfqq->slice_start;
853 if (slice_used > allocated_slice)
854 slice_used = allocated_slice;
855 }
856
857 cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u", slice_used);
858 return slice_used;
859}
860
861static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
862 struct cfq_queue *cfqq)
863{
864 struct cfq_rb_root *st = &cfqd->grp_service_tree;
865 unsigned int used_sl;
866
867 used_sl = cfq_cfqq_slice_usage(cfqq);
868
869 /* Can't update vdisktime while group is on service tree */
870 cfq_rb_erase(&cfqg->rb_node, st);
871 cfqg->vdisktime += cfq_scale_slice(used_sl, cfqg);
872 __cfq_group_service_tree_add(st, cfqg);
873
874 /* This group is being expired. Save the context */
875 if (time_after(cfqd->workload_expires, jiffies)) {
876 cfqg->saved_workload_slice = cfqd->workload_expires
877 - jiffies;
878 cfqg->saved_workload = cfqd->serving_type;
879 cfqg->saved_serving_prio = cfqd->serving_prio;
880 } else
881 cfqg->saved_workload_slice = 0;
1fa8f6d6
VG
882}
883
498d3aa2 884/*
c0324a02 885 * The cfqd->service_trees holds all pending cfq_queue's that have
498d3aa2
JA
886 * requests waiting to be processed. It is sorted in the order that
887 * we will service the queues.
888 */
a36e71f9 889static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 890 bool add_front)
d9e7620e 891{
0871714e
JA
892 struct rb_node **p, *parent;
893 struct cfq_queue *__cfqq;
d9e7620e 894 unsigned long rb_key;
c0324a02 895 struct cfq_rb_root *service_tree;
498d3aa2 896 int left;
dae739eb 897 int new_cfqq = 1;
d9e7620e 898
cdb16e8f
VG
899 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
900 cfqq_type(cfqq), cfqd);
0871714e
JA
901 if (cfq_class_idle(cfqq)) {
902 rb_key = CFQ_IDLE_DELAY;
aa6f6a3d 903 parent = rb_last(&service_tree->rb);
0871714e
JA
904 if (parent && parent != &cfqq->rb_node) {
905 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
906 rb_key += __cfqq->rb_key;
907 } else
908 rb_key += jiffies;
909 } else if (!add_front) {
b9c8946b
JA
910 /*
911 * Get our rb key offset. Subtract any residual slice
912 * value carried from last service. A negative resid
913 * count indicates slice overrun, and this should position
914 * the next service time further away in the tree.
915 */
edd75ffd 916 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
b9c8946b 917 rb_key -= cfqq->slice_resid;
edd75ffd 918 cfqq->slice_resid = 0;
48e025e6
CZ
919 } else {
920 rb_key = -HZ;
aa6f6a3d 921 __cfqq = cfq_rb_first(service_tree);
48e025e6
CZ
922 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
923 }
1da177e4 924
d9e7620e 925 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
dae739eb 926 new_cfqq = 0;
99f9628a 927 /*
d9e7620e 928 * same position, nothing more to do
99f9628a 929 */
c0324a02
CZ
930 if (rb_key == cfqq->rb_key &&
931 cfqq->service_tree == service_tree)
d9e7620e 932 return;
1da177e4 933
aa6f6a3d
CZ
934 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
935 cfqq->service_tree = NULL;
1da177e4 936 }
d9e7620e 937
498d3aa2 938 left = 1;
0871714e 939 parent = NULL;
aa6f6a3d
CZ
940 cfqq->service_tree = service_tree;
941 p = &service_tree->rb.rb_node;
d9e7620e 942 while (*p) {
67060e37 943 struct rb_node **n;
cc09e299 944
d9e7620e
JA
945 parent = *p;
946 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
947
0c534e0a 948 /*
c0324a02 949 * sort by key, that represents service time.
0c534e0a 950 */
c0324a02 951 if (time_before(rb_key, __cfqq->rb_key))
67060e37 952 n = &(*p)->rb_left;
c0324a02 953 else {
67060e37 954 n = &(*p)->rb_right;
cc09e299 955 left = 0;
c0324a02 956 }
67060e37
JA
957
958 p = n;
d9e7620e
JA
959 }
960
cc09e299 961 if (left)
aa6f6a3d 962 service_tree->left = &cfqq->rb_node;
cc09e299 963
d9e7620e
JA
964 cfqq->rb_key = rb_key;
965 rb_link_node(&cfqq->rb_node, parent, p);
aa6f6a3d
CZ
966 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
967 service_tree->count++;
dae739eb
VG
968 if (add_front || !new_cfqq)
969 return;
1fa8f6d6 970 cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1da177e4
LT
971}
972
a36e71f9 973static struct cfq_queue *
f2d1f0ae
JA
974cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
975 sector_t sector, struct rb_node **ret_parent,
976 struct rb_node ***rb_link)
a36e71f9 977{
a36e71f9
JA
978 struct rb_node **p, *parent;
979 struct cfq_queue *cfqq = NULL;
980
981 parent = NULL;
982 p = &root->rb_node;
983 while (*p) {
984 struct rb_node **n;
985
986 parent = *p;
987 cfqq = rb_entry(parent, struct cfq_queue, p_node);
988
989 /*
990 * Sort strictly based on sector. Smallest to the left,
991 * largest to the right.
992 */
2e46e8b2 993 if (sector > blk_rq_pos(cfqq->next_rq))
a36e71f9 994 n = &(*p)->rb_right;
2e46e8b2 995 else if (sector < blk_rq_pos(cfqq->next_rq))
a36e71f9
JA
996 n = &(*p)->rb_left;
997 else
998 break;
999 p = n;
3ac6c9f8 1000 cfqq = NULL;
a36e71f9
JA
1001 }
1002
1003 *ret_parent = parent;
1004 if (rb_link)
1005 *rb_link = p;
3ac6c9f8 1006 return cfqq;
a36e71f9
JA
1007}
1008
1009static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1010{
a36e71f9
JA
1011 struct rb_node **p, *parent;
1012 struct cfq_queue *__cfqq;
1013
f2d1f0ae
JA
1014 if (cfqq->p_root) {
1015 rb_erase(&cfqq->p_node, cfqq->p_root);
1016 cfqq->p_root = NULL;
1017 }
a36e71f9
JA
1018
1019 if (cfq_class_idle(cfqq))
1020 return;
1021 if (!cfqq->next_rq)
1022 return;
1023
f2d1f0ae 1024 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2e46e8b2
TH
1025 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1026 blk_rq_pos(cfqq->next_rq), &parent, &p);
3ac6c9f8
JA
1027 if (!__cfqq) {
1028 rb_link_node(&cfqq->p_node, parent, p);
f2d1f0ae
JA
1029 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1030 } else
1031 cfqq->p_root = NULL;
a36e71f9
JA
1032}
1033
498d3aa2
JA
1034/*
1035 * Update cfqq's position in the service tree.
1036 */
edd75ffd 1037static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
6d048f53 1038{
6d048f53
JA
1039 /*
1040 * Resorting requires the cfqq to be on the RR list already.
1041 */
a36e71f9 1042 if (cfq_cfqq_on_rr(cfqq)) {
edd75ffd 1043 cfq_service_tree_add(cfqd, cfqq, 0);
a36e71f9
JA
1044 cfq_prio_tree_add(cfqd, cfqq);
1045 }
6d048f53
JA
1046}
1047
1da177e4
LT
1048/*
1049 * add to busy list of queues for service, trying to be fair in ordering
22e2c507 1050 * the pending list according to last request service
1da177e4 1051 */
febffd61 1052static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1053{
7b679138 1054 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
3b18152c
JA
1055 BUG_ON(cfq_cfqq_on_rr(cfqq));
1056 cfq_mark_cfqq_on_rr(cfqq);
1da177e4
LT
1057 cfqd->busy_queues++;
1058
edd75ffd 1059 cfq_resort_rr_list(cfqd, cfqq);
1da177e4
LT
1060}
1061
498d3aa2
JA
1062/*
1063 * Called when the cfqq no longer has requests pending, remove it from
1064 * the service tree.
1065 */
febffd61 1066static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1067{
7b679138 1068 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
3b18152c
JA
1069 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1070 cfq_clear_cfqq_on_rr(cfqq);
1da177e4 1071
aa6f6a3d
CZ
1072 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1073 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1074 cfqq->service_tree = NULL;
1075 }
f2d1f0ae
JA
1076 if (cfqq->p_root) {
1077 rb_erase(&cfqq->p_node, cfqq->p_root);
1078 cfqq->p_root = NULL;
1079 }
d9e7620e 1080
1fa8f6d6 1081 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1da177e4
LT
1082 BUG_ON(!cfqd->busy_queues);
1083 cfqd->busy_queues--;
1084}
1085
1086/*
1087 * rb tree support functions
1088 */
febffd61 1089static void cfq_del_rq_rb(struct request *rq)
1da177e4 1090{
5e705374 1091 struct cfq_queue *cfqq = RQ_CFQQ(rq);
5e705374 1092 const int sync = rq_is_sync(rq);
1da177e4 1093
b4878f24
JA
1094 BUG_ON(!cfqq->queued[sync]);
1095 cfqq->queued[sync]--;
1da177e4 1096
5e705374 1097 elv_rb_del(&cfqq->sort_list, rq);
1da177e4 1098
f04a6424
VG
1099 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1100 /*
1101 * Queue will be deleted from service tree when we actually
1102 * expire it later. Right now just remove it from prio tree
1103 * as it is empty.
1104 */
1105 if (cfqq->p_root) {
1106 rb_erase(&cfqq->p_node, cfqq->p_root);
1107 cfqq->p_root = NULL;
1108 }
1109 }
1da177e4
LT
1110}
1111
5e705374 1112static void cfq_add_rq_rb(struct request *rq)
1da177e4 1113{
5e705374 1114 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 1115 struct cfq_data *cfqd = cfqq->cfqd;
a36e71f9 1116 struct request *__alias, *prev;
1da177e4 1117
5380a101 1118 cfqq->queued[rq_is_sync(rq)]++;
1da177e4
LT
1119
1120 /*
1121 * looks a little odd, but the first insert might return an alias.
1122 * if that happens, put the alias on the dispatch list
1123 */
21183b07 1124 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
5e705374 1125 cfq_dispatch_insert(cfqd->queue, __alias);
5fccbf61
JA
1126
1127 if (!cfq_cfqq_on_rr(cfqq))
1128 cfq_add_cfqq_rr(cfqd, cfqq);
5044eed4
JA
1129
1130 /*
1131 * check if this request is a better next-serve candidate
1132 */
a36e71f9 1133 prev = cfqq->next_rq;
cf7c25cf 1134 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
a36e71f9
JA
1135
1136 /*
1137 * adjust priority tree position, if ->next_rq changes
1138 */
1139 if (prev != cfqq->next_rq)
1140 cfq_prio_tree_add(cfqd, cfqq);
1141
5044eed4 1142 BUG_ON(!cfqq->next_rq);
1da177e4
LT
1143}
1144
febffd61 1145static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1da177e4 1146{
5380a101
JA
1147 elv_rb_del(&cfqq->sort_list, rq);
1148 cfqq->queued[rq_is_sync(rq)]--;
5e705374 1149 cfq_add_rq_rb(rq);
1da177e4
LT
1150}
1151
206dc69b
JA
1152static struct request *
1153cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1da177e4 1154{
206dc69b 1155 struct task_struct *tsk = current;
91fac317 1156 struct cfq_io_context *cic;
206dc69b 1157 struct cfq_queue *cfqq;
1da177e4 1158
4ac845a2 1159 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
1160 if (!cic)
1161 return NULL;
1162
1163 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
89850f7e
JA
1164 if (cfqq) {
1165 sector_t sector = bio->bi_sector + bio_sectors(bio);
1166
21183b07 1167 return elv_rb_find(&cfqq->sort_list, sector);
89850f7e 1168 }
1da177e4 1169
1da177e4
LT
1170 return NULL;
1171}
1172
165125e1 1173static void cfq_activate_request(struct request_queue *q, struct request *rq)
1da177e4 1174{
22e2c507 1175 struct cfq_data *cfqd = q->elevator->elevator_data;
3b18152c 1176
5ad531db 1177 cfqd->rq_in_driver[rq_is_sync(rq)]++;
7b679138 1178 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
5ad531db 1179 rq_in_driver(cfqd));
25776e35 1180
5b93629b 1181 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1da177e4
LT
1182}
1183
165125e1 1184static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1da177e4 1185{
b4878f24 1186 struct cfq_data *cfqd = q->elevator->elevator_data;
5ad531db 1187 const int sync = rq_is_sync(rq);
b4878f24 1188
5ad531db
JA
1189 WARN_ON(!cfqd->rq_in_driver[sync]);
1190 cfqd->rq_in_driver[sync]--;
7b679138 1191 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
5ad531db 1192 rq_in_driver(cfqd));
1da177e4
LT
1193}
1194
b4878f24 1195static void cfq_remove_request(struct request *rq)
1da177e4 1196{
5e705374 1197 struct cfq_queue *cfqq = RQ_CFQQ(rq);
21183b07 1198
5e705374
JA
1199 if (cfqq->next_rq == rq)
1200 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1da177e4 1201
b4878f24 1202 list_del_init(&rq->queuelist);
5e705374 1203 cfq_del_rq_rb(rq);
374f84ac 1204
45333d5a 1205 cfqq->cfqd->rq_queued--;
374f84ac
JA
1206 if (rq_is_meta(rq)) {
1207 WARN_ON(!cfqq->meta_pending);
1208 cfqq->meta_pending--;
1209 }
1da177e4
LT
1210}
1211
165125e1
JA
1212static int cfq_merge(struct request_queue *q, struct request **req,
1213 struct bio *bio)
1da177e4
LT
1214{
1215 struct cfq_data *cfqd = q->elevator->elevator_data;
1216 struct request *__rq;
1da177e4 1217
206dc69b 1218 __rq = cfq_find_rq_fmerge(cfqd, bio);
22e2c507 1219 if (__rq && elv_rq_merge_ok(__rq, bio)) {
9817064b
JA
1220 *req = __rq;
1221 return ELEVATOR_FRONT_MERGE;
1da177e4
LT
1222 }
1223
1224 return ELEVATOR_NO_MERGE;
1da177e4
LT
1225}
1226
165125e1 1227static void cfq_merged_request(struct request_queue *q, struct request *req,
21183b07 1228 int type)
1da177e4 1229{
21183b07 1230 if (type == ELEVATOR_FRONT_MERGE) {
5e705374 1231 struct cfq_queue *cfqq = RQ_CFQQ(req);
1da177e4 1232
5e705374 1233 cfq_reposition_rq_rb(cfqq, req);
1da177e4 1234 }
1da177e4
LT
1235}
1236
1237static void
165125e1 1238cfq_merged_requests(struct request_queue *q, struct request *rq,
1da177e4
LT
1239 struct request *next)
1240{
cf7c25cf 1241 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507
JA
1242 /*
1243 * reposition in fifo if next is older than rq
1244 */
1245 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
30996f40 1246 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
22e2c507 1247 list_move(&rq->queuelist, &next->queuelist);
30996f40
JA
1248 rq_set_fifo_time(rq, rq_fifo_time(next));
1249 }
22e2c507 1250
cf7c25cf
CZ
1251 if (cfqq->next_rq == next)
1252 cfqq->next_rq = rq;
b4878f24 1253 cfq_remove_request(next);
22e2c507
JA
1254}
1255
165125e1 1256static int cfq_allow_merge(struct request_queue *q, struct request *rq,
da775265
JA
1257 struct bio *bio)
1258{
1259 struct cfq_data *cfqd = q->elevator->elevator_data;
91fac317 1260 struct cfq_io_context *cic;
da775265 1261 struct cfq_queue *cfqq;
da775265
JA
1262
1263 /*
ec8acb69 1264 * Disallow merge of a sync bio into an async request.
da775265 1265 */
91fac317 1266 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
a6151c3a 1267 return false;
da775265
JA
1268
1269 /*
719d3402
JA
1270 * Lookup the cfqq that this bio will be queued with. Allow
1271 * merge only if rq is queued there.
da775265 1272 */
4ac845a2 1273 cic = cfq_cic_lookup(cfqd, current->io_context);
91fac317 1274 if (!cic)
a6151c3a 1275 return false;
719d3402 1276
91fac317 1277 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
a6151c3a 1278 return cfqq == RQ_CFQQ(rq);
da775265
JA
1279}
1280
febffd61
JA
1281static void __cfq_set_active_queue(struct cfq_data *cfqd,
1282 struct cfq_queue *cfqq)
22e2c507
JA
1283{
1284 if (cfqq) {
7b679138 1285 cfq_log_cfqq(cfqd, cfqq, "set_active");
dae739eb
VG
1286 cfqq->slice_start = 0;
1287 cfqq->dispatch_start = jiffies;
22e2c507 1288 cfqq->slice_end = 0;
2f5cb738
JA
1289 cfqq->slice_dispatch = 0;
1290
2f5cb738 1291 cfq_clear_cfqq_wait_request(cfqq);
b029195d 1292 cfq_clear_cfqq_must_dispatch(cfqq);
3b18152c
JA
1293 cfq_clear_cfqq_must_alloc_slice(cfqq);
1294 cfq_clear_cfqq_fifo_expire(cfqq);
44f7c160 1295 cfq_mark_cfqq_slice_new(cfqq);
2f5cb738
JA
1296
1297 del_timer(&cfqd->idle_slice_timer);
22e2c507
JA
1298 }
1299
1300 cfqd->active_queue = cfqq;
1301}
1302
7b14e3b5
JA
1303/*
1304 * current cfqq expired its slice (or was too idle), select new one
1305 */
1306static void
1307__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 1308 bool timed_out)
7b14e3b5 1309{
7b679138
JA
1310 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1311
7b14e3b5
JA
1312 if (cfq_cfqq_wait_request(cfqq))
1313 del_timer(&cfqd->idle_slice_timer);
1314
7b14e3b5
JA
1315 cfq_clear_cfqq_wait_request(cfqq);
1316
1317 /*
6084cdda 1318 * store what was left of this slice, if the queue idled/timed out
7b14e3b5 1319 */
7b679138 1320 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
c5b680f3 1321 cfqq->slice_resid = cfqq->slice_end - jiffies;
7b679138
JA
1322 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1323 }
7b14e3b5 1324
dae739eb
VG
1325 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1326
f04a6424
VG
1327 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1328 cfq_del_cfqq_rr(cfqd, cfqq);
1329
edd75ffd 1330 cfq_resort_rr_list(cfqd, cfqq);
7b14e3b5
JA
1331
1332 if (cfqq == cfqd->active_queue)
1333 cfqd->active_queue = NULL;
1334
dae739eb
VG
1335 if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
1336 cfqd->grp_service_tree.active = NULL;
1337
7b14e3b5
JA
1338 if (cfqd->active_cic) {
1339 put_io_context(cfqd->active_cic->ioc);
1340 cfqd->active_cic = NULL;
1341 }
7b14e3b5
JA
1342}
1343
a6151c3a 1344static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
7b14e3b5
JA
1345{
1346 struct cfq_queue *cfqq = cfqd->active_queue;
1347
1348 if (cfqq)
6084cdda 1349 __cfq_slice_expired(cfqd, cfqq, timed_out);
7b14e3b5
JA
1350}
1351
498d3aa2
JA
1352/*
1353 * Get next queue for service. Unless we have a queue preemption,
1354 * we'll simply select the first cfqq in the service tree.
1355 */
6d048f53 1356static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
22e2c507 1357{
c0324a02 1358 struct cfq_rb_root *service_tree =
cdb16e8f
VG
1359 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1360 cfqd->serving_type, cfqd);
d9e7620e 1361
f04a6424
VG
1362 if (!cfqd->rq_queued)
1363 return NULL;
1364
1fa8f6d6
VG
1365 /* There is nothing to dispatch */
1366 if (!service_tree)
1367 return NULL;
c0324a02
CZ
1368 if (RB_EMPTY_ROOT(&service_tree->rb))
1369 return NULL;
1370 return cfq_rb_first(service_tree);
6d048f53
JA
1371}
1372
f04a6424
VG
1373static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1374{
1375 struct cfq_group *cfqg = &cfqd->root_group;
1376 struct cfq_queue *cfqq;
1377 int i, j;
1378 struct cfq_rb_root *st;
1379
1380 if (!cfqd->rq_queued)
1381 return NULL;
1382
1383 for_each_cfqg_st(cfqg, i, j, st)
1384 if ((cfqq = cfq_rb_first(st)) != NULL)
1385 return cfqq;
1386 return NULL;
1387}
1388
498d3aa2
JA
1389/*
1390 * Get and set a new active queue for service.
1391 */
a36e71f9
JA
1392static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1393 struct cfq_queue *cfqq)
6d048f53 1394{
e00ef799 1395 if (!cfqq)
a36e71f9 1396 cfqq = cfq_get_next_queue(cfqd);
6d048f53 1397
22e2c507 1398 __cfq_set_active_queue(cfqd, cfqq);
3b18152c 1399 return cfqq;
22e2c507
JA
1400}
1401
d9e7620e
JA
1402static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1403 struct request *rq)
1404{
83096ebf
TH
1405 if (blk_rq_pos(rq) >= cfqd->last_position)
1406 return blk_rq_pos(rq) - cfqd->last_position;
d9e7620e 1407 else
83096ebf 1408 return cfqd->last_position - blk_rq_pos(rq);
d9e7620e
JA
1409}
1410
b2c18e1e
JM
1411#define CFQQ_SEEK_THR 8 * 1024
1412#define CFQQ_SEEKY(cfqq) ((cfqq)->seek_mean > CFQQ_SEEK_THR)
04dc6e71 1413
b2c18e1e
JM
1414static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1415 struct request *rq)
6d048f53 1416{
b2c18e1e 1417 sector_t sdist = cfqq->seek_mean;
6d048f53 1418
b2c18e1e
JM
1419 if (!sample_valid(cfqq->seek_samples))
1420 sdist = CFQQ_SEEK_THR;
6d048f53 1421
04dc6e71 1422 return cfq_dist_from_last(cfqd, rq) <= sdist;
6d048f53
JA
1423}
1424
a36e71f9
JA
1425static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1426 struct cfq_queue *cur_cfqq)
1427{
f2d1f0ae 1428 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
a36e71f9
JA
1429 struct rb_node *parent, *node;
1430 struct cfq_queue *__cfqq;
1431 sector_t sector = cfqd->last_position;
1432
1433 if (RB_EMPTY_ROOT(root))
1434 return NULL;
1435
1436 /*
1437 * First, if we find a request starting at the end of the last
1438 * request, choose it.
1439 */
f2d1f0ae 1440 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
a36e71f9
JA
1441 if (__cfqq)
1442 return __cfqq;
1443
1444 /*
1445 * If the exact sector wasn't found, the parent of the NULL leaf
1446 * will contain the closest sector.
1447 */
1448 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
b2c18e1e 1449 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1450 return __cfqq;
1451
2e46e8b2 1452 if (blk_rq_pos(__cfqq->next_rq) < sector)
a36e71f9
JA
1453 node = rb_next(&__cfqq->p_node);
1454 else
1455 node = rb_prev(&__cfqq->p_node);
1456 if (!node)
1457 return NULL;
1458
1459 __cfqq = rb_entry(node, struct cfq_queue, p_node);
b2c18e1e 1460 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1461 return __cfqq;
1462
1463 return NULL;
1464}
1465
1466/*
1467 * cfqd - obvious
1468 * cur_cfqq - passed in so that we don't decide that the current queue is
1469 * closely cooperating with itself.
1470 *
1471 * So, basically we're assuming that that cur_cfqq has dispatched at least
1472 * one request, and that cfqd->last_position reflects a position on the disk
1473 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1474 * assumption.
1475 */
1476static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
b3b6d040 1477 struct cfq_queue *cur_cfqq)
6d048f53 1478{
a36e71f9
JA
1479 struct cfq_queue *cfqq;
1480
e6c5bc73
JM
1481 if (!cfq_cfqq_sync(cur_cfqq))
1482 return NULL;
1483 if (CFQQ_SEEKY(cur_cfqq))
1484 return NULL;
1485
6d048f53 1486 /*
d9e7620e
JA
1487 * We should notice if some of the queues are cooperating, eg
1488 * working closely on the same area of the disk. In that case,
1489 * we can group them together and don't waste time idling.
6d048f53 1490 */
a36e71f9
JA
1491 cfqq = cfqq_close(cfqd, cur_cfqq);
1492 if (!cfqq)
1493 return NULL;
1494
df5fe3e8
JM
1495 /*
1496 * It only makes sense to merge sync queues.
1497 */
1498 if (!cfq_cfqq_sync(cfqq))
1499 return NULL;
e6c5bc73
JM
1500 if (CFQQ_SEEKY(cfqq))
1501 return NULL;
df5fe3e8 1502
c0324a02
CZ
1503 /*
1504 * Do not merge queues of different priority classes
1505 */
1506 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1507 return NULL;
1508
a36e71f9 1509 return cfqq;
6d048f53
JA
1510}
1511
a6d44e98
CZ
1512/*
1513 * Determine whether we should enforce idle window for this queue.
1514 */
1515
1516static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1517{
1518 enum wl_prio_t prio = cfqq_prio(cfqq);
718eee05 1519 struct cfq_rb_root *service_tree = cfqq->service_tree;
a6d44e98 1520
f04a6424
VG
1521 BUG_ON(!service_tree);
1522 BUG_ON(!service_tree->count);
1523
a6d44e98
CZ
1524 /* We never do for idle class queues. */
1525 if (prio == IDLE_WORKLOAD)
1526 return false;
1527
1528 /* We do for queues that were marked with idle window flag. */
1529 if (cfq_cfqq_idle_window(cfqq))
1530 return true;
1531
1532 /*
1533 * Otherwise, we do only if they are the last ones
1534 * in their service tree.
1535 */
f04a6424 1536 return service_tree->count == 1;
a6d44e98
CZ
1537}
1538
6d048f53 1539static void cfq_arm_slice_timer(struct cfq_data *cfqd)
22e2c507 1540{
1792669c 1541 struct cfq_queue *cfqq = cfqd->active_queue;
206dc69b 1542 struct cfq_io_context *cic;
7b14e3b5
JA
1543 unsigned long sl;
1544
a68bbddb 1545 /*
f7d7b7a7
JA
1546 * SSD device without seek penalty, disable idling. But only do so
1547 * for devices that support queuing, otherwise we still have a problem
1548 * with sync vs async workloads.
a68bbddb 1549 */
f7d7b7a7 1550 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
a68bbddb
JA
1551 return;
1552
dd67d051 1553 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
6d048f53 1554 WARN_ON(cfq_cfqq_slice_new(cfqq));
22e2c507
JA
1555
1556 /*
1557 * idle is disabled, either manually or by past process history
1558 */
a6d44e98 1559 if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
6d048f53
JA
1560 return;
1561
7b679138 1562 /*
8e550632 1563 * still active requests from this queue, don't idle
7b679138 1564 */
8e550632 1565 if (cfqq->dispatched)
7b679138
JA
1566 return;
1567
22e2c507
JA
1568 /*
1569 * task has exited, don't wait
1570 */
206dc69b 1571 cic = cfqd->active_cic;
66dac98e 1572 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
6d048f53
JA
1573 return;
1574
355b659c
CZ
1575 /*
1576 * If our average think time is larger than the remaining time
1577 * slice, then don't idle. This avoids overrunning the allotted
1578 * time slice.
1579 */
1580 if (sample_valid(cic->ttime_samples) &&
1581 (cfqq->slice_end - jiffies < cic->ttime_mean))
1582 return;
1583
3b18152c 1584 cfq_mark_cfqq_wait_request(cfqq);
22e2c507 1585
6d048f53 1586 sl = cfqd->cfq_slice_idle;
206dc69b 1587
7b14e3b5 1588 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
9481ffdc 1589 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1da177e4
LT
1590}
1591
498d3aa2
JA
1592/*
1593 * Move request from internal lists to the request queue dispatch list.
1594 */
165125e1 1595static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1da177e4 1596{
3ed9a296 1597 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 1598 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 1599
7b679138
JA
1600 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1601
06d21886 1602 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
5380a101 1603 cfq_remove_request(rq);
6d048f53 1604 cfqq->dispatched++;
5380a101 1605 elv_dispatch_sort(q, rq);
3ed9a296
JA
1606
1607 if (cfq_cfqq_sync(cfqq))
1608 cfqd->sync_flight++;
1da177e4
LT
1609}
1610
1611/*
1612 * return expired entry, or NULL to just start from scratch in rbtree
1613 */
febffd61 1614static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1da177e4 1615{
30996f40 1616 struct request *rq = NULL;
1da177e4 1617
3b18152c 1618 if (cfq_cfqq_fifo_expire(cfqq))
1da177e4 1619 return NULL;
cb887411
JA
1620
1621 cfq_mark_cfqq_fifo_expire(cfqq);
1622
89850f7e
JA
1623 if (list_empty(&cfqq->fifo))
1624 return NULL;
1da177e4 1625
89850f7e 1626 rq = rq_entry_fifo(cfqq->fifo.next);
30996f40 1627 if (time_before(jiffies, rq_fifo_time(rq)))
7b679138 1628 rq = NULL;
1da177e4 1629
30996f40 1630 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
6d048f53 1631 return rq;
1da177e4
LT
1632}
1633
22e2c507
JA
1634static inline int
1635cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1636{
1637 const int base_rq = cfqd->cfq_slice_async_rq;
1da177e4 1638
22e2c507 1639 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1da177e4 1640
22e2c507 1641 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1da177e4
LT
1642}
1643
df5fe3e8
JM
1644/*
1645 * Must be called with the queue_lock held.
1646 */
1647static int cfqq_process_refs(struct cfq_queue *cfqq)
1648{
1649 int process_refs, io_refs;
1650
1651 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1652 process_refs = atomic_read(&cfqq->ref) - io_refs;
1653 BUG_ON(process_refs < 0);
1654 return process_refs;
1655}
1656
1657static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1658{
e6c5bc73 1659 int process_refs, new_process_refs;
df5fe3e8
JM
1660 struct cfq_queue *__cfqq;
1661
1662 /* Avoid a circular list and skip interim queue merges */
1663 while ((__cfqq = new_cfqq->new_cfqq)) {
1664 if (__cfqq == cfqq)
1665 return;
1666 new_cfqq = __cfqq;
1667 }
1668
1669 process_refs = cfqq_process_refs(cfqq);
1670 /*
1671 * If the process for the cfqq has gone away, there is no
1672 * sense in merging the queues.
1673 */
1674 if (process_refs == 0)
1675 return;
1676
e6c5bc73
JM
1677 /*
1678 * Merge in the direction of the lesser amount of work.
1679 */
1680 new_process_refs = cfqq_process_refs(new_cfqq);
1681 if (new_process_refs >= process_refs) {
1682 cfqq->new_cfqq = new_cfqq;
1683 atomic_add(process_refs, &new_cfqq->ref);
1684 } else {
1685 new_cfqq->new_cfqq = cfqq;
1686 atomic_add(new_process_refs, &cfqq->ref);
1687 }
df5fe3e8
JM
1688}
1689
cdb16e8f
VG
1690static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
1691 struct cfq_group *cfqg, enum wl_prio_t prio,
1692 bool prio_changed)
718eee05
CZ
1693{
1694 struct cfq_queue *queue;
1695 int i;
1696 bool key_valid = false;
1697 unsigned long lowest_key = 0;
1698 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1699
1700 if (prio_changed) {
1701 /*
1702 * When priorities switched, we prefer starting
1703 * from SYNC_NOIDLE (first choice), or just SYNC
1704 * over ASYNC
1705 */
cdb16e8f 1706 if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
718eee05
CZ
1707 return cur_best;
1708 cur_best = SYNC_WORKLOAD;
cdb16e8f 1709 if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
718eee05
CZ
1710 return cur_best;
1711
1712 return ASYNC_WORKLOAD;
1713 }
1714
1715 for (i = 0; i < 3; ++i) {
1716 /* otherwise, select the one with lowest rb_key */
cdb16e8f 1717 queue = cfq_rb_first(service_tree_for(cfqg, prio, i, cfqd));
718eee05
CZ
1718 if (queue &&
1719 (!key_valid || time_before(queue->rb_key, lowest_key))) {
1720 lowest_key = queue->rb_key;
1721 cur_best = i;
1722 key_valid = true;
1723 }
1724 }
1725
1726 return cur_best;
1727}
1728
cdb16e8f 1729static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
718eee05
CZ
1730{
1731 enum wl_prio_t previous_prio = cfqd->serving_prio;
1732 bool prio_changed;
1733 unsigned slice;
1734 unsigned count;
cdb16e8f 1735 struct cfq_rb_root *st;
58ff82f3 1736 unsigned group_slice;
718eee05 1737
1fa8f6d6
VG
1738 if (!cfqg) {
1739 cfqd->serving_prio = IDLE_WORKLOAD;
1740 cfqd->workload_expires = jiffies + 1;
1741 return;
1742 }
1743
718eee05 1744 /* Choose next priority. RT > BE > IDLE */
58ff82f3 1745 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
718eee05 1746 cfqd->serving_prio = RT_WORKLOAD;
58ff82f3 1747 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
718eee05
CZ
1748 cfqd->serving_prio = BE_WORKLOAD;
1749 else {
1750 cfqd->serving_prio = IDLE_WORKLOAD;
1751 cfqd->workload_expires = jiffies + 1;
1752 return;
1753 }
1754
1755 /*
1756 * For RT and BE, we have to choose also the type
1757 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
1758 * expiration time
1759 */
1760 prio_changed = (cfqd->serving_prio != previous_prio);
cdb16e8f
VG
1761 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
1762 cfqd);
1763 count = st->count;
718eee05
CZ
1764
1765 /*
1766 * If priority didn't change, check workload expiration,
1767 * and that we still have other queues ready
1768 */
1769 if (!prio_changed && count &&
1770 !time_after(jiffies, cfqd->workload_expires))
1771 return;
1772
1773 /* otherwise select new workload type */
1774 cfqd->serving_type =
cdb16e8f
VG
1775 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio, prio_changed);
1776 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
1777 cfqd);
1778 count = st->count;
718eee05
CZ
1779
1780 /*
1781 * the workload slice is computed as a fraction of target latency
1782 * proportional to the number of queues in that workload, over
1783 * all the queues in the same priority class
1784 */
58ff82f3
VG
1785 group_slice = cfq_group_slice(cfqd, cfqg);
1786
1787 slice = group_slice * count /
1788 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
1789 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
718eee05
CZ
1790
1791 if (cfqd->serving_type == ASYNC_WORKLOAD)
1792 /* async workload slice is scaled down according to
1793 * the sync/async slice ratio. */
1794 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
1795 else
1796 /* sync workload slice is at least 2 * cfq_slice_idle */
1797 slice = max(slice, 2 * cfqd->cfq_slice_idle);
1798
1799 slice = max_t(unsigned, slice, CFQ_MIN_TT);
1800 cfqd->workload_expires = jiffies + slice;
8e550632 1801 cfqd->noidle_tree_requires_idle = false;
718eee05
CZ
1802}
1803
1fa8f6d6
VG
1804static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
1805{
1806 struct cfq_rb_root *st = &cfqd->grp_service_tree;
25bc6b07 1807 struct cfq_group *cfqg;
1fa8f6d6
VG
1808
1809 if (RB_EMPTY_ROOT(&st->rb))
1810 return NULL;
25bc6b07
VG
1811 cfqg = cfq_rb_first_group(st);
1812 st->active = &cfqg->rb_node;
1813 update_min_vdisktime(st);
1814 return cfqg;
1fa8f6d6
VG
1815}
1816
cdb16e8f
VG
1817static void cfq_choose_cfqg(struct cfq_data *cfqd)
1818{
1fa8f6d6
VG
1819 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
1820
1821 cfqd->serving_group = cfqg;
dae739eb
VG
1822
1823 /* Restore the workload type data */
1824 if (cfqg->saved_workload_slice) {
1825 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
1826 cfqd->serving_type = cfqg->saved_workload;
1827 cfqd->serving_prio = cfqg->saved_serving_prio;
1828 }
1fa8f6d6 1829 choose_service_tree(cfqd, cfqg);
cdb16e8f
VG
1830}
1831
22e2c507 1832/*
498d3aa2
JA
1833 * Select a queue for service. If we have a current active queue,
1834 * check whether to continue servicing it, or retrieve and set a new one.
22e2c507 1835 */
1b5ed5e1 1836static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1da177e4 1837{
a36e71f9 1838 struct cfq_queue *cfqq, *new_cfqq = NULL;
1da177e4 1839
22e2c507
JA
1840 cfqq = cfqd->active_queue;
1841 if (!cfqq)
1842 goto new_queue;
1da177e4 1843
f04a6424
VG
1844 if (!cfqd->rq_queued)
1845 return NULL;
22e2c507 1846 /*
6d048f53 1847 * The active queue has run out of time, expire it and select new.
22e2c507 1848 */
b029195d 1849 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
3b18152c 1850 goto expire;
1da177e4 1851
22e2c507 1852 /*
6d048f53
JA
1853 * The active queue has requests and isn't expired, allow it to
1854 * dispatch.
22e2c507 1855 */
dd67d051 1856 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 1857 goto keep_queue;
6d048f53 1858
a36e71f9
JA
1859 /*
1860 * If another queue has a request waiting within our mean seek
1861 * distance, let it run. The expire code will check for close
1862 * cooperators and put the close queue at the front of the service
df5fe3e8 1863 * tree. If possible, merge the expiring queue with the new cfqq.
a36e71f9 1864 */
b3b6d040 1865 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
df5fe3e8
JM
1866 if (new_cfqq) {
1867 if (!cfqq->new_cfqq)
1868 cfq_setup_merge(cfqq, new_cfqq);
a36e71f9 1869 goto expire;
df5fe3e8 1870 }
a36e71f9 1871
6d048f53
JA
1872 /*
1873 * No requests pending. If the active queue still has requests in
1874 * flight or is idling for a new request, allow either of these
1875 * conditions to happen (or time out) before selecting a new queue.
1876 */
cc197479 1877 if (timer_pending(&cfqd->idle_slice_timer) ||
a6d44e98 1878 (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
caaa5f9f
JA
1879 cfqq = NULL;
1880 goto keep_queue;
22e2c507
JA
1881 }
1882
3b18152c 1883expire:
6084cdda 1884 cfq_slice_expired(cfqd, 0);
3b18152c 1885new_queue:
718eee05
CZ
1886 /*
1887 * Current queue expired. Check if we have to switch to a new
1888 * service tree
1889 */
1890 if (!new_cfqq)
cdb16e8f 1891 cfq_choose_cfqg(cfqd);
718eee05 1892
a36e71f9 1893 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
22e2c507 1894keep_queue:
3b18152c 1895 return cfqq;
22e2c507
JA
1896}
1897
febffd61 1898static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
d9e7620e
JA
1899{
1900 int dispatched = 0;
1901
1902 while (cfqq->next_rq) {
1903 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1904 dispatched++;
1905 }
1906
1907 BUG_ON(!list_empty(&cfqq->fifo));
f04a6424
VG
1908
1909 /* By default cfqq is not expired if it is empty. Do it explicitly */
1910 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
d9e7620e
JA
1911 return dispatched;
1912}
1913
498d3aa2
JA
1914/*
1915 * Drain our current requests. Used for barriers and when switching
1916 * io schedulers on-the-fly.
1917 */
d9e7620e 1918static int cfq_forced_dispatch(struct cfq_data *cfqd)
1b5ed5e1 1919{
0871714e 1920 struct cfq_queue *cfqq;
d9e7620e 1921 int dispatched = 0;
cdb16e8f 1922
f04a6424
VG
1923 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
1924 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1b5ed5e1 1925
6084cdda 1926 cfq_slice_expired(cfqd, 0);
1b5ed5e1
TH
1927 BUG_ON(cfqd->busy_queues);
1928
6923715a 1929 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1b5ed5e1
TH
1930 return dispatched;
1931}
1932
0b182d61 1933static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2f5cb738 1934{
2f5cb738 1935 unsigned int max_dispatch;
22e2c507 1936
5ad531db
JA
1937 /*
1938 * Drain async requests before we start sync IO
1939 */
a6d44e98 1940 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
0b182d61 1941 return false;
5ad531db 1942
2f5cb738
JA
1943 /*
1944 * If this is an async queue and we have sync IO in flight, let it wait
1945 */
1946 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
0b182d61 1947 return false;
2f5cb738
JA
1948
1949 max_dispatch = cfqd->cfq_quantum;
1950 if (cfq_class_idle(cfqq))
1951 max_dispatch = 1;
b4878f24 1952
2f5cb738
JA
1953 /*
1954 * Does this cfqq already have too much IO in flight?
1955 */
1956 if (cfqq->dispatched >= max_dispatch) {
1957 /*
1958 * idle queue must always only have a single IO in flight
1959 */
3ed9a296 1960 if (cfq_class_idle(cfqq))
0b182d61 1961 return false;
3ed9a296 1962
2f5cb738
JA
1963 /*
1964 * We have other queues, don't allow more IO from this one
1965 */
1966 if (cfqd->busy_queues > 1)
0b182d61 1967 return false;
9ede209e 1968
365722bb 1969 /*
474b18cc 1970 * Sole queue user, no limit
365722bb 1971 */
474b18cc 1972 max_dispatch = -1;
8e296755
JA
1973 }
1974
1975 /*
1976 * Async queues must wait a bit before being allowed dispatch.
1977 * We also ramp up the dispatch depth gradually for async IO,
1978 * based on the last sync IO we serviced
1979 */
963b72fc 1980 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
8e296755
JA
1981 unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
1982 unsigned int depth;
365722bb 1983
61f0c1dc 1984 depth = last_sync / cfqd->cfq_slice[1];
e00c54c3
JA
1985 if (!depth && !cfqq->dispatched)
1986 depth = 1;
8e296755
JA
1987 if (depth < max_dispatch)
1988 max_dispatch = depth;
2f5cb738 1989 }
3ed9a296 1990
0b182d61
JA
1991 /*
1992 * If we're below the current max, allow a dispatch
1993 */
1994 return cfqq->dispatched < max_dispatch;
1995}
1996
1997/*
1998 * Dispatch a request from cfqq, moving them to the request queue
1999 * dispatch list.
2000 */
2001static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2002{
2003 struct request *rq;
2004
2005 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2006
2007 if (!cfq_may_dispatch(cfqd, cfqq))
2008 return false;
2009
2010 /*
2011 * follow expired path, else get first next available
2012 */
2013 rq = cfq_check_fifo(cfqq);
2014 if (!rq)
2015 rq = cfqq->next_rq;
2016
2017 /*
2018 * insert request into driver dispatch list
2019 */
2020 cfq_dispatch_insert(cfqd->queue, rq);
2021
2022 if (!cfqd->active_cic) {
2023 struct cfq_io_context *cic = RQ_CIC(rq);
2024
2025 atomic_long_inc(&cic->ioc->refcount);
2026 cfqd->active_cic = cic;
2027 }
2028
2029 return true;
2030}
2031
2032/*
2033 * Find the cfqq that we need to service and move a request from that to the
2034 * dispatch list
2035 */
2036static int cfq_dispatch_requests(struct request_queue *q, int force)
2037{
2038 struct cfq_data *cfqd = q->elevator->elevator_data;
2039 struct cfq_queue *cfqq;
2040
2041 if (!cfqd->busy_queues)
2042 return 0;
2043
2044 if (unlikely(force))
2045 return cfq_forced_dispatch(cfqd);
2046
2047 cfqq = cfq_select_queue(cfqd);
2048 if (!cfqq)
8e296755
JA
2049 return 0;
2050
2f5cb738 2051 /*
0b182d61 2052 * Dispatch a request from this cfqq, if it is allowed
2f5cb738 2053 */
0b182d61
JA
2054 if (!cfq_dispatch_request(cfqd, cfqq))
2055 return 0;
2056
2f5cb738 2057 cfqq->slice_dispatch++;
b029195d 2058 cfq_clear_cfqq_must_dispatch(cfqq);
22e2c507 2059
2f5cb738
JA
2060 /*
2061 * expire an async queue immediately if it has used up its slice. idle
2062 * queue always expire after 1 dispatch round.
2063 */
2064 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2065 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2066 cfq_class_idle(cfqq))) {
2067 cfqq->slice_end = jiffies + 1;
2068 cfq_slice_expired(cfqd, 0);
1da177e4
LT
2069 }
2070
b217a903 2071 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2f5cb738 2072 return 1;
1da177e4
LT
2073}
2074
1da177e4 2075/*
5e705374
JA
2076 * task holds one reference to the queue, dropped when task exits. each rq
2077 * in-flight on this queue also holds a reference, dropped when rq is freed.
1da177e4
LT
2078 *
2079 * queue lock must be held here.
2080 */
2081static void cfq_put_queue(struct cfq_queue *cfqq)
2082{
22e2c507
JA
2083 struct cfq_data *cfqd = cfqq->cfqd;
2084
2085 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1da177e4
LT
2086
2087 if (!atomic_dec_and_test(&cfqq->ref))
2088 return;
2089
7b679138 2090 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1da177e4 2091 BUG_ON(rb_first(&cfqq->sort_list));
22e2c507 2092 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1da177e4 2093
28f95cbc 2094 if (unlikely(cfqd->active_queue == cfqq)) {
6084cdda 2095 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 2096 cfq_schedule_dispatch(cfqd);
28f95cbc 2097 }
22e2c507 2098
f04a6424 2099 BUG_ON(cfq_cfqq_on_rr(cfqq));
1da177e4
LT
2100 kmem_cache_free(cfq_pool, cfqq);
2101}
2102
d6de8be7
JA
2103/*
2104 * Must always be called with the rcu_read_lock() held
2105 */
07416d29
JA
2106static void
2107__call_for_each_cic(struct io_context *ioc,
2108 void (*func)(struct io_context *, struct cfq_io_context *))
2109{
2110 struct cfq_io_context *cic;
2111 struct hlist_node *n;
2112
2113 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2114 func(ioc, cic);
2115}
2116
4ac845a2 2117/*
34e6bbf2 2118 * Call func for each cic attached to this ioc.
4ac845a2 2119 */
34e6bbf2 2120static void
4ac845a2
JA
2121call_for_each_cic(struct io_context *ioc,
2122 void (*func)(struct io_context *, struct cfq_io_context *))
1da177e4 2123{
4ac845a2 2124 rcu_read_lock();
07416d29 2125 __call_for_each_cic(ioc, func);
4ac845a2 2126 rcu_read_unlock();
34e6bbf2
FC
2127}
2128
2129static void cfq_cic_free_rcu(struct rcu_head *head)
2130{
2131 struct cfq_io_context *cic;
2132
2133 cic = container_of(head, struct cfq_io_context, rcu_head);
2134
2135 kmem_cache_free(cfq_ioc_pool, cic);
245b2e70 2136 elv_ioc_count_dec(cfq_ioc_count);
34e6bbf2 2137
9a11b4ed
JA
2138 if (ioc_gone) {
2139 /*
2140 * CFQ scheduler is exiting, grab exit lock and check
2141 * the pending io context count. If it hits zero,
2142 * complete ioc_gone and set it back to NULL
2143 */
2144 spin_lock(&ioc_gone_lock);
245b2e70 2145 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
9a11b4ed
JA
2146 complete(ioc_gone);
2147 ioc_gone = NULL;
2148 }
2149 spin_unlock(&ioc_gone_lock);
2150 }
34e6bbf2 2151}
4ac845a2 2152
34e6bbf2
FC
2153static void cfq_cic_free(struct cfq_io_context *cic)
2154{
2155 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
4ac845a2
JA
2156}
2157
2158static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2159{
2160 unsigned long flags;
2161
2162 BUG_ON(!cic->dead_key);
2163
2164 spin_lock_irqsave(&ioc->lock, flags);
2165 radix_tree_delete(&ioc->radix_root, cic->dead_key);
ffc4e759 2166 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
2167 spin_unlock_irqrestore(&ioc->lock, flags);
2168
34e6bbf2 2169 cfq_cic_free(cic);
4ac845a2
JA
2170}
2171
d6de8be7
JA
2172/*
2173 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2174 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2175 * and ->trim() which is called with the task lock held
2176 */
4ac845a2
JA
2177static void cfq_free_io_context(struct io_context *ioc)
2178{
4ac845a2 2179 /*
34e6bbf2
FC
2180 * ioc->refcount is zero here, or we are called from elv_unregister(),
2181 * so no more cic's are allowed to be linked into this ioc. So it
2182 * should be ok to iterate over the known list, we will see all cic's
2183 * since no new ones are added.
4ac845a2 2184 */
07416d29 2185 __call_for_each_cic(ioc, cic_free_func);
1da177e4
LT
2186}
2187
89850f7e 2188static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 2189{
df5fe3e8
JM
2190 struct cfq_queue *__cfqq, *next;
2191
28f95cbc 2192 if (unlikely(cfqq == cfqd->active_queue)) {
6084cdda 2193 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 2194 cfq_schedule_dispatch(cfqd);
28f95cbc 2195 }
22e2c507 2196
df5fe3e8
JM
2197 /*
2198 * If this queue was scheduled to merge with another queue, be
2199 * sure to drop the reference taken on that queue (and others in
2200 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2201 */
2202 __cfqq = cfqq->new_cfqq;
2203 while (__cfqq) {
2204 if (__cfqq == cfqq) {
2205 WARN(1, "cfqq->new_cfqq loop detected\n");
2206 break;
2207 }
2208 next = __cfqq->new_cfqq;
2209 cfq_put_queue(__cfqq);
2210 __cfqq = next;
2211 }
2212
89850f7e
JA
2213 cfq_put_queue(cfqq);
2214}
22e2c507 2215
89850f7e
JA
2216static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2217 struct cfq_io_context *cic)
2218{
4faa3c81
FC
2219 struct io_context *ioc = cic->ioc;
2220
fc46379d 2221 list_del_init(&cic->queue_list);
4ac845a2
JA
2222
2223 /*
2224 * Make sure key == NULL is seen for dead queues
2225 */
fc46379d 2226 smp_wmb();
4ac845a2 2227 cic->dead_key = (unsigned long) cic->key;
fc46379d
JA
2228 cic->key = NULL;
2229
4faa3c81
FC
2230 if (ioc->ioc_data == cic)
2231 rcu_assign_pointer(ioc->ioc_data, NULL);
2232
ff6657c6
JA
2233 if (cic->cfqq[BLK_RW_ASYNC]) {
2234 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2235 cic->cfqq[BLK_RW_ASYNC] = NULL;
12a05732
AV
2236 }
2237
ff6657c6
JA
2238 if (cic->cfqq[BLK_RW_SYNC]) {
2239 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2240 cic->cfqq[BLK_RW_SYNC] = NULL;
12a05732 2241 }
89850f7e
JA
2242}
2243
4ac845a2
JA
2244static void cfq_exit_single_io_context(struct io_context *ioc,
2245 struct cfq_io_context *cic)
89850f7e
JA
2246{
2247 struct cfq_data *cfqd = cic->key;
2248
89850f7e 2249 if (cfqd) {
165125e1 2250 struct request_queue *q = cfqd->queue;
4ac845a2 2251 unsigned long flags;
89850f7e 2252
4ac845a2 2253 spin_lock_irqsave(q->queue_lock, flags);
62c1fe9d
JA
2254
2255 /*
2256 * Ensure we get a fresh copy of the ->key to prevent
2257 * race between exiting task and queue
2258 */
2259 smp_read_barrier_depends();
2260 if (cic->key)
2261 __cfq_exit_single_io_context(cfqd, cic);
2262
4ac845a2 2263 spin_unlock_irqrestore(q->queue_lock, flags);
89850f7e 2264 }
1da177e4
LT
2265}
2266
498d3aa2
JA
2267/*
2268 * The process that ioc belongs to has exited, we need to clean up
2269 * and put the internal structures we have that belongs to that process.
2270 */
e2d74ac0 2271static void cfq_exit_io_context(struct io_context *ioc)
1da177e4 2272{
4ac845a2 2273 call_for_each_cic(ioc, cfq_exit_single_io_context);
1da177e4
LT
2274}
2275
22e2c507 2276static struct cfq_io_context *
8267e268 2277cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 2278{
b5deef90 2279 struct cfq_io_context *cic;
1da177e4 2280
94f6030c
CL
2281 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2282 cfqd->queue->node);
1da177e4 2283 if (cic) {
22e2c507 2284 cic->last_end_request = jiffies;
553698f9 2285 INIT_LIST_HEAD(&cic->queue_list);
ffc4e759 2286 INIT_HLIST_NODE(&cic->cic_list);
22e2c507
JA
2287 cic->dtor = cfq_free_io_context;
2288 cic->exit = cfq_exit_io_context;
245b2e70 2289 elv_ioc_count_inc(cfq_ioc_count);
1da177e4
LT
2290 }
2291
2292 return cic;
2293}
2294
fd0928df 2295static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
22e2c507
JA
2296{
2297 struct task_struct *tsk = current;
2298 int ioprio_class;
2299
3b18152c 2300 if (!cfq_cfqq_prio_changed(cfqq))
22e2c507
JA
2301 return;
2302
fd0928df 2303 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
22e2c507 2304 switch (ioprio_class) {
fe094d98
JA
2305 default:
2306 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2307 case IOPRIO_CLASS_NONE:
2308 /*
6d63c275 2309 * no prio set, inherit CPU scheduling settings
fe094d98
JA
2310 */
2311 cfqq->ioprio = task_nice_ioprio(tsk);
6d63c275 2312 cfqq->ioprio_class = task_nice_ioclass(tsk);
fe094d98
JA
2313 break;
2314 case IOPRIO_CLASS_RT:
2315 cfqq->ioprio = task_ioprio(ioc);
2316 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2317 break;
2318 case IOPRIO_CLASS_BE:
2319 cfqq->ioprio = task_ioprio(ioc);
2320 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2321 break;
2322 case IOPRIO_CLASS_IDLE:
2323 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2324 cfqq->ioprio = 7;
2325 cfq_clear_cfqq_idle_window(cfqq);
2326 break;
22e2c507
JA
2327 }
2328
2329 /*
2330 * keep track of original prio settings in case we have to temporarily
2331 * elevate the priority of this queue
2332 */
2333 cfqq->org_ioprio = cfqq->ioprio;
2334 cfqq->org_ioprio_class = cfqq->ioprio_class;
3b18152c 2335 cfq_clear_cfqq_prio_changed(cfqq);
22e2c507
JA
2336}
2337
febffd61 2338static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
22e2c507 2339{
478a82b0
AV
2340 struct cfq_data *cfqd = cic->key;
2341 struct cfq_queue *cfqq;
c1b707d2 2342 unsigned long flags;
35e6077c 2343
caaa5f9f
JA
2344 if (unlikely(!cfqd))
2345 return;
2346
c1b707d2 2347 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
caaa5f9f 2348
ff6657c6 2349 cfqq = cic->cfqq[BLK_RW_ASYNC];
caaa5f9f
JA
2350 if (cfqq) {
2351 struct cfq_queue *new_cfqq;
ff6657c6
JA
2352 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2353 GFP_ATOMIC);
caaa5f9f 2354 if (new_cfqq) {
ff6657c6 2355 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
caaa5f9f
JA
2356 cfq_put_queue(cfqq);
2357 }
22e2c507 2358 }
caaa5f9f 2359
ff6657c6 2360 cfqq = cic->cfqq[BLK_RW_SYNC];
caaa5f9f
JA
2361 if (cfqq)
2362 cfq_mark_cfqq_prio_changed(cfqq);
2363
c1b707d2 2364 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
22e2c507
JA
2365}
2366
fc46379d 2367static void cfq_ioc_set_ioprio(struct io_context *ioc)
22e2c507 2368{
4ac845a2 2369 call_for_each_cic(ioc, changed_ioprio);
fc46379d 2370 ioc->ioprio_changed = 0;
22e2c507
JA
2371}
2372
d5036d77 2373static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 2374 pid_t pid, bool is_sync)
d5036d77
JA
2375{
2376 RB_CLEAR_NODE(&cfqq->rb_node);
2377 RB_CLEAR_NODE(&cfqq->p_node);
2378 INIT_LIST_HEAD(&cfqq->fifo);
2379
2380 atomic_set(&cfqq->ref, 0);
2381 cfqq->cfqd = cfqd;
2382
2383 cfq_mark_cfqq_prio_changed(cfqq);
2384
2385 if (is_sync) {
2386 if (!cfq_class_idle(cfqq))
2387 cfq_mark_cfqq_idle_window(cfqq);
2388 cfq_mark_cfqq_sync(cfqq);
2389 }
2390 cfqq->pid = pid;
2391}
2392
cdb16e8f
VG
2393static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
2394{
2395 cfqq->cfqg = cfqg;
2396}
2397
2398static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
2399{
2400 return &cfqd->root_group;
2401}
2402
22e2c507 2403static struct cfq_queue *
a6151c3a 2404cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
fd0928df 2405 struct io_context *ioc, gfp_t gfp_mask)
22e2c507 2406{
22e2c507 2407 struct cfq_queue *cfqq, *new_cfqq = NULL;
91fac317 2408 struct cfq_io_context *cic;
cdb16e8f 2409 struct cfq_group *cfqg;
22e2c507
JA
2410
2411retry:
cdb16e8f 2412 cfqg = cfq_get_cfqg(cfqd, 1);
4ac845a2 2413 cic = cfq_cic_lookup(cfqd, ioc);
91fac317
VT
2414 /* cic always exists here */
2415 cfqq = cic_to_cfqq(cic, is_sync);
22e2c507 2416
6118b70b
JA
2417 /*
2418 * Always try a new alloc if we fell back to the OOM cfqq
2419 * originally, since it should just be a temporary situation.
2420 */
2421 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2422 cfqq = NULL;
22e2c507
JA
2423 if (new_cfqq) {
2424 cfqq = new_cfqq;
2425 new_cfqq = NULL;
2426 } else if (gfp_mask & __GFP_WAIT) {
2427 spin_unlock_irq(cfqd->queue->queue_lock);
94f6030c 2428 new_cfqq = kmem_cache_alloc_node(cfq_pool,
6118b70b 2429 gfp_mask | __GFP_ZERO,
94f6030c 2430 cfqd->queue->node);
22e2c507 2431 spin_lock_irq(cfqd->queue->queue_lock);
6118b70b
JA
2432 if (new_cfqq)
2433 goto retry;
22e2c507 2434 } else {
94f6030c
CL
2435 cfqq = kmem_cache_alloc_node(cfq_pool,
2436 gfp_mask | __GFP_ZERO,
2437 cfqd->queue->node);
22e2c507
JA
2438 }
2439
6118b70b
JA
2440 if (cfqq) {
2441 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2442 cfq_init_prio_data(cfqq, ioc);
cdb16e8f 2443 cfq_link_cfqq_cfqg(cfqq, cfqg);
6118b70b
JA
2444 cfq_log_cfqq(cfqd, cfqq, "alloced");
2445 } else
2446 cfqq = &cfqd->oom_cfqq;
22e2c507
JA
2447 }
2448
2449 if (new_cfqq)
2450 kmem_cache_free(cfq_pool, new_cfqq);
2451
22e2c507
JA
2452 return cfqq;
2453}
2454
c2dea2d1
VT
2455static struct cfq_queue **
2456cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2457{
fe094d98 2458 switch (ioprio_class) {
c2dea2d1
VT
2459 case IOPRIO_CLASS_RT:
2460 return &cfqd->async_cfqq[0][ioprio];
2461 case IOPRIO_CLASS_BE:
2462 return &cfqd->async_cfqq[1][ioprio];
2463 case IOPRIO_CLASS_IDLE:
2464 return &cfqd->async_idle_cfqq;
2465 default:
2466 BUG();
2467 }
2468}
2469
15c31be4 2470static struct cfq_queue *
a6151c3a 2471cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
15c31be4
JA
2472 gfp_t gfp_mask)
2473{
fd0928df
JA
2474 const int ioprio = task_ioprio(ioc);
2475 const int ioprio_class = task_ioprio_class(ioc);
c2dea2d1 2476 struct cfq_queue **async_cfqq = NULL;
15c31be4
JA
2477 struct cfq_queue *cfqq = NULL;
2478
c2dea2d1
VT
2479 if (!is_sync) {
2480 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2481 cfqq = *async_cfqq;
2482 }
2483
6118b70b 2484 if (!cfqq)
fd0928df 2485 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
15c31be4
JA
2486
2487 /*
2488 * pin the queue now that it's allocated, scheduler exit will prune it
2489 */
c2dea2d1 2490 if (!is_sync && !(*async_cfqq)) {
15c31be4 2491 atomic_inc(&cfqq->ref);
c2dea2d1 2492 *async_cfqq = cfqq;
15c31be4
JA
2493 }
2494
2495 atomic_inc(&cfqq->ref);
2496 return cfqq;
2497}
2498
498d3aa2
JA
2499/*
2500 * We drop cfq io contexts lazily, so we may find a dead one.
2501 */
dbecf3ab 2502static void
4ac845a2
JA
2503cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2504 struct cfq_io_context *cic)
dbecf3ab 2505{
4ac845a2
JA
2506 unsigned long flags;
2507
fc46379d 2508 WARN_ON(!list_empty(&cic->queue_list));
597bc485 2509
4ac845a2
JA
2510 spin_lock_irqsave(&ioc->lock, flags);
2511
4faa3c81 2512 BUG_ON(ioc->ioc_data == cic);
597bc485 2513
4ac845a2 2514 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
ffc4e759 2515 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
2516 spin_unlock_irqrestore(&ioc->lock, flags);
2517
2518 cfq_cic_free(cic);
dbecf3ab
OH
2519}
2520
e2d74ac0 2521static struct cfq_io_context *
4ac845a2 2522cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
e2d74ac0 2523{
e2d74ac0 2524 struct cfq_io_context *cic;
d6de8be7 2525 unsigned long flags;
4ac845a2 2526 void *k;
e2d74ac0 2527
91fac317
VT
2528 if (unlikely(!ioc))
2529 return NULL;
2530
d6de8be7
JA
2531 rcu_read_lock();
2532
597bc485
JA
2533 /*
2534 * we maintain a last-hit cache, to avoid browsing over the tree
2535 */
4ac845a2 2536 cic = rcu_dereference(ioc->ioc_data);
d6de8be7
JA
2537 if (cic && cic->key == cfqd) {
2538 rcu_read_unlock();
597bc485 2539 return cic;
d6de8be7 2540 }
597bc485 2541
4ac845a2 2542 do {
4ac845a2
JA
2543 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2544 rcu_read_unlock();
2545 if (!cic)
2546 break;
be3b0753
OH
2547 /* ->key must be copied to avoid race with cfq_exit_queue() */
2548 k = cic->key;
2549 if (unlikely(!k)) {
4ac845a2 2550 cfq_drop_dead_cic(cfqd, ioc, cic);
d6de8be7 2551 rcu_read_lock();
4ac845a2 2552 continue;
dbecf3ab 2553 }
e2d74ac0 2554
d6de8be7 2555 spin_lock_irqsave(&ioc->lock, flags);
4ac845a2 2556 rcu_assign_pointer(ioc->ioc_data, cic);
d6de8be7 2557 spin_unlock_irqrestore(&ioc->lock, flags);
4ac845a2
JA
2558 break;
2559 } while (1);
e2d74ac0 2560
4ac845a2 2561 return cic;
e2d74ac0
JA
2562}
2563
4ac845a2
JA
2564/*
2565 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2566 * the process specific cfq io context when entered from the block layer.
2567 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2568 */
febffd61
JA
2569static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2570 struct cfq_io_context *cic, gfp_t gfp_mask)
e2d74ac0 2571{
0261d688 2572 unsigned long flags;
4ac845a2 2573 int ret;
e2d74ac0 2574
4ac845a2
JA
2575 ret = radix_tree_preload(gfp_mask);
2576 if (!ret) {
2577 cic->ioc = ioc;
2578 cic->key = cfqd;
e2d74ac0 2579
4ac845a2
JA
2580 spin_lock_irqsave(&ioc->lock, flags);
2581 ret = radix_tree_insert(&ioc->radix_root,
2582 (unsigned long) cfqd, cic);
ffc4e759
JA
2583 if (!ret)
2584 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
4ac845a2 2585 spin_unlock_irqrestore(&ioc->lock, flags);
e2d74ac0 2586
4ac845a2
JA
2587 radix_tree_preload_end();
2588
2589 if (!ret) {
2590 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2591 list_add(&cic->queue_list, &cfqd->cic_list);
2592 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2593 }
e2d74ac0
JA
2594 }
2595
4ac845a2
JA
2596 if (ret)
2597 printk(KERN_ERR "cfq: cic link failed!\n");
fc46379d 2598
4ac845a2 2599 return ret;
e2d74ac0
JA
2600}
2601
1da177e4
LT
2602/*
2603 * Setup general io context and cfq io context. There can be several cfq
2604 * io contexts per general io context, if this process is doing io to more
e2d74ac0 2605 * than one device managed by cfq.
1da177e4
LT
2606 */
2607static struct cfq_io_context *
e2d74ac0 2608cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 2609{
22e2c507 2610 struct io_context *ioc = NULL;
1da177e4 2611 struct cfq_io_context *cic;
1da177e4 2612
22e2c507 2613 might_sleep_if(gfp_mask & __GFP_WAIT);
1da177e4 2614
b5deef90 2615 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1da177e4
LT
2616 if (!ioc)
2617 return NULL;
2618
4ac845a2 2619 cic = cfq_cic_lookup(cfqd, ioc);
e2d74ac0
JA
2620 if (cic)
2621 goto out;
1da177e4 2622
e2d74ac0
JA
2623 cic = cfq_alloc_io_context(cfqd, gfp_mask);
2624 if (cic == NULL)
2625 goto err;
1da177e4 2626
4ac845a2
JA
2627 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2628 goto err_free;
2629
1da177e4 2630out:
fc46379d
JA
2631 smp_read_barrier_depends();
2632 if (unlikely(ioc->ioprio_changed))
2633 cfq_ioc_set_ioprio(ioc);
2634
1da177e4 2635 return cic;
4ac845a2
JA
2636err_free:
2637 cfq_cic_free(cic);
1da177e4
LT
2638err:
2639 put_io_context(ioc);
2640 return NULL;
2641}
2642
22e2c507
JA
2643static void
2644cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1da177e4 2645{
aaf1228d
JA
2646 unsigned long elapsed = jiffies - cic->last_end_request;
2647 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
db3b5848 2648
22e2c507
JA
2649 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2650 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2651 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2652}
1da177e4 2653
206dc69b 2654static void
b2c18e1e 2655cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
6d048f53 2656 struct request *rq)
206dc69b
JA
2657{
2658 sector_t sdist;
2659 u64 total;
2660
b2c18e1e 2661 if (!cfqq->last_request_pos)
4d00aa47 2662 sdist = 0;
b2c18e1e
JM
2663 else if (cfqq->last_request_pos < blk_rq_pos(rq))
2664 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
206dc69b 2665 else
b2c18e1e 2666 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
206dc69b
JA
2667
2668 /*
2669 * Don't allow the seek distance to get too large from the
2670 * odd fragment, pagein, etc
2671 */
b2c18e1e
JM
2672 if (cfqq->seek_samples <= 60) /* second&third seek */
2673 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
206dc69b 2674 else
b2c18e1e 2675 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
206dc69b 2676
b2c18e1e
JM
2677 cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
2678 cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
2679 total = cfqq->seek_total + (cfqq->seek_samples/2);
2680 do_div(total, cfqq->seek_samples);
2681 cfqq->seek_mean = (sector_t)total;
e6c5bc73
JM
2682
2683 /*
2684 * If this cfqq is shared between multiple processes, check to
2685 * make sure that those processes are still issuing I/Os within
2686 * the mean seek distance. If not, it may be time to break the
2687 * queues apart again.
2688 */
2689 if (cfq_cfqq_coop(cfqq)) {
2690 if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
2691 cfqq->seeky_start = jiffies;
2692 else if (!CFQQ_SEEKY(cfqq))
2693 cfqq->seeky_start = 0;
2694 }
206dc69b 2695}
1da177e4 2696
22e2c507
JA
2697/*
2698 * Disable idle window if the process thinks too long or seeks so much that
2699 * it doesn't matter
2700 */
2701static void
2702cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2703 struct cfq_io_context *cic)
2704{
7b679138 2705 int old_idle, enable_idle;
1be92f2f 2706
0871714e
JA
2707 /*
2708 * Don't idle for async or idle io prio class
2709 */
2710 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1be92f2f
JA
2711 return;
2712
c265a7f4 2713 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1da177e4 2714
76280aff
CZ
2715 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
2716 cfq_mark_cfqq_deep(cfqq);
2717
66dac98e 2718 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
76280aff
CZ
2719 (!cfq_cfqq_deep(cfqq) && sample_valid(cfqq->seek_samples)
2720 && CFQQ_SEEKY(cfqq)))
22e2c507
JA
2721 enable_idle = 0;
2722 else if (sample_valid(cic->ttime_samples)) {
718eee05 2723 if (cic->ttime_mean > cfqd->cfq_slice_idle)
22e2c507
JA
2724 enable_idle = 0;
2725 else
2726 enable_idle = 1;
1da177e4
LT
2727 }
2728
7b679138
JA
2729 if (old_idle != enable_idle) {
2730 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
2731 if (enable_idle)
2732 cfq_mark_cfqq_idle_window(cfqq);
2733 else
2734 cfq_clear_cfqq_idle_window(cfqq);
2735 }
22e2c507 2736}
1da177e4 2737
22e2c507
JA
2738/*
2739 * Check if new_cfqq should preempt the currently active queue. Return 0 for
2740 * no or if we aren't sure, a 1 will cause a preempt.
2741 */
a6151c3a 2742static bool
22e2c507 2743cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
5e705374 2744 struct request *rq)
22e2c507 2745{
6d048f53 2746 struct cfq_queue *cfqq;
22e2c507 2747
6d048f53
JA
2748 cfqq = cfqd->active_queue;
2749 if (!cfqq)
a6151c3a 2750 return false;
22e2c507 2751
6d048f53 2752 if (cfq_slice_used(cfqq))
a6151c3a 2753 return true;
6d048f53
JA
2754
2755 if (cfq_class_idle(new_cfqq))
a6151c3a 2756 return false;
22e2c507
JA
2757
2758 if (cfq_class_idle(cfqq))
a6151c3a 2759 return true;
1e3335de 2760
f04a6424 2761 /* Allow preemption only if we are idling on sync-noidle tree */
e4a22919
CZ
2762 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
2763 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
f04a6424
VG
2764 new_cfqq->service_tree->count == 2 &&
2765 RB_EMPTY_ROOT(&cfqq->sort_list))
718eee05
CZ
2766 return true;
2767
374f84ac
JA
2768 /*
2769 * if the new request is sync, but the currently running queue is
2770 * not, let the sync request have priority.
2771 */
5e705374 2772 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
a6151c3a 2773 return true;
1e3335de 2774
374f84ac
JA
2775 /*
2776 * So both queues are sync. Let the new request get disk time if
2777 * it's a metadata request and the current queue is doing regular IO.
2778 */
2779 if (rq_is_meta(rq) && !cfqq->meta_pending)
e6ec4fe2 2780 return true;
22e2c507 2781
3a9a3f6c
DS
2782 /*
2783 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2784 */
2785 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
a6151c3a 2786 return true;
3a9a3f6c 2787
1e3335de 2788 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
a6151c3a 2789 return false;
1e3335de
JA
2790
2791 /*
2792 * if this request is as-good as one we would expect from the
2793 * current cfqq, let it preempt
2794 */
e00ef799 2795 if (cfq_rq_close(cfqd, cfqq, rq))
a6151c3a 2796 return true;
1e3335de 2797
a6151c3a 2798 return false;
22e2c507
JA
2799}
2800
2801/*
2802 * cfqq preempts the active queue. if we allowed preempt with no slice left,
2803 * let it have half of its nominal slice.
2804 */
2805static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2806{
7b679138 2807 cfq_log_cfqq(cfqd, cfqq, "preempt");
6084cdda 2808 cfq_slice_expired(cfqd, 1);
22e2c507 2809
bf572256
JA
2810 /*
2811 * Put the new queue at the front of the of the current list,
2812 * so we know that it will be selected next.
2813 */
2814 BUG_ON(!cfq_cfqq_on_rr(cfqq));
edd75ffd
JA
2815
2816 cfq_service_tree_add(cfqd, cfqq, 1);
bf572256 2817
44f7c160
JA
2818 cfqq->slice_end = 0;
2819 cfq_mark_cfqq_slice_new(cfqq);
22e2c507
JA
2820}
2821
22e2c507 2822/*
5e705374 2823 * Called when a new fs request (rq) is added (to cfqq). Check if there's
22e2c507
JA
2824 * something we should do about it
2825 */
2826static void
5e705374
JA
2827cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2828 struct request *rq)
22e2c507 2829{
5e705374 2830 struct cfq_io_context *cic = RQ_CIC(rq);
12e9fddd 2831
45333d5a 2832 cfqd->rq_queued++;
374f84ac
JA
2833 if (rq_is_meta(rq))
2834 cfqq->meta_pending++;
2835
9c2c38a1 2836 cfq_update_io_thinktime(cfqd, cic);
b2c18e1e 2837 cfq_update_io_seektime(cfqd, cfqq, rq);
9c2c38a1
JA
2838 cfq_update_idle_window(cfqd, cfqq, cic);
2839
b2c18e1e 2840 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
22e2c507
JA
2841
2842 if (cfqq == cfqd->active_queue) {
2843 /*
b029195d
JA
2844 * Remember that we saw a request from this process, but
2845 * don't start queuing just yet. Otherwise we risk seeing lots
2846 * of tiny requests, because we disrupt the normal plugging
d6ceb25e
JA
2847 * and merging. If the request is already larger than a single
2848 * page, let it rip immediately. For that case we assume that
2d870722
JA
2849 * merging is already done. Ditto for a busy system that
2850 * has other work pending, don't risk delaying until the
2851 * idle timer unplug to continue working.
22e2c507 2852 */
d6ceb25e 2853 if (cfq_cfqq_wait_request(cfqq)) {
2d870722
JA
2854 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
2855 cfqd->busy_queues > 1) {
d6ceb25e 2856 del_timer(&cfqd->idle_slice_timer);
bf791937
VG
2857 __blk_run_queue(cfqd->queue);
2858 } else
2859 cfq_mark_cfqq_must_dispatch(cfqq);
d6ceb25e 2860 }
5e705374 2861 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
22e2c507
JA
2862 /*
2863 * not the active queue - expire current slice if it is
2864 * idle and has expired it's mean thinktime or this new queue
3a9a3f6c
DS
2865 * has some old slice time left and is of higher priority or
2866 * this new queue is RT and the current one is BE
22e2c507
JA
2867 */
2868 cfq_preempt_queue(cfqd, cfqq);
a7f55792 2869 __blk_run_queue(cfqd->queue);
22e2c507 2870 }
1da177e4
LT
2871}
2872
165125e1 2873static void cfq_insert_request(struct request_queue *q, struct request *rq)
1da177e4 2874{
b4878f24 2875 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 2876 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 2877
7b679138 2878 cfq_log_cfqq(cfqd, cfqq, "insert_request");
fd0928df 2879 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1da177e4 2880
30996f40 2881 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
22e2c507 2882 list_add_tail(&rq->queuelist, &cfqq->fifo);
aa6f6a3d 2883 cfq_add_rq_rb(rq);
22e2c507 2884
5e705374 2885 cfq_rq_enqueued(cfqd, cfqq, rq);
1da177e4
LT
2886}
2887
45333d5a
AC
2888/*
2889 * Update hw_tag based on peak queue depth over 50 samples under
2890 * sufficient load.
2891 */
2892static void cfq_update_hw_tag(struct cfq_data *cfqd)
2893{
1a1238a7
SL
2894 struct cfq_queue *cfqq = cfqd->active_queue;
2895
e459dd08
CZ
2896 if (rq_in_driver(cfqd) > cfqd->hw_tag_est_depth)
2897 cfqd->hw_tag_est_depth = rq_in_driver(cfqd);
2898
2899 if (cfqd->hw_tag == 1)
2900 return;
45333d5a
AC
2901
2902 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
5ad531db 2903 rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
45333d5a
AC
2904 return;
2905
1a1238a7
SL
2906 /*
2907 * If active queue hasn't enough requests and can idle, cfq might not
2908 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
2909 * case
2910 */
2911 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
2912 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
2913 CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
2914 return;
2915
45333d5a
AC
2916 if (cfqd->hw_tag_samples++ < 50)
2917 return;
2918
e459dd08 2919 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
45333d5a
AC
2920 cfqd->hw_tag = 1;
2921 else
2922 cfqd->hw_tag = 0;
45333d5a
AC
2923}
2924
165125e1 2925static void cfq_completed_request(struct request_queue *q, struct request *rq)
1da177e4 2926{
5e705374 2927 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 2928 struct cfq_data *cfqd = cfqq->cfqd;
5380a101 2929 const int sync = rq_is_sync(rq);
b4878f24 2930 unsigned long now;
1da177e4 2931
b4878f24 2932 now = jiffies;
7b679138 2933 cfq_log_cfqq(cfqd, cfqq, "complete");
1da177e4 2934
45333d5a
AC
2935 cfq_update_hw_tag(cfqd);
2936
5ad531db 2937 WARN_ON(!cfqd->rq_in_driver[sync]);
6d048f53 2938 WARN_ON(!cfqq->dispatched);
5ad531db 2939 cfqd->rq_in_driver[sync]--;
6d048f53 2940 cfqq->dispatched--;
1da177e4 2941
3ed9a296
JA
2942 if (cfq_cfqq_sync(cfqq))
2943 cfqd->sync_flight--;
2944
365722bb 2945 if (sync) {
5e705374 2946 RQ_CIC(rq)->last_end_request = now;
365722bb
VG
2947 cfqd->last_end_sync_rq = now;
2948 }
caaa5f9f
JA
2949
2950 /*
2951 * If this is the active queue, check if it needs to be expired,
2952 * or if we want to idle in case it has no pending requests.
2953 */
2954 if (cfqd->active_queue == cfqq) {
a36e71f9
JA
2955 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
2956
44f7c160
JA
2957 if (cfq_cfqq_slice_new(cfqq)) {
2958 cfq_set_prio_slice(cfqd, cfqq);
2959 cfq_clear_cfqq_slice_new(cfqq);
2960 }
a36e71f9 2961 /*
8e550632
CZ
2962 * Idling is not enabled on:
2963 * - expired queues
2964 * - idle-priority queues
2965 * - async queues
2966 * - queues with still some requests queued
2967 * - when there is a close cooperator
a36e71f9 2968 */
0871714e 2969 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
6084cdda 2970 cfq_slice_expired(cfqd, 1);
8e550632
CZ
2971 else if (sync && cfqq_empty &&
2972 !cfq_close_cooperator(cfqd, cfqq)) {
2973 cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
2974 /*
2975 * Idling is enabled for SYNC_WORKLOAD.
2976 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
2977 * only if we processed at least one !rq_noidle request
2978 */
2979 if (cfqd->serving_type == SYNC_WORKLOAD
2980 || cfqd->noidle_tree_requires_idle)
2981 cfq_arm_slice_timer(cfqd);
2982 }
caaa5f9f 2983 }
6d048f53 2984
5ad531db 2985 if (!rq_in_driver(cfqd))
23e018a1 2986 cfq_schedule_dispatch(cfqd);
1da177e4
LT
2987}
2988
22e2c507
JA
2989/*
2990 * we temporarily boost lower priority queues if they are holding fs exclusive
2991 * resources. they are boosted to normal prio (CLASS_BE/4)
2992 */
2993static void cfq_prio_boost(struct cfq_queue *cfqq)
1da177e4 2994{
22e2c507
JA
2995 if (has_fs_excl()) {
2996 /*
2997 * boost idle prio on transactions that would lock out other
2998 * users of the filesystem
2999 */
3000 if (cfq_class_idle(cfqq))
3001 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3002 if (cfqq->ioprio > IOPRIO_NORM)
3003 cfqq->ioprio = IOPRIO_NORM;
3004 } else {
3005 /*
dddb7451 3006 * unboost the queue (if needed)
22e2c507 3007 */
dddb7451
CZ
3008 cfqq->ioprio_class = cfqq->org_ioprio_class;
3009 cfqq->ioprio = cfqq->org_ioprio;
22e2c507 3010 }
22e2c507 3011}
1da177e4 3012
89850f7e 3013static inline int __cfq_may_queue(struct cfq_queue *cfqq)
22e2c507 3014{
1b379d8d 3015 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3b18152c 3016 cfq_mark_cfqq_must_alloc_slice(cfqq);
22e2c507 3017 return ELV_MQUEUE_MUST;
3b18152c 3018 }
1da177e4 3019
22e2c507 3020 return ELV_MQUEUE_MAY;
22e2c507
JA
3021}
3022
165125e1 3023static int cfq_may_queue(struct request_queue *q, int rw)
22e2c507
JA
3024{
3025 struct cfq_data *cfqd = q->elevator->elevator_data;
3026 struct task_struct *tsk = current;
91fac317 3027 struct cfq_io_context *cic;
22e2c507
JA
3028 struct cfq_queue *cfqq;
3029
3030 /*
3031 * don't force setup of a queue from here, as a call to may_queue
3032 * does not necessarily imply that a request actually will be queued.
3033 * so just lookup a possibly existing queue, or return 'may queue'
3034 * if that fails
3035 */
4ac845a2 3036 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
3037 if (!cic)
3038 return ELV_MQUEUE_MAY;
3039
b0b78f81 3040 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
22e2c507 3041 if (cfqq) {
fd0928df 3042 cfq_init_prio_data(cfqq, cic->ioc);
22e2c507
JA
3043 cfq_prio_boost(cfqq);
3044
89850f7e 3045 return __cfq_may_queue(cfqq);
22e2c507
JA
3046 }
3047
3048 return ELV_MQUEUE_MAY;
1da177e4
LT
3049}
3050
1da177e4
LT
3051/*
3052 * queue lock held here
3053 */
bb37b94c 3054static void cfq_put_request(struct request *rq)
1da177e4 3055{
5e705374 3056 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 3057
5e705374 3058 if (cfqq) {
22e2c507 3059 const int rw = rq_data_dir(rq);
1da177e4 3060
22e2c507
JA
3061 BUG_ON(!cfqq->allocated[rw]);
3062 cfqq->allocated[rw]--;
1da177e4 3063
5e705374 3064 put_io_context(RQ_CIC(rq)->ioc);
1da177e4 3065
1da177e4 3066 rq->elevator_private = NULL;
5e705374 3067 rq->elevator_private2 = NULL;
1da177e4 3068
1da177e4
LT
3069 cfq_put_queue(cfqq);
3070 }
3071}
3072
df5fe3e8
JM
3073static struct cfq_queue *
3074cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3075 struct cfq_queue *cfqq)
3076{
3077 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3078 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
b3b6d040 3079 cfq_mark_cfqq_coop(cfqq->new_cfqq);
df5fe3e8
JM
3080 cfq_put_queue(cfqq);
3081 return cic_to_cfqq(cic, 1);
3082}
3083
e6c5bc73
JM
3084static int should_split_cfqq(struct cfq_queue *cfqq)
3085{
3086 if (cfqq->seeky_start &&
3087 time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
3088 return 1;
3089 return 0;
3090}
3091
3092/*
3093 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3094 * was the last process referring to said cfqq.
3095 */
3096static struct cfq_queue *
3097split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3098{
3099 if (cfqq_process_refs(cfqq) == 1) {
3100 cfqq->seeky_start = 0;
3101 cfqq->pid = current->pid;
3102 cfq_clear_cfqq_coop(cfqq);
3103 return cfqq;
3104 }
3105
3106 cic_set_cfqq(cic, NULL, 1);
3107 cfq_put_queue(cfqq);
3108 return NULL;
3109}
1da177e4 3110/*
22e2c507 3111 * Allocate cfq data structures associated with this request.
1da177e4 3112 */
22e2c507 3113static int
165125e1 3114cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1da177e4
LT
3115{
3116 struct cfq_data *cfqd = q->elevator->elevator_data;
3117 struct cfq_io_context *cic;
3118 const int rw = rq_data_dir(rq);
a6151c3a 3119 const bool is_sync = rq_is_sync(rq);
22e2c507 3120 struct cfq_queue *cfqq;
1da177e4
LT
3121 unsigned long flags;
3122
3123 might_sleep_if(gfp_mask & __GFP_WAIT);
3124
e2d74ac0 3125 cic = cfq_get_io_context(cfqd, gfp_mask);
22e2c507 3126
1da177e4
LT
3127 spin_lock_irqsave(q->queue_lock, flags);
3128
22e2c507
JA
3129 if (!cic)
3130 goto queue_fail;
3131
e6c5bc73 3132new_queue:
91fac317 3133 cfqq = cic_to_cfqq(cic, is_sync);
32f2e807 3134 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
fd0928df 3135 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
91fac317 3136 cic_set_cfqq(cic, cfqq, is_sync);
df5fe3e8 3137 } else {
e6c5bc73
JM
3138 /*
3139 * If the queue was seeky for too long, break it apart.
3140 */
3141 if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
3142 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3143 cfqq = split_cfqq(cic, cfqq);
3144 if (!cfqq)
3145 goto new_queue;
3146 }
3147
df5fe3e8
JM
3148 /*
3149 * Check to see if this queue is scheduled to merge with
3150 * another, closely cooperating queue. The merging of
3151 * queues happens here as it must be done in process context.
3152 * The reference on new_cfqq was taken in merge_cfqqs.
3153 */
3154 if (cfqq->new_cfqq)
3155 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
91fac317 3156 }
1da177e4
LT
3157
3158 cfqq->allocated[rw]++;
22e2c507 3159 atomic_inc(&cfqq->ref);
1da177e4 3160
5e705374 3161 spin_unlock_irqrestore(q->queue_lock, flags);
3b18152c 3162
5e705374
JA
3163 rq->elevator_private = cic;
3164 rq->elevator_private2 = cfqq;
3165 return 0;
1da177e4 3166
22e2c507
JA
3167queue_fail:
3168 if (cic)
3169 put_io_context(cic->ioc);
89850f7e 3170
23e018a1 3171 cfq_schedule_dispatch(cfqd);
1da177e4 3172 spin_unlock_irqrestore(q->queue_lock, flags);
7b679138 3173 cfq_log(cfqd, "set_request fail");
1da177e4
LT
3174 return 1;
3175}
3176
65f27f38 3177static void cfq_kick_queue(struct work_struct *work)
22e2c507 3178{
65f27f38 3179 struct cfq_data *cfqd =
23e018a1 3180 container_of(work, struct cfq_data, unplug_work);
165125e1 3181 struct request_queue *q = cfqd->queue;
22e2c507 3182
40bb54d1 3183 spin_lock_irq(q->queue_lock);
a7f55792 3184 __blk_run_queue(cfqd->queue);
40bb54d1 3185 spin_unlock_irq(q->queue_lock);
22e2c507
JA
3186}
3187
3188/*
3189 * Timer running if the active_queue is currently idling inside its time slice
3190 */
3191static void cfq_idle_slice_timer(unsigned long data)
3192{
3193 struct cfq_data *cfqd = (struct cfq_data *) data;
3194 struct cfq_queue *cfqq;
3195 unsigned long flags;
3c6bd2f8 3196 int timed_out = 1;
22e2c507 3197
7b679138
JA
3198 cfq_log(cfqd, "idle timer fired");
3199
22e2c507
JA
3200 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3201
fe094d98
JA
3202 cfqq = cfqd->active_queue;
3203 if (cfqq) {
3c6bd2f8
JA
3204 timed_out = 0;
3205
b029195d
JA
3206 /*
3207 * We saw a request before the queue expired, let it through
3208 */
3209 if (cfq_cfqq_must_dispatch(cfqq))
3210 goto out_kick;
3211
22e2c507
JA
3212 /*
3213 * expired
3214 */
44f7c160 3215 if (cfq_slice_used(cfqq))
22e2c507
JA
3216 goto expire;
3217
3218 /*
3219 * only expire and reinvoke request handler, if there are
3220 * other queues with pending requests
3221 */
caaa5f9f 3222 if (!cfqd->busy_queues)
22e2c507 3223 goto out_cont;
22e2c507
JA
3224
3225 /*
3226 * not expired and it has a request pending, let it dispatch
3227 */
75e50984 3228 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 3229 goto out_kick;
76280aff
CZ
3230
3231 /*
3232 * Queue depth flag is reset only when the idle didn't succeed
3233 */
3234 cfq_clear_cfqq_deep(cfqq);
22e2c507
JA
3235 }
3236expire:
6084cdda 3237 cfq_slice_expired(cfqd, timed_out);
22e2c507 3238out_kick:
23e018a1 3239 cfq_schedule_dispatch(cfqd);
22e2c507
JA
3240out_cont:
3241 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3242}
3243
3b18152c
JA
3244static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3245{
3246 del_timer_sync(&cfqd->idle_slice_timer);
23e018a1 3247 cancel_work_sync(&cfqd->unplug_work);
3b18152c 3248}
22e2c507 3249
c2dea2d1
VT
3250static void cfq_put_async_queues(struct cfq_data *cfqd)
3251{
3252 int i;
3253
3254 for (i = 0; i < IOPRIO_BE_NR; i++) {
3255 if (cfqd->async_cfqq[0][i])
3256 cfq_put_queue(cfqd->async_cfqq[0][i]);
3257 if (cfqd->async_cfqq[1][i])
3258 cfq_put_queue(cfqd->async_cfqq[1][i]);
c2dea2d1 3259 }
2389d1ef
ON
3260
3261 if (cfqd->async_idle_cfqq)
3262 cfq_put_queue(cfqd->async_idle_cfqq);
c2dea2d1
VT
3263}
3264
b374d18a 3265static void cfq_exit_queue(struct elevator_queue *e)
1da177e4 3266{
22e2c507 3267 struct cfq_data *cfqd = e->elevator_data;
165125e1 3268 struct request_queue *q = cfqd->queue;
22e2c507 3269
3b18152c 3270 cfq_shutdown_timer_wq(cfqd);
e2d74ac0 3271
d9ff4187 3272 spin_lock_irq(q->queue_lock);
e2d74ac0 3273
d9ff4187 3274 if (cfqd->active_queue)
6084cdda 3275 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
e2d74ac0
JA
3276
3277 while (!list_empty(&cfqd->cic_list)) {
d9ff4187
AV
3278 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3279 struct cfq_io_context,
3280 queue_list);
89850f7e
JA
3281
3282 __cfq_exit_single_io_context(cfqd, cic);
d9ff4187 3283 }
e2d74ac0 3284
c2dea2d1 3285 cfq_put_async_queues(cfqd);
15c31be4 3286
d9ff4187 3287 spin_unlock_irq(q->queue_lock);
a90d742e
AV
3288
3289 cfq_shutdown_timer_wq(cfqd);
3290
a90d742e 3291 kfree(cfqd);
1da177e4
LT
3292}
3293
165125e1 3294static void *cfq_init_queue(struct request_queue *q)
1da177e4
LT
3295{
3296 struct cfq_data *cfqd;
718eee05 3297 int i, j;
cdb16e8f 3298 struct cfq_group *cfqg;
615f0259 3299 struct cfq_rb_root *st;
1da177e4 3300
94f6030c 3301 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
1da177e4 3302 if (!cfqd)
bc1c1169 3303 return NULL;
1da177e4 3304
1fa8f6d6
VG
3305 /* Init root service tree */
3306 cfqd->grp_service_tree = CFQ_RB_ROOT;
3307
cdb16e8f
VG
3308 /* Init root group */
3309 cfqg = &cfqd->root_group;
615f0259
VG
3310 for_each_cfqg_st(cfqg, i, j, st)
3311 *st = CFQ_RB_ROOT;
1fa8f6d6 3312 RB_CLEAR_NODE(&cfqg->rb_node);
26a2ac00 3313
25bc6b07
VG
3314 /* Give preference to root group over other groups */
3315 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3316
26a2ac00
JA
3317 /*
3318 * Not strictly needed (since RB_ROOT just clears the node and we
3319 * zeroed cfqd on alloc), but better be safe in case someone decides
3320 * to add magic to the rb code
3321 */
3322 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3323 cfqd->prio_trees[i] = RB_ROOT;
3324
6118b70b
JA
3325 /*
3326 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3327 * Grab a permanent reference to it, so that the normal code flow
3328 * will not attempt to free it.
3329 */
3330 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3331 atomic_inc(&cfqd->oom_cfqq.ref);
cdb16e8f 3332 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
6118b70b 3333
d9ff4187 3334 INIT_LIST_HEAD(&cfqd->cic_list);
1da177e4 3335
1da177e4 3336 cfqd->queue = q;
1da177e4 3337
22e2c507
JA
3338 init_timer(&cfqd->idle_slice_timer);
3339 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3340 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3341
23e018a1 3342 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
22e2c507 3343
1da177e4 3344 cfqd->cfq_quantum = cfq_quantum;
22e2c507
JA
3345 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3346 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
1da177e4
LT
3347 cfqd->cfq_back_max = cfq_back_max;
3348 cfqd->cfq_back_penalty = cfq_back_penalty;
22e2c507
JA
3349 cfqd->cfq_slice[0] = cfq_slice_async;
3350 cfqd->cfq_slice[1] = cfq_slice_sync;
3351 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3352 cfqd->cfq_slice_idle = cfq_slice_idle;
963b72fc 3353 cfqd->cfq_latency = 1;
e459dd08 3354 cfqd->hw_tag = -1;
365722bb 3355 cfqd->last_end_sync_rq = jiffies;
bc1c1169 3356 return cfqd;
1da177e4
LT
3357}
3358
3359static void cfq_slab_kill(void)
3360{
d6de8be7
JA
3361 /*
3362 * Caller already ensured that pending RCU callbacks are completed,
3363 * so we should have no busy allocations at this point.
3364 */
1da177e4
LT
3365 if (cfq_pool)
3366 kmem_cache_destroy(cfq_pool);
3367 if (cfq_ioc_pool)
3368 kmem_cache_destroy(cfq_ioc_pool);
3369}
3370
3371static int __init cfq_slab_setup(void)
3372{
0a31bd5f 3373 cfq_pool = KMEM_CACHE(cfq_queue, 0);
1da177e4
LT
3374 if (!cfq_pool)
3375 goto fail;
3376
34e6bbf2 3377 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
1da177e4
LT
3378 if (!cfq_ioc_pool)
3379 goto fail;
3380
3381 return 0;
3382fail:
3383 cfq_slab_kill();
3384 return -ENOMEM;
3385}
3386
1da177e4
LT
3387/*
3388 * sysfs parts below -->
3389 */
1da177e4
LT
3390static ssize_t
3391cfq_var_show(unsigned int var, char *page)
3392{
3393 return sprintf(page, "%d\n", var);
3394}
3395
3396static ssize_t
3397cfq_var_store(unsigned int *var, const char *page, size_t count)
3398{
3399 char *p = (char *) page;
3400
3401 *var = simple_strtoul(p, &p, 10);
3402 return count;
3403}
3404
1da177e4 3405#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
b374d18a 3406static ssize_t __FUNC(struct elevator_queue *e, char *page) \
1da177e4 3407{ \
3d1ab40f 3408 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
3409 unsigned int __data = __VAR; \
3410 if (__CONV) \
3411 __data = jiffies_to_msecs(__data); \
3412 return cfq_var_show(__data, (page)); \
3413}
3414SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
22e2c507
JA
3415SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3416SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
e572ec7e
AV
3417SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3418SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
22e2c507
JA
3419SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3420SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3421SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3422SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
963b72fc 3423SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
1da177e4
LT
3424#undef SHOW_FUNCTION
3425
3426#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
b374d18a 3427static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
1da177e4 3428{ \
3d1ab40f 3429 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
3430 unsigned int __data; \
3431 int ret = cfq_var_store(&__data, (page), count); \
3432 if (__data < (MIN)) \
3433 __data = (MIN); \
3434 else if (__data > (MAX)) \
3435 __data = (MAX); \
3436 if (__CONV) \
3437 *(__PTR) = msecs_to_jiffies(__data); \
3438 else \
3439 *(__PTR) = __data; \
3440 return ret; \
3441}
3442STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
fe094d98
JA
3443STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3444 UINT_MAX, 1);
3445STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3446 UINT_MAX, 1);
e572ec7e 3447STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
fe094d98
JA
3448STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3449 UINT_MAX, 0);
22e2c507
JA
3450STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3451STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3452STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
fe094d98
JA
3453STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3454 UINT_MAX, 0);
963b72fc 3455STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
1da177e4
LT
3456#undef STORE_FUNCTION
3457
e572ec7e
AV
3458#define CFQ_ATTR(name) \
3459 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3460
3461static struct elv_fs_entry cfq_attrs[] = {
3462 CFQ_ATTR(quantum),
e572ec7e
AV
3463 CFQ_ATTR(fifo_expire_sync),
3464 CFQ_ATTR(fifo_expire_async),
3465 CFQ_ATTR(back_seek_max),
3466 CFQ_ATTR(back_seek_penalty),
3467 CFQ_ATTR(slice_sync),
3468 CFQ_ATTR(slice_async),
3469 CFQ_ATTR(slice_async_rq),
3470 CFQ_ATTR(slice_idle),
963b72fc 3471 CFQ_ATTR(low_latency),
e572ec7e 3472 __ATTR_NULL
1da177e4
LT
3473};
3474
1da177e4
LT
3475static struct elevator_type iosched_cfq = {
3476 .ops = {
3477 .elevator_merge_fn = cfq_merge,
3478 .elevator_merged_fn = cfq_merged_request,
3479 .elevator_merge_req_fn = cfq_merged_requests,
da775265 3480 .elevator_allow_merge_fn = cfq_allow_merge,
b4878f24 3481 .elevator_dispatch_fn = cfq_dispatch_requests,
1da177e4 3482 .elevator_add_req_fn = cfq_insert_request,
b4878f24 3483 .elevator_activate_req_fn = cfq_activate_request,
1da177e4
LT
3484 .elevator_deactivate_req_fn = cfq_deactivate_request,
3485 .elevator_queue_empty_fn = cfq_queue_empty,
3486 .elevator_completed_req_fn = cfq_completed_request,
21183b07
JA
3487 .elevator_former_req_fn = elv_rb_former_request,
3488 .elevator_latter_req_fn = elv_rb_latter_request,
1da177e4
LT
3489 .elevator_set_req_fn = cfq_set_request,
3490 .elevator_put_req_fn = cfq_put_request,
3491 .elevator_may_queue_fn = cfq_may_queue,
3492 .elevator_init_fn = cfq_init_queue,
3493 .elevator_exit_fn = cfq_exit_queue,
fc46379d 3494 .trim = cfq_free_io_context,
1da177e4 3495 },
3d1ab40f 3496 .elevator_attrs = cfq_attrs,
1da177e4
LT
3497 .elevator_name = "cfq",
3498 .elevator_owner = THIS_MODULE,
3499};
3500
3501static int __init cfq_init(void)
3502{
22e2c507
JA
3503 /*
3504 * could be 0 on HZ < 1000 setups
3505 */
3506 if (!cfq_slice_async)
3507 cfq_slice_async = 1;
3508 if (!cfq_slice_idle)
3509 cfq_slice_idle = 1;
3510
1da177e4
LT
3511 if (cfq_slab_setup())
3512 return -ENOMEM;
3513
2fdd82bd 3514 elv_register(&iosched_cfq);
1da177e4 3515
2fdd82bd 3516 return 0;
1da177e4
LT
3517}
3518
3519static void __exit cfq_exit(void)
3520{
6e9a4738 3521 DECLARE_COMPLETION_ONSTACK(all_gone);
1da177e4 3522 elv_unregister(&iosched_cfq);
334e94de 3523 ioc_gone = &all_gone;
fba82272
OH
3524 /* ioc_gone's update must be visible before reading ioc_count */
3525 smp_wmb();
d6de8be7
JA
3526
3527 /*
3528 * this also protects us from entering cfq_slab_kill() with
3529 * pending RCU callbacks
3530 */
245b2e70 3531 if (elv_ioc_count_read(cfq_ioc_count))
9a11b4ed 3532 wait_for_completion(&all_gone);
83521d3e 3533 cfq_slab_kill();
1da177e4
LT
3534}
3535
3536module_init(cfq_init);
3537module_exit(cfq_exit);
3538
3539MODULE_AUTHOR("Jens Axboe");
3540MODULE_LICENSE("GPL");
3541MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
This page took 0.685728 seconds and 5 git commands to generate.