mfd: 88pm80x: Double shifting bug in suspend/resume
[deliverable/linux.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
8c3d3d4b 4 * Maintained by: Tejun Heo <tj@kernel.org>
af36d7f0
JG
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
92c52c52
AC
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
1da177e4
LT
41 */
42
1da177e4
LT
43#include <linux/kernel.h>
44#include <linux/module.h>
45#include <linux/pci.h>
46#include <linux/init.h>
47#include <linux/list.h>
48#include <linux/mm.h>
1da177e4
LT
49#include <linux/spinlock.h>
50#include <linux/blkdev.h>
51#include <linux/delay.h>
52#include <linux/timer.h>
848c3920 53#include <linux/time.h>
1da177e4
LT
54#include <linux/interrupt.h>
55#include <linux/completion.h>
56#include <linux/suspend.h>
57#include <linux/workqueue.h>
378f058c 58#include <linux/scatterlist.h>
2dcb407e 59#include <linux/io.h>
79318057 60#include <linux/async.h>
e18086d6 61#include <linux/log2.h>
5a0e3ad6 62#include <linux/slab.h>
428ac5fc 63#include <linux/glob.h>
1da177e4 64#include <scsi/scsi.h>
193515d5 65#include <scsi/scsi_cmnd.h>
1da177e4
LT
66#include <scsi/scsi_host.h>
67#include <linux/libata.h>
1da177e4 68#include <asm/byteorder.h>
fe5af0cc 69#include <asm/unaligned.h>
140b5e59 70#include <linux/cdrom.h>
9990b6f3 71#include <linux/ratelimit.h>
eb25cb99 72#include <linux/leds.h>
9ee4f393 73#include <linux/pm_runtime.h>
b7db04d9 74#include <linux/platform_device.h>
1da177e4 75
255c03d1
HR
76#define CREATE_TRACE_POINTS
77#include <trace/events/libata.h>
78
1da177e4 79#include "libata.h"
d9027470 80#include "libata-transport.h"
fda0efc5 81
d7bb4cc7 82/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
83const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
84const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
85const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 86
029cfd6b 87const struct ata_port_operations ata_base_port_ops = {
0aa1113d 88 .prereset = ata_std_prereset,
203c75b8 89 .postreset = ata_std_postreset,
a1efdaba 90 .error_handler = ata_std_error_handler,
e4a9c373
DW
91 .sched_eh = ata_std_sched_eh,
92 .end_eh = ata_std_end_eh,
029cfd6b
TH
93};
94
95const struct ata_port_operations sata_port_ops = {
96 .inherits = &ata_base_port_ops,
97
98 .qc_defer = ata_std_qc_defer,
57c9efdf 99 .hardreset = sata_std_hardreset,
029cfd6b
TH
100};
101
3373efd8
TH
102static unsigned int ata_dev_init_params(struct ata_device *dev,
103 u16 heads, u16 sectors);
104static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
105static void ata_dev_xfermask(struct ata_device *dev);
75683fe7 106static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
1da177e4 107
a78f57af 108atomic_t ata_print_id = ATOMIC_INIT(0);
1da177e4 109
33267325
TH
110struct ata_force_param {
111 const char *name;
112 unsigned int cbl;
113 int spd_limit;
114 unsigned long xfer_mask;
115 unsigned int horkage_on;
116 unsigned int horkage_off;
05944bdf 117 unsigned int lflags;
33267325
TH
118};
119
120struct ata_force_ent {
121 int port;
122 int device;
123 struct ata_force_param param;
124};
125
126static struct ata_force_ent *ata_force_tbl;
127static int ata_force_tbl_size;
128
129static char ata_force_param_buf[PAGE_SIZE] __initdata;
7afb4222
TH
130/* param_buf is thrown away after initialization, disallow read */
131module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
33267325
TH
132MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
133
2486fa56 134static int atapi_enabled = 1;
1623c81e 135module_param(atapi_enabled, int, 0444);
ad5d8eac 136MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
1623c81e 137
c5c61bda 138static int atapi_dmadir = 0;
95de719a 139module_param(atapi_dmadir, int, 0444);
ad5d8eac 140MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
95de719a 141
baf4fdfa
ML
142int atapi_passthru16 = 1;
143module_param(atapi_passthru16, int, 0444);
ad5d8eac 144MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
baf4fdfa 145
c3c013a2
JG
146int libata_fua = 0;
147module_param_named(fua, libata_fua, int, 0444);
ad5d8eac 148MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
c3c013a2 149
2dcb407e 150static int ata_ignore_hpa;
1e999736
AC
151module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
152MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
153
b3a70601
AC
154static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
155module_param_named(dma, libata_dma_mask, int, 0444);
156MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
157
87fbc5a0 158static int ata_probe_timeout;
a8601e5f
AM
159module_param(ata_probe_timeout, int, 0444);
160MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
161
6ebe9d86 162int libata_noacpi = 0;
d7d0dad6 163module_param_named(noacpi, libata_noacpi, int, 0444);
ad5d8eac 164MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
11ef697b 165
ae8d4ee7
AC
166int libata_allow_tpm = 0;
167module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
ad5d8eac 168MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
ae8d4ee7 169
e7ecd435
TH
170static int atapi_an;
171module_param(atapi_an, int, 0444);
172MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
173
1da177e4
LT
174MODULE_AUTHOR("Jeff Garzik");
175MODULE_DESCRIPTION("Library module for ATA devices");
176MODULE_LICENSE("GPL");
177MODULE_VERSION(DRV_VERSION);
178
0baab86b 179
9913ff8a
TH
180static bool ata_sstatus_online(u32 sstatus)
181{
182 return (sstatus & 0xf) == 0x3;
183}
184
1eca4365
TH
185/**
186 * ata_link_next - link iteration helper
187 * @link: the previous link, NULL to start
188 * @ap: ATA port containing links to iterate
189 * @mode: iteration mode, one of ATA_LITER_*
190 *
191 * LOCKING:
192 * Host lock or EH context.
aadffb68 193 *
1eca4365
TH
194 * RETURNS:
195 * Pointer to the next link.
aadffb68 196 */
1eca4365
TH
197struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
198 enum ata_link_iter_mode mode)
aadffb68 199{
1eca4365
TH
200 BUG_ON(mode != ATA_LITER_EDGE &&
201 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
202
aadffb68 203 /* NULL link indicates start of iteration */
1eca4365
TH
204 if (!link)
205 switch (mode) {
206 case ATA_LITER_EDGE:
207 case ATA_LITER_PMP_FIRST:
208 if (sata_pmp_attached(ap))
209 return ap->pmp_link;
210 /* fall through */
211 case ATA_LITER_HOST_FIRST:
212 return &ap->link;
213 }
aadffb68 214
1eca4365
TH
215 /* we just iterated over the host link, what's next? */
216 if (link == &ap->link)
217 switch (mode) {
218 case ATA_LITER_HOST_FIRST:
219 if (sata_pmp_attached(ap))
220 return ap->pmp_link;
221 /* fall through */
222 case ATA_LITER_PMP_FIRST:
223 if (unlikely(ap->slave_link))
b1c72916 224 return ap->slave_link;
1eca4365
TH
225 /* fall through */
226 case ATA_LITER_EDGE:
aadffb68 227 return NULL;
b1c72916 228 }
aadffb68 229
b1c72916
TH
230 /* slave_link excludes PMP */
231 if (unlikely(link == ap->slave_link))
232 return NULL;
233
1eca4365 234 /* we were over a PMP link */
aadffb68
TH
235 if (++link < ap->pmp_link + ap->nr_pmp_links)
236 return link;
1eca4365
TH
237
238 if (mode == ATA_LITER_PMP_FIRST)
239 return &ap->link;
240
aadffb68
TH
241 return NULL;
242}
243
1eca4365
TH
244/**
245 * ata_dev_next - device iteration helper
246 * @dev: the previous device, NULL to start
247 * @link: ATA link containing devices to iterate
248 * @mode: iteration mode, one of ATA_DITER_*
249 *
250 * LOCKING:
251 * Host lock or EH context.
252 *
253 * RETURNS:
254 * Pointer to the next device.
255 */
256struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
257 enum ata_dev_iter_mode mode)
258{
259 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
260 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
261
262 /* NULL dev indicates start of iteration */
263 if (!dev)
264 switch (mode) {
265 case ATA_DITER_ENABLED:
266 case ATA_DITER_ALL:
267 dev = link->device;
268 goto check;
269 case ATA_DITER_ENABLED_REVERSE:
270 case ATA_DITER_ALL_REVERSE:
271 dev = link->device + ata_link_max_devices(link) - 1;
272 goto check;
273 }
274
275 next:
276 /* move to the next one */
277 switch (mode) {
278 case ATA_DITER_ENABLED:
279 case ATA_DITER_ALL:
280 if (++dev < link->device + ata_link_max_devices(link))
281 goto check;
282 return NULL;
283 case ATA_DITER_ENABLED_REVERSE:
284 case ATA_DITER_ALL_REVERSE:
285 if (--dev >= link->device)
286 goto check;
287 return NULL;
288 }
289
290 check:
291 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
292 !ata_dev_enabled(dev))
293 goto next;
294 return dev;
295}
296
b1c72916
TH
297/**
298 * ata_dev_phys_link - find physical link for a device
299 * @dev: ATA device to look up physical link for
300 *
301 * Look up physical link which @dev is attached to. Note that
302 * this is different from @dev->link only when @dev is on slave
303 * link. For all other cases, it's the same as @dev->link.
304 *
305 * LOCKING:
306 * Don't care.
307 *
308 * RETURNS:
309 * Pointer to the found physical link.
310 */
311struct ata_link *ata_dev_phys_link(struct ata_device *dev)
312{
313 struct ata_port *ap = dev->link->ap;
314
315 if (!ap->slave_link)
316 return dev->link;
317 if (!dev->devno)
318 return &ap->link;
319 return ap->slave_link;
320}
321
33267325
TH
322/**
323 * ata_force_cbl - force cable type according to libata.force
4cdfa1b3 324 * @ap: ATA port of interest
33267325
TH
325 *
326 * Force cable type according to libata.force and whine about it.
327 * The last entry which has matching port number is used, so it
328 * can be specified as part of device force parameters. For
329 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
330 * same effect.
331 *
332 * LOCKING:
333 * EH context.
334 */
335void ata_force_cbl(struct ata_port *ap)
336{
337 int i;
338
339 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
340 const struct ata_force_ent *fe = &ata_force_tbl[i];
341
342 if (fe->port != -1 && fe->port != ap->print_id)
343 continue;
344
345 if (fe->param.cbl == ATA_CBL_NONE)
346 continue;
347
348 ap->cbl = fe->param.cbl;
a9a79dfe 349 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
33267325
TH
350 return;
351 }
352}
353
354/**
05944bdf 355 * ata_force_link_limits - force link limits according to libata.force
33267325
TH
356 * @link: ATA link of interest
357 *
05944bdf
TH
358 * Force link flags and SATA spd limit according to libata.force
359 * and whine about it. When only the port part is specified
360 * (e.g. 1:), the limit applies to all links connected to both
361 * the host link and all fan-out ports connected via PMP. If the
362 * device part is specified as 0 (e.g. 1.00:), it specifies the
363 * first fan-out link not the host link. Device number 15 always
b1c72916
TH
364 * points to the host link whether PMP is attached or not. If the
365 * controller has slave link, device number 16 points to it.
33267325
TH
366 *
367 * LOCKING:
368 * EH context.
369 */
05944bdf 370static void ata_force_link_limits(struct ata_link *link)
33267325 371{
05944bdf 372 bool did_spd = false;
b1c72916
TH
373 int linkno = link->pmp;
374 int i;
33267325
TH
375
376 if (ata_is_host_link(link))
b1c72916 377 linkno += 15;
33267325
TH
378
379 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
380 const struct ata_force_ent *fe = &ata_force_tbl[i];
381
382 if (fe->port != -1 && fe->port != link->ap->print_id)
383 continue;
384
385 if (fe->device != -1 && fe->device != linkno)
386 continue;
387
05944bdf
TH
388 /* only honor the first spd limit */
389 if (!did_spd && fe->param.spd_limit) {
390 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
a9a79dfe 391 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
05944bdf
TH
392 fe->param.name);
393 did_spd = true;
394 }
33267325 395
05944bdf
TH
396 /* let lflags stack */
397 if (fe->param.lflags) {
398 link->flags |= fe->param.lflags;
a9a79dfe 399 ata_link_notice(link,
05944bdf
TH
400 "FORCE: link flag 0x%x forced -> 0x%x\n",
401 fe->param.lflags, link->flags);
402 }
33267325
TH
403 }
404}
405
406/**
407 * ata_force_xfermask - force xfermask according to libata.force
408 * @dev: ATA device of interest
409 *
410 * Force xfer_mask according to libata.force and whine about it.
411 * For consistency with link selection, device number 15 selects
412 * the first device connected to the host link.
413 *
414 * LOCKING:
415 * EH context.
416 */
417static void ata_force_xfermask(struct ata_device *dev)
418{
419 int devno = dev->link->pmp + dev->devno;
420 int alt_devno = devno;
421 int i;
422
b1c72916
TH
423 /* allow n.15/16 for devices attached to host port */
424 if (ata_is_host_link(dev->link))
425 alt_devno += 15;
33267325
TH
426
427 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
428 const struct ata_force_ent *fe = &ata_force_tbl[i];
429 unsigned long pio_mask, mwdma_mask, udma_mask;
430
431 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
432 continue;
433
434 if (fe->device != -1 && fe->device != devno &&
435 fe->device != alt_devno)
436 continue;
437
438 if (!fe->param.xfer_mask)
439 continue;
440
441 ata_unpack_xfermask(fe->param.xfer_mask,
442 &pio_mask, &mwdma_mask, &udma_mask);
443 if (udma_mask)
444 dev->udma_mask = udma_mask;
445 else if (mwdma_mask) {
446 dev->udma_mask = 0;
447 dev->mwdma_mask = mwdma_mask;
448 } else {
449 dev->udma_mask = 0;
450 dev->mwdma_mask = 0;
451 dev->pio_mask = pio_mask;
452 }
453
a9a79dfe
JP
454 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
455 fe->param.name);
33267325
TH
456 return;
457 }
458}
459
460/**
461 * ata_force_horkage - force horkage according to libata.force
462 * @dev: ATA device of interest
463 *
464 * Force horkage according to libata.force and whine about it.
465 * For consistency with link selection, device number 15 selects
466 * the first device connected to the host link.
467 *
468 * LOCKING:
469 * EH context.
470 */
471static void ata_force_horkage(struct ata_device *dev)
472{
473 int devno = dev->link->pmp + dev->devno;
474 int alt_devno = devno;
475 int i;
476
b1c72916
TH
477 /* allow n.15/16 for devices attached to host port */
478 if (ata_is_host_link(dev->link))
479 alt_devno += 15;
33267325
TH
480
481 for (i = 0; i < ata_force_tbl_size; i++) {
482 const struct ata_force_ent *fe = &ata_force_tbl[i];
483
484 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
485 continue;
486
487 if (fe->device != -1 && fe->device != devno &&
488 fe->device != alt_devno)
489 continue;
490
491 if (!(~dev->horkage & fe->param.horkage_on) &&
492 !(dev->horkage & fe->param.horkage_off))
493 continue;
494
495 dev->horkage |= fe->param.horkage_on;
496 dev->horkage &= ~fe->param.horkage_off;
497
a9a79dfe
JP
498 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
499 fe->param.name);
33267325
TH
500 }
501}
502
436d34b3
TH
503/**
504 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
505 * @opcode: SCSI opcode
506 *
507 * Determine ATAPI command type from @opcode.
508 *
509 * LOCKING:
510 * None.
511 *
512 * RETURNS:
513 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
514 */
515int atapi_cmd_type(u8 opcode)
516{
517 switch (opcode) {
518 case GPCMD_READ_10:
519 case GPCMD_READ_12:
520 return ATAPI_READ;
521
522 case GPCMD_WRITE_10:
523 case GPCMD_WRITE_12:
524 case GPCMD_WRITE_AND_VERIFY_10:
525 return ATAPI_WRITE;
526
527 case GPCMD_READ_CD:
528 case GPCMD_READ_CD_MSF:
529 return ATAPI_READ_CD;
530
e52dcc48
TH
531 case ATA_16:
532 case ATA_12:
533 if (atapi_passthru16)
534 return ATAPI_PASS_THRU;
535 /* fall thru */
436d34b3
TH
536 default:
537 return ATAPI_MISC;
538 }
539}
540
1da177e4
LT
541/**
542 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
543 * @tf: Taskfile to convert
1da177e4 544 * @pmp: Port multiplier port
9977126c
TH
545 * @is_cmd: This FIS is for command
546 * @fis: Buffer into which data will output
1da177e4
LT
547 *
548 * Converts a standard ATA taskfile to a Serial ATA
549 * FIS structure (Register - Host to Device).
550 *
551 * LOCKING:
552 * Inherited from caller.
553 */
9977126c 554void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
1da177e4 555{
9977126c
TH
556 fis[0] = 0x27; /* Register - Host to Device FIS */
557 fis[1] = pmp & 0xf; /* Port multiplier number*/
558 if (is_cmd)
559 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
560
1da177e4
LT
561 fis[2] = tf->command;
562 fis[3] = tf->feature;
563
564 fis[4] = tf->lbal;
565 fis[5] = tf->lbam;
566 fis[6] = tf->lbah;
567 fis[7] = tf->device;
568
569 fis[8] = tf->hob_lbal;
570 fis[9] = tf->hob_lbam;
571 fis[10] = tf->hob_lbah;
572 fis[11] = tf->hob_feature;
573
574 fis[12] = tf->nsect;
575 fis[13] = tf->hob_nsect;
576 fis[14] = 0;
577 fis[15] = tf->ctl;
578
86a565e6
MC
579 fis[16] = tf->auxiliary & 0xff;
580 fis[17] = (tf->auxiliary >> 8) & 0xff;
581 fis[18] = (tf->auxiliary >> 16) & 0xff;
582 fis[19] = (tf->auxiliary >> 24) & 0xff;
1da177e4
LT
583}
584
585/**
586 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
587 * @fis: Buffer from which data will be input
588 * @tf: Taskfile to output
589 *
e12a1be6 590 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
591 *
592 * LOCKING:
593 * Inherited from caller.
594 */
595
057ace5e 596void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
597{
598 tf->command = fis[2]; /* status */
599 tf->feature = fis[3]; /* error */
600
601 tf->lbal = fis[4];
602 tf->lbam = fis[5];
603 tf->lbah = fis[6];
604 tf->device = fis[7];
605
606 tf->hob_lbal = fis[8];
607 tf->hob_lbam = fis[9];
608 tf->hob_lbah = fis[10];
609
610 tf->nsect = fis[12];
611 tf->hob_nsect = fis[13];
612}
613
8cbd6df1
AL
614static const u8 ata_rw_cmds[] = {
615 /* pio multi */
616 ATA_CMD_READ_MULTI,
617 ATA_CMD_WRITE_MULTI,
618 ATA_CMD_READ_MULTI_EXT,
619 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
620 0,
621 0,
622 0,
623 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
624 /* pio */
625 ATA_CMD_PIO_READ,
626 ATA_CMD_PIO_WRITE,
627 ATA_CMD_PIO_READ_EXT,
628 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
629 0,
630 0,
631 0,
632 0,
8cbd6df1
AL
633 /* dma */
634 ATA_CMD_READ,
635 ATA_CMD_WRITE,
636 ATA_CMD_READ_EXT,
9a3dccc4
TH
637 ATA_CMD_WRITE_EXT,
638 0,
639 0,
640 0,
641 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 642};
1da177e4
LT
643
644/**
8cbd6df1 645 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
646 * @tf: command to examine and configure
647 * @dev: device tf belongs to
1da177e4 648 *
2e9edbf8 649 * Examine the device configuration and tf->flags to calculate
8cbd6df1 650 * the proper read/write commands and protocol to use.
1da177e4
LT
651 *
652 * LOCKING:
653 * caller.
654 */
bd056d7e 655static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 656{
9a3dccc4 657 u8 cmd;
1da177e4 658
9a3dccc4 659 int index, fua, lba48, write;
2e9edbf8 660
9a3dccc4 661 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
662 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
663 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 664
8cbd6df1
AL
665 if (dev->flags & ATA_DFLAG_PIO) {
666 tf->protocol = ATA_PROT_PIO;
9a3dccc4 667 index = dev->multi_count ? 0 : 8;
9af5c9c9 668 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
669 /* Unable to use DMA due to host limitation */
670 tf->protocol = ATA_PROT_PIO;
0565c26d 671 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
672 } else {
673 tf->protocol = ATA_PROT_DMA;
9a3dccc4 674 index = 16;
8cbd6df1 675 }
1da177e4 676
9a3dccc4
TH
677 cmd = ata_rw_cmds[index + fua + lba48 + write];
678 if (cmd) {
679 tf->command = cmd;
680 return 0;
681 }
682 return -1;
1da177e4
LT
683}
684
35b649fe
TH
685/**
686 * ata_tf_read_block - Read block address from ATA taskfile
687 * @tf: ATA taskfile of interest
688 * @dev: ATA device @tf belongs to
689 *
690 * LOCKING:
691 * None.
692 *
693 * Read block address from @tf. This function can handle all
694 * three address formats - LBA, LBA48 and CHS. tf->protocol and
695 * flags select the address format to use.
696 *
697 * RETURNS:
698 * Block address read from @tf.
699 */
cffd1ee9 700u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
35b649fe
TH
701{
702 u64 block = 0;
703
fe16d4f2 704 if (tf->flags & ATA_TFLAG_LBA) {
35b649fe
TH
705 if (tf->flags & ATA_TFLAG_LBA48) {
706 block |= (u64)tf->hob_lbah << 40;
707 block |= (u64)tf->hob_lbam << 32;
44901a96 708 block |= (u64)tf->hob_lbal << 24;
35b649fe
TH
709 } else
710 block |= (tf->device & 0xf) << 24;
711
712 block |= tf->lbah << 16;
713 block |= tf->lbam << 8;
714 block |= tf->lbal;
715 } else {
716 u32 cyl, head, sect;
717
718 cyl = tf->lbam | (tf->lbah << 8);
719 head = tf->device & 0xf;
720 sect = tf->lbal;
721
ac8672ea 722 if (!sect) {
a9a79dfe
JP
723 ata_dev_warn(dev,
724 "device reported invalid CHS sector 0\n");
cffd1ee9 725 return U64_MAX;
ac8672ea
TH
726 }
727
728 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
35b649fe
TH
729 }
730
731 return block;
732}
733
bd056d7e
TH
734/**
735 * ata_build_rw_tf - Build ATA taskfile for given read/write request
736 * @tf: Target ATA taskfile
737 * @dev: ATA device @tf belongs to
738 * @block: Block address
739 * @n_block: Number of blocks
740 * @tf_flags: RW/FUA etc...
741 * @tag: tag
742 *
743 * LOCKING:
744 * None.
745 *
746 * Build ATA taskfile @tf for read/write request described by
747 * @block, @n_block, @tf_flags and @tag on @dev.
748 *
749 * RETURNS:
750 *
751 * 0 on success, -ERANGE if the request is too large for @dev,
752 * -EINVAL if the request is invalid.
753 */
754int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
755 u64 block, u32 n_block, unsigned int tf_flags,
756 unsigned int tag)
757{
758 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
759 tf->flags |= tf_flags;
760
6d1245bf 761 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
762 /* yay, NCQ */
763 if (!lba_48_ok(block, n_block))
764 return -ERANGE;
765
766 tf->protocol = ATA_PROT_NCQ;
767 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
768
769 if (tf->flags & ATA_TFLAG_WRITE)
770 tf->command = ATA_CMD_FPDMA_WRITE;
771 else
772 tf->command = ATA_CMD_FPDMA_READ;
773
774 tf->nsect = tag << 3;
775 tf->hob_feature = (n_block >> 8) & 0xff;
776 tf->feature = n_block & 0xff;
777
778 tf->hob_lbah = (block >> 40) & 0xff;
779 tf->hob_lbam = (block >> 32) & 0xff;
780 tf->hob_lbal = (block >> 24) & 0xff;
781 tf->lbah = (block >> 16) & 0xff;
782 tf->lbam = (block >> 8) & 0xff;
783 tf->lbal = block & 0xff;
784
9ca7cfa4 785 tf->device = ATA_LBA;
bd056d7e
TH
786 if (tf->flags & ATA_TFLAG_FUA)
787 tf->device |= 1 << 7;
788 } else if (dev->flags & ATA_DFLAG_LBA) {
789 tf->flags |= ATA_TFLAG_LBA;
790
791 if (lba_28_ok(block, n_block)) {
792 /* use LBA28 */
793 tf->device |= (block >> 24) & 0xf;
794 } else if (lba_48_ok(block, n_block)) {
795 if (!(dev->flags & ATA_DFLAG_LBA48))
796 return -ERANGE;
797
798 /* use LBA48 */
799 tf->flags |= ATA_TFLAG_LBA48;
800
801 tf->hob_nsect = (n_block >> 8) & 0xff;
802
803 tf->hob_lbah = (block >> 40) & 0xff;
804 tf->hob_lbam = (block >> 32) & 0xff;
805 tf->hob_lbal = (block >> 24) & 0xff;
806 } else
807 /* request too large even for LBA48 */
808 return -ERANGE;
809
810 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
811 return -EINVAL;
812
813 tf->nsect = n_block & 0xff;
814
815 tf->lbah = (block >> 16) & 0xff;
816 tf->lbam = (block >> 8) & 0xff;
817 tf->lbal = block & 0xff;
818
819 tf->device |= ATA_LBA;
820 } else {
821 /* CHS */
822 u32 sect, head, cyl, track;
823
824 /* The request -may- be too large for CHS addressing. */
825 if (!lba_28_ok(block, n_block))
826 return -ERANGE;
827
828 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
829 return -EINVAL;
830
831 /* Convert LBA to CHS */
832 track = (u32)block / dev->sectors;
833 cyl = track / dev->heads;
834 head = track % dev->heads;
835 sect = (u32)block % dev->sectors + 1;
836
837 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
838 (u32)block, track, cyl, head, sect);
839
840 /* Check whether the converted CHS can fit.
841 Cylinder: 0-65535
842 Head: 0-15
843 Sector: 1-255*/
844 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
845 return -ERANGE;
846
847 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
848 tf->lbal = sect;
849 tf->lbam = cyl;
850 tf->lbah = cyl >> 8;
851 tf->device |= head;
852 }
853
854 return 0;
855}
856
cb95d562
TH
857/**
858 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
859 * @pio_mask: pio_mask
860 * @mwdma_mask: mwdma_mask
861 * @udma_mask: udma_mask
862 *
863 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
864 * unsigned int xfer_mask.
865 *
866 * LOCKING:
867 * None.
868 *
869 * RETURNS:
870 * Packed xfer_mask.
871 */
7dc951ae
TH
872unsigned long ata_pack_xfermask(unsigned long pio_mask,
873 unsigned long mwdma_mask,
874 unsigned long udma_mask)
cb95d562
TH
875{
876 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
877 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
878 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
879}
880
c0489e4e
TH
881/**
882 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
883 * @xfer_mask: xfer_mask to unpack
884 * @pio_mask: resulting pio_mask
885 * @mwdma_mask: resulting mwdma_mask
886 * @udma_mask: resulting udma_mask
887 *
888 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
c9b5560a 889 * Any NULL destination masks will be ignored.
c0489e4e 890 */
7dc951ae
TH
891void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
892 unsigned long *mwdma_mask, unsigned long *udma_mask)
c0489e4e
TH
893{
894 if (pio_mask)
895 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
896 if (mwdma_mask)
897 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
898 if (udma_mask)
899 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
900}
901
cb95d562 902static const struct ata_xfer_ent {
be9a50c8 903 int shift, bits;
cb95d562
TH
904 u8 base;
905} ata_xfer_tbl[] = {
70cd071e
TH
906 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
907 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
908 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
cb95d562
TH
909 { -1, },
910};
911
912/**
913 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
914 * @xfer_mask: xfer_mask of interest
915 *
916 * Return matching XFER_* value for @xfer_mask. Only the highest
917 * bit of @xfer_mask is considered.
918 *
919 * LOCKING:
920 * None.
921 *
922 * RETURNS:
70cd071e 923 * Matching XFER_* value, 0xff if no match found.
cb95d562 924 */
7dc951ae 925u8 ata_xfer_mask2mode(unsigned long xfer_mask)
cb95d562
TH
926{
927 int highbit = fls(xfer_mask) - 1;
928 const struct ata_xfer_ent *ent;
929
930 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
931 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
932 return ent->base + highbit - ent->shift;
70cd071e 933 return 0xff;
cb95d562
TH
934}
935
936/**
937 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
938 * @xfer_mode: XFER_* of interest
939 *
940 * Return matching xfer_mask for @xfer_mode.
941 *
942 * LOCKING:
943 * None.
944 *
945 * RETURNS:
946 * Matching xfer_mask, 0 if no match found.
947 */
7dc951ae 948unsigned long ata_xfer_mode2mask(u8 xfer_mode)
cb95d562
TH
949{
950 const struct ata_xfer_ent *ent;
951
952 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
953 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
70cd071e
TH
954 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
955 & ~((1 << ent->shift) - 1);
cb95d562
TH
956 return 0;
957}
958
959/**
960 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
961 * @xfer_mode: XFER_* of interest
962 *
963 * Return matching xfer_shift for @xfer_mode.
964 *
965 * LOCKING:
966 * None.
967 *
968 * RETURNS:
969 * Matching xfer_shift, -1 if no match found.
970 */
7dc951ae 971int ata_xfer_mode2shift(unsigned long xfer_mode)
cb95d562
TH
972{
973 const struct ata_xfer_ent *ent;
974
975 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
976 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
977 return ent->shift;
978 return -1;
979}
980
1da177e4 981/**
1da7b0d0
TH
982 * ata_mode_string - convert xfer_mask to string
983 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
984 *
985 * Determine string which represents the highest speed
1da7b0d0 986 * (highest bit in @modemask).
1da177e4
LT
987 *
988 * LOCKING:
989 * None.
990 *
991 * RETURNS:
992 * Constant C string representing highest speed listed in
1da7b0d0 993 * @mode_mask, or the constant C string "<n/a>".
1da177e4 994 */
7dc951ae 995const char *ata_mode_string(unsigned long xfer_mask)
1da177e4 996{
75f554bc
TH
997 static const char * const xfer_mode_str[] = {
998 "PIO0",
999 "PIO1",
1000 "PIO2",
1001 "PIO3",
1002 "PIO4",
b352e57d
AC
1003 "PIO5",
1004 "PIO6",
75f554bc
TH
1005 "MWDMA0",
1006 "MWDMA1",
1007 "MWDMA2",
b352e57d
AC
1008 "MWDMA3",
1009 "MWDMA4",
75f554bc
TH
1010 "UDMA/16",
1011 "UDMA/25",
1012 "UDMA/33",
1013 "UDMA/44",
1014 "UDMA/66",
1015 "UDMA/100",
1016 "UDMA/133",
1017 "UDMA7",
1018 };
1da7b0d0 1019 int highbit;
1da177e4 1020
1da7b0d0
TH
1021 highbit = fls(xfer_mask) - 1;
1022 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1023 return xfer_mode_str[highbit];
1da177e4 1024 return "<n/a>";
1da177e4
LT
1025}
1026
d9027470 1027const char *sata_spd_string(unsigned int spd)
4c360c81
TH
1028{
1029 static const char * const spd_str[] = {
1030 "1.5 Gbps",
1031 "3.0 Gbps",
8522ee25 1032 "6.0 Gbps",
4c360c81
TH
1033 };
1034
1035 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1036 return "<unknown>";
1037 return spd_str[spd - 1];
1038}
1039
1da177e4
LT
1040/**
1041 * ata_dev_classify - determine device type based on ATA-spec signature
1042 * @tf: ATA taskfile register set for device to be identified
1043 *
1044 * Determine from taskfile register contents whether a device is
1045 * ATA or ATAPI, as per "Signature and persistence" section
1046 * of ATA/PI spec (volume 1, sect 5.14).
1047 *
1048 * LOCKING:
1049 * None.
1050 *
1051 * RETURNS:
9162c657
HR
1052 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1053 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1da177e4 1054 */
057ace5e 1055unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
1056{
1057 /* Apple's open source Darwin code hints that some devices only
1058 * put a proper signature into the LBA mid/high registers,
1059 * So, we only check those. It's sufficient for uniqueness.
633273a3
TH
1060 *
1061 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1062 * signatures for ATA and ATAPI devices attached on SerialATA,
1063 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1064 * spec has never mentioned about using different signatures
1065 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1066 * Multiplier specification began to use 0x69/0x96 to identify
1067 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1068 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1069 * 0x69/0x96 shortly and described them as reserved for
1070 * SerialATA.
1071 *
1072 * We follow the current spec and consider that 0x69/0x96
1073 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
79b42bab
TH
1074 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1075 * SEMB signature. This is worked around in
1076 * ata_dev_read_id().
1da177e4 1077 */
633273a3 1078 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1da177e4
LT
1079 DPRINTK("found ATA device by sig\n");
1080 return ATA_DEV_ATA;
1081 }
1082
633273a3 1083 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1da177e4
LT
1084 DPRINTK("found ATAPI device by sig\n");
1085 return ATA_DEV_ATAPI;
1086 }
1087
633273a3
TH
1088 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1089 DPRINTK("found PMP device by sig\n");
1090 return ATA_DEV_PMP;
1091 }
1092
1093 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
79b42bab
TH
1094 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1095 return ATA_DEV_SEMB;
633273a3
TH
1096 }
1097
9162c657
HR
1098 if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) {
1099 DPRINTK("found ZAC device by sig\n");
1100 return ATA_DEV_ZAC;
1101 }
1102
1da177e4
LT
1103 DPRINTK("unknown device\n");
1104 return ATA_DEV_UNKNOWN;
1105}
1106
1da177e4 1107/**
6a62a04d 1108 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
1109 * @id: IDENTIFY DEVICE results we will examine
1110 * @s: string into which data is output
1111 * @ofs: offset into identify device page
1112 * @len: length of string to return. must be an even number.
1113 *
1114 * The strings in the IDENTIFY DEVICE page are broken up into
1115 * 16-bit chunks. Run through the string, and output each
1116 * 8-bit chunk linearly, regardless of platform.
1117 *
1118 * LOCKING:
1119 * caller.
1120 */
1121
6a62a04d
TH
1122void ata_id_string(const u16 *id, unsigned char *s,
1123 unsigned int ofs, unsigned int len)
1da177e4
LT
1124{
1125 unsigned int c;
1126
963e4975
AC
1127 BUG_ON(len & 1);
1128
1da177e4
LT
1129 while (len > 0) {
1130 c = id[ofs] >> 8;
1131 *s = c;
1132 s++;
1133
1134 c = id[ofs] & 0xff;
1135 *s = c;
1136 s++;
1137
1138 ofs++;
1139 len -= 2;
1140 }
1141}
1142
0e949ff3 1143/**
6a62a04d 1144 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
1145 * @id: IDENTIFY DEVICE results we will examine
1146 * @s: string into which data is output
1147 * @ofs: offset into identify device page
1148 * @len: length of string to return. must be an odd number.
1149 *
6a62a04d 1150 * This function is identical to ata_id_string except that it
0e949ff3
TH
1151 * trims trailing spaces and terminates the resulting string with
1152 * null. @len must be actual maximum length (even number) + 1.
1153 *
1154 * LOCKING:
1155 * caller.
1156 */
6a62a04d
TH
1157void ata_id_c_string(const u16 *id, unsigned char *s,
1158 unsigned int ofs, unsigned int len)
0e949ff3
TH
1159{
1160 unsigned char *p;
1161
6a62a04d 1162 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
1163
1164 p = s + strnlen(s, len - 1);
1165 while (p > s && p[-1] == ' ')
1166 p--;
1167 *p = '\0';
1168}
0baab86b 1169
db6f8759
TH
1170static u64 ata_id_n_sectors(const u16 *id)
1171{
1172 if (ata_id_has_lba(id)) {
1173 if (ata_id_has_lba48(id))
968e594a 1174 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
db6f8759 1175 else
968e594a 1176 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
db6f8759
TH
1177 } else {
1178 if (ata_id_current_chs_valid(id))
968e594a
RH
1179 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1180 id[ATA_ID_CUR_SECTORS];
db6f8759 1181 else
968e594a
RH
1182 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1183 id[ATA_ID_SECTORS];
db6f8759
TH
1184 }
1185}
1186
a5987e0a 1187u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1e999736
AC
1188{
1189 u64 sectors = 0;
1190
1191 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1192 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
ba14a9c2 1193 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1e999736
AC
1194 sectors |= (tf->lbah & 0xff) << 16;
1195 sectors |= (tf->lbam & 0xff) << 8;
1196 sectors |= (tf->lbal & 0xff);
1197
a5987e0a 1198 return sectors;
1e999736
AC
1199}
1200
a5987e0a 1201u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1e999736
AC
1202{
1203 u64 sectors = 0;
1204
1205 sectors |= (tf->device & 0x0f) << 24;
1206 sectors |= (tf->lbah & 0xff) << 16;
1207 sectors |= (tf->lbam & 0xff) << 8;
1208 sectors |= (tf->lbal & 0xff);
1209
a5987e0a 1210 return sectors;
1e999736
AC
1211}
1212
1213/**
c728a914
TH
1214 * ata_read_native_max_address - Read native max address
1215 * @dev: target device
1216 * @max_sectors: out parameter for the result native max address
1e999736 1217 *
c728a914
TH
1218 * Perform an LBA48 or LBA28 native size query upon the device in
1219 * question.
1e999736 1220 *
c728a914
TH
1221 * RETURNS:
1222 * 0 on success, -EACCES if command is aborted by the drive.
1223 * -EIO on other errors.
1e999736 1224 */
c728a914 1225static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1e999736 1226{
c728a914 1227 unsigned int err_mask;
1e999736 1228 struct ata_taskfile tf;
c728a914 1229 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1230
1231 ata_tf_init(dev, &tf);
1232
c728a914 1233 /* always clear all address registers */
1e999736 1234 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1e999736 1235
c728a914
TH
1236 if (lba48) {
1237 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1238 tf.flags |= ATA_TFLAG_LBA48;
1239 } else
1240 tf.command = ATA_CMD_READ_NATIVE_MAX;
1e999736 1241
bd18bc04 1242 tf.protocol = ATA_PROT_NODATA;
c728a914
TH
1243 tf.device |= ATA_LBA;
1244
2b789108 1245 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914 1246 if (err_mask) {
a9a79dfe
JP
1247 ata_dev_warn(dev,
1248 "failed to read native max address (err_mask=0x%x)\n",
1249 err_mask);
c728a914
TH
1250 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1251 return -EACCES;
1252 return -EIO;
1253 }
1e999736 1254
c728a914 1255 if (lba48)
a5987e0a 1256 *max_sectors = ata_tf_to_lba48(&tf) + 1;
c728a914 1257 else
a5987e0a 1258 *max_sectors = ata_tf_to_lba(&tf) + 1;
2dcb407e 1259 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
93328e11 1260 (*max_sectors)--;
c728a914 1261 return 0;
1e999736
AC
1262}
1263
1264/**
c728a914
TH
1265 * ata_set_max_sectors - Set max sectors
1266 * @dev: target device
6b38d1d1 1267 * @new_sectors: new max sectors value to set for the device
1e999736 1268 *
c728a914
TH
1269 * Set max sectors of @dev to @new_sectors.
1270 *
1271 * RETURNS:
1272 * 0 on success, -EACCES if command is aborted or denied (due to
1273 * previous non-volatile SET_MAX) by the drive. -EIO on other
1274 * errors.
1e999736 1275 */
05027adc 1276static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1e999736 1277{
c728a914 1278 unsigned int err_mask;
1e999736 1279 struct ata_taskfile tf;
c728a914 1280 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1281
1282 new_sectors--;
1283
1284 ata_tf_init(dev, &tf);
1285
1e999736 1286 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
c728a914
TH
1287
1288 if (lba48) {
1289 tf.command = ATA_CMD_SET_MAX_EXT;
1290 tf.flags |= ATA_TFLAG_LBA48;
1291
1292 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1293 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1294 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1e582ba4 1295 } else {
c728a914
TH
1296 tf.command = ATA_CMD_SET_MAX;
1297
1e582ba4
TH
1298 tf.device |= (new_sectors >> 24) & 0xf;
1299 }
1300
bd18bc04 1301 tf.protocol = ATA_PROT_NODATA;
c728a914 1302 tf.device |= ATA_LBA;
1e999736
AC
1303
1304 tf.lbal = (new_sectors >> 0) & 0xff;
1305 tf.lbam = (new_sectors >> 8) & 0xff;
1306 tf.lbah = (new_sectors >> 16) & 0xff;
1e999736 1307
2b789108 1308 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914 1309 if (err_mask) {
a9a79dfe
JP
1310 ata_dev_warn(dev,
1311 "failed to set max address (err_mask=0x%x)\n",
1312 err_mask);
c728a914
TH
1313 if (err_mask == AC_ERR_DEV &&
1314 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1315 return -EACCES;
1316 return -EIO;
1317 }
1318
c728a914 1319 return 0;
1e999736
AC
1320}
1321
1322/**
1323 * ata_hpa_resize - Resize a device with an HPA set
1324 * @dev: Device to resize
1325 *
1326 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1327 * it if required to the full size of the media. The caller must check
1328 * the drive has the HPA feature set enabled.
05027adc
TH
1329 *
1330 * RETURNS:
1331 * 0 on success, -errno on failure.
1e999736 1332 */
05027adc 1333static int ata_hpa_resize(struct ata_device *dev)
1e999736 1334{
05027adc
TH
1335 struct ata_eh_context *ehc = &dev->link->eh_context;
1336 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
445d211b 1337 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
05027adc
TH
1338 u64 sectors = ata_id_n_sectors(dev->id);
1339 u64 native_sectors;
c728a914 1340 int rc;
a617c09f 1341
05027adc 1342 /* do we need to do it? */
9162c657 1343 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
05027adc
TH
1344 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1345 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
c728a914 1346 return 0;
1e999736 1347
05027adc
TH
1348 /* read native max address */
1349 rc = ata_read_native_max_address(dev, &native_sectors);
1350 if (rc) {
dda7aba1
TH
1351 /* If device aborted the command or HPA isn't going to
1352 * be unlocked, skip HPA resizing.
05027adc 1353 */
445d211b 1354 if (rc == -EACCES || !unlock_hpa) {
a9a79dfe
JP
1355 ata_dev_warn(dev,
1356 "HPA support seems broken, skipping HPA handling\n");
05027adc
TH
1357 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1358
1359 /* we can continue if device aborted the command */
1360 if (rc == -EACCES)
1361 rc = 0;
1e999736 1362 }
37301a55 1363
05027adc
TH
1364 return rc;
1365 }
5920dadf 1366 dev->n_native_sectors = native_sectors;
05027adc
TH
1367
1368 /* nothing to do? */
445d211b 1369 if (native_sectors <= sectors || !unlock_hpa) {
05027adc
TH
1370 if (!print_info || native_sectors == sectors)
1371 return 0;
1372
1373 if (native_sectors > sectors)
a9a79dfe 1374 ata_dev_info(dev,
05027adc
TH
1375 "HPA detected: current %llu, native %llu\n",
1376 (unsigned long long)sectors,
1377 (unsigned long long)native_sectors);
1378 else if (native_sectors < sectors)
a9a79dfe
JP
1379 ata_dev_warn(dev,
1380 "native sectors (%llu) is smaller than sectors (%llu)\n",
05027adc
TH
1381 (unsigned long long)native_sectors,
1382 (unsigned long long)sectors);
1383 return 0;
1384 }
1385
1386 /* let's unlock HPA */
1387 rc = ata_set_max_sectors(dev, native_sectors);
1388 if (rc == -EACCES) {
1389 /* if device aborted the command, skip HPA resizing */
a9a79dfe
JP
1390 ata_dev_warn(dev,
1391 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1392 (unsigned long long)sectors,
1393 (unsigned long long)native_sectors);
05027adc
TH
1394 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1395 return 0;
1396 } else if (rc)
1397 return rc;
1398
1399 /* re-read IDENTIFY data */
1400 rc = ata_dev_reread_id(dev, 0);
1401 if (rc) {
a9a79dfe
JP
1402 ata_dev_err(dev,
1403 "failed to re-read IDENTIFY data after HPA resizing\n");
05027adc
TH
1404 return rc;
1405 }
1406
1407 if (print_info) {
1408 u64 new_sectors = ata_id_n_sectors(dev->id);
a9a79dfe 1409 ata_dev_info(dev,
05027adc
TH
1410 "HPA unlocked: %llu -> %llu, native %llu\n",
1411 (unsigned long long)sectors,
1412 (unsigned long long)new_sectors,
1413 (unsigned long long)native_sectors);
1414 }
1415
1416 return 0;
1e999736
AC
1417}
1418
1da177e4
LT
1419/**
1420 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 1421 * @id: IDENTIFY DEVICE page to dump
1da177e4 1422 *
0bd3300a
TH
1423 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1424 * page.
1da177e4
LT
1425 *
1426 * LOCKING:
1427 * caller.
1428 */
1429
0bd3300a 1430static inline void ata_dump_id(const u16 *id)
1da177e4
LT
1431{
1432 DPRINTK("49==0x%04x "
1433 "53==0x%04x "
1434 "63==0x%04x "
1435 "64==0x%04x "
1436 "75==0x%04x \n",
0bd3300a
TH
1437 id[49],
1438 id[53],
1439 id[63],
1440 id[64],
1441 id[75]);
1da177e4
LT
1442 DPRINTK("80==0x%04x "
1443 "81==0x%04x "
1444 "82==0x%04x "
1445 "83==0x%04x "
1446 "84==0x%04x \n",
0bd3300a
TH
1447 id[80],
1448 id[81],
1449 id[82],
1450 id[83],
1451 id[84]);
1da177e4
LT
1452 DPRINTK("88==0x%04x "
1453 "93==0x%04x\n",
0bd3300a
TH
1454 id[88],
1455 id[93]);
1da177e4
LT
1456}
1457
cb95d562
TH
1458/**
1459 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1460 * @id: IDENTIFY data to compute xfer mask from
1461 *
1462 * Compute the xfermask for this device. This is not as trivial
1463 * as it seems if we must consider early devices correctly.
1464 *
1465 * FIXME: pre IDE drive timing (do we care ?).
1466 *
1467 * LOCKING:
1468 * None.
1469 *
1470 * RETURNS:
1471 * Computed xfermask
1472 */
7dc951ae 1473unsigned long ata_id_xfermask(const u16 *id)
cb95d562 1474{
7dc951ae 1475 unsigned long pio_mask, mwdma_mask, udma_mask;
cb95d562
TH
1476
1477 /* Usual case. Word 53 indicates word 64 is valid */
1478 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1479 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1480 pio_mask <<= 3;
1481 pio_mask |= 0x7;
1482 } else {
1483 /* If word 64 isn't valid then Word 51 high byte holds
1484 * the PIO timing number for the maximum. Turn it into
1485 * a mask.
1486 */
7a0f1c8a 1487 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb 1488 if (mode < 5) /* Valid PIO range */
2dcb407e 1489 pio_mask = (2 << mode) - 1;
46767aeb
AC
1490 else
1491 pio_mask = 1;
cb95d562
TH
1492
1493 /* But wait.. there's more. Design your standards by
1494 * committee and you too can get a free iordy field to
1495 * process. However its the speeds not the modes that
1496 * are supported... Note drivers using the timing API
1497 * will get this right anyway
1498 */
1499 }
1500
1501 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1502
b352e57d
AC
1503 if (ata_id_is_cfa(id)) {
1504 /*
1505 * Process compact flash extended modes
1506 */
62afe5d7
SS
1507 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1508 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
b352e57d
AC
1509
1510 if (pio)
1511 pio_mask |= (1 << 5);
1512 if (pio > 1)
1513 pio_mask |= (1 << 6);
1514 if (dma)
1515 mwdma_mask |= (1 << 3);
1516 if (dma > 1)
1517 mwdma_mask |= (1 << 4);
1518 }
1519
fb21f0d0
TH
1520 udma_mask = 0;
1521 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1522 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1523
1524 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1525}
1526
7102d230 1527static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1528{
77853bf2 1529 struct completion *waiting = qc->private_data;
a2a7a662 1530
a2a7a662 1531 complete(waiting);
a2a7a662
TH
1532}
1533
1534/**
2432697b 1535 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1536 * @dev: Device to which the command is sent
1537 * @tf: Taskfile registers for the command and the result
d69cf37d 1538 * @cdb: CDB for packet command
e227867f 1539 * @dma_dir: Data transfer direction of the command
5c1ad8b3 1540 * @sgl: sg list for the data buffer of the command
2432697b 1541 * @n_elem: Number of sg entries
2b789108 1542 * @timeout: Timeout in msecs (0 for default)
a2a7a662
TH
1543 *
1544 * Executes libata internal command with timeout. @tf contains
1545 * command on entry and result on return. Timeout and error
1546 * conditions are reported via return value. No recovery action
1547 * is taken after a command times out. It's caller's duty to
1548 * clean up after timeout.
1549 *
1550 * LOCKING:
1551 * None. Should be called with kernel context, might sleep.
551e8889
TH
1552 *
1553 * RETURNS:
1554 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1555 */
2432697b
TH
1556unsigned ata_exec_internal_sg(struct ata_device *dev,
1557 struct ata_taskfile *tf, const u8 *cdb,
87260216 1558 int dma_dir, struct scatterlist *sgl,
2b789108 1559 unsigned int n_elem, unsigned long timeout)
a2a7a662 1560{
9af5c9c9
TH
1561 struct ata_link *link = dev->link;
1562 struct ata_port *ap = link->ap;
a2a7a662 1563 u8 command = tf->command;
87fbc5a0 1564 int auto_timeout = 0;
a2a7a662 1565 struct ata_queued_cmd *qc;
2ab7db1f 1566 unsigned int tag, preempted_tag;
dedaf2b0 1567 u32 preempted_sactive, preempted_qc_active;
da917d69 1568 int preempted_nr_active_links;
60be6b9a 1569 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1570 unsigned long flags;
77853bf2 1571 unsigned int err_mask;
d95a717f 1572 int rc;
a2a7a662 1573
ba6a1308 1574 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1575
e3180499 1576 /* no internal command while frozen */
b51e9e5d 1577 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1578 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1579 return AC_ERR_SYSTEM;
1580 }
1581
2ab7db1f 1582 /* initialize internal qc */
a2a7a662 1583
2ab7db1f
TH
1584 /* XXX: Tag 0 is used for drivers with legacy EH as some
1585 * drivers choke if any other tag is given. This breaks
1586 * ata_tag_internal() test for those drivers. Don't use new
1587 * EH stuff without converting to it.
1588 */
1589 if (ap->ops->error_handler)
1590 tag = ATA_TAG_INTERNAL;
1591 else
1592 tag = 0;
1593
f69499f4 1594 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1595
1596 qc->tag = tag;
1597 qc->scsicmd = NULL;
1598 qc->ap = ap;
1599 qc->dev = dev;
1600 ata_qc_reinit(qc);
1601
9af5c9c9
TH
1602 preempted_tag = link->active_tag;
1603 preempted_sactive = link->sactive;
dedaf2b0 1604 preempted_qc_active = ap->qc_active;
da917d69 1605 preempted_nr_active_links = ap->nr_active_links;
9af5c9c9
TH
1606 link->active_tag = ATA_TAG_POISON;
1607 link->sactive = 0;
dedaf2b0 1608 ap->qc_active = 0;
da917d69 1609 ap->nr_active_links = 0;
2ab7db1f
TH
1610
1611 /* prepare & issue qc */
a2a7a662 1612 qc->tf = *tf;
d69cf37d
TH
1613 if (cdb)
1614 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e771451c
VP
1615
1616 /* some SATA bridges need us to indicate data xfer direction */
1617 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1618 dma_dir == DMA_FROM_DEVICE)
1619 qc->tf.feature |= ATAPI_DMADIR;
1620
e61e0672 1621 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1622 qc->dma_dir = dma_dir;
1623 if (dma_dir != DMA_NONE) {
2432697b 1624 unsigned int i, buflen = 0;
87260216 1625 struct scatterlist *sg;
2432697b 1626
87260216
JA
1627 for_each_sg(sgl, sg, n_elem, i)
1628 buflen += sg->length;
2432697b 1629
87260216 1630 ata_sg_init(qc, sgl, n_elem);
49c80429 1631 qc->nbytes = buflen;
a2a7a662
TH
1632 }
1633
77853bf2 1634 qc->private_data = &wait;
a2a7a662
TH
1635 qc->complete_fn = ata_qc_complete_internal;
1636
8e0e694a 1637 ata_qc_issue(qc);
a2a7a662 1638
ba6a1308 1639 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1640
87fbc5a0
TH
1641 if (!timeout) {
1642 if (ata_probe_timeout)
1643 timeout = ata_probe_timeout * 1000;
1644 else {
1645 timeout = ata_internal_cmd_timeout(dev, command);
1646 auto_timeout = 1;
1647 }
1648 }
2b789108 1649
c0c362b6
TH
1650 if (ap->ops->error_handler)
1651 ata_eh_release(ap);
1652
2b789108 1653 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
d95a717f 1654
c0c362b6
TH
1655 if (ap->ops->error_handler)
1656 ata_eh_acquire(ap);
1657
c429137a 1658 ata_sff_flush_pio_task(ap);
41ade50c 1659
d95a717f 1660 if (!rc) {
ba6a1308 1661 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1662
1663 /* We're racing with irq here. If we lose, the
1664 * following test prevents us from completing the qc
d95a717f
TH
1665 * twice. If we win, the port is frozen and will be
1666 * cleaned up by ->post_internal_cmd().
a2a7a662 1667 */
77853bf2 1668 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1669 qc->err_mask |= AC_ERR_TIMEOUT;
1670
1671 if (ap->ops->error_handler)
1672 ata_port_freeze(ap);
1673 else
1674 ata_qc_complete(qc);
f15a1daf 1675
0dd4b21f 1676 if (ata_msg_warn(ap))
a9a79dfe
JP
1677 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1678 command);
a2a7a662
TH
1679 }
1680
ba6a1308 1681 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1682 }
1683
d95a717f
TH
1684 /* do post_internal_cmd */
1685 if (ap->ops->post_internal_cmd)
1686 ap->ops->post_internal_cmd(qc);
1687
a51d644a
TH
1688 /* perform minimal error analysis */
1689 if (qc->flags & ATA_QCFLAG_FAILED) {
1690 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1691 qc->err_mask |= AC_ERR_DEV;
1692
1693 if (!qc->err_mask)
1694 qc->err_mask |= AC_ERR_OTHER;
1695
1696 if (qc->err_mask & ~AC_ERR_OTHER)
1697 qc->err_mask &= ~AC_ERR_OTHER;
d95a717f
TH
1698 }
1699
15869303 1700 /* finish up */
ba6a1308 1701 spin_lock_irqsave(ap->lock, flags);
15869303 1702
e61e0672 1703 *tf = qc->result_tf;
77853bf2
TH
1704 err_mask = qc->err_mask;
1705
1706 ata_qc_free(qc);
9af5c9c9
TH
1707 link->active_tag = preempted_tag;
1708 link->sactive = preempted_sactive;
dedaf2b0 1709 ap->qc_active = preempted_qc_active;
da917d69 1710 ap->nr_active_links = preempted_nr_active_links;
77853bf2 1711
ba6a1308 1712 spin_unlock_irqrestore(ap->lock, flags);
15869303 1713
87fbc5a0
TH
1714 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1715 ata_internal_cmd_timed_out(dev, command);
1716
77853bf2 1717 return err_mask;
a2a7a662
TH
1718}
1719
2432697b 1720/**
33480a0e 1721 * ata_exec_internal - execute libata internal command
2432697b
TH
1722 * @dev: Device to which the command is sent
1723 * @tf: Taskfile registers for the command and the result
1724 * @cdb: CDB for packet command
e227867f 1725 * @dma_dir: Data transfer direction of the command
2432697b
TH
1726 * @buf: Data buffer of the command
1727 * @buflen: Length of data buffer
2b789108 1728 * @timeout: Timeout in msecs (0 for default)
2432697b
TH
1729 *
1730 * Wrapper around ata_exec_internal_sg() which takes simple
1731 * buffer instead of sg list.
1732 *
1733 * LOCKING:
1734 * None. Should be called with kernel context, might sleep.
1735 *
1736 * RETURNS:
1737 * Zero on success, AC_ERR_* mask on failure
1738 */
1739unsigned ata_exec_internal(struct ata_device *dev,
1740 struct ata_taskfile *tf, const u8 *cdb,
2b789108
TH
1741 int dma_dir, void *buf, unsigned int buflen,
1742 unsigned long timeout)
2432697b 1743{
33480a0e
TH
1744 struct scatterlist *psg = NULL, sg;
1745 unsigned int n_elem = 0;
2432697b 1746
33480a0e
TH
1747 if (dma_dir != DMA_NONE) {
1748 WARN_ON(!buf);
1749 sg_init_one(&sg, buf, buflen);
1750 psg = &sg;
1751 n_elem++;
1752 }
2432697b 1753
2b789108
TH
1754 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1755 timeout);
2432697b
TH
1756}
1757
1bc4ccff
AC
1758/**
1759 * ata_pio_need_iordy - check if iordy needed
1760 * @adev: ATA device
1761 *
1762 * Check if the current speed of the device requires IORDY. Used
1763 * by various controllers for chip configuration.
1764 */
1bc4ccff
AC
1765unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1766{
0d9e6659
TH
1767 /* Don't set IORDY if we're preparing for reset. IORDY may
1768 * lead to controller lock up on certain controllers if the
1769 * port is not occupied. See bko#11703 for details.
1770 */
1771 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1772 return 0;
1773 /* Controller doesn't support IORDY. Probably a pointless
1774 * check as the caller should know this.
1775 */
9af5c9c9 1776 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1bc4ccff 1777 return 0;
5c18c4d2
DD
1778 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1779 if (ata_id_is_cfa(adev->id)
1780 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1781 return 0;
432729f0
AC
1782 /* PIO3 and higher it is mandatory */
1783 if (adev->pio_mode > XFER_PIO_2)
1784 return 1;
1785 /* We turn it on when possible */
1786 if (ata_id_has_iordy(adev->id))
1bc4ccff 1787 return 1;
432729f0
AC
1788 return 0;
1789}
2e9edbf8 1790
432729f0
AC
1791/**
1792 * ata_pio_mask_no_iordy - Return the non IORDY mask
1793 * @adev: ATA device
1794 *
1795 * Compute the highest mode possible if we are not using iordy. Return
1796 * -1 if no iordy mode is available.
1797 */
432729f0
AC
1798static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1799{
1bc4ccff 1800 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1bc4ccff 1801 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
432729f0 1802 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1bc4ccff
AC
1803 /* Is the speed faster than the drive allows non IORDY ? */
1804 if (pio) {
1805 /* This is cycle times not frequency - watch the logic! */
1806 if (pio > 240) /* PIO2 is 240nS per cycle */
432729f0
AC
1807 return 3 << ATA_SHIFT_PIO;
1808 return 7 << ATA_SHIFT_PIO;
1bc4ccff
AC
1809 }
1810 }
432729f0 1811 return 3 << ATA_SHIFT_PIO;
1bc4ccff
AC
1812}
1813
963e4975
AC
1814/**
1815 * ata_do_dev_read_id - default ID read method
1816 * @dev: device
1817 * @tf: proposed taskfile
1818 * @id: data buffer
1819 *
1820 * Issue the identify taskfile and hand back the buffer containing
1821 * identify data. For some RAID controllers and for pre ATA devices
1822 * this function is wrapped or replaced by the driver
1823 */
1824unsigned int ata_do_dev_read_id(struct ata_device *dev,
1825 struct ata_taskfile *tf, u16 *id)
1826{
1827 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1828 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1829}
1830
1da177e4 1831/**
49016aca 1832 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1833 * @dev: target device
1834 * @p_class: pointer to class of the target device (may be changed)
bff04647 1835 * @flags: ATA_READID_* flags
fe635c7e 1836 * @id: buffer to read IDENTIFY data into
1da177e4 1837 *
49016aca
TH
1838 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1839 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1840 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1841 * for pre-ATA4 drives.
1da177e4 1842 *
50a99018 1843 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2dcb407e 1844 * now we abort if we hit that case.
50a99018 1845 *
1da177e4 1846 * LOCKING:
49016aca
TH
1847 * Kernel thread context (may sleep)
1848 *
1849 * RETURNS:
1850 * 0 on success, -errno otherwise.
1da177e4 1851 */
a9beec95 1852int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 1853 unsigned int flags, u16 *id)
1da177e4 1854{
9af5c9c9 1855 struct ata_port *ap = dev->link->ap;
49016aca 1856 unsigned int class = *p_class;
a0123703 1857 struct ata_taskfile tf;
49016aca
TH
1858 unsigned int err_mask = 0;
1859 const char *reason;
79b42bab 1860 bool is_semb = class == ATA_DEV_SEMB;
54936f8b 1861 int may_fallback = 1, tried_spinup = 0;
49016aca 1862 int rc;
1da177e4 1863
0dd4b21f 1864 if (ata_msg_ctl(ap))
a9a79dfe 1865 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1da177e4 1866
963e4975 1867retry:
3373efd8 1868 ata_tf_init(dev, &tf);
a0123703 1869
49016aca 1870 switch (class) {
79b42bab
TH
1871 case ATA_DEV_SEMB:
1872 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
49016aca 1873 case ATA_DEV_ATA:
9162c657 1874 case ATA_DEV_ZAC:
a0123703 1875 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1876 break;
1877 case ATA_DEV_ATAPI:
a0123703 1878 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1879 break;
1880 default:
1881 rc = -ENODEV;
1882 reason = "unsupported class";
1883 goto err_out;
1da177e4
LT
1884 }
1885
a0123703 1886 tf.protocol = ATA_PROT_PIO;
81afe893
TH
1887
1888 /* Some devices choke if TF registers contain garbage. Make
1889 * sure those are properly initialized.
1890 */
1891 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1892
1893 /* Device presence detection is unreliable on some
1894 * controllers. Always poll IDENTIFY if available.
1895 */
1896 tf.flags |= ATA_TFLAG_POLLING;
1da177e4 1897
963e4975
AC
1898 if (ap->ops->read_id)
1899 err_mask = ap->ops->read_id(dev, &tf, id);
1900 else
1901 err_mask = ata_do_dev_read_id(dev, &tf, id);
1902
a0123703 1903 if (err_mask) {
800b3996 1904 if (err_mask & AC_ERR_NODEV_HINT) {
a9a79dfe 1905 ata_dev_dbg(dev, "NODEV after polling detection\n");
55a8e2c8
TH
1906 return -ENOENT;
1907 }
1908
79b42bab 1909 if (is_semb) {
a9a79dfe
JP
1910 ata_dev_info(dev,
1911 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
79b42bab
TH
1912 /* SEMB is not supported yet */
1913 *p_class = ATA_DEV_SEMB_UNSUP;
1914 return 0;
1915 }
1916
1ffc151f
TH
1917 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1918 /* Device or controller might have reported
1919 * the wrong device class. Give a shot at the
1920 * other IDENTIFY if the current one is
1921 * aborted by the device.
1922 */
1923 if (may_fallback) {
1924 may_fallback = 0;
1925
1926 if (class == ATA_DEV_ATA)
1927 class = ATA_DEV_ATAPI;
1928 else
1929 class = ATA_DEV_ATA;
1930 goto retry;
1931 }
1932
1933 /* Control reaches here iff the device aborted
1934 * both flavors of IDENTIFYs which happens
1935 * sometimes with phantom devices.
1936 */
a9a79dfe
JP
1937 ata_dev_dbg(dev,
1938 "both IDENTIFYs aborted, assuming NODEV\n");
1ffc151f 1939 return -ENOENT;
54936f8b
TH
1940 }
1941
49016aca
TH
1942 rc = -EIO;
1943 reason = "I/O error";
1da177e4
LT
1944 goto err_out;
1945 }
1946
43c9c591 1947 if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
a9a79dfe
JP
1948 ata_dev_dbg(dev, "dumping IDENTIFY data, "
1949 "class=%d may_fallback=%d tried_spinup=%d\n",
1950 class, may_fallback, tried_spinup);
43c9c591
TH
1951 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1952 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1953 }
1954
54936f8b
TH
1955 /* Falling back doesn't make sense if ID data was read
1956 * successfully at least once.
1957 */
1958 may_fallback = 0;
1959
49016aca 1960 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1961
49016aca 1962 /* sanity check */
a4f5749b 1963 rc = -EINVAL;
6070068b 1964 reason = "device reports invalid type";
a4f5749b 1965
9162c657 1966 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
a4f5749b
TH
1967 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1968 goto err_out;
db63a4c8
AW
1969 if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1970 ata_id_is_ata(id)) {
1971 ata_dev_dbg(dev,
1972 "host indicates ignore ATA devices, ignored\n");
1973 return -ENOENT;
1974 }
a4f5749b
TH
1975 } else {
1976 if (ata_id_is_ata(id))
1977 goto err_out;
49016aca
TH
1978 }
1979
169439c2
ML
1980 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1981 tried_spinup = 1;
1982 /*
1983 * Drive powered-up in standby mode, and requires a specific
1984 * SET_FEATURES spin-up subcommand before it will accept
1985 * anything other than the original IDENTIFY command.
1986 */
218f3d30 1987 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
fb0582f9 1988 if (err_mask && id[2] != 0x738c) {
169439c2
ML
1989 rc = -EIO;
1990 reason = "SPINUP failed";
1991 goto err_out;
1992 }
1993 /*
1994 * If the drive initially returned incomplete IDENTIFY info,
1995 * we now must reissue the IDENTIFY command.
1996 */
1997 if (id[2] == 0x37c8)
1998 goto retry;
1999 }
2000
9162c657
HR
2001 if ((flags & ATA_READID_POSTRESET) &&
2002 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
49016aca
TH
2003 /*
2004 * The exact sequence expected by certain pre-ATA4 drives is:
2005 * SRST RESET
50a99018
AC
2006 * IDENTIFY (optional in early ATA)
2007 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
49016aca
TH
2008 * anything else..
2009 * Some drives were very specific about that exact sequence.
50a99018
AC
2010 *
2011 * Note that ATA4 says lba is mandatory so the second check
c9404c9c 2012 * should never trigger.
49016aca
TH
2013 */
2014 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 2015 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
2016 if (err_mask) {
2017 rc = -EIO;
2018 reason = "INIT_DEV_PARAMS failed";
2019 goto err_out;
2020 }
2021
2022 /* current CHS translation info (id[53-58]) might be
2023 * changed. reread the identify device info.
2024 */
bff04647 2025 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
2026 goto retry;
2027 }
2028 }
2029
2030 *p_class = class;
fe635c7e 2031
49016aca
TH
2032 return 0;
2033
2034 err_out:
88574551 2035 if (ata_msg_warn(ap))
a9a79dfe
JP
2036 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2037 reason, err_mask);
49016aca
TH
2038 return rc;
2039}
2040
9062712f
TH
2041static int ata_do_link_spd_horkage(struct ata_device *dev)
2042{
2043 struct ata_link *plink = ata_dev_phys_link(dev);
2044 u32 target, target_limit;
2045
2046 if (!sata_scr_valid(plink))
2047 return 0;
2048
2049 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2050 target = 1;
2051 else
2052 return 0;
2053
2054 target_limit = (1 << target) - 1;
2055
2056 /* if already on stricter limit, no need to push further */
2057 if (plink->sata_spd_limit <= target_limit)
2058 return 0;
2059
2060 plink->sata_spd_limit = target_limit;
2061
2062 /* Request another EH round by returning -EAGAIN if link is
2063 * going faster than the target speed. Forward progress is
2064 * guaranteed by setting sata_spd_limit to target_limit above.
2065 */
2066 if (plink->sata_spd > target) {
a9a79dfe
JP
2067 ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2068 sata_spd_string(target));
9062712f
TH
2069 return -EAGAIN;
2070 }
2071 return 0;
2072}
2073
3373efd8 2074static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 2075{
9af5c9c9 2076 struct ata_port *ap = dev->link->ap;
9ce8e307
JA
2077
2078 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2079 return 0;
2080
9af5c9c9 2081 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
2082}
2083
5a233551
HR
2084static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2085{
2086 struct ata_port *ap = dev->link->ap;
2087 unsigned int err_mask;
fe5af0cc
HR
2088 int log_index = ATA_LOG_NCQ_SEND_RECV * 2;
2089 u16 log_pages;
5a233551 2090
fe5af0cc
HR
2091 err_mask = ata_read_log_page(dev, ATA_LOG_DIRECTORY,
2092 0, ap->sector_buf, 1);
2093 if (err_mask) {
2094 ata_dev_dbg(dev,
2095 "failed to get Log Directory Emask 0x%x\n",
2096 err_mask);
2097 return;
2098 }
2099 log_pages = get_unaligned_le16(&ap->sector_buf[log_index]);
2100 if (!log_pages) {
2101 ata_dev_warn(dev,
2102 "NCQ Send/Recv Log not supported\n");
2103 return;
2104 }
5a233551
HR
2105 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2106 0, ap->sector_buf, 1);
2107 if (err_mask) {
2108 ata_dev_dbg(dev,
2109 "failed to get NCQ Send/Recv Log Emask 0x%x\n",
2110 err_mask);
2111 } else {
2112 u8 *cmds = dev->ncq_send_recv_cmds;
2113
2114 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2115 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2116
2117 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2118 ata_dev_dbg(dev, "disabling queued TRIM support\n");
2119 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2120 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2121 }
2122 }
2123}
2124
284b3b77
HR
2125static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2126{
2127 struct ata_port *ap = dev->link->ap;
2128 unsigned int err_mask;
2129 int log_index = ATA_LOG_NCQ_NON_DATA * 2;
2130 u16 log_pages;
2131
2132 err_mask = ata_read_log_page(dev, ATA_LOG_DIRECTORY,
2133 0, ap->sector_buf, 1);
2134 if (err_mask) {
2135 ata_dev_dbg(dev,
2136 "failed to get Log Directory Emask 0x%x\n",
2137 err_mask);
2138 return;
2139 }
2140 log_pages = get_unaligned_le16(&ap->sector_buf[log_index]);
2141 if (!log_pages) {
2142 ata_dev_warn(dev,
2143 "NCQ Send/Recv Log not supported\n");
2144 return;
2145 }
2146 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2147 0, ap->sector_buf, 1);
2148 if (err_mask) {
2149 ata_dev_dbg(dev,
2150 "failed to get NCQ Non-Data Log Emask 0x%x\n",
2151 err_mask);
2152 } else {
2153 u8 *cmds = dev->ncq_non_data_cmds;
2154
2155 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE);
2156 }
2157}
2158
388539f3 2159static int ata_dev_config_ncq(struct ata_device *dev,
a6e6ce8e
TH
2160 char *desc, size_t desc_sz)
2161{
9af5c9c9 2162 struct ata_port *ap = dev->link->ap;
a6e6ce8e 2163 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
388539f3
SL
2164 unsigned int err_mask;
2165 char *aa_desc = "";
a6e6ce8e
TH
2166
2167 if (!ata_id_has_ncq(dev->id)) {
2168 desc[0] = '\0';
388539f3 2169 return 0;
a6e6ce8e 2170 }
75683fe7 2171 if (dev->horkage & ATA_HORKAGE_NONCQ) {
6919a0a6 2172 snprintf(desc, desc_sz, "NCQ (not used)");
388539f3 2173 return 0;
6919a0a6 2174 }
a6e6ce8e 2175 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 2176 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
2177 dev->flags |= ATA_DFLAG_NCQ;
2178 }
2179
388539f3
SL
2180 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2181 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2182 ata_id_has_fpdma_aa(dev->id)) {
2183 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2184 SATA_FPDMA_AA);
2185 if (err_mask) {
a9a79dfe
JP
2186 ata_dev_err(dev,
2187 "failed to enable AA (error_mask=0x%x)\n",
2188 err_mask);
388539f3
SL
2189 if (err_mask != AC_ERR_DEV) {
2190 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2191 return -EIO;
2192 }
2193 } else
2194 aa_desc = ", AA";
2195 }
2196
a6e6ce8e 2197 if (hdepth >= ddepth)
388539f3 2198 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
a6e6ce8e 2199 else
388539f3
SL
2200 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2201 ddepth, aa_desc);
ed36911c 2202
284b3b77
HR
2203 if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2204 if (ata_id_has_ncq_send_and_recv(dev->id))
2205 ata_dev_config_ncq_send_recv(dev);
2206 if (ata_id_has_ncq_non_data(dev->id))
2207 ata_dev_config_ncq_non_data(dev);
2208 }
f78dea06 2209
388539f3 2210 return 0;
a6e6ce8e 2211}
f78dea06 2212
e87fd28c
HR
2213static void ata_dev_config_sense_reporting(struct ata_device *dev)
2214{
2215 unsigned int err_mask;
2216
2217 if (!ata_id_has_sense_reporting(dev->id))
2218 return;
2219
2220 if (ata_id_sense_reporting_enabled(dev->id))
2221 return;
2222
2223 err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2224 if (err_mask) {
2225 ata_dev_dbg(dev,
2226 "failed to enable Sense Data Reporting, Emask 0x%x\n",
2227 err_mask);
2228 }
2229}
2230
6d1003ae
HR
2231static void ata_dev_config_zac(struct ata_device *dev)
2232{
2233 struct ata_port *ap = dev->link->ap;
2234 unsigned int err_mask;
2235 u8 *identify_buf = ap->sector_buf;
2236 int log_index = ATA_LOG_SATA_ID_DEV_DATA * 2, i, found = 0;
2237 u16 log_pages;
2238
2239 dev->zac_zones_optimal_open = U32_MAX;
2240 dev->zac_zones_optimal_nonseq = U32_MAX;
2241 dev->zac_zones_max_open = U32_MAX;
2242
2243 /*
2244 * Always set the 'ZAC' flag for Host-managed devices.
2245 */
2246 if (dev->class == ATA_DEV_ZAC)
2247 dev->flags |= ATA_DFLAG_ZAC;
2248 else if (ata_id_zoned_cap(dev->id) == 0x01)
2249 /*
2250 * Check for host-aware devices.
2251 */
2252 dev->flags |= ATA_DFLAG_ZAC;
2253
2254 if (!(dev->flags & ATA_DFLAG_ZAC))
2255 return;
2256
2257 /*
2258 * Read Log Directory to figure out if IDENTIFY DEVICE log
2259 * is supported.
2260 */
2261 err_mask = ata_read_log_page(dev, ATA_LOG_DIRECTORY,
2262 0, ap->sector_buf, 1);
2263 if (err_mask) {
2264 ata_dev_info(dev,
2265 "failed to get Log Directory Emask 0x%x\n",
2266 err_mask);
2267 return;
2268 }
2269 log_pages = get_unaligned_le16(&ap->sector_buf[log_index]);
2270 if (log_pages == 0) {
2271 ata_dev_warn(dev,
2272 "ATA Identify Device Log not supported\n");
2273 return;
2274 }
2275 /*
2276 * Read IDENTIFY DEVICE data log, page 0, to figure out
2277 * if page 9 is supported.
2278 */
2279 err_mask = ata_read_log_page(dev, ATA_LOG_SATA_ID_DEV_DATA, 0,
2280 identify_buf, 1);
2281 if (err_mask) {
2282 ata_dev_info(dev,
2283 "failed to get Device Identify Log Emask 0x%x\n",
2284 err_mask);
2285 return;
2286 }
2287 log_pages = identify_buf[8];
2288 for (i = 0; i < log_pages; i++) {
2289 if (identify_buf[9 + i] == ATA_LOG_ZONED_INFORMATION) {
2290 found++;
2291 break;
ed36911c
MC
2292 }
2293 }
6d1003ae
HR
2294 if (!found) {
2295 ata_dev_warn(dev,
2296 "ATA Zoned Information Log not supported\n");
2297 return;
2298 }
ed36911c 2299
6d1003ae
HR
2300 /*
2301 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2302 */
2303 err_mask = ata_read_log_page(dev, ATA_LOG_SATA_ID_DEV_DATA,
2304 ATA_LOG_ZONED_INFORMATION,
2305 identify_buf, 1);
2306 if (!err_mask) {
2307 u64 zoned_cap, opt_open, opt_nonseq, max_open;
2308
2309 zoned_cap = get_unaligned_le64(&identify_buf[8]);
2310 if ((zoned_cap >> 63))
2311 dev->zac_zoned_cap = (zoned_cap & 1);
2312 opt_open = get_unaligned_le64(&identify_buf[24]);
2313 if ((opt_open >> 63))
2314 dev->zac_zones_optimal_open = (u32)opt_open;
2315 opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2316 if ((opt_nonseq >> 63))
2317 dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2318 max_open = get_unaligned_le64(&identify_buf[40]);
2319 if ((max_open >> 63))
2320 dev->zac_zones_max_open = (u32)max_open;
2321 }
a6e6ce8e
TH
2322}
2323
49016aca 2324/**
ffeae418 2325 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
2326 * @dev: Target device to configure
2327 *
2328 * Configure @dev according to @dev->id. Generic and low-level
2329 * driver specific fixups are also applied.
49016aca
TH
2330 *
2331 * LOCKING:
ffeae418
TH
2332 * Kernel thread context (may sleep)
2333 *
2334 * RETURNS:
2335 * 0 on success, -errno otherwise
49016aca 2336 */
efdaedc4 2337int ata_dev_configure(struct ata_device *dev)
49016aca 2338{
9af5c9c9
TH
2339 struct ata_port *ap = dev->link->ap;
2340 struct ata_eh_context *ehc = &dev->link->eh_context;
6746544c 2341 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1148c3a7 2342 const u16 *id = dev->id;
7dc951ae 2343 unsigned long xfer_mask;
65fe1f0f 2344 unsigned int err_mask;
b352e57d 2345 char revbuf[7]; /* XYZ-99\0 */
3f64f565
EM
2346 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2347 char modelbuf[ATA_ID_PROD_LEN+1];
e6d902a3 2348 int rc;
49016aca 2349
0dd4b21f 2350 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
a9a79dfe 2351 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
ffeae418 2352 return 0;
49016aca
TH
2353 }
2354
0dd4b21f 2355 if (ata_msg_probe(ap))
a9a79dfe 2356 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1da177e4 2357
75683fe7
TH
2358 /* set horkage */
2359 dev->horkage |= ata_dev_blacklisted(dev);
33267325 2360 ata_force_horkage(dev);
75683fe7 2361
50af2fa1 2362 if (dev->horkage & ATA_HORKAGE_DISABLE) {
a9a79dfe 2363 ata_dev_info(dev, "unsupported device, disabling\n");
50af2fa1
TH
2364 ata_dev_disable(dev);
2365 return 0;
2366 }
2367
2486fa56
TH
2368 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2369 dev->class == ATA_DEV_ATAPI) {
a9a79dfe
JP
2370 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2371 atapi_enabled ? "not supported with this driver"
2372 : "disabled");
2486fa56
TH
2373 ata_dev_disable(dev);
2374 return 0;
2375 }
2376
9062712f
TH
2377 rc = ata_do_link_spd_horkage(dev);
2378 if (rc)
2379 return rc;
2380
ecd75ad5
TH
2381 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2382 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2383 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2384 dev->horkage |= ATA_HORKAGE_NOLPM;
2385
2386 if (dev->horkage & ATA_HORKAGE_NOLPM) {
2387 ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2388 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2389 }
2390
6746544c
TH
2391 /* let ACPI work its magic */
2392 rc = ata_acpi_on_devcfg(dev);
2393 if (rc)
2394 return rc;
08573a86 2395
05027adc
TH
2396 /* massage HPA, do it early as it might change IDENTIFY data */
2397 rc = ata_hpa_resize(dev);
2398 if (rc)
2399 return rc;
2400
c39f5ebe 2401 /* print device capabilities */
0dd4b21f 2402 if (ata_msg_probe(ap))
a9a79dfe
JP
2403 ata_dev_dbg(dev,
2404 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2405 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2406 __func__,
2407 id[49], id[82], id[83], id[84],
2408 id[85], id[86], id[87], id[88]);
c39f5ebe 2409
208a9933 2410 /* initialize to-be-configured parameters */
ea1dd4e1 2411 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
2412 dev->max_sectors = 0;
2413 dev->cdb_len = 0;
2414 dev->n_sectors = 0;
2415 dev->cylinders = 0;
2416 dev->heads = 0;
2417 dev->sectors = 0;
e18086d6 2418 dev->multi_count = 0;
208a9933 2419
1da177e4
LT
2420 /*
2421 * common ATA, ATAPI feature tests
2422 */
2423
ff8854b2 2424 /* find max transfer mode; for printk only */
1148c3a7 2425 xfer_mask = ata_id_xfermask(id);
1da177e4 2426
0dd4b21f
BP
2427 if (ata_msg_probe(ap))
2428 ata_dump_id(id);
1da177e4 2429
ef143d57
AL
2430 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2431 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2432 sizeof(fwrevbuf));
2433
2434 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2435 sizeof(modelbuf));
2436
1da177e4 2437 /* ATA-specific feature tests */
9162c657 2438 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
b352e57d 2439 if (ata_id_is_cfa(id)) {
62afe5d7
SS
2440 /* CPRM may make this media unusable */
2441 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
a9a79dfe
JP
2442 ata_dev_warn(dev,
2443 "supports DRM functions and may not be fully accessible\n");
b352e57d 2444 snprintf(revbuf, 7, "CFA");
ae8d4ee7 2445 } else {
2dcb407e 2446 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
ae8d4ee7
AC
2447 /* Warn the user if the device has TPM extensions */
2448 if (ata_id_has_tpm(id))
a9a79dfe
JP
2449 ata_dev_warn(dev,
2450 "supports DRM functions and may not be fully accessible\n");
ae8d4ee7 2451 }
b352e57d 2452
1148c3a7 2453 dev->n_sectors = ata_id_n_sectors(id);
2940740b 2454
e18086d6
ML
2455 /* get current R/W Multiple count setting */
2456 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2457 unsigned int max = dev->id[47] & 0xff;
2458 unsigned int cnt = dev->id[59] & 0xff;
2459 /* only recognize/allow powers of two here */
2460 if (is_power_of_2(max) && is_power_of_2(cnt))
2461 if (cnt <= max)
2462 dev->multi_count = cnt;
2463 }
3f64f565 2464
1148c3a7 2465 if (ata_id_has_lba(id)) {
4c2d721a 2466 const char *lba_desc;
388539f3 2467 char ncq_desc[24];
8bf62ece 2468
4c2d721a
TH
2469 lba_desc = "LBA";
2470 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 2471 if (ata_id_has_lba48(id)) {
8bf62ece 2472 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 2473 lba_desc = "LBA48";
6fc49adb
TH
2474
2475 if (dev->n_sectors >= (1UL << 28) &&
2476 ata_id_has_flush_ext(id))
2477 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 2478 }
8bf62ece 2479
a6e6ce8e 2480 /* config NCQ */
388539f3
SL
2481 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2482 if (rc)
2483 return rc;
a6e6ce8e 2484
8bf62ece 2485 /* print device info to dmesg */
3f64f565 2486 if (ata_msg_drv(ap) && print_info) {
a9a79dfe
JP
2487 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2488 revbuf, modelbuf, fwrevbuf,
2489 ata_mode_string(xfer_mask));
2490 ata_dev_info(dev,
2491 "%llu sectors, multi %u: %s %s\n",
f15a1daf 2492 (unsigned long long)dev->n_sectors,
3f64f565
EM
2493 dev->multi_count, lba_desc, ncq_desc);
2494 }
ffeae418 2495 } else {
8bf62ece
AL
2496 /* CHS */
2497
2498 /* Default translation */
1148c3a7
TH
2499 dev->cylinders = id[1];
2500 dev->heads = id[3];
2501 dev->sectors = id[6];
8bf62ece 2502
1148c3a7 2503 if (ata_id_current_chs_valid(id)) {
8bf62ece 2504 /* Current CHS translation is valid. */
1148c3a7
TH
2505 dev->cylinders = id[54];
2506 dev->heads = id[55];
2507 dev->sectors = id[56];
8bf62ece
AL
2508 }
2509
2510 /* print device info to dmesg */
3f64f565 2511 if (ata_msg_drv(ap) && print_info) {
a9a79dfe
JP
2512 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2513 revbuf, modelbuf, fwrevbuf,
2514 ata_mode_string(xfer_mask));
2515 ata_dev_info(dev,
2516 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2517 (unsigned long long)dev->n_sectors,
2518 dev->multi_count, dev->cylinders,
2519 dev->heads, dev->sectors);
3f64f565 2520 }
07f6f7d0
AL
2521 }
2522
803739d2
SH
2523 /* Check and mark DevSlp capability. Get DevSlp timing variables
2524 * from SATA Settings page of Identify Device Data Log.
65fe1f0f 2525 */
803739d2 2526 if (ata_id_has_devslp(dev->id)) {
8e725c7f 2527 u8 *sata_setting = ap->sector_buf;
803739d2
SH
2528 int i, j;
2529
2530 dev->flags |= ATA_DFLAG_DEVSLP;
65fe1f0f
SH
2531 err_mask = ata_read_log_page(dev,
2532 ATA_LOG_SATA_ID_DEV_DATA,
2533 ATA_LOG_SATA_SETTINGS,
803739d2 2534 sata_setting,
65fe1f0f
SH
2535 1);
2536 if (err_mask)
2537 ata_dev_dbg(dev,
2538 "failed to get Identify Device Data, Emask 0x%x\n",
2539 err_mask);
803739d2
SH
2540 else
2541 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2542 j = ATA_LOG_DEVSLP_OFFSET + i;
2543 dev->devslp_timing[i] = sata_setting[j];
2544 }
65fe1f0f 2545 }
e87fd28c 2546 ata_dev_config_sense_reporting(dev);
6d1003ae 2547 ata_dev_config_zac(dev);
6e7846e9 2548 dev->cdb_len = 16;
1da177e4
LT
2549 }
2550
2551 /* ATAPI-specific feature tests */
2c13b7ce 2552 else if (dev->class == ATA_DEV_ATAPI) {
854c73a2
TH
2553 const char *cdb_intr_string = "";
2554 const char *atapi_an_string = "";
91163006 2555 const char *dma_dir_string = "";
7d77b247 2556 u32 sntf;
08a556db 2557
1148c3a7 2558 rc = atapi_cdb_len(id);
1da177e4 2559 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 2560 if (ata_msg_warn(ap))
a9a79dfe 2561 ata_dev_warn(dev, "unsupported CDB len\n");
ffeae418 2562 rc = -EINVAL;
1da177e4
LT
2563 goto err_out_nosup;
2564 }
6e7846e9 2565 dev->cdb_len = (unsigned int) rc;
1da177e4 2566
7d77b247
TH
2567 /* Enable ATAPI AN if both the host and device have
2568 * the support. If PMP is attached, SNTF is required
2569 * to enable ATAPI AN to discern between PHY status
2570 * changed notifications and ATAPI ANs.
9f45cbd3 2571 */
e7ecd435
TH
2572 if (atapi_an &&
2573 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
071f44b1 2574 (!sata_pmp_attached(ap) ||
7d77b247 2575 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
9f45cbd3 2576 /* issue SET feature command to turn this on */
218f3d30
JG
2577 err_mask = ata_dev_set_feature(dev,
2578 SETFEATURES_SATA_ENABLE, SATA_AN);
854c73a2 2579 if (err_mask)
a9a79dfe
JP
2580 ata_dev_err(dev,
2581 "failed to enable ATAPI AN (err_mask=0x%x)\n",
2582 err_mask);
854c73a2 2583 else {
9f45cbd3 2584 dev->flags |= ATA_DFLAG_AN;
854c73a2
TH
2585 atapi_an_string = ", ATAPI AN";
2586 }
9f45cbd3
KCA
2587 }
2588
08a556db 2589 if (ata_id_cdb_intr(dev->id)) {
312f7da2 2590 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
2591 cdb_intr_string = ", CDB intr";
2592 }
312f7da2 2593
966fbe19 2594 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
91163006
TH
2595 dev->flags |= ATA_DFLAG_DMADIR;
2596 dma_dir_string = ", DMADIR";
2597 }
2598
afe75951 2599 if (ata_id_has_da(dev->id)) {
b1354cbb 2600 dev->flags |= ATA_DFLAG_DA;
afe75951
AL
2601 zpodd_init(dev);
2602 }
b1354cbb 2603
1da177e4 2604 /* print device info to dmesg */
5afc8142 2605 if (ata_msg_drv(ap) && print_info)
a9a79dfe
JP
2606 ata_dev_info(dev,
2607 "ATAPI: %s, %s, max %s%s%s%s\n",
2608 modelbuf, fwrevbuf,
2609 ata_mode_string(xfer_mask),
2610 cdb_intr_string, atapi_an_string,
2611 dma_dir_string);
1da177e4
LT
2612 }
2613
914ed354
TH
2614 /* determine max_sectors */
2615 dev->max_sectors = ATA_MAX_SECTORS;
2616 if (dev->flags & ATA_DFLAG_LBA48)
2617 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2618
c5038fc0
AC
2619 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2620 200 sectors */
3373efd8 2621 if (ata_dev_knobble(dev)) {
5afc8142 2622 if (ata_msg_drv(ap) && print_info)
a9a79dfe 2623 ata_dev_info(dev, "applying bridge limits\n");
5a529139 2624 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
2625 dev->max_sectors = ATA_MAX_SECTORS;
2626 }
2627
f8d8e579 2628 if ((dev->class == ATA_DEV_ATAPI) &&
f442cd86 2629 (atapi_command_packet_set(id) == TYPE_TAPE)) {
f8d8e579 2630 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
f442cd86
AL
2631 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2632 }
f8d8e579 2633
75683fe7 2634 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
03ec52de
TH
2635 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2636 dev->max_sectors);
18d6e9d5 2637
af34d637
DM
2638 if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
2639 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
2640 dev->max_sectors);
2641
a32450e1
SH
2642 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2643 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2644
4b2f3ede 2645 if (ap->ops->dev_config)
cd0d3bbc 2646 ap->ops->dev_config(dev);
4b2f3ede 2647
c5038fc0
AC
2648 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2649 /* Let the user know. We don't want to disallow opens for
2650 rescue purposes, or in case the vendor is just a blithering
2651 idiot. Do this after the dev_config call as some controllers
2652 with buggy firmware may want to avoid reporting false device
2653 bugs */
2654
2655 if (print_info) {
a9a79dfe 2656 ata_dev_warn(dev,
c5038fc0 2657"Drive reports diagnostics failure. This may indicate a drive\n");
a9a79dfe 2658 ata_dev_warn(dev,
c5038fc0
AC
2659"fault or invalid emulation. Contact drive vendor for information.\n");
2660 }
2661 }
2662
ac70a964 2663 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
a9a79dfe
JP
2664 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2665 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n");
ac70a964
TH
2666 }
2667
ffeae418 2668 return 0;
1da177e4
LT
2669
2670err_out_nosup:
0dd4b21f 2671 if (ata_msg_probe(ap))
a9a79dfe 2672 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
ffeae418 2673 return rc;
1da177e4
LT
2674}
2675
be0d18df 2676/**
2e41e8e6 2677 * ata_cable_40wire - return 40 wire cable type
be0d18df
AC
2678 * @ap: port
2679 *
2e41e8e6 2680 * Helper method for drivers which want to hardwire 40 wire cable
be0d18df
AC
2681 * detection.
2682 */
2683
2684int ata_cable_40wire(struct ata_port *ap)
2685{
2686 return ATA_CBL_PATA40;
2687}
2688
2689/**
2e41e8e6 2690 * ata_cable_80wire - return 80 wire cable type
be0d18df
AC
2691 * @ap: port
2692 *
2e41e8e6 2693 * Helper method for drivers which want to hardwire 80 wire cable
be0d18df
AC
2694 * detection.
2695 */
2696
2697int ata_cable_80wire(struct ata_port *ap)
2698{
2699 return ATA_CBL_PATA80;
2700}
2701
2702/**
2703 * ata_cable_unknown - return unknown PATA cable.
2704 * @ap: port
2705 *
2706 * Helper method for drivers which have no PATA cable detection.
2707 */
2708
2709int ata_cable_unknown(struct ata_port *ap)
2710{
2711 return ATA_CBL_PATA_UNK;
2712}
2713
c88f90c3
TH
2714/**
2715 * ata_cable_ignore - return ignored PATA cable.
2716 * @ap: port
2717 *
2718 * Helper method for drivers which don't use cable type to limit
2719 * transfer mode.
2720 */
2721int ata_cable_ignore(struct ata_port *ap)
2722{
2723 return ATA_CBL_PATA_IGN;
2724}
2725
be0d18df
AC
2726/**
2727 * ata_cable_sata - return SATA cable type
2728 * @ap: port
2729 *
2730 * Helper method for drivers which have SATA cables
2731 */
2732
2733int ata_cable_sata(struct ata_port *ap)
2734{
2735 return ATA_CBL_SATA;
2736}
2737
1da177e4
LT
2738/**
2739 * ata_bus_probe - Reset and probe ATA bus
2740 * @ap: Bus to probe
2741 *
0cba632b
JG
2742 * Master ATA bus probing function. Initiates a hardware-dependent
2743 * bus reset, then attempts to identify any devices found on
2744 * the bus.
2745 *
1da177e4 2746 * LOCKING:
0cba632b 2747 * PCI/etc. bus probe sem.
1da177e4
LT
2748 *
2749 * RETURNS:
96072e69 2750 * Zero on success, negative errno otherwise.
1da177e4
LT
2751 */
2752
80289167 2753int ata_bus_probe(struct ata_port *ap)
1da177e4 2754{
28ca5c57 2755 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1 2756 int tries[ATA_MAX_DEVICES];
f58229f8 2757 int rc;
e82cbdb9 2758 struct ata_device *dev;
1da177e4 2759
1eca4365 2760 ata_for_each_dev(dev, &ap->link, ALL)
f58229f8 2761 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
14d2bac1
TH
2762
2763 retry:
1eca4365 2764 ata_for_each_dev(dev, &ap->link, ALL) {
cdeab114
TH
2765 /* If we issue an SRST then an ATA drive (not ATAPI)
2766 * may change configuration and be in PIO0 timing. If
2767 * we do a hard reset (or are coming from power on)
2768 * this is true for ATA or ATAPI. Until we've set a
2769 * suitable controller mode we should not touch the
2770 * bus as we may be talking too fast.
2771 */
2772 dev->pio_mode = XFER_PIO_0;
5416912a 2773 dev->dma_mode = 0xff;
cdeab114
TH
2774
2775 /* If the controller has a pio mode setup function
2776 * then use it to set the chipset to rights. Don't
2777 * touch the DMA setup as that will be dealt with when
2778 * configuring devices.
2779 */
2780 if (ap->ops->set_piomode)
2781 ap->ops->set_piomode(ap, dev);
2782 }
2783
2044470c 2784 /* reset and determine device classes */
52783c5d 2785 ap->ops->phy_reset(ap);
2061a47a 2786
1eca4365 2787 ata_for_each_dev(dev, &ap->link, ALL) {
3e4ec344 2788 if (dev->class != ATA_DEV_UNKNOWN)
52783c5d
TH
2789 classes[dev->devno] = dev->class;
2790 else
2791 classes[dev->devno] = ATA_DEV_NONE;
2044470c 2792
52783c5d 2793 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 2794 }
1da177e4 2795
f31f0cc2
JG
2796 /* read IDENTIFY page and configure devices. We have to do the identify
2797 specific sequence bass-ackwards so that PDIAG- is released by
2798 the slave device */
2799
1eca4365 2800 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
f58229f8
TH
2801 if (tries[dev->devno])
2802 dev->class = classes[dev->devno];
ffeae418 2803
14d2bac1 2804 if (!ata_dev_enabled(dev))
ffeae418 2805 continue;
ffeae418 2806
bff04647
TH
2807 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2808 dev->id);
14d2bac1
TH
2809 if (rc)
2810 goto fail;
f31f0cc2
JG
2811 }
2812
be0d18df
AC
2813 /* Now ask for the cable type as PDIAG- should have been released */
2814 if (ap->ops->cable_detect)
2815 ap->cbl = ap->ops->cable_detect(ap);
2816
1eca4365
TH
2817 /* We may have SATA bridge glue hiding here irrespective of
2818 * the reported cable types and sensed types. When SATA
2819 * drives indicate we have a bridge, we don't know which end
2820 * of the link the bridge is which is a problem.
2821 */
2822 ata_for_each_dev(dev, &ap->link, ENABLED)
614fe29b
AC
2823 if (ata_id_is_sata(dev->id))
2824 ap->cbl = ATA_CBL_SATA;
614fe29b 2825
f31f0cc2
JG
2826 /* After the identify sequence we can now set up the devices. We do
2827 this in the normal order so that the user doesn't get confused */
2828
1eca4365 2829 ata_for_each_dev(dev, &ap->link, ENABLED) {
9af5c9c9 2830 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
efdaedc4 2831 rc = ata_dev_configure(dev);
9af5c9c9 2832 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
2833 if (rc)
2834 goto fail;
1da177e4
LT
2835 }
2836
e82cbdb9 2837 /* configure transfer mode */
0260731f 2838 rc = ata_set_mode(&ap->link, &dev);
4ae72a1e 2839 if (rc)
51713d35 2840 goto fail;
1da177e4 2841
1eca4365
TH
2842 ata_for_each_dev(dev, &ap->link, ENABLED)
2843 return 0;
1da177e4 2844
96072e69 2845 return -ENODEV;
14d2bac1
TH
2846
2847 fail:
4ae72a1e
TH
2848 tries[dev->devno]--;
2849
14d2bac1
TH
2850 switch (rc) {
2851 case -EINVAL:
4ae72a1e 2852 /* eeek, something went very wrong, give up */
14d2bac1
TH
2853 tries[dev->devno] = 0;
2854 break;
4ae72a1e
TH
2855
2856 case -ENODEV:
2857 /* give it just one more chance */
2858 tries[dev->devno] = min(tries[dev->devno], 1);
14d2bac1 2859 case -EIO:
4ae72a1e
TH
2860 if (tries[dev->devno] == 1) {
2861 /* This is the last chance, better to slow
2862 * down than lose it.
2863 */
a07d499b 2864 sata_down_spd_limit(&ap->link, 0);
4ae72a1e
TH
2865 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2866 }
14d2bac1
TH
2867 }
2868
4ae72a1e 2869 if (!tries[dev->devno])
3373efd8 2870 ata_dev_disable(dev);
ec573755 2871
14d2bac1 2872 goto retry;
1da177e4
LT
2873}
2874
3be680b7
TH
2875/**
2876 * sata_print_link_status - Print SATA link status
936fd732 2877 * @link: SATA link to printk link status about
3be680b7
TH
2878 *
2879 * This function prints link speed and status of a SATA link.
2880 *
2881 * LOCKING:
2882 * None.
2883 */
6bdb4fc9 2884static void sata_print_link_status(struct ata_link *link)
3be680b7 2885{
6d5f9732 2886 u32 sstatus, scontrol, tmp;
3be680b7 2887
936fd732 2888 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3be680b7 2889 return;
936fd732 2890 sata_scr_read(link, SCR_CONTROL, &scontrol);
3be680b7 2891
b1c72916 2892 if (ata_phys_link_online(link)) {
3be680b7 2893 tmp = (sstatus >> 4) & 0xf;
a9a79dfe
JP
2894 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2895 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 2896 } else {
a9a79dfe
JP
2897 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2898 sstatus, scontrol);
3be680b7
TH
2899 }
2900}
2901
ebdfca6e
AC
2902/**
2903 * ata_dev_pair - return other device on cable
ebdfca6e
AC
2904 * @adev: device
2905 *
2906 * Obtain the other device on the same cable, or if none is
2907 * present NULL is returned
2908 */
2e9edbf8 2909
3373efd8 2910struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2911{
9af5c9c9
TH
2912 struct ata_link *link = adev->link;
2913 struct ata_device *pair = &link->device[1 - adev->devno];
e1211e3f 2914 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2915 return NULL;
2916 return pair;
2917}
2918
1c3fae4d 2919/**
3c567b7d 2920 * sata_down_spd_limit - adjust SATA spd limit downward
936fd732 2921 * @link: Link to adjust SATA spd limit for
a07d499b 2922 * @spd_limit: Additional limit
1c3fae4d 2923 *
936fd732 2924 * Adjust SATA spd limit of @link downward. Note that this
1c3fae4d 2925 * function only adjusts the limit. The change must be applied
3c567b7d 2926 * using sata_set_spd().
1c3fae4d 2927 *
a07d499b
TH
2928 * If @spd_limit is non-zero, the speed is limited to equal to or
2929 * lower than @spd_limit if such speed is supported. If
2930 * @spd_limit is slower than any supported speed, only the lowest
2931 * supported speed is allowed.
2932 *
1c3fae4d
TH
2933 * LOCKING:
2934 * Inherited from caller.
2935 *
2936 * RETURNS:
2937 * 0 on success, negative errno on failure
2938 */
a07d499b 2939int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
1c3fae4d 2940{
81952c54 2941 u32 sstatus, spd, mask;
a07d499b 2942 int rc, bit;
1c3fae4d 2943
936fd732 2944 if (!sata_scr_valid(link))
008a7896
TH
2945 return -EOPNOTSUPP;
2946
2947 /* If SCR can be read, use it to determine the current SPD.
936fd732 2948 * If not, use cached value in link->sata_spd.
008a7896 2949 */
936fd732 2950 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
9913ff8a 2951 if (rc == 0 && ata_sstatus_online(sstatus))
008a7896
TH
2952 spd = (sstatus >> 4) & 0xf;
2953 else
936fd732 2954 spd = link->sata_spd;
1c3fae4d 2955
936fd732 2956 mask = link->sata_spd_limit;
1c3fae4d
TH
2957 if (mask <= 1)
2958 return -EINVAL;
008a7896
TH
2959
2960 /* unconditionally mask off the highest bit */
a07d499b
TH
2961 bit = fls(mask) - 1;
2962 mask &= ~(1 << bit);
1c3fae4d 2963
008a7896
TH
2964 /* Mask off all speeds higher than or equal to the current
2965 * one. Force 1.5Gbps if current SPD is not available.
2966 */
2967 if (spd > 1)
2968 mask &= (1 << (spd - 1)) - 1;
2969 else
2970 mask &= 1;
2971
2972 /* were we already at the bottom? */
1c3fae4d
TH
2973 if (!mask)
2974 return -EINVAL;
2975
a07d499b
TH
2976 if (spd_limit) {
2977 if (mask & ((1 << spd_limit) - 1))
2978 mask &= (1 << spd_limit) - 1;
2979 else {
2980 bit = ffs(mask) - 1;
2981 mask = 1 << bit;
2982 }
2983 }
2984
936fd732 2985 link->sata_spd_limit = mask;
1c3fae4d 2986
a9a79dfe
JP
2987 ata_link_warn(link, "limiting SATA link speed to %s\n",
2988 sata_spd_string(fls(mask)));
1c3fae4d
TH
2989
2990 return 0;
2991}
2992
936fd732 2993static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
1c3fae4d 2994{
5270222f
TH
2995 struct ata_link *host_link = &link->ap->link;
2996 u32 limit, target, spd;
1c3fae4d 2997
5270222f
TH
2998 limit = link->sata_spd_limit;
2999
3000 /* Don't configure downstream link faster than upstream link.
3001 * It doesn't speed up anything and some PMPs choke on such
3002 * configuration.
3003 */
3004 if (!ata_is_host_link(link) && host_link->sata_spd)
3005 limit &= (1 << host_link->sata_spd) - 1;
3006
3007 if (limit == UINT_MAX)
3008 target = 0;
1c3fae4d 3009 else
5270222f 3010 target = fls(limit);
1c3fae4d
TH
3011
3012 spd = (*scontrol >> 4) & 0xf;
5270222f 3013 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
1c3fae4d 3014
5270222f 3015 return spd != target;
1c3fae4d
TH
3016}
3017
3018/**
3c567b7d 3019 * sata_set_spd_needed - is SATA spd configuration needed
936fd732 3020 * @link: Link in question
1c3fae4d
TH
3021 *
3022 * Test whether the spd limit in SControl matches
936fd732 3023 * @link->sata_spd_limit. This function is used to determine
1c3fae4d
TH
3024 * whether hardreset is necessary to apply SATA spd
3025 * configuration.
3026 *
3027 * LOCKING:
3028 * Inherited from caller.
3029 *
3030 * RETURNS:
3031 * 1 if SATA spd configuration is needed, 0 otherwise.
3032 */
1dc55e87 3033static int sata_set_spd_needed(struct ata_link *link)
1c3fae4d
TH
3034{
3035 u32 scontrol;
3036
936fd732 3037 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
db64bcf3 3038 return 1;
1c3fae4d 3039
936fd732 3040 return __sata_set_spd_needed(link, &scontrol);
1c3fae4d
TH
3041}
3042
3043/**
3c567b7d 3044 * sata_set_spd - set SATA spd according to spd limit
936fd732 3045 * @link: Link to set SATA spd for
1c3fae4d 3046 *
936fd732 3047 * Set SATA spd of @link according to sata_spd_limit.
1c3fae4d
TH
3048 *
3049 * LOCKING:
3050 * Inherited from caller.
3051 *
3052 * RETURNS:
3053 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 3054 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 3055 */
936fd732 3056int sata_set_spd(struct ata_link *link)
1c3fae4d
TH
3057{
3058 u32 scontrol;
81952c54 3059 int rc;
1c3fae4d 3060
936fd732 3061 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 3062 return rc;
1c3fae4d 3063
936fd732 3064 if (!__sata_set_spd_needed(link, &scontrol))
1c3fae4d
TH
3065 return 0;
3066
936fd732 3067 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54
TH
3068 return rc;
3069
1c3fae4d
TH
3070 return 1;
3071}
3072
452503f9
AC
3073/*
3074 * This mode timing computation functionality is ported over from
3075 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3076 */
3077/*
b352e57d 3078 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 3079 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
3080 * for UDMA6, which is currently supported only by Maxtor drives.
3081 *
3082 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
3083 */
3084
3085static const struct ata_timing ata_timing[] = {
3ada9c12
DD
3086/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
3087 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
3088 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
3089 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
3090 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
3091 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
3092 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
3093 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
3094
3095 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
3096 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
3097 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
3098
3099 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
3100 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
3101 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
3102 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
3103 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
3104
3105/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
3106 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
3107 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
3108 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
3109 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
3110 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
3111 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
3112 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
452503f9
AC
3113
3114 { 0xFF }
3115};
3116
2dcb407e
JG
3117#define ENOUGH(v, unit) (((v)-1)/(unit)+1)
3118#define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
452503f9
AC
3119
3120static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3121{
3ada9c12
DD
3122 q->setup = EZ(t->setup * 1000, T);
3123 q->act8b = EZ(t->act8b * 1000, T);
3124 q->rec8b = EZ(t->rec8b * 1000, T);
3125 q->cyc8b = EZ(t->cyc8b * 1000, T);
3126 q->active = EZ(t->active * 1000, T);
3127 q->recover = EZ(t->recover * 1000, T);
3128 q->dmack_hold = EZ(t->dmack_hold * 1000, T);
3129 q->cycle = EZ(t->cycle * 1000, T);
3130 q->udma = EZ(t->udma * 1000, UT);
452503f9
AC
3131}
3132
3133void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3134 struct ata_timing *m, unsigned int what)
3135{
3136 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
3137 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
3138 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
3139 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
3140 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
3141 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3ada9c12 3142 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
452503f9
AC
3143 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
3144 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
3145}
3146
6357357c 3147const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
452503f9 3148{
70cd071e
TH
3149 const struct ata_timing *t = ata_timing;
3150
3151 while (xfer_mode > t->mode)
3152 t++;
452503f9 3153
70cd071e
TH
3154 if (xfer_mode == t->mode)
3155 return t;
cd705d5a
BP
3156
3157 WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
3158 __func__, xfer_mode);
3159
70cd071e 3160 return NULL;
452503f9
AC
3161}
3162
3163int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3164 struct ata_timing *t, int T, int UT)
3165{
9e8808a9 3166 const u16 *id = adev->id;
452503f9
AC
3167 const struct ata_timing *s;
3168 struct ata_timing p;
3169
3170 /*
2e9edbf8 3171 * Find the mode.
75b1f2f8 3172 */
452503f9
AC
3173
3174 if (!(s = ata_timing_find_mode(speed)))
3175 return -EINVAL;
3176
75b1f2f8
AL
3177 memcpy(t, s, sizeof(*s));
3178
452503f9
AC
3179 /*
3180 * If the drive is an EIDE drive, it can tell us it needs extended
3181 * PIO/MW_DMA cycle timing.
3182 */
3183
9e8808a9 3184 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
452503f9 3185 memset(&p, 0, sizeof(p));
9e8808a9 3186
bff00256 3187 if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
9e8808a9
BZ
3188 if (speed <= XFER_PIO_2)
3189 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
3190 else if ((speed <= XFER_PIO_4) ||
3191 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
3192 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
3193 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
3194 p.cycle = id[ATA_ID_EIDE_DMA_MIN];
3195
452503f9
AC
3196 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3197 }
3198
3199 /*
3200 * Convert the timing to bus clock counts.
3201 */
3202
75b1f2f8 3203 ata_timing_quantize(t, t, T, UT);
452503f9
AC
3204
3205 /*
c893a3ae
RD
3206 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3207 * S.M.A.R.T * and some other commands. We have to ensure that the
3208 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
3209 */
3210
fd3367af 3211 if (speed > XFER_PIO_6) {
452503f9
AC
3212 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3213 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3214 }
3215
3216 /*
c893a3ae 3217 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
3218 */
3219
3220 if (t->act8b + t->rec8b < t->cyc8b) {
3221 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3222 t->rec8b = t->cyc8b - t->act8b;
3223 }
3224
3225 if (t->active + t->recover < t->cycle) {
3226 t->active += (t->cycle - (t->active + t->recover)) / 2;
3227 t->recover = t->cycle - t->active;
3228 }
a617c09f 3229
4f701d1e
AC
3230 /* In a few cases quantisation may produce enough errors to
3231 leave t->cycle too low for the sum of active and recovery
3232 if so we must correct this */
3233 if (t->active + t->recover > t->cycle)
3234 t->cycle = t->active + t->recover;
452503f9
AC
3235
3236 return 0;
3237}
3238
a0f79b92
TH
3239/**
3240 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3241 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3242 * @cycle: cycle duration in ns
3243 *
3244 * Return matching xfer mode for @cycle. The returned mode is of
3245 * the transfer type specified by @xfer_shift. If @cycle is too
3246 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3247 * than the fastest known mode, the fasted mode is returned.
3248 *
3249 * LOCKING:
3250 * None.
3251 *
3252 * RETURNS:
3253 * Matching xfer_mode, 0xff if no match found.
3254 */
3255u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3256{
3257 u8 base_mode = 0xff, last_mode = 0xff;
3258 const struct ata_xfer_ent *ent;
3259 const struct ata_timing *t;
3260
3261 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3262 if (ent->shift == xfer_shift)
3263 base_mode = ent->base;
3264
3265 for (t = ata_timing_find_mode(base_mode);
3266 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3267 unsigned short this_cycle;
3268
3269 switch (xfer_shift) {
3270 case ATA_SHIFT_PIO:
3271 case ATA_SHIFT_MWDMA:
3272 this_cycle = t->cycle;
3273 break;
3274 case ATA_SHIFT_UDMA:
3275 this_cycle = t->udma;
3276 break;
3277 default:
3278 return 0xff;
3279 }
3280
3281 if (cycle > this_cycle)
3282 break;
3283
3284 last_mode = t->mode;
3285 }
3286
3287 return last_mode;
3288}
3289
cf176e1a
TH
3290/**
3291 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a 3292 * @dev: Device to adjust xfer masks
458337db 3293 * @sel: ATA_DNXFER_* selector
cf176e1a
TH
3294 *
3295 * Adjust xfer masks of @dev downward. Note that this function
3296 * does not apply the change. Invoking ata_set_mode() afterwards
3297 * will apply the limit.
3298 *
3299 * LOCKING:
3300 * Inherited from caller.
3301 *
3302 * RETURNS:
3303 * 0 on success, negative errno on failure
3304 */
458337db 3305int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
cf176e1a 3306{
458337db 3307 char buf[32];
7dc951ae
TH
3308 unsigned long orig_mask, xfer_mask;
3309 unsigned long pio_mask, mwdma_mask, udma_mask;
458337db 3310 int quiet, highbit;
cf176e1a 3311
458337db
TH
3312 quiet = !!(sel & ATA_DNXFER_QUIET);
3313 sel &= ~ATA_DNXFER_QUIET;
cf176e1a 3314
458337db
TH
3315 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3316 dev->mwdma_mask,
3317 dev->udma_mask);
3318 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
cf176e1a 3319
458337db
TH
3320 switch (sel) {
3321 case ATA_DNXFER_PIO:
3322 highbit = fls(pio_mask) - 1;
3323 pio_mask &= ~(1 << highbit);
3324 break;
3325
3326 case ATA_DNXFER_DMA:
3327 if (udma_mask) {
3328 highbit = fls(udma_mask) - 1;
3329 udma_mask &= ~(1 << highbit);
3330 if (!udma_mask)
3331 return -ENOENT;
3332 } else if (mwdma_mask) {
3333 highbit = fls(mwdma_mask) - 1;
3334 mwdma_mask &= ~(1 << highbit);
3335 if (!mwdma_mask)
3336 return -ENOENT;
3337 }
3338 break;
3339
3340 case ATA_DNXFER_40C:
3341 udma_mask &= ATA_UDMA_MASK_40C;
3342 break;
3343
3344 case ATA_DNXFER_FORCE_PIO0:
3345 pio_mask &= 1;
3346 case ATA_DNXFER_FORCE_PIO:
3347 mwdma_mask = 0;
3348 udma_mask = 0;
3349 break;
3350
458337db
TH
3351 default:
3352 BUG();
3353 }
3354
3355 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3356
3357 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3358 return -ENOENT;
3359
3360 if (!quiet) {
3361 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3362 snprintf(buf, sizeof(buf), "%s:%s",
3363 ata_mode_string(xfer_mask),
3364 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3365 else
3366 snprintf(buf, sizeof(buf), "%s",
3367 ata_mode_string(xfer_mask));
3368
a9a79dfe 3369 ata_dev_warn(dev, "limiting speed to %s\n", buf);
458337db 3370 }
cf176e1a
TH
3371
3372 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3373 &dev->udma_mask);
3374
cf176e1a 3375 return 0;
cf176e1a
TH
3376}
3377
3373efd8 3378static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 3379{
d0cb43b3 3380 struct ata_port *ap = dev->link->ap;
9af5c9c9 3381 struct ata_eh_context *ehc = &dev->link->eh_context;
d0cb43b3 3382 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
4055dee7
TH
3383 const char *dev_err_whine = "";
3384 int ign_dev_err = 0;
d0cb43b3 3385 unsigned int err_mask = 0;
83206a29 3386 int rc;
1da177e4 3387
e8384607 3388 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
3389 if (dev->xfer_shift == ATA_SHIFT_PIO)
3390 dev->flags |= ATA_DFLAG_PIO;
3391
d0cb43b3
TH
3392 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3393 dev_err_whine = " (SET_XFERMODE skipped)";
3394 else {
3395 if (nosetxfer)
a9a79dfe
JP
3396 ata_dev_warn(dev,
3397 "NOSETXFER but PATA detected - can't "
3398 "skip SETXFER, might malfunction\n");
d0cb43b3
TH
3399 err_mask = ata_dev_set_xfermode(dev);
3400 }
2dcb407e 3401
4055dee7
TH
3402 if (err_mask & ~AC_ERR_DEV)
3403 goto fail;
3404
3405 /* revalidate */
3406 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3407 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3408 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3409 if (rc)
3410 return rc;
3411
b93fda12
AC
3412 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3413 /* Old CFA may refuse this command, which is just fine */
3414 if (ata_id_is_cfa(dev->id))
3415 ign_dev_err = 1;
3416 /* Catch several broken garbage emulations plus some pre
3417 ATA devices */
3418 if (ata_id_major_version(dev->id) == 0 &&
3419 dev->pio_mode <= XFER_PIO_2)
3420 ign_dev_err = 1;
3421 /* Some very old devices and some bad newer ones fail
3422 any kind of SET_XFERMODE request but support PIO0-2
3423 timings and no IORDY */
3424 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3425 ign_dev_err = 1;
3426 }
3acaf94b
AC
3427 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3428 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
c5038fc0 3429 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3acaf94b
AC
3430 dev->dma_mode == XFER_MW_DMA_0 &&
3431 (dev->id[63] >> 8) & 1)
4055dee7 3432 ign_dev_err = 1;
3acaf94b 3433
4055dee7
TH
3434 /* if the device is actually configured correctly, ignore dev err */
3435 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3436 ign_dev_err = 1;
1da177e4 3437
4055dee7
TH
3438 if (err_mask & AC_ERR_DEV) {
3439 if (!ign_dev_err)
3440 goto fail;
3441 else
3442 dev_err_whine = " (device error ignored)";
3443 }
48a8a14f 3444
23e71c3d
TH
3445 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3446 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 3447
a9a79dfe
JP
3448 ata_dev_info(dev, "configured for %s%s\n",
3449 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3450 dev_err_whine);
4055dee7 3451
83206a29 3452 return 0;
4055dee7
TH
3453
3454 fail:
a9a79dfe 3455 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
4055dee7 3456 return -EIO;
1da177e4
LT
3457}
3458
1da177e4 3459/**
04351821 3460 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
0260731f 3461 * @link: link on which timings will be programmed
1967b7ff 3462 * @r_failed_dev: out parameter for failed device
1da177e4 3463 *
04351821
A
3464 * Standard implementation of the function used to tune and set
3465 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3466 * ata_dev_set_mode() fails, pointer to the failing device is
e82cbdb9 3467 * returned in @r_failed_dev.
780a87f7 3468 *
1da177e4 3469 * LOCKING:
0cba632b 3470 * PCI/etc. bus probe sem.
e82cbdb9
TH
3471 *
3472 * RETURNS:
3473 * 0 on success, negative errno otherwise
1da177e4 3474 */
04351821 3475
0260731f 3476int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
1da177e4 3477{
0260731f 3478 struct ata_port *ap = link->ap;
e8e0619f 3479 struct ata_device *dev;
f58229f8 3480 int rc = 0, used_dma = 0, found = 0;
3adcebb2 3481
a6d5a51c 3482 /* step 1: calculate xfer_mask */
1eca4365 3483 ata_for_each_dev(dev, link, ENABLED) {
7dc951ae 3484 unsigned long pio_mask, dma_mask;
b3a70601 3485 unsigned int mode_mask;
a6d5a51c 3486
b3a70601
AC
3487 mode_mask = ATA_DMA_MASK_ATA;
3488 if (dev->class == ATA_DEV_ATAPI)
3489 mode_mask = ATA_DMA_MASK_ATAPI;
3490 else if (ata_id_is_cfa(dev->id))
3491 mode_mask = ATA_DMA_MASK_CFA;
3492
3373efd8 3493 ata_dev_xfermask(dev);
33267325 3494 ata_force_xfermask(dev);
1da177e4 3495
acf356b1 3496 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
b3a70601
AC
3497
3498 if (libata_dma_mask & mode_mask)
80a9c430
SS
3499 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3500 dev->udma_mask);
b3a70601
AC
3501 else
3502 dma_mask = 0;
3503
acf356b1
TH
3504 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3505 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 3506
4f65977d 3507 found = 1;
b15b3eba 3508 if (ata_dma_enabled(dev))
5444a6f4 3509 used_dma = 1;
a6d5a51c 3510 }
4f65977d 3511 if (!found)
e82cbdb9 3512 goto out;
a6d5a51c
TH
3513
3514 /* step 2: always set host PIO timings */
1eca4365 3515 ata_for_each_dev(dev, link, ENABLED) {
70cd071e 3516 if (dev->pio_mode == 0xff) {
a9a79dfe 3517 ata_dev_warn(dev, "no PIO support\n");
e8e0619f 3518 rc = -EINVAL;
e82cbdb9 3519 goto out;
e8e0619f
TH
3520 }
3521
3522 dev->xfer_mode = dev->pio_mode;
3523 dev->xfer_shift = ATA_SHIFT_PIO;
3524 if (ap->ops->set_piomode)
3525 ap->ops->set_piomode(ap, dev);
3526 }
1da177e4 3527
a6d5a51c 3528 /* step 3: set host DMA timings */
1eca4365
TH
3529 ata_for_each_dev(dev, link, ENABLED) {
3530 if (!ata_dma_enabled(dev))
e8e0619f
TH
3531 continue;
3532
3533 dev->xfer_mode = dev->dma_mode;
3534 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3535 if (ap->ops->set_dmamode)
3536 ap->ops->set_dmamode(ap, dev);
3537 }
1da177e4
LT
3538
3539 /* step 4: update devices' xfer mode */
1eca4365 3540 ata_for_each_dev(dev, link, ENABLED) {
3373efd8 3541 rc = ata_dev_set_mode(dev);
5bbc53f4 3542 if (rc)
e82cbdb9 3543 goto out;
83206a29 3544 }
1da177e4 3545
e8e0619f
TH
3546 /* Record simplex status. If we selected DMA then the other
3547 * host channels are not permitted to do so.
5444a6f4 3548 */
cca3974e 3549 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
032af1ce 3550 ap->host->simplex_claimed = ap;
5444a6f4 3551
e82cbdb9
TH
3552 out:
3553 if (rc)
3554 *r_failed_dev = dev;
3555 return rc;
1da177e4
LT
3556}
3557
aa2731ad
TH
3558/**
3559 * ata_wait_ready - wait for link to become ready
3560 * @link: link to be waited on
3561 * @deadline: deadline jiffies for the operation
3562 * @check_ready: callback to check link readiness
3563 *
3564 * Wait for @link to become ready. @check_ready should return
3565 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3566 * link doesn't seem to be occupied, other errno for other error
3567 * conditions.
3568 *
3569 * Transient -ENODEV conditions are allowed for
3570 * ATA_TMOUT_FF_WAIT.
3571 *
3572 * LOCKING:
3573 * EH context.
3574 *
3575 * RETURNS:
c9b5560a 3576 * 0 if @link is ready before @deadline; otherwise, -errno.
aa2731ad
TH
3577 */
3578int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3579 int (*check_ready)(struct ata_link *link))
3580{
3581 unsigned long start = jiffies;
b48d58f5 3582 unsigned long nodev_deadline;
aa2731ad
TH
3583 int warned = 0;
3584
b48d58f5
TH
3585 /* choose which 0xff timeout to use, read comment in libata.h */
3586 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3587 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3588 else
3589 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3590
b1c72916
TH
3591 /* Slave readiness can't be tested separately from master. On
3592 * M/S emulation configuration, this function should be called
3593 * only on the master and it will handle both master and slave.
3594 */
3595 WARN_ON(link == link->ap->slave_link);
3596
aa2731ad
TH
3597 if (time_after(nodev_deadline, deadline))
3598 nodev_deadline = deadline;
3599
3600 while (1) {
3601 unsigned long now = jiffies;
3602 int ready, tmp;
3603
3604 ready = tmp = check_ready(link);
3605 if (ready > 0)
3606 return 0;
3607
b48d58f5
TH
3608 /*
3609 * -ENODEV could be transient. Ignore -ENODEV if link
aa2731ad 3610 * is online. Also, some SATA devices take a long
b48d58f5
TH
3611 * time to clear 0xff after reset. Wait for
3612 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3613 * offline.
aa2731ad
TH
3614 *
3615 * Note that some PATA controllers (pata_ali) explode
3616 * if status register is read more than once when
3617 * there's no device attached.
3618 */
3619 if (ready == -ENODEV) {
3620 if (ata_link_online(link))
3621 ready = 0;
3622 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3623 !ata_link_offline(link) &&
3624 time_before(now, nodev_deadline))
3625 ready = 0;
3626 }
3627
3628 if (ready)
3629 return ready;
3630 if (time_after(now, deadline))
3631 return -EBUSY;
3632
3633 if (!warned && time_after(now, start + 5 * HZ) &&
3634 (deadline - now > 3 * HZ)) {
a9a79dfe 3635 ata_link_warn(link,
aa2731ad
TH
3636 "link is slow to respond, please be patient "
3637 "(ready=%d)\n", tmp);
3638 warned = 1;
3639 }
3640
97750ceb 3641 ata_msleep(link->ap, 50);
aa2731ad
TH
3642 }
3643}
3644
3645/**
3646 * ata_wait_after_reset - wait for link to become ready after reset
3647 * @link: link to be waited on
3648 * @deadline: deadline jiffies for the operation
3649 * @check_ready: callback to check link readiness
3650 *
3651 * Wait for @link to become ready after reset.
3652 *
3653 * LOCKING:
3654 * EH context.
3655 *
3656 * RETURNS:
c9b5560a 3657 * 0 if @link is ready before @deadline; otherwise, -errno.
aa2731ad 3658 */
2b4221bb 3659int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
aa2731ad
TH
3660 int (*check_ready)(struct ata_link *link))
3661{
97750ceb 3662 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
aa2731ad
TH
3663
3664 return ata_wait_ready(link, deadline, check_ready);
3665}
3666
d7bb4cc7 3667/**
936fd732
TH
3668 * sata_link_debounce - debounce SATA phy status
3669 * @link: ATA link to debounce SATA phy status for
c9b5560a 3670 * @params: timing parameters { interval, duration, timeout } in msec
d4b2bab4 3671 * @deadline: deadline jiffies for the operation
d7bb4cc7 3672 *
1152b261 3673 * Make sure SStatus of @link reaches stable state, determined by
d7bb4cc7
TH
3674 * holding the same value where DET is not 1 for @duration polled
3675 * every @interval, before @timeout. Timeout constraints the
d4b2bab4
TH
3676 * beginning of the stable state. Because DET gets stuck at 1 on
3677 * some controllers after hot unplugging, this functions waits
d7bb4cc7
TH
3678 * until timeout then returns 0 if DET is stable at 1.
3679 *
d4b2bab4
TH
3680 * @timeout is further limited by @deadline. The sooner of the
3681 * two is used.
3682 *
d7bb4cc7
TH
3683 * LOCKING:
3684 * Kernel thread context (may sleep)
3685 *
3686 * RETURNS:
3687 * 0 on success, -errno on failure.
3688 */
936fd732
TH
3689int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3690 unsigned long deadline)
7a7921e8 3691{
341c2c95
TH
3692 unsigned long interval = params[0];
3693 unsigned long duration = params[1];
d4b2bab4 3694 unsigned long last_jiffies, t;
d7bb4cc7
TH
3695 u32 last, cur;
3696 int rc;
3697
341c2c95 3698 t = ata_deadline(jiffies, params[2]);
d4b2bab4
TH
3699 if (time_before(t, deadline))
3700 deadline = t;
3701
936fd732 3702 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3703 return rc;
3704 cur &= 0xf;
3705
3706 last = cur;
3707 last_jiffies = jiffies;
3708
3709 while (1) {
97750ceb 3710 ata_msleep(link->ap, interval);
936fd732 3711 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3712 return rc;
3713 cur &= 0xf;
3714
3715 /* DET stable? */
3716 if (cur == last) {
d4b2bab4 3717 if (cur == 1 && time_before(jiffies, deadline))
d7bb4cc7 3718 continue;
341c2c95
TH
3719 if (time_after(jiffies,
3720 ata_deadline(last_jiffies, duration)))
d7bb4cc7
TH
3721 return 0;
3722 continue;
3723 }
3724
3725 /* unstable, start over */
3726 last = cur;
3727 last_jiffies = jiffies;
3728
f1545154
TH
3729 /* Check deadline. If debouncing failed, return
3730 * -EPIPE to tell upper layer to lower link speed.
3731 */
d4b2bab4 3732 if (time_after(jiffies, deadline))
f1545154 3733 return -EPIPE;
d7bb4cc7
TH
3734 }
3735}
3736
3737/**
936fd732
TH
3738 * sata_link_resume - resume SATA link
3739 * @link: ATA link to resume SATA
c9b5560a 3740 * @params: timing parameters { interval, duration, timeout } in msec
d4b2bab4 3741 * @deadline: deadline jiffies for the operation
d7bb4cc7 3742 *
936fd732 3743 * Resume SATA phy @link and debounce it.
d7bb4cc7
TH
3744 *
3745 * LOCKING:
3746 * Kernel thread context (may sleep)
3747 *
3748 * RETURNS:
3749 * 0 on success, -errno on failure.
3750 */
936fd732
TH
3751int sata_link_resume(struct ata_link *link, const unsigned long *params,
3752 unsigned long deadline)
d7bb4cc7 3753{
5040ab67 3754 int tries = ATA_LINK_RESUME_TRIES;
ac371987 3755 u32 scontrol, serror;
81952c54
TH
3756 int rc;
3757
936fd732 3758 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 3759 return rc;
7a7921e8 3760
5040ab67
TH
3761 /*
3762 * Writes to SControl sometimes get ignored under certain
3763 * controllers (ata_piix SIDPR). Make sure DET actually is
3764 * cleared.
3765 */
3766 do {
3767 scontrol = (scontrol & 0x0f0) | 0x300;
3768 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3769 return rc;
3770 /*
3771 * Some PHYs react badly if SStatus is pounded
3772 * immediately after resuming. Delay 200ms before
3773 * debouncing.
3774 */
e39b2bb3
DP
3775 if (!(link->flags & ATA_LFLAG_NO_DB_DELAY))
3776 ata_msleep(link->ap, 200);
81952c54 3777
5040ab67
TH
3778 /* is SControl restored correctly? */
3779 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3780 return rc;
3781 } while ((scontrol & 0xf0f) != 0x300 && --tries);
7a7921e8 3782
5040ab67 3783 if ((scontrol & 0xf0f) != 0x300) {
38941c95 3784 ata_link_warn(link, "failed to resume link (SControl %X)\n",
a9a79dfe 3785 scontrol);
5040ab67
TH
3786 return 0;
3787 }
3788
3789 if (tries < ATA_LINK_RESUME_TRIES)
a9a79dfe
JP
3790 ata_link_warn(link, "link resume succeeded after %d retries\n",
3791 ATA_LINK_RESUME_TRIES - tries);
7a7921e8 3792
ac371987
TH
3793 if ((rc = sata_link_debounce(link, params, deadline)))
3794 return rc;
3795
f046519f 3796 /* clear SError, some PHYs require this even for SRST to work */
ac371987
TH
3797 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3798 rc = sata_scr_write(link, SCR_ERROR, serror);
ac371987 3799
f046519f 3800 return rc != -EINVAL ? rc : 0;
7a7921e8
TH
3801}
3802
1152b261
TH
3803/**
3804 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3805 * @link: ATA link to manipulate SControl for
3806 * @policy: LPM policy to configure
3807 * @spm_wakeup: initiate LPM transition to active state
3808 *
3809 * Manipulate the IPM field of the SControl register of @link
3810 * according to @policy. If @policy is ATA_LPM_MAX_POWER and
3811 * @spm_wakeup is %true, the SPM field is manipulated to wake up
3812 * the link. This function also clears PHYRDY_CHG before
3813 * returning.
3814 *
3815 * LOCKING:
3816 * EH context.
3817 *
3818 * RETURNS:
8485187b 3819 * 0 on success, -errno otherwise.
1152b261
TH
3820 */
3821int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3822 bool spm_wakeup)
3823{
3824 struct ata_eh_context *ehc = &link->eh_context;
3825 bool woken_up = false;
3826 u32 scontrol;
3827 int rc;
3828
3829 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3830 if (rc)
3831 return rc;
3832
3833 switch (policy) {
3834 case ATA_LPM_MAX_POWER:
3835 /* disable all LPM transitions */
65fe1f0f 3836 scontrol |= (0x7 << 8);
1152b261
TH
3837 /* initiate transition to active state */
3838 if (spm_wakeup) {
3839 scontrol |= (0x4 << 12);
3840 woken_up = true;
3841 }
3842 break;
3843 case ATA_LPM_MED_POWER:
3844 /* allow LPM to PARTIAL */
3845 scontrol &= ~(0x1 << 8);
65fe1f0f 3846 scontrol |= (0x6 << 8);
1152b261
TH
3847 break;
3848 case ATA_LPM_MIN_POWER:
8a745f1f
KCA
3849 if (ata_link_nr_enabled(link) > 0)
3850 /* no restrictions on LPM transitions */
65fe1f0f 3851 scontrol &= ~(0x7 << 8);
8a745f1f
KCA
3852 else {
3853 /* empty port, power off */
3854 scontrol &= ~0xf;
3855 scontrol |= (0x1 << 2);
3856 }
1152b261
TH
3857 break;
3858 default:
3859 WARN_ON(1);
3860 }
3861
3862 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3863 if (rc)
3864 return rc;
3865
3866 /* give the link time to transit out of LPM state */
3867 if (woken_up)
3868 msleep(10);
3869
3870 /* clear PHYRDY_CHG from SError */
3871 ehc->i.serror &= ~SERR_PHYRDY_CHG;
3872 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3873}
3874
f5914a46 3875/**
0aa1113d 3876 * ata_std_prereset - prepare for reset
cc0680a5 3877 * @link: ATA link to be reset
d4b2bab4 3878 * @deadline: deadline jiffies for the operation
f5914a46 3879 *
cc0680a5 3880 * @link is about to be reset. Initialize it. Failure from
b8cffc6a
TH
3881 * prereset makes libata abort whole reset sequence and give up
3882 * that port, so prereset should be best-effort. It does its
3883 * best to prepare for reset sequence but if things go wrong, it
3884 * should just whine, not fail.
f5914a46
TH
3885 *
3886 * LOCKING:
3887 * Kernel thread context (may sleep)
3888 *
3889 * RETURNS:
3890 * 0 on success, -errno otherwise.
3891 */
0aa1113d 3892int ata_std_prereset(struct ata_link *link, unsigned long deadline)
f5914a46 3893{
cc0680a5 3894 struct ata_port *ap = link->ap;
936fd732 3895 struct ata_eh_context *ehc = &link->eh_context;
e9c83914 3896 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
3897 int rc;
3898
f5914a46
TH
3899 /* if we're about to do hardreset, nothing more to do */
3900 if (ehc->i.action & ATA_EH_HARDRESET)
3901 return 0;
3902
936fd732 3903 /* if SATA, resume link */
a16abc0b 3904 if (ap->flags & ATA_FLAG_SATA) {
936fd732 3905 rc = sata_link_resume(link, timing, deadline);
b8cffc6a
TH
3906 /* whine about phy resume failure but proceed */
3907 if (rc && rc != -EOPNOTSUPP)
a9a79dfe
JP
3908 ata_link_warn(link,
3909 "failed to resume link for reset (errno=%d)\n",
3910 rc);
f5914a46
TH
3911 }
3912
45db2f6c 3913 /* no point in trying softreset on offline link */
b1c72916 3914 if (ata_phys_link_offline(link))
45db2f6c
TH
3915 ehc->i.action &= ~ATA_EH_SOFTRESET;
3916
f5914a46
TH
3917 return 0;
3918}
3919
c2bd5804 3920/**
624d5c51
TH
3921 * sata_link_hardreset - reset link via SATA phy reset
3922 * @link: link to reset
c9b5560a 3923 * @timing: timing parameters { interval, duration, timeout } in msec
d4b2bab4 3924 * @deadline: deadline jiffies for the operation
9dadd45b
TH
3925 * @online: optional out parameter indicating link onlineness
3926 * @check_ready: optional callback to check link readiness
c2bd5804 3927 *
624d5c51 3928 * SATA phy-reset @link using DET bits of SControl register.
9dadd45b
TH
3929 * After hardreset, link readiness is waited upon using
3930 * ata_wait_ready() if @check_ready is specified. LLDs are
3931 * allowed to not specify @check_ready and wait itself after this
3932 * function returns. Device classification is LLD's
3933 * responsibility.
3934 *
3935 * *@online is set to one iff reset succeeded and @link is online
3936 * after reset.
c2bd5804
TH
3937 *
3938 * LOCKING:
3939 * Kernel thread context (may sleep)
3940 *
3941 * RETURNS:
3942 * 0 on success, -errno otherwise.
3943 */
624d5c51 3944int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
9dadd45b
TH
3945 unsigned long deadline,
3946 bool *online, int (*check_ready)(struct ata_link *))
c2bd5804 3947{
624d5c51 3948 u32 scontrol;
81952c54 3949 int rc;
852ee16a 3950
c2bd5804
TH
3951 DPRINTK("ENTER\n");
3952
9dadd45b
TH
3953 if (online)
3954 *online = false;
3955
936fd732 3956 if (sata_set_spd_needed(link)) {
1c3fae4d
TH
3957 /* SATA spec says nothing about how to reconfigure
3958 * spd. To be on the safe side, turn off phy during
3959 * reconfiguration. This works for at least ICH7 AHCI
3960 * and Sil3124.
3961 */
936fd732 3962 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3963 goto out;
81952c54 3964
a34b6fc0 3965 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54 3966
936fd732 3967 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
b6103f6d 3968 goto out;
1c3fae4d 3969
936fd732 3970 sata_set_spd(link);
1c3fae4d
TH
3971 }
3972
3973 /* issue phy wake/reset */
936fd732 3974 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3975 goto out;
81952c54 3976
852ee16a 3977 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54 3978
936fd732 3979 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
b6103f6d 3980 goto out;
c2bd5804 3981
1c3fae4d 3982 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
3983 * 10.4.2 says at least 1 ms.
3984 */
97750ceb 3985 ata_msleep(link->ap, 1);
c2bd5804 3986
936fd732
TH
3987 /* bring link back */
3988 rc = sata_link_resume(link, timing, deadline);
9dadd45b
TH
3989 if (rc)
3990 goto out;
3991 /* if link is offline nothing more to do */
b1c72916 3992 if (ata_phys_link_offline(link))
9dadd45b
TH
3993 goto out;
3994
3995 /* Link is online. From this point, -ENODEV too is an error. */
3996 if (online)
3997 *online = true;
3998
071f44b1 3999 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
9dadd45b
TH
4000 /* If PMP is supported, we have to do follow-up SRST.
4001 * Some PMPs don't send D2H Reg FIS after hardreset if
4002 * the first port is empty. Wait only for
4003 * ATA_TMOUT_PMP_SRST_WAIT.
4004 */
4005 if (check_ready) {
4006 unsigned long pmp_deadline;
4007
341c2c95
TH
4008 pmp_deadline = ata_deadline(jiffies,
4009 ATA_TMOUT_PMP_SRST_WAIT);
9dadd45b
TH
4010 if (time_after(pmp_deadline, deadline))
4011 pmp_deadline = deadline;
4012 ata_wait_ready(link, pmp_deadline, check_ready);
4013 }
4014 rc = -EAGAIN;
4015 goto out;
4016 }
4017
4018 rc = 0;
4019 if (check_ready)
4020 rc = ata_wait_ready(link, deadline, check_ready);
b6103f6d 4021 out:
0cbf0711
TH
4022 if (rc && rc != -EAGAIN) {
4023 /* online is set iff link is online && reset succeeded */
4024 if (online)
4025 *online = false;
a9a79dfe 4026 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
0cbf0711 4027 }
b6103f6d
TH
4028 DPRINTK("EXIT, rc=%d\n", rc);
4029 return rc;
4030}
4031
57c9efdf
TH
4032/**
4033 * sata_std_hardreset - COMRESET w/o waiting or classification
4034 * @link: link to reset
4035 * @class: resulting class of attached device
4036 * @deadline: deadline jiffies for the operation
4037 *
4038 * Standard SATA COMRESET w/o waiting or classification.
4039 *
4040 * LOCKING:
4041 * Kernel thread context (may sleep)
4042 *
4043 * RETURNS:
4044 * 0 if link offline, -EAGAIN if link online, -errno on errors.
4045 */
4046int sata_std_hardreset(struct ata_link *link, unsigned int *class,
4047 unsigned long deadline)
4048{
4049 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
4050 bool online;
4051 int rc;
4052
4053 /* do hardreset */
4054 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
57c9efdf
TH
4055 return online ? -EAGAIN : rc;
4056}
4057
c2bd5804 4058/**
203c75b8 4059 * ata_std_postreset - standard postreset callback
cc0680a5 4060 * @link: the target ata_link
c2bd5804
TH
4061 * @classes: classes of attached devices
4062 *
4063 * This function is invoked after a successful reset. Note that
4064 * the device might have been reset more than once using
4065 * different reset methods before postreset is invoked.
c2bd5804 4066 *
c2bd5804
TH
4067 * LOCKING:
4068 * Kernel thread context (may sleep)
4069 */
203c75b8 4070void ata_std_postreset(struct ata_link *link, unsigned int *classes)
c2bd5804 4071{
f046519f
TH
4072 u32 serror;
4073
c2bd5804
TH
4074 DPRINTK("ENTER\n");
4075
f046519f
TH
4076 /* reset complete, clear SError */
4077 if (!sata_scr_read(link, SCR_ERROR, &serror))
4078 sata_scr_write(link, SCR_ERROR, serror);
4079
c2bd5804 4080 /* print link status */
936fd732 4081 sata_print_link_status(link);
c2bd5804 4082
c2bd5804
TH
4083 DPRINTK("EXIT\n");
4084}
4085
623a3128
TH
4086/**
4087 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
4088 * @dev: device to compare against
4089 * @new_class: class of the new device
4090 * @new_id: IDENTIFY page of the new device
4091 *
4092 * Compare @new_class and @new_id against @dev and determine
4093 * whether @dev is the device indicated by @new_class and
4094 * @new_id.
4095 *
4096 * LOCKING:
4097 * None.
4098 *
4099 * RETURNS:
4100 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
4101 */
3373efd8
TH
4102static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
4103 const u16 *new_id)
623a3128
TH
4104{
4105 const u16 *old_id = dev->id;
a0cf733b
TH
4106 unsigned char model[2][ATA_ID_PROD_LEN + 1];
4107 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
4108
4109 if (dev->class != new_class) {
a9a79dfe
JP
4110 ata_dev_info(dev, "class mismatch %d != %d\n",
4111 dev->class, new_class);
623a3128
TH
4112 return 0;
4113 }
4114
a0cf733b
TH
4115 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
4116 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
4117 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
4118 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
4119
4120 if (strcmp(model[0], model[1])) {
a9a79dfe
JP
4121 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
4122 model[0], model[1]);
623a3128
TH
4123 return 0;
4124 }
4125
4126 if (strcmp(serial[0], serial[1])) {
a9a79dfe
JP
4127 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
4128 serial[0], serial[1]);
623a3128
TH
4129 return 0;
4130 }
4131
623a3128
TH
4132 return 1;
4133}
4134
4135/**
fe30911b 4136 * ata_dev_reread_id - Re-read IDENTIFY data
3fae450c 4137 * @dev: target ATA device
bff04647 4138 * @readid_flags: read ID flags
623a3128
TH
4139 *
4140 * Re-read IDENTIFY page and make sure @dev is still attached to
4141 * the port.
4142 *
4143 * LOCKING:
4144 * Kernel thread context (may sleep)
4145 *
4146 * RETURNS:
4147 * 0 on success, negative errno otherwise
4148 */
fe30911b 4149int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
623a3128 4150{
5eb45c02 4151 unsigned int class = dev->class;
9af5c9c9 4152 u16 *id = (void *)dev->link->ap->sector_buf;
623a3128
TH
4153 int rc;
4154
fe635c7e 4155 /* read ID data */
bff04647 4156 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128 4157 if (rc)
fe30911b 4158 return rc;
623a3128
TH
4159
4160 /* is the device still there? */
fe30911b
TH
4161 if (!ata_dev_same_device(dev, class, id))
4162 return -ENODEV;
623a3128 4163
fe635c7e 4164 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
fe30911b
TH
4165 return 0;
4166}
4167
4168/**
4169 * ata_dev_revalidate - Revalidate ATA device
4170 * @dev: device to revalidate
422c9daa 4171 * @new_class: new class code
fe30911b
TH
4172 * @readid_flags: read ID flags
4173 *
4174 * Re-read IDENTIFY page, make sure @dev is still attached to the
4175 * port and reconfigure it according to the new IDENTIFY page.
4176 *
4177 * LOCKING:
4178 * Kernel thread context (may sleep)
4179 *
4180 * RETURNS:
4181 * 0 on success, negative errno otherwise
4182 */
422c9daa
TH
4183int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4184 unsigned int readid_flags)
fe30911b 4185{
6ddcd3b0 4186 u64 n_sectors = dev->n_sectors;
5920dadf 4187 u64 n_native_sectors = dev->n_native_sectors;
fe30911b
TH
4188 int rc;
4189
4190 if (!ata_dev_enabled(dev))
4191 return -ENODEV;
4192
422c9daa
TH
4193 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4194 if (ata_class_enabled(new_class) &&
f0d0613d
BP
4195 new_class != ATA_DEV_ATA &&
4196 new_class != ATA_DEV_ATAPI &&
9162c657 4197 new_class != ATA_DEV_ZAC &&
f0d0613d 4198 new_class != ATA_DEV_SEMB) {
a9a79dfe
JP
4199 ata_dev_info(dev, "class mismatch %u != %u\n",
4200 dev->class, new_class);
422c9daa
TH
4201 rc = -ENODEV;
4202 goto fail;
4203 }
4204
fe30911b
TH
4205 /* re-read ID */
4206 rc = ata_dev_reread_id(dev, readid_flags);
4207 if (rc)
4208 goto fail;
623a3128
TH
4209
4210 /* configure device according to the new ID */
efdaedc4 4211 rc = ata_dev_configure(dev);
6ddcd3b0
TH
4212 if (rc)
4213 goto fail;
4214
4215 /* verify n_sectors hasn't changed */
445d211b
TH
4216 if (dev->class != ATA_DEV_ATA || !n_sectors ||
4217 dev->n_sectors == n_sectors)
4218 return 0;
4219
4220 /* n_sectors has changed */
a9a79dfe
JP
4221 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
4222 (unsigned long long)n_sectors,
4223 (unsigned long long)dev->n_sectors);
445d211b
TH
4224
4225 /*
4226 * Something could have caused HPA to be unlocked
4227 * involuntarily. If n_native_sectors hasn't changed and the
4228 * new size matches it, keep the device.
4229 */
4230 if (dev->n_native_sectors == n_native_sectors &&
4231 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
a9a79dfe
JP
4232 ata_dev_warn(dev,
4233 "new n_sectors matches native, probably "
4234 "late HPA unlock, n_sectors updated\n");
68939ce5 4235 /* use the larger n_sectors */
445d211b 4236 return 0;
6ddcd3b0
TH
4237 }
4238
445d211b
TH
4239 /*
4240 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
4241 * unlocking HPA in those cases.
4242 *
4243 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4244 */
4245 if (dev->n_native_sectors == n_native_sectors &&
4246 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4247 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
a9a79dfe
JP
4248 ata_dev_warn(dev,
4249 "old n_sectors matches native, probably "
4250 "late HPA lock, will try to unlock HPA\n");
445d211b
TH
4251 /* try unlocking HPA */
4252 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4253 rc = -EIO;
4254 } else
4255 rc = -ENODEV;
623a3128 4256
445d211b
TH
4257 /* restore original n_[native_]sectors and fail */
4258 dev->n_native_sectors = n_native_sectors;
4259 dev->n_sectors = n_sectors;
623a3128 4260 fail:
a9a79dfe 4261 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
4262 return rc;
4263}
4264
6919a0a6
AC
4265struct ata_blacklist_entry {
4266 const char *model_num;
4267 const char *model_rev;
4268 unsigned long horkage;
4269};
4270
4271static const struct ata_blacklist_entry ata_device_blacklist [] = {
4272 /* Devices with DMA related problems under Linux */
4273 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4274 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4275 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4276 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4277 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4278 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4279 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4280 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4281 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
7da4c935 4282 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
4283 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4284 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4285 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4286 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4287 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
7da4c935 4288 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
4289 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4290 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4291 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4292 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4293 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4294 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4295 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4296 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
4297 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4298 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
2dcb407e 4299 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
39f19886 4300 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
d17d794c 4301 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA },
b00622fc 4302 { "VRFDFC22048UCHC-TE*", NULL, ATA_HORKAGE_NODMA },
3af9a77a 4303 /* Odd clown on sil3726/4726 PMPs */
50af2fa1 4304 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
6919a0a6 4305
18d6e9d5 4306 /* Weird ATAPI devices */
40a1d531 4307 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
6a87e42e 4308 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
a32450e1 4309 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
0523f037 4310 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
18d6e9d5 4311
af34d637
DM
4312 /*
4313 * Causes silent data corruption with higher max sects.
4314 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
4315 */
4316 { "ST380013AS", "3.20", ATA_HORKAGE_MAX_SEC_1024 },
1488a1e3
TH
4317
4318 /*
4319 * Device times out with higher max sects.
4320 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
4321 */
4322 { "LITEON CX1-JB256-HP", NULL, ATA_HORKAGE_MAX_SEC_1024 },
af34d637 4323
6919a0a6
AC
4324 /* Devices we expect to fail diagnostics */
4325
4326 /* Devices where NCQ should be avoided */
4327 /* NCQ is slow */
2dcb407e 4328 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
459ad688 4329 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
09125ea6
TH
4330 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4331 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
7acfaf30 4332 /* NCQ is broken */
539cc7c7 4333 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
0e3dbc01 4334 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
da6f0ec2 4335 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
e41bd3e8 4336 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
5ccfca97 4337 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
539cc7c7 4338
ac70a964 4339 /* Seagate NCQ + FLUSH CACHE firmware bug */
4d1f9082 4340 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
ac70a964 4341 ATA_HORKAGE_FIRMWARE_WARN },
d10d491f 4342
4d1f9082 4343 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
d10d491f
TH
4344 ATA_HORKAGE_FIRMWARE_WARN },
4345
4d1f9082 4346 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
d10d491f
TH
4347 ATA_HORKAGE_FIRMWARE_WARN },
4348
4d1f9082 4349 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
ac70a964
TH
4350 ATA_HORKAGE_FIRMWARE_WARN },
4351
08c85d2a 4352 /* drives which fail FPDMA_AA activation (some may freeze afterwards) */
87809942 4353 { "ST1000LM024 HN-M101MBB", "2AR10001", ATA_HORKAGE_BROKEN_FPDMA_AA },
b28a613e 4354 { "ST1000LM024 HN-M101MBB", "2BA30001", ATA_HORKAGE_BROKEN_FPDMA_AA },
08c85d2a 4355 { "VB0250EAVER", "HPG7", ATA_HORKAGE_BROKEN_FPDMA_AA },
87809942 4356
36e337d0
RH
4357 /* Blacklist entries taken from Silicon Image 3124/3132
4358 Windows driver .inf file - also several Linux problem reports */
4359 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4360 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4361 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
6919a0a6 4362
68b0ddb2
TH
4363 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4364 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, },
4365
16c55b03
TH
4366 /* devices which puke on READ_NATIVE_MAX */
4367 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4368 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4369 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4370 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
6919a0a6 4371
7831387b
TH
4372 /* this one allows HPA unlocking but fails IOs on the area */
4373 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
4374
93328e11
AC
4375 /* Devices which report 1 sector over size HPA */
4376 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4377 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
b152fcd3 4378 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
93328e11 4379
6bbfd53d
AC
4380 /* Devices which get the IVB wrong */
4381 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
a79067e5 4382 /* Maybe we should just blacklist TSSTcorp... */
7da4c935 4383 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, },
6bbfd53d 4384
9ce8e307
JA
4385 /* Devices that do not need bridging limits applied */
4386 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
04d0f1b8 4387 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, },
9ce8e307 4388
9062712f
TH
4389 /* Devices which aren't very happy with higher link speeds */
4390 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
c531077f 4391 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, },
9062712f 4392
d0cb43b3
TH
4393 /*
4394 * Devices which choke on SETXFER. Applies only if both the
4395 * device and controller are SATA.
4396 */
cd691876 4397 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER },
3a25179e
VL
4398 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER },
4399 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER },
cd691876
TH
4400 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER },
4401 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER },
d0cb43b3 4402
f78dea06 4403 /* devices that don't properly handle queued TRIM commands */
243918be 4404 { "Micron_M500_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
ff7f53fb
MP
4405 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4406 { "Crucial_CT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4407 ATA_HORKAGE_ZERO_AFTER_TRIM, },
9051bd39 4408 { "Micron_M5[15]0_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
ff7f53fb
MP
4409 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4410 { "Crucial_CT*M550*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4411 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4412 { "Crucial_CT*MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
e61f7d1c 4413 ATA_HORKAGE_ZERO_AFTER_TRIM, },
9a9324d3 4414 { "Samsung SSD 8*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
6fc4d97a 4415 ATA_HORKAGE_ZERO_AFTER_TRIM, },
7a7184b0
GA
4416 { "FCCT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4417 ATA_HORKAGE_ZERO_AFTER_TRIM, },
e61f7d1c 4418
cda57b1b
AF
4419 /* devices that don't properly handle TRIM commands */
4420 { "SuperSSpeed S238*", NULL, ATA_HORKAGE_NOTRIM, },
4421
e61f7d1c
MP
4422 /*
4423 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4424 * (Return Zero After Trim) flags in the ATA Command Set are
4425 * unreliable in the sense that they only define what happens if
4426 * the device successfully executed the DSM TRIM command. TRIM
4427 * is only advisory, however, and the device is free to silently
4428 * ignore all or parts of the request.
4429 *
4430 * Whitelist drives that are known to reliably return zeroes
4431 * after TRIM.
4432 */
4433
4434 /*
4435 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4436 * that model before whitelisting all other intel SSDs.
4437 */
4438 { "INTEL*SSDSC2MH*", NULL, 0, },
4439
ff7f53fb
MP
4440 { "Micron*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4441 { "Crucial*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
e61f7d1c
MP
4442 { "INTEL*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4443 { "SSD*INTEL*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4444 { "Samsung*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4445 { "SAMSUNG*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4446 { "ST[1248][0248]0[FH]*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
f78dea06 4447
ecd75ad5
TH
4448 /*
4449 * Some WD SATA-I drives spin up and down erratically when the link
4450 * is put into the slumber mode. We don't have full list of the
4451 * affected devices. Disable LPM if the device matches one of the
4452 * known prefixes and is SATA-1. As a side effect LPM partial is
4453 * lost too.
4454 *
4455 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4456 */
4457 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4458 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4459 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4460 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4461 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4462 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4463 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4464
6919a0a6
AC
4465 /* End Marker */
4466 { }
1da177e4 4467};
2e9edbf8 4468
75683fe7 4469static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
1da177e4 4470{
8bfa79fc
TH
4471 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4472 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 4473 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 4474
8bfa79fc
TH
4475 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4476 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 4477
6919a0a6 4478 while (ad->model_num) {
1c402799 4479 if (glob_match(ad->model_num, model_num)) {
6919a0a6
AC
4480 if (ad->model_rev == NULL)
4481 return ad->horkage;
1c402799 4482 if (glob_match(ad->model_rev, model_rev))
6919a0a6 4483 return ad->horkage;
f4b15fef 4484 }
6919a0a6 4485 ad++;
f4b15fef 4486 }
1da177e4
LT
4487 return 0;
4488}
4489
6919a0a6
AC
4490static int ata_dma_blacklisted(const struct ata_device *dev)
4491{
4492 /* We don't support polling DMA.
4493 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4494 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4495 */
9af5c9c9 4496 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
6919a0a6
AC
4497 (dev->flags & ATA_DFLAG_CDB_INTR))
4498 return 1;
75683fe7 4499 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
6919a0a6
AC
4500}
4501
6bbfd53d
AC
4502/**
4503 * ata_is_40wire - check drive side detection
4504 * @dev: device
4505 *
4506 * Perform drive side detection decoding, allowing for device vendors
4507 * who can't follow the documentation.
4508 */
4509
4510static int ata_is_40wire(struct ata_device *dev)
4511{
4512 if (dev->horkage & ATA_HORKAGE_IVB)
4513 return ata_drive_40wire_relaxed(dev->id);
4514 return ata_drive_40wire(dev->id);
4515}
4516
15a5551c
AC
4517/**
4518 * cable_is_40wire - 40/80/SATA decider
4519 * @ap: port to consider
4520 *
4521 * This function encapsulates the policy for speed management
4522 * in one place. At the moment we don't cache the result but
4523 * there is a good case for setting ap->cbl to the result when
4524 * we are called with unknown cables (and figuring out if it
4525 * impacts hotplug at all).
4526 *
4527 * Return 1 if the cable appears to be 40 wire.
4528 */
4529
4530static int cable_is_40wire(struct ata_port *ap)
4531{
4532 struct ata_link *link;
4533 struct ata_device *dev;
4534
4a9c7b33 4535 /* If the controller thinks we are 40 wire, we are. */
15a5551c
AC
4536 if (ap->cbl == ATA_CBL_PATA40)
4537 return 1;
4a9c7b33
TH
4538
4539 /* If the controller thinks we are 80 wire, we are. */
15a5551c
AC
4540 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4541 return 0;
4a9c7b33
TH
4542
4543 /* If the system is known to be 40 wire short cable (eg
4544 * laptop), then we allow 80 wire modes even if the drive
4545 * isn't sure.
4546 */
f792068e
AC
4547 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4548 return 0;
4a9c7b33
TH
4549
4550 /* If the controller doesn't know, we scan.
4551 *
4552 * Note: We look for all 40 wire detects at this point. Any
4553 * 80 wire detect is taken to be 80 wire cable because
4554 * - in many setups only the one drive (slave if present) will
4555 * give a valid detect
4556 * - if you have a non detect capable drive you don't want it
4557 * to colour the choice
4558 */
1eca4365
TH
4559 ata_for_each_link(link, ap, EDGE) {
4560 ata_for_each_dev(dev, link, ENABLED) {
4561 if (!ata_is_40wire(dev))
15a5551c
AC
4562 return 0;
4563 }
4564 }
4565 return 1;
4566}
4567
a6d5a51c
TH
4568/**
4569 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
4570 * @dev: Device to compute xfermask for
4571 *
acf356b1
TH
4572 * Compute supported xfermask of @dev and store it in
4573 * dev->*_mask. This function is responsible for applying all
4574 * known limits including host controller limits, device
4575 * blacklist, etc...
a6d5a51c
TH
4576 *
4577 * LOCKING:
4578 * None.
a6d5a51c 4579 */
3373efd8 4580static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 4581{
9af5c9c9
TH
4582 struct ata_link *link = dev->link;
4583 struct ata_port *ap = link->ap;
cca3974e 4584 struct ata_host *host = ap->host;
a6d5a51c 4585 unsigned long xfer_mask;
1da177e4 4586
37deecb5 4587 /* controller modes available */
565083e1
TH
4588 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4589 ap->mwdma_mask, ap->udma_mask);
4590
8343f889 4591 /* drive modes available */
37deecb5
TH
4592 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4593 dev->mwdma_mask, dev->udma_mask);
4594 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 4595
b352e57d
AC
4596 /*
4597 * CFA Advanced TrueIDE timings are not allowed on a shared
4598 * cable
4599 */
4600 if (ata_dev_pair(dev)) {
4601 /* No PIO5 or PIO6 */
4602 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4603 /* No MWDMA3 or MWDMA 4 */
4604 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4605 }
4606
37deecb5
TH
4607 if (ata_dma_blacklisted(dev)) {
4608 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
a9a79dfe
JP
4609 ata_dev_warn(dev,
4610 "device is on DMA blacklist, disabling DMA\n");
37deecb5 4611 }
a6d5a51c 4612
14d66ab7 4613 if ((host->flags & ATA_HOST_SIMPLEX) &&
2dcb407e 4614 host->simplex_claimed && host->simplex_claimed != ap) {
37deecb5 4615 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
a9a79dfe
JP
4616 ata_dev_warn(dev,
4617 "simplex DMA is claimed by other device, disabling DMA\n");
5444a6f4 4618 }
565083e1 4619
e424675f
JG
4620 if (ap->flags & ATA_FLAG_NO_IORDY)
4621 xfer_mask &= ata_pio_mask_no_iordy(dev);
4622
5444a6f4 4623 if (ap->ops->mode_filter)
a76b62ca 4624 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
5444a6f4 4625
8343f889
RH
4626 /* Apply cable rule here. Don't apply it early because when
4627 * we handle hot plug the cable type can itself change.
4628 * Check this last so that we know if the transfer rate was
4629 * solely limited by the cable.
4630 * Unknown or 80 wire cables reported host side are checked
4631 * drive side as well. Cases where we know a 40wire cable
4632 * is used safely for 80 are not checked here.
4633 */
4634 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4635 /* UDMA/44 or higher would be available */
15a5551c 4636 if (cable_is_40wire(ap)) {
a9a79dfe
JP
4637 ata_dev_warn(dev,
4638 "limited to UDMA/33 due to 40-wire cable\n");
8343f889
RH
4639 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4640 }
4641
565083e1
TH
4642 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4643 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
4644}
4645
1da177e4
LT
4646/**
4647 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
4648 * @dev: Device to which command will be sent
4649 *
780a87f7
JG
4650 * Issue SET FEATURES - XFER MODE command to device @dev
4651 * on port @ap.
4652 *
1da177e4 4653 * LOCKING:
0cba632b 4654 * PCI/etc. bus probe sem.
83206a29
TH
4655 *
4656 * RETURNS:
4657 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
4658 */
4659
3373efd8 4660static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 4661{
a0123703 4662 struct ata_taskfile tf;
83206a29 4663 unsigned int err_mask;
1da177e4
LT
4664
4665 /* set up set-features taskfile */
4666 DPRINTK("set features - xfer mode\n");
4667
464cf177
TH
4668 /* Some controllers and ATAPI devices show flaky interrupt
4669 * behavior after setting xfer mode. Use polling instead.
4670 */
3373efd8 4671 ata_tf_init(dev, &tf);
a0123703
TH
4672 tf.command = ATA_CMD_SET_FEATURES;
4673 tf.feature = SETFEATURES_XFER;
464cf177 4674 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
a0123703 4675 tf.protocol = ATA_PROT_NODATA;
b9f8ab2d 4676 /* If we are using IORDY we must send the mode setting command */
11b7becc
JG
4677 if (ata_pio_need_iordy(dev))
4678 tf.nsect = dev->xfer_mode;
b9f8ab2d
AC
4679 /* If the device has IORDY and the controller does not - turn it off */
4680 else if (ata_id_has_iordy(dev->id))
11b7becc 4681 tf.nsect = 0x01;
b9f8ab2d
AC
4682 else /* In the ancient relic department - skip all of this */
4683 return 0;
1da177e4 4684
d531be2c
MP
4685 /* On some disks, this command causes spin-up, so we need longer timeout */
4686 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
9f45cbd3
KCA
4687
4688 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4689 return err_mask;
4690}
1152b261 4691
9f45cbd3 4692/**
218f3d30 4693 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
9f45cbd3
KCA
4694 * @dev: Device to which command will be sent
4695 * @enable: Whether to enable or disable the feature
218f3d30 4696 * @feature: The sector count represents the feature to set
9f45cbd3
KCA
4697 *
4698 * Issue SET FEATURES - SATA FEATURES command to device @dev
218f3d30 4699 * on port @ap with sector count
9f45cbd3
KCA
4700 *
4701 * LOCKING:
4702 * PCI/etc. bus probe sem.
4703 *
4704 * RETURNS:
4705 * 0 on success, AC_ERR_* mask otherwise.
4706 */
1152b261 4707unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
9f45cbd3
KCA
4708{
4709 struct ata_taskfile tf;
4710 unsigned int err_mask;
974e0a45 4711 unsigned long timeout = 0;
9f45cbd3
KCA
4712
4713 /* set up set-features taskfile */
4714 DPRINTK("set features - SATA features\n");
4715
4716 ata_tf_init(dev, &tf);
4717 tf.command = ATA_CMD_SET_FEATURES;
4718 tf.feature = enable;
4719 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4720 tf.protocol = ATA_PROT_NODATA;
218f3d30 4721 tf.nsect = feature;
9f45cbd3 4722
974e0a45
DLM
4723 if (enable == SETFEATURES_SPINUP)
4724 timeout = ata_probe_timeout ?
4725 ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4726 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
1da177e4 4727
83206a29
TH
4728 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4729 return err_mask;
1da177e4 4730}
633de4cc 4731EXPORT_SYMBOL_GPL(ata_dev_set_feature);
1da177e4 4732
8bf62ece
AL
4733/**
4734 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 4735 * @dev: Device to which command will be sent
e2a7f77a
RD
4736 * @heads: Number of heads (taskfile parameter)
4737 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
4738 *
4739 * LOCKING:
6aff8f1f
TH
4740 * Kernel thread context (may sleep)
4741 *
4742 * RETURNS:
4743 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 4744 */
3373efd8
TH
4745static unsigned int ata_dev_init_params(struct ata_device *dev,
4746 u16 heads, u16 sectors)
8bf62ece 4747{
a0123703 4748 struct ata_taskfile tf;
6aff8f1f 4749 unsigned int err_mask;
8bf62ece
AL
4750
4751 /* Number of sectors per track 1-255. Number of heads 1-16 */
4752 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 4753 return AC_ERR_INVALID;
8bf62ece
AL
4754
4755 /* set up init dev params taskfile */
4756 DPRINTK("init dev params \n");
4757
3373efd8 4758 ata_tf_init(dev, &tf);
a0123703
TH
4759 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4760 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4761 tf.protocol = ATA_PROT_NODATA;
4762 tf.nsect = sectors;
4763 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 4764
2b789108 4765 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
18b2466c
AC
4766 /* A clean abort indicates an original or just out of spec drive
4767 and we should continue as we issue the setup based on the
4768 drive reported working geometry */
4769 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4770 err_mask = 0;
8bf62ece 4771
6aff8f1f
TH
4772 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4773 return err_mask;
8bf62ece
AL
4774}
4775
1da177e4 4776/**
0cba632b
JG
4777 * ata_sg_clean - Unmap DMA memory associated with command
4778 * @qc: Command containing DMA memory to be released
4779 *
4780 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
4781 *
4782 * LOCKING:
cca3974e 4783 * spin_lock_irqsave(host lock)
1da177e4 4784 */
70e6ad0c 4785void ata_sg_clean(struct ata_queued_cmd *qc)
1da177e4
LT
4786{
4787 struct ata_port *ap = qc->ap;
ff2aeb1e 4788 struct scatterlist *sg = qc->sg;
1da177e4
LT
4789 int dir = qc->dma_dir;
4790
efcb3cf7 4791 WARN_ON_ONCE(sg == NULL);
1da177e4 4792
dde20207 4793 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 4794
dde20207 4795 if (qc->n_elem)
5825627c 4796 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
1da177e4
LT
4797
4798 qc->flags &= ~ATA_QCFLAG_DMAMAP;
ff2aeb1e 4799 qc->sg = NULL;
1da177e4
LT
4800}
4801
1da177e4 4802/**
5895ef9a 4803 * atapi_check_dma - Check whether ATAPI DMA can be supported
1da177e4
LT
4804 * @qc: Metadata associated with taskfile to check
4805 *
780a87f7
JG
4806 * Allow low-level driver to filter ATA PACKET commands, returning
4807 * a status indicating whether or not it is OK to use DMA for the
4808 * supplied PACKET command.
4809 *
1da177e4 4810 * LOCKING:
624d5c51
TH
4811 * spin_lock_irqsave(host lock)
4812 *
4813 * RETURNS: 0 when ATAPI DMA can be used
4814 * nonzero otherwise
4815 */
5895ef9a 4816int atapi_check_dma(struct ata_queued_cmd *qc)
624d5c51
TH
4817{
4818 struct ata_port *ap = qc->ap;
71601958 4819
624d5c51
TH
4820 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4821 * few ATAPI devices choke on such DMA requests.
4822 */
6a87e42e
TH
4823 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4824 unlikely(qc->nbytes & 15))
624d5c51 4825 return 1;
e2cec771 4826
624d5c51
TH
4827 if (ap->ops->check_atapi_dma)
4828 return ap->ops->check_atapi_dma(qc);
e2cec771 4829
624d5c51
TH
4830 return 0;
4831}
1da177e4 4832
624d5c51
TH
4833/**
4834 * ata_std_qc_defer - Check whether a qc needs to be deferred
4835 * @qc: ATA command in question
4836 *
4837 * Non-NCQ commands cannot run with any other command, NCQ or
4838 * not. As upper layer only knows the queue depth, we are
4839 * responsible for maintaining exclusion. This function checks
4840 * whether a new command @qc can be issued.
4841 *
4842 * LOCKING:
4843 * spin_lock_irqsave(host lock)
4844 *
4845 * RETURNS:
4846 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4847 */
4848int ata_std_qc_defer(struct ata_queued_cmd *qc)
4849{
4850 struct ata_link *link = qc->dev->link;
e2cec771 4851
179b310a 4852 if (ata_is_ncq(qc->tf.protocol)) {
624d5c51
TH
4853 if (!ata_tag_valid(link->active_tag))
4854 return 0;
4855 } else {
4856 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4857 return 0;
4858 }
e2cec771 4859
624d5c51
TH
4860 return ATA_DEFER_LINK;
4861}
6912ccd5 4862
624d5c51 4863void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
1da177e4 4864
624d5c51
TH
4865/**
4866 * ata_sg_init - Associate command with scatter-gather table.
4867 * @qc: Command to be associated
4868 * @sg: Scatter-gather table.
4869 * @n_elem: Number of elements in s/g table.
4870 *
4871 * Initialize the data-related elements of queued_cmd @qc
4872 * to point to a scatter-gather table @sg, containing @n_elem
4873 * elements.
4874 *
4875 * LOCKING:
4876 * spin_lock_irqsave(host lock)
4877 */
4878void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4879 unsigned int n_elem)
4880{
4881 qc->sg = sg;
4882 qc->n_elem = n_elem;
4883 qc->cursg = qc->sg;
4884}
bb5cb290 4885
624d5c51
TH
4886/**
4887 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4888 * @qc: Command with scatter-gather table to be mapped.
4889 *
4890 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4891 *
4892 * LOCKING:
4893 * spin_lock_irqsave(host lock)
4894 *
4895 * RETURNS:
4896 * Zero on success, negative on error.
4897 *
4898 */
4899static int ata_sg_setup(struct ata_queued_cmd *qc)
4900{
4901 struct ata_port *ap = qc->ap;
4902 unsigned int n_elem;
1da177e4 4903
624d5c51 4904 VPRINTK("ENTER, ata%u\n", ap->print_id);
e2cec771 4905
624d5c51
TH
4906 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4907 if (n_elem < 1)
4908 return -1;
bb5cb290 4909
624d5c51 4910 DPRINTK("%d sg elements mapped\n", n_elem);
5825627c 4911 qc->orig_n_elem = qc->n_elem;
624d5c51
TH
4912 qc->n_elem = n_elem;
4913 qc->flags |= ATA_QCFLAG_DMAMAP;
1da177e4 4914
624d5c51 4915 return 0;
1da177e4
LT
4916}
4917
624d5c51
TH
4918/**
4919 * swap_buf_le16 - swap halves of 16-bit words in place
4920 * @buf: Buffer to swap
4921 * @buf_words: Number of 16-bit words in buffer.
4922 *
4923 * Swap halves of 16-bit words if needed to convert from
4924 * little-endian byte order to native cpu byte order, or
4925 * vice-versa.
4926 *
4927 * LOCKING:
4928 * Inherited from caller.
4929 */
4930void swap_buf_le16(u16 *buf, unsigned int buf_words)
8061f5f0 4931{
624d5c51
TH
4932#ifdef __BIG_ENDIAN
4933 unsigned int i;
8061f5f0 4934
624d5c51
TH
4935 for (i = 0; i < buf_words; i++)
4936 buf[i] = le16_to_cpu(buf[i]);
4937#endif /* __BIG_ENDIAN */
8061f5f0
TH
4938}
4939
8a8bc223 4940/**
98bd4be1
SL
4941 * ata_qc_new_init - Request an available ATA command, and initialize it
4942 * @dev: Device from whom we request an available command structure
38755e89 4943 * @tag: tag
1871ee13 4944 *
8a8bc223
TH
4945 * LOCKING:
4946 * None.
4947 */
4948
98bd4be1 4949struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag)
8a8bc223 4950{
98bd4be1 4951 struct ata_port *ap = dev->link->ap;
12cb5ce1 4952 struct ata_queued_cmd *qc;
8a8bc223
TH
4953
4954 /* no command while frozen */
4955 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4956 return NULL;
4957
98bd4be1 4958 /* libsas case */
5067c046 4959 if (ap->flags & ATA_FLAG_SAS_HOST) {
98bd4be1
SL
4960 tag = ata_sas_allocate_tag(ap);
4961 if (tag < 0)
4962 return NULL;
8a4aeec8 4963 }
8a8bc223 4964
98bd4be1
SL
4965 qc = __ata_qc_from_tag(ap, tag);
4966 qc->tag = tag;
4967 qc->scsicmd = NULL;
4968 qc->ap = ap;
4969 qc->dev = dev;
1da177e4 4970
98bd4be1 4971 ata_qc_reinit(qc);
1da177e4
LT
4972
4973 return qc;
4974}
4975
8a8bc223
TH
4976/**
4977 * ata_qc_free - free unused ata_queued_cmd
4978 * @qc: Command to complete
4979 *
4980 * Designed to free unused ata_queued_cmd object
4981 * in case something prevents using it.
4982 *
4983 * LOCKING:
4984 * spin_lock_irqsave(host lock)
4985 */
4986void ata_qc_free(struct ata_queued_cmd *qc)
4987{
a1104016 4988 struct ata_port *ap;
8a8bc223
TH
4989 unsigned int tag;
4990
efcb3cf7 4991 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
a1104016 4992 ap = qc->ap;
8a8bc223
TH
4993
4994 qc->flags = 0;
4995 tag = qc->tag;
4996 if (likely(ata_tag_valid(tag))) {
4997 qc->tag = ATA_TAG_POISON;
5067c046 4998 if (ap->flags & ATA_FLAG_SAS_HOST)
98bd4be1 4999 ata_sas_free_tag(tag, ap);
8a8bc223
TH
5000 }
5001}
5002
76014427 5003void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 5004{
a1104016
JL
5005 struct ata_port *ap;
5006 struct ata_link *link;
dedaf2b0 5007
efcb3cf7
TH
5008 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5009 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
a1104016
JL
5010 ap = qc->ap;
5011 link = qc->dev->link;
1da177e4
LT
5012
5013 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5014 ata_sg_clean(qc);
5015
7401abf2 5016 /* command should be marked inactive atomically with qc completion */
179b310a 5017 if (ata_is_ncq(qc->tf.protocol)) {
9af5c9c9 5018 link->sactive &= ~(1 << qc->tag);
da917d69
TH
5019 if (!link->sactive)
5020 ap->nr_active_links--;
5021 } else {
9af5c9c9 5022 link->active_tag = ATA_TAG_POISON;
da917d69
TH
5023 ap->nr_active_links--;
5024 }
5025
5026 /* clear exclusive status */
5027 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5028 ap->excl_link == link))
5029 ap->excl_link = NULL;
7401abf2 5030
3f3791d3
AL
5031 /* atapi: mark qc as inactive to prevent the interrupt handler
5032 * from completing the command twice later, before the error handler
5033 * is called. (when rc != 0 and atapi request sense is needed)
5034 */
5035 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 5036 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 5037
1da177e4 5038 /* call completion callback */
77853bf2 5039 qc->complete_fn(qc);
1da177e4
LT
5040}
5041
39599a53
TH
5042static void fill_result_tf(struct ata_queued_cmd *qc)
5043{
5044 struct ata_port *ap = qc->ap;
5045
39599a53 5046 qc->result_tf.flags = qc->tf.flags;
22183bf5 5047 ap->ops->qc_fill_rtf(qc);
39599a53
TH
5048}
5049
00115e0f
TH
5050static void ata_verify_xfer(struct ata_queued_cmd *qc)
5051{
5052 struct ata_device *dev = qc->dev;
5053
eb0effdf 5054 if (!ata_is_data(qc->tf.protocol))
00115e0f
TH
5055 return;
5056
5057 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
5058 return;
5059
5060 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
5061}
5062
f686bcb8
TH
5063/**
5064 * ata_qc_complete - Complete an active ATA command
5065 * @qc: Command to complete
f686bcb8 5066 *
1aadf5c3
TH
5067 * Indicate to the mid and upper layers that an ATA command has
5068 * completed, with either an ok or not-ok status.
5069 *
5070 * Refrain from calling this function multiple times when
5071 * successfully completing multiple NCQ commands.
5072 * ata_qc_complete_multiple() should be used instead, which will
5073 * properly update IRQ expect state.
f686bcb8
TH
5074 *
5075 * LOCKING:
cca3974e 5076 * spin_lock_irqsave(host lock)
f686bcb8
TH
5077 */
5078void ata_qc_complete(struct ata_queued_cmd *qc)
5079{
5080 struct ata_port *ap = qc->ap;
5081
eb25cb99
SL
5082 /* Trigger the LED (if available) */
5083 ledtrig_disk_activity();
5084
f686bcb8
TH
5085 /* XXX: New EH and old EH use different mechanisms to
5086 * synchronize EH with regular execution path.
5087 *
5088 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5089 * Normal execution path is responsible for not accessing a
5090 * failed qc. libata core enforces the rule by returning NULL
5091 * from ata_qc_from_tag() for failed qcs.
5092 *
5093 * Old EH depends on ata_qc_complete() nullifying completion
5094 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5095 * not synchronize with interrupt handler. Only PIO task is
5096 * taken care of.
5097 */
5098 if (ap->ops->error_handler) {
4dbfa39b
TH
5099 struct ata_device *dev = qc->dev;
5100 struct ata_eh_info *ehi = &dev->link->eh_info;
5101
f686bcb8
TH
5102 if (unlikely(qc->err_mask))
5103 qc->flags |= ATA_QCFLAG_FAILED;
5104
f08dc1ac
TH
5105 /*
5106 * Finish internal commands without any further processing
5107 * and always with the result TF filled.
5108 */
5109 if (unlikely(ata_tag_internal(qc->tag))) {
f4b31db9 5110 fill_result_tf(qc);
255c03d1 5111 trace_ata_qc_complete_internal(qc);
f08dc1ac
TH
5112 __ata_qc_complete(qc);
5113 return;
5114 }
f4b31db9 5115
f08dc1ac
TH
5116 /*
5117 * Non-internal qc has failed. Fill the result TF and
5118 * summon EH.
5119 */
5120 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5121 fill_result_tf(qc);
255c03d1 5122 trace_ata_qc_complete_failed(qc);
f08dc1ac 5123 ata_qc_schedule_eh(qc);
f4b31db9 5124 return;
f686bcb8
TH
5125 }
5126
4dc738ed
TH
5127 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
5128
f686bcb8
TH
5129 /* read result TF if requested */
5130 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5131 fill_result_tf(qc);
f686bcb8 5132
255c03d1 5133 trace_ata_qc_complete_done(qc);
4dbfa39b
TH
5134 /* Some commands need post-processing after successful
5135 * completion.
5136 */
5137 switch (qc->tf.command) {
5138 case ATA_CMD_SET_FEATURES:
5139 if (qc->tf.feature != SETFEATURES_WC_ON &&
0c12735e
TY
5140 qc->tf.feature != SETFEATURES_WC_OFF &&
5141 qc->tf.feature != SETFEATURES_RA_ON &&
5142 qc->tf.feature != SETFEATURES_RA_OFF)
4dbfa39b
TH
5143 break;
5144 /* fall through */
5145 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5146 case ATA_CMD_SET_MULTI: /* multi_count changed */
5147 /* revalidate device */
5148 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5149 ata_port_schedule_eh(ap);
5150 break;
054a5fba
TH
5151
5152 case ATA_CMD_SLEEP:
5153 dev->flags |= ATA_DFLAG_SLEEPING;
5154 break;
4dbfa39b
TH
5155 }
5156
00115e0f
TH
5157 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5158 ata_verify_xfer(qc);
5159
f686bcb8
TH
5160 __ata_qc_complete(qc);
5161 } else {
5162 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5163 return;
5164
5165 /* read result TF if failed or requested */
5166 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5167 fill_result_tf(qc);
f686bcb8
TH
5168
5169 __ata_qc_complete(qc);
5170 }
5171}
5172
dedaf2b0
TH
5173/**
5174 * ata_qc_complete_multiple - Complete multiple qcs successfully
5175 * @ap: port in question
5176 * @qc_active: new qc_active mask
dedaf2b0
TH
5177 *
5178 * Complete in-flight commands. This functions is meant to be
5179 * called from low-level driver's interrupt routine to complete
5180 * requests normally. ap->qc_active and @qc_active is compared
5181 * and commands are completed accordingly.
5182 *
1aadf5c3
TH
5183 * Always use this function when completing multiple NCQ commands
5184 * from IRQ handlers instead of calling ata_qc_complete()
5185 * multiple times to keep IRQ expect status properly in sync.
5186 *
dedaf2b0 5187 * LOCKING:
cca3974e 5188 * spin_lock_irqsave(host lock)
dedaf2b0
TH
5189 *
5190 * RETURNS:
5191 * Number of completed commands on success, -errno otherwise.
5192 */
79f97dad 5193int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
dedaf2b0
TH
5194{
5195 int nr_done = 0;
5196 u32 done_mask;
dedaf2b0
TH
5197
5198 done_mask = ap->qc_active ^ qc_active;
5199
5200 if (unlikely(done_mask & qc_active)) {
a9a79dfe
JP
5201 ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
5202 ap->qc_active, qc_active);
dedaf2b0
TH
5203 return -EINVAL;
5204 }
5205
43768180 5206 while (done_mask) {
dedaf2b0 5207 struct ata_queued_cmd *qc;
43768180 5208 unsigned int tag = __ffs(done_mask);
dedaf2b0 5209
43768180
JA
5210 qc = ata_qc_from_tag(ap, tag);
5211 if (qc) {
dedaf2b0
TH
5212 ata_qc_complete(qc);
5213 nr_done++;
5214 }
43768180 5215 done_mask &= ~(1 << tag);
dedaf2b0
TH
5216 }
5217
5218 return nr_done;
5219}
5220
1da177e4
LT
5221/**
5222 * ata_qc_issue - issue taskfile to device
5223 * @qc: command to issue to device
5224 *
5225 * Prepare an ATA command to submission to device.
5226 * This includes mapping the data into a DMA-able
5227 * area, filling in the S/G table, and finally
5228 * writing the taskfile to hardware, starting the command.
5229 *
5230 * LOCKING:
cca3974e 5231 * spin_lock_irqsave(host lock)
1da177e4 5232 */
8e0e694a 5233void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
5234{
5235 struct ata_port *ap = qc->ap;
9af5c9c9 5236 struct ata_link *link = qc->dev->link;
405e66b3 5237 u8 prot = qc->tf.protocol;
1da177e4 5238
dedaf2b0
TH
5239 /* Make sure only one non-NCQ command is outstanding. The
5240 * check is skipped for old EH because it reuses active qc to
5241 * request ATAPI sense.
5242 */
efcb3cf7 5243 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
dedaf2b0 5244
1973a023 5245 if (ata_is_ncq(prot)) {
efcb3cf7 5246 WARN_ON_ONCE(link->sactive & (1 << qc->tag));
da917d69
TH
5247
5248 if (!link->sactive)
5249 ap->nr_active_links++;
9af5c9c9 5250 link->sactive |= 1 << qc->tag;
dedaf2b0 5251 } else {
efcb3cf7 5252 WARN_ON_ONCE(link->sactive);
da917d69
TH
5253
5254 ap->nr_active_links++;
9af5c9c9 5255 link->active_tag = qc->tag;
dedaf2b0
TH
5256 }
5257
e4a70e76 5258 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 5259 ap->qc_active |= 1 << qc->tag;
e4a70e76 5260
60f5d6ef
TH
5261 /*
5262 * We guarantee to LLDs that they will have at least one
f92a2636
TH
5263 * non-zero sg if the command is a data command.
5264 */
60f5d6ef
TH
5265 if (WARN_ON_ONCE(ata_is_data(prot) &&
5266 (!qc->sg || !qc->n_elem || !qc->nbytes)))
5267 goto sys_err;
f92a2636 5268
405e66b3 5269 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
f92a2636 5270 (ap->flags & ATA_FLAG_PIO_DMA)))
001102d7 5271 if (ata_sg_setup(qc))
60f5d6ef 5272 goto sys_err;
1da177e4 5273
cf480626 5274 /* if device is sleeping, schedule reset and abort the link */
054a5fba 5275 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
cf480626 5276 link->eh_info.action |= ATA_EH_RESET;
054a5fba
TH
5277 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5278 ata_link_abort(link);
5279 return;
5280 }
5281
1da177e4 5282 ap->ops->qc_prep(qc);
255c03d1 5283 trace_ata_qc_issue(qc);
8e0e694a
TH
5284 qc->err_mask |= ap->ops->qc_issue(qc);
5285 if (unlikely(qc->err_mask))
5286 goto err;
5287 return;
1da177e4 5288
60f5d6ef 5289sys_err:
8e0e694a
TH
5290 qc->err_mask |= AC_ERR_SYSTEM;
5291err:
5292 ata_qc_complete(qc);
1da177e4
LT
5293}
5294
34bf2170
TH
5295/**
5296 * sata_scr_valid - test whether SCRs are accessible
936fd732 5297 * @link: ATA link to test SCR accessibility for
34bf2170 5298 *
936fd732 5299 * Test whether SCRs are accessible for @link.
34bf2170
TH
5300 *
5301 * LOCKING:
5302 * None.
5303 *
5304 * RETURNS:
5305 * 1 if SCRs are accessible, 0 otherwise.
5306 */
936fd732 5307int sata_scr_valid(struct ata_link *link)
34bf2170 5308{
936fd732
TH
5309 struct ata_port *ap = link->ap;
5310
a16abc0b 5311 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
34bf2170
TH
5312}
5313
5314/**
5315 * sata_scr_read - read SCR register of the specified port
936fd732 5316 * @link: ATA link to read SCR for
34bf2170
TH
5317 * @reg: SCR to read
5318 * @val: Place to store read value
5319 *
936fd732 5320 * Read SCR register @reg of @link into *@val. This function is
633273a3
TH
5321 * guaranteed to succeed if @link is ap->link, the cable type of
5322 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
5323 *
5324 * LOCKING:
633273a3 5325 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
5326 *
5327 * RETURNS:
5328 * 0 on success, negative errno on failure.
5329 */
936fd732 5330int sata_scr_read(struct ata_link *link, int reg, u32 *val)
34bf2170 5331{
633273a3 5332 if (ata_is_host_link(link)) {
633273a3 5333 if (sata_scr_valid(link))
82ef04fb 5334 return link->ap->ops->scr_read(link, reg, val);
633273a3
TH
5335 return -EOPNOTSUPP;
5336 }
5337
5338 return sata_pmp_scr_read(link, reg, val);
34bf2170
TH
5339}
5340
5341/**
5342 * sata_scr_write - write SCR register of the specified port
936fd732 5343 * @link: ATA link to write SCR for
34bf2170
TH
5344 * @reg: SCR to write
5345 * @val: value to write
5346 *
936fd732 5347 * Write @val to SCR register @reg of @link. This function is
633273a3
TH
5348 * guaranteed to succeed if @link is ap->link, the cable type of
5349 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
5350 *
5351 * LOCKING:
633273a3 5352 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
5353 *
5354 * RETURNS:
5355 * 0 on success, negative errno on failure.
5356 */
936fd732 5357int sata_scr_write(struct ata_link *link, int reg, u32 val)
34bf2170 5358{
633273a3 5359 if (ata_is_host_link(link)) {
633273a3 5360 if (sata_scr_valid(link))
82ef04fb 5361 return link->ap->ops->scr_write(link, reg, val);
633273a3
TH
5362 return -EOPNOTSUPP;
5363 }
936fd732 5364
633273a3 5365 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
5366}
5367
5368/**
5369 * sata_scr_write_flush - write SCR register of the specified port and flush
936fd732 5370 * @link: ATA link to write SCR for
34bf2170
TH
5371 * @reg: SCR to write
5372 * @val: value to write
5373 *
5374 * This function is identical to sata_scr_write() except that this
5375 * function performs flush after writing to the register.
5376 *
5377 * LOCKING:
633273a3 5378 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
5379 *
5380 * RETURNS:
5381 * 0 on success, negative errno on failure.
5382 */
936fd732 5383int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
34bf2170 5384{
633273a3 5385 if (ata_is_host_link(link)) {
633273a3 5386 int rc;
da3dbb17 5387
633273a3 5388 if (sata_scr_valid(link)) {
82ef04fb 5389 rc = link->ap->ops->scr_write(link, reg, val);
633273a3 5390 if (rc == 0)
82ef04fb 5391 rc = link->ap->ops->scr_read(link, reg, &val);
633273a3
TH
5392 return rc;
5393 }
5394 return -EOPNOTSUPP;
34bf2170 5395 }
633273a3
TH
5396
5397 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
5398}
5399
5400/**
b1c72916 5401 * ata_phys_link_online - test whether the given link is online
936fd732 5402 * @link: ATA link to test
34bf2170 5403 *
936fd732
TH
5404 * Test whether @link is online. Note that this function returns
5405 * 0 if online status of @link cannot be obtained, so
5406 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
5407 *
5408 * LOCKING:
5409 * None.
5410 *
5411 * RETURNS:
b5b3fa38 5412 * True if the port online status is available and online.
34bf2170 5413 */
b1c72916 5414bool ata_phys_link_online(struct ata_link *link)
34bf2170
TH
5415{
5416 u32 sstatus;
5417
936fd732 5418 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
9913ff8a 5419 ata_sstatus_online(sstatus))
b5b3fa38
TH
5420 return true;
5421 return false;
34bf2170
TH
5422}
5423
5424/**
b1c72916 5425 * ata_phys_link_offline - test whether the given link is offline
936fd732 5426 * @link: ATA link to test
34bf2170 5427 *
936fd732
TH
5428 * Test whether @link is offline. Note that this function
5429 * returns 0 if offline status of @link cannot be obtained, so
5430 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
5431 *
5432 * LOCKING:
5433 * None.
5434 *
5435 * RETURNS:
b5b3fa38 5436 * True if the port offline status is available and offline.
34bf2170 5437 */
b1c72916 5438bool ata_phys_link_offline(struct ata_link *link)
34bf2170
TH
5439{
5440 u32 sstatus;
5441
936fd732 5442 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
9913ff8a 5443 !ata_sstatus_online(sstatus))
b5b3fa38
TH
5444 return true;
5445 return false;
34bf2170 5446}
0baab86b 5447
b1c72916
TH
5448/**
5449 * ata_link_online - test whether the given link is online
5450 * @link: ATA link to test
5451 *
5452 * Test whether @link is online. This is identical to
5453 * ata_phys_link_online() when there's no slave link. When
5454 * there's a slave link, this function should only be called on
5455 * the master link and will return true if any of M/S links is
5456 * online.
5457 *
5458 * LOCKING:
5459 * None.
5460 *
5461 * RETURNS:
5462 * True if the port online status is available and online.
5463 */
5464bool ata_link_online(struct ata_link *link)
5465{
5466 struct ata_link *slave = link->ap->slave_link;
5467
5468 WARN_ON(link == slave); /* shouldn't be called on slave link */
5469
5470 return ata_phys_link_online(link) ||
5471 (slave && ata_phys_link_online(slave));
5472}
5473
5474/**
5475 * ata_link_offline - test whether the given link is offline
5476 * @link: ATA link to test
5477 *
5478 * Test whether @link is offline. This is identical to
5479 * ata_phys_link_offline() when there's no slave link. When
5480 * there's a slave link, this function should only be called on
5481 * the master link and will return true if both M/S links are
5482 * offline.
5483 *
5484 * LOCKING:
5485 * None.
5486 *
5487 * RETURNS:
5488 * True if the port offline status is available and offline.
5489 */
5490bool ata_link_offline(struct ata_link *link)
5491{
5492 struct ata_link *slave = link->ap->slave_link;
5493
5494 WARN_ON(link == slave); /* shouldn't be called on slave link */
5495
5496 return ata_phys_link_offline(link) &&
5497 (!slave || ata_phys_link_offline(slave));
5498}
5499
6ffa01d8 5500#ifdef CONFIG_PM
bc6e7c4b
DW
5501static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5502 unsigned int action, unsigned int ehi_flags,
5503 bool async)
500530f6 5504{
5ef41082 5505 struct ata_link *link;
500530f6 5506 unsigned long flags;
500530f6 5507
5ef41082
LM
5508 /* Previous resume operation might still be in
5509 * progress. Wait for PM_PENDING to clear.
5510 */
5511 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5512 ata_port_wait_eh(ap);
5513 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5514 }
500530f6 5515
5ef41082
LM
5516 /* request PM ops to EH */
5517 spin_lock_irqsave(ap->lock, flags);
500530f6 5518
5ef41082 5519 ap->pm_mesg = mesg;
5ef41082
LM
5520 ap->pflags |= ATA_PFLAG_PM_PENDING;
5521 ata_for_each_link(link, ap, HOST_FIRST) {
5522 link->eh_info.action |= action;
5523 link->eh_info.flags |= ehi_flags;
5524 }
500530f6 5525
5ef41082 5526 ata_port_schedule_eh(ap);
500530f6 5527
5ef41082 5528 spin_unlock_irqrestore(ap->lock, flags);
500530f6 5529
2fcbdcb4 5530 if (!async) {
5ef41082
LM
5531 ata_port_wait_eh(ap);
5532 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
500530f6 5533 }
500530f6
TH
5534}
5535
bc6e7c4b
DW
5536/*
5537 * On some hardware, device fails to respond after spun down for suspend. As
5538 * the device won't be used before being resumed, we don't need to touch the
5539 * device. Ask EH to skip the usual stuff and proceed directly to suspend.
5540 *
5541 * http://thread.gmane.org/gmane.linux.ide/46764
5542 */
5543static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5544 | ATA_EHI_NO_AUTOPSY
5545 | ATA_EHI_NO_RECOVERY;
5546
5547static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5ef41082 5548{
bc6e7c4b 5549 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5ef41082
LM
5550}
5551
bc6e7c4b 5552static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
2fcbdcb4 5553{
bc6e7c4b 5554 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
2fcbdcb4
DW
5555}
5556
bc6e7c4b 5557static int ata_port_pm_suspend(struct device *dev)
5ef41082 5558{
bc6e7c4b
DW
5559 struct ata_port *ap = to_ata_port(dev);
5560
5ef41082
LM
5561 if (pm_runtime_suspended(dev))
5562 return 0;
5563
bc6e7c4b
DW
5564 ata_port_suspend(ap, PMSG_SUSPEND);
5565 return 0;
33574d68
LM
5566}
5567
bc6e7c4b 5568static int ata_port_pm_freeze(struct device *dev)
33574d68 5569{
bc6e7c4b
DW
5570 struct ata_port *ap = to_ata_port(dev);
5571
33574d68 5572 if (pm_runtime_suspended(dev))
f5e6d0d0 5573 return 0;
33574d68 5574
bc6e7c4b
DW
5575 ata_port_suspend(ap, PMSG_FREEZE);
5576 return 0;
33574d68
LM
5577}
5578
bc6e7c4b 5579static int ata_port_pm_poweroff(struct device *dev)
33574d68 5580{
bc6e7c4b
DW
5581 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5582 return 0;
5ef41082
LM
5583}
5584
bc6e7c4b
DW
5585static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5586 | ATA_EHI_QUIET;
5ef41082 5587
bc6e7c4b
DW
5588static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5589{
5590 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5ef41082
LM
5591}
5592
bc6e7c4b 5593static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
2fcbdcb4 5594{
bc6e7c4b 5595 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
2fcbdcb4
DW
5596}
5597
bc6e7c4b 5598static int ata_port_pm_resume(struct device *dev)
e90b1e5a 5599{
200421a8 5600 ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
bc6e7c4b
DW
5601 pm_runtime_disable(dev);
5602 pm_runtime_set_active(dev);
5603 pm_runtime_enable(dev);
5604 return 0;
e90b1e5a
LM
5605}
5606
7e15e9be
AL
5607/*
5608 * For ODDs, the upper layer will poll for media change every few seconds,
5609 * which will make it enter and leave suspend state every few seconds. And
5610 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5611 * is very little and the ODD may malfunction after constantly being reset.
5612 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5613 * ODD is attached to the port.
5614 */
9ee4f393
LM
5615static int ata_port_runtime_idle(struct device *dev)
5616{
7e15e9be
AL
5617 struct ata_port *ap = to_ata_port(dev);
5618 struct ata_link *link;
5619 struct ata_device *adev;
5620
5621 ata_for_each_link(link, ap, HOST_FIRST) {
5622 ata_for_each_dev(adev, link, ENABLED)
5623 if (adev->class == ATA_DEV_ATAPI &&
5624 !zpodd_dev_enabled(adev))
5625 return -EBUSY;
5626 }
5627
45f0a85c 5628 return 0;
9ee4f393
LM
5629}
5630
a7ff60db
AL
5631static int ata_port_runtime_suspend(struct device *dev)
5632{
bc6e7c4b
DW
5633 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5634 return 0;
a7ff60db
AL
5635}
5636
5637static int ata_port_runtime_resume(struct device *dev)
5638{
bc6e7c4b
DW
5639 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5640 return 0;
a7ff60db
AL
5641}
5642
5ef41082 5643static const struct dev_pm_ops ata_port_pm_ops = {
bc6e7c4b
DW
5644 .suspend = ata_port_pm_suspend,
5645 .resume = ata_port_pm_resume,
5646 .freeze = ata_port_pm_freeze,
5647 .thaw = ata_port_pm_resume,
5648 .poweroff = ata_port_pm_poweroff,
5649 .restore = ata_port_pm_resume,
9ee4f393 5650
a7ff60db
AL
5651 .runtime_suspend = ata_port_runtime_suspend,
5652 .runtime_resume = ata_port_runtime_resume,
9ee4f393 5653 .runtime_idle = ata_port_runtime_idle,
5ef41082
LM
5654};
5655
2fcbdcb4
DW
5656/* sas ports don't participate in pm runtime management of ata_ports,
5657 * and need to resume ata devices at the domain level, not the per-port
5658 * level. sas suspend/resume is async to allow parallel port recovery
5659 * since sas has multiple ata_port instances per Scsi_Host.
5660 */
bc6e7c4b 5661void ata_sas_port_suspend(struct ata_port *ap)
2fcbdcb4 5662{
bc6e7c4b 5663 ata_port_suspend_async(ap, PMSG_SUSPEND);
2fcbdcb4 5664}
bc6e7c4b 5665EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
2fcbdcb4 5666
bc6e7c4b 5667void ata_sas_port_resume(struct ata_port *ap)
2fcbdcb4 5668{
bc6e7c4b 5669 ata_port_resume_async(ap, PMSG_RESUME);
2fcbdcb4 5670}
bc6e7c4b 5671EXPORT_SYMBOL_GPL(ata_sas_port_resume);
2fcbdcb4 5672
500530f6 5673/**
cca3974e
JG
5674 * ata_host_suspend - suspend host
5675 * @host: host to suspend
500530f6
TH
5676 * @mesg: PM message
5677 *
5ef41082 5678 * Suspend @host. Actual operation is performed by port suspend.
500530f6 5679 */
cca3974e 5680int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6 5681{
5ef41082
LM
5682 host->dev->power.power_state = mesg;
5683 return 0;
500530f6
TH
5684}
5685
5686/**
cca3974e
JG
5687 * ata_host_resume - resume host
5688 * @host: host to resume
500530f6 5689 *
5ef41082 5690 * Resume @host. Actual operation is performed by port resume.
500530f6 5691 */
cca3974e 5692void ata_host_resume(struct ata_host *host)
500530f6 5693{
72ad6ec4 5694 host->dev->power.power_state = PMSG_ON;
500530f6 5695}
6ffa01d8 5696#endif
500530f6 5697
5ef41082
LM
5698struct device_type ata_port_type = {
5699 .name = "ata_port",
5700#ifdef CONFIG_PM
5701 .pm = &ata_port_pm_ops,
5702#endif
5703};
5704
3ef3b43d
TH
5705/**
5706 * ata_dev_init - Initialize an ata_device structure
5707 * @dev: Device structure to initialize
5708 *
5709 * Initialize @dev in preparation for probing.
5710 *
5711 * LOCKING:
5712 * Inherited from caller.
5713 */
5714void ata_dev_init(struct ata_device *dev)
5715{
b1c72916 5716 struct ata_link *link = ata_dev_phys_link(dev);
9af5c9c9 5717 struct ata_port *ap = link->ap;
72fa4b74
TH
5718 unsigned long flags;
5719
b1c72916 5720 /* SATA spd limit is bound to the attached device, reset together */
9af5c9c9
TH
5721 link->sata_spd_limit = link->hw_sata_spd_limit;
5722 link->sata_spd = 0;
5a04bf4b 5723
72fa4b74
TH
5724 /* High bits of dev->flags are used to record warm plug
5725 * requests which occur asynchronously. Synchronize using
cca3974e 5726 * host lock.
72fa4b74 5727 */
ba6a1308 5728 spin_lock_irqsave(ap->lock, flags);
72fa4b74 5729 dev->flags &= ~ATA_DFLAG_INIT_MASK;
3dcc323f 5730 dev->horkage = 0;
ba6a1308 5731 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 5732
99cf610a
TH
5733 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5734 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
3ef3b43d
TH
5735 dev->pio_mask = UINT_MAX;
5736 dev->mwdma_mask = UINT_MAX;
5737 dev->udma_mask = UINT_MAX;
5738}
5739
4fb37a25
TH
5740/**
5741 * ata_link_init - Initialize an ata_link structure
5742 * @ap: ATA port link is attached to
5743 * @link: Link structure to initialize
8989805d 5744 * @pmp: Port multiplier port number
4fb37a25
TH
5745 *
5746 * Initialize @link.
5747 *
5748 * LOCKING:
5749 * Kernel thread context (may sleep)
5750 */
fb7fd614 5751void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
4fb37a25
TH
5752{
5753 int i;
5754
5755 /* clear everything except for devices */
d9027470
GG
5756 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5757 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
4fb37a25
TH
5758
5759 link->ap = ap;
8989805d 5760 link->pmp = pmp;
4fb37a25
TH
5761 link->active_tag = ATA_TAG_POISON;
5762 link->hw_sata_spd_limit = UINT_MAX;
5763
5764 /* can't use iterator, ap isn't initialized yet */
5765 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5766 struct ata_device *dev = &link->device[i];
5767
5768 dev->link = link;
5769 dev->devno = dev - link->device;
110f66d2
TH
5770#ifdef CONFIG_ATA_ACPI
5771 dev->gtf_filter = ata_acpi_gtf_filter;
5772#endif
4fb37a25
TH
5773 ata_dev_init(dev);
5774 }
5775}
5776
5777/**
5778 * sata_link_init_spd - Initialize link->sata_spd_limit
5779 * @link: Link to configure sata_spd_limit for
5780 *
5781 * Initialize @link->[hw_]sata_spd_limit to the currently
5782 * configured value.
5783 *
5784 * LOCKING:
5785 * Kernel thread context (may sleep).
5786 *
5787 * RETURNS:
5788 * 0 on success, -errno on failure.
5789 */
fb7fd614 5790int sata_link_init_spd(struct ata_link *link)
4fb37a25 5791{
33267325 5792 u8 spd;
4fb37a25
TH
5793 int rc;
5794
d127ea7b 5795 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
4fb37a25
TH
5796 if (rc)
5797 return rc;
5798
d127ea7b 5799 spd = (link->saved_scontrol >> 4) & 0xf;
4fb37a25
TH
5800 if (spd)
5801 link->hw_sata_spd_limit &= (1 << spd) - 1;
5802
05944bdf 5803 ata_force_link_limits(link);
33267325 5804
4fb37a25
TH
5805 link->sata_spd_limit = link->hw_sata_spd_limit;
5806
5807 return 0;
5808}
5809
1da177e4 5810/**
f3187195
TH
5811 * ata_port_alloc - allocate and initialize basic ATA port resources
5812 * @host: ATA host this allocated port belongs to
1da177e4 5813 *
f3187195
TH
5814 * Allocate and initialize basic ATA port resources.
5815 *
5816 * RETURNS:
5817 * Allocate ATA port on success, NULL on failure.
0cba632b 5818 *
1da177e4 5819 * LOCKING:
f3187195 5820 * Inherited from calling layer (may sleep).
1da177e4 5821 */
f3187195 5822struct ata_port *ata_port_alloc(struct ata_host *host)
1da177e4 5823{
f3187195 5824 struct ata_port *ap;
1da177e4 5825
f3187195
TH
5826 DPRINTK("ENTER\n");
5827
5828 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5829 if (!ap)
5830 return NULL;
4fca377f 5831
7b3a24c5 5832 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
cca3974e 5833 ap->lock = &host->lock;
f3187195 5834 ap->print_id = -1;
e628dc99 5835 ap->local_port_no = -1;
cca3974e 5836 ap->host = host;
f3187195 5837 ap->dev = host->dev;
bd5d825c
BP
5838
5839#if defined(ATA_VERBOSE_DEBUG)
5840 /* turn on all debugging levels */
5841 ap->msg_enable = 0x00FF;
5842#elif defined(ATA_DEBUG)
5843 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 5844#else
0dd4b21f 5845 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 5846#endif
1da177e4 5847
ad72cf98 5848 mutex_init(&ap->scsi_scan_mutex);
65f27f38
DH
5849 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5850 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 5851 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 5852 init_waitqueue_head(&ap->eh_wait_q);
45fabbb7 5853 init_completion(&ap->park_req_pending);
5ddf24c5
TH
5854 init_timer_deferrable(&ap->fastdrain_timer);
5855 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5856 ap->fastdrain_timer.data = (unsigned long)ap;
1da177e4 5857
838df628 5858 ap->cbl = ATA_CBL_NONE;
838df628 5859
8989805d 5860 ata_link_init(ap, &ap->link, 0);
1da177e4
LT
5861
5862#ifdef ATA_IRQ_TRAP
5863 ap->stats.unhandled_irq = 1;
5864 ap->stats.idle_irq = 1;
5865#endif
270390e1
TH
5866 ata_sff_port_init(ap);
5867
1da177e4 5868 return ap;
1da177e4
LT
5869}
5870
f0d36efd
TH
5871static void ata_host_release(struct device *gendev, void *res)
5872{
5873 struct ata_host *host = dev_get_drvdata(gendev);
5874 int i;
5875
1aa506e4
TH
5876 for (i = 0; i < host->n_ports; i++) {
5877 struct ata_port *ap = host->ports[i];
5878
4911487a
TH
5879 if (!ap)
5880 continue;
5881
5882 if (ap->scsi_host)
1aa506e4
TH
5883 scsi_host_put(ap->scsi_host);
5884
633273a3 5885 kfree(ap->pmp_link);
b1c72916 5886 kfree(ap->slave_link);
4911487a 5887 kfree(ap);
1aa506e4
TH
5888 host->ports[i] = NULL;
5889 }
5890
1aa56cca 5891 dev_set_drvdata(gendev, NULL);
f0d36efd
TH
5892}
5893
f3187195
TH
5894/**
5895 * ata_host_alloc - allocate and init basic ATA host resources
5896 * @dev: generic device this host is associated with
5897 * @max_ports: maximum number of ATA ports associated with this host
5898 *
5899 * Allocate and initialize basic ATA host resources. LLD calls
5900 * this function to allocate a host, initializes it fully and
5901 * attaches it using ata_host_register().
5902 *
5903 * @max_ports ports are allocated and host->n_ports is
5904 * initialized to @max_ports. The caller is allowed to decrease
5905 * host->n_ports before calling ata_host_register(). The unused
5906 * ports will be automatically freed on registration.
5907 *
5908 * RETURNS:
5909 * Allocate ATA host on success, NULL on failure.
5910 *
5911 * LOCKING:
5912 * Inherited from calling layer (may sleep).
5913 */
5914struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5915{
5916 struct ata_host *host;
5917 size_t sz;
5918 int i;
5919
5920 DPRINTK("ENTER\n");
5921
5922 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5923 return NULL;
5924
5925 /* alloc a container for our list of ATA ports (buses) */
5926 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5927 /* alloc a container for our list of ATA ports (buses) */
5928 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5929 if (!host)
5930 goto err_out;
5931
5932 devres_add(dev, host);
5933 dev_set_drvdata(dev, host);
5934
5935 spin_lock_init(&host->lock);
c0c362b6 5936 mutex_init(&host->eh_mutex);
f3187195
TH
5937 host->dev = dev;
5938 host->n_ports = max_ports;
5939
5940 /* allocate ports bound to this host */
5941 for (i = 0; i < max_ports; i++) {
5942 struct ata_port *ap;
5943
5944 ap = ata_port_alloc(host);
5945 if (!ap)
5946 goto err_out;
5947
5948 ap->port_no = i;
5949 host->ports[i] = ap;
5950 }
5951
5952 devres_remove_group(dev, NULL);
5953 return host;
5954
5955 err_out:
5956 devres_release_group(dev, NULL);
5957 return NULL;
5958}
5959
f5cda257
TH
5960/**
5961 * ata_host_alloc_pinfo - alloc host and init with port_info array
5962 * @dev: generic device this host is associated with
5963 * @ppi: array of ATA port_info to initialize host with
5964 * @n_ports: number of ATA ports attached to this host
5965 *
5966 * Allocate ATA host and initialize with info from @ppi. If NULL
5967 * terminated, @ppi may contain fewer entries than @n_ports. The
5968 * last entry will be used for the remaining ports.
5969 *
5970 * RETURNS:
5971 * Allocate ATA host on success, NULL on failure.
5972 *
5973 * LOCKING:
5974 * Inherited from calling layer (may sleep).
5975 */
5976struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5977 const struct ata_port_info * const * ppi,
5978 int n_ports)
5979{
5980 const struct ata_port_info *pi;
5981 struct ata_host *host;
5982 int i, j;
5983
5984 host = ata_host_alloc(dev, n_ports);
5985 if (!host)
5986 return NULL;
5987
5988 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5989 struct ata_port *ap = host->ports[i];
5990
5991 if (ppi[j])
5992 pi = ppi[j++];
5993
5994 ap->pio_mask = pi->pio_mask;
5995 ap->mwdma_mask = pi->mwdma_mask;
5996 ap->udma_mask = pi->udma_mask;
5997 ap->flags |= pi->flags;
0c88758b 5998 ap->link.flags |= pi->link_flags;
f5cda257
TH
5999 ap->ops = pi->port_ops;
6000
6001 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6002 host->ops = pi->port_ops;
f5cda257
TH
6003 }
6004
6005 return host;
6006}
6007
b1c72916
TH
6008/**
6009 * ata_slave_link_init - initialize slave link
6010 * @ap: port to initialize slave link for
6011 *
6012 * Create and initialize slave link for @ap. This enables slave
6013 * link handling on the port.
6014 *
6015 * In libata, a port contains links and a link contains devices.
6016 * There is single host link but if a PMP is attached to it,
6017 * there can be multiple fan-out links. On SATA, there's usually
6018 * a single device connected to a link but PATA and SATA
6019 * controllers emulating TF based interface can have two - master
6020 * and slave.
6021 *
6022 * However, there are a few controllers which don't fit into this
6023 * abstraction too well - SATA controllers which emulate TF
6024 * interface with both master and slave devices but also have
6025 * separate SCR register sets for each device. These controllers
6026 * need separate links for physical link handling
6027 * (e.g. onlineness, link speed) but should be treated like a
6028 * traditional M/S controller for everything else (e.g. command
6029 * issue, softreset).
6030 *
6031 * slave_link is libata's way of handling this class of
6032 * controllers without impacting core layer too much. For
6033 * anything other than physical link handling, the default host
6034 * link is used for both master and slave. For physical link
6035 * handling, separate @ap->slave_link is used. All dirty details
6036 * are implemented inside libata core layer. From LLD's POV, the
6037 * only difference is that prereset, hardreset and postreset are
6038 * called once more for the slave link, so the reset sequence
6039 * looks like the following.
6040 *
6041 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
6042 * softreset(M) -> postreset(M) -> postreset(S)
6043 *
6044 * Note that softreset is called only for the master. Softreset
6045 * resets both M/S by definition, so SRST on master should handle
6046 * both (the standard method will work just fine).
6047 *
6048 * LOCKING:
6049 * Should be called before host is registered.
6050 *
6051 * RETURNS:
6052 * 0 on success, -errno on failure.
6053 */
6054int ata_slave_link_init(struct ata_port *ap)
6055{
6056 struct ata_link *link;
6057
6058 WARN_ON(ap->slave_link);
6059 WARN_ON(ap->flags & ATA_FLAG_PMP);
6060
6061 link = kzalloc(sizeof(*link), GFP_KERNEL);
6062 if (!link)
6063 return -ENOMEM;
6064
6065 ata_link_init(ap, link, 1);
6066 ap->slave_link = link;
6067 return 0;
6068}
6069
32ebbc0c
TH
6070static void ata_host_stop(struct device *gendev, void *res)
6071{
6072 struct ata_host *host = dev_get_drvdata(gendev);
6073 int i;
6074
6075 WARN_ON(!(host->flags & ATA_HOST_STARTED));
6076
6077 for (i = 0; i < host->n_ports; i++) {
6078 struct ata_port *ap = host->ports[i];
6079
6080 if (ap->ops->port_stop)
6081 ap->ops->port_stop(ap);
6082 }
6083
6084 if (host->ops->host_stop)
6085 host->ops->host_stop(host);
6086}
6087
029cfd6b
TH
6088/**
6089 * ata_finalize_port_ops - finalize ata_port_operations
6090 * @ops: ata_port_operations to finalize
6091 *
6092 * An ata_port_operations can inherit from another ops and that
6093 * ops can again inherit from another. This can go on as many
6094 * times as necessary as long as there is no loop in the
6095 * inheritance chain.
6096 *
6097 * Ops tables are finalized when the host is started. NULL or
6098 * unspecified entries are inherited from the closet ancestor
6099 * which has the method and the entry is populated with it.
6100 * After finalization, the ops table directly points to all the
6101 * methods and ->inherits is no longer necessary and cleared.
6102 *
6103 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
6104 *
6105 * LOCKING:
6106 * None.
6107 */
6108static void ata_finalize_port_ops(struct ata_port_operations *ops)
6109{
2da67659 6110 static DEFINE_SPINLOCK(lock);
029cfd6b
TH
6111 const struct ata_port_operations *cur;
6112 void **begin = (void **)ops;
6113 void **end = (void **)&ops->inherits;
6114 void **pp;
6115
6116 if (!ops || !ops->inherits)
6117 return;
6118
6119 spin_lock(&lock);
6120
6121 for (cur = ops->inherits; cur; cur = cur->inherits) {
6122 void **inherit = (void **)cur;
6123
6124 for (pp = begin; pp < end; pp++, inherit++)
6125 if (!*pp)
6126 *pp = *inherit;
6127 }
6128
6129 for (pp = begin; pp < end; pp++)
6130 if (IS_ERR(*pp))
6131 *pp = NULL;
6132
6133 ops->inherits = NULL;
6134
6135 spin_unlock(&lock);
6136}
6137
ecef7253
TH
6138/**
6139 * ata_host_start - start and freeze ports of an ATA host
6140 * @host: ATA host to start ports for
6141 *
6142 * Start and then freeze ports of @host. Started status is
6143 * recorded in host->flags, so this function can be called
6144 * multiple times. Ports are guaranteed to get started only
f3187195
TH
6145 * once. If host->ops isn't initialized yet, its set to the
6146 * first non-dummy port ops.
ecef7253
TH
6147 *
6148 * LOCKING:
6149 * Inherited from calling layer (may sleep).
6150 *
6151 * RETURNS:
6152 * 0 if all ports are started successfully, -errno otherwise.
6153 */
6154int ata_host_start(struct ata_host *host)
6155{
32ebbc0c
TH
6156 int have_stop = 0;
6157 void *start_dr = NULL;
ecef7253
TH
6158 int i, rc;
6159
6160 if (host->flags & ATA_HOST_STARTED)
6161 return 0;
6162
029cfd6b
TH
6163 ata_finalize_port_ops(host->ops);
6164
ecef7253
TH
6165 for (i = 0; i < host->n_ports; i++) {
6166 struct ata_port *ap = host->ports[i];
6167
029cfd6b
TH
6168 ata_finalize_port_ops(ap->ops);
6169
f3187195
TH
6170 if (!host->ops && !ata_port_is_dummy(ap))
6171 host->ops = ap->ops;
6172
32ebbc0c
TH
6173 if (ap->ops->port_stop)
6174 have_stop = 1;
6175 }
6176
6177 if (host->ops->host_stop)
6178 have_stop = 1;
6179
6180 if (have_stop) {
6181 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
6182 if (!start_dr)
6183 return -ENOMEM;
6184 }
6185
6186 for (i = 0; i < host->n_ports; i++) {
6187 struct ata_port *ap = host->ports[i];
6188
ecef7253
TH
6189 if (ap->ops->port_start) {
6190 rc = ap->ops->port_start(ap);
6191 if (rc) {
0f9fe9b7 6192 if (rc != -ENODEV)
a44fec1f
JP
6193 dev_err(host->dev,
6194 "failed to start port %d (errno=%d)\n",
6195 i, rc);
ecef7253
TH
6196 goto err_out;
6197 }
6198 }
ecef7253
TH
6199 ata_eh_freeze_port(ap);
6200 }
6201
32ebbc0c
TH
6202 if (start_dr)
6203 devres_add(host->dev, start_dr);
ecef7253
TH
6204 host->flags |= ATA_HOST_STARTED;
6205 return 0;
6206
6207 err_out:
6208 while (--i >= 0) {
6209 struct ata_port *ap = host->ports[i];
6210
6211 if (ap->ops->port_stop)
6212 ap->ops->port_stop(ap);
6213 }
32ebbc0c 6214 devres_free(start_dr);
ecef7253
TH
6215 return rc;
6216}
6217
b03732f0 6218/**
8d8e7d13 6219 * ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
cca3974e
JG
6220 * @host: host to initialize
6221 * @dev: device host is attached to
cca3974e 6222 * @ops: port_ops
b03732f0 6223 *
b03732f0 6224 */
cca3974e 6225void ata_host_init(struct ata_host *host, struct device *dev,
8d8e7d13 6226 struct ata_port_operations *ops)
b03732f0 6227{
cca3974e 6228 spin_lock_init(&host->lock);
c0c362b6 6229 mutex_init(&host->eh_mutex);
1a112d10 6230 host->n_tags = ATA_MAX_QUEUE - 1;
cca3974e 6231 host->dev = dev;
cca3974e 6232 host->ops = ops;
b03732f0
BK
6233}
6234
9508a66f 6235void __ata_port_probe(struct ata_port *ap)
79318057 6236{
9508a66f
DW
6237 struct ata_eh_info *ehi = &ap->link.eh_info;
6238 unsigned long flags;
886ad09f 6239
9508a66f
DW
6240 /* kick EH for boot probing */
6241 spin_lock_irqsave(ap->lock, flags);
79318057 6242
9508a66f
DW
6243 ehi->probe_mask |= ATA_ALL_DEVICES;
6244 ehi->action |= ATA_EH_RESET;
6245 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
79318057 6246
9508a66f
DW
6247 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6248 ap->pflags |= ATA_PFLAG_LOADING;
6249 ata_port_schedule_eh(ap);
79318057 6250
9508a66f
DW
6251 spin_unlock_irqrestore(ap->lock, flags);
6252}
79318057 6253
9508a66f
DW
6254int ata_port_probe(struct ata_port *ap)
6255{
6256 int rc = 0;
79318057 6257
9508a66f
DW
6258 if (ap->ops->error_handler) {
6259 __ata_port_probe(ap);
79318057
AV
6260 ata_port_wait_eh(ap);
6261 } else {
6262 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6263 rc = ata_bus_probe(ap);
6264 DPRINTK("ata%u: bus probe end\n", ap->print_id);
79318057 6265 }
238c9cf9
JB
6266 return rc;
6267}
6268
6269
6270static void async_port_probe(void *data, async_cookie_t cookie)
6271{
6272 struct ata_port *ap = data;
4fca377f 6273
238c9cf9
JB
6274 /*
6275 * If we're not allowed to scan this host in parallel,
6276 * we need to wait until all previous scans have completed
6277 * before going further.
6278 * Jeff Garzik says this is only within a controller, so we
6279 * don't need to wait for port 0, only for later ports.
6280 */
6281 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6282 async_synchronize_cookie(cookie);
6283
6284 (void)ata_port_probe(ap);
f29d3b23
AV
6285
6286 /* in order to keep device order, we need to synchronize at this point */
6287 async_synchronize_cookie(cookie);
6288
6289 ata_scsi_scan_host(ap, 1);
79318057 6290}
238c9cf9 6291
f3187195
TH
6292/**
6293 * ata_host_register - register initialized ATA host
6294 * @host: ATA host to register
6295 * @sht: template for SCSI host
6296 *
6297 * Register initialized ATA host. @host is allocated using
6298 * ata_host_alloc() and fully initialized by LLD. This function
6299 * starts ports, registers @host with ATA and SCSI layers and
6300 * probe registered devices.
6301 *
6302 * LOCKING:
6303 * Inherited from calling layer (may sleep).
6304 *
6305 * RETURNS:
6306 * 0 on success, -errno otherwise.
6307 */
6308int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6309{
6310 int i, rc;
6311
1a112d10 6312 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE - 1);
1871ee13 6313
f3187195
TH
6314 /* host must have been started */
6315 if (!(host->flags & ATA_HOST_STARTED)) {
a44fec1f 6316 dev_err(host->dev, "BUG: trying to register unstarted host\n");
f3187195
TH
6317 WARN_ON(1);
6318 return -EINVAL;
6319 }
6320
6321 /* Blow away unused ports. This happens when LLD can't
6322 * determine the exact number of ports to allocate at
6323 * allocation time.
6324 */
6325 for (i = host->n_ports; host->ports[i]; i++)
6326 kfree(host->ports[i]);
6327
6328 /* give ports names and add SCSI hosts */
e628dc99 6329 for (i = 0; i < host->n_ports; i++) {
85d6725b 6330 host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
e628dc99
DM
6331 host->ports[i]->local_port_no = i + 1;
6332 }
4fca377f 6333
d9027470
GG
6334 /* Create associated sysfs transport objects */
6335 for (i = 0; i < host->n_ports; i++) {
6336 rc = ata_tport_add(host->dev,host->ports[i]);
6337 if (rc) {
6338 goto err_tadd;
6339 }
6340 }
6341
f3187195
TH
6342 rc = ata_scsi_add_hosts(host, sht);
6343 if (rc)
d9027470 6344 goto err_tadd;
f3187195
TH
6345
6346 /* set cable, sata_spd_limit and report */
6347 for (i = 0; i < host->n_ports; i++) {
6348 struct ata_port *ap = host->ports[i];
f3187195
TH
6349 unsigned long xfer_mask;
6350
6351 /* set SATA cable type if still unset */
6352 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6353 ap->cbl = ATA_CBL_SATA;
6354
6355 /* init sata_spd_limit to the current value */
4fb37a25 6356 sata_link_init_spd(&ap->link);
b1c72916
TH
6357 if (ap->slave_link)
6358 sata_link_init_spd(ap->slave_link);
f3187195 6359
cbcdd875 6360 /* print per-port info to dmesg */
f3187195
TH
6361 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6362 ap->udma_mask);
6363
abf6e8ed 6364 if (!ata_port_is_dummy(ap)) {
a9a79dfe
JP
6365 ata_port_info(ap, "%cATA max %s %s\n",
6366 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6367 ata_mode_string(xfer_mask),
6368 ap->link.eh_info.desc);
abf6e8ed
TH
6369 ata_ehi_clear_desc(&ap->link.eh_info);
6370 } else
a9a79dfe 6371 ata_port_info(ap, "DUMMY\n");
f3187195
TH
6372 }
6373
f6005354 6374 /* perform each probe asynchronously */
f3187195
TH
6375 for (i = 0; i < host->n_ports; i++) {
6376 struct ata_port *ap = host->ports[i];
79318057 6377 async_schedule(async_port_probe, ap);
f3187195 6378 }
f3187195
TH
6379
6380 return 0;
d9027470
GG
6381
6382 err_tadd:
6383 while (--i >= 0) {
6384 ata_tport_delete(host->ports[i]);
6385 }
6386 return rc;
6387
f3187195
TH
6388}
6389
f5cda257
TH
6390/**
6391 * ata_host_activate - start host, request IRQ and register it
6392 * @host: target ATA host
6393 * @irq: IRQ to request
6394 * @irq_handler: irq_handler used when requesting IRQ
6395 * @irq_flags: irq_flags used when requesting IRQ
6396 * @sht: scsi_host_template to use when registering the host
6397 *
6398 * After allocating an ATA host and initializing it, most libata
6399 * LLDs perform three steps to activate the host - start host,
c9b5560a 6400 * request IRQ and register it. This helper takes necessary
f5cda257
TH
6401 * arguments and performs the three steps in one go.
6402 *
3d46b2e2
PM
6403 * An invalid IRQ skips the IRQ registration and expects the host to
6404 * have set polling mode on the port. In this case, @irq_handler
6405 * should be NULL.
6406 *
f5cda257
TH
6407 * LOCKING:
6408 * Inherited from calling layer (may sleep).
6409 *
6410 * RETURNS:
6411 * 0 on success, -errno otherwise.
6412 */
6413int ata_host_activate(struct ata_host *host, int irq,
6414 irq_handler_t irq_handler, unsigned long irq_flags,
6415 struct scsi_host_template *sht)
6416{
cbcdd875 6417 int i, rc;
7e22c002 6418 char *irq_desc;
f5cda257
TH
6419
6420 rc = ata_host_start(host);
6421 if (rc)
6422 return rc;
6423
3d46b2e2
PM
6424 /* Special case for polling mode */
6425 if (!irq) {
6426 WARN_ON(irq_handler);
6427 return ata_host_register(host, sht);
6428 }
6429
7e22c002
HK
6430 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
6431 dev_driver_string(host->dev),
6432 dev_name(host->dev));
6433 if (!irq_desc)
6434 return -ENOMEM;
6435
f5cda257 6436 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
7e22c002 6437 irq_desc, host);
f5cda257
TH
6438 if (rc)
6439 return rc;
6440
cbcdd875
TH
6441 for (i = 0; i < host->n_ports; i++)
6442 ata_port_desc(host->ports[i], "irq %d", irq);
4031826b 6443
f5cda257
TH
6444 rc = ata_host_register(host, sht);
6445 /* if failed, just free the IRQ and leave ports alone */
6446 if (rc)
6447 devm_free_irq(host->dev, irq, host);
6448
6449 return rc;
6450}
6451
720ba126 6452/**
c9b5560a 6453 * ata_port_detach - Detach ATA port in preparation of device removal
720ba126
TH
6454 * @ap: ATA port to be detached
6455 *
6456 * Detach all ATA devices and the associated SCSI devices of @ap;
6457 * then, remove the associated SCSI host. @ap is guaranteed to
6458 * be quiescent on return from this function.
6459 *
6460 * LOCKING:
6461 * Kernel thread context (may sleep).
6462 */
741b7763 6463static void ata_port_detach(struct ata_port *ap)
720ba126
TH
6464{
6465 unsigned long flags;
a6f9bf4d
LK
6466 struct ata_link *link;
6467 struct ata_device *dev;
720ba126
TH
6468
6469 if (!ap->ops->error_handler)
c3cf30a9 6470 goto skip_eh;
720ba126
TH
6471
6472 /* tell EH we're leaving & flush EH */
ba6a1308 6473 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 6474 ap->pflags |= ATA_PFLAG_UNLOADING;
ece180d1 6475 ata_port_schedule_eh(ap);
ba6a1308 6476 spin_unlock_irqrestore(ap->lock, flags);
720ba126 6477
ece180d1 6478 /* wait till EH commits suicide */
720ba126
TH
6479 ata_port_wait_eh(ap);
6480
ece180d1
TH
6481 /* it better be dead now */
6482 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
720ba126 6483
afe2c511 6484 cancel_delayed_work_sync(&ap->hotplug_task);
720ba126 6485
c3cf30a9 6486 skip_eh:
a6f9bf4d
LK
6487 /* clean up zpodd on port removal */
6488 ata_for_each_link(link, ap, HOST_FIRST) {
6489 ata_for_each_dev(dev, link, ALL) {
6490 if (zpodd_dev_enabled(dev))
6491 zpodd_exit(dev);
6492 }
6493 }
d9027470
GG
6494 if (ap->pmp_link) {
6495 int i;
6496 for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6497 ata_tlink_delete(&ap->pmp_link[i]);
6498 }
720ba126 6499 /* remove the associated SCSI host */
cca3974e 6500 scsi_remove_host(ap->scsi_host);
c5700766 6501 ata_tport_delete(ap);
720ba126
TH
6502}
6503
0529c159
TH
6504/**
6505 * ata_host_detach - Detach all ports of an ATA host
6506 * @host: Host to detach
6507 *
6508 * Detach all ports of @host.
6509 *
6510 * LOCKING:
6511 * Kernel thread context (may sleep).
6512 */
6513void ata_host_detach(struct ata_host *host)
6514{
6515 int i;
6516
6517 for (i = 0; i < host->n_ports; i++)
6518 ata_port_detach(host->ports[i]);
562f0c2d
TH
6519
6520 /* the host is dead now, dissociate ACPI */
6521 ata_acpi_dissociate(host);
0529c159
TH
6522}
6523
374b1873
JG
6524#ifdef CONFIG_PCI
6525
1da177e4
LT
6526/**
6527 * ata_pci_remove_one - PCI layer callback for device removal
6528 * @pdev: PCI device that was removed
6529 *
b878ca5d
TH
6530 * PCI layer indicates to libata via this hook that hot-unplug or
6531 * module unload event has occurred. Detach all ports. Resource
6532 * release is handled via devres.
1da177e4
LT
6533 *
6534 * LOCKING:
6535 * Inherited from PCI layer (may sleep).
6536 */
f0d36efd 6537void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4 6538{
04a3f5b7 6539 struct ata_host *host = pci_get_drvdata(pdev);
1da177e4 6540
b878ca5d 6541 ata_host_detach(host);
1da177e4
LT
6542}
6543
6544/* move to PCI subsystem */
057ace5e 6545int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
6546{
6547 unsigned long tmp = 0;
6548
6549 switch (bits->width) {
6550 case 1: {
6551 u8 tmp8 = 0;
6552 pci_read_config_byte(pdev, bits->reg, &tmp8);
6553 tmp = tmp8;
6554 break;
6555 }
6556 case 2: {
6557 u16 tmp16 = 0;
6558 pci_read_config_word(pdev, bits->reg, &tmp16);
6559 tmp = tmp16;
6560 break;
6561 }
6562 case 4: {
6563 u32 tmp32 = 0;
6564 pci_read_config_dword(pdev, bits->reg, &tmp32);
6565 tmp = tmp32;
6566 break;
6567 }
6568
6569 default:
6570 return -EINVAL;
6571 }
6572
6573 tmp &= bits->mask;
6574
6575 return (tmp == bits->val) ? 1 : 0;
6576}
9b847548 6577
6ffa01d8 6578#ifdef CONFIG_PM
3c5100c1 6579void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
6580{
6581 pci_save_state(pdev);
4c90d971 6582 pci_disable_device(pdev);
500530f6 6583
3a2d5b70 6584 if (mesg.event & PM_EVENT_SLEEP)
500530f6 6585 pci_set_power_state(pdev, PCI_D3hot);
9b847548
JA
6586}
6587
553c4aa6 6588int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 6589{
553c4aa6
TH
6590 int rc;
6591
9b847548
JA
6592 pci_set_power_state(pdev, PCI_D0);
6593 pci_restore_state(pdev);
553c4aa6 6594
b878ca5d 6595 rc = pcim_enable_device(pdev);
553c4aa6 6596 if (rc) {
a44fec1f
JP
6597 dev_err(&pdev->dev,
6598 "failed to enable device after resume (%d)\n", rc);
553c4aa6
TH
6599 return rc;
6600 }
6601
9b847548 6602 pci_set_master(pdev);
553c4aa6 6603 return 0;
500530f6
TH
6604}
6605
3c5100c1 6606int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 6607{
04a3f5b7 6608 struct ata_host *host = pci_get_drvdata(pdev);
500530f6
TH
6609 int rc = 0;
6610
cca3974e 6611 rc = ata_host_suspend(host, mesg);
500530f6
TH
6612 if (rc)
6613 return rc;
6614
3c5100c1 6615 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
6616
6617 return 0;
6618}
6619
6620int ata_pci_device_resume(struct pci_dev *pdev)
6621{
04a3f5b7 6622 struct ata_host *host = pci_get_drvdata(pdev);
553c4aa6 6623 int rc;
500530f6 6624
553c4aa6
TH
6625 rc = ata_pci_device_do_resume(pdev);
6626 if (rc == 0)
6627 ata_host_resume(host);
6628 return rc;
9b847548 6629}
6ffa01d8
TH
6630#endif /* CONFIG_PM */
6631
1da177e4
LT
6632#endif /* CONFIG_PCI */
6633
b7db04d9
BN
6634/**
6635 * ata_platform_remove_one - Platform layer callback for device removal
6636 * @pdev: Platform device that was removed
6637 *
6638 * Platform layer indicates to libata via this hook that hot-unplug or
6639 * module unload event has occurred. Detach all ports. Resource
6640 * release is handled via devres.
6641 *
6642 * LOCKING:
6643 * Inherited from platform layer (may sleep).
6644 */
6645int ata_platform_remove_one(struct platform_device *pdev)
6646{
6647 struct ata_host *host = platform_get_drvdata(pdev);
6648
6649 ata_host_detach(host);
6650
6651 return 0;
6652}
6653
33267325
TH
6654static int __init ata_parse_force_one(char **cur,
6655 struct ata_force_ent *force_ent,
6656 const char **reason)
6657{
0f5f264b 6658 static const struct ata_force_param force_tbl[] __initconst = {
33267325
TH
6659 { "40c", .cbl = ATA_CBL_PATA40 },
6660 { "80c", .cbl = ATA_CBL_PATA80 },
6661 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6662 { "unk", .cbl = ATA_CBL_PATA_UNK },
6663 { "ign", .cbl = ATA_CBL_PATA_IGN },
6664 { "sata", .cbl = ATA_CBL_SATA },
6665 { "1.5Gbps", .spd_limit = 1 },
6666 { "3.0Gbps", .spd_limit = 2 },
6667 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6668 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
d7b16e4f
MP
6669 { "noncqtrim", .horkage_on = ATA_HORKAGE_NO_NCQ_TRIM },
6670 { "ncqtrim", .horkage_off = ATA_HORKAGE_NO_NCQ_TRIM },
43c9c591 6671 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID },
33267325
TH
6672 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6673 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6674 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6675 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6676 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6677 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6678 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6679 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6680 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6681 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6682 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6683 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6684 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6685 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6686 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6687 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6688 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6689 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6690 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6691 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6692 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6693 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6694 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6695 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6696 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6697 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6698 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6699 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6700 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6701 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6702 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6703 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6704 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6705 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
05944bdf
TH
6706 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6707 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6708 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
ca6d43b0 6709 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE },
966fbe19 6710 { "atapi_dmadir", .horkage_on = ATA_HORKAGE_ATAPI_DMADIR },
b8bd6dc3 6711 { "disable", .horkage_on = ATA_HORKAGE_DISABLE },
33267325
TH
6712 };
6713 char *start = *cur, *p = *cur;
6714 char *id, *val, *endp;
6715 const struct ata_force_param *match_fp = NULL;
6716 int nr_matches = 0, i;
6717
6718 /* find where this param ends and update *cur */
6719 while (*p != '\0' && *p != ',')
6720 p++;
6721
6722 if (*p == '\0')
6723 *cur = p;
6724 else
6725 *cur = p + 1;
6726
6727 *p = '\0';
6728
6729 /* parse */
6730 p = strchr(start, ':');
6731 if (!p) {
6732 val = strstrip(start);
6733 goto parse_val;
6734 }
6735 *p = '\0';
6736
6737 id = strstrip(start);
6738 val = strstrip(p + 1);
6739
6740 /* parse id */
6741 p = strchr(id, '.');
6742 if (p) {
6743 *p++ = '\0';
6744 force_ent->device = simple_strtoul(p, &endp, 10);
6745 if (p == endp || *endp != '\0') {
6746 *reason = "invalid device";
6747 return -EINVAL;
6748 }
6749 }
6750
6751 force_ent->port = simple_strtoul(id, &endp, 10);
6752 if (p == endp || *endp != '\0') {
6753 *reason = "invalid port/link";
6754 return -EINVAL;
6755 }
6756
6757 parse_val:
6758 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6759 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6760 const struct ata_force_param *fp = &force_tbl[i];
6761
6762 if (strncasecmp(val, fp->name, strlen(val)))
6763 continue;
6764
6765 nr_matches++;
6766 match_fp = fp;
6767
6768 if (strcasecmp(val, fp->name) == 0) {
6769 nr_matches = 1;
6770 break;
6771 }
6772 }
6773
6774 if (!nr_matches) {
6775 *reason = "unknown value";
6776 return -EINVAL;
6777 }
6778 if (nr_matches > 1) {
6779 *reason = "ambigious value";
6780 return -EINVAL;
6781 }
6782
6783 force_ent->param = *match_fp;
6784
6785 return 0;
6786}
6787
6788static void __init ata_parse_force_param(void)
6789{
6790 int idx = 0, size = 1;
6791 int last_port = -1, last_device = -1;
6792 char *p, *cur, *next;
6793
6794 /* calculate maximum number of params and allocate force_tbl */
6795 for (p = ata_force_param_buf; *p; p++)
6796 if (*p == ',')
6797 size++;
6798
6799 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6800 if (!ata_force_tbl) {
6801 printk(KERN_WARNING "ata: failed to extend force table, "
6802 "libata.force ignored\n");
6803 return;
6804 }
6805
6806 /* parse and populate the table */
6807 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6808 const char *reason = "";
6809 struct ata_force_ent te = { .port = -1, .device = -1 };
6810
6811 next = cur;
6812 if (ata_parse_force_one(&next, &te, &reason)) {
6813 printk(KERN_WARNING "ata: failed to parse force "
6814 "parameter \"%s\" (%s)\n",
6815 cur, reason);
6816 continue;
6817 }
6818
6819 if (te.port == -1) {
6820 te.port = last_port;
6821 te.device = last_device;
6822 }
6823
6824 ata_force_tbl[idx++] = te;
6825
6826 last_port = te.port;
6827 last_device = te.device;
6828 }
6829
6830 ata_force_tbl_size = idx;
6831}
1da177e4 6832
1da177e4
LT
6833static int __init ata_init(void)
6834{
d9027470 6835 int rc;
270390e1 6836
33267325
TH
6837 ata_parse_force_param();
6838
270390e1 6839 rc = ata_sff_init();
ad72cf98
TH
6840 if (rc) {
6841 kfree(ata_force_tbl);
6842 return rc;
6843 }
453b07ac 6844
d9027470
GG
6845 libata_transport_init();
6846 ata_scsi_transport_template = ata_attach_transport();
6847 if (!ata_scsi_transport_template) {
6848 ata_sff_exit();
6849 rc = -ENOMEM;
6850 goto err_out;
4fca377f 6851 }
d9027470 6852
1da177e4
LT
6853 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6854 return 0;
d9027470
GG
6855
6856err_out:
6857 return rc;
1da177e4
LT
6858}
6859
6860static void __exit ata_exit(void)
6861{
d9027470
GG
6862 ata_release_transport(ata_scsi_transport_template);
6863 libata_transport_exit();
270390e1 6864 ata_sff_exit();
33267325 6865 kfree(ata_force_tbl);
1da177e4
LT
6866}
6867
a4625085 6868subsys_initcall(ata_init);
1da177e4
LT
6869module_exit(ata_exit);
6870
9990b6f3 6871static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
67846b30
JG
6872
6873int ata_ratelimit(void)
6874{
9990b6f3 6875 return __ratelimit(&ratelimit);
67846b30
JG
6876}
6877
c0c362b6
TH
6878/**
6879 * ata_msleep - ATA EH owner aware msleep
6880 * @ap: ATA port to attribute the sleep to
6881 * @msecs: duration to sleep in milliseconds
6882 *
6883 * Sleeps @msecs. If the current task is owner of @ap's EH, the
6884 * ownership is released before going to sleep and reacquired
6885 * after the sleep is complete. IOW, other ports sharing the
6886 * @ap->host will be allowed to own the EH while this task is
6887 * sleeping.
6888 *
6889 * LOCKING:
6890 * Might sleep.
6891 */
97750ceb
TH
6892void ata_msleep(struct ata_port *ap, unsigned int msecs)
6893{
c0c362b6
TH
6894 bool owns_eh = ap && ap->host->eh_owner == current;
6895
6896 if (owns_eh)
6897 ata_eh_release(ap);
6898
848c3920
AVM
6899 if (msecs < 20) {
6900 unsigned long usecs = msecs * USEC_PER_MSEC;
6901 usleep_range(usecs, usecs + 50);
6902 } else {
6903 msleep(msecs);
6904 }
c0c362b6
TH
6905
6906 if (owns_eh)
6907 ata_eh_acquire(ap);
97750ceb
TH
6908}
6909
c22daff4
TH
6910/**
6911 * ata_wait_register - wait until register value changes
97750ceb 6912 * @ap: ATA port to wait register for, can be NULL
c22daff4
TH
6913 * @reg: IO-mapped register
6914 * @mask: Mask to apply to read register value
6915 * @val: Wait condition
341c2c95
TH
6916 * @interval: polling interval in milliseconds
6917 * @timeout: timeout in milliseconds
c22daff4
TH
6918 *
6919 * Waiting for some bits of register to change is a common
6920 * operation for ATA controllers. This function reads 32bit LE
6921 * IO-mapped register @reg and tests for the following condition.
6922 *
6923 * (*@reg & mask) != val
6924 *
6925 * If the condition is met, it returns; otherwise, the process is
6926 * repeated after @interval_msec until timeout.
6927 *
6928 * LOCKING:
6929 * Kernel thread context (may sleep)
6930 *
6931 * RETURNS:
6932 * The final register value.
6933 */
97750ceb 6934u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
341c2c95 6935 unsigned long interval, unsigned long timeout)
c22daff4 6936{
341c2c95 6937 unsigned long deadline;
c22daff4
TH
6938 u32 tmp;
6939
6940 tmp = ioread32(reg);
6941
6942 /* Calculate timeout _after_ the first read to make sure
6943 * preceding writes reach the controller before starting to
6944 * eat away the timeout.
6945 */
341c2c95 6946 deadline = ata_deadline(jiffies, timeout);
c22daff4 6947
341c2c95 6948 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
97750ceb 6949 ata_msleep(ap, interval);
c22daff4
TH
6950 tmp = ioread32(reg);
6951 }
6952
6953 return tmp;
6954}
6955
8393b811
GM
6956/**
6957 * sata_lpm_ignore_phy_events - test if PHY event should be ignored
6958 * @link: Link receiving the event
6959 *
6960 * Test whether the received PHY event has to be ignored or not.
6961 *
6962 * LOCKING:
6963 * None:
6964 *
6965 * RETURNS:
6966 * True if the event has to be ignored.
6967 */
6968bool sata_lpm_ignore_phy_events(struct ata_link *link)
6969{
09c5b480
GM
6970 unsigned long lpm_timeout = link->last_lpm_change +
6971 msecs_to_jiffies(ATA_TMOUT_SPURIOUS_PHY);
6972
8393b811 6973 /* if LPM is enabled, PHYRDY doesn't mean anything */
09c5b480
GM
6974 if (link->lpm_policy > ATA_LPM_MAX_POWER)
6975 return true;
6976
6977 /* ignore the first PHY event after the LPM policy changed
6978 * as it is might be spurious
6979 */
6980 if ((link->flags & ATA_LFLAG_CHANGED) &&
6981 time_before(jiffies, lpm_timeout))
6982 return true;
6983
6984 return false;
8393b811
GM
6985}
6986EXPORT_SYMBOL_GPL(sata_lpm_ignore_phy_events);
6987
dd5b06c4
TH
6988/*
6989 * Dummy port_ops
6990 */
182d7bba 6991static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
dd5b06c4 6992{
182d7bba 6993 return AC_ERR_SYSTEM;
dd5b06c4
TH
6994}
6995
182d7bba 6996static void ata_dummy_error_handler(struct ata_port *ap)
dd5b06c4 6997{
182d7bba 6998 /* truly dummy */
dd5b06c4
TH
6999}
7000
029cfd6b 7001struct ata_port_operations ata_dummy_port_ops = {
dd5b06c4
TH
7002 .qc_prep = ata_noop_qc_prep,
7003 .qc_issue = ata_dummy_qc_issue,
182d7bba 7004 .error_handler = ata_dummy_error_handler,
e4a9c373
DW
7005 .sched_eh = ata_std_sched_eh,
7006 .end_eh = ata_std_end_eh,
dd5b06c4
TH
7007};
7008
21b0ad4f
TH
7009const struct ata_port_info ata_dummy_port_info = {
7010 .port_ops = &ata_dummy_port_ops,
7011};
7012
a9a79dfe
JP
7013/*
7014 * Utility print functions
7015 */
d7bead1b
JP
7016void ata_port_printk(const struct ata_port *ap, const char *level,
7017 const char *fmt, ...)
a9a79dfe
JP
7018{
7019 struct va_format vaf;
7020 va_list args;
a9a79dfe
JP
7021
7022 va_start(args, fmt);
7023
7024 vaf.fmt = fmt;
7025 vaf.va = &args;
7026
d7bead1b 7027 printk("%sata%u: %pV", level, ap->print_id, &vaf);
a9a79dfe
JP
7028
7029 va_end(args);
a9a79dfe
JP
7030}
7031EXPORT_SYMBOL(ata_port_printk);
7032
d7bead1b
JP
7033void ata_link_printk(const struct ata_link *link, const char *level,
7034 const char *fmt, ...)
a9a79dfe
JP
7035{
7036 struct va_format vaf;
7037 va_list args;
a9a79dfe
JP
7038
7039 va_start(args, fmt);
7040
7041 vaf.fmt = fmt;
7042 vaf.va = &args;
7043
7044 if (sata_pmp_attached(link->ap) || link->ap->slave_link)
d7bead1b
JP
7045 printk("%sata%u.%02u: %pV",
7046 level, link->ap->print_id, link->pmp, &vaf);
a9a79dfe 7047 else
d7bead1b
JP
7048 printk("%sata%u: %pV",
7049 level, link->ap->print_id, &vaf);
a9a79dfe
JP
7050
7051 va_end(args);
a9a79dfe
JP
7052}
7053EXPORT_SYMBOL(ata_link_printk);
7054
d7bead1b 7055void ata_dev_printk(const struct ata_device *dev, const char *level,
a9a79dfe
JP
7056 const char *fmt, ...)
7057{
7058 struct va_format vaf;
7059 va_list args;
a9a79dfe
JP
7060
7061 va_start(args, fmt);
7062
7063 vaf.fmt = fmt;
7064 vaf.va = &args;
7065
d7bead1b
JP
7066 printk("%sata%u.%02u: %pV",
7067 level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
7068 &vaf);
a9a79dfe
JP
7069
7070 va_end(args);
a9a79dfe
JP
7071}
7072EXPORT_SYMBOL(ata_dev_printk);
7073
06296a1e
JP
7074void ata_print_version(const struct device *dev, const char *version)
7075{
7076 dev_printk(KERN_DEBUG, dev, "version %s\n", version);
7077}
7078EXPORT_SYMBOL(ata_print_version);
7079
1da177e4
LT
7080/*
7081 * libata is essentially a library of internal helper functions for
7082 * low-level ATA host controller drivers. As such, the API/ABI is
7083 * likely to change as new drivers are added and updated.
7084 * Do not depend on ABI/API stability.
7085 */
e9c83914
TH
7086EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7087EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7088EXPORT_SYMBOL_GPL(sata_deb_timing_long);
029cfd6b
TH
7089EXPORT_SYMBOL_GPL(ata_base_port_ops);
7090EXPORT_SYMBOL_GPL(sata_port_ops);
dd5b06c4 7091EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
21b0ad4f 7092EXPORT_SYMBOL_GPL(ata_dummy_port_info);
1eca4365
TH
7093EXPORT_SYMBOL_GPL(ata_link_next);
7094EXPORT_SYMBOL_GPL(ata_dev_next);
1da177e4 7095EXPORT_SYMBOL_GPL(ata_std_bios_param);
d8d9129e 7096EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
cca3974e 7097EXPORT_SYMBOL_GPL(ata_host_init);
f3187195 7098EXPORT_SYMBOL_GPL(ata_host_alloc);
f5cda257 7099EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
b1c72916 7100EXPORT_SYMBOL_GPL(ata_slave_link_init);
ecef7253 7101EXPORT_SYMBOL_GPL(ata_host_start);
f3187195 7102EXPORT_SYMBOL_GPL(ata_host_register);
f5cda257 7103EXPORT_SYMBOL_GPL(ata_host_activate);
0529c159 7104EXPORT_SYMBOL_GPL(ata_host_detach);
1da177e4 7105EXPORT_SYMBOL_GPL(ata_sg_init);
f686bcb8 7106EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 7107EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
436d34b3 7108EXPORT_SYMBOL_GPL(atapi_cmd_type);
1da177e4
LT
7109EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7110EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6357357c
TH
7111EXPORT_SYMBOL_GPL(ata_pack_xfermask);
7112EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
7113EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
7114EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
7115EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
7116EXPORT_SYMBOL_GPL(ata_mode_string);
7117EXPORT_SYMBOL_GPL(ata_id_xfermask);
04351821 7118EXPORT_SYMBOL_GPL(ata_do_set_mode);
31cc23b3 7119EXPORT_SYMBOL_GPL(ata_std_qc_defer);
e46834cd 7120EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
10305f0f 7121EXPORT_SYMBOL_GPL(ata_dev_disable);
3c567b7d 7122EXPORT_SYMBOL_GPL(sata_set_spd);
aa2731ad 7123EXPORT_SYMBOL_GPL(ata_wait_after_reset);
936fd732
TH
7124EXPORT_SYMBOL_GPL(sata_link_debounce);
7125EXPORT_SYMBOL_GPL(sata_link_resume);
1152b261 7126EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
0aa1113d 7127EXPORT_SYMBOL_GPL(ata_std_prereset);
cc0680a5 7128EXPORT_SYMBOL_GPL(sata_link_hardreset);
57c9efdf 7129EXPORT_SYMBOL_GPL(sata_std_hardreset);
203c75b8 7130EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
7131EXPORT_SYMBOL_GPL(ata_dev_classify);
7132EXPORT_SYMBOL_GPL(ata_dev_pair);
67846b30 7133EXPORT_SYMBOL_GPL(ata_ratelimit);
97750ceb 7134EXPORT_SYMBOL_GPL(ata_msleep);
c22daff4 7135EXPORT_SYMBOL_GPL(ata_wait_register);
1da177e4 7136EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 7137EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 7138EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 7139EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
f6e67035 7140EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
34bf2170
TH
7141EXPORT_SYMBOL_GPL(sata_scr_valid);
7142EXPORT_SYMBOL_GPL(sata_scr_read);
7143EXPORT_SYMBOL_GPL(sata_scr_write);
7144EXPORT_SYMBOL_GPL(sata_scr_write_flush);
936fd732
TH
7145EXPORT_SYMBOL_GPL(ata_link_online);
7146EXPORT_SYMBOL_GPL(ata_link_offline);
6ffa01d8 7147#ifdef CONFIG_PM
cca3974e
JG
7148EXPORT_SYMBOL_GPL(ata_host_suspend);
7149EXPORT_SYMBOL_GPL(ata_host_resume);
6ffa01d8 7150#endif /* CONFIG_PM */
6a62a04d
TH
7151EXPORT_SYMBOL_GPL(ata_id_string);
7152EXPORT_SYMBOL_GPL(ata_id_c_string);
963e4975 7153EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1da177e4
LT
7154EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7155
1bc4ccff 7156EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6357357c 7157EXPORT_SYMBOL_GPL(ata_timing_find_mode);
452503f9
AC
7158EXPORT_SYMBOL_GPL(ata_timing_compute);
7159EXPORT_SYMBOL_GPL(ata_timing_merge);
a0f79b92 7160EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
452503f9 7161
1da177e4
LT
7162#ifdef CONFIG_PCI
7163EXPORT_SYMBOL_GPL(pci_test_config_bits);
1da177e4 7164EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6ffa01d8 7165#ifdef CONFIG_PM
500530f6
TH
7166EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7167EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
7168EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7169EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6ffa01d8 7170#endif /* CONFIG_PM */
1da177e4 7171#endif /* CONFIG_PCI */
9b847548 7172
b7db04d9
BN
7173EXPORT_SYMBOL_GPL(ata_platform_remove_one);
7174
b64bbc39
TH
7175EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7176EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7177EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
cbcdd875
TH
7178EXPORT_SYMBOL_GPL(ata_port_desc);
7179#ifdef CONFIG_PCI
7180EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7181#endif /* CONFIG_PCI */
7b70fc03 7182EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
dbd82616 7183EXPORT_SYMBOL_GPL(ata_link_abort);
7b70fc03 7184EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499 7185EXPORT_SYMBOL_GPL(ata_port_freeze);
7d77b247 7186EXPORT_SYMBOL_GPL(sata_async_notification);
e3180499
TH
7187EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7188EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
7189EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7190EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
10acf3b0 7191EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
022bdb07 7192EXPORT_SYMBOL_GPL(ata_do_eh);
a1efdaba 7193EXPORT_SYMBOL_GPL(ata_std_error_handler);
be0d18df
AC
7194
7195EXPORT_SYMBOL_GPL(ata_cable_40wire);
7196EXPORT_SYMBOL_GPL(ata_cable_80wire);
7197EXPORT_SYMBOL_GPL(ata_cable_unknown);
c88f90c3 7198EXPORT_SYMBOL_GPL(ata_cable_ignore);
be0d18df 7199EXPORT_SYMBOL_GPL(ata_cable_sata);
This page took 1.633055 seconds and 5 git commands to generate.