Merge branch 'hwmon-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jdelv...
[deliverable/linux.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
8c3d3d4b 4 * Maintained by: Tejun Heo <tj@kernel.org>
af36d7f0
JG
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
92c52c52
AC
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
1da177e4
LT
41 */
42
1da177e4
LT
43#include <linux/kernel.h>
44#include <linux/module.h>
45#include <linux/pci.h>
46#include <linux/init.h>
47#include <linux/list.h>
48#include <linux/mm.h>
1da177e4
LT
49#include <linux/spinlock.h>
50#include <linux/blkdev.h>
51#include <linux/delay.h>
52#include <linux/timer.h>
848c3920 53#include <linux/time.h>
1da177e4
LT
54#include <linux/interrupt.h>
55#include <linux/completion.h>
56#include <linux/suspend.h>
57#include <linux/workqueue.h>
378f058c 58#include <linux/scatterlist.h>
2dcb407e 59#include <linux/io.h>
79318057 60#include <linux/async.h>
e18086d6 61#include <linux/log2.h>
5a0e3ad6 62#include <linux/slab.h>
428ac5fc 63#include <linux/glob.h>
1da177e4 64#include <scsi/scsi.h>
193515d5 65#include <scsi/scsi_cmnd.h>
1da177e4
LT
66#include <scsi/scsi_host.h>
67#include <linux/libata.h>
1da177e4 68#include <asm/byteorder.h>
fe5af0cc 69#include <asm/unaligned.h>
140b5e59 70#include <linux/cdrom.h>
9990b6f3 71#include <linux/ratelimit.h>
9ee4f393 72#include <linux/pm_runtime.h>
b7db04d9 73#include <linux/platform_device.h>
1da177e4 74
255c03d1
HR
75#define CREATE_TRACE_POINTS
76#include <trace/events/libata.h>
77
1da177e4 78#include "libata.h"
d9027470 79#include "libata-transport.h"
fda0efc5 80
d7bb4cc7 81/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
82const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
83const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
84const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 85
029cfd6b 86const struct ata_port_operations ata_base_port_ops = {
0aa1113d 87 .prereset = ata_std_prereset,
203c75b8 88 .postreset = ata_std_postreset,
a1efdaba 89 .error_handler = ata_std_error_handler,
e4a9c373
DW
90 .sched_eh = ata_std_sched_eh,
91 .end_eh = ata_std_end_eh,
029cfd6b
TH
92};
93
94const struct ata_port_operations sata_port_ops = {
95 .inherits = &ata_base_port_ops,
96
97 .qc_defer = ata_std_qc_defer,
57c9efdf 98 .hardreset = sata_std_hardreset,
029cfd6b
TH
99};
100
3373efd8
TH
101static unsigned int ata_dev_init_params(struct ata_device *dev,
102 u16 heads, u16 sectors);
103static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
104static void ata_dev_xfermask(struct ata_device *dev);
75683fe7 105static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
1da177e4 106
a78f57af 107atomic_t ata_print_id = ATOMIC_INIT(0);
1da177e4 108
33267325
TH
109struct ata_force_param {
110 const char *name;
111 unsigned int cbl;
112 int spd_limit;
113 unsigned long xfer_mask;
114 unsigned int horkage_on;
115 unsigned int horkage_off;
05944bdf 116 unsigned int lflags;
33267325
TH
117};
118
119struct ata_force_ent {
120 int port;
121 int device;
122 struct ata_force_param param;
123};
124
125static struct ata_force_ent *ata_force_tbl;
126static int ata_force_tbl_size;
127
128static char ata_force_param_buf[PAGE_SIZE] __initdata;
7afb4222
TH
129/* param_buf is thrown away after initialization, disallow read */
130module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
33267325
TH
131MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
132
2486fa56 133static int atapi_enabled = 1;
1623c81e 134module_param(atapi_enabled, int, 0444);
ad5d8eac 135MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
1623c81e 136
c5c61bda 137static int atapi_dmadir = 0;
95de719a 138module_param(atapi_dmadir, int, 0444);
ad5d8eac 139MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
95de719a 140
baf4fdfa
ML
141int atapi_passthru16 = 1;
142module_param(atapi_passthru16, int, 0444);
ad5d8eac 143MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
baf4fdfa 144
c3c013a2
JG
145int libata_fua = 0;
146module_param_named(fua, libata_fua, int, 0444);
ad5d8eac 147MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
c3c013a2 148
2dcb407e 149static int ata_ignore_hpa;
1e999736
AC
150module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
151MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
152
b3a70601
AC
153static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
154module_param_named(dma, libata_dma_mask, int, 0444);
155MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
156
87fbc5a0 157static int ata_probe_timeout;
a8601e5f
AM
158module_param(ata_probe_timeout, int, 0444);
159MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
160
6ebe9d86 161int libata_noacpi = 0;
d7d0dad6 162module_param_named(noacpi, libata_noacpi, int, 0444);
ad5d8eac 163MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
11ef697b 164
ae8d4ee7
AC
165int libata_allow_tpm = 0;
166module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
ad5d8eac 167MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
ae8d4ee7 168
e7ecd435
TH
169static int atapi_an;
170module_param(atapi_an, int, 0444);
171MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
172
1da177e4
LT
173MODULE_AUTHOR("Jeff Garzik");
174MODULE_DESCRIPTION("Library module for ATA devices");
175MODULE_LICENSE("GPL");
176MODULE_VERSION(DRV_VERSION);
177
0baab86b 178
9913ff8a
TH
179static bool ata_sstatus_online(u32 sstatus)
180{
181 return (sstatus & 0xf) == 0x3;
182}
183
1eca4365
TH
184/**
185 * ata_link_next - link iteration helper
186 * @link: the previous link, NULL to start
187 * @ap: ATA port containing links to iterate
188 * @mode: iteration mode, one of ATA_LITER_*
189 *
190 * LOCKING:
191 * Host lock or EH context.
aadffb68 192 *
1eca4365
TH
193 * RETURNS:
194 * Pointer to the next link.
aadffb68 195 */
1eca4365
TH
196struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
197 enum ata_link_iter_mode mode)
aadffb68 198{
1eca4365
TH
199 BUG_ON(mode != ATA_LITER_EDGE &&
200 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
201
aadffb68 202 /* NULL link indicates start of iteration */
1eca4365
TH
203 if (!link)
204 switch (mode) {
205 case ATA_LITER_EDGE:
206 case ATA_LITER_PMP_FIRST:
207 if (sata_pmp_attached(ap))
208 return ap->pmp_link;
209 /* fall through */
210 case ATA_LITER_HOST_FIRST:
211 return &ap->link;
212 }
aadffb68 213
1eca4365
TH
214 /* we just iterated over the host link, what's next? */
215 if (link == &ap->link)
216 switch (mode) {
217 case ATA_LITER_HOST_FIRST:
218 if (sata_pmp_attached(ap))
219 return ap->pmp_link;
220 /* fall through */
221 case ATA_LITER_PMP_FIRST:
222 if (unlikely(ap->slave_link))
b1c72916 223 return ap->slave_link;
1eca4365
TH
224 /* fall through */
225 case ATA_LITER_EDGE:
aadffb68 226 return NULL;
b1c72916 227 }
aadffb68 228
b1c72916
TH
229 /* slave_link excludes PMP */
230 if (unlikely(link == ap->slave_link))
231 return NULL;
232
1eca4365 233 /* we were over a PMP link */
aadffb68
TH
234 if (++link < ap->pmp_link + ap->nr_pmp_links)
235 return link;
1eca4365
TH
236
237 if (mode == ATA_LITER_PMP_FIRST)
238 return &ap->link;
239
aadffb68
TH
240 return NULL;
241}
242
1eca4365
TH
243/**
244 * ata_dev_next - device iteration helper
245 * @dev: the previous device, NULL to start
246 * @link: ATA link containing devices to iterate
247 * @mode: iteration mode, one of ATA_DITER_*
248 *
249 * LOCKING:
250 * Host lock or EH context.
251 *
252 * RETURNS:
253 * Pointer to the next device.
254 */
255struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
256 enum ata_dev_iter_mode mode)
257{
258 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
259 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
260
261 /* NULL dev indicates start of iteration */
262 if (!dev)
263 switch (mode) {
264 case ATA_DITER_ENABLED:
265 case ATA_DITER_ALL:
266 dev = link->device;
267 goto check;
268 case ATA_DITER_ENABLED_REVERSE:
269 case ATA_DITER_ALL_REVERSE:
270 dev = link->device + ata_link_max_devices(link) - 1;
271 goto check;
272 }
273
274 next:
275 /* move to the next one */
276 switch (mode) {
277 case ATA_DITER_ENABLED:
278 case ATA_DITER_ALL:
279 if (++dev < link->device + ata_link_max_devices(link))
280 goto check;
281 return NULL;
282 case ATA_DITER_ENABLED_REVERSE:
283 case ATA_DITER_ALL_REVERSE:
284 if (--dev >= link->device)
285 goto check;
286 return NULL;
287 }
288
289 check:
290 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
291 !ata_dev_enabled(dev))
292 goto next;
293 return dev;
294}
295
b1c72916
TH
296/**
297 * ata_dev_phys_link - find physical link for a device
298 * @dev: ATA device to look up physical link for
299 *
300 * Look up physical link which @dev is attached to. Note that
301 * this is different from @dev->link only when @dev is on slave
302 * link. For all other cases, it's the same as @dev->link.
303 *
304 * LOCKING:
305 * Don't care.
306 *
307 * RETURNS:
308 * Pointer to the found physical link.
309 */
310struct ata_link *ata_dev_phys_link(struct ata_device *dev)
311{
312 struct ata_port *ap = dev->link->ap;
313
314 if (!ap->slave_link)
315 return dev->link;
316 if (!dev->devno)
317 return &ap->link;
318 return ap->slave_link;
319}
320
33267325
TH
321/**
322 * ata_force_cbl - force cable type according to libata.force
4cdfa1b3 323 * @ap: ATA port of interest
33267325
TH
324 *
325 * Force cable type according to libata.force and whine about it.
326 * The last entry which has matching port number is used, so it
327 * can be specified as part of device force parameters. For
328 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
329 * same effect.
330 *
331 * LOCKING:
332 * EH context.
333 */
334void ata_force_cbl(struct ata_port *ap)
335{
336 int i;
337
338 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
339 const struct ata_force_ent *fe = &ata_force_tbl[i];
340
341 if (fe->port != -1 && fe->port != ap->print_id)
342 continue;
343
344 if (fe->param.cbl == ATA_CBL_NONE)
345 continue;
346
347 ap->cbl = fe->param.cbl;
a9a79dfe 348 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
33267325
TH
349 return;
350 }
351}
352
353/**
05944bdf 354 * ata_force_link_limits - force link limits according to libata.force
33267325
TH
355 * @link: ATA link of interest
356 *
05944bdf
TH
357 * Force link flags and SATA spd limit according to libata.force
358 * and whine about it. When only the port part is specified
359 * (e.g. 1:), the limit applies to all links connected to both
360 * the host link and all fan-out ports connected via PMP. If the
361 * device part is specified as 0 (e.g. 1.00:), it specifies the
362 * first fan-out link not the host link. Device number 15 always
b1c72916
TH
363 * points to the host link whether PMP is attached or not. If the
364 * controller has slave link, device number 16 points to it.
33267325
TH
365 *
366 * LOCKING:
367 * EH context.
368 */
05944bdf 369static void ata_force_link_limits(struct ata_link *link)
33267325 370{
05944bdf 371 bool did_spd = false;
b1c72916
TH
372 int linkno = link->pmp;
373 int i;
33267325
TH
374
375 if (ata_is_host_link(link))
b1c72916 376 linkno += 15;
33267325
TH
377
378 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
379 const struct ata_force_ent *fe = &ata_force_tbl[i];
380
381 if (fe->port != -1 && fe->port != link->ap->print_id)
382 continue;
383
384 if (fe->device != -1 && fe->device != linkno)
385 continue;
386
05944bdf
TH
387 /* only honor the first spd limit */
388 if (!did_spd && fe->param.spd_limit) {
389 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
a9a79dfe 390 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
05944bdf
TH
391 fe->param.name);
392 did_spd = true;
393 }
33267325 394
05944bdf
TH
395 /* let lflags stack */
396 if (fe->param.lflags) {
397 link->flags |= fe->param.lflags;
a9a79dfe 398 ata_link_notice(link,
05944bdf
TH
399 "FORCE: link flag 0x%x forced -> 0x%x\n",
400 fe->param.lflags, link->flags);
401 }
33267325
TH
402 }
403}
404
405/**
406 * ata_force_xfermask - force xfermask according to libata.force
407 * @dev: ATA device of interest
408 *
409 * Force xfer_mask according to libata.force and whine about it.
410 * For consistency with link selection, device number 15 selects
411 * the first device connected to the host link.
412 *
413 * LOCKING:
414 * EH context.
415 */
416static void ata_force_xfermask(struct ata_device *dev)
417{
418 int devno = dev->link->pmp + dev->devno;
419 int alt_devno = devno;
420 int i;
421
b1c72916
TH
422 /* allow n.15/16 for devices attached to host port */
423 if (ata_is_host_link(dev->link))
424 alt_devno += 15;
33267325
TH
425
426 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
427 const struct ata_force_ent *fe = &ata_force_tbl[i];
428 unsigned long pio_mask, mwdma_mask, udma_mask;
429
430 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
431 continue;
432
433 if (fe->device != -1 && fe->device != devno &&
434 fe->device != alt_devno)
435 continue;
436
437 if (!fe->param.xfer_mask)
438 continue;
439
440 ata_unpack_xfermask(fe->param.xfer_mask,
441 &pio_mask, &mwdma_mask, &udma_mask);
442 if (udma_mask)
443 dev->udma_mask = udma_mask;
444 else if (mwdma_mask) {
445 dev->udma_mask = 0;
446 dev->mwdma_mask = mwdma_mask;
447 } else {
448 dev->udma_mask = 0;
449 dev->mwdma_mask = 0;
450 dev->pio_mask = pio_mask;
451 }
452
a9a79dfe
JP
453 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
454 fe->param.name);
33267325
TH
455 return;
456 }
457}
458
459/**
460 * ata_force_horkage - force horkage according to libata.force
461 * @dev: ATA device of interest
462 *
463 * Force horkage according to libata.force and whine about it.
464 * For consistency with link selection, device number 15 selects
465 * the first device connected to the host link.
466 *
467 * LOCKING:
468 * EH context.
469 */
470static void ata_force_horkage(struct ata_device *dev)
471{
472 int devno = dev->link->pmp + dev->devno;
473 int alt_devno = devno;
474 int i;
475
b1c72916
TH
476 /* allow n.15/16 for devices attached to host port */
477 if (ata_is_host_link(dev->link))
478 alt_devno += 15;
33267325
TH
479
480 for (i = 0; i < ata_force_tbl_size; i++) {
481 const struct ata_force_ent *fe = &ata_force_tbl[i];
482
483 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
484 continue;
485
486 if (fe->device != -1 && fe->device != devno &&
487 fe->device != alt_devno)
488 continue;
489
490 if (!(~dev->horkage & fe->param.horkage_on) &&
491 !(dev->horkage & fe->param.horkage_off))
492 continue;
493
494 dev->horkage |= fe->param.horkage_on;
495 dev->horkage &= ~fe->param.horkage_off;
496
a9a79dfe
JP
497 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
498 fe->param.name);
33267325
TH
499 }
500}
501
436d34b3
TH
502/**
503 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
504 * @opcode: SCSI opcode
505 *
506 * Determine ATAPI command type from @opcode.
507 *
508 * LOCKING:
509 * None.
510 *
511 * RETURNS:
512 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
513 */
514int atapi_cmd_type(u8 opcode)
515{
516 switch (opcode) {
517 case GPCMD_READ_10:
518 case GPCMD_READ_12:
519 return ATAPI_READ;
520
521 case GPCMD_WRITE_10:
522 case GPCMD_WRITE_12:
523 case GPCMD_WRITE_AND_VERIFY_10:
524 return ATAPI_WRITE;
525
526 case GPCMD_READ_CD:
527 case GPCMD_READ_CD_MSF:
528 return ATAPI_READ_CD;
529
e52dcc48
TH
530 case ATA_16:
531 case ATA_12:
532 if (atapi_passthru16)
533 return ATAPI_PASS_THRU;
534 /* fall thru */
436d34b3
TH
535 default:
536 return ATAPI_MISC;
537 }
538}
539
1da177e4
LT
540/**
541 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
542 * @tf: Taskfile to convert
1da177e4 543 * @pmp: Port multiplier port
9977126c
TH
544 * @is_cmd: This FIS is for command
545 * @fis: Buffer into which data will output
1da177e4
LT
546 *
547 * Converts a standard ATA taskfile to a Serial ATA
548 * FIS structure (Register - Host to Device).
549 *
550 * LOCKING:
551 * Inherited from caller.
552 */
9977126c 553void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
1da177e4 554{
9977126c
TH
555 fis[0] = 0x27; /* Register - Host to Device FIS */
556 fis[1] = pmp & 0xf; /* Port multiplier number*/
557 if (is_cmd)
558 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
559
1da177e4
LT
560 fis[2] = tf->command;
561 fis[3] = tf->feature;
562
563 fis[4] = tf->lbal;
564 fis[5] = tf->lbam;
565 fis[6] = tf->lbah;
566 fis[7] = tf->device;
567
568 fis[8] = tf->hob_lbal;
569 fis[9] = tf->hob_lbam;
570 fis[10] = tf->hob_lbah;
571 fis[11] = tf->hob_feature;
572
573 fis[12] = tf->nsect;
574 fis[13] = tf->hob_nsect;
575 fis[14] = 0;
576 fis[15] = tf->ctl;
577
86a565e6
MC
578 fis[16] = tf->auxiliary & 0xff;
579 fis[17] = (tf->auxiliary >> 8) & 0xff;
580 fis[18] = (tf->auxiliary >> 16) & 0xff;
581 fis[19] = (tf->auxiliary >> 24) & 0xff;
1da177e4
LT
582}
583
584/**
585 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
586 * @fis: Buffer from which data will be input
587 * @tf: Taskfile to output
588 *
e12a1be6 589 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
590 *
591 * LOCKING:
592 * Inherited from caller.
593 */
594
057ace5e 595void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
596{
597 tf->command = fis[2]; /* status */
598 tf->feature = fis[3]; /* error */
599
600 tf->lbal = fis[4];
601 tf->lbam = fis[5];
602 tf->lbah = fis[6];
603 tf->device = fis[7];
604
605 tf->hob_lbal = fis[8];
606 tf->hob_lbam = fis[9];
607 tf->hob_lbah = fis[10];
608
609 tf->nsect = fis[12];
610 tf->hob_nsect = fis[13];
611}
612
8cbd6df1
AL
613static const u8 ata_rw_cmds[] = {
614 /* pio multi */
615 ATA_CMD_READ_MULTI,
616 ATA_CMD_WRITE_MULTI,
617 ATA_CMD_READ_MULTI_EXT,
618 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
619 0,
620 0,
621 0,
622 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
623 /* pio */
624 ATA_CMD_PIO_READ,
625 ATA_CMD_PIO_WRITE,
626 ATA_CMD_PIO_READ_EXT,
627 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
628 0,
629 0,
630 0,
631 0,
8cbd6df1
AL
632 /* dma */
633 ATA_CMD_READ,
634 ATA_CMD_WRITE,
635 ATA_CMD_READ_EXT,
9a3dccc4
TH
636 ATA_CMD_WRITE_EXT,
637 0,
638 0,
639 0,
640 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 641};
1da177e4
LT
642
643/**
8cbd6df1 644 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
645 * @tf: command to examine and configure
646 * @dev: device tf belongs to
1da177e4 647 *
2e9edbf8 648 * Examine the device configuration and tf->flags to calculate
8cbd6df1 649 * the proper read/write commands and protocol to use.
1da177e4
LT
650 *
651 * LOCKING:
652 * caller.
653 */
bd056d7e 654static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 655{
9a3dccc4 656 u8 cmd;
1da177e4 657
9a3dccc4 658 int index, fua, lba48, write;
2e9edbf8 659
9a3dccc4 660 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
661 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
662 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 663
8cbd6df1
AL
664 if (dev->flags & ATA_DFLAG_PIO) {
665 tf->protocol = ATA_PROT_PIO;
9a3dccc4 666 index = dev->multi_count ? 0 : 8;
9af5c9c9 667 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
668 /* Unable to use DMA due to host limitation */
669 tf->protocol = ATA_PROT_PIO;
0565c26d 670 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
671 } else {
672 tf->protocol = ATA_PROT_DMA;
9a3dccc4 673 index = 16;
8cbd6df1 674 }
1da177e4 675
9a3dccc4
TH
676 cmd = ata_rw_cmds[index + fua + lba48 + write];
677 if (cmd) {
678 tf->command = cmd;
679 return 0;
680 }
681 return -1;
1da177e4
LT
682}
683
35b649fe
TH
684/**
685 * ata_tf_read_block - Read block address from ATA taskfile
686 * @tf: ATA taskfile of interest
687 * @dev: ATA device @tf belongs to
688 *
689 * LOCKING:
690 * None.
691 *
692 * Read block address from @tf. This function can handle all
693 * three address formats - LBA, LBA48 and CHS. tf->protocol and
694 * flags select the address format to use.
695 *
696 * RETURNS:
697 * Block address read from @tf.
698 */
cffd1ee9 699u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
35b649fe
TH
700{
701 u64 block = 0;
702
fe16d4f2 703 if (tf->flags & ATA_TFLAG_LBA) {
35b649fe
TH
704 if (tf->flags & ATA_TFLAG_LBA48) {
705 block |= (u64)tf->hob_lbah << 40;
706 block |= (u64)tf->hob_lbam << 32;
44901a96 707 block |= (u64)tf->hob_lbal << 24;
35b649fe
TH
708 } else
709 block |= (tf->device & 0xf) << 24;
710
711 block |= tf->lbah << 16;
712 block |= tf->lbam << 8;
713 block |= tf->lbal;
714 } else {
715 u32 cyl, head, sect;
716
717 cyl = tf->lbam | (tf->lbah << 8);
718 head = tf->device & 0xf;
719 sect = tf->lbal;
720
ac8672ea 721 if (!sect) {
a9a79dfe
JP
722 ata_dev_warn(dev,
723 "device reported invalid CHS sector 0\n");
cffd1ee9 724 return U64_MAX;
ac8672ea
TH
725 }
726
727 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
35b649fe
TH
728 }
729
730 return block;
731}
732
bd056d7e
TH
733/**
734 * ata_build_rw_tf - Build ATA taskfile for given read/write request
735 * @tf: Target ATA taskfile
736 * @dev: ATA device @tf belongs to
737 * @block: Block address
738 * @n_block: Number of blocks
739 * @tf_flags: RW/FUA etc...
740 * @tag: tag
741 *
742 * LOCKING:
743 * None.
744 *
745 * Build ATA taskfile @tf for read/write request described by
746 * @block, @n_block, @tf_flags and @tag on @dev.
747 *
748 * RETURNS:
749 *
750 * 0 on success, -ERANGE if the request is too large for @dev,
751 * -EINVAL if the request is invalid.
752 */
753int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
754 u64 block, u32 n_block, unsigned int tf_flags,
755 unsigned int tag)
756{
757 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
758 tf->flags |= tf_flags;
759
6d1245bf 760 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
761 /* yay, NCQ */
762 if (!lba_48_ok(block, n_block))
763 return -ERANGE;
764
765 tf->protocol = ATA_PROT_NCQ;
766 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
767
768 if (tf->flags & ATA_TFLAG_WRITE)
769 tf->command = ATA_CMD_FPDMA_WRITE;
770 else
771 tf->command = ATA_CMD_FPDMA_READ;
772
773 tf->nsect = tag << 3;
774 tf->hob_feature = (n_block >> 8) & 0xff;
775 tf->feature = n_block & 0xff;
776
777 tf->hob_lbah = (block >> 40) & 0xff;
778 tf->hob_lbam = (block >> 32) & 0xff;
779 tf->hob_lbal = (block >> 24) & 0xff;
780 tf->lbah = (block >> 16) & 0xff;
781 tf->lbam = (block >> 8) & 0xff;
782 tf->lbal = block & 0xff;
783
9ca7cfa4 784 tf->device = ATA_LBA;
bd056d7e
TH
785 if (tf->flags & ATA_TFLAG_FUA)
786 tf->device |= 1 << 7;
787 } else if (dev->flags & ATA_DFLAG_LBA) {
788 tf->flags |= ATA_TFLAG_LBA;
789
790 if (lba_28_ok(block, n_block)) {
791 /* use LBA28 */
792 tf->device |= (block >> 24) & 0xf;
793 } else if (lba_48_ok(block, n_block)) {
794 if (!(dev->flags & ATA_DFLAG_LBA48))
795 return -ERANGE;
796
797 /* use LBA48 */
798 tf->flags |= ATA_TFLAG_LBA48;
799
800 tf->hob_nsect = (n_block >> 8) & 0xff;
801
802 tf->hob_lbah = (block >> 40) & 0xff;
803 tf->hob_lbam = (block >> 32) & 0xff;
804 tf->hob_lbal = (block >> 24) & 0xff;
805 } else
806 /* request too large even for LBA48 */
807 return -ERANGE;
808
809 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
810 return -EINVAL;
811
812 tf->nsect = n_block & 0xff;
813
814 tf->lbah = (block >> 16) & 0xff;
815 tf->lbam = (block >> 8) & 0xff;
816 tf->lbal = block & 0xff;
817
818 tf->device |= ATA_LBA;
819 } else {
820 /* CHS */
821 u32 sect, head, cyl, track;
822
823 /* The request -may- be too large for CHS addressing. */
824 if (!lba_28_ok(block, n_block))
825 return -ERANGE;
826
827 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
828 return -EINVAL;
829
830 /* Convert LBA to CHS */
831 track = (u32)block / dev->sectors;
832 cyl = track / dev->heads;
833 head = track % dev->heads;
834 sect = (u32)block % dev->sectors + 1;
835
836 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
837 (u32)block, track, cyl, head, sect);
838
839 /* Check whether the converted CHS can fit.
840 Cylinder: 0-65535
841 Head: 0-15
842 Sector: 1-255*/
843 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
844 return -ERANGE;
845
846 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
847 tf->lbal = sect;
848 tf->lbam = cyl;
849 tf->lbah = cyl >> 8;
850 tf->device |= head;
851 }
852
853 return 0;
854}
855
cb95d562
TH
856/**
857 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
858 * @pio_mask: pio_mask
859 * @mwdma_mask: mwdma_mask
860 * @udma_mask: udma_mask
861 *
862 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
863 * unsigned int xfer_mask.
864 *
865 * LOCKING:
866 * None.
867 *
868 * RETURNS:
869 * Packed xfer_mask.
870 */
7dc951ae
TH
871unsigned long ata_pack_xfermask(unsigned long pio_mask,
872 unsigned long mwdma_mask,
873 unsigned long udma_mask)
cb95d562
TH
874{
875 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
876 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
877 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
878}
879
c0489e4e
TH
880/**
881 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
882 * @xfer_mask: xfer_mask to unpack
883 * @pio_mask: resulting pio_mask
884 * @mwdma_mask: resulting mwdma_mask
885 * @udma_mask: resulting udma_mask
886 *
887 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
c9b5560a 888 * Any NULL destination masks will be ignored.
c0489e4e 889 */
7dc951ae
TH
890void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
891 unsigned long *mwdma_mask, unsigned long *udma_mask)
c0489e4e
TH
892{
893 if (pio_mask)
894 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
895 if (mwdma_mask)
896 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
897 if (udma_mask)
898 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
899}
900
cb95d562 901static const struct ata_xfer_ent {
be9a50c8 902 int shift, bits;
cb95d562
TH
903 u8 base;
904} ata_xfer_tbl[] = {
70cd071e
TH
905 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
906 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
907 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
cb95d562
TH
908 { -1, },
909};
910
911/**
912 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
913 * @xfer_mask: xfer_mask of interest
914 *
915 * Return matching XFER_* value for @xfer_mask. Only the highest
916 * bit of @xfer_mask is considered.
917 *
918 * LOCKING:
919 * None.
920 *
921 * RETURNS:
70cd071e 922 * Matching XFER_* value, 0xff if no match found.
cb95d562 923 */
7dc951ae 924u8 ata_xfer_mask2mode(unsigned long xfer_mask)
cb95d562
TH
925{
926 int highbit = fls(xfer_mask) - 1;
927 const struct ata_xfer_ent *ent;
928
929 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
930 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
931 return ent->base + highbit - ent->shift;
70cd071e 932 return 0xff;
cb95d562
TH
933}
934
935/**
936 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
937 * @xfer_mode: XFER_* of interest
938 *
939 * Return matching xfer_mask for @xfer_mode.
940 *
941 * LOCKING:
942 * None.
943 *
944 * RETURNS:
945 * Matching xfer_mask, 0 if no match found.
946 */
7dc951ae 947unsigned long ata_xfer_mode2mask(u8 xfer_mode)
cb95d562
TH
948{
949 const struct ata_xfer_ent *ent;
950
951 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
952 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
70cd071e
TH
953 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
954 & ~((1 << ent->shift) - 1);
cb95d562
TH
955 return 0;
956}
957
958/**
959 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
960 * @xfer_mode: XFER_* of interest
961 *
962 * Return matching xfer_shift for @xfer_mode.
963 *
964 * LOCKING:
965 * None.
966 *
967 * RETURNS:
968 * Matching xfer_shift, -1 if no match found.
969 */
7dc951ae 970int ata_xfer_mode2shift(unsigned long xfer_mode)
cb95d562
TH
971{
972 const struct ata_xfer_ent *ent;
973
974 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
975 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
976 return ent->shift;
977 return -1;
978}
979
1da177e4 980/**
1da7b0d0
TH
981 * ata_mode_string - convert xfer_mask to string
982 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
983 *
984 * Determine string which represents the highest speed
1da7b0d0 985 * (highest bit in @modemask).
1da177e4
LT
986 *
987 * LOCKING:
988 * None.
989 *
990 * RETURNS:
991 * Constant C string representing highest speed listed in
1da7b0d0 992 * @mode_mask, or the constant C string "<n/a>".
1da177e4 993 */
7dc951ae 994const char *ata_mode_string(unsigned long xfer_mask)
1da177e4 995{
75f554bc
TH
996 static const char * const xfer_mode_str[] = {
997 "PIO0",
998 "PIO1",
999 "PIO2",
1000 "PIO3",
1001 "PIO4",
b352e57d
AC
1002 "PIO5",
1003 "PIO6",
75f554bc
TH
1004 "MWDMA0",
1005 "MWDMA1",
1006 "MWDMA2",
b352e57d
AC
1007 "MWDMA3",
1008 "MWDMA4",
75f554bc
TH
1009 "UDMA/16",
1010 "UDMA/25",
1011 "UDMA/33",
1012 "UDMA/44",
1013 "UDMA/66",
1014 "UDMA/100",
1015 "UDMA/133",
1016 "UDMA7",
1017 };
1da7b0d0 1018 int highbit;
1da177e4 1019
1da7b0d0
TH
1020 highbit = fls(xfer_mask) - 1;
1021 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1022 return xfer_mode_str[highbit];
1da177e4 1023 return "<n/a>";
1da177e4
LT
1024}
1025
d9027470 1026const char *sata_spd_string(unsigned int spd)
4c360c81
TH
1027{
1028 static const char * const spd_str[] = {
1029 "1.5 Gbps",
1030 "3.0 Gbps",
8522ee25 1031 "6.0 Gbps",
4c360c81
TH
1032 };
1033
1034 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1035 return "<unknown>";
1036 return spd_str[spd - 1];
1037}
1038
1da177e4
LT
1039/**
1040 * ata_dev_classify - determine device type based on ATA-spec signature
1041 * @tf: ATA taskfile register set for device to be identified
1042 *
1043 * Determine from taskfile register contents whether a device is
1044 * ATA or ATAPI, as per "Signature and persistence" section
1045 * of ATA/PI spec (volume 1, sect 5.14).
1046 *
1047 * LOCKING:
1048 * None.
1049 *
1050 * RETURNS:
9162c657
HR
1051 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1052 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1da177e4 1053 */
057ace5e 1054unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
1055{
1056 /* Apple's open source Darwin code hints that some devices only
1057 * put a proper signature into the LBA mid/high registers,
1058 * So, we only check those. It's sufficient for uniqueness.
633273a3
TH
1059 *
1060 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1061 * signatures for ATA and ATAPI devices attached on SerialATA,
1062 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1063 * spec has never mentioned about using different signatures
1064 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1065 * Multiplier specification began to use 0x69/0x96 to identify
1066 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1067 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1068 * 0x69/0x96 shortly and described them as reserved for
1069 * SerialATA.
1070 *
1071 * We follow the current spec and consider that 0x69/0x96
1072 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
79b42bab
TH
1073 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1074 * SEMB signature. This is worked around in
1075 * ata_dev_read_id().
1da177e4 1076 */
633273a3 1077 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1da177e4
LT
1078 DPRINTK("found ATA device by sig\n");
1079 return ATA_DEV_ATA;
1080 }
1081
633273a3 1082 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1da177e4
LT
1083 DPRINTK("found ATAPI device by sig\n");
1084 return ATA_DEV_ATAPI;
1085 }
1086
633273a3
TH
1087 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1088 DPRINTK("found PMP device by sig\n");
1089 return ATA_DEV_PMP;
1090 }
1091
1092 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
79b42bab
TH
1093 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1094 return ATA_DEV_SEMB;
633273a3
TH
1095 }
1096
9162c657
HR
1097 if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) {
1098 DPRINTK("found ZAC device by sig\n");
1099 return ATA_DEV_ZAC;
1100 }
1101
1da177e4
LT
1102 DPRINTK("unknown device\n");
1103 return ATA_DEV_UNKNOWN;
1104}
1105
1da177e4 1106/**
6a62a04d 1107 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
1108 * @id: IDENTIFY DEVICE results we will examine
1109 * @s: string into which data is output
1110 * @ofs: offset into identify device page
1111 * @len: length of string to return. must be an even number.
1112 *
1113 * The strings in the IDENTIFY DEVICE page are broken up into
1114 * 16-bit chunks. Run through the string, and output each
1115 * 8-bit chunk linearly, regardless of platform.
1116 *
1117 * LOCKING:
1118 * caller.
1119 */
1120
6a62a04d
TH
1121void ata_id_string(const u16 *id, unsigned char *s,
1122 unsigned int ofs, unsigned int len)
1da177e4
LT
1123{
1124 unsigned int c;
1125
963e4975
AC
1126 BUG_ON(len & 1);
1127
1da177e4
LT
1128 while (len > 0) {
1129 c = id[ofs] >> 8;
1130 *s = c;
1131 s++;
1132
1133 c = id[ofs] & 0xff;
1134 *s = c;
1135 s++;
1136
1137 ofs++;
1138 len -= 2;
1139 }
1140}
1141
0e949ff3 1142/**
6a62a04d 1143 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
1144 * @id: IDENTIFY DEVICE results we will examine
1145 * @s: string into which data is output
1146 * @ofs: offset into identify device page
1147 * @len: length of string to return. must be an odd number.
1148 *
6a62a04d 1149 * This function is identical to ata_id_string except that it
0e949ff3
TH
1150 * trims trailing spaces and terminates the resulting string with
1151 * null. @len must be actual maximum length (even number) + 1.
1152 *
1153 * LOCKING:
1154 * caller.
1155 */
6a62a04d
TH
1156void ata_id_c_string(const u16 *id, unsigned char *s,
1157 unsigned int ofs, unsigned int len)
0e949ff3
TH
1158{
1159 unsigned char *p;
1160
6a62a04d 1161 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
1162
1163 p = s + strnlen(s, len - 1);
1164 while (p > s && p[-1] == ' ')
1165 p--;
1166 *p = '\0';
1167}
0baab86b 1168
db6f8759
TH
1169static u64 ata_id_n_sectors(const u16 *id)
1170{
1171 if (ata_id_has_lba(id)) {
1172 if (ata_id_has_lba48(id))
968e594a 1173 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
db6f8759 1174 else
968e594a 1175 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
db6f8759
TH
1176 } else {
1177 if (ata_id_current_chs_valid(id))
968e594a
RH
1178 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1179 id[ATA_ID_CUR_SECTORS];
db6f8759 1180 else
968e594a
RH
1181 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1182 id[ATA_ID_SECTORS];
db6f8759
TH
1183 }
1184}
1185
a5987e0a 1186u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1e999736
AC
1187{
1188 u64 sectors = 0;
1189
1190 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1191 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
ba14a9c2 1192 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1e999736
AC
1193 sectors |= (tf->lbah & 0xff) << 16;
1194 sectors |= (tf->lbam & 0xff) << 8;
1195 sectors |= (tf->lbal & 0xff);
1196
a5987e0a 1197 return sectors;
1e999736
AC
1198}
1199
a5987e0a 1200u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1e999736
AC
1201{
1202 u64 sectors = 0;
1203
1204 sectors |= (tf->device & 0x0f) << 24;
1205 sectors |= (tf->lbah & 0xff) << 16;
1206 sectors |= (tf->lbam & 0xff) << 8;
1207 sectors |= (tf->lbal & 0xff);
1208
a5987e0a 1209 return sectors;
1e999736
AC
1210}
1211
1212/**
c728a914
TH
1213 * ata_read_native_max_address - Read native max address
1214 * @dev: target device
1215 * @max_sectors: out parameter for the result native max address
1e999736 1216 *
c728a914
TH
1217 * Perform an LBA48 or LBA28 native size query upon the device in
1218 * question.
1e999736 1219 *
c728a914
TH
1220 * RETURNS:
1221 * 0 on success, -EACCES if command is aborted by the drive.
1222 * -EIO on other errors.
1e999736 1223 */
c728a914 1224static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1e999736 1225{
c728a914 1226 unsigned int err_mask;
1e999736 1227 struct ata_taskfile tf;
c728a914 1228 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1229
1230 ata_tf_init(dev, &tf);
1231
c728a914 1232 /* always clear all address registers */
1e999736 1233 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1e999736 1234
c728a914
TH
1235 if (lba48) {
1236 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1237 tf.flags |= ATA_TFLAG_LBA48;
1238 } else
1239 tf.command = ATA_CMD_READ_NATIVE_MAX;
1e999736 1240
1e999736 1241 tf.protocol |= ATA_PROT_NODATA;
c728a914
TH
1242 tf.device |= ATA_LBA;
1243
2b789108 1244 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914 1245 if (err_mask) {
a9a79dfe
JP
1246 ata_dev_warn(dev,
1247 "failed to read native max address (err_mask=0x%x)\n",
1248 err_mask);
c728a914
TH
1249 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1250 return -EACCES;
1251 return -EIO;
1252 }
1e999736 1253
c728a914 1254 if (lba48)
a5987e0a 1255 *max_sectors = ata_tf_to_lba48(&tf) + 1;
c728a914 1256 else
a5987e0a 1257 *max_sectors = ata_tf_to_lba(&tf) + 1;
2dcb407e 1258 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
93328e11 1259 (*max_sectors)--;
c728a914 1260 return 0;
1e999736
AC
1261}
1262
1263/**
c728a914
TH
1264 * ata_set_max_sectors - Set max sectors
1265 * @dev: target device
6b38d1d1 1266 * @new_sectors: new max sectors value to set for the device
1e999736 1267 *
c728a914
TH
1268 * Set max sectors of @dev to @new_sectors.
1269 *
1270 * RETURNS:
1271 * 0 on success, -EACCES if command is aborted or denied (due to
1272 * previous non-volatile SET_MAX) by the drive. -EIO on other
1273 * errors.
1e999736 1274 */
05027adc 1275static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1e999736 1276{
c728a914 1277 unsigned int err_mask;
1e999736 1278 struct ata_taskfile tf;
c728a914 1279 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1280
1281 new_sectors--;
1282
1283 ata_tf_init(dev, &tf);
1284
1e999736 1285 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
c728a914
TH
1286
1287 if (lba48) {
1288 tf.command = ATA_CMD_SET_MAX_EXT;
1289 tf.flags |= ATA_TFLAG_LBA48;
1290
1291 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1292 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1293 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1e582ba4 1294 } else {
c728a914
TH
1295 tf.command = ATA_CMD_SET_MAX;
1296
1e582ba4
TH
1297 tf.device |= (new_sectors >> 24) & 0xf;
1298 }
1299
1e999736 1300 tf.protocol |= ATA_PROT_NODATA;
c728a914 1301 tf.device |= ATA_LBA;
1e999736
AC
1302
1303 tf.lbal = (new_sectors >> 0) & 0xff;
1304 tf.lbam = (new_sectors >> 8) & 0xff;
1305 tf.lbah = (new_sectors >> 16) & 0xff;
1e999736 1306
2b789108 1307 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914 1308 if (err_mask) {
a9a79dfe
JP
1309 ata_dev_warn(dev,
1310 "failed to set max address (err_mask=0x%x)\n",
1311 err_mask);
c728a914
TH
1312 if (err_mask == AC_ERR_DEV &&
1313 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1314 return -EACCES;
1315 return -EIO;
1316 }
1317
c728a914 1318 return 0;
1e999736
AC
1319}
1320
1321/**
1322 * ata_hpa_resize - Resize a device with an HPA set
1323 * @dev: Device to resize
1324 *
1325 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1326 * it if required to the full size of the media. The caller must check
1327 * the drive has the HPA feature set enabled.
05027adc
TH
1328 *
1329 * RETURNS:
1330 * 0 on success, -errno on failure.
1e999736 1331 */
05027adc 1332static int ata_hpa_resize(struct ata_device *dev)
1e999736 1333{
05027adc
TH
1334 struct ata_eh_context *ehc = &dev->link->eh_context;
1335 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
445d211b 1336 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
05027adc
TH
1337 u64 sectors = ata_id_n_sectors(dev->id);
1338 u64 native_sectors;
c728a914 1339 int rc;
a617c09f 1340
05027adc 1341 /* do we need to do it? */
9162c657 1342 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
05027adc
TH
1343 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1344 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
c728a914 1345 return 0;
1e999736 1346
05027adc
TH
1347 /* read native max address */
1348 rc = ata_read_native_max_address(dev, &native_sectors);
1349 if (rc) {
dda7aba1
TH
1350 /* If device aborted the command or HPA isn't going to
1351 * be unlocked, skip HPA resizing.
05027adc 1352 */
445d211b 1353 if (rc == -EACCES || !unlock_hpa) {
a9a79dfe
JP
1354 ata_dev_warn(dev,
1355 "HPA support seems broken, skipping HPA handling\n");
05027adc
TH
1356 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1357
1358 /* we can continue if device aborted the command */
1359 if (rc == -EACCES)
1360 rc = 0;
1e999736 1361 }
37301a55 1362
05027adc
TH
1363 return rc;
1364 }
5920dadf 1365 dev->n_native_sectors = native_sectors;
05027adc
TH
1366
1367 /* nothing to do? */
445d211b 1368 if (native_sectors <= sectors || !unlock_hpa) {
05027adc
TH
1369 if (!print_info || native_sectors == sectors)
1370 return 0;
1371
1372 if (native_sectors > sectors)
a9a79dfe 1373 ata_dev_info(dev,
05027adc
TH
1374 "HPA detected: current %llu, native %llu\n",
1375 (unsigned long long)sectors,
1376 (unsigned long long)native_sectors);
1377 else if (native_sectors < sectors)
a9a79dfe
JP
1378 ata_dev_warn(dev,
1379 "native sectors (%llu) is smaller than sectors (%llu)\n",
05027adc
TH
1380 (unsigned long long)native_sectors,
1381 (unsigned long long)sectors);
1382 return 0;
1383 }
1384
1385 /* let's unlock HPA */
1386 rc = ata_set_max_sectors(dev, native_sectors);
1387 if (rc == -EACCES) {
1388 /* if device aborted the command, skip HPA resizing */
a9a79dfe
JP
1389 ata_dev_warn(dev,
1390 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1391 (unsigned long long)sectors,
1392 (unsigned long long)native_sectors);
05027adc
TH
1393 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1394 return 0;
1395 } else if (rc)
1396 return rc;
1397
1398 /* re-read IDENTIFY data */
1399 rc = ata_dev_reread_id(dev, 0);
1400 if (rc) {
a9a79dfe
JP
1401 ata_dev_err(dev,
1402 "failed to re-read IDENTIFY data after HPA resizing\n");
05027adc
TH
1403 return rc;
1404 }
1405
1406 if (print_info) {
1407 u64 new_sectors = ata_id_n_sectors(dev->id);
a9a79dfe 1408 ata_dev_info(dev,
05027adc
TH
1409 "HPA unlocked: %llu -> %llu, native %llu\n",
1410 (unsigned long long)sectors,
1411 (unsigned long long)new_sectors,
1412 (unsigned long long)native_sectors);
1413 }
1414
1415 return 0;
1e999736
AC
1416}
1417
1da177e4
LT
1418/**
1419 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 1420 * @id: IDENTIFY DEVICE page to dump
1da177e4 1421 *
0bd3300a
TH
1422 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1423 * page.
1da177e4
LT
1424 *
1425 * LOCKING:
1426 * caller.
1427 */
1428
0bd3300a 1429static inline void ata_dump_id(const u16 *id)
1da177e4
LT
1430{
1431 DPRINTK("49==0x%04x "
1432 "53==0x%04x "
1433 "63==0x%04x "
1434 "64==0x%04x "
1435 "75==0x%04x \n",
0bd3300a
TH
1436 id[49],
1437 id[53],
1438 id[63],
1439 id[64],
1440 id[75]);
1da177e4
LT
1441 DPRINTK("80==0x%04x "
1442 "81==0x%04x "
1443 "82==0x%04x "
1444 "83==0x%04x "
1445 "84==0x%04x \n",
0bd3300a
TH
1446 id[80],
1447 id[81],
1448 id[82],
1449 id[83],
1450 id[84]);
1da177e4
LT
1451 DPRINTK("88==0x%04x "
1452 "93==0x%04x\n",
0bd3300a
TH
1453 id[88],
1454 id[93]);
1da177e4
LT
1455}
1456
cb95d562
TH
1457/**
1458 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1459 * @id: IDENTIFY data to compute xfer mask from
1460 *
1461 * Compute the xfermask for this device. This is not as trivial
1462 * as it seems if we must consider early devices correctly.
1463 *
1464 * FIXME: pre IDE drive timing (do we care ?).
1465 *
1466 * LOCKING:
1467 * None.
1468 *
1469 * RETURNS:
1470 * Computed xfermask
1471 */
7dc951ae 1472unsigned long ata_id_xfermask(const u16 *id)
cb95d562 1473{
7dc951ae 1474 unsigned long pio_mask, mwdma_mask, udma_mask;
cb95d562
TH
1475
1476 /* Usual case. Word 53 indicates word 64 is valid */
1477 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1478 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1479 pio_mask <<= 3;
1480 pio_mask |= 0x7;
1481 } else {
1482 /* If word 64 isn't valid then Word 51 high byte holds
1483 * the PIO timing number for the maximum. Turn it into
1484 * a mask.
1485 */
7a0f1c8a 1486 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb 1487 if (mode < 5) /* Valid PIO range */
2dcb407e 1488 pio_mask = (2 << mode) - 1;
46767aeb
AC
1489 else
1490 pio_mask = 1;
cb95d562
TH
1491
1492 /* But wait.. there's more. Design your standards by
1493 * committee and you too can get a free iordy field to
1494 * process. However its the speeds not the modes that
1495 * are supported... Note drivers using the timing API
1496 * will get this right anyway
1497 */
1498 }
1499
1500 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1501
b352e57d
AC
1502 if (ata_id_is_cfa(id)) {
1503 /*
1504 * Process compact flash extended modes
1505 */
62afe5d7
SS
1506 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1507 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
b352e57d
AC
1508
1509 if (pio)
1510 pio_mask |= (1 << 5);
1511 if (pio > 1)
1512 pio_mask |= (1 << 6);
1513 if (dma)
1514 mwdma_mask |= (1 << 3);
1515 if (dma > 1)
1516 mwdma_mask |= (1 << 4);
1517 }
1518
fb21f0d0
TH
1519 udma_mask = 0;
1520 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1521 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1522
1523 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1524}
1525
7102d230 1526static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1527{
77853bf2 1528 struct completion *waiting = qc->private_data;
a2a7a662 1529
a2a7a662 1530 complete(waiting);
a2a7a662
TH
1531}
1532
1533/**
2432697b 1534 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1535 * @dev: Device to which the command is sent
1536 * @tf: Taskfile registers for the command and the result
d69cf37d 1537 * @cdb: CDB for packet command
e227867f 1538 * @dma_dir: Data transfer direction of the command
5c1ad8b3 1539 * @sgl: sg list for the data buffer of the command
2432697b 1540 * @n_elem: Number of sg entries
2b789108 1541 * @timeout: Timeout in msecs (0 for default)
a2a7a662
TH
1542 *
1543 * Executes libata internal command with timeout. @tf contains
1544 * command on entry and result on return. Timeout and error
1545 * conditions are reported via return value. No recovery action
1546 * is taken after a command times out. It's caller's duty to
1547 * clean up after timeout.
1548 *
1549 * LOCKING:
1550 * None. Should be called with kernel context, might sleep.
551e8889
TH
1551 *
1552 * RETURNS:
1553 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1554 */
2432697b
TH
1555unsigned ata_exec_internal_sg(struct ata_device *dev,
1556 struct ata_taskfile *tf, const u8 *cdb,
87260216 1557 int dma_dir, struct scatterlist *sgl,
2b789108 1558 unsigned int n_elem, unsigned long timeout)
a2a7a662 1559{
9af5c9c9
TH
1560 struct ata_link *link = dev->link;
1561 struct ata_port *ap = link->ap;
a2a7a662 1562 u8 command = tf->command;
87fbc5a0 1563 int auto_timeout = 0;
a2a7a662 1564 struct ata_queued_cmd *qc;
2ab7db1f 1565 unsigned int tag, preempted_tag;
dedaf2b0 1566 u32 preempted_sactive, preempted_qc_active;
da917d69 1567 int preempted_nr_active_links;
60be6b9a 1568 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1569 unsigned long flags;
77853bf2 1570 unsigned int err_mask;
d95a717f 1571 int rc;
a2a7a662 1572
ba6a1308 1573 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1574
e3180499 1575 /* no internal command while frozen */
b51e9e5d 1576 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1577 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1578 return AC_ERR_SYSTEM;
1579 }
1580
2ab7db1f 1581 /* initialize internal qc */
a2a7a662 1582
2ab7db1f
TH
1583 /* XXX: Tag 0 is used for drivers with legacy EH as some
1584 * drivers choke if any other tag is given. This breaks
1585 * ata_tag_internal() test for those drivers. Don't use new
1586 * EH stuff without converting to it.
1587 */
1588 if (ap->ops->error_handler)
1589 tag = ATA_TAG_INTERNAL;
1590 else
1591 tag = 0;
1592
f69499f4 1593 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1594
1595 qc->tag = tag;
1596 qc->scsicmd = NULL;
1597 qc->ap = ap;
1598 qc->dev = dev;
1599 ata_qc_reinit(qc);
1600
9af5c9c9
TH
1601 preempted_tag = link->active_tag;
1602 preempted_sactive = link->sactive;
dedaf2b0 1603 preempted_qc_active = ap->qc_active;
da917d69 1604 preempted_nr_active_links = ap->nr_active_links;
9af5c9c9
TH
1605 link->active_tag = ATA_TAG_POISON;
1606 link->sactive = 0;
dedaf2b0 1607 ap->qc_active = 0;
da917d69 1608 ap->nr_active_links = 0;
2ab7db1f
TH
1609
1610 /* prepare & issue qc */
a2a7a662 1611 qc->tf = *tf;
d69cf37d
TH
1612 if (cdb)
1613 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e771451c
VP
1614
1615 /* some SATA bridges need us to indicate data xfer direction */
1616 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1617 dma_dir == DMA_FROM_DEVICE)
1618 qc->tf.feature |= ATAPI_DMADIR;
1619
e61e0672 1620 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1621 qc->dma_dir = dma_dir;
1622 if (dma_dir != DMA_NONE) {
2432697b 1623 unsigned int i, buflen = 0;
87260216 1624 struct scatterlist *sg;
2432697b 1625
87260216
JA
1626 for_each_sg(sgl, sg, n_elem, i)
1627 buflen += sg->length;
2432697b 1628
87260216 1629 ata_sg_init(qc, sgl, n_elem);
49c80429 1630 qc->nbytes = buflen;
a2a7a662
TH
1631 }
1632
77853bf2 1633 qc->private_data = &wait;
a2a7a662
TH
1634 qc->complete_fn = ata_qc_complete_internal;
1635
8e0e694a 1636 ata_qc_issue(qc);
a2a7a662 1637
ba6a1308 1638 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1639
87fbc5a0
TH
1640 if (!timeout) {
1641 if (ata_probe_timeout)
1642 timeout = ata_probe_timeout * 1000;
1643 else {
1644 timeout = ata_internal_cmd_timeout(dev, command);
1645 auto_timeout = 1;
1646 }
1647 }
2b789108 1648
c0c362b6
TH
1649 if (ap->ops->error_handler)
1650 ata_eh_release(ap);
1651
2b789108 1652 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
d95a717f 1653
c0c362b6
TH
1654 if (ap->ops->error_handler)
1655 ata_eh_acquire(ap);
1656
c429137a 1657 ata_sff_flush_pio_task(ap);
41ade50c 1658
d95a717f 1659 if (!rc) {
ba6a1308 1660 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1661
1662 /* We're racing with irq here. If we lose, the
1663 * following test prevents us from completing the qc
d95a717f
TH
1664 * twice. If we win, the port is frozen and will be
1665 * cleaned up by ->post_internal_cmd().
a2a7a662 1666 */
77853bf2 1667 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1668 qc->err_mask |= AC_ERR_TIMEOUT;
1669
1670 if (ap->ops->error_handler)
1671 ata_port_freeze(ap);
1672 else
1673 ata_qc_complete(qc);
f15a1daf 1674
0dd4b21f 1675 if (ata_msg_warn(ap))
a9a79dfe
JP
1676 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1677 command);
a2a7a662
TH
1678 }
1679
ba6a1308 1680 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1681 }
1682
d95a717f
TH
1683 /* do post_internal_cmd */
1684 if (ap->ops->post_internal_cmd)
1685 ap->ops->post_internal_cmd(qc);
1686
a51d644a
TH
1687 /* perform minimal error analysis */
1688 if (qc->flags & ATA_QCFLAG_FAILED) {
1689 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1690 qc->err_mask |= AC_ERR_DEV;
1691
1692 if (!qc->err_mask)
1693 qc->err_mask |= AC_ERR_OTHER;
1694
1695 if (qc->err_mask & ~AC_ERR_OTHER)
1696 qc->err_mask &= ~AC_ERR_OTHER;
d95a717f
TH
1697 }
1698
15869303 1699 /* finish up */
ba6a1308 1700 spin_lock_irqsave(ap->lock, flags);
15869303 1701
e61e0672 1702 *tf = qc->result_tf;
77853bf2
TH
1703 err_mask = qc->err_mask;
1704
1705 ata_qc_free(qc);
9af5c9c9
TH
1706 link->active_tag = preempted_tag;
1707 link->sactive = preempted_sactive;
dedaf2b0 1708 ap->qc_active = preempted_qc_active;
da917d69 1709 ap->nr_active_links = preempted_nr_active_links;
77853bf2 1710
ba6a1308 1711 spin_unlock_irqrestore(ap->lock, flags);
15869303 1712
87fbc5a0
TH
1713 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1714 ata_internal_cmd_timed_out(dev, command);
1715
77853bf2 1716 return err_mask;
a2a7a662
TH
1717}
1718
2432697b 1719/**
33480a0e 1720 * ata_exec_internal - execute libata internal command
2432697b
TH
1721 * @dev: Device to which the command is sent
1722 * @tf: Taskfile registers for the command and the result
1723 * @cdb: CDB for packet command
e227867f 1724 * @dma_dir: Data transfer direction of the command
2432697b
TH
1725 * @buf: Data buffer of the command
1726 * @buflen: Length of data buffer
2b789108 1727 * @timeout: Timeout in msecs (0 for default)
2432697b
TH
1728 *
1729 * Wrapper around ata_exec_internal_sg() which takes simple
1730 * buffer instead of sg list.
1731 *
1732 * LOCKING:
1733 * None. Should be called with kernel context, might sleep.
1734 *
1735 * RETURNS:
1736 * Zero on success, AC_ERR_* mask on failure
1737 */
1738unsigned ata_exec_internal(struct ata_device *dev,
1739 struct ata_taskfile *tf, const u8 *cdb,
2b789108
TH
1740 int dma_dir, void *buf, unsigned int buflen,
1741 unsigned long timeout)
2432697b 1742{
33480a0e
TH
1743 struct scatterlist *psg = NULL, sg;
1744 unsigned int n_elem = 0;
2432697b 1745
33480a0e
TH
1746 if (dma_dir != DMA_NONE) {
1747 WARN_ON(!buf);
1748 sg_init_one(&sg, buf, buflen);
1749 psg = &sg;
1750 n_elem++;
1751 }
2432697b 1752
2b789108
TH
1753 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1754 timeout);
2432697b
TH
1755}
1756
1bc4ccff
AC
1757/**
1758 * ata_pio_need_iordy - check if iordy needed
1759 * @adev: ATA device
1760 *
1761 * Check if the current speed of the device requires IORDY. Used
1762 * by various controllers for chip configuration.
1763 */
1bc4ccff
AC
1764unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1765{
0d9e6659
TH
1766 /* Don't set IORDY if we're preparing for reset. IORDY may
1767 * lead to controller lock up on certain controllers if the
1768 * port is not occupied. See bko#11703 for details.
1769 */
1770 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1771 return 0;
1772 /* Controller doesn't support IORDY. Probably a pointless
1773 * check as the caller should know this.
1774 */
9af5c9c9 1775 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1bc4ccff 1776 return 0;
5c18c4d2
DD
1777 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1778 if (ata_id_is_cfa(adev->id)
1779 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1780 return 0;
432729f0
AC
1781 /* PIO3 and higher it is mandatory */
1782 if (adev->pio_mode > XFER_PIO_2)
1783 return 1;
1784 /* We turn it on when possible */
1785 if (ata_id_has_iordy(adev->id))
1bc4ccff 1786 return 1;
432729f0
AC
1787 return 0;
1788}
2e9edbf8 1789
432729f0
AC
1790/**
1791 * ata_pio_mask_no_iordy - Return the non IORDY mask
1792 * @adev: ATA device
1793 *
1794 * Compute the highest mode possible if we are not using iordy. Return
1795 * -1 if no iordy mode is available.
1796 */
432729f0
AC
1797static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1798{
1bc4ccff 1799 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1bc4ccff 1800 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
432729f0 1801 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1bc4ccff
AC
1802 /* Is the speed faster than the drive allows non IORDY ? */
1803 if (pio) {
1804 /* This is cycle times not frequency - watch the logic! */
1805 if (pio > 240) /* PIO2 is 240nS per cycle */
432729f0
AC
1806 return 3 << ATA_SHIFT_PIO;
1807 return 7 << ATA_SHIFT_PIO;
1bc4ccff
AC
1808 }
1809 }
432729f0 1810 return 3 << ATA_SHIFT_PIO;
1bc4ccff
AC
1811}
1812
963e4975
AC
1813/**
1814 * ata_do_dev_read_id - default ID read method
1815 * @dev: device
1816 * @tf: proposed taskfile
1817 * @id: data buffer
1818 *
1819 * Issue the identify taskfile and hand back the buffer containing
1820 * identify data. For some RAID controllers and for pre ATA devices
1821 * this function is wrapped or replaced by the driver
1822 */
1823unsigned int ata_do_dev_read_id(struct ata_device *dev,
1824 struct ata_taskfile *tf, u16 *id)
1825{
1826 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1827 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1828}
1829
1da177e4 1830/**
49016aca 1831 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1832 * @dev: target device
1833 * @p_class: pointer to class of the target device (may be changed)
bff04647 1834 * @flags: ATA_READID_* flags
fe635c7e 1835 * @id: buffer to read IDENTIFY data into
1da177e4 1836 *
49016aca
TH
1837 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1838 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1839 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1840 * for pre-ATA4 drives.
1da177e4 1841 *
50a99018 1842 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2dcb407e 1843 * now we abort if we hit that case.
50a99018 1844 *
1da177e4 1845 * LOCKING:
49016aca
TH
1846 * Kernel thread context (may sleep)
1847 *
1848 * RETURNS:
1849 * 0 on success, -errno otherwise.
1da177e4 1850 */
a9beec95 1851int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 1852 unsigned int flags, u16 *id)
1da177e4 1853{
9af5c9c9 1854 struct ata_port *ap = dev->link->ap;
49016aca 1855 unsigned int class = *p_class;
a0123703 1856 struct ata_taskfile tf;
49016aca
TH
1857 unsigned int err_mask = 0;
1858 const char *reason;
79b42bab 1859 bool is_semb = class == ATA_DEV_SEMB;
54936f8b 1860 int may_fallback = 1, tried_spinup = 0;
49016aca 1861 int rc;
1da177e4 1862
0dd4b21f 1863 if (ata_msg_ctl(ap))
a9a79dfe 1864 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1da177e4 1865
963e4975 1866retry:
3373efd8 1867 ata_tf_init(dev, &tf);
a0123703 1868
49016aca 1869 switch (class) {
79b42bab
TH
1870 case ATA_DEV_SEMB:
1871 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
49016aca 1872 case ATA_DEV_ATA:
9162c657 1873 case ATA_DEV_ZAC:
a0123703 1874 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1875 break;
1876 case ATA_DEV_ATAPI:
a0123703 1877 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1878 break;
1879 default:
1880 rc = -ENODEV;
1881 reason = "unsupported class";
1882 goto err_out;
1da177e4
LT
1883 }
1884
a0123703 1885 tf.protocol = ATA_PROT_PIO;
81afe893
TH
1886
1887 /* Some devices choke if TF registers contain garbage. Make
1888 * sure those are properly initialized.
1889 */
1890 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1891
1892 /* Device presence detection is unreliable on some
1893 * controllers. Always poll IDENTIFY if available.
1894 */
1895 tf.flags |= ATA_TFLAG_POLLING;
1da177e4 1896
963e4975
AC
1897 if (ap->ops->read_id)
1898 err_mask = ap->ops->read_id(dev, &tf, id);
1899 else
1900 err_mask = ata_do_dev_read_id(dev, &tf, id);
1901
a0123703 1902 if (err_mask) {
800b3996 1903 if (err_mask & AC_ERR_NODEV_HINT) {
a9a79dfe 1904 ata_dev_dbg(dev, "NODEV after polling detection\n");
55a8e2c8
TH
1905 return -ENOENT;
1906 }
1907
79b42bab 1908 if (is_semb) {
a9a79dfe
JP
1909 ata_dev_info(dev,
1910 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
79b42bab
TH
1911 /* SEMB is not supported yet */
1912 *p_class = ATA_DEV_SEMB_UNSUP;
1913 return 0;
1914 }
1915
1ffc151f
TH
1916 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1917 /* Device or controller might have reported
1918 * the wrong device class. Give a shot at the
1919 * other IDENTIFY if the current one is
1920 * aborted by the device.
1921 */
1922 if (may_fallback) {
1923 may_fallback = 0;
1924
1925 if (class == ATA_DEV_ATA)
1926 class = ATA_DEV_ATAPI;
1927 else
1928 class = ATA_DEV_ATA;
1929 goto retry;
1930 }
1931
1932 /* Control reaches here iff the device aborted
1933 * both flavors of IDENTIFYs which happens
1934 * sometimes with phantom devices.
1935 */
a9a79dfe
JP
1936 ata_dev_dbg(dev,
1937 "both IDENTIFYs aborted, assuming NODEV\n");
1ffc151f 1938 return -ENOENT;
54936f8b
TH
1939 }
1940
49016aca
TH
1941 rc = -EIO;
1942 reason = "I/O error";
1da177e4
LT
1943 goto err_out;
1944 }
1945
43c9c591 1946 if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
a9a79dfe
JP
1947 ata_dev_dbg(dev, "dumping IDENTIFY data, "
1948 "class=%d may_fallback=%d tried_spinup=%d\n",
1949 class, may_fallback, tried_spinup);
43c9c591
TH
1950 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1951 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1952 }
1953
54936f8b
TH
1954 /* Falling back doesn't make sense if ID data was read
1955 * successfully at least once.
1956 */
1957 may_fallback = 0;
1958
49016aca 1959 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1960
49016aca 1961 /* sanity check */
a4f5749b 1962 rc = -EINVAL;
6070068b 1963 reason = "device reports invalid type";
a4f5749b 1964
9162c657 1965 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
a4f5749b
TH
1966 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1967 goto err_out;
db63a4c8
AW
1968 if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1969 ata_id_is_ata(id)) {
1970 ata_dev_dbg(dev,
1971 "host indicates ignore ATA devices, ignored\n");
1972 return -ENOENT;
1973 }
a4f5749b
TH
1974 } else {
1975 if (ata_id_is_ata(id))
1976 goto err_out;
49016aca
TH
1977 }
1978
169439c2
ML
1979 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1980 tried_spinup = 1;
1981 /*
1982 * Drive powered-up in standby mode, and requires a specific
1983 * SET_FEATURES spin-up subcommand before it will accept
1984 * anything other than the original IDENTIFY command.
1985 */
218f3d30 1986 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
fb0582f9 1987 if (err_mask && id[2] != 0x738c) {
169439c2
ML
1988 rc = -EIO;
1989 reason = "SPINUP failed";
1990 goto err_out;
1991 }
1992 /*
1993 * If the drive initially returned incomplete IDENTIFY info,
1994 * we now must reissue the IDENTIFY command.
1995 */
1996 if (id[2] == 0x37c8)
1997 goto retry;
1998 }
1999
9162c657
HR
2000 if ((flags & ATA_READID_POSTRESET) &&
2001 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
49016aca
TH
2002 /*
2003 * The exact sequence expected by certain pre-ATA4 drives is:
2004 * SRST RESET
50a99018
AC
2005 * IDENTIFY (optional in early ATA)
2006 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
49016aca
TH
2007 * anything else..
2008 * Some drives were very specific about that exact sequence.
50a99018
AC
2009 *
2010 * Note that ATA4 says lba is mandatory so the second check
c9404c9c 2011 * should never trigger.
49016aca
TH
2012 */
2013 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 2014 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
2015 if (err_mask) {
2016 rc = -EIO;
2017 reason = "INIT_DEV_PARAMS failed";
2018 goto err_out;
2019 }
2020
2021 /* current CHS translation info (id[53-58]) might be
2022 * changed. reread the identify device info.
2023 */
bff04647 2024 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
2025 goto retry;
2026 }
2027 }
2028
2029 *p_class = class;
fe635c7e 2030
49016aca
TH
2031 return 0;
2032
2033 err_out:
88574551 2034 if (ata_msg_warn(ap))
a9a79dfe
JP
2035 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2036 reason, err_mask);
49016aca
TH
2037 return rc;
2038}
2039
9062712f
TH
2040static int ata_do_link_spd_horkage(struct ata_device *dev)
2041{
2042 struct ata_link *plink = ata_dev_phys_link(dev);
2043 u32 target, target_limit;
2044
2045 if (!sata_scr_valid(plink))
2046 return 0;
2047
2048 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2049 target = 1;
2050 else
2051 return 0;
2052
2053 target_limit = (1 << target) - 1;
2054
2055 /* if already on stricter limit, no need to push further */
2056 if (plink->sata_spd_limit <= target_limit)
2057 return 0;
2058
2059 plink->sata_spd_limit = target_limit;
2060
2061 /* Request another EH round by returning -EAGAIN if link is
2062 * going faster than the target speed. Forward progress is
2063 * guaranteed by setting sata_spd_limit to target_limit above.
2064 */
2065 if (plink->sata_spd > target) {
a9a79dfe
JP
2066 ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2067 sata_spd_string(target));
9062712f
TH
2068 return -EAGAIN;
2069 }
2070 return 0;
2071}
2072
3373efd8 2073static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 2074{
9af5c9c9 2075 struct ata_port *ap = dev->link->ap;
9ce8e307
JA
2076
2077 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2078 return 0;
2079
9af5c9c9 2080 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
2081}
2082
5a233551
HR
2083static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2084{
2085 struct ata_port *ap = dev->link->ap;
2086 unsigned int err_mask;
fe5af0cc
HR
2087 int log_index = ATA_LOG_NCQ_SEND_RECV * 2;
2088 u16 log_pages;
5a233551 2089
fe5af0cc
HR
2090 err_mask = ata_read_log_page(dev, ATA_LOG_DIRECTORY,
2091 0, ap->sector_buf, 1);
2092 if (err_mask) {
2093 ata_dev_dbg(dev,
2094 "failed to get Log Directory Emask 0x%x\n",
2095 err_mask);
2096 return;
2097 }
2098 log_pages = get_unaligned_le16(&ap->sector_buf[log_index]);
2099 if (!log_pages) {
2100 ata_dev_warn(dev,
2101 "NCQ Send/Recv Log not supported\n");
2102 return;
2103 }
5a233551
HR
2104 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2105 0, ap->sector_buf, 1);
2106 if (err_mask) {
2107 ata_dev_dbg(dev,
2108 "failed to get NCQ Send/Recv Log Emask 0x%x\n",
2109 err_mask);
2110 } else {
2111 u8 *cmds = dev->ncq_send_recv_cmds;
2112
2113 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2114 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2115
2116 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2117 ata_dev_dbg(dev, "disabling queued TRIM support\n");
2118 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2119 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2120 }
2121 }
2122}
2123
284b3b77
HR
2124static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2125{
2126 struct ata_port *ap = dev->link->ap;
2127 unsigned int err_mask;
2128 int log_index = ATA_LOG_NCQ_NON_DATA * 2;
2129 u16 log_pages;
2130
2131 err_mask = ata_read_log_page(dev, ATA_LOG_DIRECTORY,
2132 0, ap->sector_buf, 1);
2133 if (err_mask) {
2134 ata_dev_dbg(dev,
2135 "failed to get Log Directory Emask 0x%x\n",
2136 err_mask);
2137 return;
2138 }
2139 log_pages = get_unaligned_le16(&ap->sector_buf[log_index]);
2140 if (!log_pages) {
2141 ata_dev_warn(dev,
2142 "NCQ Send/Recv Log not supported\n");
2143 return;
2144 }
2145 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2146 0, ap->sector_buf, 1);
2147 if (err_mask) {
2148 ata_dev_dbg(dev,
2149 "failed to get NCQ Non-Data Log Emask 0x%x\n",
2150 err_mask);
2151 } else {
2152 u8 *cmds = dev->ncq_non_data_cmds;
2153
2154 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE);
2155 }
2156}
2157
388539f3 2158static int ata_dev_config_ncq(struct ata_device *dev,
a6e6ce8e
TH
2159 char *desc, size_t desc_sz)
2160{
9af5c9c9 2161 struct ata_port *ap = dev->link->ap;
a6e6ce8e 2162 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
388539f3
SL
2163 unsigned int err_mask;
2164 char *aa_desc = "";
a6e6ce8e
TH
2165
2166 if (!ata_id_has_ncq(dev->id)) {
2167 desc[0] = '\0';
388539f3 2168 return 0;
a6e6ce8e 2169 }
75683fe7 2170 if (dev->horkage & ATA_HORKAGE_NONCQ) {
6919a0a6 2171 snprintf(desc, desc_sz, "NCQ (not used)");
388539f3 2172 return 0;
6919a0a6 2173 }
a6e6ce8e 2174 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 2175 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
2176 dev->flags |= ATA_DFLAG_NCQ;
2177 }
2178
388539f3
SL
2179 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2180 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2181 ata_id_has_fpdma_aa(dev->id)) {
2182 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2183 SATA_FPDMA_AA);
2184 if (err_mask) {
a9a79dfe
JP
2185 ata_dev_err(dev,
2186 "failed to enable AA (error_mask=0x%x)\n",
2187 err_mask);
388539f3
SL
2188 if (err_mask != AC_ERR_DEV) {
2189 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2190 return -EIO;
2191 }
2192 } else
2193 aa_desc = ", AA";
2194 }
2195
a6e6ce8e 2196 if (hdepth >= ddepth)
388539f3 2197 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
a6e6ce8e 2198 else
388539f3
SL
2199 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2200 ddepth, aa_desc);
ed36911c 2201
284b3b77
HR
2202 if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2203 if (ata_id_has_ncq_send_and_recv(dev->id))
2204 ata_dev_config_ncq_send_recv(dev);
2205 if (ata_id_has_ncq_non_data(dev->id))
2206 ata_dev_config_ncq_non_data(dev);
2207 }
f78dea06 2208
388539f3 2209 return 0;
a6e6ce8e 2210}
f78dea06 2211
e87fd28c
HR
2212static void ata_dev_config_sense_reporting(struct ata_device *dev)
2213{
2214 unsigned int err_mask;
2215
2216 if (!ata_id_has_sense_reporting(dev->id))
2217 return;
2218
2219 if (ata_id_sense_reporting_enabled(dev->id))
2220 return;
2221
2222 err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2223 if (err_mask) {
2224 ata_dev_dbg(dev,
2225 "failed to enable Sense Data Reporting, Emask 0x%x\n",
2226 err_mask);
2227 }
2228}
2229
6d1003ae
HR
2230static void ata_dev_config_zac(struct ata_device *dev)
2231{
2232 struct ata_port *ap = dev->link->ap;
2233 unsigned int err_mask;
2234 u8 *identify_buf = ap->sector_buf;
2235 int log_index = ATA_LOG_SATA_ID_DEV_DATA * 2, i, found = 0;
2236 u16 log_pages;
2237
2238 dev->zac_zones_optimal_open = U32_MAX;
2239 dev->zac_zones_optimal_nonseq = U32_MAX;
2240 dev->zac_zones_max_open = U32_MAX;
2241
2242 /*
2243 * Always set the 'ZAC' flag for Host-managed devices.
2244 */
2245 if (dev->class == ATA_DEV_ZAC)
2246 dev->flags |= ATA_DFLAG_ZAC;
2247 else if (ata_id_zoned_cap(dev->id) == 0x01)
2248 /*
2249 * Check for host-aware devices.
2250 */
2251 dev->flags |= ATA_DFLAG_ZAC;
2252
2253 if (!(dev->flags & ATA_DFLAG_ZAC))
2254 return;
2255
2256 /*
2257 * Read Log Directory to figure out if IDENTIFY DEVICE log
2258 * is supported.
2259 */
2260 err_mask = ata_read_log_page(dev, ATA_LOG_DIRECTORY,
2261 0, ap->sector_buf, 1);
2262 if (err_mask) {
2263 ata_dev_info(dev,
2264 "failed to get Log Directory Emask 0x%x\n",
2265 err_mask);
2266 return;
2267 }
2268 log_pages = get_unaligned_le16(&ap->sector_buf[log_index]);
2269 if (log_pages == 0) {
2270 ata_dev_warn(dev,
2271 "ATA Identify Device Log not supported\n");
2272 return;
2273 }
2274 /*
2275 * Read IDENTIFY DEVICE data log, page 0, to figure out
2276 * if page 9 is supported.
2277 */
2278 err_mask = ata_read_log_page(dev, ATA_LOG_SATA_ID_DEV_DATA, 0,
2279 identify_buf, 1);
2280 if (err_mask) {
2281 ata_dev_info(dev,
2282 "failed to get Device Identify Log Emask 0x%x\n",
2283 err_mask);
2284 return;
2285 }
2286 log_pages = identify_buf[8];
2287 for (i = 0; i < log_pages; i++) {
2288 if (identify_buf[9 + i] == ATA_LOG_ZONED_INFORMATION) {
2289 found++;
2290 break;
ed36911c
MC
2291 }
2292 }
6d1003ae
HR
2293 if (!found) {
2294 ata_dev_warn(dev,
2295 "ATA Zoned Information Log not supported\n");
2296 return;
2297 }
ed36911c 2298
6d1003ae
HR
2299 /*
2300 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2301 */
2302 err_mask = ata_read_log_page(dev, ATA_LOG_SATA_ID_DEV_DATA,
2303 ATA_LOG_ZONED_INFORMATION,
2304 identify_buf, 1);
2305 if (!err_mask) {
2306 u64 zoned_cap, opt_open, opt_nonseq, max_open;
2307
2308 zoned_cap = get_unaligned_le64(&identify_buf[8]);
2309 if ((zoned_cap >> 63))
2310 dev->zac_zoned_cap = (zoned_cap & 1);
2311 opt_open = get_unaligned_le64(&identify_buf[24]);
2312 if ((opt_open >> 63))
2313 dev->zac_zones_optimal_open = (u32)opt_open;
2314 opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2315 if ((opt_nonseq >> 63))
2316 dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2317 max_open = get_unaligned_le64(&identify_buf[40]);
2318 if ((max_open >> 63))
2319 dev->zac_zones_max_open = (u32)max_open;
2320 }
a6e6ce8e
TH
2321}
2322
49016aca 2323/**
ffeae418 2324 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
2325 * @dev: Target device to configure
2326 *
2327 * Configure @dev according to @dev->id. Generic and low-level
2328 * driver specific fixups are also applied.
49016aca
TH
2329 *
2330 * LOCKING:
ffeae418
TH
2331 * Kernel thread context (may sleep)
2332 *
2333 * RETURNS:
2334 * 0 on success, -errno otherwise
49016aca 2335 */
efdaedc4 2336int ata_dev_configure(struct ata_device *dev)
49016aca 2337{
9af5c9c9
TH
2338 struct ata_port *ap = dev->link->ap;
2339 struct ata_eh_context *ehc = &dev->link->eh_context;
6746544c 2340 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1148c3a7 2341 const u16 *id = dev->id;
7dc951ae 2342 unsigned long xfer_mask;
65fe1f0f 2343 unsigned int err_mask;
b352e57d 2344 char revbuf[7]; /* XYZ-99\0 */
3f64f565
EM
2345 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2346 char modelbuf[ATA_ID_PROD_LEN+1];
e6d902a3 2347 int rc;
49016aca 2348
0dd4b21f 2349 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
a9a79dfe 2350 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
ffeae418 2351 return 0;
49016aca
TH
2352 }
2353
0dd4b21f 2354 if (ata_msg_probe(ap))
a9a79dfe 2355 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1da177e4 2356
75683fe7
TH
2357 /* set horkage */
2358 dev->horkage |= ata_dev_blacklisted(dev);
33267325 2359 ata_force_horkage(dev);
75683fe7 2360
50af2fa1 2361 if (dev->horkage & ATA_HORKAGE_DISABLE) {
a9a79dfe 2362 ata_dev_info(dev, "unsupported device, disabling\n");
50af2fa1
TH
2363 ata_dev_disable(dev);
2364 return 0;
2365 }
2366
2486fa56
TH
2367 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2368 dev->class == ATA_DEV_ATAPI) {
a9a79dfe
JP
2369 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2370 atapi_enabled ? "not supported with this driver"
2371 : "disabled");
2486fa56
TH
2372 ata_dev_disable(dev);
2373 return 0;
2374 }
2375
9062712f
TH
2376 rc = ata_do_link_spd_horkage(dev);
2377 if (rc)
2378 return rc;
2379
ecd75ad5
TH
2380 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2381 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2382 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2383 dev->horkage |= ATA_HORKAGE_NOLPM;
2384
2385 if (dev->horkage & ATA_HORKAGE_NOLPM) {
2386 ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2387 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2388 }
2389
6746544c
TH
2390 /* let ACPI work its magic */
2391 rc = ata_acpi_on_devcfg(dev);
2392 if (rc)
2393 return rc;
08573a86 2394
05027adc
TH
2395 /* massage HPA, do it early as it might change IDENTIFY data */
2396 rc = ata_hpa_resize(dev);
2397 if (rc)
2398 return rc;
2399
c39f5ebe 2400 /* print device capabilities */
0dd4b21f 2401 if (ata_msg_probe(ap))
a9a79dfe
JP
2402 ata_dev_dbg(dev,
2403 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2404 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2405 __func__,
2406 id[49], id[82], id[83], id[84],
2407 id[85], id[86], id[87], id[88]);
c39f5ebe 2408
208a9933 2409 /* initialize to-be-configured parameters */
ea1dd4e1 2410 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
2411 dev->max_sectors = 0;
2412 dev->cdb_len = 0;
2413 dev->n_sectors = 0;
2414 dev->cylinders = 0;
2415 dev->heads = 0;
2416 dev->sectors = 0;
e18086d6 2417 dev->multi_count = 0;
208a9933 2418
1da177e4
LT
2419 /*
2420 * common ATA, ATAPI feature tests
2421 */
2422
ff8854b2 2423 /* find max transfer mode; for printk only */
1148c3a7 2424 xfer_mask = ata_id_xfermask(id);
1da177e4 2425
0dd4b21f
BP
2426 if (ata_msg_probe(ap))
2427 ata_dump_id(id);
1da177e4 2428
ef143d57
AL
2429 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2430 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2431 sizeof(fwrevbuf));
2432
2433 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2434 sizeof(modelbuf));
2435
1da177e4 2436 /* ATA-specific feature tests */
9162c657 2437 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
b352e57d 2438 if (ata_id_is_cfa(id)) {
62afe5d7
SS
2439 /* CPRM may make this media unusable */
2440 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
a9a79dfe
JP
2441 ata_dev_warn(dev,
2442 "supports DRM functions and may not be fully accessible\n");
b352e57d 2443 snprintf(revbuf, 7, "CFA");
ae8d4ee7 2444 } else {
2dcb407e 2445 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
ae8d4ee7
AC
2446 /* Warn the user if the device has TPM extensions */
2447 if (ata_id_has_tpm(id))
a9a79dfe
JP
2448 ata_dev_warn(dev,
2449 "supports DRM functions and may not be fully accessible\n");
ae8d4ee7 2450 }
b352e57d 2451
1148c3a7 2452 dev->n_sectors = ata_id_n_sectors(id);
2940740b 2453
e18086d6
ML
2454 /* get current R/W Multiple count setting */
2455 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2456 unsigned int max = dev->id[47] & 0xff;
2457 unsigned int cnt = dev->id[59] & 0xff;
2458 /* only recognize/allow powers of two here */
2459 if (is_power_of_2(max) && is_power_of_2(cnt))
2460 if (cnt <= max)
2461 dev->multi_count = cnt;
2462 }
3f64f565 2463
1148c3a7 2464 if (ata_id_has_lba(id)) {
4c2d721a 2465 const char *lba_desc;
388539f3 2466 char ncq_desc[24];
8bf62ece 2467
4c2d721a
TH
2468 lba_desc = "LBA";
2469 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 2470 if (ata_id_has_lba48(id)) {
8bf62ece 2471 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 2472 lba_desc = "LBA48";
6fc49adb
TH
2473
2474 if (dev->n_sectors >= (1UL << 28) &&
2475 ata_id_has_flush_ext(id))
2476 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 2477 }
8bf62ece 2478
a6e6ce8e 2479 /* config NCQ */
388539f3
SL
2480 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2481 if (rc)
2482 return rc;
a6e6ce8e 2483
8bf62ece 2484 /* print device info to dmesg */
3f64f565 2485 if (ata_msg_drv(ap) && print_info) {
a9a79dfe
JP
2486 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2487 revbuf, modelbuf, fwrevbuf,
2488 ata_mode_string(xfer_mask));
2489 ata_dev_info(dev,
2490 "%llu sectors, multi %u: %s %s\n",
f15a1daf 2491 (unsigned long long)dev->n_sectors,
3f64f565
EM
2492 dev->multi_count, lba_desc, ncq_desc);
2493 }
ffeae418 2494 } else {
8bf62ece
AL
2495 /* CHS */
2496
2497 /* Default translation */
1148c3a7
TH
2498 dev->cylinders = id[1];
2499 dev->heads = id[3];
2500 dev->sectors = id[6];
8bf62ece 2501
1148c3a7 2502 if (ata_id_current_chs_valid(id)) {
8bf62ece 2503 /* Current CHS translation is valid. */
1148c3a7
TH
2504 dev->cylinders = id[54];
2505 dev->heads = id[55];
2506 dev->sectors = id[56];
8bf62ece
AL
2507 }
2508
2509 /* print device info to dmesg */
3f64f565 2510 if (ata_msg_drv(ap) && print_info) {
a9a79dfe
JP
2511 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2512 revbuf, modelbuf, fwrevbuf,
2513 ata_mode_string(xfer_mask));
2514 ata_dev_info(dev,
2515 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2516 (unsigned long long)dev->n_sectors,
2517 dev->multi_count, dev->cylinders,
2518 dev->heads, dev->sectors);
3f64f565 2519 }
07f6f7d0
AL
2520 }
2521
803739d2
SH
2522 /* Check and mark DevSlp capability. Get DevSlp timing variables
2523 * from SATA Settings page of Identify Device Data Log.
65fe1f0f 2524 */
803739d2 2525 if (ata_id_has_devslp(dev->id)) {
8e725c7f 2526 u8 *sata_setting = ap->sector_buf;
803739d2
SH
2527 int i, j;
2528
2529 dev->flags |= ATA_DFLAG_DEVSLP;
65fe1f0f
SH
2530 err_mask = ata_read_log_page(dev,
2531 ATA_LOG_SATA_ID_DEV_DATA,
2532 ATA_LOG_SATA_SETTINGS,
803739d2 2533 sata_setting,
65fe1f0f
SH
2534 1);
2535 if (err_mask)
2536 ata_dev_dbg(dev,
2537 "failed to get Identify Device Data, Emask 0x%x\n",
2538 err_mask);
803739d2
SH
2539 else
2540 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2541 j = ATA_LOG_DEVSLP_OFFSET + i;
2542 dev->devslp_timing[i] = sata_setting[j];
2543 }
65fe1f0f 2544 }
e87fd28c 2545 ata_dev_config_sense_reporting(dev);
6d1003ae 2546 ata_dev_config_zac(dev);
6e7846e9 2547 dev->cdb_len = 16;
1da177e4
LT
2548 }
2549
2550 /* ATAPI-specific feature tests */
2c13b7ce 2551 else if (dev->class == ATA_DEV_ATAPI) {
854c73a2
TH
2552 const char *cdb_intr_string = "";
2553 const char *atapi_an_string = "";
91163006 2554 const char *dma_dir_string = "";
7d77b247 2555 u32 sntf;
08a556db 2556
1148c3a7 2557 rc = atapi_cdb_len(id);
1da177e4 2558 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 2559 if (ata_msg_warn(ap))
a9a79dfe 2560 ata_dev_warn(dev, "unsupported CDB len\n");
ffeae418 2561 rc = -EINVAL;
1da177e4
LT
2562 goto err_out_nosup;
2563 }
6e7846e9 2564 dev->cdb_len = (unsigned int) rc;
1da177e4 2565
7d77b247
TH
2566 /* Enable ATAPI AN if both the host and device have
2567 * the support. If PMP is attached, SNTF is required
2568 * to enable ATAPI AN to discern between PHY status
2569 * changed notifications and ATAPI ANs.
9f45cbd3 2570 */
e7ecd435
TH
2571 if (atapi_an &&
2572 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
071f44b1 2573 (!sata_pmp_attached(ap) ||
7d77b247 2574 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
9f45cbd3 2575 /* issue SET feature command to turn this on */
218f3d30
JG
2576 err_mask = ata_dev_set_feature(dev,
2577 SETFEATURES_SATA_ENABLE, SATA_AN);
854c73a2 2578 if (err_mask)
a9a79dfe
JP
2579 ata_dev_err(dev,
2580 "failed to enable ATAPI AN (err_mask=0x%x)\n",
2581 err_mask);
854c73a2 2582 else {
9f45cbd3 2583 dev->flags |= ATA_DFLAG_AN;
854c73a2
TH
2584 atapi_an_string = ", ATAPI AN";
2585 }
9f45cbd3
KCA
2586 }
2587
08a556db 2588 if (ata_id_cdb_intr(dev->id)) {
312f7da2 2589 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
2590 cdb_intr_string = ", CDB intr";
2591 }
312f7da2 2592
966fbe19 2593 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
91163006
TH
2594 dev->flags |= ATA_DFLAG_DMADIR;
2595 dma_dir_string = ", DMADIR";
2596 }
2597
afe75951 2598 if (ata_id_has_da(dev->id)) {
b1354cbb 2599 dev->flags |= ATA_DFLAG_DA;
afe75951
AL
2600 zpodd_init(dev);
2601 }
b1354cbb 2602
1da177e4 2603 /* print device info to dmesg */
5afc8142 2604 if (ata_msg_drv(ap) && print_info)
a9a79dfe
JP
2605 ata_dev_info(dev,
2606 "ATAPI: %s, %s, max %s%s%s%s\n",
2607 modelbuf, fwrevbuf,
2608 ata_mode_string(xfer_mask),
2609 cdb_intr_string, atapi_an_string,
2610 dma_dir_string);
1da177e4
LT
2611 }
2612
914ed354
TH
2613 /* determine max_sectors */
2614 dev->max_sectors = ATA_MAX_SECTORS;
2615 if (dev->flags & ATA_DFLAG_LBA48)
2616 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2617
c5038fc0
AC
2618 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2619 200 sectors */
3373efd8 2620 if (ata_dev_knobble(dev)) {
5afc8142 2621 if (ata_msg_drv(ap) && print_info)
a9a79dfe 2622 ata_dev_info(dev, "applying bridge limits\n");
5a529139 2623 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
2624 dev->max_sectors = ATA_MAX_SECTORS;
2625 }
2626
f8d8e579 2627 if ((dev->class == ATA_DEV_ATAPI) &&
f442cd86 2628 (atapi_command_packet_set(id) == TYPE_TAPE)) {
f8d8e579 2629 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
f442cd86
AL
2630 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2631 }
f8d8e579 2632
75683fe7 2633 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
03ec52de
TH
2634 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2635 dev->max_sectors);
18d6e9d5 2636
af34d637
DM
2637 if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
2638 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
2639 dev->max_sectors);
2640
a32450e1
SH
2641 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2642 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2643
4b2f3ede 2644 if (ap->ops->dev_config)
cd0d3bbc 2645 ap->ops->dev_config(dev);
4b2f3ede 2646
c5038fc0
AC
2647 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2648 /* Let the user know. We don't want to disallow opens for
2649 rescue purposes, or in case the vendor is just a blithering
2650 idiot. Do this after the dev_config call as some controllers
2651 with buggy firmware may want to avoid reporting false device
2652 bugs */
2653
2654 if (print_info) {
a9a79dfe 2655 ata_dev_warn(dev,
c5038fc0 2656"Drive reports diagnostics failure. This may indicate a drive\n");
a9a79dfe 2657 ata_dev_warn(dev,
c5038fc0
AC
2658"fault or invalid emulation. Contact drive vendor for information.\n");
2659 }
2660 }
2661
ac70a964 2662 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
a9a79dfe
JP
2663 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2664 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n");
ac70a964
TH
2665 }
2666
ffeae418 2667 return 0;
1da177e4
LT
2668
2669err_out_nosup:
0dd4b21f 2670 if (ata_msg_probe(ap))
a9a79dfe 2671 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
ffeae418 2672 return rc;
1da177e4
LT
2673}
2674
be0d18df 2675/**
2e41e8e6 2676 * ata_cable_40wire - return 40 wire cable type
be0d18df
AC
2677 * @ap: port
2678 *
2e41e8e6 2679 * Helper method for drivers which want to hardwire 40 wire cable
be0d18df
AC
2680 * detection.
2681 */
2682
2683int ata_cable_40wire(struct ata_port *ap)
2684{
2685 return ATA_CBL_PATA40;
2686}
2687
2688/**
2e41e8e6 2689 * ata_cable_80wire - return 80 wire cable type
be0d18df
AC
2690 * @ap: port
2691 *
2e41e8e6 2692 * Helper method for drivers which want to hardwire 80 wire cable
be0d18df
AC
2693 * detection.
2694 */
2695
2696int ata_cable_80wire(struct ata_port *ap)
2697{
2698 return ATA_CBL_PATA80;
2699}
2700
2701/**
2702 * ata_cable_unknown - return unknown PATA cable.
2703 * @ap: port
2704 *
2705 * Helper method for drivers which have no PATA cable detection.
2706 */
2707
2708int ata_cable_unknown(struct ata_port *ap)
2709{
2710 return ATA_CBL_PATA_UNK;
2711}
2712
c88f90c3
TH
2713/**
2714 * ata_cable_ignore - return ignored PATA cable.
2715 * @ap: port
2716 *
2717 * Helper method for drivers which don't use cable type to limit
2718 * transfer mode.
2719 */
2720int ata_cable_ignore(struct ata_port *ap)
2721{
2722 return ATA_CBL_PATA_IGN;
2723}
2724
be0d18df
AC
2725/**
2726 * ata_cable_sata - return SATA cable type
2727 * @ap: port
2728 *
2729 * Helper method for drivers which have SATA cables
2730 */
2731
2732int ata_cable_sata(struct ata_port *ap)
2733{
2734 return ATA_CBL_SATA;
2735}
2736
1da177e4
LT
2737/**
2738 * ata_bus_probe - Reset and probe ATA bus
2739 * @ap: Bus to probe
2740 *
0cba632b
JG
2741 * Master ATA bus probing function. Initiates a hardware-dependent
2742 * bus reset, then attempts to identify any devices found on
2743 * the bus.
2744 *
1da177e4 2745 * LOCKING:
0cba632b 2746 * PCI/etc. bus probe sem.
1da177e4
LT
2747 *
2748 * RETURNS:
96072e69 2749 * Zero on success, negative errno otherwise.
1da177e4
LT
2750 */
2751
80289167 2752int ata_bus_probe(struct ata_port *ap)
1da177e4 2753{
28ca5c57 2754 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1 2755 int tries[ATA_MAX_DEVICES];
f58229f8 2756 int rc;
e82cbdb9 2757 struct ata_device *dev;
1da177e4 2758
1eca4365 2759 ata_for_each_dev(dev, &ap->link, ALL)
f58229f8 2760 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
14d2bac1
TH
2761
2762 retry:
1eca4365 2763 ata_for_each_dev(dev, &ap->link, ALL) {
cdeab114
TH
2764 /* If we issue an SRST then an ATA drive (not ATAPI)
2765 * may change configuration and be in PIO0 timing. If
2766 * we do a hard reset (or are coming from power on)
2767 * this is true for ATA or ATAPI. Until we've set a
2768 * suitable controller mode we should not touch the
2769 * bus as we may be talking too fast.
2770 */
2771 dev->pio_mode = XFER_PIO_0;
5416912a 2772 dev->dma_mode = 0xff;
cdeab114
TH
2773
2774 /* If the controller has a pio mode setup function
2775 * then use it to set the chipset to rights. Don't
2776 * touch the DMA setup as that will be dealt with when
2777 * configuring devices.
2778 */
2779 if (ap->ops->set_piomode)
2780 ap->ops->set_piomode(ap, dev);
2781 }
2782
2044470c 2783 /* reset and determine device classes */
52783c5d 2784 ap->ops->phy_reset(ap);
2061a47a 2785
1eca4365 2786 ata_for_each_dev(dev, &ap->link, ALL) {
3e4ec344 2787 if (dev->class != ATA_DEV_UNKNOWN)
52783c5d
TH
2788 classes[dev->devno] = dev->class;
2789 else
2790 classes[dev->devno] = ATA_DEV_NONE;
2044470c 2791
52783c5d 2792 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 2793 }
1da177e4 2794
f31f0cc2
JG
2795 /* read IDENTIFY page and configure devices. We have to do the identify
2796 specific sequence bass-ackwards so that PDIAG- is released by
2797 the slave device */
2798
1eca4365 2799 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
f58229f8
TH
2800 if (tries[dev->devno])
2801 dev->class = classes[dev->devno];
ffeae418 2802
14d2bac1 2803 if (!ata_dev_enabled(dev))
ffeae418 2804 continue;
ffeae418 2805
bff04647
TH
2806 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2807 dev->id);
14d2bac1
TH
2808 if (rc)
2809 goto fail;
f31f0cc2
JG
2810 }
2811
be0d18df
AC
2812 /* Now ask for the cable type as PDIAG- should have been released */
2813 if (ap->ops->cable_detect)
2814 ap->cbl = ap->ops->cable_detect(ap);
2815
1eca4365
TH
2816 /* We may have SATA bridge glue hiding here irrespective of
2817 * the reported cable types and sensed types. When SATA
2818 * drives indicate we have a bridge, we don't know which end
2819 * of the link the bridge is which is a problem.
2820 */
2821 ata_for_each_dev(dev, &ap->link, ENABLED)
614fe29b
AC
2822 if (ata_id_is_sata(dev->id))
2823 ap->cbl = ATA_CBL_SATA;
614fe29b 2824
f31f0cc2
JG
2825 /* After the identify sequence we can now set up the devices. We do
2826 this in the normal order so that the user doesn't get confused */
2827
1eca4365 2828 ata_for_each_dev(dev, &ap->link, ENABLED) {
9af5c9c9 2829 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
efdaedc4 2830 rc = ata_dev_configure(dev);
9af5c9c9 2831 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
2832 if (rc)
2833 goto fail;
1da177e4
LT
2834 }
2835
e82cbdb9 2836 /* configure transfer mode */
0260731f 2837 rc = ata_set_mode(&ap->link, &dev);
4ae72a1e 2838 if (rc)
51713d35 2839 goto fail;
1da177e4 2840
1eca4365
TH
2841 ata_for_each_dev(dev, &ap->link, ENABLED)
2842 return 0;
1da177e4 2843
96072e69 2844 return -ENODEV;
14d2bac1
TH
2845
2846 fail:
4ae72a1e
TH
2847 tries[dev->devno]--;
2848
14d2bac1
TH
2849 switch (rc) {
2850 case -EINVAL:
4ae72a1e 2851 /* eeek, something went very wrong, give up */
14d2bac1
TH
2852 tries[dev->devno] = 0;
2853 break;
4ae72a1e
TH
2854
2855 case -ENODEV:
2856 /* give it just one more chance */
2857 tries[dev->devno] = min(tries[dev->devno], 1);
14d2bac1 2858 case -EIO:
4ae72a1e
TH
2859 if (tries[dev->devno] == 1) {
2860 /* This is the last chance, better to slow
2861 * down than lose it.
2862 */
a07d499b 2863 sata_down_spd_limit(&ap->link, 0);
4ae72a1e
TH
2864 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2865 }
14d2bac1
TH
2866 }
2867
4ae72a1e 2868 if (!tries[dev->devno])
3373efd8 2869 ata_dev_disable(dev);
ec573755 2870
14d2bac1 2871 goto retry;
1da177e4
LT
2872}
2873
3be680b7
TH
2874/**
2875 * sata_print_link_status - Print SATA link status
936fd732 2876 * @link: SATA link to printk link status about
3be680b7
TH
2877 *
2878 * This function prints link speed and status of a SATA link.
2879 *
2880 * LOCKING:
2881 * None.
2882 */
6bdb4fc9 2883static void sata_print_link_status(struct ata_link *link)
3be680b7 2884{
6d5f9732 2885 u32 sstatus, scontrol, tmp;
3be680b7 2886
936fd732 2887 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3be680b7 2888 return;
936fd732 2889 sata_scr_read(link, SCR_CONTROL, &scontrol);
3be680b7 2890
b1c72916 2891 if (ata_phys_link_online(link)) {
3be680b7 2892 tmp = (sstatus >> 4) & 0xf;
a9a79dfe
JP
2893 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2894 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 2895 } else {
a9a79dfe
JP
2896 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2897 sstatus, scontrol);
3be680b7
TH
2898 }
2899}
2900
ebdfca6e
AC
2901/**
2902 * ata_dev_pair - return other device on cable
ebdfca6e
AC
2903 * @adev: device
2904 *
2905 * Obtain the other device on the same cable, or if none is
2906 * present NULL is returned
2907 */
2e9edbf8 2908
3373efd8 2909struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2910{
9af5c9c9
TH
2911 struct ata_link *link = adev->link;
2912 struct ata_device *pair = &link->device[1 - adev->devno];
e1211e3f 2913 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2914 return NULL;
2915 return pair;
2916}
2917
1c3fae4d 2918/**
3c567b7d 2919 * sata_down_spd_limit - adjust SATA spd limit downward
936fd732 2920 * @link: Link to adjust SATA spd limit for
a07d499b 2921 * @spd_limit: Additional limit
1c3fae4d 2922 *
936fd732 2923 * Adjust SATA spd limit of @link downward. Note that this
1c3fae4d 2924 * function only adjusts the limit. The change must be applied
3c567b7d 2925 * using sata_set_spd().
1c3fae4d 2926 *
a07d499b
TH
2927 * If @spd_limit is non-zero, the speed is limited to equal to or
2928 * lower than @spd_limit if such speed is supported. If
2929 * @spd_limit is slower than any supported speed, only the lowest
2930 * supported speed is allowed.
2931 *
1c3fae4d
TH
2932 * LOCKING:
2933 * Inherited from caller.
2934 *
2935 * RETURNS:
2936 * 0 on success, negative errno on failure
2937 */
a07d499b 2938int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
1c3fae4d 2939{
81952c54 2940 u32 sstatus, spd, mask;
a07d499b 2941 int rc, bit;
1c3fae4d 2942
936fd732 2943 if (!sata_scr_valid(link))
008a7896
TH
2944 return -EOPNOTSUPP;
2945
2946 /* If SCR can be read, use it to determine the current SPD.
936fd732 2947 * If not, use cached value in link->sata_spd.
008a7896 2948 */
936fd732 2949 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
9913ff8a 2950 if (rc == 0 && ata_sstatus_online(sstatus))
008a7896
TH
2951 spd = (sstatus >> 4) & 0xf;
2952 else
936fd732 2953 spd = link->sata_spd;
1c3fae4d 2954
936fd732 2955 mask = link->sata_spd_limit;
1c3fae4d
TH
2956 if (mask <= 1)
2957 return -EINVAL;
008a7896
TH
2958
2959 /* unconditionally mask off the highest bit */
a07d499b
TH
2960 bit = fls(mask) - 1;
2961 mask &= ~(1 << bit);
1c3fae4d 2962
008a7896
TH
2963 /* Mask off all speeds higher than or equal to the current
2964 * one. Force 1.5Gbps if current SPD is not available.
2965 */
2966 if (spd > 1)
2967 mask &= (1 << (spd - 1)) - 1;
2968 else
2969 mask &= 1;
2970
2971 /* were we already at the bottom? */
1c3fae4d
TH
2972 if (!mask)
2973 return -EINVAL;
2974
a07d499b
TH
2975 if (spd_limit) {
2976 if (mask & ((1 << spd_limit) - 1))
2977 mask &= (1 << spd_limit) - 1;
2978 else {
2979 bit = ffs(mask) - 1;
2980 mask = 1 << bit;
2981 }
2982 }
2983
936fd732 2984 link->sata_spd_limit = mask;
1c3fae4d 2985
a9a79dfe
JP
2986 ata_link_warn(link, "limiting SATA link speed to %s\n",
2987 sata_spd_string(fls(mask)));
1c3fae4d
TH
2988
2989 return 0;
2990}
2991
936fd732 2992static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
1c3fae4d 2993{
5270222f
TH
2994 struct ata_link *host_link = &link->ap->link;
2995 u32 limit, target, spd;
1c3fae4d 2996
5270222f
TH
2997 limit = link->sata_spd_limit;
2998
2999 /* Don't configure downstream link faster than upstream link.
3000 * It doesn't speed up anything and some PMPs choke on such
3001 * configuration.
3002 */
3003 if (!ata_is_host_link(link) && host_link->sata_spd)
3004 limit &= (1 << host_link->sata_spd) - 1;
3005
3006 if (limit == UINT_MAX)
3007 target = 0;
1c3fae4d 3008 else
5270222f 3009 target = fls(limit);
1c3fae4d
TH
3010
3011 spd = (*scontrol >> 4) & 0xf;
5270222f 3012 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
1c3fae4d 3013
5270222f 3014 return spd != target;
1c3fae4d
TH
3015}
3016
3017/**
3c567b7d 3018 * sata_set_spd_needed - is SATA spd configuration needed
936fd732 3019 * @link: Link in question
1c3fae4d
TH
3020 *
3021 * Test whether the spd limit in SControl matches
936fd732 3022 * @link->sata_spd_limit. This function is used to determine
1c3fae4d
TH
3023 * whether hardreset is necessary to apply SATA spd
3024 * configuration.
3025 *
3026 * LOCKING:
3027 * Inherited from caller.
3028 *
3029 * RETURNS:
3030 * 1 if SATA spd configuration is needed, 0 otherwise.
3031 */
1dc55e87 3032static int sata_set_spd_needed(struct ata_link *link)
1c3fae4d
TH
3033{
3034 u32 scontrol;
3035
936fd732 3036 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
db64bcf3 3037 return 1;
1c3fae4d 3038
936fd732 3039 return __sata_set_spd_needed(link, &scontrol);
1c3fae4d
TH
3040}
3041
3042/**
3c567b7d 3043 * sata_set_spd - set SATA spd according to spd limit
936fd732 3044 * @link: Link to set SATA spd for
1c3fae4d 3045 *
936fd732 3046 * Set SATA spd of @link according to sata_spd_limit.
1c3fae4d
TH
3047 *
3048 * LOCKING:
3049 * Inherited from caller.
3050 *
3051 * RETURNS:
3052 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 3053 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 3054 */
936fd732 3055int sata_set_spd(struct ata_link *link)
1c3fae4d
TH
3056{
3057 u32 scontrol;
81952c54 3058 int rc;
1c3fae4d 3059
936fd732 3060 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 3061 return rc;
1c3fae4d 3062
936fd732 3063 if (!__sata_set_spd_needed(link, &scontrol))
1c3fae4d
TH
3064 return 0;
3065
936fd732 3066 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54
TH
3067 return rc;
3068
1c3fae4d
TH
3069 return 1;
3070}
3071
452503f9
AC
3072/*
3073 * This mode timing computation functionality is ported over from
3074 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3075 */
3076/*
b352e57d 3077 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 3078 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
3079 * for UDMA6, which is currently supported only by Maxtor drives.
3080 *
3081 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
3082 */
3083
3084static const struct ata_timing ata_timing[] = {
3ada9c12
DD
3085/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
3086 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
3087 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
3088 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
3089 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
3090 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
3091 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
3092 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
3093
3094 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
3095 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
3096 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
3097
3098 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
3099 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
3100 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
3101 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
3102 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
3103
3104/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
3105 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
3106 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
3107 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
3108 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
3109 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
3110 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
3111 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
452503f9
AC
3112
3113 { 0xFF }
3114};
3115
2dcb407e
JG
3116#define ENOUGH(v, unit) (((v)-1)/(unit)+1)
3117#define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
452503f9
AC
3118
3119static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3120{
3ada9c12
DD
3121 q->setup = EZ(t->setup * 1000, T);
3122 q->act8b = EZ(t->act8b * 1000, T);
3123 q->rec8b = EZ(t->rec8b * 1000, T);
3124 q->cyc8b = EZ(t->cyc8b * 1000, T);
3125 q->active = EZ(t->active * 1000, T);
3126 q->recover = EZ(t->recover * 1000, T);
3127 q->dmack_hold = EZ(t->dmack_hold * 1000, T);
3128 q->cycle = EZ(t->cycle * 1000, T);
3129 q->udma = EZ(t->udma * 1000, UT);
452503f9
AC
3130}
3131
3132void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3133 struct ata_timing *m, unsigned int what)
3134{
3135 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
3136 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
3137 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
3138 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
3139 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
3140 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3ada9c12 3141 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
452503f9
AC
3142 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
3143 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
3144}
3145
6357357c 3146const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
452503f9 3147{
70cd071e
TH
3148 const struct ata_timing *t = ata_timing;
3149
3150 while (xfer_mode > t->mode)
3151 t++;
452503f9 3152
70cd071e
TH
3153 if (xfer_mode == t->mode)
3154 return t;
cd705d5a
BP
3155
3156 WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
3157 __func__, xfer_mode);
3158
70cd071e 3159 return NULL;
452503f9
AC
3160}
3161
3162int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3163 struct ata_timing *t, int T, int UT)
3164{
9e8808a9 3165 const u16 *id = adev->id;
452503f9
AC
3166 const struct ata_timing *s;
3167 struct ata_timing p;
3168
3169 /*
2e9edbf8 3170 * Find the mode.
75b1f2f8 3171 */
452503f9
AC
3172
3173 if (!(s = ata_timing_find_mode(speed)))
3174 return -EINVAL;
3175
75b1f2f8
AL
3176 memcpy(t, s, sizeof(*s));
3177
452503f9
AC
3178 /*
3179 * If the drive is an EIDE drive, it can tell us it needs extended
3180 * PIO/MW_DMA cycle timing.
3181 */
3182
9e8808a9 3183 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
452503f9 3184 memset(&p, 0, sizeof(p));
9e8808a9 3185
bff00256 3186 if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
9e8808a9
BZ
3187 if (speed <= XFER_PIO_2)
3188 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
3189 else if ((speed <= XFER_PIO_4) ||
3190 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
3191 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
3192 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
3193 p.cycle = id[ATA_ID_EIDE_DMA_MIN];
3194
452503f9
AC
3195 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3196 }
3197
3198 /*
3199 * Convert the timing to bus clock counts.
3200 */
3201
75b1f2f8 3202 ata_timing_quantize(t, t, T, UT);
452503f9
AC
3203
3204 /*
c893a3ae
RD
3205 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3206 * S.M.A.R.T * and some other commands. We have to ensure that the
3207 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
3208 */
3209
fd3367af 3210 if (speed > XFER_PIO_6) {
452503f9
AC
3211 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3212 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3213 }
3214
3215 /*
c893a3ae 3216 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
3217 */
3218
3219 if (t->act8b + t->rec8b < t->cyc8b) {
3220 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3221 t->rec8b = t->cyc8b - t->act8b;
3222 }
3223
3224 if (t->active + t->recover < t->cycle) {
3225 t->active += (t->cycle - (t->active + t->recover)) / 2;
3226 t->recover = t->cycle - t->active;
3227 }
a617c09f 3228
4f701d1e
AC
3229 /* In a few cases quantisation may produce enough errors to
3230 leave t->cycle too low for the sum of active and recovery
3231 if so we must correct this */
3232 if (t->active + t->recover > t->cycle)
3233 t->cycle = t->active + t->recover;
452503f9
AC
3234
3235 return 0;
3236}
3237
a0f79b92
TH
3238/**
3239 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3240 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3241 * @cycle: cycle duration in ns
3242 *
3243 * Return matching xfer mode for @cycle. The returned mode is of
3244 * the transfer type specified by @xfer_shift. If @cycle is too
3245 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3246 * than the fastest known mode, the fasted mode is returned.
3247 *
3248 * LOCKING:
3249 * None.
3250 *
3251 * RETURNS:
3252 * Matching xfer_mode, 0xff if no match found.
3253 */
3254u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3255{
3256 u8 base_mode = 0xff, last_mode = 0xff;
3257 const struct ata_xfer_ent *ent;
3258 const struct ata_timing *t;
3259
3260 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3261 if (ent->shift == xfer_shift)
3262 base_mode = ent->base;
3263
3264 for (t = ata_timing_find_mode(base_mode);
3265 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3266 unsigned short this_cycle;
3267
3268 switch (xfer_shift) {
3269 case ATA_SHIFT_PIO:
3270 case ATA_SHIFT_MWDMA:
3271 this_cycle = t->cycle;
3272 break;
3273 case ATA_SHIFT_UDMA:
3274 this_cycle = t->udma;
3275 break;
3276 default:
3277 return 0xff;
3278 }
3279
3280 if (cycle > this_cycle)
3281 break;
3282
3283 last_mode = t->mode;
3284 }
3285
3286 return last_mode;
3287}
3288
cf176e1a
TH
3289/**
3290 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a 3291 * @dev: Device to adjust xfer masks
458337db 3292 * @sel: ATA_DNXFER_* selector
cf176e1a
TH
3293 *
3294 * Adjust xfer masks of @dev downward. Note that this function
3295 * does not apply the change. Invoking ata_set_mode() afterwards
3296 * will apply the limit.
3297 *
3298 * LOCKING:
3299 * Inherited from caller.
3300 *
3301 * RETURNS:
3302 * 0 on success, negative errno on failure
3303 */
458337db 3304int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
cf176e1a 3305{
458337db 3306 char buf[32];
7dc951ae
TH
3307 unsigned long orig_mask, xfer_mask;
3308 unsigned long pio_mask, mwdma_mask, udma_mask;
458337db 3309 int quiet, highbit;
cf176e1a 3310
458337db
TH
3311 quiet = !!(sel & ATA_DNXFER_QUIET);
3312 sel &= ~ATA_DNXFER_QUIET;
cf176e1a 3313
458337db
TH
3314 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3315 dev->mwdma_mask,
3316 dev->udma_mask);
3317 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
cf176e1a 3318
458337db
TH
3319 switch (sel) {
3320 case ATA_DNXFER_PIO:
3321 highbit = fls(pio_mask) - 1;
3322 pio_mask &= ~(1 << highbit);
3323 break;
3324
3325 case ATA_DNXFER_DMA:
3326 if (udma_mask) {
3327 highbit = fls(udma_mask) - 1;
3328 udma_mask &= ~(1 << highbit);
3329 if (!udma_mask)
3330 return -ENOENT;
3331 } else if (mwdma_mask) {
3332 highbit = fls(mwdma_mask) - 1;
3333 mwdma_mask &= ~(1 << highbit);
3334 if (!mwdma_mask)
3335 return -ENOENT;
3336 }
3337 break;
3338
3339 case ATA_DNXFER_40C:
3340 udma_mask &= ATA_UDMA_MASK_40C;
3341 break;
3342
3343 case ATA_DNXFER_FORCE_PIO0:
3344 pio_mask &= 1;
3345 case ATA_DNXFER_FORCE_PIO:
3346 mwdma_mask = 0;
3347 udma_mask = 0;
3348 break;
3349
458337db
TH
3350 default:
3351 BUG();
3352 }
3353
3354 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3355
3356 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3357 return -ENOENT;
3358
3359 if (!quiet) {
3360 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3361 snprintf(buf, sizeof(buf), "%s:%s",
3362 ata_mode_string(xfer_mask),
3363 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3364 else
3365 snprintf(buf, sizeof(buf), "%s",
3366 ata_mode_string(xfer_mask));
3367
a9a79dfe 3368 ata_dev_warn(dev, "limiting speed to %s\n", buf);
458337db 3369 }
cf176e1a
TH
3370
3371 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3372 &dev->udma_mask);
3373
cf176e1a 3374 return 0;
cf176e1a
TH
3375}
3376
3373efd8 3377static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 3378{
d0cb43b3 3379 struct ata_port *ap = dev->link->ap;
9af5c9c9 3380 struct ata_eh_context *ehc = &dev->link->eh_context;
d0cb43b3 3381 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
4055dee7
TH
3382 const char *dev_err_whine = "";
3383 int ign_dev_err = 0;
d0cb43b3 3384 unsigned int err_mask = 0;
83206a29 3385 int rc;
1da177e4 3386
e8384607 3387 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
3388 if (dev->xfer_shift == ATA_SHIFT_PIO)
3389 dev->flags |= ATA_DFLAG_PIO;
3390
d0cb43b3
TH
3391 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3392 dev_err_whine = " (SET_XFERMODE skipped)";
3393 else {
3394 if (nosetxfer)
a9a79dfe
JP
3395 ata_dev_warn(dev,
3396 "NOSETXFER but PATA detected - can't "
3397 "skip SETXFER, might malfunction\n");
d0cb43b3
TH
3398 err_mask = ata_dev_set_xfermode(dev);
3399 }
2dcb407e 3400
4055dee7
TH
3401 if (err_mask & ~AC_ERR_DEV)
3402 goto fail;
3403
3404 /* revalidate */
3405 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3406 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3407 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3408 if (rc)
3409 return rc;
3410
b93fda12
AC
3411 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3412 /* Old CFA may refuse this command, which is just fine */
3413 if (ata_id_is_cfa(dev->id))
3414 ign_dev_err = 1;
3415 /* Catch several broken garbage emulations plus some pre
3416 ATA devices */
3417 if (ata_id_major_version(dev->id) == 0 &&
3418 dev->pio_mode <= XFER_PIO_2)
3419 ign_dev_err = 1;
3420 /* Some very old devices and some bad newer ones fail
3421 any kind of SET_XFERMODE request but support PIO0-2
3422 timings and no IORDY */
3423 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3424 ign_dev_err = 1;
3425 }
3acaf94b
AC
3426 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3427 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
c5038fc0 3428 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3acaf94b
AC
3429 dev->dma_mode == XFER_MW_DMA_0 &&
3430 (dev->id[63] >> 8) & 1)
4055dee7 3431 ign_dev_err = 1;
3acaf94b 3432
4055dee7
TH
3433 /* if the device is actually configured correctly, ignore dev err */
3434 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3435 ign_dev_err = 1;
1da177e4 3436
4055dee7
TH
3437 if (err_mask & AC_ERR_DEV) {
3438 if (!ign_dev_err)
3439 goto fail;
3440 else
3441 dev_err_whine = " (device error ignored)";
3442 }
48a8a14f 3443
23e71c3d
TH
3444 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3445 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 3446
a9a79dfe
JP
3447 ata_dev_info(dev, "configured for %s%s\n",
3448 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3449 dev_err_whine);
4055dee7 3450
83206a29 3451 return 0;
4055dee7
TH
3452
3453 fail:
a9a79dfe 3454 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
4055dee7 3455 return -EIO;
1da177e4
LT
3456}
3457
1da177e4 3458/**
04351821 3459 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
0260731f 3460 * @link: link on which timings will be programmed
1967b7ff 3461 * @r_failed_dev: out parameter for failed device
1da177e4 3462 *
04351821
A
3463 * Standard implementation of the function used to tune and set
3464 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3465 * ata_dev_set_mode() fails, pointer to the failing device is
e82cbdb9 3466 * returned in @r_failed_dev.
780a87f7 3467 *
1da177e4 3468 * LOCKING:
0cba632b 3469 * PCI/etc. bus probe sem.
e82cbdb9
TH
3470 *
3471 * RETURNS:
3472 * 0 on success, negative errno otherwise
1da177e4 3473 */
04351821 3474
0260731f 3475int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
1da177e4 3476{
0260731f 3477 struct ata_port *ap = link->ap;
e8e0619f 3478 struct ata_device *dev;
f58229f8 3479 int rc = 0, used_dma = 0, found = 0;
3adcebb2 3480
a6d5a51c 3481 /* step 1: calculate xfer_mask */
1eca4365 3482 ata_for_each_dev(dev, link, ENABLED) {
7dc951ae 3483 unsigned long pio_mask, dma_mask;
b3a70601 3484 unsigned int mode_mask;
a6d5a51c 3485
b3a70601
AC
3486 mode_mask = ATA_DMA_MASK_ATA;
3487 if (dev->class == ATA_DEV_ATAPI)
3488 mode_mask = ATA_DMA_MASK_ATAPI;
3489 else if (ata_id_is_cfa(dev->id))
3490 mode_mask = ATA_DMA_MASK_CFA;
3491
3373efd8 3492 ata_dev_xfermask(dev);
33267325 3493 ata_force_xfermask(dev);
1da177e4 3494
acf356b1 3495 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
b3a70601
AC
3496
3497 if (libata_dma_mask & mode_mask)
80a9c430
SS
3498 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3499 dev->udma_mask);
b3a70601
AC
3500 else
3501 dma_mask = 0;
3502
acf356b1
TH
3503 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3504 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 3505
4f65977d 3506 found = 1;
b15b3eba 3507 if (ata_dma_enabled(dev))
5444a6f4 3508 used_dma = 1;
a6d5a51c 3509 }
4f65977d 3510 if (!found)
e82cbdb9 3511 goto out;
a6d5a51c
TH
3512
3513 /* step 2: always set host PIO timings */
1eca4365 3514 ata_for_each_dev(dev, link, ENABLED) {
70cd071e 3515 if (dev->pio_mode == 0xff) {
a9a79dfe 3516 ata_dev_warn(dev, "no PIO support\n");
e8e0619f 3517 rc = -EINVAL;
e82cbdb9 3518 goto out;
e8e0619f
TH
3519 }
3520
3521 dev->xfer_mode = dev->pio_mode;
3522 dev->xfer_shift = ATA_SHIFT_PIO;
3523 if (ap->ops->set_piomode)
3524 ap->ops->set_piomode(ap, dev);
3525 }
1da177e4 3526
a6d5a51c 3527 /* step 3: set host DMA timings */
1eca4365
TH
3528 ata_for_each_dev(dev, link, ENABLED) {
3529 if (!ata_dma_enabled(dev))
e8e0619f
TH
3530 continue;
3531
3532 dev->xfer_mode = dev->dma_mode;
3533 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3534 if (ap->ops->set_dmamode)
3535 ap->ops->set_dmamode(ap, dev);
3536 }
1da177e4
LT
3537
3538 /* step 4: update devices' xfer mode */
1eca4365 3539 ata_for_each_dev(dev, link, ENABLED) {
3373efd8 3540 rc = ata_dev_set_mode(dev);
5bbc53f4 3541 if (rc)
e82cbdb9 3542 goto out;
83206a29 3543 }
1da177e4 3544
e8e0619f
TH
3545 /* Record simplex status. If we selected DMA then the other
3546 * host channels are not permitted to do so.
5444a6f4 3547 */
cca3974e 3548 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
032af1ce 3549 ap->host->simplex_claimed = ap;
5444a6f4 3550
e82cbdb9
TH
3551 out:
3552 if (rc)
3553 *r_failed_dev = dev;
3554 return rc;
1da177e4
LT
3555}
3556
aa2731ad
TH
3557/**
3558 * ata_wait_ready - wait for link to become ready
3559 * @link: link to be waited on
3560 * @deadline: deadline jiffies for the operation
3561 * @check_ready: callback to check link readiness
3562 *
3563 * Wait for @link to become ready. @check_ready should return
3564 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3565 * link doesn't seem to be occupied, other errno for other error
3566 * conditions.
3567 *
3568 * Transient -ENODEV conditions are allowed for
3569 * ATA_TMOUT_FF_WAIT.
3570 *
3571 * LOCKING:
3572 * EH context.
3573 *
3574 * RETURNS:
c9b5560a 3575 * 0 if @link is ready before @deadline; otherwise, -errno.
aa2731ad
TH
3576 */
3577int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3578 int (*check_ready)(struct ata_link *link))
3579{
3580 unsigned long start = jiffies;
b48d58f5 3581 unsigned long nodev_deadline;
aa2731ad
TH
3582 int warned = 0;
3583
b48d58f5
TH
3584 /* choose which 0xff timeout to use, read comment in libata.h */
3585 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3586 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3587 else
3588 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3589
b1c72916
TH
3590 /* Slave readiness can't be tested separately from master. On
3591 * M/S emulation configuration, this function should be called
3592 * only on the master and it will handle both master and slave.
3593 */
3594 WARN_ON(link == link->ap->slave_link);
3595
aa2731ad
TH
3596 if (time_after(nodev_deadline, deadline))
3597 nodev_deadline = deadline;
3598
3599 while (1) {
3600 unsigned long now = jiffies;
3601 int ready, tmp;
3602
3603 ready = tmp = check_ready(link);
3604 if (ready > 0)
3605 return 0;
3606
b48d58f5
TH
3607 /*
3608 * -ENODEV could be transient. Ignore -ENODEV if link
aa2731ad 3609 * is online. Also, some SATA devices take a long
b48d58f5
TH
3610 * time to clear 0xff after reset. Wait for
3611 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3612 * offline.
aa2731ad
TH
3613 *
3614 * Note that some PATA controllers (pata_ali) explode
3615 * if status register is read more than once when
3616 * there's no device attached.
3617 */
3618 if (ready == -ENODEV) {
3619 if (ata_link_online(link))
3620 ready = 0;
3621 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3622 !ata_link_offline(link) &&
3623 time_before(now, nodev_deadline))
3624 ready = 0;
3625 }
3626
3627 if (ready)
3628 return ready;
3629 if (time_after(now, deadline))
3630 return -EBUSY;
3631
3632 if (!warned && time_after(now, start + 5 * HZ) &&
3633 (deadline - now > 3 * HZ)) {
a9a79dfe 3634 ata_link_warn(link,
aa2731ad
TH
3635 "link is slow to respond, please be patient "
3636 "(ready=%d)\n", tmp);
3637 warned = 1;
3638 }
3639
97750ceb 3640 ata_msleep(link->ap, 50);
aa2731ad
TH
3641 }
3642}
3643
3644/**
3645 * ata_wait_after_reset - wait for link to become ready after reset
3646 * @link: link to be waited on
3647 * @deadline: deadline jiffies for the operation
3648 * @check_ready: callback to check link readiness
3649 *
3650 * Wait for @link to become ready after reset.
3651 *
3652 * LOCKING:
3653 * EH context.
3654 *
3655 * RETURNS:
c9b5560a 3656 * 0 if @link is ready before @deadline; otherwise, -errno.
aa2731ad 3657 */
2b4221bb 3658int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
aa2731ad
TH
3659 int (*check_ready)(struct ata_link *link))
3660{
97750ceb 3661 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
aa2731ad
TH
3662
3663 return ata_wait_ready(link, deadline, check_ready);
3664}
3665
d7bb4cc7 3666/**
936fd732
TH
3667 * sata_link_debounce - debounce SATA phy status
3668 * @link: ATA link to debounce SATA phy status for
c9b5560a 3669 * @params: timing parameters { interval, duration, timeout } in msec
d4b2bab4 3670 * @deadline: deadline jiffies for the operation
d7bb4cc7 3671 *
1152b261 3672 * Make sure SStatus of @link reaches stable state, determined by
d7bb4cc7
TH
3673 * holding the same value where DET is not 1 for @duration polled
3674 * every @interval, before @timeout. Timeout constraints the
d4b2bab4
TH
3675 * beginning of the stable state. Because DET gets stuck at 1 on
3676 * some controllers after hot unplugging, this functions waits
d7bb4cc7
TH
3677 * until timeout then returns 0 if DET is stable at 1.
3678 *
d4b2bab4
TH
3679 * @timeout is further limited by @deadline. The sooner of the
3680 * two is used.
3681 *
d7bb4cc7
TH
3682 * LOCKING:
3683 * Kernel thread context (may sleep)
3684 *
3685 * RETURNS:
3686 * 0 on success, -errno on failure.
3687 */
936fd732
TH
3688int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3689 unsigned long deadline)
7a7921e8 3690{
341c2c95
TH
3691 unsigned long interval = params[0];
3692 unsigned long duration = params[1];
d4b2bab4 3693 unsigned long last_jiffies, t;
d7bb4cc7
TH
3694 u32 last, cur;
3695 int rc;
3696
341c2c95 3697 t = ata_deadline(jiffies, params[2]);
d4b2bab4
TH
3698 if (time_before(t, deadline))
3699 deadline = t;
3700
936fd732 3701 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3702 return rc;
3703 cur &= 0xf;
3704
3705 last = cur;
3706 last_jiffies = jiffies;
3707
3708 while (1) {
97750ceb 3709 ata_msleep(link->ap, interval);
936fd732 3710 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3711 return rc;
3712 cur &= 0xf;
3713
3714 /* DET stable? */
3715 if (cur == last) {
d4b2bab4 3716 if (cur == 1 && time_before(jiffies, deadline))
d7bb4cc7 3717 continue;
341c2c95
TH
3718 if (time_after(jiffies,
3719 ata_deadline(last_jiffies, duration)))
d7bb4cc7
TH
3720 return 0;
3721 continue;
3722 }
3723
3724 /* unstable, start over */
3725 last = cur;
3726 last_jiffies = jiffies;
3727
f1545154
TH
3728 /* Check deadline. If debouncing failed, return
3729 * -EPIPE to tell upper layer to lower link speed.
3730 */
d4b2bab4 3731 if (time_after(jiffies, deadline))
f1545154 3732 return -EPIPE;
d7bb4cc7
TH
3733 }
3734}
3735
3736/**
936fd732
TH
3737 * sata_link_resume - resume SATA link
3738 * @link: ATA link to resume SATA
c9b5560a 3739 * @params: timing parameters { interval, duration, timeout } in msec
d4b2bab4 3740 * @deadline: deadline jiffies for the operation
d7bb4cc7 3741 *
936fd732 3742 * Resume SATA phy @link and debounce it.
d7bb4cc7
TH
3743 *
3744 * LOCKING:
3745 * Kernel thread context (may sleep)
3746 *
3747 * RETURNS:
3748 * 0 on success, -errno on failure.
3749 */
936fd732
TH
3750int sata_link_resume(struct ata_link *link, const unsigned long *params,
3751 unsigned long deadline)
d7bb4cc7 3752{
5040ab67 3753 int tries = ATA_LINK_RESUME_TRIES;
ac371987 3754 u32 scontrol, serror;
81952c54
TH
3755 int rc;
3756
936fd732 3757 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 3758 return rc;
7a7921e8 3759
5040ab67
TH
3760 /*
3761 * Writes to SControl sometimes get ignored under certain
3762 * controllers (ata_piix SIDPR). Make sure DET actually is
3763 * cleared.
3764 */
3765 do {
3766 scontrol = (scontrol & 0x0f0) | 0x300;
3767 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3768 return rc;
3769 /*
3770 * Some PHYs react badly if SStatus is pounded
3771 * immediately after resuming. Delay 200ms before
3772 * debouncing.
3773 */
e39b2bb3
DP
3774 if (!(link->flags & ATA_LFLAG_NO_DB_DELAY))
3775 ata_msleep(link->ap, 200);
81952c54 3776
5040ab67
TH
3777 /* is SControl restored correctly? */
3778 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3779 return rc;
3780 } while ((scontrol & 0xf0f) != 0x300 && --tries);
7a7921e8 3781
5040ab67 3782 if ((scontrol & 0xf0f) != 0x300) {
38941c95 3783 ata_link_warn(link, "failed to resume link (SControl %X)\n",
a9a79dfe 3784 scontrol);
5040ab67
TH
3785 return 0;
3786 }
3787
3788 if (tries < ATA_LINK_RESUME_TRIES)
a9a79dfe
JP
3789 ata_link_warn(link, "link resume succeeded after %d retries\n",
3790 ATA_LINK_RESUME_TRIES - tries);
7a7921e8 3791
ac371987
TH
3792 if ((rc = sata_link_debounce(link, params, deadline)))
3793 return rc;
3794
f046519f 3795 /* clear SError, some PHYs require this even for SRST to work */
ac371987
TH
3796 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3797 rc = sata_scr_write(link, SCR_ERROR, serror);
ac371987 3798
f046519f 3799 return rc != -EINVAL ? rc : 0;
7a7921e8
TH
3800}
3801
1152b261
TH
3802/**
3803 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3804 * @link: ATA link to manipulate SControl for
3805 * @policy: LPM policy to configure
3806 * @spm_wakeup: initiate LPM transition to active state
3807 *
3808 * Manipulate the IPM field of the SControl register of @link
3809 * according to @policy. If @policy is ATA_LPM_MAX_POWER and
3810 * @spm_wakeup is %true, the SPM field is manipulated to wake up
3811 * the link. This function also clears PHYRDY_CHG before
3812 * returning.
3813 *
3814 * LOCKING:
3815 * EH context.
3816 *
3817 * RETURNS:
8485187b 3818 * 0 on success, -errno otherwise.
1152b261
TH
3819 */
3820int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3821 bool spm_wakeup)
3822{
3823 struct ata_eh_context *ehc = &link->eh_context;
3824 bool woken_up = false;
3825 u32 scontrol;
3826 int rc;
3827
3828 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3829 if (rc)
3830 return rc;
3831
3832 switch (policy) {
3833 case ATA_LPM_MAX_POWER:
3834 /* disable all LPM transitions */
65fe1f0f 3835 scontrol |= (0x7 << 8);
1152b261
TH
3836 /* initiate transition to active state */
3837 if (spm_wakeup) {
3838 scontrol |= (0x4 << 12);
3839 woken_up = true;
3840 }
3841 break;
3842 case ATA_LPM_MED_POWER:
3843 /* allow LPM to PARTIAL */
3844 scontrol &= ~(0x1 << 8);
65fe1f0f 3845 scontrol |= (0x6 << 8);
1152b261
TH
3846 break;
3847 case ATA_LPM_MIN_POWER:
8a745f1f
KCA
3848 if (ata_link_nr_enabled(link) > 0)
3849 /* no restrictions on LPM transitions */
65fe1f0f 3850 scontrol &= ~(0x7 << 8);
8a745f1f
KCA
3851 else {
3852 /* empty port, power off */
3853 scontrol &= ~0xf;
3854 scontrol |= (0x1 << 2);
3855 }
1152b261
TH
3856 break;
3857 default:
3858 WARN_ON(1);
3859 }
3860
3861 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3862 if (rc)
3863 return rc;
3864
3865 /* give the link time to transit out of LPM state */
3866 if (woken_up)
3867 msleep(10);
3868
3869 /* clear PHYRDY_CHG from SError */
3870 ehc->i.serror &= ~SERR_PHYRDY_CHG;
3871 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3872}
3873
f5914a46 3874/**
0aa1113d 3875 * ata_std_prereset - prepare for reset
cc0680a5 3876 * @link: ATA link to be reset
d4b2bab4 3877 * @deadline: deadline jiffies for the operation
f5914a46 3878 *
cc0680a5 3879 * @link is about to be reset. Initialize it. Failure from
b8cffc6a
TH
3880 * prereset makes libata abort whole reset sequence and give up
3881 * that port, so prereset should be best-effort. It does its
3882 * best to prepare for reset sequence but if things go wrong, it
3883 * should just whine, not fail.
f5914a46
TH
3884 *
3885 * LOCKING:
3886 * Kernel thread context (may sleep)
3887 *
3888 * RETURNS:
3889 * 0 on success, -errno otherwise.
3890 */
0aa1113d 3891int ata_std_prereset(struct ata_link *link, unsigned long deadline)
f5914a46 3892{
cc0680a5 3893 struct ata_port *ap = link->ap;
936fd732 3894 struct ata_eh_context *ehc = &link->eh_context;
e9c83914 3895 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
3896 int rc;
3897
f5914a46
TH
3898 /* if we're about to do hardreset, nothing more to do */
3899 if (ehc->i.action & ATA_EH_HARDRESET)
3900 return 0;
3901
936fd732 3902 /* if SATA, resume link */
a16abc0b 3903 if (ap->flags & ATA_FLAG_SATA) {
936fd732 3904 rc = sata_link_resume(link, timing, deadline);
b8cffc6a
TH
3905 /* whine about phy resume failure but proceed */
3906 if (rc && rc != -EOPNOTSUPP)
a9a79dfe
JP
3907 ata_link_warn(link,
3908 "failed to resume link for reset (errno=%d)\n",
3909 rc);
f5914a46
TH
3910 }
3911
45db2f6c 3912 /* no point in trying softreset on offline link */
b1c72916 3913 if (ata_phys_link_offline(link))
45db2f6c
TH
3914 ehc->i.action &= ~ATA_EH_SOFTRESET;
3915
f5914a46
TH
3916 return 0;
3917}
3918
c2bd5804 3919/**
624d5c51
TH
3920 * sata_link_hardreset - reset link via SATA phy reset
3921 * @link: link to reset
c9b5560a 3922 * @timing: timing parameters { interval, duration, timeout } in msec
d4b2bab4 3923 * @deadline: deadline jiffies for the operation
9dadd45b
TH
3924 * @online: optional out parameter indicating link onlineness
3925 * @check_ready: optional callback to check link readiness
c2bd5804 3926 *
624d5c51 3927 * SATA phy-reset @link using DET bits of SControl register.
9dadd45b
TH
3928 * After hardreset, link readiness is waited upon using
3929 * ata_wait_ready() if @check_ready is specified. LLDs are
3930 * allowed to not specify @check_ready and wait itself after this
3931 * function returns. Device classification is LLD's
3932 * responsibility.
3933 *
3934 * *@online is set to one iff reset succeeded and @link is online
3935 * after reset.
c2bd5804
TH
3936 *
3937 * LOCKING:
3938 * Kernel thread context (may sleep)
3939 *
3940 * RETURNS:
3941 * 0 on success, -errno otherwise.
3942 */
624d5c51 3943int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
9dadd45b
TH
3944 unsigned long deadline,
3945 bool *online, int (*check_ready)(struct ata_link *))
c2bd5804 3946{
624d5c51 3947 u32 scontrol;
81952c54 3948 int rc;
852ee16a 3949
c2bd5804
TH
3950 DPRINTK("ENTER\n");
3951
9dadd45b
TH
3952 if (online)
3953 *online = false;
3954
936fd732 3955 if (sata_set_spd_needed(link)) {
1c3fae4d
TH
3956 /* SATA spec says nothing about how to reconfigure
3957 * spd. To be on the safe side, turn off phy during
3958 * reconfiguration. This works for at least ICH7 AHCI
3959 * and Sil3124.
3960 */
936fd732 3961 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3962 goto out;
81952c54 3963
a34b6fc0 3964 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54 3965
936fd732 3966 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
b6103f6d 3967 goto out;
1c3fae4d 3968
936fd732 3969 sata_set_spd(link);
1c3fae4d
TH
3970 }
3971
3972 /* issue phy wake/reset */
936fd732 3973 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3974 goto out;
81952c54 3975
852ee16a 3976 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54 3977
936fd732 3978 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
b6103f6d 3979 goto out;
c2bd5804 3980
1c3fae4d 3981 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
3982 * 10.4.2 says at least 1 ms.
3983 */
97750ceb 3984 ata_msleep(link->ap, 1);
c2bd5804 3985
936fd732
TH
3986 /* bring link back */
3987 rc = sata_link_resume(link, timing, deadline);
9dadd45b
TH
3988 if (rc)
3989 goto out;
3990 /* if link is offline nothing more to do */
b1c72916 3991 if (ata_phys_link_offline(link))
9dadd45b
TH
3992 goto out;
3993
3994 /* Link is online. From this point, -ENODEV too is an error. */
3995 if (online)
3996 *online = true;
3997
071f44b1 3998 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
9dadd45b
TH
3999 /* If PMP is supported, we have to do follow-up SRST.
4000 * Some PMPs don't send D2H Reg FIS after hardreset if
4001 * the first port is empty. Wait only for
4002 * ATA_TMOUT_PMP_SRST_WAIT.
4003 */
4004 if (check_ready) {
4005 unsigned long pmp_deadline;
4006
341c2c95
TH
4007 pmp_deadline = ata_deadline(jiffies,
4008 ATA_TMOUT_PMP_SRST_WAIT);
9dadd45b
TH
4009 if (time_after(pmp_deadline, deadline))
4010 pmp_deadline = deadline;
4011 ata_wait_ready(link, pmp_deadline, check_ready);
4012 }
4013 rc = -EAGAIN;
4014 goto out;
4015 }
4016
4017 rc = 0;
4018 if (check_ready)
4019 rc = ata_wait_ready(link, deadline, check_ready);
b6103f6d 4020 out:
0cbf0711
TH
4021 if (rc && rc != -EAGAIN) {
4022 /* online is set iff link is online && reset succeeded */
4023 if (online)
4024 *online = false;
a9a79dfe 4025 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
0cbf0711 4026 }
b6103f6d
TH
4027 DPRINTK("EXIT, rc=%d\n", rc);
4028 return rc;
4029}
4030
57c9efdf
TH
4031/**
4032 * sata_std_hardreset - COMRESET w/o waiting or classification
4033 * @link: link to reset
4034 * @class: resulting class of attached device
4035 * @deadline: deadline jiffies for the operation
4036 *
4037 * Standard SATA COMRESET w/o waiting or classification.
4038 *
4039 * LOCKING:
4040 * Kernel thread context (may sleep)
4041 *
4042 * RETURNS:
4043 * 0 if link offline, -EAGAIN if link online, -errno on errors.
4044 */
4045int sata_std_hardreset(struct ata_link *link, unsigned int *class,
4046 unsigned long deadline)
4047{
4048 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
4049 bool online;
4050 int rc;
4051
4052 /* do hardreset */
4053 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
57c9efdf
TH
4054 return online ? -EAGAIN : rc;
4055}
4056
c2bd5804 4057/**
203c75b8 4058 * ata_std_postreset - standard postreset callback
cc0680a5 4059 * @link: the target ata_link
c2bd5804
TH
4060 * @classes: classes of attached devices
4061 *
4062 * This function is invoked after a successful reset. Note that
4063 * the device might have been reset more than once using
4064 * different reset methods before postreset is invoked.
c2bd5804 4065 *
c2bd5804
TH
4066 * LOCKING:
4067 * Kernel thread context (may sleep)
4068 */
203c75b8 4069void ata_std_postreset(struct ata_link *link, unsigned int *classes)
c2bd5804 4070{
f046519f
TH
4071 u32 serror;
4072
c2bd5804
TH
4073 DPRINTK("ENTER\n");
4074
f046519f
TH
4075 /* reset complete, clear SError */
4076 if (!sata_scr_read(link, SCR_ERROR, &serror))
4077 sata_scr_write(link, SCR_ERROR, serror);
4078
c2bd5804 4079 /* print link status */
936fd732 4080 sata_print_link_status(link);
c2bd5804 4081
c2bd5804
TH
4082 DPRINTK("EXIT\n");
4083}
4084
623a3128
TH
4085/**
4086 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
4087 * @dev: device to compare against
4088 * @new_class: class of the new device
4089 * @new_id: IDENTIFY page of the new device
4090 *
4091 * Compare @new_class and @new_id against @dev and determine
4092 * whether @dev is the device indicated by @new_class and
4093 * @new_id.
4094 *
4095 * LOCKING:
4096 * None.
4097 *
4098 * RETURNS:
4099 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
4100 */
3373efd8
TH
4101static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
4102 const u16 *new_id)
623a3128
TH
4103{
4104 const u16 *old_id = dev->id;
a0cf733b
TH
4105 unsigned char model[2][ATA_ID_PROD_LEN + 1];
4106 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
4107
4108 if (dev->class != new_class) {
a9a79dfe
JP
4109 ata_dev_info(dev, "class mismatch %d != %d\n",
4110 dev->class, new_class);
623a3128
TH
4111 return 0;
4112 }
4113
a0cf733b
TH
4114 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
4115 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
4116 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
4117 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
4118
4119 if (strcmp(model[0], model[1])) {
a9a79dfe
JP
4120 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
4121 model[0], model[1]);
623a3128
TH
4122 return 0;
4123 }
4124
4125 if (strcmp(serial[0], serial[1])) {
a9a79dfe
JP
4126 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
4127 serial[0], serial[1]);
623a3128
TH
4128 return 0;
4129 }
4130
623a3128
TH
4131 return 1;
4132}
4133
4134/**
fe30911b 4135 * ata_dev_reread_id - Re-read IDENTIFY data
3fae450c 4136 * @dev: target ATA device
bff04647 4137 * @readid_flags: read ID flags
623a3128
TH
4138 *
4139 * Re-read IDENTIFY page and make sure @dev is still attached to
4140 * the port.
4141 *
4142 * LOCKING:
4143 * Kernel thread context (may sleep)
4144 *
4145 * RETURNS:
4146 * 0 on success, negative errno otherwise
4147 */
fe30911b 4148int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
623a3128 4149{
5eb45c02 4150 unsigned int class = dev->class;
9af5c9c9 4151 u16 *id = (void *)dev->link->ap->sector_buf;
623a3128
TH
4152 int rc;
4153
fe635c7e 4154 /* read ID data */
bff04647 4155 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128 4156 if (rc)
fe30911b 4157 return rc;
623a3128
TH
4158
4159 /* is the device still there? */
fe30911b
TH
4160 if (!ata_dev_same_device(dev, class, id))
4161 return -ENODEV;
623a3128 4162
fe635c7e 4163 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
fe30911b
TH
4164 return 0;
4165}
4166
4167/**
4168 * ata_dev_revalidate - Revalidate ATA device
4169 * @dev: device to revalidate
422c9daa 4170 * @new_class: new class code
fe30911b
TH
4171 * @readid_flags: read ID flags
4172 *
4173 * Re-read IDENTIFY page, make sure @dev is still attached to the
4174 * port and reconfigure it according to the new IDENTIFY page.
4175 *
4176 * LOCKING:
4177 * Kernel thread context (may sleep)
4178 *
4179 * RETURNS:
4180 * 0 on success, negative errno otherwise
4181 */
422c9daa
TH
4182int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4183 unsigned int readid_flags)
fe30911b 4184{
6ddcd3b0 4185 u64 n_sectors = dev->n_sectors;
5920dadf 4186 u64 n_native_sectors = dev->n_native_sectors;
fe30911b
TH
4187 int rc;
4188
4189 if (!ata_dev_enabled(dev))
4190 return -ENODEV;
4191
422c9daa
TH
4192 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4193 if (ata_class_enabled(new_class) &&
f0d0613d
BP
4194 new_class != ATA_DEV_ATA &&
4195 new_class != ATA_DEV_ATAPI &&
9162c657 4196 new_class != ATA_DEV_ZAC &&
f0d0613d 4197 new_class != ATA_DEV_SEMB) {
a9a79dfe
JP
4198 ata_dev_info(dev, "class mismatch %u != %u\n",
4199 dev->class, new_class);
422c9daa
TH
4200 rc = -ENODEV;
4201 goto fail;
4202 }
4203
fe30911b
TH
4204 /* re-read ID */
4205 rc = ata_dev_reread_id(dev, readid_flags);
4206 if (rc)
4207 goto fail;
623a3128
TH
4208
4209 /* configure device according to the new ID */
efdaedc4 4210 rc = ata_dev_configure(dev);
6ddcd3b0
TH
4211 if (rc)
4212 goto fail;
4213
4214 /* verify n_sectors hasn't changed */
445d211b
TH
4215 if (dev->class != ATA_DEV_ATA || !n_sectors ||
4216 dev->n_sectors == n_sectors)
4217 return 0;
4218
4219 /* n_sectors has changed */
a9a79dfe
JP
4220 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
4221 (unsigned long long)n_sectors,
4222 (unsigned long long)dev->n_sectors);
445d211b
TH
4223
4224 /*
4225 * Something could have caused HPA to be unlocked
4226 * involuntarily. If n_native_sectors hasn't changed and the
4227 * new size matches it, keep the device.
4228 */
4229 if (dev->n_native_sectors == n_native_sectors &&
4230 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
a9a79dfe
JP
4231 ata_dev_warn(dev,
4232 "new n_sectors matches native, probably "
4233 "late HPA unlock, n_sectors updated\n");
68939ce5 4234 /* use the larger n_sectors */
445d211b 4235 return 0;
6ddcd3b0
TH
4236 }
4237
445d211b
TH
4238 /*
4239 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
4240 * unlocking HPA in those cases.
4241 *
4242 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4243 */
4244 if (dev->n_native_sectors == n_native_sectors &&
4245 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4246 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
a9a79dfe
JP
4247 ata_dev_warn(dev,
4248 "old n_sectors matches native, probably "
4249 "late HPA lock, will try to unlock HPA\n");
445d211b
TH
4250 /* try unlocking HPA */
4251 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4252 rc = -EIO;
4253 } else
4254 rc = -ENODEV;
623a3128 4255
445d211b
TH
4256 /* restore original n_[native_]sectors and fail */
4257 dev->n_native_sectors = n_native_sectors;
4258 dev->n_sectors = n_sectors;
623a3128 4259 fail:
a9a79dfe 4260 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
4261 return rc;
4262}
4263
6919a0a6
AC
4264struct ata_blacklist_entry {
4265 const char *model_num;
4266 const char *model_rev;
4267 unsigned long horkage;
4268};
4269
4270static const struct ata_blacklist_entry ata_device_blacklist [] = {
4271 /* Devices with DMA related problems under Linux */
4272 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4273 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4274 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4275 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4276 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4277 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4278 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4279 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4280 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
7da4c935 4281 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
4282 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4283 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4284 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4285 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4286 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
7da4c935 4287 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
4288 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4289 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4290 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4291 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4292 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4293 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4294 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4295 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
4296 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4297 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
2dcb407e 4298 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
39f19886 4299 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
d17d794c 4300 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA },
b00622fc 4301 { "VRFDFC22048UCHC-TE*", NULL, ATA_HORKAGE_NODMA },
3af9a77a 4302 /* Odd clown on sil3726/4726 PMPs */
50af2fa1 4303 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
6919a0a6 4304
18d6e9d5 4305 /* Weird ATAPI devices */
40a1d531 4306 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
6a87e42e 4307 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
a32450e1 4308 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
0523f037 4309 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
18d6e9d5 4310
af34d637
DM
4311 /*
4312 * Causes silent data corruption with higher max sects.
4313 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
4314 */
4315 { "ST380013AS", "3.20", ATA_HORKAGE_MAX_SEC_1024 },
4316
6919a0a6
AC
4317 /* Devices we expect to fail diagnostics */
4318
4319 /* Devices where NCQ should be avoided */
4320 /* NCQ is slow */
2dcb407e 4321 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
459ad688 4322 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
09125ea6
TH
4323 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4324 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
7acfaf30 4325 /* NCQ is broken */
539cc7c7 4326 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
0e3dbc01 4327 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
da6f0ec2 4328 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
e41bd3e8 4329 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
5ccfca97 4330 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
539cc7c7 4331
ac70a964 4332 /* Seagate NCQ + FLUSH CACHE firmware bug */
4d1f9082 4333 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
ac70a964 4334 ATA_HORKAGE_FIRMWARE_WARN },
d10d491f 4335
4d1f9082 4336 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
d10d491f
TH
4337 ATA_HORKAGE_FIRMWARE_WARN },
4338
4d1f9082 4339 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
d10d491f
TH
4340 ATA_HORKAGE_FIRMWARE_WARN },
4341
4d1f9082 4342 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
ac70a964
TH
4343 ATA_HORKAGE_FIRMWARE_WARN },
4344
08c85d2a 4345 /* drives which fail FPDMA_AA activation (some may freeze afterwards) */
87809942 4346 { "ST1000LM024 HN-M101MBB", "2AR10001", ATA_HORKAGE_BROKEN_FPDMA_AA },
b28a613e 4347 { "ST1000LM024 HN-M101MBB", "2BA30001", ATA_HORKAGE_BROKEN_FPDMA_AA },
08c85d2a 4348 { "VB0250EAVER", "HPG7", ATA_HORKAGE_BROKEN_FPDMA_AA },
87809942 4349
36e337d0
RH
4350 /* Blacklist entries taken from Silicon Image 3124/3132
4351 Windows driver .inf file - also several Linux problem reports */
4352 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4353 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4354 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
6919a0a6 4355
68b0ddb2
TH
4356 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4357 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, },
4358
16c55b03
TH
4359 /* devices which puke on READ_NATIVE_MAX */
4360 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4361 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4362 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4363 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
6919a0a6 4364
7831387b
TH
4365 /* this one allows HPA unlocking but fails IOs on the area */
4366 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
4367
93328e11
AC
4368 /* Devices which report 1 sector over size HPA */
4369 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4370 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
b152fcd3 4371 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
93328e11 4372
6bbfd53d
AC
4373 /* Devices which get the IVB wrong */
4374 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
a79067e5 4375 /* Maybe we should just blacklist TSSTcorp... */
7da4c935 4376 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, },
6bbfd53d 4377
9ce8e307
JA
4378 /* Devices that do not need bridging limits applied */
4379 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
04d0f1b8 4380 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, },
9ce8e307 4381
9062712f
TH
4382 /* Devices which aren't very happy with higher link speeds */
4383 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
c531077f 4384 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, },
9062712f 4385
d0cb43b3
TH
4386 /*
4387 * Devices which choke on SETXFER. Applies only if both the
4388 * device and controller are SATA.
4389 */
cd691876 4390 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER },
3a25179e
VL
4391 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER },
4392 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER },
cd691876
TH
4393 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER },
4394 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER },
d0cb43b3 4395
f78dea06 4396 /* devices that don't properly handle queued TRIM commands */
243918be 4397 { "Micron_M500_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
ff7f53fb
MP
4398 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4399 { "Crucial_CT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4400 ATA_HORKAGE_ZERO_AFTER_TRIM, },
9051bd39 4401 { "Micron_M5[15]0_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
ff7f53fb
MP
4402 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4403 { "Crucial_CT*M550*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4404 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4405 { "Crucial_CT*MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
e61f7d1c 4406 ATA_HORKAGE_ZERO_AFTER_TRIM, },
9a9324d3 4407 { "Samsung SSD 8*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
6fc4d97a 4408 ATA_HORKAGE_ZERO_AFTER_TRIM, },
7a7184b0
GA
4409 { "FCCT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4410 ATA_HORKAGE_ZERO_AFTER_TRIM, },
e61f7d1c 4411
cda57b1b
AF
4412 /* devices that don't properly handle TRIM commands */
4413 { "SuperSSpeed S238*", NULL, ATA_HORKAGE_NOTRIM, },
4414
e61f7d1c
MP
4415 /*
4416 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4417 * (Return Zero After Trim) flags in the ATA Command Set are
4418 * unreliable in the sense that they only define what happens if
4419 * the device successfully executed the DSM TRIM command. TRIM
4420 * is only advisory, however, and the device is free to silently
4421 * ignore all or parts of the request.
4422 *
4423 * Whitelist drives that are known to reliably return zeroes
4424 * after TRIM.
4425 */
4426
4427 /*
4428 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4429 * that model before whitelisting all other intel SSDs.
4430 */
4431 { "INTEL*SSDSC2MH*", NULL, 0, },
4432
ff7f53fb
MP
4433 { "Micron*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4434 { "Crucial*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
e61f7d1c
MP
4435 { "INTEL*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4436 { "SSD*INTEL*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4437 { "Samsung*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4438 { "SAMSUNG*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4439 { "ST[1248][0248]0[FH]*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
f78dea06 4440
ecd75ad5
TH
4441 /*
4442 * Some WD SATA-I drives spin up and down erratically when the link
4443 * is put into the slumber mode. We don't have full list of the
4444 * affected devices. Disable LPM if the device matches one of the
4445 * known prefixes and is SATA-1. As a side effect LPM partial is
4446 * lost too.
4447 *
4448 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4449 */
4450 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4451 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4452 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4453 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4454 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4455 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4456 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4457
6919a0a6
AC
4458 /* End Marker */
4459 { }
1da177e4 4460};
2e9edbf8 4461
75683fe7 4462static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
1da177e4 4463{
8bfa79fc
TH
4464 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4465 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 4466 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 4467
8bfa79fc
TH
4468 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4469 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 4470
6919a0a6 4471 while (ad->model_num) {
1c402799 4472 if (glob_match(ad->model_num, model_num)) {
6919a0a6
AC
4473 if (ad->model_rev == NULL)
4474 return ad->horkage;
1c402799 4475 if (glob_match(ad->model_rev, model_rev))
6919a0a6 4476 return ad->horkage;
f4b15fef 4477 }
6919a0a6 4478 ad++;
f4b15fef 4479 }
1da177e4
LT
4480 return 0;
4481}
4482
6919a0a6
AC
4483static int ata_dma_blacklisted(const struct ata_device *dev)
4484{
4485 /* We don't support polling DMA.
4486 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4487 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4488 */
9af5c9c9 4489 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
6919a0a6
AC
4490 (dev->flags & ATA_DFLAG_CDB_INTR))
4491 return 1;
75683fe7 4492 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
6919a0a6
AC
4493}
4494
6bbfd53d
AC
4495/**
4496 * ata_is_40wire - check drive side detection
4497 * @dev: device
4498 *
4499 * Perform drive side detection decoding, allowing for device vendors
4500 * who can't follow the documentation.
4501 */
4502
4503static int ata_is_40wire(struct ata_device *dev)
4504{
4505 if (dev->horkage & ATA_HORKAGE_IVB)
4506 return ata_drive_40wire_relaxed(dev->id);
4507 return ata_drive_40wire(dev->id);
4508}
4509
15a5551c
AC
4510/**
4511 * cable_is_40wire - 40/80/SATA decider
4512 * @ap: port to consider
4513 *
4514 * This function encapsulates the policy for speed management
4515 * in one place. At the moment we don't cache the result but
4516 * there is a good case for setting ap->cbl to the result when
4517 * we are called with unknown cables (and figuring out if it
4518 * impacts hotplug at all).
4519 *
4520 * Return 1 if the cable appears to be 40 wire.
4521 */
4522
4523static int cable_is_40wire(struct ata_port *ap)
4524{
4525 struct ata_link *link;
4526 struct ata_device *dev;
4527
4a9c7b33 4528 /* If the controller thinks we are 40 wire, we are. */
15a5551c
AC
4529 if (ap->cbl == ATA_CBL_PATA40)
4530 return 1;
4a9c7b33
TH
4531
4532 /* If the controller thinks we are 80 wire, we are. */
15a5551c
AC
4533 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4534 return 0;
4a9c7b33
TH
4535
4536 /* If the system is known to be 40 wire short cable (eg
4537 * laptop), then we allow 80 wire modes even if the drive
4538 * isn't sure.
4539 */
f792068e
AC
4540 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4541 return 0;
4a9c7b33
TH
4542
4543 /* If the controller doesn't know, we scan.
4544 *
4545 * Note: We look for all 40 wire detects at this point. Any
4546 * 80 wire detect is taken to be 80 wire cable because
4547 * - in many setups only the one drive (slave if present) will
4548 * give a valid detect
4549 * - if you have a non detect capable drive you don't want it
4550 * to colour the choice
4551 */
1eca4365
TH
4552 ata_for_each_link(link, ap, EDGE) {
4553 ata_for_each_dev(dev, link, ENABLED) {
4554 if (!ata_is_40wire(dev))
15a5551c
AC
4555 return 0;
4556 }
4557 }
4558 return 1;
4559}
4560
a6d5a51c
TH
4561/**
4562 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
4563 * @dev: Device to compute xfermask for
4564 *
acf356b1
TH
4565 * Compute supported xfermask of @dev and store it in
4566 * dev->*_mask. This function is responsible for applying all
4567 * known limits including host controller limits, device
4568 * blacklist, etc...
a6d5a51c
TH
4569 *
4570 * LOCKING:
4571 * None.
a6d5a51c 4572 */
3373efd8 4573static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 4574{
9af5c9c9
TH
4575 struct ata_link *link = dev->link;
4576 struct ata_port *ap = link->ap;
cca3974e 4577 struct ata_host *host = ap->host;
a6d5a51c 4578 unsigned long xfer_mask;
1da177e4 4579
37deecb5 4580 /* controller modes available */
565083e1
TH
4581 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4582 ap->mwdma_mask, ap->udma_mask);
4583
8343f889 4584 /* drive modes available */
37deecb5
TH
4585 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4586 dev->mwdma_mask, dev->udma_mask);
4587 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 4588
b352e57d
AC
4589 /*
4590 * CFA Advanced TrueIDE timings are not allowed on a shared
4591 * cable
4592 */
4593 if (ata_dev_pair(dev)) {
4594 /* No PIO5 or PIO6 */
4595 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4596 /* No MWDMA3 or MWDMA 4 */
4597 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4598 }
4599
37deecb5
TH
4600 if (ata_dma_blacklisted(dev)) {
4601 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
a9a79dfe
JP
4602 ata_dev_warn(dev,
4603 "device is on DMA blacklist, disabling DMA\n");
37deecb5 4604 }
a6d5a51c 4605
14d66ab7 4606 if ((host->flags & ATA_HOST_SIMPLEX) &&
2dcb407e 4607 host->simplex_claimed && host->simplex_claimed != ap) {
37deecb5 4608 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
a9a79dfe
JP
4609 ata_dev_warn(dev,
4610 "simplex DMA is claimed by other device, disabling DMA\n");
5444a6f4 4611 }
565083e1 4612
e424675f
JG
4613 if (ap->flags & ATA_FLAG_NO_IORDY)
4614 xfer_mask &= ata_pio_mask_no_iordy(dev);
4615
5444a6f4 4616 if (ap->ops->mode_filter)
a76b62ca 4617 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
5444a6f4 4618
8343f889
RH
4619 /* Apply cable rule here. Don't apply it early because when
4620 * we handle hot plug the cable type can itself change.
4621 * Check this last so that we know if the transfer rate was
4622 * solely limited by the cable.
4623 * Unknown or 80 wire cables reported host side are checked
4624 * drive side as well. Cases where we know a 40wire cable
4625 * is used safely for 80 are not checked here.
4626 */
4627 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4628 /* UDMA/44 or higher would be available */
15a5551c 4629 if (cable_is_40wire(ap)) {
a9a79dfe
JP
4630 ata_dev_warn(dev,
4631 "limited to UDMA/33 due to 40-wire cable\n");
8343f889
RH
4632 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4633 }
4634
565083e1
TH
4635 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4636 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
4637}
4638
1da177e4
LT
4639/**
4640 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
4641 * @dev: Device to which command will be sent
4642 *
780a87f7
JG
4643 * Issue SET FEATURES - XFER MODE command to device @dev
4644 * on port @ap.
4645 *
1da177e4 4646 * LOCKING:
0cba632b 4647 * PCI/etc. bus probe sem.
83206a29
TH
4648 *
4649 * RETURNS:
4650 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
4651 */
4652
3373efd8 4653static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 4654{
a0123703 4655 struct ata_taskfile tf;
83206a29 4656 unsigned int err_mask;
1da177e4
LT
4657
4658 /* set up set-features taskfile */
4659 DPRINTK("set features - xfer mode\n");
4660
464cf177
TH
4661 /* Some controllers and ATAPI devices show flaky interrupt
4662 * behavior after setting xfer mode. Use polling instead.
4663 */
3373efd8 4664 ata_tf_init(dev, &tf);
a0123703
TH
4665 tf.command = ATA_CMD_SET_FEATURES;
4666 tf.feature = SETFEATURES_XFER;
464cf177 4667 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
a0123703 4668 tf.protocol = ATA_PROT_NODATA;
b9f8ab2d 4669 /* If we are using IORDY we must send the mode setting command */
11b7becc
JG
4670 if (ata_pio_need_iordy(dev))
4671 tf.nsect = dev->xfer_mode;
b9f8ab2d
AC
4672 /* If the device has IORDY and the controller does not - turn it off */
4673 else if (ata_id_has_iordy(dev->id))
11b7becc 4674 tf.nsect = 0x01;
b9f8ab2d
AC
4675 else /* In the ancient relic department - skip all of this */
4676 return 0;
1da177e4 4677
d531be2c
MP
4678 /* On some disks, this command causes spin-up, so we need longer timeout */
4679 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
9f45cbd3
KCA
4680
4681 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4682 return err_mask;
4683}
1152b261 4684
9f45cbd3 4685/**
218f3d30 4686 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
9f45cbd3
KCA
4687 * @dev: Device to which command will be sent
4688 * @enable: Whether to enable or disable the feature
218f3d30 4689 * @feature: The sector count represents the feature to set
9f45cbd3
KCA
4690 *
4691 * Issue SET FEATURES - SATA FEATURES command to device @dev
218f3d30 4692 * on port @ap with sector count
9f45cbd3
KCA
4693 *
4694 * LOCKING:
4695 * PCI/etc. bus probe sem.
4696 *
4697 * RETURNS:
4698 * 0 on success, AC_ERR_* mask otherwise.
4699 */
1152b261 4700unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
9f45cbd3
KCA
4701{
4702 struct ata_taskfile tf;
4703 unsigned int err_mask;
974e0a45 4704 unsigned long timeout = 0;
9f45cbd3
KCA
4705
4706 /* set up set-features taskfile */
4707 DPRINTK("set features - SATA features\n");
4708
4709 ata_tf_init(dev, &tf);
4710 tf.command = ATA_CMD_SET_FEATURES;
4711 tf.feature = enable;
4712 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4713 tf.protocol = ATA_PROT_NODATA;
218f3d30 4714 tf.nsect = feature;
9f45cbd3 4715
974e0a45
DLM
4716 if (enable == SETFEATURES_SPINUP)
4717 timeout = ata_probe_timeout ?
4718 ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4719 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
1da177e4 4720
83206a29
TH
4721 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4722 return err_mask;
1da177e4 4723}
633de4cc 4724EXPORT_SYMBOL_GPL(ata_dev_set_feature);
1da177e4 4725
8bf62ece
AL
4726/**
4727 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 4728 * @dev: Device to which command will be sent
e2a7f77a
RD
4729 * @heads: Number of heads (taskfile parameter)
4730 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
4731 *
4732 * LOCKING:
6aff8f1f
TH
4733 * Kernel thread context (may sleep)
4734 *
4735 * RETURNS:
4736 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 4737 */
3373efd8
TH
4738static unsigned int ata_dev_init_params(struct ata_device *dev,
4739 u16 heads, u16 sectors)
8bf62ece 4740{
a0123703 4741 struct ata_taskfile tf;
6aff8f1f 4742 unsigned int err_mask;
8bf62ece
AL
4743
4744 /* Number of sectors per track 1-255. Number of heads 1-16 */
4745 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 4746 return AC_ERR_INVALID;
8bf62ece
AL
4747
4748 /* set up init dev params taskfile */
4749 DPRINTK("init dev params \n");
4750
3373efd8 4751 ata_tf_init(dev, &tf);
a0123703
TH
4752 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4753 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4754 tf.protocol = ATA_PROT_NODATA;
4755 tf.nsect = sectors;
4756 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 4757
2b789108 4758 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
18b2466c
AC
4759 /* A clean abort indicates an original or just out of spec drive
4760 and we should continue as we issue the setup based on the
4761 drive reported working geometry */
4762 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4763 err_mask = 0;
8bf62ece 4764
6aff8f1f
TH
4765 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4766 return err_mask;
8bf62ece
AL
4767}
4768
1da177e4 4769/**
0cba632b
JG
4770 * ata_sg_clean - Unmap DMA memory associated with command
4771 * @qc: Command containing DMA memory to be released
4772 *
4773 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
4774 *
4775 * LOCKING:
cca3974e 4776 * spin_lock_irqsave(host lock)
1da177e4 4777 */
70e6ad0c 4778void ata_sg_clean(struct ata_queued_cmd *qc)
1da177e4
LT
4779{
4780 struct ata_port *ap = qc->ap;
ff2aeb1e 4781 struct scatterlist *sg = qc->sg;
1da177e4
LT
4782 int dir = qc->dma_dir;
4783
efcb3cf7 4784 WARN_ON_ONCE(sg == NULL);
1da177e4 4785
dde20207 4786 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 4787
dde20207 4788 if (qc->n_elem)
5825627c 4789 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
1da177e4
LT
4790
4791 qc->flags &= ~ATA_QCFLAG_DMAMAP;
ff2aeb1e 4792 qc->sg = NULL;
1da177e4
LT
4793}
4794
1da177e4 4795/**
5895ef9a 4796 * atapi_check_dma - Check whether ATAPI DMA can be supported
1da177e4
LT
4797 * @qc: Metadata associated with taskfile to check
4798 *
780a87f7
JG
4799 * Allow low-level driver to filter ATA PACKET commands, returning
4800 * a status indicating whether or not it is OK to use DMA for the
4801 * supplied PACKET command.
4802 *
1da177e4 4803 * LOCKING:
624d5c51
TH
4804 * spin_lock_irqsave(host lock)
4805 *
4806 * RETURNS: 0 when ATAPI DMA can be used
4807 * nonzero otherwise
4808 */
5895ef9a 4809int atapi_check_dma(struct ata_queued_cmd *qc)
624d5c51
TH
4810{
4811 struct ata_port *ap = qc->ap;
71601958 4812
624d5c51
TH
4813 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4814 * few ATAPI devices choke on such DMA requests.
4815 */
6a87e42e
TH
4816 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4817 unlikely(qc->nbytes & 15))
624d5c51 4818 return 1;
e2cec771 4819
624d5c51
TH
4820 if (ap->ops->check_atapi_dma)
4821 return ap->ops->check_atapi_dma(qc);
e2cec771 4822
624d5c51
TH
4823 return 0;
4824}
1da177e4 4825
624d5c51
TH
4826/**
4827 * ata_std_qc_defer - Check whether a qc needs to be deferred
4828 * @qc: ATA command in question
4829 *
4830 * Non-NCQ commands cannot run with any other command, NCQ or
4831 * not. As upper layer only knows the queue depth, we are
4832 * responsible for maintaining exclusion. This function checks
4833 * whether a new command @qc can be issued.
4834 *
4835 * LOCKING:
4836 * spin_lock_irqsave(host lock)
4837 *
4838 * RETURNS:
4839 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4840 */
4841int ata_std_qc_defer(struct ata_queued_cmd *qc)
4842{
4843 struct ata_link *link = qc->dev->link;
e2cec771 4844
624d5c51
TH
4845 if (qc->tf.protocol == ATA_PROT_NCQ) {
4846 if (!ata_tag_valid(link->active_tag))
4847 return 0;
4848 } else {
4849 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4850 return 0;
4851 }
e2cec771 4852
624d5c51
TH
4853 return ATA_DEFER_LINK;
4854}
6912ccd5 4855
624d5c51 4856void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
1da177e4 4857
624d5c51
TH
4858/**
4859 * ata_sg_init - Associate command with scatter-gather table.
4860 * @qc: Command to be associated
4861 * @sg: Scatter-gather table.
4862 * @n_elem: Number of elements in s/g table.
4863 *
4864 * Initialize the data-related elements of queued_cmd @qc
4865 * to point to a scatter-gather table @sg, containing @n_elem
4866 * elements.
4867 *
4868 * LOCKING:
4869 * spin_lock_irqsave(host lock)
4870 */
4871void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4872 unsigned int n_elem)
4873{
4874 qc->sg = sg;
4875 qc->n_elem = n_elem;
4876 qc->cursg = qc->sg;
4877}
bb5cb290 4878
624d5c51
TH
4879/**
4880 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4881 * @qc: Command with scatter-gather table to be mapped.
4882 *
4883 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4884 *
4885 * LOCKING:
4886 * spin_lock_irqsave(host lock)
4887 *
4888 * RETURNS:
4889 * Zero on success, negative on error.
4890 *
4891 */
4892static int ata_sg_setup(struct ata_queued_cmd *qc)
4893{
4894 struct ata_port *ap = qc->ap;
4895 unsigned int n_elem;
1da177e4 4896
624d5c51 4897 VPRINTK("ENTER, ata%u\n", ap->print_id);
e2cec771 4898
624d5c51
TH
4899 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4900 if (n_elem < 1)
4901 return -1;
bb5cb290 4902
624d5c51 4903 DPRINTK("%d sg elements mapped\n", n_elem);
5825627c 4904 qc->orig_n_elem = qc->n_elem;
624d5c51
TH
4905 qc->n_elem = n_elem;
4906 qc->flags |= ATA_QCFLAG_DMAMAP;
1da177e4 4907
624d5c51 4908 return 0;
1da177e4
LT
4909}
4910
624d5c51
TH
4911/**
4912 * swap_buf_le16 - swap halves of 16-bit words in place
4913 * @buf: Buffer to swap
4914 * @buf_words: Number of 16-bit words in buffer.
4915 *
4916 * Swap halves of 16-bit words if needed to convert from
4917 * little-endian byte order to native cpu byte order, or
4918 * vice-versa.
4919 *
4920 * LOCKING:
4921 * Inherited from caller.
4922 */
4923void swap_buf_le16(u16 *buf, unsigned int buf_words)
8061f5f0 4924{
624d5c51
TH
4925#ifdef __BIG_ENDIAN
4926 unsigned int i;
8061f5f0 4927
624d5c51
TH
4928 for (i = 0; i < buf_words; i++)
4929 buf[i] = le16_to_cpu(buf[i]);
4930#endif /* __BIG_ENDIAN */
8061f5f0
TH
4931}
4932
8a8bc223 4933/**
98bd4be1
SL
4934 * ata_qc_new_init - Request an available ATA command, and initialize it
4935 * @dev: Device from whom we request an available command structure
38755e89 4936 * @tag: tag
1871ee13 4937 *
8a8bc223
TH
4938 * LOCKING:
4939 * None.
4940 */
4941
98bd4be1 4942struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag)
8a8bc223 4943{
98bd4be1 4944 struct ata_port *ap = dev->link->ap;
12cb5ce1 4945 struct ata_queued_cmd *qc;
8a8bc223
TH
4946
4947 /* no command while frozen */
4948 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4949 return NULL;
4950
98bd4be1 4951 /* libsas case */
5067c046 4952 if (ap->flags & ATA_FLAG_SAS_HOST) {
98bd4be1
SL
4953 tag = ata_sas_allocate_tag(ap);
4954 if (tag < 0)
4955 return NULL;
8a4aeec8 4956 }
8a8bc223 4957
98bd4be1
SL
4958 qc = __ata_qc_from_tag(ap, tag);
4959 qc->tag = tag;
4960 qc->scsicmd = NULL;
4961 qc->ap = ap;
4962 qc->dev = dev;
1da177e4 4963
98bd4be1 4964 ata_qc_reinit(qc);
1da177e4
LT
4965
4966 return qc;
4967}
4968
8a8bc223
TH
4969/**
4970 * ata_qc_free - free unused ata_queued_cmd
4971 * @qc: Command to complete
4972 *
4973 * Designed to free unused ata_queued_cmd object
4974 * in case something prevents using it.
4975 *
4976 * LOCKING:
4977 * spin_lock_irqsave(host lock)
4978 */
4979void ata_qc_free(struct ata_queued_cmd *qc)
4980{
a1104016 4981 struct ata_port *ap;
8a8bc223
TH
4982 unsigned int tag;
4983
efcb3cf7 4984 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
a1104016 4985 ap = qc->ap;
8a8bc223
TH
4986
4987 qc->flags = 0;
4988 tag = qc->tag;
4989 if (likely(ata_tag_valid(tag))) {
4990 qc->tag = ATA_TAG_POISON;
5067c046 4991 if (ap->flags & ATA_FLAG_SAS_HOST)
98bd4be1 4992 ata_sas_free_tag(tag, ap);
8a8bc223
TH
4993 }
4994}
4995
76014427 4996void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 4997{
a1104016
JL
4998 struct ata_port *ap;
4999 struct ata_link *link;
dedaf2b0 5000
efcb3cf7
TH
5001 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5002 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
a1104016
JL
5003 ap = qc->ap;
5004 link = qc->dev->link;
1da177e4
LT
5005
5006 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5007 ata_sg_clean(qc);
5008
7401abf2 5009 /* command should be marked inactive atomically with qc completion */
da917d69 5010 if (qc->tf.protocol == ATA_PROT_NCQ) {
9af5c9c9 5011 link->sactive &= ~(1 << qc->tag);
da917d69
TH
5012 if (!link->sactive)
5013 ap->nr_active_links--;
5014 } else {
9af5c9c9 5015 link->active_tag = ATA_TAG_POISON;
da917d69
TH
5016 ap->nr_active_links--;
5017 }
5018
5019 /* clear exclusive status */
5020 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5021 ap->excl_link == link))
5022 ap->excl_link = NULL;
7401abf2 5023
3f3791d3
AL
5024 /* atapi: mark qc as inactive to prevent the interrupt handler
5025 * from completing the command twice later, before the error handler
5026 * is called. (when rc != 0 and atapi request sense is needed)
5027 */
5028 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 5029 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 5030
1da177e4 5031 /* call completion callback */
77853bf2 5032 qc->complete_fn(qc);
1da177e4
LT
5033}
5034
39599a53
TH
5035static void fill_result_tf(struct ata_queued_cmd *qc)
5036{
5037 struct ata_port *ap = qc->ap;
5038
39599a53 5039 qc->result_tf.flags = qc->tf.flags;
22183bf5 5040 ap->ops->qc_fill_rtf(qc);
39599a53
TH
5041}
5042
00115e0f
TH
5043static void ata_verify_xfer(struct ata_queued_cmd *qc)
5044{
5045 struct ata_device *dev = qc->dev;
5046
00115e0f
TH
5047 if (ata_is_nodata(qc->tf.protocol))
5048 return;
5049
5050 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
5051 return;
5052
5053 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
5054}
5055
f686bcb8
TH
5056/**
5057 * ata_qc_complete - Complete an active ATA command
5058 * @qc: Command to complete
f686bcb8 5059 *
1aadf5c3
TH
5060 * Indicate to the mid and upper layers that an ATA command has
5061 * completed, with either an ok or not-ok status.
5062 *
5063 * Refrain from calling this function multiple times when
5064 * successfully completing multiple NCQ commands.
5065 * ata_qc_complete_multiple() should be used instead, which will
5066 * properly update IRQ expect state.
f686bcb8
TH
5067 *
5068 * LOCKING:
cca3974e 5069 * spin_lock_irqsave(host lock)
f686bcb8
TH
5070 */
5071void ata_qc_complete(struct ata_queued_cmd *qc)
5072{
5073 struct ata_port *ap = qc->ap;
5074
5075 /* XXX: New EH and old EH use different mechanisms to
5076 * synchronize EH with regular execution path.
5077 *
5078 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5079 * Normal execution path is responsible for not accessing a
5080 * failed qc. libata core enforces the rule by returning NULL
5081 * from ata_qc_from_tag() for failed qcs.
5082 *
5083 * Old EH depends on ata_qc_complete() nullifying completion
5084 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5085 * not synchronize with interrupt handler. Only PIO task is
5086 * taken care of.
5087 */
5088 if (ap->ops->error_handler) {
4dbfa39b
TH
5089 struct ata_device *dev = qc->dev;
5090 struct ata_eh_info *ehi = &dev->link->eh_info;
5091
f686bcb8
TH
5092 if (unlikely(qc->err_mask))
5093 qc->flags |= ATA_QCFLAG_FAILED;
5094
f08dc1ac
TH
5095 /*
5096 * Finish internal commands without any further processing
5097 * and always with the result TF filled.
5098 */
5099 if (unlikely(ata_tag_internal(qc->tag))) {
f4b31db9 5100 fill_result_tf(qc);
255c03d1 5101 trace_ata_qc_complete_internal(qc);
f08dc1ac
TH
5102 __ata_qc_complete(qc);
5103 return;
5104 }
f4b31db9 5105
f08dc1ac
TH
5106 /*
5107 * Non-internal qc has failed. Fill the result TF and
5108 * summon EH.
5109 */
5110 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5111 fill_result_tf(qc);
255c03d1 5112 trace_ata_qc_complete_failed(qc);
f08dc1ac 5113 ata_qc_schedule_eh(qc);
f4b31db9 5114 return;
f686bcb8
TH
5115 }
5116
4dc738ed
TH
5117 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
5118
f686bcb8
TH
5119 /* read result TF if requested */
5120 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5121 fill_result_tf(qc);
f686bcb8 5122
255c03d1 5123 trace_ata_qc_complete_done(qc);
4dbfa39b
TH
5124 /* Some commands need post-processing after successful
5125 * completion.
5126 */
5127 switch (qc->tf.command) {
5128 case ATA_CMD_SET_FEATURES:
5129 if (qc->tf.feature != SETFEATURES_WC_ON &&
5130 qc->tf.feature != SETFEATURES_WC_OFF)
5131 break;
5132 /* fall through */
5133 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5134 case ATA_CMD_SET_MULTI: /* multi_count changed */
5135 /* revalidate device */
5136 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5137 ata_port_schedule_eh(ap);
5138 break;
054a5fba
TH
5139
5140 case ATA_CMD_SLEEP:
5141 dev->flags |= ATA_DFLAG_SLEEPING;
5142 break;
4dbfa39b
TH
5143 }
5144
00115e0f
TH
5145 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5146 ata_verify_xfer(qc);
5147
f686bcb8
TH
5148 __ata_qc_complete(qc);
5149 } else {
5150 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5151 return;
5152
5153 /* read result TF if failed or requested */
5154 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5155 fill_result_tf(qc);
f686bcb8
TH
5156
5157 __ata_qc_complete(qc);
5158 }
5159}
5160
dedaf2b0
TH
5161/**
5162 * ata_qc_complete_multiple - Complete multiple qcs successfully
5163 * @ap: port in question
5164 * @qc_active: new qc_active mask
dedaf2b0
TH
5165 *
5166 * Complete in-flight commands. This functions is meant to be
5167 * called from low-level driver's interrupt routine to complete
5168 * requests normally. ap->qc_active and @qc_active is compared
5169 * and commands are completed accordingly.
5170 *
1aadf5c3
TH
5171 * Always use this function when completing multiple NCQ commands
5172 * from IRQ handlers instead of calling ata_qc_complete()
5173 * multiple times to keep IRQ expect status properly in sync.
5174 *
dedaf2b0 5175 * LOCKING:
cca3974e 5176 * spin_lock_irqsave(host lock)
dedaf2b0
TH
5177 *
5178 * RETURNS:
5179 * Number of completed commands on success, -errno otherwise.
5180 */
79f97dad 5181int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
dedaf2b0
TH
5182{
5183 int nr_done = 0;
5184 u32 done_mask;
dedaf2b0
TH
5185
5186 done_mask = ap->qc_active ^ qc_active;
5187
5188 if (unlikely(done_mask & qc_active)) {
a9a79dfe
JP
5189 ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
5190 ap->qc_active, qc_active);
dedaf2b0
TH
5191 return -EINVAL;
5192 }
5193
43768180 5194 while (done_mask) {
dedaf2b0 5195 struct ata_queued_cmd *qc;
43768180 5196 unsigned int tag = __ffs(done_mask);
dedaf2b0 5197
43768180
JA
5198 qc = ata_qc_from_tag(ap, tag);
5199 if (qc) {
dedaf2b0
TH
5200 ata_qc_complete(qc);
5201 nr_done++;
5202 }
43768180 5203 done_mask &= ~(1 << tag);
dedaf2b0
TH
5204 }
5205
5206 return nr_done;
5207}
5208
1da177e4
LT
5209/**
5210 * ata_qc_issue - issue taskfile to device
5211 * @qc: command to issue to device
5212 *
5213 * Prepare an ATA command to submission to device.
5214 * This includes mapping the data into a DMA-able
5215 * area, filling in the S/G table, and finally
5216 * writing the taskfile to hardware, starting the command.
5217 *
5218 * LOCKING:
cca3974e 5219 * spin_lock_irqsave(host lock)
1da177e4 5220 */
8e0e694a 5221void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
5222{
5223 struct ata_port *ap = qc->ap;
9af5c9c9 5224 struct ata_link *link = qc->dev->link;
405e66b3 5225 u8 prot = qc->tf.protocol;
1da177e4 5226
dedaf2b0
TH
5227 /* Make sure only one non-NCQ command is outstanding. The
5228 * check is skipped for old EH because it reuses active qc to
5229 * request ATAPI sense.
5230 */
efcb3cf7 5231 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
dedaf2b0 5232
1973a023 5233 if (ata_is_ncq(prot)) {
efcb3cf7 5234 WARN_ON_ONCE(link->sactive & (1 << qc->tag));
da917d69
TH
5235
5236 if (!link->sactive)
5237 ap->nr_active_links++;
9af5c9c9 5238 link->sactive |= 1 << qc->tag;
dedaf2b0 5239 } else {
efcb3cf7 5240 WARN_ON_ONCE(link->sactive);
da917d69
TH
5241
5242 ap->nr_active_links++;
9af5c9c9 5243 link->active_tag = qc->tag;
dedaf2b0
TH
5244 }
5245
e4a70e76 5246 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 5247 ap->qc_active |= 1 << qc->tag;
e4a70e76 5248
60f5d6ef
TH
5249 /*
5250 * We guarantee to LLDs that they will have at least one
f92a2636
TH
5251 * non-zero sg if the command is a data command.
5252 */
60f5d6ef
TH
5253 if (WARN_ON_ONCE(ata_is_data(prot) &&
5254 (!qc->sg || !qc->n_elem || !qc->nbytes)))
5255 goto sys_err;
f92a2636 5256
405e66b3 5257 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
f92a2636 5258 (ap->flags & ATA_FLAG_PIO_DMA)))
001102d7 5259 if (ata_sg_setup(qc))
60f5d6ef 5260 goto sys_err;
1da177e4 5261
cf480626 5262 /* if device is sleeping, schedule reset and abort the link */
054a5fba 5263 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
cf480626 5264 link->eh_info.action |= ATA_EH_RESET;
054a5fba
TH
5265 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5266 ata_link_abort(link);
5267 return;
5268 }
5269
1da177e4 5270 ap->ops->qc_prep(qc);
255c03d1 5271 trace_ata_qc_issue(qc);
8e0e694a
TH
5272 qc->err_mask |= ap->ops->qc_issue(qc);
5273 if (unlikely(qc->err_mask))
5274 goto err;
5275 return;
1da177e4 5276
60f5d6ef 5277sys_err:
8e0e694a
TH
5278 qc->err_mask |= AC_ERR_SYSTEM;
5279err:
5280 ata_qc_complete(qc);
1da177e4
LT
5281}
5282
34bf2170
TH
5283/**
5284 * sata_scr_valid - test whether SCRs are accessible
936fd732 5285 * @link: ATA link to test SCR accessibility for
34bf2170 5286 *
936fd732 5287 * Test whether SCRs are accessible for @link.
34bf2170
TH
5288 *
5289 * LOCKING:
5290 * None.
5291 *
5292 * RETURNS:
5293 * 1 if SCRs are accessible, 0 otherwise.
5294 */
936fd732 5295int sata_scr_valid(struct ata_link *link)
34bf2170 5296{
936fd732
TH
5297 struct ata_port *ap = link->ap;
5298
a16abc0b 5299 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
34bf2170
TH
5300}
5301
5302/**
5303 * sata_scr_read - read SCR register of the specified port
936fd732 5304 * @link: ATA link to read SCR for
34bf2170
TH
5305 * @reg: SCR to read
5306 * @val: Place to store read value
5307 *
936fd732 5308 * Read SCR register @reg of @link into *@val. This function is
633273a3
TH
5309 * guaranteed to succeed if @link is ap->link, the cable type of
5310 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
5311 *
5312 * LOCKING:
633273a3 5313 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
5314 *
5315 * RETURNS:
5316 * 0 on success, negative errno on failure.
5317 */
936fd732 5318int sata_scr_read(struct ata_link *link, int reg, u32 *val)
34bf2170 5319{
633273a3 5320 if (ata_is_host_link(link)) {
633273a3 5321 if (sata_scr_valid(link))
82ef04fb 5322 return link->ap->ops->scr_read(link, reg, val);
633273a3
TH
5323 return -EOPNOTSUPP;
5324 }
5325
5326 return sata_pmp_scr_read(link, reg, val);
34bf2170
TH
5327}
5328
5329/**
5330 * sata_scr_write - write SCR register of the specified port
936fd732 5331 * @link: ATA link to write SCR for
34bf2170
TH
5332 * @reg: SCR to write
5333 * @val: value to write
5334 *
936fd732 5335 * Write @val to SCR register @reg of @link. This function is
633273a3
TH
5336 * guaranteed to succeed if @link is ap->link, the cable type of
5337 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
5338 *
5339 * LOCKING:
633273a3 5340 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
5341 *
5342 * RETURNS:
5343 * 0 on success, negative errno on failure.
5344 */
936fd732 5345int sata_scr_write(struct ata_link *link, int reg, u32 val)
34bf2170 5346{
633273a3 5347 if (ata_is_host_link(link)) {
633273a3 5348 if (sata_scr_valid(link))
82ef04fb 5349 return link->ap->ops->scr_write(link, reg, val);
633273a3
TH
5350 return -EOPNOTSUPP;
5351 }
936fd732 5352
633273a3 5353 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
5354}
5355
5356/**
5357 * sata_scr_write_flush - write SCR register of the specified port and flush
936fd732 5358 * @link: ATA link to write SCR for
34bf2170
TH
5359 * @reg: SCR to write
5360 * @val: value to write
5361 *
5362 * This function is identical to sata_scr_write() except that this
5363 * function performs flush after writing to the register.
5364 *
5365 * LOCKING:
633273a3 5366 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
5367 *
5368 * RETURNS:
5369 * 0 on success, negative errno on failure.
5370 */
936fd732 5371int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
34bf2170 5372{
633273a3 5373 if (ata_is_host_link(link)) {
633273a3 5374 int rc;
da3dbb17 5375
633273a3 5376 if (sata_scr_valid(link)) {
82ef04fb 5377 rc = link->ap->ops->scr_write(link, reg, val);
633273a3 5378 if (rc == 0)
82ef04fb 5379 rc = link->ap->ops->scr_read(link, reg, &val);
633273a3
TH
5380 return rc;
5381 }
5382 return -EOPNOTSUPP;
34bf2170 5383 }
633273a3
TH
5384
5385 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
5386}
5387
5388/**
b1c72916 5389 * ata_phys_link_online - test whether the given link is online
936fd732 5390 * @link: ATA link to test
34bf2170 5391 *
936fd732
TH
5392 * Test whether @link is online. Note that this function returns
5393 * 0 if online status of @link cannot be obtained, so
5394 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
5395 *
5396 * LOCKING:
5397 * None.
5398 *
5399 * RETURNS:
b5b3fa38 5400 * True if the port online status is available and online.
34bf2170 5401 */
b1c72916 5402bool ata_phys_link_online(struct ata_link *link)
34bf2170
TH
5403{
5404 u32 sstatus;
5405
936fd732 5406 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
9913ff8a 5407 ata_sstatus_online(sstatus))
b5b3fa38
TH
5408 return true;
5409 return false;
34bf2170
TH
5410}
5411
5412/**
b1c72916 5413 * ata_phys_link_offline - test whether the given link is offline
936fd732 5414 * @link: ATA link to test
34bf2170 5415 *
936fd732
TH
5416 * Test whether @link is offline. Note that this function
5417 * returns 0 if offline status of @link cannot be obtained, so
5418 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
5419 *
5420 * LOCKING:
5421 * None.
5422 *
5423 * RETURNS:
b5b3fa38 5424 * True if the port offline status is available and offline.
34bf2170 5425 */
b1c72916 5426bool ata_phys_link_offline(struct ata_link *link)
34bf2170
TH
5427{
5428 u32 sstatus;
5429
936fd732 5430 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
9913ff8a 5431 !ata_sstatus_online(sstatus))
b5b3fa38
TH
5432 return true;
5433 return false;
34bf2170 5434}
0baab86b 5435
b1c72916
TH
5436/**
5437 * ata_link_online - test whether the given link is online
5438 * @link: ATA link to test
5439 *
5440 * Test whether @link is online. This is identical to
5441 * ata_phys_link_online() when there's no slave link. When
5442 * there's a slave link, this function should only be called on
5443 * the master link and will return true if any of M/S links is
5444 * online.
5445 *
5446 * LOCKING:
5447 * None.
5448 *
5449 * RETURNS:
5450 * True if the port online status is available and online.
5451 */
5452bool ata_link_online(struct ata_link *link)
5453{
5454 struct ata_link *slave = link->ap->slave_link;
5455
5456 WARN_ON(link == slave); /* shouldn't be called on slave link */
5457
5458 return ata_phys_link_online(link) ||
5459 (slave && ata_phys_link_online(slave));
5460}
5461
5462/**
5463 * ata_link_offline - test whether the given link is offline
5464 * @link: ATA link to test
5465 *
5466 * Test whether @link is offline. This is identical to
5467 * ata_phys_link_offline() when there's no slave link. When
5468 * there's a slave link, this function should only be called on
5469 * the master link and will return true if both M/S links are
5470 * offline.
5471 *
5472 * LOCKING:
5473 * None.
5474 *
5475 * RETURNS:
5476 * True if the port offline status is available and offline.
5477 */
5478bool ata_link_offline(struct ata_link *link)
5479{
5480 struct ata_link *slave = link->ap->slave_link;
5481
5482 WARN_ON(link == slave); /* shouldn't be called on slave link */
5483
5484 return ata_phys_link_offline(link) &&
5485 (!slave || ata_phys_link_offline(slave));
5486}
5487
6ffa01d8 5488#ifdef CONFIG_PM
bc6e7c4b
DW
5489static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5490 unsigned int action, unsigned int ehi_flags,
5491 bool async)
500530f6 5492{
5ef41082 5493 struct ata_link *link;
500530f6 5494 unsigned long flags;
500530f6 5495
5ef41082
LM
5496 /* Previous resume operation might still be in
5497 * progress. Wait for PM_PENDING to clear.
5498 */
5499 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5500 ata_port_wait_eh(ap);
5501 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5502 }
500530f6 5503
5ef41082
LM
5504 /* request PM ops to EH */
5505 spin_lock_irqsave(ap->lock, flags);
500530f6 5506
5ef41082 5507 ap->pm_mesg = mesg;
5ef41082
LM
5508 ap->pflags |= ATA_PFLAG_PM_PENDING;
5509 ata_for_each_link(link, ap, HOST_FIRST) {
5510 link->eh_info.action |= action;
5511 link->eh_info.flags |= ehi_flags;
5512 }
500530f6 5513
5ef41082 5514 ata_port_schedule_eh(ap);
500530f6 5515
5ef41082 5516 spin_unlock_irqrestore(ap->lock, flags);
500530f6 5517
2fcbdcb4 5518 if (!async) {
5ef41082
LM
5519 ata_port_wait_eh(ap);
5520 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
500530f6 5521 }
500530f6
TH
5522}
5523
bc6e7c4b
DW
5524/*
5525 * On some hardware, device fails to respond after spun down for suspend. As
5526 * the device won't be used before being resumed, we don't need to touch the
5527 * device. Ask EH to skip the usual stuff and proceed directly to suspend.
5528 *
5529 * http://thread.gmane.org/gmane.linux.ide/46764
5530 */
5531static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5532 | ATA_EHI_NO_AUTOPSY
5533 | ATA_EHI_NO_RECOVERY;
5534
5535static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5ef41082 5536{
bc6e7c4b 5537 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5ef41082
LM
5538}
5539
bc6e7c4b 5540static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
2fcbdcb4 5541{
bc6e7c4b 5542 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
2fcbdcb4
DW
5543}
5544
bc6e7c4b 5545static int ata_port_pm_suspend(struct device *dev)
5ef41082 5546{
bc6e7c4b
DW
5547 struct ata_port *ap = to_ata_port(dev);
5548
5ef41082
LM
5549 if (pm_runtime_suspended(dev))
5550 return 0;
5551
bc6e7c4b
DW
5552 ata_port_suspend(ap, PMSG_SUSPEND);
5553 return 0;
33574d68
LM
5554}
5555
bc6e7c4b 5556static int ata_port_pm_freeze(struct device *dev)
33574d68 5557{
bc6e7c4b
DW
5558 struct ata_port *ap = to_ata_port(dev);
5559
33574d68 5560 if (pm_runtime_suspended(dev))
f5e6d0d0 5561 return 0;
33574d68 5562
bc6e7c4b
DW
5563 ata_port_suspend(ap, PMSG_FREEZE);
5564 return 0;
33574d68
LM
5565}
5566
bc6e7c4b 5567static int ata_port_pm_poweroff(struct device *dev)
33574d68 5568{
bc6e7c4b
DW
5569 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5570 return 0;
5ef41082
LM
5571}
5572
bc6e7c4b
DW
5573static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5574 | ATA_EHI_QUIET;
5ef41082 5575
bc6e7c4b
DW
5576static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5577{
5578 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5ef41082
LM
5579}
5580
bc6e7c4b 5581static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
2fcbdcb4 5582{
bc6e7c4b 5583 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
2fcbdcb4
DW
5584}
5585
bc6e7c4b 5586static int ata_port_pm_resume(struct device *dev)
e90b1e5a 5587{
200421a8 5588 ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
bc6e7c4b
DW
5589 pm_runtime_disable(dev);
5590 pm_runtime_set_active(dev);
5591 pm_runtime_enable(dev);
5592 return 0;
e90b1e5a
LM
5593}
5594
7e15e9be
AL
5595/*
5596 * For ODDs, the upper layer will poll for media change every few seconds,
5597 * which will make it enter and leave suspend state every few seconds. And
5598 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5599 * is very little and the ODD may malfunction after constantly being reset.
5600 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5601 * ODD is attached to the port.
5602 */
9ee4f393
LM
5603static int ata_port_runtime_idle(struct device *dev)
5604{
7e15e9be
AL
5605 struct ata_port *ap = to_ata_port(dev);
5606 struct ata_link *link;
5607 struct ata_device *adev;
5608
5609 ata_for_each_link(link, ap, HOST_FIRST) {
5610 ata_for_each_dev(adev, link, ENABLED)
5611 if (adev->class == ATA_DEV_ATAPI &&
5612 !zpodd_dev_enabled(adev))
5613 return -EBUSY;
5614 }
5615
45f0a85c 5616 return 0;
9ee4f393
LM
5617}
5618
a7ff60db
AL
5619static int ata_port_runtime_suspend(struct device *dev)
5620{
bc6e7c4b
DW
5621 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5622 return 0;
a7ff60db
AL
5623}
5624
5625static int ata_port_runtime_resume(struct device *dev)
5626{
bc6e7c4b
DW
5627 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5628 return 0;
a7ff60db
AL
5629}
5630
5ef41082 5631static const struct dev_pm_ops ata_port_pm_ops = {
bc6e7c4b
DW
5632 .suspend = ata_port_pm_suspend,
5633 .resume = ata_port_pm_resume,
5634 .freeze = ata_port_pm_freeze,
5635 .thaw = ata_port_pm_resume,
5636 .poweroff = ata_port_pm_poweroff,
5637 .restore = ata_port_pm_resume,
9ee4f393 5638
a7ff60db
AL
5639 .runtime_suspend = ata_port_runtime_suspend,
5640 .runtime_resume = ata_port_runtime_resume,
9ee4f393 5641 .runtime_idle = ata_port_runtime_idle,
5ef41082
LM
5642};
5643
2fcbdcb4
DW
5644/* sas ports don't participate in pm runtime management of ata_ports,
5645 * and need to resume ata devices at the domain level, not the per-port
5646 * level. sas suspend/resume is async to allow parallel port recovery
5647 * since sas has multiple ata_port instances per Scsi_Host.
5648 */
bc6e7c4b 5649void ata_sas_port_suspend(struct ata_port *ap)
2fcbdcb4 5650{
bc6e7c4b 5651 ata_port_suspend_async(ap, PMSG_SUSPEND);
2fcbdcb4 5652}
bc6e7c4b 5653EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
2fcbdcb4 5654
bc6e7c4b 5655void ata_sas_port_resume(struct ata_port *ap)
2fcbdcb4 5656{
bc6e7c4b 5657 ata_port_resume_async(ap, PMSG_RESUME);
2fcbdcb4 5658}
bc6e7c4b 5659EXPORT_SYMBOL_GPL(ata_sas_port_resume);
2fcbdcb4 5660
500530f6 5661/**
cca3974e
JG
5662 * ata_host_suspend - suspend host
5663 * @host: host to suspend
500530f6
TH
5664 * @mesg: PM message
5665 *
5ef41082 5666 * Suspend @host. Actual operation is performed by port suspend.
500530f6 5667 */
cca3974e 5668int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6 5669{
5ef41082
LM
5670 host->dev->power.power_state = mesg;
5671 return 0;
500530f6
TH
5672}
5673
5674/**
cca3974e
JG
5675 * ata_host_resume - resume host
5676 * @host: host to resume
500530f6 5677 *
5ef41082 5678 * Resume @host. Actual operation is performed by port resume.
500530f6 5679 */
cca3974e 5680void ata_host_resume(struct ata_host *host)
500530f6 5681{
72ad6ec4 5682 host->dev->power.power_state = PMSG_ON;
500530f6 5683}
6ffa01d8 5684#endif
500530f6 5685
5ef41082
LM
5686struct device_type ata_port_type = {
5687 .name = "ata_port",
5688#ifdef CONFIG_PM
5689 .pm = &ata_port_pm_ops,
5690#endif
5691};
5692
3ef3b43d
TH
5693/**
5694 * ata_dev_init - Initialize an ata_device structure
5695 * @dev: Device structure to initialize
5696 *
5697 * Initialize @dev in preparation for probing.
5698 *
5699 * LOCKING:
5700 * Inherited from caller.
5701 */
5702void ata_dev_init(struct ata_device *dev)
5703{
b1c72916 5704 struct ata_link *link = ata_dev_phys_link(dev);
9af5c9c9 5705 struct ata_port *ap = link->ap;
72fa4b74
TH
5706 unsigned long flags;
5707
b1c72916 5708 /* SATA spd limit is bound to the attached device, reset together */
9af5c9c9
TH
5709 link->sata_spd_limit = link->hw_sata_spd_limit;
5710 link->sata_spd = 0;
5a04bf4b 5711
72fa4b74
TH
5712 /* High bits of dev->flags are used to record warm plug
5713 * requests which occur asynchronously. Synchronize using
cca3974e 5714 * host lock.
72fa4b74 5715 */
ba6a1308 5716 spin_lock_irqsave(ap->lock, flags);
72fa4b74 5717 dev->flags &= ~ATA_DFLAG_INIT_MASK;
3dcc323f 5718 dev->horkage = 0;
ba6a1308 5719 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 5720
99cf610a
TH
5721 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5722 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
3ef3b43d
TH
5723 dev->pio_mask = UINT_MAX;
5724 dev->mwdma_mask = UINT_MAX;
5725 dev->udma_mask = UINT_MAX;
5726}
5727
4fb37a25
TH
5728/**
5729 * ata_link_init - Initialize an ata_link structure
5730 * @ap: ATA port link is attached to
5731 * @link: Link structure to initialize
8989805d 5732 * @pmp: Port multiplier port number
4fb37a25
TH
5733 *
5734 * Initialize @link.
5735 *
5736 * LOCKING:
5737 * Kernel thread context (may sleep)
5738 */
fb7fd614 5739void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
4fb37a25
TH
5740{
5741 int i;
5742
5743 /* clear everything except for devices */
d9027470
GG
5744 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5745 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
4fb37a25
TH
5746
5747 link->ap = ap;
8989805d 5748 link->pmp = pmp;
4fb37a25
TH
5749 link->active_tag = ATA_TAG_POISON;
5750 link->hw_sata_spd_limit = UINT_MAX;
5751
5752 /* can't use iterator, ap isn't initialized yet */
5753 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5754 struct ata_device *dev = &link->device[i];
5755
5756 dev->link = link;
5757 dev->devno = dev - link->device;
110f66d2
TH
5758#ifdef CONFIG_ATA_ACPI
5759 dev->gtf_filter = ata_acpi_gtf_filter;
5760#endif
4fb37a25
TH
5761 ata_dev_init(dev);
5762 }
5763}
5764
5765/**
5766 * sata_link_init_spd - Initialize link->sata_spd_limit
5767 * @link: Link to configure sata_spd_limit for
5768 *
5769 * Initialize @link->[hw_]sata_spd_limit to the currently
5770 * configured value.
5771 *
5772 * LOCKING:
5773 * Kernel thread context (may sleep).
5774 *
5775 * RETURNS:
5776 * 0 on success, -errno on failure.
5777 */
fb7fd614 5778int sata_link_init_spd(struct ata_link *link)
4fb37a25 5779{
33267325 5780 u8 spd;
4fb37a25
TH
5781 int rc;
5782
d127ea7b 5783 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
4fb37a25
TH
5784 if (rc)
5785 return rc;
5786
d127ea7b 5787 spd = (link->saved_scontrol >> 4) & 0xf;
4fb37a25
TH
5788 if (spd)
5789 link->hw_sata_spd_limit &= (1 << spd) - 1;
5790
05944bdf 5791 ata_force_link_limits(link);
33267325 5792
4fb37a25
TH
5793 link->sata_spd_limit = link->hw_sata_spd_limit;
5794
5795 return 0;
5796}
5797
1da177e4 5798/**
f3187195
TH
5799 * ata_port_alloc - allocate and initialize basic ATA port resources
5800 * @host: ATA host this allocated port belongs to
1da177e4 5801 *
f3187195
TH
5802 * Allocate and initialize basic ATA port resources.
5803 *
5804 * RETURNS:
5805 * Allocate ATA port on success, NULL on failure.
0cba632b 5806 *
1da177e4 5807 * LOCKING:
f3187195 5808 * Inherited from calling layer (may sleep).
1da177e4 5809 */
f3187195 5810struct ata_port *ata_port_alloc(struct ata_host *host)
1da177e4 5811{
f3187195 5812 struct ata_port *ap;
1da177e4 5813
f3187195
TH
5814 DPRINTK("ENTER\n");
5815
5816 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5817 if (!ap)
5818 return NULL;
4fca377f 5819
7b3a24c5 5820 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
cca3974e 5821 ap->lock = &host->lock;
f3187195 5822 ap->print_id = -1;
e628dc99 5823 ap->local_port_no = -1;
cca3974e 5824 ap->host = host;
f3187195 5825 ap->dev = host->dev;
bd5d825c
BP
5826
5827#if defined(ATA_VERBOSE_DEBUG)
5828 /* turn on all debugging levels */
5829 ap->msg_enable = 0x00FF;
5830#elif defined(ATA_DEBUG)
5831 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 5832#else
0dd4b21f 5833 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 5834#endif
1da177e4 5835
ad72cf98 5836 mutex_init(&ap->scsi_scan_mutex);
65f27f38
DH
5837 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5838 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 5839 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 5840 init_waitqueue_head(&ap->eh_wait_q);
45fabbb7 5841 init_completion(&ap->park_req_pending);
5ddf24c5
TH
5842 init_timer_deferrable(&ap->fastdrain_timer);
5843 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5844 ap->fastdrain_timer.data = (unsigned long)ap;
1da177e4 5845
838df628 5846 ap->cbl = ATA_CBL_NONE;
838df628 5847
8989805d 5848 ata_link_init(ap, &ap->link, 0);
1da177e4
LT
5849
5850#ifdef ATA_IRQ_TRAP
5851 ap->stats.unhandled_irq = 1;
5852 ap->stats.idle_irq = 1;
5853#endif
270390e1
TH
5854 ata_sff_port_init(ap);
5855
1da177e4 5856 return ap;
1da177e4
LT
5857}
5858
f0d36efd
TH
5859static void ata_host_release(struct device *gendev, void *res)
5860{
5861 struct ata_host *host = dev_get_drvdata(gendev);
5862 int i;
5863
1aa506e4
TH
5864 for (i = 0; i < host->n_ports; i++) {
5865 struct ata_port *ap = host->ports[i];
5866
4911487a
TH
5867 if (!ap)
5868 continue;
5869
5870 if (ap->scsi_host)
1aa506e4
TH
5871 scsi_host_put(ap->scsi_host);
5872
633273a3 5873 kfree(ap->pmp_link);
b1c72916 5874 kfree(ap->slave_link);
4911487a 5875 kfree(ap);
1aa506e4
TH
5876 host->ports[i] = NULL;
5877 }
5878
1aa56cca 5879 dev_set_drvdata(gendev, NULL);
f0d36efd
TH
5880}
5881
f3187195
TH
5882/**
5883 * ata_host_alloc - allocate and init basic ATA host resources
5884 * @dev: generic device this host is associated with
5885 * @max_ports: maximum number of ATA ports associated with this host
5886 *
5887 * Allocate and initialize basic ATA host resources. LLD calls
5888 * this function to allocate a host, initializes it fully and
5889 * attaches it using ata_host_register().
5890 *
5891 * @max_ports ports are allocated and host->n_ports is
5892 * initialized to @max_ports. The caller is allowed to decrease
5893 * host->n_ports before calling ata_host_register(). The unused
5894 * ports will be automatically freed on registration.
5895 *
5896 * RETURNS:
5897 * Allocate ATA host on success, NULL on failure.
5898 *
5899 * LOCKING:
5900 * Inherited from calling layer (may sleep).
5901 */
5902struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5903{
5904 struct ata_host *host;
5905 size_t sz;
5906 int i;
5907
5908 DPRINTK("ENTER\n");
5909
5910 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5911 return NULL;
5912
5913 /* alloc a container for our list of ATA ports (buses) */
5914 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5915 /* alloc a container for our list of ATA ports (buses) */
5916 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5917 if (!host)
5918 goto err_out;
5919
5920 devres_add(dev, host);
5921 dev_set_drvdata(dev, host);
5922
5923 spin_lock_init(&host->lock);
c0c362b6 5924 mutex_init(&host->eh_mutex);
f3187195
TH
5925 host->dev = dev;
5926 host->n_ports = max_ports;
5927
5928 /* allocate ports bound to this host */
5929 for (i = 0; i < max_ports; i++) {
5930 struct ata_port *ap;
5931
5932 ap = ata_port_alloc(host);
5933 if (!ap)
5934 goto err_out;
5935
5936 ap->port_no = i;
5937 host->ports[i] = ap;
5938 }
5939
5940 devres_remove_group(dev, NULL);
5941 return host;
5942
5943 err_out:
5944 devres_release_group(dev, NULL);
5945 return NULL;
5946}
5947
f5cda257
TH
5948/**
5949 * ata_host_alloc_pinfo - alloc host and init with port_info array
5950 * @dev: generic device this host is associated with
5951 * @ppi: array of ATA port_info to initialize host with
5952 * @n_ports: number of ATA ports attached to this host
5953 *
5954 * Allocate ATA host and initialize with info from @ppi. If NULL
5955 * terminated, @ppi may contain fewer entries than @n_ports. The
5956 * last entry will be used for the remaining ports.
5957 *
5958 * RETURNS:
5959 * Allocate ATA host on success, NULL on failure.
5960 *
5961 * LOCKING:
5962 * Inherited from calling layer (may sleep).
5963 */
5964struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5965 const struct ata_port_info * const * ppi,
5966 int n_ports)
5967{
5968 const struct ata_port_info *pi;
5969 struct ata_host *host;
5970 int i, j;
5971
5972 host = ata_host_alloc(dev, n_ports);
5973 if (!host)
5974 return NULL;
5975
5976 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5977 struct ata_port *ap = host->ports[i];
5978
5979 if (ppi[j])
5980 pi = ppi[j++];
5981
5982 ap->pio_mask = pi->pio_mask;
5983 ap->mwdma_mask = pi->mwdma_mask;
5984 ap->udma_mask = pi->udma_mask;
5985 ap->flags |= pi->flags;
0c88758b 5986 ap->link.flags |= pi->link_flags;
f5cda257
TH
5987 ap->ops = pi->port_ops;
5988
5989 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5990 host->ops = pi->port_ops;
f5cda257
TH
5991 }
5992
5993 return host;
5994}
5995
b1c72916
TH
5996/**
5997 * ata_slave_link_init - initialize slave link
5998 * @ap: port to initialize slave link for
5999 *
6000 * Create and initialize slave link for @ap. This enables slave
6001 * link handling on the port.
6002 *
6003 * In libata, a port contains links and a link contains devices.
6004 * There is single host link but if a PMP is attached to it,
6005 * there can be multiple fan-out links. On SATA, there's usually
6006 * a single device connected to a link but PATA and SATA
6007 * controllers emulating TF based interface can have two - master
6008 * and slave.
6009 *
6010 * However, there are a few controllers which don't fit into this
6011 * abstraction too well - SATA controllers which emulate TF
6012 * interface with both master and slave devices but also have
6013 * separate SCR register sets for each device. These controllers
6014 * need separate links for physical link handling
6015 * (e.g. onlineness, link speed) but should be treated like a
6016 * traditional M/S controller for everything else (e.g. command
6017 * issue, softreset).
6018 *
6019 * slave_link is libata's way of handling this class of
6020 * controllers without impacting core layer too much. For
6021 * anything other than physical link handling, the default host
6022 * link is used for both master and slave. For physical link
6023 * handling, separate @ap->slave_link is used. All dirty details
6024 * are implemented inside libata core layer. From LLD's POV, the
6025 * only difference is that prereset, hardreset and postreset are
6026 * called once more for the slave link, so the reset sequence
6027 * looks like the following.
6028 *
6029 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
6030 * softreset(M) -> postreset(M) -> postreset(S)
6031 *
6032 * Note that softreset is called only for the master. Softreset
6033 * resets both M/S by definition, so SRST on master should handle
6034 * both (the standard method will work just fine).
6035 *
6036 * LOCKING:
6037 * Should be called before host is registered.
6038 *
6039 * RETURNS:
6040 * 0 on success, -errno on failure.
6041 */
6042int ata_slave_link_init(struct ata_port *ap)
6043{
6044 struct ata_link *link;
6045
6046 WARN_ON(ap->slave_link);
6047 WARN_ON(ap->flags & ATA_FLAG_PMP);
6048
6049 link = kzalloc(sizeof(*link), GFP_KERNEL);
6050 if (!link)
6051 return -ENOMEM;
6052
6053 ata_link_init(ap, link, 1);
6054 ap->slave_link = link;
6055 return 0;
6056}
6057
32ebbc0c
TH
6058static void ata_host_stop(struct device *gendev, void *res)
6059{
6060 struct ata_host *host = dev_get_drvdata(gendev);
6061 int i;
6062
6063 WARN_ON(!(host->flags & ATA_HOST_STARTED));
6064
6065 for (i = 0; i < host->n_ports; i++) {
6066 struct ata_port *ap = host->ports[i];
6067
6068 if (ap->ops->port_stop)
6069 ap->ops->port_stop(ap);
6070 }
6071
6072 if (host->ops->host_stop)
6073 host->ops->host_stop(host);
6074}
6075
029cfd6b
TH
6076/**
6077 * ata_finalize_port_ops - finalize ata_port_operations
6078 * @ops: ata_port_operations to finalize
6079 *
6080 * An ata_port_operations can inherit from another ops and that
6081 * ops can again inherit from another. This can go on as many
6082 * times as necessary as long as there is no loop in the
6083 * inheritance chain.
6084 *
6085 * Ops tables are finalized when the host is started. NULL or
6086 * unspecified entries are inherited from the closet ancestor
6087 * which has the method and the entry is populated with it.
6088 * After finalization, the ops table directly points to all the
6089 * methods and ->inherits is no longer necessary and cleared.
6090 *
6091 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
6092 *
6093 * LOCKING:
6094 * None.
6095 */
6096static void ata_finalize_port_ops(struct ata_port_operations *ops)
6097{
2da67659 6098 static DEFINE_SPINLOCK(lock);
029cfd6b
TH
6099 const struct ata_port_operations *cur;
6100 void **begin = (void **)ops;
6101 void **end = (void **)&ops->inherits;
6102 void **pp;
6103
6104 if (!ops || !ops->inherits)
6105 return;
6106
6107 spin_lock(&lock);
6108
6109 for (cur = ops->inherits; cur; cur = cur->inherits) {
6110 void **inherit = (void **)cur;
6111
6112 for (pp = begin; pp < end; pp++, inherit++)
6113 if (!*pp)
6114 *pp = *inherit;
6115 }
6116
6117 for (pp = begin; pp < end; pp++)
6118 if (IS_ERR(*pp))
6119 *pp = NULL;
6120
6121 ops->inherits = NULL;
6122
6123 spin_unlock(&lock);
6124}
6125
ecef7253
TH
6126/**
6127 * ata_host_start - start and freeze ports of an ATA host
6128 * @host: ATA host to start ports for
6129 *
6130 * Start and then freeze ports of @host. Started status is
6131 * recorded in host->flags, so this function can be called
6132 * multiple times. Ports are guaranteed to get started only
f3187195
TH
6133 * once. If host->ops isn't initialized yet, its set to the
6134 * first non-dummy port ops.
ecef7253
TH
6135 *
6136 * LOCKING:
6137 * Inherited from calling layer (may sleep).
6138 *
6139 * RETURNS:
6140 * 0 if all ports are started successfully, -errno otherwise.
6141 */
6142int ata_host_start(struct ata_host *host)
6143{
32ebbc0c
TH
6144 int have_stop = 0;
6145 void *start_dr = NULL;
ecef7253
TH
6146 int i, rc;
6147
6148 if (host->flags & ATA_HOST_STARTED)
6149 return 0;
6150
029cfd6b
TH
6151 ata_finalize_port_ops(host->ops);
6152
ecef7253
TH
6153 for (i = 0; i < host->n_ports; i++) {
6154 struct ata_port *ap = host->ports[i];
6155
029cfd6b
TH
6156 ata_finalize_port_ops(ap->ops);
6157
f3187195
TH
6158 if (!host->ops && !ata_port_is_dummy(ap))
6159 host->ops = ap->ops;
6160
32ebbc0c
TH
6161 if (ap->ops->port_stop)
6162 have_stop = 1;
6163 }
6164
6165 if (host->ops->host_stop)
6166 have_stop = 1;
6167
6168 if (have_stop) {
6169 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
6170 if (!start_dr)
6171 return -ENOMEM;
6172 }
6173
6174 for (i = 0; i < host->n_ports; i++) {
6175 struct ata_port *ap = host->ports[i];
6176
ecef7253
TH
6177 if (ap->ops->port_start) {
6178 rc = ap->ops->port_start(ap);
6179 if (rc) {
0f9fe9b7 6180 if (rc != -ENODEV)
a44fec1f
JP
6181 dev_err(host->dev,
6182 "failed to start port %d (errno=%d)\n",
6183 i, rc);
ecef7253
TH
6184 goto err_out;
6185 }
6186 }
ecef7253
TH
6187 ata_eh_freeze_port(ap);
6188 }
6189
32ebbc0c
TH
6190 if (start_dr)
6191 devres_add(host->dev, start_dr);
ecef7253
TH
6192 host->flags |= ATA_HOST_STARTED;
6193 return 0;
6194
6195 err_out:
6196 while (--i >= 0) {
6197 struct ata_port *ap = host->ports[i];
6198
6199 if (ap->ops->port_stop)
6200 ap->ops->port_stop(ap);
6201 }
32ebbc0c 6202 devres_free(start_dr);
ecef7253
TH
6203 return rc;
6204}
6205
b03732f0 6206/**
8d8e7d13 6207 * ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
cca3974e
JG
6208 * @host: host to initialize
6209 * @dev: device host is attached to
cca3974e 6210 * @ops: port_ops
b03732f0 6211 *
b03732f0 6212 */
cca3974e 6213void ata_host_init(struct ata_host *host, struct device *dev,
8d8e7d13 6214 struct ata_port_operations *ops)
b03732f0 6215{
cca3974e 6216 spin_lock_init(&host->lock);
c0c362b6 6217 mutex_init(&host->eh_mutex);
1a112d10 6218 host->n_tags = ATA_MAX_QUEUE - 1;
cca3974e 6219 host->dev = dev;
cca3974e 6220 host->ops = ops;
b03732f0
BK
6221}
6222
9508a66f 6223void __ata_port_probe(struct ata_port *ap)
79318057 6224{
9508a66f
DW
6225 struct ata_eh_info *ehi = &ap->link.eh_info;
6226 unsigned long flags;
886ad09f 6227
9508a66f
DW
6228 /* kick EH for boot probing */
6229 spin_lock_irqsave(ap->lock, flags);
79318057 6230
9508a66f
DW
6231 ehi->probe_mask |= ATA_ALL_DEVICES;
6232 ehi->action |= ATA_EH_RESET;
6233 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
79318057 6234
9508a66f
DW
6235 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6236 ap->pflags |= ATA_PFLAG_LOADING;
6237 ata_port_schedule_eh(ap);
79318057 6238
9508a66f
DW
6239 spin_unlock_irqrestore(ap->lock, flags);
6240}
79318057 6241
9508a66f
DW
6242int ata_port_probe(struct ata_port *ap)
6243{
6244 int rc = 0;
79318057 6245
9508a66f
DW
6246 if (ap->ops->error_handler) {
6247 __ata_port_probe(ap);
79318057
AV
6248 ata_port_wait_eh(ap);
6249 } else {
6250 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6251 rc = ata_bus_probe(ap);
6252 DPRINTK("ata%u: bus probe end\n", ap->print_id);
79318057 6253 }
238c9cf9
JB
6254 return rc;
6255}
6256
6257
6258static void async_port_probe(void *data, async_cookie_t cookie)
6259{
6260 struct ata_port *ap = data;
4fca377f 6261
238c9cf9
JB
6262 /*
6263 * If we're not allowed to scan this host in parallel,
6264 * we need to wait until all previous scans have completed
6265 * before going further.
6266 * Jeff Garzik says this is only within a controller, so we
6267 * don't need to wait for port 0, only for later ports.
6268 */
6269 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6270 async_synchronize_cookie(cookie);
6271
6272 (void)ata_port_probe(ap);
f29d3b23
AV
6273
6274 /* in order to keep device order, we need to synchronize at this point */
6275 async_synchronize_cookie(cookie);
6276
6277 ata_scsi_scan_host(ap, 1);
79318057 6278}
238c9cf9 6279
f3187195
TH
6280/**
6281 * ata_host_register - register initialized ATA host
6282 * @host: ATA host to register
6283 * @sht: template for SCSI host
6284 *
6285 * Register initialized ATA host. @host is allocated using
6286 * ata_host_alloc() and fully initialized by LLD. This function
6287 * starts ports, registers @host with ATA and SCSI layers and
6288 * probe registered devices.
6289 *
6290 * LOCKING:
6291 * Inherited from calling layer (may sleep).
6292 *
6293 * RETURNS:
6294 * 0 on success, -errno otherwise.
6295 */
6296int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6297{
6298 int i, rc;
6299
1a112d10 6300 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE - 1);
1871ee13 6301
f3187195
TH
6302 /* host must have been started */
6303 if (!(host->flags & ATA_HOST_STARTED)) {
a44fec1f 6304 dev_err(host->dev, "BUG: trying to register unstarted host\n");
f3187195
TH
6305 WARN_ON(1);
6306 return -EINVAL;
6307 }
6308
6309 /* Blow away unused ports. This happens when LLD can't
6310 * determine the exact number of ports to allocate at
6311 * allocation time.
6312 */
6313 for (i = host->n_ports; host->ports[i]; i++)
6314 kfree(host->ports[i]);
6315
6316 /* give ports names and add SCSI hosts */
e628dc99 6317 for (i = 0; i < host->n_ports; i++) {
85d6725b 6318 host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
e628dc99
DM
6319 host->ports[i]->local_port_no = i + 1;
6320 }
4fca377f 6321
d9027470
GG
6322 /* Create associated sysfs transport objects */
6323 for (i = 0; i < host->n_ports; i++) {
6324 rc = ata_tport_add(host->dev,host->ports[i]);
6325 if (rc) {
6326 goto err_tadd;
6327 }
6328 }
6329
f3187195
TH
6330 rc = ata_scsi_add_hosts(host, sht);
6331 if (rc)
d9027470 6332 goto err_tadd;
f3187195
TH
6333
6334 /* set cable, sata_spd_limit and report */
6335 for (i = 0; i < host->n_ports; i++) {
6336 struct ata_port *ap = host->ports[i];
f3187195
TH
6337 unsigned long xfer_mask;
6338
6339 /* set SATA cable type if still unset */
6340 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6341 ap->cbl = ATA_CBL_SATA;
6342
6343 /* init sata_spd_limit to the current value */
4fb37a25 6344 sata_link_init_spd(&ap->link);
b1c72916
TH
6345 if (ap->slave_link)
6346 sata_link_init_spd(ap->slave_link);
f3187195 6347
cbcdd875 6348 /* print per-port info to dmesg */
f3187195
TH
6349 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6350 ap->udma_mask);
6351
abf6e8ed 6352 if (!ata_port_is_dummy(ap)) {
a9a79dfe
JP
6353 ata_port_info(ap, "%cATA max %s %s\n",
6354 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6355 ata_mode_string(xfer_mask),
6356 ap->link.eh_info.desc);
abf6e8ed
TH
6357 ata_ehi_clear_desc(&ap->link.eh_info);
6358 } else
a9a79dfe 6359 ata_port_info(ap, "DUMMY\n");
f3187195
TH
6360 }
6361
f6005354 6362 /* perform each probe asynchronously */
f3187195
TH
6363 for (i = 0; i < host->n_ports; i++) {
6364 struct ata_port *ap = host->ports[i];
79318057 6365 async_schedule(async_port_probe, ap);
f3187195 6366 }
f3187195
TH
6367
6368 return 0;
d9027470
GG
6369
6370 err_tadd:
6371 while (--i >= 0) {
6372 ata_tport_delete(host->ports[i]);
6373 }
6374 return rc;
6375
f3187195
TH
6376}
6377
f5cda257
TH
6378/**
6379 * ata_host_activate - start host, request IRQ and register it
6380 * @host: target ATA host
6381 * @irq: IRQ to request
6382 * @irq_handler: irq_handler used when requesting IRQ
6383 * @irq_flags: irq_flags used when requesting IRQ
6384 * @sht: scsi_host_template to use when registering the host
6385 *
6386 * After allocating an ATA host and initializing it, most libata
6387 * LLDs perform three steps to activate the host - start host,
c9b5560a 6388 * request IRQ and register it. This helper takes necessary
f5cda257
TH
6389 * arguments and performs the three steps in one go.
6390 *
3d46b2e2
PM
6391 * An invalid IRQ skips the IRQ registration and expects the host to
6392 * have set polling mode on the port. In this case, @irq_handler
6393 * should be NULL.
6394 *
f5cda257
TH
6395 * LOCKING:
6396 * Inherited from calling layer (may sleep).
6397 *
6398 * RETURNS:
6399 * 0 on success, -errno otherwise.
6400 */
6401int ata_host_activate(struct ata_host *host, int irq,
6402 irq_handler_t irq_handler, unsigned long irq_flags,
6403 struct scsi_host_template *sht)
6404{
cbcdd875 6405 int i, rc;
7e22c002 6406 char *irq_desc;
f5cda257
TH
6407
6408 rc = ata_host_start(host);
6409 if (rc)
6410 return rc;
6411
3d46b2e2
PM
6412 /* Special case for polling mode */
6413 if (!irq) {
6414 WARN_ON(irq_handler);
6415 return ata_host_register(host, sht);
6416 }
6417
7e22c002
HK
6418 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
6419 dev_driver_string(host->dev),
6420 dev_name(host->dev));
6421 if (!irq_desc)
6422 return -ENOMEM;
6423
f5cda257 6424 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
7e22c002 6425 irq_desc, host);
f5cda257
TH
6426 if (rc)
6427 return rc;
6428
cbcdd875
TH
6429 for (i = 0; i < host->n_ports; i++)
6430 ata_port_desc(host->ports[i], "irq %d", irq);
4031826b 6431
f5cda257
TH
6432 rc = ata_host_register(host, sht);
6433 /* if failed, just free the IRQ and leave ports alone */
6434 if (rc)
6435 devm_free_irq(host->dev, irq, host);
6436
6437 return rc;
6438}
6439
720ba126 6440/**
c9b5560a 6441 * ata_port_detach - Detach ATA port in preparation of device removal
720ba126
TH
6442 * @ap: ATA port to be detached
6443 *
6444 * Detach all ATA devices and the associated SCSI devices of @ap;
6445 * then, remove the associated SCSI host. @ap is guaranteed to
6446 * be quiescent on return from this function.
6447 *
6448 * LOCKING:
6449 * Kernel thread context (may sleep).
6450 */
741b7763 6451static void ata_port_detach(struct ata_port *ap)
720ba126
TH
6452{
6453 unsigned long flags;
a6f9bf4d
LK
6454 struct ata_link *link;
6455 struct ata_device *dev;
720ba126
TH
6456
6457 if (!ap->ops->error_handler)
c3cf30a9 6458 goto skip_eh;
720ba126
TH
6459
6460 /* tell EH we're leaving & flush EH */
ba6a1308 6461 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 6462 ap->pflags |= ATA_PFLAG_UNLOADING;
ece180d1 6463 ata_port_schedule_eh(ap);
ba6a1308 6464 spin_unlock_irqrestore(ap->lock, flags);
720ba126 6465
ece180d1 6466 /* wait till EH commits suicide */
720ba126
TH
6467 ata_port_wait_eh(ap);
6468
ece180d1
TH
6469 /* it better be dead now */
6470 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
720ba126 6471
afe2c511 6472 cancel_delayed_work_sync(&ap->hotplug_task);
720ba126 6473
c3cf30a9 6474 skip_eh:
a6f9bf4d
LK
6475 /* clean up zpodd on port removal */
6476 ata_for_each_link(link, ap, HOST_FIRST) {
6477 ata_for_each_dev(dev, link, ALL) {
6478 if (zpodd_dev_enabled(dev))
6479 zpodd_exit(dev);
6480 }
6481 }
d9027470
GG
6482 if (ap->pmp_link) {
6483 int i;
6484 for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6485 ata_tlink_delete(&ap->pmp_link[i]);
6486 }
720ba126 6487 /* remove the associated SCSI host */
cca3974e 6488 scsi_remove_host(ap->scsi_host);
c5700766 6489 ata_tport_delete(ap);
720ba126
TH
6490}
6491
0529c159
TH
6492/**
6493 * ata_host_detach - Detach all ports of an ATA host
6494 * @host: Host to detach
6495 *
6496 * Detach all ports of @host.
6497 *
6498 * LOCKING:
6499 * Kernel thread context (may sleep).
6500 */
6501void ata_host_detach(struct ata_host *host)
6502{
6503 int i;
6504
6505 for (i = 0; i < host->n_ports; i++)
6506 ata_port_detach(host->ports[i]);
562f0c2d
TH
6507
6508 /* the host is dead now, dissociate ACPI */
6509 ata_acpi_dissociate(host);
0529c159
TH
6510}
6511
374b1873
JG
6512#ifdef CONFIG_PCI
6513
1da177e4
LT
6514/**
6515 * ata_pci_remove_one - PCI layer callback for device removal
6516 * @pdev: PCI device that was removed
6517 *
b878ca5d
TH
6518 * PCI layer indicates to libata via this hook that hot-unplug or
6519 * module unload event has occurred. Detach all ports. Resource
6520 * release is handled via devres.
1da177e4
LT
6521 *
6522 * LOCKING:
6523 * Inherited from PCI layer (may sleep).
6524 */
f0d36efd 6525void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4 6526{
04a3f5b7 6527 struct ata_host *host = pci_get_drvdata(pdev);
1da177e4 6528
b878ca5d 6529 ata_host_detach(host);
1da177e4
LT
6530}
6531
6532/* move to PCI subsystem */
057ace5e 6533int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
6534{
6535 unsigned long tmp = 0;
6536
6537 switch (bits->width) {
6538 case 1: {
6539 u8 tmp8 = 0;
6540 pci_read_config_byte(pdev, bits->reg, &tmp8);
6541 tmp = tmp8;
6542 break;
6543 }
6544 case 2: {
6545 u16 tmp16 = 0;
6546 pci_read_config_word(pdev, bits->reg, &tmp16);
6547 tmp = tmp16;
6548 break;
6549 }
6550 case 4: {
6551 u32 tmp32 = 0;
6552 pci_read_config_dword(pdev, bits->reg, &tmp32);
6553 tmp = tmp32;
6554 break;
6555 }
6556
6557 default:
6558 return -EINVAL;
6559 }
6560
6561 tmp &= bits->mask;
6562
6563 return (tmp == bits->val) ? 1 : 0;
6564}
9b847548 6565
6ffa01d8 6566#ifdef CONFIG_PM
3c5100c1 6567void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
6568{
6569 pci_save_state(pdev);
4c90d971 6570 pci_disable_device(pdev);
500530f6 6571
3a2d5b70 6572 if (mesg.event & PM_EVENT_SLEEP)
500530f6 6573 pci_set_power_state(pdev, PCI_D3hot);
9b847548
JA
6574}
6575
553c4aa6 6576int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 6577{
553c4aa6
TH
6578 int rc;
6579
9b847548
JA
6580 pci_set_power_state(pdev, PCI_D0);
6581 pci_restore_state(pdev);
553c4aa6 6582
b878ca5d 6583 rc = pcim_enable_device(pdev);
553c4aa6 6584 if (rc) {
a44fec1f
JP
6585 dev_err(&pdev->dev,
6586 "failed to enable device after resume (%d)\n", rc);
553c4aa6
TH
6587 return rc;
6588 }
6589
9b847548 6590 pci_set_master(pdev);
553c4aa6 6591 return 0;
500530f6
TH
6592}
6593
3c5100c1 6594int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 6595{
04a3f5b7 6596 struct ata_host *host = pci_get_drvdata(pdev);
500530f6
TH
6597 int rc = 0;
6598
cca3974e 6599 rc = ata_host_suspend(host, mesg);
500530f6
TH
6600 if (rc)
6601 return rc;
6602
3c5100c1 6603 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
6604
6605 return 0;
6606}
6607
6608int ata_pci_device_resume(struct pci_dev *pdev)
6609{
04a3f5b7 6610 struct ata_host *host = pci_get_drvdata(pdev);
553c4aa6 6611 int rc;
500530f6 6612
553c4aa6
TH
6613 rc = ata_pci_device_do_resume(pdev);
6614 if (rc == 0)
6615 ata_host_resume(host);
6616 return rc;
9b847548 6617}
6ffa01d8
TH
6618#endif /* CONFIG_PM */
6619
1da177e4
LT
6620#endif /* CONFIG_PCI */
6621
b7db04d9
BN
6622/**
6623 * ata_platform_remove_one - Platform layer callback for device removal
6624 * @pdev: Platform device that was removed
6625 *
6626 * Platform layer indicates to libata via this hook that hot-unplug or
6627 * module unload event has occurred. Detach all ports. Resource
6628 * release is handled via devres.
6629 *
6630 * LOCKING:
6631 * Inherited from platform layer (may sleep).
6632 */
6633int ata_platform_remove_one(struct platform_device *pdev)
6634{
6635 struct ata_host *host = platform_get_drvdata(pdev);
6636
6637 ata_host_detach(host);
6638
6639 return 0;
6640}
6641
33267325
TH
6642static int __init ata_parse_force_one(char **cur,
6643 struct ata_force_ent *force_ent,
6644 const char **reason)
6645{
0f5f264b 6646 static const struct ata_force_param force_tbl[] __initconst = {
33267325
TH
6647 { "40c", .cbl = ATA_CBL_PATA40 },
6648 { "80c", .cbl = ATA_CBL_PATA80 },
6649 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6650 { "unk", .cbl = ATA_CBL_PATA_UNK },
6651 { "ign", .cbl = ATA_CBL_PATA_IGN },
6652 { "sata", .cbl = ATA_CBL_SATA },
6653 { "1.5Gbps", .spd_limit = 1 },
6654 { "3.0Gbps", .spd_limit = 2 },
6655 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6656 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
d7b16e4f
MP
6657 { "noncqtrim", .horkage_on = ATA_HORKAGE_NO_NCQ_TRIM },
6658 { "ncqtrim", .horkage_off = ATA_HORKAGE_NO_NCQ_TRIM },
43c9c591 6659 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID },
33267325
TH
6660 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6661 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6662 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6663 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6664 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6665 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6666 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6667 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6668 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6669 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6670 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6671 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6672 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6673 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6674 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6675 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6676 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6677 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6678 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6679 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6680 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6681 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6682 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6683 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6684 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6685 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6686 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6687 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6688 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6689 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6690 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6691 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6692 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6693 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
05944bdf
TH
6694 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6695 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6696 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
ca6d43b0 6697 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE },
966fbe19 6698 { "atapi_dmadir", .horkage_on = ATA_HORKAGE_ATAPI_DMADIR },
b8bd6dc3 6699 { "disable", .horkage_on = ATA_HORKAGE_DISABLE },
33267325
TH
6700 };
6701 char *start = *cur, *p = *cur;
6702 char *id, *val, *endp;
6703 const struct ata_force_param *match_fp = NULL;
6704 int nr_matches = 0, i;
6705
6706 /* find where this param ends and update *cur */
6707 while (*p != '\0' && *p != ',')
6708 p++;
6709
6710 if (*p == '\0')
6711 *cur = p;
6712 else
6713 *cur = p + 1;
6714
6715 *p = '\0';
6716
6717 /* parse */
6718 p = strchr(start, ':');
6719 if (!p) {
6720 val = strstrip(start);
6721 goto parse_val;
6722 }
6723 *p = '\0';
6724
6725 id = strstrip(start);
6726 val = strstrip(p + 1);
6727
6728 /* parse id */
6729 p = strchr(id, '.');
6730 if (p) {
6731 *p++ = '\0';
6732 force_ent->device = simple_strtoul(p, &endp, 10);
6733 if (p == endp || *endp != '\0') {
6734 *reason = "invalid device";
6735 return -EINVAL;
6736 }
6737 }
6738
6739 force_ent->port = simple_strtoul(id, &endp, 10);
6740 if (p == endp || *endp != '\0') {
6741 *reason = "invalid port/link";
6742 return -EINVAL;
6743 }
6744
6745 parse_val:
6746 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6747 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6748 const struct ata_force_param *fp = &force_tbl[i];
6749
6750 if (strncasecmp(val, fp->name, strlen(val)))
6751 continue;
6752
6753 nr_matches++;
6754 match_fp = fp;
6755
6756 if (strcasecmp(val, fp->name) == 0) {
6757 nr_matches = 1;
6758 break;
6759 }
6760 }
6761
6762 if (!nr_matches) {
6763 *reason = "unknown value";
6764 return -EINVAL;
6765 }
6766 if (nr_matches > 1) {
6767 *reason = "ambigious value";
6768 return -EINVAL;
6769 }
6770
6771 force_ent->param = *match_fp;
6772
6773 return 0;
6774}
6775
6776static void __init ata_parse_force_param(void)
6777{
6778 int idx = 0, size = 1;
6779 int last_port = -1, last_device = -1;
6780 char *p, *cur, *next;
6781
6782 /* calculate maximum number of params and allocate force_tbl */
6783 for (p = ata_force_param_buf; *p; p++)
6784 if (*p == ',')
6785 size++;
6786
6787 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6788 if (!ata_force_tbl) {
6789 printk(KERN_WARNING "ata: failed to extend force table, "
6790 "libata.force ignored\n");
6791 return;
6792 }
6793
6794 /* parse and populate the table */
6795 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6796 const char *reason = "";
6797 struct ata_force_ent te = { .port = -1, .device = -1 };
6798
6799 next = cur;
6800 if (ata_parse_force_one(&next, &te, &reason)) {
6801 printk(KERN_WARNING "ata: failed to parse force "
6802 "parameter \"%s\" (%s)\n",
6803 cur, reason);
6804 continue;
6805 }
6806
6807 if (te.port == -1) {
6808 te.port = last_port;
6809 te.device = last_device;
6810 }
6811
6812 ata_force_tbl[idx++] = te;
6813
6814 last_port = te.port;
6815 last_device = te.device;
6816 }
6817
6818 ata_force_tbl_size = idx;
6819}
1da177e4 6820
1da177e4
LT
6821static int __init ata_init(void)
6822{
d9027470 6823 int rc;
270390e1 6824
33267325
TH
6825 ata_parse_force_param();
6826
270390e1 6827 rc = ata_sff_init();
ad72cf98
TH
6828 if (rc) {
6829 kfree(ata_force_tbl);
6830 return rc;
6831 }
453b07ac 6832
d9027470
GG
6833 libata_transport_init();
6834 ata_scsi_transport_template = ata_attach_transport();
6835 if (!ata_scsi_transport_template) {
6836 ata_sff_exit();
6837 rc = -ENOMEM;
6838 goto err_out;
4fca377f 6839 }
d9027470 6840
1da177e4
LT
6841 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6842 return 0;
d9027470
GG
6843
6844err_out:
6845 return rc;
1da177e4
LT
6846}
6847
6848static void __exit ata_exit(void)
6849{
d9027470
GG
6850 ata_release_transport(ata_scsi_transport_template);
6851 libata_transport_exit();
270390e1 6852 ata_sff_exit();
33267325 6853 kfree(ata_force_tbl);
1da177e4
LT
6854}
6855
a4625085 6856subsys_initcall(ata_init);
1da177e4
LT
6857module_exit(ata_exit);
6858
9990b6f3 6859static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
67846b30
JG
6860
6861int ata_ratelimit(void)
6862{
9990b6f3 6863 return __ratelimit(&ratelimit);
67846b30
JG
6864}
6865
c0c362b6
TH
6866/**
6867 * ata_msleep - ATA EH owner aware msleep
6868 * @ap: ATA port to attribute the sleep to
6869 * @msecs: duration to sleep in milliseconds
6870 *
6871 * Sleeps @msecs. If the current task is owner of @ap's EH, the
6872 * ownership is released before going to sleep and reacquired
6873 * after the sleep is complete. IOW, other ports sharing the
6874 * @ap->host will be allowed to own the EH while this task is
6875 * sleeping.
6876 *
6877 * LOCKING:
6878 * Might sleep.
6879 */
97750ceb
TH
6880void ata_msleep(struct ata_port *ap, unsigned int msecs)
6881{
c0c362b6
TH
6882 bool owns_eh = ap && ap->host->eh_owner == current;
6883
6884 if (owns_eh)
6885 ata_eh_release(ap);
6886
848c3920
AVM
6887 if (msecs < 20) {
6888 unsigned long usecs = msecs * USEC_PER_MSEC;
6889 usleep_range(usecs, usecs + 50);
6890 } else {
6891 msleep(msecs);
6892 }
c0c362b6
TH
6893
6894 if (owns_eh)
6895 ata_eh_acquire(ap);
97750ceb
TH
6896}
6897
c22daff4
TH
6898/**
6899 * ata_wait_register - wait until register value changes
97750ceb 6900 * @ap: ATA port to wait register for, can be NULL
c22daff4
TH
6901 * @reg: IO-mapped register
6902 * @mask: Mask to apply to read register value
6903 * @val: Wait condition
341c2c95
TH
6904 * @interval: polling interval in milliseconds
6905 * @timeout: timeout in milliseconds
c22daff4
TH
6906 *
6907 * Waiting for some bits of register to change is a common
6908 * operation for ATA controllers. This function reads 32bit LE
6909 * IO-mapped register @reg and tests for the following condition.
6910 *
6911 * (*@reg & mask) != val
6912 *
6913 * If the condition is met, it returns; otherwise, the process is
6914 * repeated after @interval_msec until timeout.
6915 *
6916 * LOCKING:
6917 * Kernel thread context (may sleep)
6918 *
6919 * RETURNS:
6920 * The final register value.
6921 */
97750ceb 6922u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
341c2c95 6923 unsigned long interval, unsigned long timeout)
c22daff4 6924{
341c2c95 6925 unsigned long deadline;
c22daff4
TH
6926 u32 tmp;
6927
6928 tmp = ioread32(reg);
6929
6930 /* Calculate timeout _after_ the first read to make sure
6931 * preceding writes reach the controller before starting to
6932 * eat away the timeout.
6933 */
341c2c95 6934 deadline = ata_deadline(jiffies, timeout);
c22daff4 6935
341c2c95 6936 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
97750ceb 6937 ata_msleep(ap, interval);
c22daff4
TH
6938 tmp = ioread32(reg);
6939 }
6940
6941 return tmp;
6942}
6943
8393b811
GM
6944/**
6945 * sata_lpm_ignore_phy_events - test if PHY event should be ignored
6946 * @link: Link receiving the event
6947 *
6948 * Test whether the received PHY event has to be ignored or not.
6949 *
6950 * LOCKING:
6951 * None:
6952 *
6953 * RETURNS:
6954 * True if the event has to be ignored.
6955 */
6956bool sata_lpm_ignore_phy_events(struct ata_link *link)
6957{
09c5b480
GM
6958 unsigned long lpm_timeout = link->last_lpm_change +
6959 msecs_to_jiffies(ATA_TMOUT_SPURIOUS_PHY);
6960
8393b811 6961 /* if LPM is enabled, PHYRDY doesn't mean anything */
09c5b480
GM
6962 if (link->lpm_policy > ATA_LPM_MAX_POWER)
6963 return true;
6964
6965 /* ignore the first PHY event after the LPM policy changed
6966 * as it is might be spurious
6967 */
6968 if ((link->flags & ATA_LFLAG_CHANGED) &&
6969 time_before(jiffies, lpm_timeout))
6970 return true;
6971
6972 return false;
8393b811
GM
6973}
6974EXPORT_SYMBOL_GPL(sata_lpm_ignore_phy_events);
6975
dd5b06c4
TH
6976/*
6977 * Dummy port_ops
6978 */
182d7bba 6979static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
dd5b06c4 6980{
182d7bba 6981 return AC_ERR_SYSTEM;
dd5b06c4
TH
6982}
6983
182d7bba 6984static void ata_dummy_error_handler(struct ata_port *ap)
dd5b06c4 6985{
182d7bba 6986 /* truly dummy */
dd5b06c4
TH
6987}
6988
029cfd6b 6989struct ata_port_operations ata_dummy_port_ops = {
dd5b06c4
TH
6990 .qc_prep = ata_noop_qc_prep,
6991 .qc_issue = ata_dummy_qc_issue,
182d7bba 6992 .error_handler = ata_dummy_error_handler,
e4a9c373
DW
6993 .sched_eh = ata_std_sched_eh,
6994 .end_eh = ata_std_end_eh,
dd5b06c4
TH
6995};
6996
21b0ad4f
TH
6997const struct ata_port_info ata_dummy_port_info = {
6998 .port_ops = &ata_dummy_port_ops,
6999};
7000
a9a79dfe
JP
7001/*
7002 * Utility print functions
7003 */
d7bead1b
JP
7004void ata_port_printk(const struct ata_port *ap, const char *level,
7005 const char *fmt, ...)
a9a79dfe
JP
7006{
7007 struct va_format vaf;
7008 va_list args;
a9a79dfe
JP
7009
7010 va_start(args, fmt);
7011
7012 vaf.fmt = fmt;
7013 vaf.va = &args;
7014
d7bead1b 7015 printk("%sata%u: %pV", level, ap->print_id, &vaf);
a9a79dfe
JP
7016
7017 va_end(args);
a9a79dfe
JP
7018}
7019EXPORT_SYMBOL(ata_port_printk);
7020
d7bead1b
JP
7021void ata_link_printk(const struct ata_link *link, const char *level,
7022 const char *fmt, ...)
a9a79dfe
JP
7023{
7024 struct va_format vaf;
7025 va_list args;
a9a79dfe
JP
7026
7027 va_start(args, fmt);
7028
7029 vaf.fmt = fmt;
7030 vaf.va = &args;
7031
7032 if (sata_pmp_attached(link->ap) || link->ap->slave_link)
d7bead1b
JP
7033 printk("%sata%u.%02u: %pV",
7034 level, link->ap->print_id, link->pmp, &vaf);
a9a79dfe 7035 else
d7bead1b
JP
7036 printk("%sata%u: %pV",
7037 level, link->ap->print_id, &vaf);
a9a79dfe
JP
7038
7039 va_end(args);
a9a79dfe
JP
7040}
7041EXPORT_SYMBOL(ata_link_printk);
7042
d7bead1b 7043void ata_dev_printk(const struct ata_device *dev, const char *level,
a9a79dfe
JP
7044 const char *fmt, ...)
7045{
7046 struct va_format vaf;
7047 va_list args;
a9a79dfe
JP
7048
7049 va_start(args, fmt);
7050
7051 vaf.fmt = fmt;
7052 vaf.va = &args;
7053
d7bead1b
JP
7054 printk("%sata%u.%02u: %pV",
7055 level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
7056 &vaf);
a9a79dfe
JP
7057
7058 va_end(args);
a9a79dfe
JP
7059}
7060EXPORT_SYMBOL(ata_dev_printk);
7061
06296a1e
JP
7062void ata_print_version(const struct device *dev, const char *version)
7063{
7064 dev_printk(KERN_DEBUG, dev, "version %s\n", version);
7065}
7066EXPORT_SYMBOL(ata_print_version);
7067
1da177e4
LT
7068/*
7069 * libata is essentially a library of internal helper functions for
7070 * low-level ATA host controller drivers. As such, the API/ABI is
7071 * likely to change as new drivers are added and updated.
7072 * Do not depend on ABI/API stability.
7073 */
e9c83914
TH
7074EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7075EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7076EXPORT_SYMBOL_GPL(sata_deb_timing_long);
029cfd6b
TH
7077EXPORT_SYMBOL_GPL(ata_base_port_ops);
7078EXPORT_SYMBOL_GPL(sata_port_ops);
dd5b06c4 7079EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
21b0ad4f 7080EXPORT_SYMBOL_GPL(ata_dummy_port_info);
1eca4365
TH
7081EXPORT_SYMBOL_GPL(ata_link_next);
7082EXPORT_SYMBOL_GPL(ata_dev_next);
1da177e4 7083EXPORT_SYMBOL_GPL(ata_std_bios_param);
d8d9129e 7084EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
cca3974e 7085EXPORT_SYMBOL_GPL(ata_host_init);
f3187195 7086EXPORT_SYMBOL_GPL(ata_host_alloc);
f5cda257 7087EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
b1c72916 7088EXPORT_SYMBOL_GPL(ata_slave_link_init);
ecef7253 7089EXPORT_SYMBOL_GPL(ata_host_start);
f3187195 7090EXPORT_SYMBOL_GPL(ata_host_register);
f5cda257 7091EXPORT_SYMBOL_GPL(ata_host_activate);
0529c159 7092EXPORT_SYMBOL_GPL(ata_host_detach);
1da177e4 7093EXPORT_SYMBOL_GPL(ata_sg_init);
f686bcb8 7094EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 7095EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
436d34b3 7096EXPORT_SYMBOL_GPL(atapi_cmd_type);
1da177e4
LT
7097EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7098EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6357357c
TH
7099EXPORT_SYMBOL_GPL(ata_pack_xfermask);
7100EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
7101EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
7102EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
7103EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
7104EXPORT_SYMBOL_GPL(ata_mode_string);
7105EXPORT_SYMBOL_GPL(ata_id_xfermask);
04351821 7106EXPORT_SYMBOL_GPL(ata_do_set_mode);
31cc23b3 7107EXPORT_SYMBOL_GPL(ata_std_qc_defer);
e46834cd 7108EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
10305f0f 7109EXPORT_SYMBOL_GPL(ata_dev_disable);
3c567b7d 7110EXPORT_SYMBOL_GPL(sata_set_spd);
aa2731ad 7111EXPORT_SYMBOL_GPL(ata_wait_after_reset);
936fd732
TH
7112EXPORT_SYMBOL_GPL(sata_link_debounce);
7113EXPORT_SYMBOL_GPL(sata_link_resume);
1152b261 7114EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
0aa1113d 7115EXPORT_SYMBOL_GPL(ata_std_prereset);
cc0680a5 7116EXPORT_SYMBOL_GPL(sata_link_hardreset);
57c9efdf 7117EXPORT_SYMBOL_GPL(sata_std_hardreset);
203c75b8 7118EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
7119EXPORT_SYMBOL_GPL(ata_dev_classify);
7120EXPORT_SYMBOL_GPL(ata_dev_pair);
67846b30 7121EXPORT_SYMBOL_GPL(ata_ratelimit);
97750ceb 7122EXPORT_SYMBOL_GPL(ata_msleep);
c22daff4 7123EXPORT_SYMBOL_GPL(ata_wait_register);
1da177e4 7124EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 7125EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 7126EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 7127EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
f6e67035 7128EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
34bf2170
TH
7129EXPORT_SYMBOL_GPL(sata_scr_valid);
7130EXPORT_SYMBOL_GPL(sata_scr_read);
7131EXPORT_SYMBOL_GPL(sata_scr_write);
7132EXPORT_SYMBOL_GPL(sata_scr_write_flush);
936fd732
TH
7133EXPORT_SYMBOL_GPL(ata_link_online);
7134EXPORT_SYMBOL_GPL(ata_link_offline);
6ffa01d8 7135#ifdef CONFIG_PM
cca3974e
JG
7136EXPORT_SYMBOL_GPL(ata_host_suspend);
7137EXPORT_SYMBOL_GPL(ata_host_resume);
6ffa01d8 7138#endif /* CONFIG_PM */
6a62a04d
TH
7139EXPORT_SYMBOL_GPL(ata_id_string);
7140EXPORT_SYMBOL_GPL(ata_id_c_string);
963e4975 7141EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1da177e4
LT
7142EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7143
1bc4ccff 7144EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6357357c 7145EXPORT_SYMBOL_GPL(ata_timing_find_mode);
452503f9
AC
7146EXPORT_SYMBOL_GPL(ata_timing_compute);
7147EXPORT_SYMBOL_GPL(ata_timing_merge);
a0f79b92 7148EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
452503f9 7149
1da177e4
LT
7150#ifdef CONFIG_PCI
7151EXPORT_SYMBOL_GPL(pci_test_config_bits);
1da177e4 7152EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6ffa01d8 7153#ifdef CONFIG_PM
500530f6
TH
7154EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7155EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
7156EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7157EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6ffa01d8 7158#endif /* CONFIG_PM */
1da177e4 7159#endif /* CONFIG_PCI */
9b847548 7160
b7db04d9
BN
7161EXPORT_SYMBOL_GPL(ata_platform_remove_one);
7162
b64bbc39
TH
7163EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7164EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7165EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
cbcdd875
TH
7166EXPORT_SYMBOL_GPL(ata_port_desc);
7167#ifdef CONFIG_PCI
7168EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7169#endif /* CONFIG_PCI */
7b70fc03 7170EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
dbd82616 7171EXPORT_SYMBOL_GPL(ata_link_abort);
7b70fc03 7172EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499 7173EXPORT_SYMBOL_GPL(ata_port_freeze);
7d77b247 7174EXPORT_SYMBOL_GPL(sata_async_notification);
e3180499
TH
7175EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7176EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
7177EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7178EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
10acf3b0 7179EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
022bdb07 7180EXPORT_SYMBOL_GPL(ata_do_eh);
a1efdaba 7181EXPORT_SYMBOL_GPL(ata_std_error_handler);
be0d18df
AC
7182
7183EXPORT_SYMBOL_GPL(ata_cable_40wire);
7184EXPORT_SYMBOL_GPL(ata_cable_80wire);
7185EXPORT_SYMBOL_GPL(ata_cable_unknown);
c88f90c3 7186EXPORT_SYMBOL_GPL(ata_cable_ignore);
be0d18df 7187EXPORT_SYMBOL_GPL(ata_cable_sata);
This page took 1.630476 seconds and 5 git commands to generate.