[PATCH] libata: prepare ata_sg_clean() for invocation from EH
[deliverable/linux.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
1da177e4
LT
35#include <linux/kernel.h>
36#include <linux/module.h>
37#include <linux/pci.h>
38#include <linux/init.h>
39#include <linux/list.h>
40#include <linux/mm.h>
41#include <linux/highmem.h>
42#include <linux/spinlock.h>
43#include <linux/blkdev.h>
44#include <linux/delay.h>
45#include <linux/timer.h>
46#include <linux/interrupt.h>
47#include <linux/completion.h>
48#include <linux/suspend.h>
49#include <linux/workqueue.h>
67846b30 50#include <linux/jiffies.h>
378f058c 51#include <linux/scatterlist.h>
1da177e4 52#include <scsi/scsi.h>
193515d5 53#include <scsi/scsi_cmnd.h>
1da177e4
LT
54#include <scsi/scsi_host.h>
55#include <linux/libata.h>
56#include <asm/io.h>
57#include <asm/semaphore.h>
58#include <asm/byteorder.h>
59
60#include "libata.h"
61
d7bb4cc7 62/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
63const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
64const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
65const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 66
3373efd8
TH
67static unsigned int ata_dev_init_params(struct ata_device *dev,
68 u16 heads, u16 sectors);
69static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
70static void ata_dev_xfermask(struct ata_device *dev);
1da177e4
LT
71
72static unsigned int ata_unique_id = 1;
73static struct workqueue_struct *ata_wq;
74
453b07ac
TH
75struct workqueue_struct *ata_aux_wq;
76
418dc1f5 77int atapi_enabled = 1;
1623c81e
JG
78module_param(atapi_enabled, int, 0444);
79MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
80
95de719a
AL
81int atapi_dmadir = 0;
82module_param(atapi_dmadir, int, 0444);
83MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
84
c3c013a2
JG
85int libata_fua = 0;
86module_param_named(fua, libata_fua, int, 0444);
87MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
88
a8601e5f
AM
89static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
90module_param(ata_probe_timeout, int, 0444);
91MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
92
1da177e4
LT
93MODULE_AUTHOR("Jeff Garzik");
94MODULE_DESCRIPTION("Library module for ATA devices");
95MODULE_LICENSE("GPL");
96MODULE_VERSION(DRV_VERSION);
97
0baab86b 98
1da177e4
LT
99/**
100 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
101 * @tf: Taskfile to convert
102 * @fis: Buffer into which data will output
103 * @pmp: Port multiplier port
104 *
105 * Converts a standard ATA taskfile to a Serial ATA
106 * FIS structure (Register - Host to Device).
107 *
108 * LOCKING:
109 * Inherited from caller.
110 */
111
057ace5e 112void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
1da177e4
LT
113{
114 fis[0] = 0x27; /* Register - Host to Device FIS */
115 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
116 bit 7 indicates Command FIS */
117 fis[2] = tf->command;
118 fis[3] = tf->feature;
119
120 fis[4] = tf->lbal;
121 fis[5] = tf->lbam;
122 fis[6] = tf->lbah;
123 fis[7] = tf->device;
124
125 fis[8] = tf->hob_lbal;
126 fis[9] = tf->hob_lbam;
127 fis[10] = tf->hob_lbah;
128 fis[11] = tf->hob_feature;
129
130 fis[12] = tf->nsect;
131 fis[13] = tf->hob_nsect;
132 fis[14] = 0;
133 fis[15] = tf->ctl;
134
135 fis[16] = 0;
136 fis[17] = 0;
137 fis[18] = 0;
138 fis[19] = 0;
139}
140
141/**
142 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
143 * @fis: Buffer from which data will be input
144 * @tf: Taskfile to output
145 *
e12a1be6 146 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
147 *
148 * LOCKING:
149 * Inherited from caller.
150 */
151
057ace5e 152void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
153{
154 tf->command = fis[2]; /* status */
155 tf->feature = fis[3]; /* error */
156
157 tf->lbal = fis[4];
158 tf->lbam = fis[5];
159 tf->lbah = fis[6];
160 tf->device = fis[7];
161
162 tf->hob_lbal = fis[8];
163 tf->hob_lbam = fis[9];
164 tf->hob_lbah = fis[10];
165
166 tf->nsect = fis[12];
167 tf->hob_nsect = fis[13];
168}
169
8cbd6df1
AL
170static const u8 ata_rw_cmds[] = {
171 /* pio multi */
172 ATA_CMD_READ_MULTI,
173 ATA_CMD_WRITE_MULTI,
174 ATA_CMD_READ_MULTI_EXT,
175 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
176 0,
177 0,
178 0,
179 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
180 /* pio */
181 ATA_CMD_PIO_READ,
182 ATA_CMD_PIO_WRITE,
183 ATA_CMD_PIO_READ_EXT,
184 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
185 0,
186 0,
187 0,
188 0,
8cbd6df1
AL
189 /* dma */
190 ATA_CMD_READ,
191 ATA_CMD_WRITE,
192 ATA_CMD_READ_EXT,
9a3dccc4
TH
193 ATA_CMD_WRITE_EXT,
194 0,
195 0,
196 0,
197 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 198};
1da177e4
LT
199
200/**
8cbd6df1 201 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
202 * @tf: command to examine and configure
203 * @dev: device tf belongs to
1da177e4 204 *
2e9edbf8 205 * Examine the device configuration and tf->flags to calculate
8cbd6df1 206 * the proper read/write commands and protocol to use.
1da177e4
LT
207 *
208 * LOCKING:
209 * caller.
210 */
bd056d7e 211static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 212{
9a3dccc4 213 u8 cmd;
1da177e4 214
9a3dccc4 215 int index, fua, lba48, write;
2e9edbf8 216
9a3dccc4 217 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
218 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
219 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 220
8cbd6df1
AL
221 if (dev->flags & ATA_DFLAG_PIO) {
222 tf->protocol = ATA_PROT_PIO;
9a3dccc4 223 index = dev->multi_count ? 0 : 8;
bd056d7e 224 } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
225 /* Unable to use DMA due to host limitation */
226 tf->protocol = ATA_PROT_PIO;
0565c26d 227 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
228 } else {
229 tf->protocol = ATA_PROT_DMA;
9a3dccc4 230 index = 16;
8cbd6df1 231 }
1da177e4 232
9a3dccc4
TH
233 cmd = ata_rw_cmds[index + fua + lba48 + write];
234 if (cmd) {
235 tf->command = cmd;
236 return 0;
237 }
238 return -1;
1da177e4
LT
239}
240
35b649fe
TH
241/**
242 * ata_tf_read_block - Read block address from ATA taskfile
243 * @tf: ATA taskfile of interest
244 * @dev: ATA device @tf belongs to
245 *
246 * LOCKING:
247 * None.
248 *
249 * Read block address from @tf. This function can handle all
250 * three address formats - LBA, LBA48 and CHS. tf->protocol and
251 * flags select the address format to use.
252 *
253 * RETURNS:
254 * Block address read from @tf.
255 */
256u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
257{
258 u64 block = 0;
259
260 if (tf->flags & ATA_TFLAG_LBA) {
261 if (tf->flags & ATA_TFLAG_LBA48) {
262 block |= (u64)tf->hob_lbah << 40;
263 block |= (u64)tf->hob_lbam << 32;
264 block |= tf->hob_lbal << 24;
265 } else
266 block |= (tf->device & 0xf) << 24;
267
268 block |= tf->lbah << 16;
269 block |= tf->lbam << 8;
270 block |= tf->lbal;
271 } else {
272 u32 cyl, head, sect;
273
274 cyl = tf->lbam | (tf->lbah << 8);
275 head = tf->device & 0xf;
276 sect = tf->lbal;
277
278 block = (cyl * dev->heads + head) * dev->sectors + sect;
279 }
280
281 return block;
282}
283
bd056d7e
TH
284/**
285 * ata_build_rw_tf - Build ATA taskfile for given read/write request
286 * @tf: Target ATA taskfile
287 * @dev: ATA device @tf belongs to
288 * @block: Block address
289 * @n_block: Number of blocks
290 * @tf_flags: RW/FUA etc...
291 * @tag: tag
292 *
293 * LOCKING:
294 * None.
295 *
296 * Build ATA taskfile @tf for read/write request described by
297 * @block, @n_block, @tf_flags and @tag on @dev.
298 *
299 * RETURNS:
300 *
301 * 0 on success, -ERANGE if the request is too large for @dev,
302 * -EINVAL if the request is invalid.
303 */
304int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
305 u64 block, u32 n_block, unsigned int tf_flags,
306 unsigned int tag)
307{
308 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
309 tf->flags |= tf_flags;
310
311 if ((dev->flags & (ATA_DFLAG_PIO | ATA_DFLAG_NCQ_OFF |
70e6ad0c
TH
312 ATA_DFLAG_NCQ)) == ATA_DFLAG_NCQ &&
313 likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
314 /* yay, NCQ */
315 if (!lba_48_ok(block, n_block))
316 return -ERANGE;
317
318 tf->protocol = ATA_PROT_NCQ;
319 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
320
321 if (tf->flags & ATA_TFLAG_WRITE)
322 tf->command = ATA_CMD_FPDMA_WRITE;
323 else
324 tf->command = ATA_CMD_FPDMA_READ;
325
326 tf->nsect = tag << 3;
327 tf->hob_feature = (n_block >> 8) & 0xff;
328 tf->feature = n_block & 0xff;
329
330 tf->hob_lbah = (block >> 40) & 0xff;
331 tf->hob_lbam = (block >> 32) & 0xff;
332 tf->hob_lbal = (block >> 24) & 0xff;
333 tf->lbah = (block >> 16) & 0xff;
334 tf->lbam = (block >> 8) & 0xff;
335 tf->lbal = block & 0xff;
336
337 tf->device = 1 << 6;
338 if (tf->flags & ATA_TFLAG_FUA)
339 tf->device |= 1 << 7;
340 } else if (dev->flags & ATA_DFLAG_LBA) {
341 tf->flags |= ATA_TFLAG_LBA;
342
343 if (lba_28_ok(block, n_block)) {
344 /* use LBA28 */
345 tf->device |= (block >> 24) & 0xf;
346 } else if (lba_48_ok(block, n_block)) {
347 if (!(dev->flags & ATA_DFLAG_LBA48))
348 return -ERANGE;
349
350 /* use LBA48 */
351 tf->flags |= ATA_TFLAG_LBA48;
352
353 tf->hob_nsect = (n_block >> 8) & 0xff;
354
355 tf->hob_lbah = (block >> 40) & 0xff;
356 tf->hob_lbam = (block >> 32) & 0xff;
357 tf->hob_lbal = (block >> 24) & 0xff;
358 } else
359 /* request too large even for LBA48 */
360 return -ERANGE;
361
362 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
363 return -EINVAL;
364
365 tf->nsect = n_block & 0xff;
366
367 tf->lbah = (block >> 16) & 0xff;
368 tf->lbam = (block >> 8) & 0xff;
369 tf->lbal = block & 0xff;
370
371 tf->device |= ATA_LBA;
372 } else {
373 /* CHS */
374 u32 sect, head, cyl, track;
375
376 /* The request -may- be too large for CHS addressing. */
377 if (!lba_28_ok(block, n_block))
378 return -ERANGE;
379
380 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
381 return -EINVAL;
382
383 /* Convert LBA to CHS */
384 track = (u32)block / dev->sectors;
385 cyl = track / dev->heads;
386 head = track % dev->heads;
387 sect = (u32)block % dev->sectors + 1;
388
389 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
390 (u32)block, track, cyl, head, sect);
391
392 /* Check whether the converted CHS can fit.
393 Cylinder: 0-65535
394 Head: 0-15
395 Sector: 1-255*/
396 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
397 return -ERANGE;
398
399 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
400 tf->lbal = sect;
401 tf->lbam = cyl;
402 tf->lbah = cyl >> 8;
403 tf->device |= head;
404 }
405
406 return 0;
407}
408
cb95d562
TH
409/**
410 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
411 * @pio_mask: pio_mask
412 * @mwdma_mask: mwdma_mask
413 * @udma_mask: udma_mask
414 *
415 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
416 * unsigned int xfer_mask.
417 *
418 * LOCKING:
419 * None.
420 *
421 * RETURNS:
422 * Packed xfer_mask.
423 */
424static unsigned int ata_pack_xfermask(unsigned int pio_mask,
425 unsigned int mwdma_mask,
426 unsigned int udma_mask)
427{
428 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
429 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
430 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
431}
432
c0489e4e
TH
433/**
434 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
435 * @xfer_mask: xfer_mask to unpack
436 * @pio_mask: resulting pio_mask
437 * @mwdma_mask: resulting mwdma_mask
438 * @udma_mask: resulting udma_mask
439 *
440 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
441 * Any NULL distination masks will be ignored.
442 */
443static void ata_unpack_xfermask(unsigned int xfer_mask,
444 unsigned int *pio_mask,
445 unsigned int *mwdma_mask,
446 unsigned int *udma_mask)
447{
448 if (pio_mask)
449 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
450 if (mwdma_mask)
451 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
452 if (udma_mask)
453 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
454}
455
cb95d562 456static const struct ata_xfer_ent {
be9a50c8 457 int shift, bits;
cb95d562
TH
458 u8 base;
459} ata_xfer_tbl[] = {
460 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
461 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
462 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
463 { -1, },
464};
465
466/**
467 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
468 * @xfer_mask: xfer_mask of interest
469 *
470 * Return matching XFER_* value for @xfer_mask. Only the highest
471 * bit of @xfer_mask is considered.
472 *
473 * LOCKING:
474 * None.
475 *
476 * RETURNS:
477 * Matching XFER_* value, 0 if no match found.
478 */
479static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
480{
481 int highbit = fls(xfer_mask) - 1;
482 const struct ata_xfer_ent *ent;
483
484 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
485 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
486 return ent->base + highbit - ent->shift;
487 return 0;
488}
489
490/**
491 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
492 * @xfer_mode: XFER_* of interest
493 *
494 * Return matching xfer_mask for @xfer_mode.
495 *
496 * LOCKING:
497 * None.
498 *
499 * RETURNS:
500 * Matching xfer_mask, 0 if no match found.
501 */
502static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
503{
504 const struct ata_xfer_ent *ent;
505
506 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
507 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
508 return 1 << (ent->shift + xfer_mode - ent->base);
509 return 0;
510}
511
512/**
513 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
514 * @xfer_mode: XFER_* of interest
515 *
516 * Return matching xfer_shift for @xfer_mode.
517 *
518 * LOCKING:
519 * None.
520 *
521 * RETURNS:
522 * Matching xfer_shift, -1 if no match found.
523 */
524static int ata_xfer_mode2shift(unsigned int xfer_mode)
525{
526 const struct ata_xfer_ent *ent;
527
528 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
529 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
530 return ent->shift;
531 return -1;
532}
533
1da177e4 534/**
1da7b0d0
TH
535 * ata_mode_string - convert xfer_mask to string
536 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
537 *
538 * Determine string which represents the highest speed
1da7b0d0 539 * (highest bit in @modemask).
1da177e4
LT
540 *
541 * LOCKING:
542 * None.
543 *
544 * RETURNS:
545 * Constant C string representing highest speed listed in
1da7b0d0 546 * @mode_mask, or the constant C string "<n/a>".
1da177e4 547 */
1da7b0d0 548static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 549{
75f554bc
TH
550 static const char * const xfer_mode_str[] = {
551 "PIO0",
552 "PIO1",
553 "PIO2",
554 "PIO3",
555 "PIO4",
b352e57d
AC
556 "PIO5",
557 "PIO6",
75f554bc
TH
558 "MWDMA0",
559 "MWDMA1",
560 "MWDMA2",
b352e57d
AC
561 "MWDMA3",
562 "MWDMA4",
75f554bc
TH
563 "UDMA/16",
564 "UDMA/25",
565 "UDMA/33",
566 "UDMA/44",
567 "UDMA/66",
568 "UDMA/100",
569 "UDMA/133",
570 "UDMA7",
571 };
1da7b0d0 572 int highbit;
1da177e4 573
1da7b0d0
TH
574 highbit = fls(xfer_mask) - 1;
575 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
576 return xfer_mode_str[highbit];
1da177e4 577 return "<n/a>";
1da177e4
LT
578}
579
4c360c81
TH
580static const char *sata_spd_string(unsigned int spd)
581{
582 static const char * const spd_str[] = {
583 "1.5 Gbps",
584 "3.0 Gbps",
585 };
586
587 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
588 return "<unknown>";
589 return spd_str[spd - 1];
590}
591
3373efd8 592void ata_dev_disable(struct ata_device *dev)
0b8efb0a 593{
0dd4b21f 594 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
f15a1daf 595 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
0b8efb0a
TH
596 dev->class++;
597 }
598}
599
1da177e4
LT
600/**
601 * ata_pio_devchk - PATA device presence detection
602 * @ap: ATA channel to examine
603 * @device: Device to examine (starting at zero)
604 *
605 * This technique was originally described in
606 * Hale Landis's ATADRVR (www.ata-atapi.com), and
607 * later found its way into the ATA/ATAPI spec.
608 *
609 * Write a pattern to the ATA shadow registers,
610 * and if a device is present, it will respond by
611 * correctly storing and echoing back the
612 * ATA shadow register contents.
613 *
614 * LOCKING:
615 * caller.
616 */
617
618static unsigned int ata_pio_devchk(struct ata_port *ap,
619 unsigned int device)
620{
621 struct ata_ioports *ioaddr = &ap->ioaddr;
622 u8 nsect, lbal;
623
624 ap->ops->dev_select(ap, device);
625
626 outb(0x55, ioaddr->nsect_addr);
627 outb(0xaa, ioaddr->lbal_addr);
628
629 outb(0xaa, ioaddr->nsect_addr);
630 outb(0x55, ioaddr->lbal_addr);
631
632 outb(0x55, ioaddr->nsect_addr);
633 outb(0xaa, ioaddr->lbal_addr);
634
635 nsect = inb(ioaddr->nsect_addr);
636 lbal = inb(ioaddr->lbal_addr);
637
638 if ((nsect == 0x55) && (lbal == 0xaa))
639 return 1; /* we found a device */
640
641 return 0; /* nothing found */
642}
643
644/**
645 * ata_mmio_devchk - PATA device presence detection
646 * @ap: ATA channel to examine
647 * @device: Device to examine (starting at zero)
648 *
649 * This technique was originally described in
650 * Hale Landis's ATADRVR (www.ata-atapi.com), and
651 * later found its way into the ATA/ATAPI spec.
652 *
653 * Write a pattern to the ATA shadow registers,
654 * and if a device is present, it will respond by
655 * correctly storing and echoing back the
656 * ATA shadow register contents.
657 *
658 * LOCKING:
659 * caller.
660 */
661
662static unsigned int ata_mmio_devchk(struct ata_port *ap,
663 unsigned int device)
664{
665 struct ata_ioports *ioaddr = &ap->ioaddr;
666 u8 nsect, lbal;
667
668 ap->ops->dev_select(ap, device);
669
670 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
671 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
672
673 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
674 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
675
676 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
677 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
678
679 nsect = readb((void __iomem *) ioaddr->nsect_addr);
680 lbal = readb((void __iomem *) ioaddr->lbal_addr);
681
682 if ((nsect == 0x55) && (lbal == 0xaa))
683 return 1; /* we found a device */
684
685 return 0; /* nothing found */
686}
687
688/**
689 * ata_devchk - PATA device presence detection
690 * @ap: ATA channel to examine
691 * @device: Device to examine (starting at zero)
692 *
693 * Dispatch ATA device presence detection, depending
694 * on whether we are using PIO or MMIO to talk to the
695 * ATA shadow registers.
696 *
697 * LOCKING:
698 * caller.
699 */
700
701static unsigned int ata_devchk(struct ata_port *ap,
702 unsigned int device)
703{
704 if (ap->flags & ATA_FLAG_MMIO)
705 return ata_mmio_devchk(ap, device);
706 return ata_pio_devchk(ap, device);
707}
708
709/**
710 * ata_dev_classify - determine device type based on ATA-spec signature
711 * @tf: ATA taskfile register set for device to be identified
712 *
713 * Determine from taskfile register contents whether a device is
714 * ATA or ATAPI, as per "Signature and persistence" section
715 * of ATA/PI spec (volume 1, sect 5.14).
716 *
717 * LOCKING:
718 * None.
719 *
720 * RETURNS:
721 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
722 * the event of failure.
723 */
724
057ace5e 725unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
726{
727 /* Apple's open source Darwin code hints that some devices only
728 * put a proper signature into the LBA mid/high registers,
729 * So, we only check those. It's sufficient for uniqueness.
730 */
731
732 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
733 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
734 DPRINTK("found ATA device by sig\n");
735 return ATA_DEV_ATA;
736 }
737
738 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
739 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
740 DPRINTK("found ATAPI device by sig\n");
741 return ATA_DEV_ATAPI;
742 }
743
744 DPRINTK("unknown device\n");
745 return ATA_DEV_UNKNOWN;
746}
747
748/**
749 * ata_dev_try_classify - Parse returned ATA device signature
750 * @ap: ATA channel to examine
751 * @device: Device to examine (starting at zero)
b4dc7623 752 * @r_err: Value of error register on completion
1da177e4
LT
753 *
754 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
755 * an ATA/ATAPI-defined set of values is placed in the ATA
756 * shadow registers, indicating the results of device detection
757 * and diagnostics.
758 *
759 * Select the ATA device, and read the values from the ATA shadow
760 * registers. Then parse according to the Error register value,
761 * and the spec-defined values examined by ata_dev_classify().
762 *
763 * LOCKING:
764 * caller.
b4dc7623
TH
765 *
766 * RETURNS:
767 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4
LT
768 */
769
b4dc7623
TH
770static unsigned int
771ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
1da177e4 772{
1da177e4
LT
773 struct ata_taskfile tf;
774 unsigned int class;
775 u8 err;
776
777 ap->ops->dev_select(ap, device);
778
779 memset(&tf, 0, sizeof(tf));
780
1da177e4 781 ap->ops->tf_read(ap, &tf);
0169e284 782 err = tf.feature;
b4dc7623
TH
783 if (r_err)
784 *r_err = err;
1da177e4 785
93590859
AC
786 /* see if device passed diags: if master then continue and warn later */
787 if (err == 0 && device == 0)
788 /* diagnostic fail : do nothing _YET_ */
789 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
790 else if (err == 1)
1da177e4
LT
791 /* do nothing */ ;
792 else if ((device == 0) && (err == 0x81))
793 /* do nothing */ ;
794 else
b4dc7623 795 return ATA_DEV_NONE;
1da177e4 796
b4dc7623 797 /* determine if device is ATA or ATAPI */
1da177e4 798 class = ata_dev_classify(&tf);
b4dc7623 799
1da177e4 800 if (class == ATA_DEV_UNKNOWN)
b4dc7623 801 return ATA_DEV_NONE;
1da177e4 802 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
b4dc7623
TH
803 return ATA_DEV_NONE;
804 return class;
1da177e4
LT
805}
806
807/**
6a62a04d 808 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
809 * @id: IDENTIFY DEVICE results we will examine
810 * @s: string into which data is output
811 * @ofs: offset into identify device page
812 * @len: length of string to return. must be an even number.
813 *
814 * The strings in the IDENTIFY DEVICE page are broken up into
815 * 16-bit chunks. Run through the string, and output each
816 * 8-bit chunk linearly, regardless of platform.
817 *
818 * LOCKING:
819 * caller.
820 */
821
6a62a04d
TH
822void ata_id_string(const u16 *id, unsigned char *s,
823 unsigned int ofs, unsigned int len)
1da177e4
LT
824{
825 unsigned int c;
826
827 while (len > 0) {
828 c = id[ofs] >> 8;
829 *s = c;
830 s++;
831
832 c = id[ofs] & 0xff;
833 *s = c;
834 s++;
835
836 ofs++;
837 len -= 2;
838 }
839}
840
0e949ff3 841/**
6a62a04d 842 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
843 * @id: IDENTIFY DEVICE results we will examine
844 * @s: string into which data is output
845 * @ofs: offset into identify device page
846 * @len: length of string to return. must be an odd number.
847 *
6a62a04d 848 * This function is identical to ata_id_string except that it
0e949ff3
TH
849 * trims trailing spaces and terminates the resulting string with
850 * null. @len must be actual maximum length (even number) + 1.
851 *
852 * LOCKING:
853 * caller.
854 */
6a62a04d
TH
855void ata_id_c_string(const u16 *id, unsigned char *s,
856 unsigned int ofs, unsigned int len)
0e949ff3
TH
857{
858 unsigned char *p;
859
860 WARN_ON(!(len & 1));
861
6a62a04d 862 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
863
864 p = s + strnlen(s, len - 1);
865 while (p > s && p[-1] == ' ')
866 p--;
867 *p = '\0';
868}
0baab86b 869
2940740b
TH
870static u64 ata_id_n_sectors(const u16 *id)
871{
872 if (ata_id_has_lba(id)) {
873 if (ata_id_has_lba48(id))
874 return ata_id_u64(id, 100);
875 else
876 return ata_id_u32(id, 60);
877 } else {
878 if (ata_id_current_chs_valid(id))
879 return ata_id_u32(id, 57);
880 else
881 return id[1] * id[3] * id[6];
882 }
883}
884
0baab86b
EF
885/**
886 * ata_noop_dev_select - Select device 0/1 on ATA bus
887 * @ap: ATA channel to manipulate
888 * @device: ATA device (numbered from zero) to select
889 *
890 * This function performs no actual function.
891 *
892 * May be used as the dev_select() entry in ata_port_operations.
893 *
894 * LOCKING:
895 * caller.
896 */
1da177e4
LT
897void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
898{
899}
900
0baab86b 901
1da177e4
LT
902/**
903 * ata_std_dev_select - Select device 0/1 on ATA bus
904 * @ap: ATA channel to manipulate
905 * @device: ATA device (numbered from zero) to select
906 *
907 * Use the method defined in the ATA specification to
908 * make either device 0, or device 1, active on the
0baab86b
EF
909 * ATA channel. Works with both PIO and MMIO.
910 *
911 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
912 *
913 * LOCKING:
914 * caller.
915 */
916
917void ata_std_dev_select (struct ata_port *ap, unsigned int device)
918{
919 u8 tmp;
920
921 if (device == 0)
922 tmp = ATA_DEVICE_OBS;
923 else
924 tmp = ATA_DEVICE_OBS | ATA_DEV1;
925
926 if (ap->flags & ATA_FLAG_MMIO) {
927 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
928 } else {
929 outb(tmp, ap->ioaddr.device_addr);
930 }
931 ata_pause(ap); /* needed; also flushes, for mmio */
932}
933
934/**
935 * ata_dev_select - Select device 0/1 on ATA bus
936 * @ap: ATA channel to manipulate
937 * @device: ATA device (numbered from zero) to select
938 * @wait: non-zero to wait for Status register BSY bit to clear
939 * @can_sleep: non-zero if context allows sleeping
940 *
941 * Use the method defined in the ATA specification to
942 * make either device 0, or device 1, active on the
943 * ATA channel.
944 *
945 * This is a high-level version of ata_std_dev_select(),
946 * which additionally provides the services of inserting
947 * the proper pauses and status polling, where needed.
948 *
949 * LOCKING:
950 * caller.
951 */
952
953void ata_dev_select(struct ata_port *ap, unsigned int device,
954 unsigned int wait, unsigned int can_sleep)
955{
88574551 956 if (ata_msg_probe(ap))
0dd4b21f 957 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, ata%u: "
88574551 958 "device %u, wait %u\n", ap->id, device, wait);
1da177e4
LT
959
960 if (wait)
961 ata_wait_idle(ap);
962
963 ap->ops->dev_select(ap, device);
964
965 if (wait) {
966 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
967 msleep(150);
968 ata_wait_idle(ap);
969 }
970}
971
972/**
973 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 974 * @id: IDENTIFY DEVICE page to dump
1da177e4 975 *
0bd3300a
TH
976 * Dump selected 16-bit words from the given IDENTIFY DEVICE
977 * page.
1da177e4
LT
978 *
979 * LOCKING:
980 * caller.
981 */
982
0bd3300a 983static inline void ata_dump_id(const u16 *id)
1da177e4
LT
984{
985 DPRINTK("49==0x%04x "
986 "53==0x%04x "
987 "63==0x%04x "
988 "64==0x%04x "
989 "75==0x%04x \n",
0bd3300a
TH
990 id[49],
991 id[53],
992 id[63],
993 id[64],
994 id[75]);
1da177e4
LT
995 DPRINTK("80==0x%04x "
996 "81==0x%04x "
997 "82==0x%04x "
998 "83==0x%04x "
999 "84==0x%04x \n",
0bd3300a
TH
1000 id[80],
1001 id[81],
1002 id[82],
1003 id[83],
1004 id[84]);
1da177e4
LT
1005 DPRINTK("88==0x%04x "
1006 "93==0x%04x\n",
0bd3300a
TH
1007 id[88],
1008 id[93]);
1da177e4
LT
1009}
1010
cb95d562
TH
1011/**
1012 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1013 * @id: IDENTIFY data to compute xfer mask from
1014 *
1015 * Compute the xfermask for this device. This is not as trivial
1016 * as it seems if we must consider early devices correctly.
1017 *
1018 * FIXME: pre IDE drive timing (do we care ?).
1019 *
1020 * LOCKING:
1021 * None.
1022 *
1023 * RETURNS:
1024 * Computed xfermask
1025 */
1026static unsigned int ata_id_xfermask(const u16 *id)
1027{
1028 unsigned int pio_mask, mwdma_mask, udma_mask;
1029
1030 /* Usual case. Word 53 indicates word 64 is valid */
1031 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1032 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1033 pio_mask <<= 3;
1034 pio_mask |= 0x7;
1035 } else {
1036 /* If word 64 isn't valid then Word 51 high byte holds
1037 * the PIO timing number for the maximum. Turn it into
1038 * a mask.
1039 */
46767aeb
AC
1040 u8 mode = id[ATA_ID_OLD_PIO_MODES] & 0xFF;
1041 if (mode < 5) /* Valid PIO range */
1042 pio_mask = (2 << mode) - 1;
1043 else
1044 pio_mask = 1;
cb95d562
TH
1045
1046 /* But wait.. there's more. Design your standards by
1047 * committee and you too can get a free iordy field to
1048 * process. However its the speeds not the modes that
1049 * are supported... Note drivers using the timing API
1050 * will get this right anyway
1051 */
1052 }
1053
1054 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1055
b352e57d
AC
1056 if (ata_id_is_cfa(id)) {
1057 /*
1058 * Process compact flash extended modes
1059 */
1060 int pio = id[163] & 0x7;
1061 int dma = (id[163] >> 3) & 7;
1062
1063 if (pio)
1064 pio_mask |= (1 << 5);
1065 if (pio > 1)
1066 pio_mask |= (1 << 6);
1067 if (dma)
1068 mwdma_mask |= (1 << 3);
1069 if (dma > 1)
1070 mwdma_mask |= (1 << 4);
1071 }
1072
fb21f0d0
TH
1073 udma_mask = 0;
1074 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1075 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1076
1077 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1078}
1079
86e45b6b
TH
1080/**
1081 * ata_port_queue_task - Queue port_task
1082 * @ap: The ata_port to queue port_task for
e2a7f77a
RD
1083 * @fn: workqueue function to be scheduled
1084 * @data: data value to pass to workqueue function
1085 * @delay: delay time for workqueue function
86e45b6b
TH
1086 *
1087 * Schedule @fn(@data) for execution after @delay jiffies using
1088 * port_task. There is one port_task per port and it's the
1089 * user(low level driver)'s responsibility to make sure that only
1090 * one task is active at any given time.
1091 *
1092 * libata core layer takes care of synchronization between
1093 * port_task and EH. ata_port_queue_task() may be ignored for EH
1094 * synchronization.
1095 *
1096 * LOCKING:
1097 * Inherited from caller.
1098 */
1099void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
1100 unsigned long delay)
1101{
1102 int rc;
1103
b51e9e5d 1104 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
86e45b6b
TH
1105 return;
1106
1107 PREPARE_WORK(&ap->port_task, fn, data);
1108
1109 if (!delay)
1110 rc = queue_work(ata_wq, &ap->port_task);
1111 else
1112 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
1113
1114 /* rc == 0 means that another user is using port task */
1115 WARN_ON(rc == 0);
1116}
1117
1118/**
1119 * ata_port_flush_task - Flush port_task
1120 * @ap: The ata_port to flush port_task for
1121 *
1122 * After this function completes, port_task is guranteed not to
1123 * be running or scheduled.
1124 *
1125 * LOCKING:
1126 * Kernel thread context (may sleep)
1127 */
1128void ata_port_flush_task(struct ata_port *ap)
1129{
1130 unsigned long flags;
1131
1132 DPRINTK("ENTER\n");
1133
ba6a1308 1134 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 1135 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
ba6a1308 1136 spin_unlock_irqrestore(ap->lock, flags);
86e45b6b
TH
1137
1138 DPRINTK("flush #1\n");
1139 flush_workqueue(ata_wq);
1140
1141 /*
1142 * At this point, if a task is running, it's guaranteed to see
1143 * the FLUSH flag; thus, it will never queue pio tasks again.
1144 * Cancel and flush.
1145 */
1146 if (!cancel_delayed_work(&ap->port_task)) {
0dd4b21f 1147 if (ata_msg_ctl(ap))
88574551
TH
1148 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
1149 __FUNCTION__);
86e45b6b
TH
1150 flush_workqueue(ata_wq);
1151 }
1152
ba6a1308 1153 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 1154 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
ba6a1308 1155 spin_unlock_irqrestore(ap->lock, flags);
86e45b6b 1156
0dd4b21f
BP
1157 if (ata_msg_ctl(ap))
1158 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
86e45b6b
TH
1159}
1160
77853bf2 1161void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1162{
77853bf2 1163 struct completion *waiting = qc->private_data;
a2a7a662 1164
a2a7a662 1165 complete(waiting);
a2a7a662
TH
1166}
1167
1168/**
2432697b 1169 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1170 * @dev: Device to which the command is sent
1171 * @tf: Taskfile registers for the command and the result
d69cf37d 1172 * @cdb: CDB for packet command
a2a7a662 1173 * @dma_dir: Data tranfer direction of the command
2432697b
TH
1174 * @sg: sg list for the data buffer of the command
1175 * @n_elem: Number of sg entries
a2a7a662
TH
1176 *
1177 * Executes libata internal command with timeout. @tf contains
1178 * command on entry and result on return. Timeout and error
1179 * conditions are reported via return value. No recovery action
1180 * is taken after a command times out. It's caller's duty to
1181 * clean up after timeout.
1182 *
1183 * LOCKING:
1184 * None. Should be called with kernel context, might sleep.
551e8889
TH
1185 *
1186 * RETURNS:
1187 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1188 */
2432697b
TH
1189unsigned ata_exec_internal_sg(struct ata_device *dev,
1190 struct ata_taskfile *tf, const u8 *cdb,
1191 int dma_dir, struct scatterlist *sg,
1192 unsigned int n_elem)
a2a7a662 1193{
3373efd8 1194 struct ata_port *ap = dev->ap;
a2a7a662
TH
1195 u8 command = tf->command;
1196 struct ata_queued_cmd *qc;
2ab7db1f 1197 unsigned int tag, preempted_tag;
dedaf2b0 1198 u32 preempted_sactive, preempted_qc_active;
60be6b9a 1199 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1200 unsigned long flags;
77853bf2 1201 unsigned int err_mask;
d95a717f 1202 int rc;
a2a7a662 1203
ba6a1308 1204 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1205
e3180499 1206 /* no internal command while frozen */
b51e9e5d 1207 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1208 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1209 return AC_ERR_SYSTEM;
1210 }
1211
2ab7db1f 1212 /* initialize internal qc */
a2a7a662 1213
2ab7db1f
TH
1214 /* XXX: Tag 0 is used for drivers with legacy EH as some
1215 * drivers choke if any other tag is given. This breaks
1216 * ata_tag_internal() test for those drivers. Don't use new
1217 * EH stuff without converting to it.
1218 */
1219 if (ap->ops->error_handler)
1220 tag = ATA_TAG_INTERNAL;
1221 else
1222 tag = 0;
1223
6cec4a39 1224 if (test_and_set_bit(tag, &ap->qc_allocated))
2ab7db1f 1225 BUG();
f69499f4 1226 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1227
1228 qc->tag = tag;
1229 qc->scsicmd = NULL;
1230 qc->ap = ap;
1231 qc->dev = dev;
1232 ata_qc_reinit(qc);
1233
1234 preempted_tag = ap->active_tag;
dedaf2b0
TH
1235 preempted_sactive = ap->sactive;
1236 preempted_qc_active = ap->qc_active;
2ab7db1f 1237 ap->active_tag = ATA_TAG_POISON;
dedaf2b0
TH
1238 ap->sactive = 0;
1239 ap->qc_active = 0;
2ab7db1f
TH
1240
1241 /* prepare & issue qc */
a2a7a662 1242 qc->tf = *tf;
d69cf37d
TH
1243 if (cdb)
1244 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1245 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1246 qc->dma_dir = dma_dir;
1247 if (dma_dir != DMA_NONE) {
2432697b
TH
1248 unsigned int i, buflen = 0;
1249
1250 for (i = 0; i < n_elem; i++)
1251 buflen += sg[i].length;
1252
1253 ata_sg_init(qc, sg, n_elem);
a2a7a662
TH
1254 qc->nsect = buflen / ATA_SECT_SIZE;
1255 }
1256
77853bf2 1257 qc->private_data = &wait;
a2a7a662
TH
1258 qc->complete_fn = ata_qc_complete_internal;
1259
8e0e694a 1260 ata_qc_issue(qc);
a2a7a662 1261
ba6a1308 1262 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1263
a8601e5f 1264 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
d95a717f
TH
1265
1266 ata_port_flush_task(ap);
41ade50c 1267
d95a717f 1268 if (!rc) {
ba6a1308 1269 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1270
1271 /* We're racing with irq here. If we lose, the
1272 * following test prevents us from completing the qc
d95a717f
TH
1273 * twice. If we win, the port is frozen and will be
1274 * cleaned up by ->post_internal_cmd().
a2a7a662 1275 */
77853bf2 1276 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1277 qc->err_mask |= AC_ERR_TIMEOUT;
1278
1279 if (ap->ops->error_handler)
1280 ata_port_freeze(ap);
1281 else
1282 ata_qc_complete(qc);
f15a1daf 1283
0dd4b21f
BP
1284 if (ata_msg_warn(ap))
1285 ata_dev_printk(dev, KERN_WARNING,
88574551 1286 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1287 }
1288
ba6a1308 1289 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1290 }
1291
d95a717f
TH
1292 /* do post_internal_cmd */
1293 if (ap->ops->post_internal_cmd)
1294 ap->ops->post_internal_cmd(qc);
1295
1296 if (qc->flags & ATA_QCFLAG_FAILED && !qc->err_mask) {
0dd4b21f 1297 if (ata_msg_warn(ap))
88574551 1298 ata_dev_printk(dev, KERN_WARNING,
0dd4b21f 1299 "zero err_mask for failed "
88574551 1300 "internal command, assuming AC_ERR_OTHER\n");
d95a717f
TH
1301 qc->err_mask |= AC_ERR_OTHER;
1302 }
1303
15869303 1304 /* finish up */
ba6a1308 1305 spin_lock_irqsave(ap->lock, flags);
15869303 1306
e61e0672 1307 *tf = qc->result_tf;
77853bf2
TH
1308 err_mask = qc->err_mask;
1309
1310 ata_qc_free(qc);
2ab7db1f 1311 ap->active_tag = preempted_tag;
dedaf2b0
TH
1312 ap->sactive = preempted_sactive;
1313 ap->qc_active = preempted_qc_active;
77853bf2 1314
1f7dd3e9
TH
1315 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1316 * Until those drivers are fixed, we detect the condition
1317 * here, fail the command with AC_ERR_SYSTEM and reenable the
1318 * port.
1319 *
1320 * Note that this doesn't change any behavior as internal
1321 * command failure results in disabling the device in the
1322 * higher layer for LLDDs without new reset/EH callbacks.
1323 *
1324 * Kill the following code as soon as those drivers are fixed.
1325 */
198e0fed 1326 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1327 err_mask |= AC_ERR_SYSTEM;
1328 ata_port_probe(ap);
1329 }
1330
ba6a1308 1331 spin_unlock_irqrestore(ap->lock, flags);
15869303 1332
77853bf2 1333 return err_mask;
a2a7a662
TH
1334}
1335
2432697b
TH
1336/**
1337 * ata_exec_internal_sg - execute libata internal command
1338 * @dev: Device to which the command is sent
1339 * @tf: Taskfile registers for the command and the result
1340 * @cdb: CDB for packet command
1341 * @dma_dir: Data tranfer direction of the command
1342 * @buf: Data buffer of the command
1343 * @buflen: Length of data buffer
1344 *
1345 * Wrapper around ata_exec_internal_sg() which takes simple
1346 * buffer instead of sg list.
1347 *
1348 * LOCKING:
1349 * None. Should be called with kernel context, might sleep.
1350 *
1351 * RETURNS:
1352 * Zero on success, AC_ERR_* mask on failure
1353 */
1354unsigned ata_exec_internal(struct ata_device *dev,
1355 struct ata_taskfile *tf, const u8 *cdb,
1356 int dma_dir, void *buf, unsigned int buflen)
1357{
1358 struct scatterlist sg;
1359
1360 sg_init_one(&sg, buf, buflen);
1361
1362 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, &sg, 1);
1363}
1364
977e6b9f
TH
1365/**
1366 * ata_do_simple_cmd - execute simple internal command
1367 * @dev: Device to which the command is sent
1368 * @cmd: Opcode to execute
1369 *
1370 * Execute a 'simple' command, that only consists of the opcode
1371 * 'cmd' itself, without filling any other registers
1372 *
1373 * LOCKING:
1374 * Kernel thread context (may sleep).
1375 *
1376 * RETURNS:
1377 * Zero on success, AC_ERR_* mask on failure
e58eb583 1378 */
77b08fb5 1379unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1380{
1381 struct ata_taskfile tf;
e58eb583
TH
1382
1383 ata_tf_init(dev, &tf);
1384
1385 tf.command = cmd;
1386 tf.flags |= ATA_TFLAG_DEVICE;
1387 tf.protocol = ATA_PROT_NODATA;
1388
977e6b9f 1389 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
e58eb583
TH
1390}
1391
1bc4ccff
AC
1392/**
1393 * ata_pio_need_iordy - check if iordy needed
1394 * @adev: ATA device
1395 *
1396 * Check if the current speed of the device requires IORDY. Used
1397 * by various controllers for chip configuration.
1398 */
1399
1400unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1401{
1402 int pio;
1403 int speed = adev->pio_mode - XFER_PIO_0;
1404
1405 if (speed < 2)
1406 return 0;
1407 if (speed > 2)
1408 return 1;
2e9edbf8 1409
1bc4ccff
AC
1410 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1411
1412 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1413 pio = adev->id[ATA_ID_EIDE_PIO];
1414 /* Is the speed faster than the drive allows non IORDY ? */
1415 if (pio) {
1416 /* This is cycle times not frequency - watch the logic! */
1417 if (pio > 240) /* PIO2 is 240nS per cycle */
1418 return 1;
1419 return 0;
1420 }
1421 }
1422 return 0;
1423}
1424
1da177e4 1425/**
49016aca 1426 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1427 * @dev: target device
1428 * @p_class: pointer to class of the target device (may be changed)
bff04647 1429 * @flags: ATA_READID_* flags
fe635c7e 1430 * @id: buffer to read IDENTIFY data into
1da177e4 1431 *
49016aca
TH
1432 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1433 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1434 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1435 * for pre-ATA4 drives.
1da177e4
LT
1436 *
1437 * LOCKING:
49016aca
TH
1438 * Kernel thread context (may sleep)
1439 *
1440 * RETURNS:
1441 * 0 on success, -errno otherwise.
1da177e4 1442 */
a9beec95 1443int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 1444 unsigned int flags, u16 *id)
1da177e4 1445{
3373efd8 1446 struct ata_port *ap = dev->ap;
49016aca 1447 unsigned int class = *p_class;
a0123703 1448 struct ata_taskfile tf;
49016aca
TH
1449 unsigned int err_mask = 0;
1450 const char *reason;
1451 int rc;
1da177e4 1452
0dd4b21f 1453 if (ata_msg_ctl(ap))
88574551
TH
1454 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1455 __FUNCTION__, ap->id, dev->devno);
1da177e4 1456
49016aca 1457 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1da177e4 1458
49016aca 1459 retry:
3373efd8 1460 ata_tf_init(dev, &tf);
a0123703 1461
49016aca
TH
1462 switch (class) {
1463 case ATA_DEV_ATA:
a0123703 1464 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1465 break;
1466 case ATA_DEV_ATAPI:
a0123703 1467 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1468 break;
1469 default:
1470 rc = -ENODEV;
1471 reason = "unsupported class";
1472 goto err_out;
1da177e4
LT
1473 }
1474
a0123703 1475 tf.protocol = ATA_PROT_PIO;
1da177e4 1476
55a8e2c8
TH
1477 /* presence detection using polling IDENTIFY? */
1478 if (flags & ATA_READID_DETECT)
1479 tf.flags |= ATA_TFLAG_POLLING;
1480
3373efd8 1481 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
49016aca 1482 id, sizeof(id[0]) * ATA_ID_WORDS);
a0123703 1483 if (err_mask) {
55a8e2c8
TH
1484 if ((flags & ATA_READID_DETECT) &&
1485 (err_mask & AC_ERR_NODEV_HINT)) {
1486 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1487 ap->id, dev->devno);
1488 return -ENOENT;
1489 }
1490
49016aca
TH
1491 rc = -EIO;
1492 reason = "I/O error";
1da177e4
LT
1493 goto err_out;
1494 }
1495
49016aca 1496 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1497
49016aca 1498 /* sanity check */
a4f5749b
TH
1499 rc = -EINVAL;
1500 reason = "device reports illegal type";
1501
1502 if (class == ATA_DEV_ATA) {
1503 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1504 goto err_out;
1505 } else {
1506 if (ata_id_is_ata(id))
1507 goto err_out;
49016aca
TH
1508 }
1509
bff04647 1510 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
49016aca
TH
1511 /*
1512 * The exact sequence expected by certain pre-ATA4 drives is:
1513 * SRST RESET
1514 * IDENTIFY
1515 * INITIALIZE DEVICE PARAMETERS
1516 * anything else..
1517 * Some drives were very specific about that exact sequence.
1518 */
1519 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 1520 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
1521 if (err_mask) {
1522 rc = -EIO;
1523 reason = "INIT_DEV_PARAMS failed";
1524 goto err_out;
1525 }
1526
1527 /* current CHS translation info (id[53-58]) might be
1528 * changed. reread the identify device info.
1529 */
bff04647 1530 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
1531 goto retry;
1532 }
1533 }
1534
1535 *p_class = class;
fe635c7e 1536
49016aca
TH
1537 return 0;
1538
1539 err_out:
88574551 1540 if (ata_msg_warn(ap))
0dd4b21f 1541 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 1542 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
1543 return rc;
1544}
1545
3373efd8 1546static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 1547{
3373efd8 1548 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
1549}
1550
a6e6ce8e
TH
1551static void ata_dev_config_ncq(struct ata_device *dev,
1552 char *desc, size_t desc_sz)
1553{
1554 struct ata_port *ap = dev->ap;
1555 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1556
1557 if (!ata_id_has_ncq(dev->id)) {
1558 desc[0] = '\0';
1559 return;
1560 }
6919a0a6
AC
1561 if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) {
1562 snprintf(desc, desc_sz, "NCQ (not used)");
1563 return;
1564 }
a6e6ce8e 1565 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 1566 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
1567 dev->flags |= ATA_DFLAG_NCQ;
1568 }
1569
1570 if (hdepth >= ddepth)
1571 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1572 else
1573 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1574}
1575
e6d902a3
BK
1576static void ata_set_port_max_cmd_len(struct ata_port *ap)
1577{
1578 int i;
1579
cca3974e
JG
1580 if (ap->scsi_host) {
1581 unsigned int len = 0;
1582
e6d902a3 1583 for (i = 0; i < ATA_MAX_DEVICES; i++)
cca3974e
JG
1584 len = max(len, ap->device[i].cdb_len);
1585
1586 ap->scsi_host->max_cmd_len = len;
e6d902a3
BK
1587 }
1588}
1589
49016aca 1590/**
ffeae418 1591 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
1592 * @dev: Target device to configure
1593 *
1594 * Configure @dev according to @dev->id. Generic and low-level
1595 * driver specific fixups are also applied.
49016aca
TH
1596 *
1597 * LOCKING:
ffeae418
TH
1598 * Kernel thread context (may sleep)
1599 *
1600 * RETURNS:
1601 * 0 on success, -errno otherwise
49016aca 1602 */
efdaedc4 1603int ata_dev_configure(struct ata_device *dev)
49016aca 1604{
3373efd8 1605 struct ata_port *ap = dev->ap;
efdaedc4 1606 int print_info = ap->eh_context.i.flags & ATA_EHI_PRINTINFO;
1148c3a7 1607 const u16 *id = dev->id;
ff8854b2 1608 unsigned int xfer_mask;
b352e57d 1609 char revbuf[7]; /* XYZ-99\0 */
e6d902a3 1610 int rc;
49016aca 1611
0dd4b21f 1612 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
88574551
TH
1613 ata_dev_printk(dev, KERN_INFO,
1614 "%s: ENTER/EXIT (host %u, dev %u) -- nodev\n",
1615 __FUNCTION__, ap->id, dev->devno);
ffeae418 1616 return 0;
49016aca
TH
1617 }
1618
0dd4b21f 1619 if (ata_msg_probe(ap))
88574551
TH
1620 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1621 __FUNCTION__, ap->id, dev->devno);
1da177e4 1622
c39f5ebe 1623 /* print device capabilities */
0dd4b21f 1624 if (ata_msg_probe(ap))
88574551
TH
1625 ata_dev_printk(dev, KERN_DEBUG,
1626 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1627 "85:%04x 86:%04x 87:%04x 88:%04x\n",
0dd4b21f 1628 __FUNCTION__,
f15a1daf
TH
1629 id[49], id[82], id[83], id[84],
1630 id[85], id[86], id[87], id[88]);
c39f5ebe 1631
208a9933 1632 /* initialize to-be-configured parameters */
ea1dd4e1 1633 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
1634 dev->max_sectors = 0;
1635 dev->cdb_len = 0;
1636 dev->n_sectors = 0;
1637 dev->cylinders = 0;
1638 dev->heads = 0;
1639 dev->sectors = 0;
1640
1da177e4
LT
1641 /*
1642 * common ATA, ATAPI feature tests
1643 */
1644
ff8854b2 1645 /* find max transfer mode; for printk only */
1148c3a7 1646 xfer_mask = ata_id_xfermask(id);
1da177e4 1647
0dd4b21f
BP
1648 if (ata_msg_probe(ap))
1649 ata_dump_id(id);
1da177e4
LT
1650
1651 /* ATA-specific feature tests */
1652 if (dev->class == ATA_DEV_ATA) {
b352e57d
AC
1653 if (ata_id_is_cfa(id)) {
1654 if (id[162] & 1) /* CPRM may make this media unusable */
1655 ata_dev_printk(dev, KERN_WARNING, "ata%u: device %u supports DRM functions and may not be fully accessable.\n",
1656 ap->id, dev->devno);
1657 snprintf(revbuf, 7, "CFA");
1658 }
1659 else
1660 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1661
1148c3a7 1662 dev->n_sectors = ata_id_n_sectors(id);
2940740b 1663
1148c3a7 1664 if (ata_id_has_lba(id)) {
4c2d721a 1665 const char *lba_desc;
a6e6ce8e 1666 char ncq_desc[20];
8bf62ece 1667
4c2d721a
TH
1668 lba_desc = "LBA";
1669 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 1670 if (ata_id_has_lba48(id)) {
8bf62ece 1671 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 1672 lba_desc = "LBA48";
6fc49adb
TH
1673
1674 if (dev->n_sectors >= (1UL << 28) &&
1675 ata_id_has_flush_ext(id))
1676 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 1677 }
8bf62ece 1678
a6e6ce8e
TH
1679 /* config NCQ */
1680 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1681
8bf62ece 1682 /* print device info to dmesg */
5afc8142 1683 if (ata_msg_drv(ap) && print_info)
b352e57d 1684 ata_dev_printk(dev, KERN_INFO, "%s, "
a6e6ce8e 1685 "max %s, %Lu sectors: %s %s\n",
b352e57d 1686 revbuf,
f15a1daf
TH
1687 ata_mode_string(xfer_mask),
1688 (unsigned long long)dev->n_sectors,
a6e6ce8e 1689 lba_desc, ncq_desc);
ffeae418 1690 } else {
8bf62ece
AL
1691 /* CHS */
1692
1693 /* Default translation */
1148c3a7
TH
1694 dev->cylinders = id[1];
1695 dev->heads = id[3];
1696 dev->sectors = id[6];
8bf62ece 1697
1148c3a7 1698 if (ata_id_current_chs_valid(id)) {
8bf62ece 1699 /* Current CHS translation is valid. */
1148c3a7
TH
1700 dev->cylinders = id[54];
1701 dev->heads = id[55];
1702 dev->sectors = id[56];
8bf62ece
AL
1703 }
1704
1705 /* print device info to dmesg */
5afc8142 1706 if (ata_msg_drv(ap) && print_info)
b352e57d 1707 ata_dev_printk(dev, KERN_INFO, "%s, "
f15a1daf 1708 "max %s, %Lu sectors: CHS %u/%u/%u\n",
b352e57d 1709 revbuf,
f15a1daf
TH
1710 ata_mode_string(xfer_mask),
1711 (unsigned long long)dev->n_sectors,
88574551
TH
1712 dev->cylinders, dev->heads,
1713 dev->sectors);
1da177e4
LT
1714 }
1715
07f6f7d0
AL
1716 if (dev->id[59] & 0x100) {
1717 dev->multi_count = dev->id[59] & 0xff;
5afc8142 1718 if (ata_msg_drv(ap) && print_info)
88574551
TH
1719 ata_dev_printk(dev, KERN_INFO,
1720 "ata%u: dev %u multi count %u\n",
1721 ap->id, dev->devno, dev->multi_count);
07f6f7d0
AL
1722 }
1723
6e7846e9 1724 dev->cdb_len = 16;
1da177e4
LT
1725 }
1726
1727 /* ATAPI-specific feature tests */
2c13b7ce 1728 else if (dev->class == ATA_DEV_ATAPI) {
08a556db
AL
1729 char *cdb_intr_string = "";
1730
1148c3a7 1731 rc = atapi_cdb_len(id);
1da177e4 1732 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 1733 if (ata_msg_warn(ap))
88574551
TH
1734 ata_dev_printk(dev, KERN_WARNING,
1735 "unsupported CDB len\n");
ffeae418 1736 rc = -EINVAL;
1da177e4
LT
1737 goto err_out_nosup;
1738 }
6e7846e9 1739 dev->cdb_len = (unsigned int) rc;
1da177e4 1740
08a556db 1741 if (ata_id_cdb_intr(dev->id)) {
312f7da2 1742 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
1743 cdb_intr_string = ", CDB intr";
1744 }
312f7da2 1745
1da177e4 1746 /* print device info to dmesg */
5afc8142 1747 if (ata_msg_drv(ap) && print_info)
12436c30
TH
1748 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1749 ata_mode_string(xfer_mask),
1750 cdb_intr_string);
1da177e4
LT
1751 }
1752
914ed354
TH
1753 /* determine max_sectors */
1754 dev->max_sectors = ATA_MAX_SECTORS;
1755 if (dev->flags & ATA_DFLAG_LBA48)
1756 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
1757
93590859
AC
1758 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
1759 /* Let the user know. We don't want to disallow opens for
1760 rescue purposes, or in case the vendor is just a blithering
1761 idiot */
1762 if (print_info) {
1763 ata_dev_printk(dev, KERN_WARNING,
1764"Drive reports diagnostics failure. This may indicate a drive\n");
1765 ata_dev_printk(dev, KERN_WARNING,
1766"fault or invalid emulation. Contact drive vendor for information.\n");
1767 }
1768 }
1769
e6d902a3 1770 ata_set_port_max_cmd_len(ap);
6e7846e9 1771
4b2f3ede 1772 /* limit bridge transfers to udma5, 200 sectors */
3373efd8 1773 if (ata_dev_knobble(dev)) {
5afc8142 1774 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
1775 ata_dev_printk(dev, KERN_INFO,
1776 "applying bridge limits\n");
5a529139 1777 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
1778 dev->max_sectors = ATA_MAX_SECTORS;
1779 }
1780
1781 if (ap->ops->dev_config)
1782 ap->ops->dev_config(ap, dev);
1783
0dd4b21f
BP
1784 if (ata_msg_probe(ap))
1785 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
1786 __FUNCTION__, ata_chk_status(ap));
ffeae418 1787 return 0;
1da177e4
LT
1788
1789err_out_nosup:
0dd4b21f 1790 if (ata_msg_probe(ap))
88574551
TH
1791 ata_dev_printk(dev, KERN_DEBUG,
1792 "%s: EXIT, err\n", __FUNCTION__);
ffeae418 1793 return rc;
1da177e4
LT
1794}
1795
1796/**
1797 * ata_bus_probe - Reset and probe ATA bus
1798 * @ap: Bus to probe
1799 *
0cba632b
JG
1800 * Master ATA bus probing function. Initiates a hardware-dependent
1801 * bus reset, then attempts to identify any devices found on
1802 * the bus.
1803 *
1da177e4 1804 * LOCKING:
0cba632b 1805 * PCI/etc. bus probe sem.
1da177e4
LT
1806 *
1807 * RETURNS:
96072e69 1808 * Zero on success, negative errno otherwise.
1da177e4
LT
1809 */
1810
80289167 1811int ata_bus_probe(struct ata_port *ap)
1da177e4 1812{
28ca5c57 1813 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1
TH
1814 int tries[ATA_MAX_DEVICES];
1815 int i, rc, down_xfermask;
e82cbdb9 1816 struct ata_device *dev;
1da177e4 1817
28ca5c57 1818 ata_port_probe(ap);
c19ba8af 1819
14d2bac1
TH
1820 for (i = 0; i < ATA_MAX_DEVICES; i++)
1821 tries[i] = ATA_PROBE_MAX_TRIES;
1822
1823 retry:
1824 down_xfermask = 0;
1825
2044470c 1826 /* reset and determine device classes */
52783c5d 1827 ap->ops->phy_reset(ap);
2061a47a 1828
52783c5d
TH
1829 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1830 dev = &ap->device[i];
c19ba8af 1831
52783c5d
TH
1832 if (!(ap->flags & ATA_FLAG_DISABLED) &&
1833 dev->class != ATA_DEV_UNKNOWN)
1834 classes[dev->devno] = dev->class;
1835 else
1836 classes[dev->devno] = ATA_DEV_NONE;
2044470c 1837
52783c5d 1838 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 1839 }
1da177e4 1840
52783c5d 1841 ata_port_probe(ap);
2044470c 1842
b6079ca4
AC
1843 /* after the reset the device state is PIO 0 and the controller
1844 state is undefined. Record the mode */
1845
1846 for (i = 0; i < ATA_MAX_DEVICES; i++)
1847 ap->device[i].pio_mode = XFER_PIO_0;
1848
28ca5c57 1849 /* read IDENTIFY page and configure devices */
1da177e4 1850 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e82cbdb9 1851 dev = &ap->device[i];
28ca5c57 1852
ec573755
TH
1853 if (tries[i])
1854 dev->class = classes[i];
ffeae418 1855
14d2bac1 1856 if (!ata_dev_enabled(dev))
ffeae418 1857 continue;
ffeae418 1858
bff04647
TH
1859 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
1860 dev->id);
14d2bac1
TH
1861 if (rc)
1862 goto fail;
1863
efdaedc4
TH
1864 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
1865 rc = ata_dev_configure(dev);
1866 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
1867 if (rc)
1868 goto fail;
1da177e4
LT
1869 }
1870
e82cbdb9 1871 /* configure transfer mode */
3adcebb2 1872 rc = ata_set_mode(ap, &dev);
51713d35
TH
1873 if (rc) {
1874 down_xfermask = 1;
1875 goto fail;
e82cbdb9 1876 }
1da177e4 1877
e82cbdb9
TH
1878 for (i = 0; i < ATA_MAX_DEVICES; i++)
1879 if (ata_dev_enabled(&ap->device[i]))
1880 return 0;
1da177e4 1881
e82cbdb9
TH
1882 /* no device present, disable port */
1883 ata_port_disable(ap);
1da177e4 1884 ap->ops->port_disable(ap);
96072e69 1885 return -ENODEV;
14d2bac1
TH
1886
1887 fail:
1888 switch (rc) {
1889 case -EINVAL:
1890 case -ENODEV:
1891 tries[dev->devno] = 0;
1892 break;
1893 case -EIO:
3c567b7d 1894 sata_down_spd_limit(ap);
14d2bac1
TH
1895 /* fall through */
1896 default:
1897 tries[dev->devno]--;
1898 if (down_xfermask &&
3373efd8 1899 ata_down_xfermask_limit(dev, tries[dev->devno] == 1))
14d2bac1
TH
1900 tries[dev->devno] = 0;
1901 }
1902
ec573755 1903 if (!tries[dev->devno]) {
3373efd8
TH
1904 ata_down_xfermask_limit(dev, 1);
1905 ata_dev_disable(dev);
ec573755
TH
1906 }
1907
14d2bac1 1908 goto retry;
1da177e4
LT
1909}
1910
1911/**
0cba632b
JG
1912 * ata_port_probe - Mark port as enabled
1913 * @ap: Port for which we indicate enablement
1da177e4 1914 *
0cba632b
JG
1915 * Modify @ap data structure such that the system
1916 * thinks that the entire port is enabled.
1917 *
cca3974e 1918 * LOCKING: host lock, or some other form of
0cba632b 1919 * serialization.
1da177e4
LT
1920 */
1921
1922void ata_port_probe(struct ata_port *ap)
1923{
198e0fed 1924 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
1925}
1926
3be680b7
TH
1927/**
1928 * sata_print_link_status - Print SATA link status
1929 * @ap: SATA port to printk link status about
1930 *
1931 * This function prints link speed and status of a SATA link.
1932 *
1933 * LOCKING:
1934 * None.
1935 */
1936static void sata_print_link_status(struct ata_port *ap)
1937{
6d5f9732 1938 u32 sstatus, scontrol, tmp;
3be680b7 1939
81952c54 1940 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
3be680b7 1941 return;
81952c54 1942 sata_scr_read(ap, SCR_CONTROL, &scontrol);
3be680b7 1943
81952c54 1944 if (ata_port_online(ap)) {
3be680b7 1945 tmp = (sstatus >> 4) & 0xf;
f15a1daf
TH
1946 ata_port_printk(ap, KERN_INFO,
1947 "SATA link up %s (SStatus %X SControl %X)\n",
1948 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 1949 } else {
f15a1daf
TH
1950 ata_port_printk(ap, KERN_INFO,
1951 "SATA link down (SStatus %X SControl %X)\n",
1952 sstatus, scontrol);
3be680b7
TH
1953 }
1954}
1955
1da177e4 1956/**
780a87f7
JG
1957 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1958 * @ap: SATA port associated with target SATA PHY.
1da177e4 1959 *
780a87f7
JG
1960 * This function issues commands to standard SATA Sxxx
1961 * PHY registers, to wake up the phy (and device), and
1962 * clear any reset condition.
1da177e4
LT
1963 *
1964 * LOCKING:
0cba632b 1965 * PCI/etc. bus probe sem.
1da177e4
LT
1966 *
1967 */
1968void __sata_phy_reset(struct ata_port *ap)
1969{
1970 u32 sstatus;
1971 unsigned long timeout = jiffies + (HZ * 5);
1972
1973 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e 1974 /* issue phy wake/reset */
81952c54 1975 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
62ba2841
TH
1976 /* Couldn't find anything in SATA I/II specs, but
1977 * AHCI-1.1 10.4.2 says at least 1 ms. */
1978 mdelay(1);
1da177e4 1979 }
81952c54
TH
1980 /* phy wake/clear reset */
1981 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1da177e4
LT
1982
1983 /* wait for phy to become ready, if necessary */
1984 do {
1985 msleep(200);
81952c54 1986 sata_scr_read(ap, SCR_STATUS, &sstatus);
1da177e4
LT
1987 if ((sstatus & 0xf) != 1)
1988 break;
1989 } while (time_before(jiffies, timeout));
1990
3be680b7
TH
1991 /* print link status */
1992 sata_print_link_status(ap);
656563e3 1993
3be680b7 1994 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 1995 if (!ata_port_offline(ap))
1da177e4 1996 ata_port_probe(ap);
3be680b7 1997 else
1da177e4 1998 ata_port_disable(ap);
1da177e4 1999
198e0fed 2000 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2001 return;
2002
2003 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2004 ata_port_disable(ap);
2005 return;
2006 }
2007
2008 ap->cbl = ATA_CBL_SATA;
2009}
2010
2011/**
780a87f7
JG
2012 * sata_phy_reset - Reset SATA bus.
2013 * @ap: SATA port associated with target SATA PHY.
1da177e4 2014 *
780a87f7
JG
2015 * This function resets the SATA bus, and then probes
2016 * the bus for devices.
1da177e4
LT
2017 *
2018 * LOCKING:
0cba632b 2019 * PCI/etc. bus probe sem.
1da177e4
LT
2020 *
2021 */
2022void sata_phy_reset(struct ata_port *ap)
2023{
2024 __sata_phy_reset(ap);
198e0fed 2025 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2026 return;
2027 ata_bus_reset(ap);
2028}
2029
ebdfca6e
AC
2030/**
2031 * ata_dev_pair - return other device on cable
ebdfca6e
AC
2032 * @adev: device
2033 *
2034 * Obtain the other device on the same cable, or if none is
2035 * present NULL is returned
2036 */
2e9edbf8 2037
3373efd8 2038struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2039{
3373efd8 2040 struct ata_port *ap = adev->ap;
ebdfca6e 2041 struct ata_device *pair = &ap->device[1 - adev->devno];
e1211e3f 2042 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2043 return NULL;
2044 return pair;
2045}
2046
1da177e4 2047/**
780a87f7
JG
2048 * ata_port_disable - Disable port.
2049 * @ap: Port to be disabled.
1da177e4 2050 *
780a87f7
JG
2051 * Modify @ap data structure such that the system
2052 * thinks that the entire port is disabled, and should
2053 * never attempt to probe or communicate with devices
2054 * on this port.
2055 *
cca3974e 2056 * LOCKING: host lock, or some other form of
780a87f7 2057 * serialization.
1da177e4
LT
2058 */
2059
2060void ata_port_disable(struct ata_port *ap)
2061{
2062 ap->device[0].class = ATA_DEV_NONE;
2063 ap->device[1].class = ATA_DEV_NONE;
198e0fed 2064 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
2065}
2066
1c3fae4d 2067/**
3c567b7d 2068 * sata_down_spd_limit - adjust SATA spd limit downward
1c3fae4d
TH
2069 * @ap: Port to adjust SATA spd limit for
2070 *
2071 * Adjust SATA spd limit of @ap downward. Note that this
2072 * function only adjusts the limit. The change must be applied
3c567b7d 2073 * using sata_set_spd().
1c3fae4d
TH
2074 *
2075 * LOCKING:
2076 * Inherited from caller.
2077 *
2078 * RETURNS:
2079 * 0 on success, negative errno on failure
2080 */
3c567b7d 2081int sata_down_spd_limit(struct ata_port *ap)
1c3fae4d 2082{
81952c54
TH
2083 u32 sstatus, spd, mask;
2084 int rc, highbit;
1c3fae4d 2085
81952c54
TH
2086 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
2087 if (rc)
2088 return rc;
1c3fae4d
TH
2089
2090 mask = ap->sata_spd_limit;
2091 if (mask <= 1)
2092 return -EINVAL;
2093 highbit = fls(mask) - 1;
2094 mask &= ~(1 << highbit);
2095
81952c54 2096 spd = (sstatus >> 4) & 0xf;
1c3fae4d
TH
2097 if (spd <= 1)
2098 return -EINVAL;
2099 spd--;
2100 mask &= (1 << spd) - 1;
2101 if (!mask)
2102 return -EINVAL;
2103
2104 ap->sata_spd_limit = mask;
2105
f15a1daf
TH
2106 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
2107 sata_spd_string(fls(mask)));
1c3fae4d
TH
2108
2109 return 0;
2110}
2111
3c567b7d 2112static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1c3fae4d
TH
2113{
2114 u32 spd, limit;
2115
2116 if (ap->sata_spd_limit == UINT_MAX)
2117 limit = 0;
2118 else
2119 limit = fls(ap->sata_spd_limit);
2120
2121 spd = (*scontrol >> 4) & 0xf;
2122 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2123
2124 return spd != limit;
2125}
2126
2127/**
3c567b7d 2128 * sata_set_spd_needed - is SATA spd configuration needed
1c3fae4d
TH
2129 * @ap: Port in question
2130 *
2131 * Test whether the spd limit in SControl matches
2132 * @ap->sata_spd_limit. This function is used to determine
2133 * whether hardreset is necessary to apply SATA spd
2134 * configuration.
2135 *
2136 * LOCKING:
2137 * Inherited from caller.
2138 *
2139 * RETURNS:
2140 * 1 if SATA spd configuration is needed, 0 otherwise.
2141 */
3c567b7d 2142int sata_set_spd_needed(struct ata_port *ap)
1c3fae4d
TH
2143{
2144 u32 scontrol;
2145
81952c54 2146 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1c3fae4d
TH
2147 return 0;
2148
3c567b7d 2149 return __sata_set_spd_needed(ap, &scontrol);
1c3fae4d
TH
2150}
2151
2152/**
3c567b7d 2153 * sata_set_spd - set SATA spd according to spd limit
1c3fae4d
TH
2154 * @ap: Port to set SATA spd for
2155 *
2156 * Set SATA spd of @ap according to sata_spd_limit.
2157 *
2158 * LOCKING:
2159 * Inherited from caller.
2160 *
2161 * RETURNS:
2162 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 2163 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 2164 */
3c567b7d 2165int sata_set_spd(struct ata_port *ap)
1c3fae4d
TH
2166{
2167 u32 scontrol;
81952c54 2168 int rc;
1c3fae4d 2169
81952c54
TH
2170 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2171 return rc;
1c3fae4d 2172
3c567b7d 2173 if (!__sata_set_spd_needed(ap, &scontrol))
1c3fae4d
TH
2174 return 0;
2175
81952c54
TH
2176 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2177 return rc;
2178
1c3fae4d
TH
2179 return 1;
2180}
2181
452503f9
AC
2182/*
2183 * This mode timing computation functionality is ported over from
2184 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2185 */
2186/*
b352e57d 2187 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 2188 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
2189 * for UDMA6, which is currently supported only by Maxtor drives.
2190 *
2191 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
2192 */
2193
2194static const struct ata_timing ata_timing[] = {
2195
2196 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2197 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2198 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2199 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2200
b352e57d
AC
2201 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2202 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
452503f9
AC
2203 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2204 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2205 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2206
2207/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 2208
452503f9
AC
2209 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2210 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2211 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 2212
452503f9
AC
2213 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2214 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2215 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2216
b352e57d
AC
2217 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2218 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
452503f9
AC
2219 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2220 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2221
2222 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2223 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2224 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2225
2226/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2227
2228 { 0xFF }
2229};
2230
2231#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2232#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2233
2234static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2235{
2236 q->setup = EZ(t->setup * 1000, T);
2237 q->act8b = EZ(t->act8b * 1000, T);
2238 q->rec8b = EZ(t->rec8b * 1000, T);
2239 q->cyc8b = EZ(t->cyc8b * 1000, T);
2240 q->active = EZ(t->active * 1000, T);
2241 q->recover = EZ(t->recover * 1000, T);
2242 q->cycle = EZ(t->cycle * 1000, T);
2243 q->udma = EZ(t->udma * 1000, UT);
2244}
2245
2246void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2247 struct ata_timing *m, unsigned int what)
2248{
2249 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2250 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2251 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2252 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2253 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2254 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2255 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2256 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2257}
2258
2259static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2260{
2261 const struct ata_timing *t;
2262
2263 for (t = ata_timing; t->mode != speed; t++)
91190758 2264 if (t->mode == 0xFF)
452503f9 2265 return NULL;
2e9edbf8 2266 return t;
452503f9
AC
2267}
2268
2269int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2270 struct ata_timing *t, int T, int UT)
2271{
2272 const struct ata_timing *s;
2273 struct ata_timing p;
2274
2275 /*
2e9edbf8 2276 * Find the mode.
75b1f2f8 2277 */
452503f9
AC
2278
2279 if (!(s = ata_timing_find_mode(speed)))
2280 return -EINVAL;
2281
75b1f2f8
AL
2282 memcpy(t, s, sizeof(*s));
2283
452503f9
AC
2284 /*
2285 * If the drive is an EIDE drive, it can tell us it needs extended
2286 * PIO/MW_DMA cycle timing.
2287 */
2288
2289 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2290 memset(&p, 0, sizeof(p));
2291 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2292 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2293 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2294 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2295 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2296 }
2297 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2298 }
2299
2300 /*
2301 * Convert the timing to bus clock counts.
2302 */
2303
75b1f2f8 2304 ata_timing_quantize(t, t, T, UT);
452503f9
AC
2305
2306 /*
c893a3ae
RD
2307 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2308 * S.M.A.R.T * and some other commands. We have to ensure that the
2309 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
2310 */
2311
2312 if (speed > XFER_PIO_4) {
2313 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2314 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2315 }
2316
2317 /*
c893a3ae 2318 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
2319 */
2320
2321 if (t->act8b + t->rec8b < t->cyc8b) {
2322 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2323 t->rec8b = t->cyc8b - t->act8b;
2324 }
2325
2326 if (t->active + t->recover < t->cycle) {
2327 t->active += (t->cycle - (t->active + t->recover)) / 2;
2328 t->recover = t->cycle - t->active;
2329 }
2330
2331 return 0;
2332}
2333
cf176e1a
TH
2334/**
2335 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a
TH
2336 * @dev: Device to adjust xfer masks
2337 * @force_pio0: Force PIO0
2338 *
2339 * Adjust xfer masks of @dev downward. Note that this function
2340 * does not apply the change. Invoking ata_set_mode() afterwards
2341 * will apply the limit.
2342 *
2343 * LOCKING:
2344 * Inherited from caller.
2345 *
2346 * RETURNS:
2347 * 0 on success, negative errno on failure
2348 */
3373efd8 2349int ata_down_xfermask_limit(struct ata_device *dev, int force_pio0)
cf176e1a
TH
2350{
2351 unsigned long xfer_mask;
2352 int highbit;
2353
2354 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
2355 dev->udma_mask);
2356
2357 if (!xfer_mask)
2358 goto fail;
2359 /* don't gear down to MWDMA from UDMA, go directly to PIO */
2360 if (xfer_mask & ATA_MASK_UDMA)
2361 xfer_mask &= ~ATA_MASK_MWDMA;
2362
2363 highbit = fls(xfer_mask) - 1;
2364 xfer_mask &= ~(1 << highbit);
2365 if (force_pio0)
2366 xfer_mask &= 1 << ATA_SHIFT_PIO;
2367 if (!xfer_mask)
2368 goto fail;
2369
2370 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2371 &dev->udma_mask);
2372
f15a1daf
TH
2373 ata_dev_printk(dev, KERN_WARNING, "limiting speed to %s\n",
2374 ata_mode_string(xfer_mask));
cf176e1a
TH
2375
2376 return 0;
2377
2378 fail:
2379 return -EINVAL;
2380}
2381
3373efd8 2382static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 2383{
baa1e78a 2384 struct ata_eh_context *ehc = &dev->ap->eh_context;
83206a29
TH
2385 unsigned int err_mask;
2386 int rc;
1da177e4 2387
e8384607 2388 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
2389 if (dev->xfer_shift == ATA_SHIFT_PIO)
2390 dev->flags |= ATA_DFLAG_PIO;
2391
3373efd8 2392 err_mask = ata_dev_set_xfermode(dev);
83206a29 2393 if (err_mask) {
f15a1daf
TH
2394 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2395 "(err_mask=0x%x)\n", err_mask);
83206a29
TH
2396 return -EIO;
2397 }
1da177e4 2398
baa1e78a 2399 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3373efd8 2400 rc = ata_dev_revalidate(dev, 0);
baa1e78a 2401 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
5eb45c02 2402 if (rc)
83206a29 2403 return rc;
48a8a14f 2404
23e71c3d
TH
2405 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2406 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 2407
f15a1daf
TH
2408 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2409 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 2410 return 0;
1da177e4
LT
2411}
2412
1da177e4
LT
2413/**
2414 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2415 * @ap: port on which timings will be programmed
e82cbdb9 2416 * @r_failed_dev: out paramter for failed device
1da177e4 2417 *
e82cbdb9
TH
2418 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2419 * ata_set_mode() fails, pointer to the failing device is
2420 * returned in @r_failed_dev.
780a87f7 2421 *
1da177e4 2422 * LOCKING:
0cba632b 2423 * PCI/etc. bus probe sem.
e82cbdb9
TH
2424 *
2425 * RETURNS:
2426 * 0 on success, negative errno otherwise
1da177e4 2427 */
1ad8e7f9 2428int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
1da177e4 2429{
e8e0619f 2430 struct ata_device *dev;
e82cbdb9 2431 int i, rc = 0, used_dma = 0, found = 0;
1da177e4 2432
3adcebb2
TH
2433 /* has private set_mode? */
2434 if (ap->ops->set_mode) {
2435 /* FIXME: make ->set_mode handle no device case and
2436 * return error code and failing device on failure.
2437 */
2438 for (i = 0; i < ATA_MAX_DEVICES; i++) {
02670bf3 2439 if (ata_dev_ready(&ap->device[i])) {
3adcebb2
TH
2440 ap->ops->set_mode(ap);
2441 break;
2442 }
2443 }
2444 return 0;
2445 }
2446
a6d5a51c
TH
2447 /* step 1: calculate xfer_mask */
2448 for (i = 0; i < ATA_MAX_DEVICES; i++) {
acf356b1 2449 unsigned int pio_mask, dma_mask;
a6d5a51c 2450
e8e0619f
TH
2451 dev = &ap->device[i];
2452
e1211e3f 2453 if (!ata_dev_enabled(dev))
a6d5a51c
TH
2454 continue;
2455
3373efd8 2456 ata_dev_xfermask(dev);
1da177e4 2457
acf356b1
TH
2458 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2459 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2460 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2461 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 2462
4f65977d 2463 found = 1;
5444a6f4
AC
2464 if (dev->dma_mode)
2465 used_dma = 1;
a6d5a51c 2466 }
4f65977d 2467 if (!found)
e82cbdb9 2468 goto out;
a6d5a51c
TH
2469
2470 /* step 2: always set host PIO timings */
e8e0619f
TH
2471 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2472 dev = &ap->device[i];
2473 if (!ata_dev_enabled(dev))
2474 continue;
2475
2476 if (!dev->pio_mode) {
f15a1daf 2477 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 2478 rc = -EINVAL;
e82cbdb9 2479 goto out;
e8e0619f
TH
2480 }
2481
2482 dev->xfer_mode = dev->pio_mode;
2483 dev->xfer_shift = ATA_SHIFT_PIO;
2484 if (ap->ops->set_piomode)
2485 ap->ops->set_piomode(ap, dev);
2486 }
1da177e4 2487
a6d5a51c 2488 /* step 3: set host DMA timings */
e8e0619f
TH
2489 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2490 dev = &ap->device[i];
2491
2492 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2493 continue;
2494
2495 dev->xfer_mode = dev->dma_mode;
2496 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2497 if (ap->ops->set_dmamode)
2498 ap->ops->set_dmamode(ap, dev);
2499 }
1da177e4
LT
2500
2501 /* step 4: update devices' xfer mode */
83206a29 2502 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e8e0619f 2503 dev = &ap->device[i];
1da177e4 2504
02670bf3
TH
2505 /* don't udpate suspended devices' xfer mode */
2506 if (!ata_dev_ready(dev))
83206a29
TH
2507 continue;
2508
3373efd8 2509 rc = ata_dev_set_mode(dev);
5bbc53f4 2510 if (rc)
e82cbdb9 2511 goto out;
83206a29 2512 }
1da177e4 2513
e8e0619f
TH
2514 /* Record simplex status. If we selected DMA then the other
2515 * host channels are not permitted to do so.
5444a6f4 2516 */
cca3974e
JG
2517 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2518 ap->host->simplex_claimed = 1;
5444a6f4 2519
e8e0619f 2520 /* step5: chip specific finalisation */
1da177e4
LT
2521 if (ap->ops->post_set_mode)
2522 ap->ops->post_set_mode(ap);
2523
e82cbdb9
TH
2524 out:
2525 if (rc)
2526 *r_failed_dev = dev;
2527 return rc;
1da177e4
LT
2528}
2529
1fdffbce
JG
2530/**
2531 * ata_tf_to_host - issue ATA taskfile to host controller
2532 * @ap: port to which command is being issued
2533 * @tf: ATA taskfile register set
2534 *
2535 * Issues ATA taskfile register set to ATA host controller,
2536 * with proper synchronization with interrupt handler and
2537 * other threads.
2538 *
2539 * LOCKING:
cca3974e 2540 * spin_lock_irqsave(host lock)
1fdffbce
JG
2541 */
2542
2543static inline void ata_tf_to_host(struct ata_port *ap,
2544 const struct ata_taskfile *tf)
2545{
2546 ap->ops->tf_load(ap, tf);
2547 ap->ops->exec_command(ap, tf);
2548}
2549
1da177e4
LT
2550/**
2551 * ata_busy_sleep - sleep until BSY clears, or timeout
2552 * @ap: port containing status register to be polled
2553 * @tmout_pat: impatience timeout
2554 * @tmout: overall timeout
2555 *
780a87f7
JG
2556 * Sleep until ATA Status register bit BSY clears,
2557 * or a timeout occurs.
2558 *
d1adc1bb
TH
2559 * LOCKING:
2560 * Kernel thread context (may sleep).
2561 *
2562 * RETURNS:
2563 * 0 on success, -errno otherwise.
1da177e4 2564 */
d1adc1bb
TH
2565int ata_busy_sleep(struct ata_port *ap,
2566 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
2567{
2568 unsigned long timer_start, timeout;
2569 u8 status;
2570
2571 status = ata_busy_wait(ap, ATA_BUSY, 300);
2572 timer_start = jiffies;
2573 timeout = timer_start + tmout_pat;
d1adc1bb
TH
2574 while (status != 0xff && (status & ATA_BUSY) &&
2575 time_before(jiffies, timeout)) {
1da177e4
LT
2576 msleep(50);
2577 status = ata_busy_wait(ap, ATA_BUSY, 3);
2578 }
2579
d1adc1bb 2580 if (status != 0xff && (status & ATA_BUSY))
f15a1daf 2581 ata_port_printk(ap, KERN_WARNING,
35aa7a43
JG
2582 "port is slow to respond, please be patient "
2583 "(Status 0x%x)\n", status);
1da177e4
LT
2584
2585 timeout = timer_start + tmout;
d1adc1bb
TH
2586 while (status != 0xff && (status & ATA_BUSY) &&
2587 time_before(jiffies, timeout)) {
1da177e4
LT
2588 msleep(50);
2589 status = ata_chk_status(ap);
2590 }
2591
d1adc1bb
TH
2592 if (status == 0xff)
2593 return -ENODEV;
2594
1da177e4 2595 if (status & ATA_BUSY) {
f15a1daf 2596 ata_port_printk(ap, KERN_ERR, "port failed to respond "
35aa7a43
JG
2597 "(%lu secs, Status 0x%x)\n",
2598 tmout / HZ, status);
d1adc1bb 2599 return -EBUSY;
1da177e4
LT
2600 }
2601
2602 return 0;
2603}
2604
2605static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2606{
2607 struct ata_ioports *ioaddr = &ap->ioaddr;
2608 unsigned int dev0 = devmask & (1 << 0);
2609 unsigned int dev1 = devmask & (1 << 1);
2610 unsigned long timeout;
2611
2612 /* if device 0 was found in ata_devchk, wait for its
2613 * BSY bit to clear
2614 */
2615 if (dev0)
2616 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2617
2618 /* if device 1 was found in ata_devchk, wait for
2619 * register access, then wait for BSY to clear
2620 */
2621 timeout = jiffies + ATA_TMOUT_BOOT;
2622 while (dev1) {
2623 u8 nsect, lbal;
2624
2625 ap->ops->dev_select(ap, 1);
2626 if (ap->flags & ATA_FLAG_MMIO) {
2627 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2628 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2629 } else {
2630 nsect = inb(ioaddr->nsect_addr);
2631 lbal = inb(ioaddr->lbal_addr);
2632 }
2633 if ((nsect == 1) && (lbal == 1))
2634 break;
2635 if (time_after(jiffies, timeout)) {
2636 dev1 = 0;
2637 break;
2638 }
2639 msleep(50); /* give drive a breather */
2640 }
2641 if (dev1)
2642 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2643
2644 /* is all this really necessary? */
2645 ap->ops->dev_select(ap, 0);
2646 if (dev1)
2647 ap->ops->dev_select(ap, 1);
2648 if (dev0)
2649 ap->ops->dev_select(ap, 0);
2650}
2651
1da177e4
LT
2652static unsigned int ata_bus_softreset(struct ata_port *ap,
2653 unsigned int devmask)
2654{
2655 struct ata_ioports *ioaddr = &ap->ioaddr;
2656
2657 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2658
2659 /* software reset. causes dev0 to be selected */
2660 if (ap->flags & ATA_FLAG_MMIO) {
2661 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2662 udelay(20); /* FIXME: flush */
2663 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2664 udelay(20); /* FIXME: flush */
2665 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2666 } else {
2667 outb(ap->ctl, ioaddr->ctl_addr);
2668 udelay(10);
2669 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2670 udelay(10);
2671 outb(ap->ctl, ioaddr->ctl_addr);
2672 }
2673
2674 /* spec mandates ">= 2ms" before checking status.
2675 * We wait 150ms, because that was the magic delay used for
2676 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2677 * between when the ATA command register is written, and then
2678 * status is checked. Because waiting for "a while" before
2679 * checking status is fine, post SRST, we perform this magic
2680 * delay here as well.
09c7ad79
AC
2681 *
2682 * Old drivers/ide uses the 2mS rule and then waits for ready
1da177e4
LT
2683 */
2684 msleep(150);
2685
2e9edbf8 2686 /* Before we perform post reset processing we want to see if
298a41ca
TH
2687 * the bus shows 0xFF because the odd clown forgets the D7
2688 * pulldown resistor.
2689 */
d1adc1bb
TH
2690 if (ata_check_status(ap) == 0xFF)
2691 return 0;
09c7ad79 2692
1da177e4
LT
2693 ata_bus_post_reset(ap, devmask);
2694
2695 return 0;
2696}
2697
2698/**
2699 * ata_bus_reset - reset host port and associated ATA channel
2700 * @ap: port to reset
2701 *
2702 * This is typically the first time we actually start issuing
2703 * commands to the ATA channel. We wait for BSY to clear, then
2704 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2705 * result. Determine what devices, if any, are on the channel
2706 * by looking at the device 0/1 error register. Look at the signature
2707 * stored in each device's taskfile registers, to determine if
2708 * the device is ATA or ATAPI.
2709 *
2710 * LOCKING:
0cba632b 2711 * PCI/etc. bus probe sem.
cca3974e 2712 * Obtains host lock.
1da177e4
LT
2713 *
2714 * SIDE EFFECTS:
198e0fed 2715 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
2716 */
2717
2718void ata_bus_reset(struct ata_port *ap)
2719{
2720 struct ata_ioports *ioaddr = &ap->ioaddr;
2721 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2722 u8 err;
aec5c3c1 2723 unsigned int dev0, dev1 = 0, devmask = 0;
1da177e4
LT
2724
2725 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2726
2727 /* determine if device 0/1 are present */
2728 if (ap->flags & ATA_FLAG_SATA_RESET)
2729 dev0 = 1;
2730 else {
2731 dev0 = ata_devchk(ap, 0);
2732 if (slave_possible)
2733 dev1 = ata_devchk(ap, 1);
2734 }
2735
2736 if (dev0)
2737 devmask |= (1 << 0);
2738 if (dev1)
2739 devmask |= (1 << 1);
2740
2741 /* select device 0 again */
2742 ap->ops->dev_select(ap, 0);
2743
2744 /* issue bus reset */
2745 if (ap->flags & ATA_FLAG_SRST)
aec5c3c1
TH
2746 if (ata_bus_softreset(ap, devmask))
2747 goto err_out;
1da177e4
LT
2748
2749 /*
2750 * determine by signature whether we have ATA or ATAPI devices
2751 */
b4dc7623 2752 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
1da177e4 2753 if ((slave_possible) && (err != 0x81))
b4dc7623 2754 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
1da177e4
LT
2755
2756 /* re-enable interrupts */
2757 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2758 ata_irq_on(ap);
2759
2760 /* is double-select really necessary? */
2761 if (ap->device[1].class != ATA_DEV_NONE)
2762 ap->ops->dev_select(ap, 1);
2763 if (ap->device[0].class != ATA_DEV_NONE)
2764 ap->ops->dev_select(ap, 0);
2765
2766 /* if no devices were detected, disable this port */
2767 if ((ap->device[0].class == ATA_DEV_NONE) &&
2768 (ap->device[1].class == ATA_DEV_NONE))
2769 goto err_out;
2770
2771 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2772 /* set up device control for ATA_FLAG_SATA_RESET */
2773 if (ap->flags & ATA_FLAG_MMIO)
2774 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2775 else
2776 outb(ap->ctl, ioaddr->ctl_addr);
2777 }
2778
2779 DPRINTK("EXIT\n");
2780 return;
2781
2782err_out:
f15a1daf 2783 ata_port_printk(ap, KERN_ERR, "disabling port\n");
1da177e4
LT
2784 ap->ops->port_disable(ap);
2785
2786 DPRINTK("EXIT\n");
2787}
2788
d7bb4cc7
TH
2789/**
2790 * sata_phy_debounce - debounce SATA phy status
2791 * @ap: ATA port to debounce SATA phy status for
2792 * @params: timing parameters { interval, duratinon, timeout } in msec
2793 *
2794 * Make sure SStatus of @ap reaches stable state, determined by
2795 * holding the same value where DET is not 1 for @duration polled
2796 * every @interval, before @timeout. Timeout constraints the
2797 * beginning of the stable state. Because, after hot unplugging,
2798 * DET gets stuck at 1 on some controllers, this functions waits
2799 * until timeout then returns 0 if DET is stable at 1.
2800 *
2801 * LOCKING:
2802 * Kernel thread context (may sleep)
2803 *
2804 * RETURNS:
2805 * 0 on success, -errno on failure.
2806 */
2807int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
7a7921e8 2808{
d7bb4cc7
TH
2809 unsigned long interval_msec = params[0];
2810 unsigned long duration = params[1] * HZ / 1000;
2811 unsigned long timeout = jiffies + params[2] * HZ / 1000;
2812 unsigned long last_jiffies;
2813 u32 last, cur;
2814 int rc;
2815
2816 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2817 return rc;
2818 cur &= 0xf;
2819
2820 last = cur;
2821 last_jiffies = jiffies;
2822
2823 while (1) {
2824 msleep(interval_msec);
2825 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2826 return rc;
2827 cur &= 0xf;
2828
2829 /* DET stable? */
2830 if (cur == last) {
2831 if (cur == 1 && time_before(jiffies, timeout))
2832 continue;
2833 if (time_after(jiffies, last_jiffies + duration))
2834 return 0;
2835 continue;
2836 }
2837
2838 /* unstable, start over */
2839 last = cur;
2840 last_jiffies = jiffies;
2841
2842 /* check timeout */
2843 if (time_after(jiffies, timeout))
2844 return -EBUSY;
2845 }
2846}
2847
2848/**
2849 * sata_phy_resume - resume SATA phy
2850 * @ap: ATA port to resume SATA phy for
2851 * @params: timing parameters { interval, duratinon, timeout } in msec
2852 *
2853 * Resume SATA phy of @ap and debounce it.
2854 *
2855 * LOCKING:
2856 * Kernel thread context (may sleep)
2857 *
2858 * RETURNS:
2859 * 0 on success, -errno on failure.
2860 */
2861int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
2862{
2863 u32 scontrol;
81952c54
TH
2864 int rc;
2865
2866 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2867 return rc;
7a7921e8 2868
852ee16a 2869 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54
TH
2870
2871 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2872 return rc;
7a7921e8 2873
d7bb4cc7
TH
2874 /* Some PHYs react badly if SStatus is pounded immediately
2875 * after resuming. Delay 200ms before debouncing.
2876 */
2877 msleep(200);
7a7921e8 2878
d7bb4cc7 2879 return sata_phy_debounce(ap, params);
7a7921e8
TH
2880}
2881
f5914a46
TH
2882static void ata_wait_spinup(struct ata_port *ap)
2883{
2884 struct ata_eh_context *ehc = &ap->eh_context;
2885 unsigned long end, secs;
2886 int rc;
2887
2888 /* first, debounce phy if SATA */
2889 if (ap->cbl == ATA_CBL_SATA) {
e9c83914 2890 rc = sata_phy_debounce(ap, sata_deb_timing_hotplug);
f5914a46
TH
2891
2892 /* if debounced successfully and offline, no need to wait */
2893 if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
2894 return;
2895 }
2896
2897 /* okay, let's give the drive time to spin up */
2898 end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
2899 secs = ((end - jiffies) + HZ - 1) / HZ;
2900
2901 if (time_after(jiffies, end))
2902 return;
2903
2904 if (secs > 5)
2905 ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
2906 "(%lu secs)\n", secs);
2907
2908 schedule_timeout_uninterruptible(end - jiffies);
2909}
2910
2911/**
2912 * ata_std_prereset - prepare for reset
2913 * @ap: ATA port to be reset
2914 *
2915 * @ap is about to be reset. Initialize it.
2916 *
2917 * LOCKING:
2918 * Kernel thread context (may sleep)
2919 *
2920 * RETURNS:
2921 * 0 on success, -errno otherwise.
2922 */
2923int ata_std_prereset(struct ata_port *ap)
2924{
2925 struct ata_eh_context *ehc = &ap->eh_context;
e9c83914 2926 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
2927 int rc;
2928
28324304
TH
2929 /* handle link resume & hotplug spinup */
2930 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
2931 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
2932 ehc->i.action |= ATA_EH_HARDRESET;
2933
2934 if ((ehc->i.flags & ATA_EHI_HOTPLUGGED) &&
2935 (ap->flags & ATA_FLAG_SKIP_D2H_BSY))
2936 ata_wait_spinup(ap);
f5914a46
TH
2937
2938 /* if we're about to do hardreset, nothing more to do */
2939 if (ehc->i.action & ATA_EH_HARDRESET)
2940 return 0;
2941
2942 /* if SATA, resume phy */
2943 if (ap->cbl == ATA_CBL_SATA) {
f5914a46
TH
2944 rc = sata_phy_resume(ap, timing);
2945 if (rc && rc != -EOPNOTSUPP) {
2946 /* phy resume failed */
2947 ata_port_printk(ap, KERN_WARNING, "failed to resume "
2948 "link for reset (errno=%d)\n", rc);
2949 return rc;
2950 }
2951 }
2952
2953 /* Wait for !BSY if the controller can wait for the first D2H
2954 * Reg FIS and we don't know that no device is attached.
2955 */
2956 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
2957 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2958
2959 return 0;
2960}
2961
c2bd5804
TH
2962/**
2963 * ata_std_softreset - reset host port via ATA SRST
2964 * @ap: port to reset
c2bd5804
TH
2965 * @classes: resulting classes of attached devices
2966 *
52783c5d 2967 * Reset host port using ATA SRST.
c2bd5804
TH
2968 *
2969 * LOCKING:
2970 * Kernel thread context (may sleep)
2971 *
2972 * RETURNS:
2973 * 0 on success, -errno otherwise.
2974 */
2bf2cb26 2975int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
c2bd5804
TH
2976{
2977 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2978 unsigned int devmask = 0, err_mask;
2979 u8 err;
2980
2981 DPRINTK("ENTER\n");
2982
81952c54 2983 if (ata_port_offline(ap)) {
3a39746a
TH
2984 classes[0] = ATA_DEV_NONE;
2985 goto out;
2986 }
2987
c2bd5804
TH
2988 /* determine if device 0/1 are present */
2989 if (ata_devchk(ap, 0))
2990 devmask |= (1 << 0);
2991 if (slave_possible && ata_devchk(ap, 1))
2992 devmask |= (1 << 1);
2993
c2bd5804
TH
2994 /* select device 0 again */
2995 ap->ops->dev_select(ap, 0);
2996
2997 /* issue bus reset */
2998 DPRINTK("about to softreset, devmask=%x\n", devmask);
2999 err_mask = ata_bus_softreset(ap, devmask);
3000 if (err_mask) {
f15a1daf
TH
3001 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
3002 err_mask);
c2bd5804
TH
3003 return -EIO;
3004 }
3005
3006 /* determine by signature whether we have ATA or ATAPI devices */
3007 classes[0] = ata_dev_try_classify(ap, 0, &err);
3008 if (slave_possible && err != 0x81)
3009 classes[1] = ata_dev_try_classify(ap, 1, &err);
3010
3a39746a 3011 out:
c2bd5804
TH
3012 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3013 return 0;
3014}
3015
3016/**
b6103f6d 3017 * sata_port_hardreset - reset port via SATA phy reset
c2bd5804 3018 * @ap: port to reset
b6103f6d 3019 * @timing: timing parameters { interval, duratinon, timeout } in msec
c2bd5804
TH
3020 *
3021 * SATA phy-reset host port using DET bits of SControl register.
c2bd5804
TH
3022 *
3023 * LOCKING:
3024 * Kernel thread context (may sleep)
3025 *
3026 * RETURNS:
3027 * 0 on success, -errno otherwise.
3028 */
b6103f6d 3029int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing)
c2bd5804 3030{
852ee16a 3031 u32 scontrol;
81952c54 3032 int rc;
852ee16a 3033
c2bd5804
TH
3034 DPRINTK("ENTER\n");
3035
3c567b7d 3036 if (sata_set_spd_needed(ap)) {
1c3fae4d
TH
3037 /* SATA spec says nothing about how to reconfigure
3038 * spd. To be on the safe side, turn off phy during
3039 * reconfiguration. This works for at least ICH7 AHCI
3040 * and Sil3124.
3041 */
81952c54 3042 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
b6103f6d 3043 goto out;
81952c54 3044
a34b6fc0 3045 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54
TH
3046
3047 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
b6103f6d 3048 goto out;
1c3fae4d 3049
3c567b7d 3050 sata_set_spd(ap);
1c3fae4d
TH
3051 }
3052
3053 /* issue phy wake/reset */
81952c54 3054 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
b6103f6d 3055 goto out;
81952c54 3056
852ee16a 3057 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54
TH
3058
3059 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
b6103f6d 3060 goto out;
c2bd5804 3061
1c3fae4d 3062 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
3063 * 10.4.2 says at least 1 ms.
3064 */
3065 msleep(1);
3066
1c3fae4d 3067 /* bring phy back */
b6103f6d
TH
3068 rc = sata_phy_resume(ap, timing);
3069 out:
3070 DPRINTK("EXIT, rc=%d\n", rc);
3071 return rc;
3072}
3073
3074/**
3075 * sata_std_hardreset - reset host port via SATA phy reset
3076 * @ap: port to reset
3077 * @class: resulting class of attached device
3078 *
3079 * SATA phy-reset host port using DET bits of SControl register,
3080 * wait for !BSY and classify the attached device.
3081 *
3082 * LOCKING:
3083 * Kernel thread context (may sleep)
3084 *
3085 * RETURNS:
3086 * 0 on success, -errno otherwise.
3087 */
3088int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
3089{
3090 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
3091 int rc;
3092
3093 DPRINTK("ENTER\n");
3094
3095 /* do hardreset */
3096 rc = sata_port_hardreset(ap, timing);
3097 if (rc) {
3098 ata_port_printk(ap, KERN_ERR,
3099 "COMRESET failed (errno=%d)\n", rc);
3100 return rc;
3101 }
c2bd5804 3102
c2bd5804 3103 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 3104 if (ata_port_offline(ap)) {
c2bd5804
TH
3105 *class = ATA_DEV_NONE;
3106 DPRINTK("EXIT, link offline\n");
3107 return 0;
3108 }
3109
3110 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
f15a1daf
TH
3111 ata_port_printk(ap, KERN_ERR,
3112 "COMRESET failed (device not ready)\n");
c2bd5804
TH
3113 return -EIO;
3114 }
3115
3a39746a
TH
3116 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3117
c2bd5804
TH
3118 *class = ata_dev_try_classify(ap, 0, NULL);
3119
3120 DPRINTK("EXIT, class=%u\n", *class);
3121 return 0;
3122}
3123
3124/**
3125 * ata_std_postreset - standard postreset callback
3126 * @ap: the target ata_port
3127 * @classes: classes of attached devices
3128 *
3129 * This function is invoked after a successful reset. Note that
3130 * the device might have been reset more than once using
3131 * different reset methods before postreset is invoked.
c2bd5804 3132 *
c2bd5804
TH
3133 * LOCKING:
3134 * Kernel thread context (may sleep)
3135 */
3136void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3137{
dc2b3515
TH
3138 u32 serror;
3139
c2bd5804
TH
3140 DPRINTK("ENTER\n");
3141
c2bd5804 3142 /* print link status */
81952c54 3143 sata_print_link_status(ap);
c2bd5804 3144
dc2b3515
TH
3145 /* clear SError */
3146 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3147 sata_scr_write(ap, SCR_ERROR, serror);
3148
3a39746a 3149 /* re-enable interrupts */
e3180499
TH
3150 if (!ap->ops->error_handler) {
3151 /* FIXME: hack. create a hook instead */
3152 if (ap->ioaddr.ctl_addr)
3153 ata_irq_on(ap);
3154 }
c2bd5804
TH
3155
3156 /* is double-select really necessary? */
3157 if (classes[0] != ATA_DEV_NONE)
3158 ap->ops->dev_select(ap, 1);
3159 if (classes[1] != ATA_DEV_NONE)
3160 ap->ops->dev_select(ap, 0);
3161
3a39746a
TH
3162 /* bail out if no device is present */
3163 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3164 DPRINTK("EXIT, no device\n");
3165 return;
3166 }
3167
3168 /* set up device control */
3169 if (ap->ioaddr.ctl_addr) {
3170 if (ap->flags & ATA_FLAG_MMIO)
3171 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
3172 else
3173 outb(ap->ctl, ap->ioaddr.ctl_addr);
3174 }
c2bd5804
TH
3175
3176 DPRINTK("EXIT\n");
3177}
3178
623a3128
TH
3179/**
3180 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
3181 * @dev: device to compare against
3182 * @new_class: class of the new device
3183 * @new_id: IDENTIFY page of the new device
3184 *
3185 * Compare @new_class and @new_id against @dev and determine
3186 * whether @dev is the device indicated by @new_class and
3187 * @new_id.
3188 *
3189 * LOCKING:
3190 * None.
3191 *
3192 * RETURNS:
3193 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3194 */
3373efd8
TH
3195static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3196 const u16 *new_id)
623a3128
TH
3197{
3198 const u16 *old_id = dev->id;
3199 unsigned char model[2][41], serial[2][21];
3200 u64 new_n_sectors;
3201
3202 if (dev->class != new_class) {
f15a1daf
TH
3203 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3204 dev->class, new_class);
623a3128
TH
3205 return 0;
3206 }
3207
3208 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
3209 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
3210 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
3211 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
3212 new_n_sectors = ata_id_n_sectors(new_id);
3213
3214 if (strcmp(model[0], model[1])) {
f15a1daf
TH
3215 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3216 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
3217 return 0;
3218 }
3219
3220 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
3221 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3222 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
3223 return 0;
3224 }
3225
3226 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
f15a1daf
TH
3227 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3228 "%llu != %llu\n",
3229 (unsigned long long)dev->n_sectors,
3230 (unsigned long long)new_n_sectors);
623a3128
TH
3231 return 0;
3232 }
3233
3234 return 1;
3235}
3236
3237/**
3238 * ata_dev_revalidate - Revalidate ATA device
623a3128 3239 * @dev: device to revalidate
bff04647 3240 * @readid_flags: read ID flags
623a3128
TH
3241 *
3242 * Re-read IDENTIFY page and make sure @dev is still attached to
3243 * the port.
3244 *
3245 * LOCKING:
3246 * Kernel thread context (may sleep)
3247 *
3248 * RETURNS:
3249 * 0 on success, negative errno otherwise
3250 */
bff04647 3251int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
623a3128 3252{
5eb45c02 3253 unsigned int class = dev->class;
f15a1daf 3254 u16 *id = (void *)dev->ap->sector_buf;
623a3128
TH
3255 int rc;
3256
5eb45c02
TH
3257 if (!ata_dev_enabled(dev)) {
3258 rc = -ENODEV;
3259 goto fail;
3260 }
623a3128 3261
fe635c7e 3262 /* read ID data */
bff04647 3263 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128
TH
3264 if (rc)
3265 goto fail;
3266
3267 /* is the device still there? */
3373efd8 3268 if (!ata_dev_same_device(dev, class, id)) {
623a3128
TH
3269 rc = -ENODEV;
3270 goto fail;
3271 }
3272
fe635c7e 3273 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
623a3128
TH
3274
3275 /* configure device according to the new ID */
efdaedc4 3276 rc = ata_dev_configure(dev);
5eb45c02
TH
3277 if (rc == 0)
3278 return 0;
623a3128
TH
3279
3280 fail:
f15a1daf 3281 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
3282 return rc;
3283}
3284
6919a0a6
AC
3285struct ata_blacklist_entry {
3286 const char *model_num;
3287 const char *model_rev;
3288 unsigned long horkage;
3289};
3290
3291static const struct ata_blacklist_entry ata_device_blacklist [] = {
3292 /* Devices with DMA related problems under Linux */
3293 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3294 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3295 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3296 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3297 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3298 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3299 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3300 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3301 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3302 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3303 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3304 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3305 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3306 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3307 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3308 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3309 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3310 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3311 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3312 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3313 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3314 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3315 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3316 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3317 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3318 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3319 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3320 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3321 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3322 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
3323
3324 /* Devices we expect to fail diagnostics */
3325
3326 /* Devices where NCQ should be avoided */
3327 /* NCQ is slow */
3328 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3329
3330 /* Devices with NCQ limits */
3331
3332 /* End Marker */
3333 { }
1da177e4 3334};
2e9edbf8 3335
f4b15fef
AC
3336static int ata_strim(char *s, size_t len)
3337{
3338 len = strnlen(s, len);
3339
3340 /* ATAPI specifies that empty space is blank-filled; remove blanks */
3341 while ((len > 0) && (s[len - 1] == ' ')) {
3342 len--;
3343 s[len] = 0;
3344 }
3345 return len;
3346}
1da177e4 3347
6919a0a6 3348unsigned long ata_device_blacklisted(const struct ata_device *dev)
1da177e4 3349{
f4b15fef
AC
3350 unsigned char model_num[40];
3351 unsigned char model_rev[16];
3352 unsigned int nlen, rlen;
6919a0a6 3353 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 3354
f4b15fef
AC
3355 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
3356 sizeof(model_num));
3357 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
3358 sizeof(model_rev));
3359 nlen = ata_strim(model_num, sizeof(model_num));
3360 rlen = ata_strim(model_rev, sizeof(model_rev));
1da177e4 3361
6919a0a6
AC
3362 while (ad->model_num) {
3363 if (!strncmp(ad->model_num, model_num, nlen)) {
3364 if (ad->model_rev == NULL)
3365 return ad->horkage;
3366 if (!strncmp(ad->model_rev, model_rev, rlen))
3367 return ad->horkage;
f4b15fef 3368 }
6919a0a6 3369 ad++;
f4b15fef 3370 }
1da177e4
LT
3371 return 0;
3372}
3373
6919a0a6
AC
3374static int ata_dma_blacklisted(const struct ata_device *dev)
3375{
3376 /* We don't support polling DMA.
3377 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3378 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3379 */
3380 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3381 (dev->flags & ATA_DFLAG_CDB_INTR))
3382 return 1;
3383 return (ata_device_blacklisted(dev) & ATA_HORKAGE_NODMA) ? 1 : 0;
3384}
3385
a6d5a51c
TH
3386/**
3387 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
3388 * @dev: Device to compute xfermask for
3389 *
acf356b1
TH
3390 * Compute supported xfermask of @dev and store it in
3391 * dev->*_mask. This function is responsible for applying all
3392 * known limits including host controller limits, device
3393 * blacklist, etc...
a6d5a51c
TH
3394 *
3395 * LOCKING:
3396 * None.
a6d5a51c 3397 */
3373efd8 3398static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 3399{
3373efd8 3400 struct ata_port *ap = dev->ap;
cca3974e 3401 struct ata_host *host = ap->host;
a6d5a51c 3402 unsigned long xfer_mask;
1da177e4 3403
37deecb5 3404 /* controller modes available */
565083e1
TH
3405 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3406 ap->mwdma_mask, ap->udma_mask);
3407
3408 /* Apply cable rule here. Don't apply it early because when
3409 * we handle hot plug the cable type can itself change.
3410 */
3411 if (ap->cbl == ATA_CBL_PATA40)
3412 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
fc085150
AC
3413 /* Apply drive side cable rule. Unknown or 80 pin cables reported
3414 * host side are checked drive side as well. Cases where we know a
3415 * 40wire cable is used safely for 80 are not checked here.
3416 */
3417 if (ata_drive_40wire(dev->id) && (ap->cbl == ATA_CBL_PATA_UNK || ap->cbl == ATA_CBL_PATA80))
3418 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3419
1da177e4 3420
37deecb5
TH
3421 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3422 dev->mwdma_mask, dev->udma_mask);
3423 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 3424
b352e57d
AC
3425 /*
3426 * CFA Advanced TrueIDE timings are not allowed on a shared
3427 * cable
3428 */
3429 if (ata_dev_pair(dev)) {
3430 /* No PIO5 or PIO6 */
3431 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3432 /* No MWDMA3 or MWDMA 4 */
3433 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3434 }
3435
37deecb5
TH
3436 if (ata_dma_blacklisted(dev)) {
3437 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
f15a1daf
TH
3438 ata_dev_printk(dev, KERN_WARNING,
3439 "device is on DMA blacklist, disabling DMA\n");
37deecb5 3440 }
a6d5a51c 3441
cca3974e 3442 if ((host->flags & ATA_HOST_SIMPLEX) && host->simplex_claimed) {
37deecb5
TH
3443 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3444 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3445 "other device, disabling DMA\n");
5444a6f4 3446 }
565083e1 3447
5444a6f4
AC
3448 if (ap->ops->mode_filter)
3449 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
3450
565083e1
TH
3451 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3452 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
3453}
3454
1da177e4
LT
3455/**
3456 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
3457 * @dev: Device to which command will be sent
3458 *
780a87f7
JG
3459 * Issue SET FEATURES - XFER MODE command to device @dev
3460 * on port @ap.
3461 *
1da177e4 3462 * LOCKING:
0cba632b 3463 * PCI/etc. bus probe sem.
83206a29
TH
3464 *
3465 * RETURNS:
3466 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
3467 */
3468
3373efd8 3469static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 3470{
a0123703 3471 struct ata_taskfile tf;
83206a29 3472 unsigned int err_mask;
1da177e4
LT
3473
3474 /* set up set-features taskfile */
3475 DPRINTK("set features - xfer mode\n");
3476
3373efd8 3477 ata_tf_init(dev, &tf);
a0123703
TH
3478 tf.command = ATA_CMD_SET_FEATURES;
3479 tf.feature = SETFEATURES_XFER;
3480 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3481 tf.protocol = ATA_PROT_NODATA;
3482 tf.nsect = dev->xfer_mode;
1da177e4 3483
3373efd8 3484 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1da177e4 3485
83206a29
TH
3486 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3487 return err_mask;
1da177e4
LT
3488}
3489
8bf62ece
AL
3490/**
3491 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 3492 * @dev: Device to which command will be sent
e2a7f77a
RD
3493 * @heads: Number of heads (taskfile parameter)
3494 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
3495 *
3496 * LOCKING:
6aff8f1f
TH
3497 * Kernel thread context (may sleep)
3498 *
3499 * RETURNS:
3500 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 3501 */
3373efd8
TH
3502static unsigned int ata_dev_init_params(struct ata_device *dev,
3503 u16 heads, u16 sectors)
8bf62ece 3504{
a0123703 3505 struct ata_taskfile tf;
6aff8f1f 3506 unsigned int err_mask;
8bf62ece
AL
3507
3508 /* Number of sectors per track 1-255. Number of heads 1-16 */
3509 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 3510 return AC_ERR_INVALID;
8bf62ece
AL
3511
3512 /* set up init dev params taskfile */
3513 DPRINTK("init dev params \n");
3514
3373efd8 3515 ata_tf_init(dev, &tf);
a0123703
TH
3516 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3517 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3518 tf.protocol = ATA_PROT_NODATA;
3519 tf.nsect = sectors;
3520 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 3521
3373efd8 3522 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
8bf62ece 3523
6aff8f1f
TH
3524 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3525 return err_mask;
8bf62ece
AL
3526}
3527
1da177e4 3528/**
0cba632b
JG
3529 * ata_sg_clean - Unmap DMA memory associated with command
3530 * @qc: Command containing DMA memory to be released
3531 *
3532 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
3533 *
3534 * LOCKING:
cca3974e 3535 * spin_lock_irqsave(host lock)
1da177e4 3536 */
70e6ad0c 3537void ata_sg_clean(struct ata_queued_cmd *qc)
1da177e4
LT
3538{
3539 struct ata_port *ap = qc->ap;
cedc9a47 3540 struct scatterlist *sg = qc->__sg;
1da177e4 3541 int dir = qc->dma_dir;
cedc9a47 3542 void *pad_buf = NULL;
1da177e4 3543
a4631474
TH
3544 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3545 WARN_ON(sg == NULL);
1da177e4
LT
3546
3547 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 3548 WARN_ON(qc->n_elem > 1);
1da177e4 3549
2c13b7ce 3550 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 3551
cedc9a47
JG
3552 /* if we padded the buffer out to 32-bit bound, and data
3553 * xfer direction is from-device, we must copy from the
3554 * pad buffer back into the supplied buffer
3555 */
3556 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3557 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3558
3559 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 3560 if (qc->n_elem)
2f1f610b 3561 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47
JG
3562 /* restore last sg */
3563 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3564 if (pad_buf) {
3565 struct scatterlist *psg = &qc->pad_sgent;
3566 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3567 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 3568 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3569 }
3570 } else {
2e242fa9 3571 if (qc->n_elem)
2f1f610b 3572 dma_unmap_single(ap->dev,
e1410f2d
JG
3573 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3574 dir);
cedc9a47
JG
3575 /* restore sg */
3576 sg->length += qc->pad_len;
3577 if (pad_buf)
3578 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3579 pad_buf, qc->pad_len);
3580 }
1da177e4
LT
3581
3582 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 3583 qc->__sg = NULL;
1da177e4
LT
3584}
3585
3586/**
3587 * ata_fill_sg - Fill PCI IDE PRD table
3588 * @qc: Metadata associated with taskfile to be transferred
3589 *
780a87f7
JG
3590 * Fill PCI IDE PRD (scatter-gather) table with segments
3591 * associated with the current disk command.
3592 *
1da177e4 3593 * LOCKING:
cca3974e 3594 * spin_lock_irqsave(host lock)
1da177e4
LT
3595 *
3596 */
3597static void ata_fill_sg(struct ata_queued_cmd *qc)
3598{
1da177e4 3599 struct ata_port *ap = qc->ap;
cedc9a47
JG
3600 struct scatterlist *sg;
3601 unsigned int idx;
1da177e4 3602
a4631474 3603 WARN_ON(qc->__sg == NULL);
f131883e 3604 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
3605
3606 idx = 0;
cedc9a47 3607 ata_for_each_sg(sg, qc) {
1da177e4
LT
3608 u32 addr, offset;
3609 u32 sg_len, len;
3610
3611 /* determine if physical DMA addr spans 64K boundary.
3612 * Note h/w doesn't support 64-bit, so we unconditionally
3613 * truncate dma_addr_t to u32.
3614 */
3615 addr = (u32) sg_dma_address(sg);
3616 sg_len = sg_dma_len(sg);
3617
3618 while (sg_len) {
3619 offset = addr & 0xffff;
3620 len = sg_len;
3621 if ((offset + sg_len) > 0x10000)
3622 len = 0x10000 - offset;
3623
3624 ap->prd[idx].addr = cpu_to_le32(addr);
3625 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3626 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3627
3628 idx++;
3629 sg_len -= len;
3630 addr += len;
3631 }
3632 }
3633
3634 if (idx)
3635 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3636}
3637/**
3638 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3639 * @qc: Metadata associated with taskfile to check
3640 *
780a87f7
JG
3641 * Allow low-level driver to filter ATA PACKET commands, returning
3642 * a status indicating whether or not it is OK to use DMA for the
3643 * supplied PACKET command.
3644 *
1da177e4 3645 * LOCKING:
cca3974e 3646 * spin_lock_irqsave(host lock)
0cba632b 3647 *
1da177e4
LT
3648 * RETURNS: 0 when ATAPI DMA can be used
3649 * nonzero otherwise
3650 */
3651int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3652{
3653 struct ata_port *ap = qc->ap;
3654 int rc = 0; /* Assume ATAPI DMA is OK by default */
3655
3656 if (ap->ops->check_atapi_dma)
3657 rc = ap->ops->check_atapi_dma(qc);
3658
3659 return rc;
3660}
3661/**
3662 * ata_qc_prep - Prepare taskfile for submission
3663 * @qc: Metadata associated with taskfile to be prepared
3664 *
780a87f7
JG
3665 * Prepare ATA taskfile for submission.
3666 *
1da177e4 3667 * LOCKING:
cca3974e 3668 * spin_lock_irqsave(host lock)
1da177e4
LT
3669 */
3670void ata_qc_prep(struct ata_queued_cmd *qc)
3671{
3672 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3673 return;
3674
3675 ata_fill_sg(qc);
3676}
3677
e46834cd
BK
3678void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3679
0cba632b
JG
3680/**
3681 * ata_sg_init_one - Associate command with memory buffer
3682 * @qc: Command to be associated
3683 * @buf: Memory buffer
3684 * @buflen: Length of memory buffer, in bytes.
3685 *
3686 * Initialize the data-related elements of queued_cmd @qc
3687 * to point to a single memory buffer, @buf of byte length @buflen.
3688 *
3689 * LOCKING:
cca3974e 3690 * spin_lock_irqsave(host lock)
0cba632b
JG
3691 */
3692
1da177e4
LT
3693void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3694{
1da177e4
LT
3695 qc->flags |= ATA_QCFLAG_SINGLE;
3696
cedc9a47 3697 qc->__sg = &qc->sgent;
1da177e4 3698 qc->n_elem = 1;
cedc9a47 3699 qc->orig_n_elem = 1;
1da177e4 3700 qc->buf_virt = buf;
233277ca 3701 qc->nbytes = buflen;
1da177e4 3702
61c0596c 3703 sg_init_one(&qc->sgent, buf, buflen);
1da177e4
LT
3704}
3705
0cba632b
JG
3706/**
3707 * ata_sg_init - Associate command with scatter-gather table.
3708 * @qc: Command to be associated
3709 * @sg: Scatter-gather table.
3710 * @n_elem: Number of elements in s/g table.
3711 *
3712 * Initialize the data-related elements of queued_cmd @qc
3713 * to point to a scatter-gather table @sg, containing @n_elem
3714 * elements.
3715 *
3716 * LOCKING:
cca3974e 3717 * spin_lock_irqsave(host lock)
0cba632b
JG
3718 */
3719
1da177e4
LT
3720void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3721 unsigned int n_elem)
3722{
3723 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 3724 qc->__sg = sg;
1da177e4 3725 qc->n_elem = n_elem;
cedc9a47 3726 qc->orig_n_elem = n_elem;
1da177e4
LT
3727}
3728
3729/**
0cba632b
JG
3730 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3731 * @qc: Command with memory buffer to be mapped.
3732 *
3733 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
3734 *
3735 * LOCKING:
cca3974e 3736 * spin_lock_irqsave(host lock)
1da177e4
LT
3737 *
3738 * RETURNS:
0cba632b 3739 * Zero on success, negative on error.
1da177e4
LT
3740 */
3741
3742static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3743{
3744 struct ata_port *ap = qc->ap;
3745 int dir = qc->dma_dir;
cedc9a47 3746 struct scatterlist *sg = qc->__sg;
1da177e4 3747 dma_addr_t dma_address;
2e242fa9 3748 int trim_sg = 0;
1da177e4 3749
cedc9a47
JG
3750 /* we must lengthen transfers to end on a 32-bit boundary */
3751 qc->pad_len = sg->length & 3;
3752 if (qc->pad_len) {
3753 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3754 struct scatterlist *psg = &qc->pad_sgent;
3755
a4631474 3756 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3757
3758 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3759
3760 if (qc->tf.flags & ATA_TFLAG_WRITE)
3761 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3762 qc->pad_len);
3763
3764 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3765 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3766 /* trim sg */
3767 sg->length -= qc->pad_len;
2e242fa9
TH
3768 if (sg->length == 0)
3769 trim_sg = 1;
cedc9a47
JG
3770
3771 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3772 sg->length, qc->pad_len);
3773 }
3774
2e242fa9
TH
3775 if (trim_sg) {
3776 qc->n_elem--;
e1410f2d
JG
3777 goto skip_map;
3778 }
3779
2f1f610b 3780 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 3781 sg->length, dir);
537a95d9
TH
3782 if (dma_mapping_error(dma_address)) {
3783 /* restore sg */
3784 sg->length += qc->pad_len;
1da177e4 3785 return -1;
537a95d9 3786 }
1da177e4
LT
3787
3788 sg_dma_address(sg) = dma_address;
32529e01 3789 sg_dma_len(sg) = sg->length;
1da177e4 3790
2e242fa9 3791skip_map:
1da177e4
LT
3792 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3793 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3794
3795 return 0;
3796}
3797
3798/**
0cba632b
JG
3799 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3800 * @qc: Command with scatter-gather table to be mapped.
3801 *
3802 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
3803 *
3804 * LOCKING:
cca3974e 3805 * spin_lock_irqsave(host lock)
1da177e4
LT
3806 *
3807 * RETURNS:
0cba632b 3808 * Zero on success, negative on error.
1da177e4
LT
3809 *
3810 */
3811
3812static int ata_sg_setup(struct ata_queued_cmd *qc)
3813{
3814 struct ata_port *ap = qc->ap;
cedc9a47
JG
3815 struct scatterlist *sg = qc->__sg;
3816 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 3817 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4
LT
3818
3819 VPRINTK("ENTER, ata%u\n", ap->id);
a4631474 3820 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 3821
cedc9a47
JG
3822 /* we must lengthen transfers to end on a 32-bit boundary */
3823 qc->pad_len = lsg->length & 3;
3824 if (qc->pad_len) {
3825 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3826 struct scatterlist *psg = &qc->pad_sgent;
3827 unsigned int offset;
3828
a4631474 3829 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3830
3831 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3832
3833 /*
3834 * psg->page/offset are used to copy to-be-written
3835 * data in this function or read data in ata_sg_clean.
3836 */
3837 offset = lsg->offset + lsg->length - qc->pad_len;
3838 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3839 psg->offset = offset_in_page(offset);
3840
3841 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3842 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3843 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 3844 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3845 }
3846
3847 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3848 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3849 /* trim last sg */
3850 lsg->length -= qc->pad_len;
e1410f2d
JG
3851 if (lsg->length == 0)
3852 trim_sg = 1;
cedc9a47
JG
3853
3854 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3855 qc->n_elem - 1, lsg->length, qc->pad_len);
3856 }
3857
e1410f2d
JG
3858 pre_n_elem = qc->n_elem;
3859 if (trim_sg && pre_n_elem)
3860 pre_n_elem--;
3861
3862 if (!pre_n_elem) {
3863 n_elem = 0;
3864 goto skip_map;
3865 }
3866
1da177e4 3867 dir = qc->dma_dir;
2f1f610b 3868 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
3869 if (n_elem < 1) {
3870 /* restore last sg */
3871 lsg->length += qc->pad_len;
1da177e4 3872 return -1;
537a95d9 3873 }
1da177e4
LT
3874
3875 DPRINTK("%d sg elements mapped\n", n_elem);
3876
e1410f2d 3877skip_map:
1da177e4
LT
3878 qc->n_elem = n_elem;
3879
3880 return 0;
3881}
3882
0baab86b 3883/**
c893a3ae 3884 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
3885 * @buf: Buffer to swap
3886 * @buf_words: Number of 16-bit words in buffer.
3887 *
3888 * Swap halves of 16-bit words if needed to convert from
3889 * little-endian byte order to native cpu byte order, or
3890 * vice-versa.
3891 *
3892 * LOCKING:
6f0ef4fa 3893 * Inherited from caller.
0baab86b 3894 */
1da177e4
LT
3895void swap_buf_le16(u16 *buf, unsigned int buf_words)
3896{
3897#ifdef __BIG_ENDIAN
3898 unsigned int i;
3899
3900 for (i = 0; i < buf_words; i++)
3901 buf[i] = le16_to_cpu(buf[i]);
3902#endif /* __BIG_ENDIAN */
3903}
3904
6ae4cfb5
AL
3905/**
3906 * ata_mmio_data_xfer - Transfer data by MMIO
bf717b11 3907 * @adev: device for this I/O
6ae4cfb5
AL
3908 * @buf: data buffer
3909 * @buflen: buffer length
344babaa 3910 * @write_data: read/write
6ae4cfb5
AL
3911 *
3912 * Transfer data from/to the device data register by MMIO.
3913 *
3914 * LOCKING:
3915 * Inherited from caller.
6ae4cfb5
AL
3916 */
3917
88574551 3918void ata_mmio_data_xfer(struct ata_device *adev, unsigned char *buf,
a6b2c5d4 3919 unsigned int buflen, int write_data)
1da177e4 3920{
a6b2c5d4 3921 struct ata_port *ap = adev->ap;
1da177e4
LT
3922 unsigned int i;
3923 unsigned int words = buflen >> 1;
3924 u16 *buf16 = (u16 *) buf;
3925 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3926
6ae4cfb5 3927 /* Transfer multiple of 2 bytes */
1da177e4
LT
3928 if (write_data) {
3929 for (i = 0; i < words; i++)
3930 writew(le16_to_cpu(buf16[i]), mmio);
3931 } else {
3932 for (i = 0; i < words; i++)
3933 buf16[i] = cpu_to_le16(readw(mmio));
3934 }
6ae4cfb5
AL
3935
3936 /* Transfer trailing 1 byte, if any. */
3937 if (unlikely(buflen & 0x01)) {
3938 u16 align_buf[1] = { 0 };
3939 unsigned char *trailing_buf = buf + buflen - 1;
3940
3941 if (write_data) {
3942 memcpy(align_buf, trailing_buf, 1);
3943 writew(le16_to_cpu(align_buf[0]), mmio);
3944 } else {
3945 align_buf[0] = cpu_to_le16(readw(mmio));
3946 memcpy(trailing_buf, align_buf, 1);
3947 }
3948 }
1da177e4
LT
3949}
3950
6ae4cfb5
AL
3951/**
3952 * ata_pio_data_xfer - Transfer data by PIO
a6b2c5d4 3953 * @adev: device to target
6ae4cfb5
AL
3954 * @buf: data buffer
3955 * @buflen: buffer length
344babaa 3956 * @write_data: read/write
6ae4cfb5
AL
3957 *
3958 * Transfer data from/to the device data register by PIO.
3959 *
3960 * LOCKING:
3961 * Inherited from caller.
6ae4cfb5
AL
3962 */
3963
88574551 3964void ata_pio_data_xfer(struct ata_device *adev, unsigned char *buf,
a6b2c5d4 3965 unsigned int buflen, int write_data)
1da177e4 3966{
a6b2c5d4 3967 struct ata_port *ap = adev->ap;
6ae4cfb5 3968 unsigned int words = buflen >> 1;
1da177e4 3969
6ae4cfb5 3970 /* Transfer multiple of 2 bytes */
1da177e4 3971 if (write_data)
6ae4cfb5 3972 outsw(ap->ioaddr.data_addr, buf, words);
1da177e4 3973 else
6ae4cfb5
AL
3974 insw(ap->ioaddr.data_addr, buf, words);
3975
3976 /* Transfer trailing 1 byte, if any. */
3977 if (unlikely(buflen & 0x01)) {
3978 u16 align_buf[1] = { 0 };
3979 unsigned char *trailing_buf = buf + buflen - 1;
3980
3981 if (write_data) {
3982 memcpy(align_buf, trailing_buf, 1);
3983 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3984 } else {
3985 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3986 memcpy(trailing_buf, align_buf, 1);
3987 }
3988 }
1da177e4
LT
3989}
3990
75e99585
AC
3991/**
3992 * ata_pio_data_xfer_noirq - Transfer data by PIO
3993 * @adev: device to target
3994 * @buf: data buffer
3995 * @buflen: buffer length
3996 * @write_data: read/write
3997 *
88574551 3998 * Transfer data from/to the device data register by PIO. Do the
75e99585
AC
3999 * transfer with interrupts disabled.
4000 *
4001 * LOCKING:
4002 * Inherited from caller.
4003 */
4004
4005void ata_pio_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4006 unsigned int buflen, int write_data)
4007{
4008 unsigned long flags;
4009 local_irq_save(flags);
4010 ata_pio_data_xfer(adev, buf, buflen, write_data);
4011 local_irq_restore(flags);
4012}
4013
4014
6ae4cfb5
AL
4015/**
4016 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
4017 * @qc: Command on going
4018 *
4019 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
4020 *
4021 * LOCKING:
4022 * Inherited from caller.
4023 */
4024
1da177e4
LT
4025static void ata_pio_sector(struct ata_queued_cmd *qc)
4026{
4027 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 4028 struct scatterlist *sg = qc->__sg;
1da177e4
LT
4029 struct ata_port *ap = qc->ap;
4030 struct page *page;
4031 unsigned int offset;
4032 unsigned char *buf;
4033
4034 if (qc->cursect == (qc->nsect - 1))
14be71f4 4035 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4036
4037 page = sg[qc->cursg].page;
4038 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
4039
4040 /* get the current page and offset */
4041 page = nth_page(page, (offset >> PAGE_SHIFT));
4042 offset %= PAGE_SIZE;
4043
1da177e4
LT
4044 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4045
91b8b313
AL
4046 if (PageHighMem(page)) {
4047 unsigned long flags;
4048
a6b2c5d4 4049 /* FIXME: use a bounce buffer */
91b8b313
AL
4050 local_irq_save(flags);
4051 buf = kmap_atomic(page, KM_IRQ0);
083958d3 4052
91b8b313 4053 /* do the actual data transfer */
a6b2c5d4 4054 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
1da177e4 4055
91b8b313
AL
4056 kunmap_atomic(buf, KM_IRQ0);
4057 local_irq_restore(flags);
4058 } else {
4059 buf = page_address(page);
a6b2c5d4 4060 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
91b8b313 4061 }
1da177e4
LT
4062
4063 qc->cursect++;
4064 qc->cursg_ofs++;
4065
32529e01 4066 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
1da177e4
LT
4067 qc->cursg++;
4068 qc->cursg_ofs = 0;
4069 }
1da177e4 4070}
1da177e4 4071
07f6f7d0
AL
4072/**
4073 * ata_pio_sectors - Transfer one or many 512-byte sectors.
4074 * @qc: Command on going
4075 *
c81e29b4 4076 * Transfer one or many ATA_SECT_SIZE of data from/to the
07f6f7d0
AL
4077 * ATA device for the DRQ request.
4078 *
4079 * LOCKING:
4080 * Inherited from caller.
4081 */
1da177e4 4082
07f6f7d0
AL
4083static void ata_pio_sectors(struct ata_queued_cmd *qc)
4084{
4085 if (is_multi_taskfile(&qc->tf)) {
4086 /* READ/WRITE MULTIPLE */
4087 unsigned int nsect;
4088
587005de 4089 WARN_ON(qc->dev->multi_count == 0);
1da177e4 4090
07f6f7d0
AL
4091 nsect = min(qc->nsect - qc->cursect, qc->dev->multi_count);
4092 while (nsect--)
4093 ata_pio_sector(qc);
4094 } else
4095 ata_pio_sector(qc);
4096}
4097
c71c1857
AL
4098/**
4099 * atapi_send_cdb - Write CDB bytes to hardware
4100 * @ap: Port to which ATAPI device is attached.
4101 * @qc: Taskfile currently active
4102 *
4103 * When device has indicated its readiness to accept
4104 * a CDB, this function is called. Send the CDB.
4105 *
4106 * LOCKING:
4107 * caller.
4108 */
4109
4110static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4111{
4112 /* send SCSI cdb */
4113 DPRINTK("send cdb\n");
db024d53 4114 WARN_ON(qc->dev->cdb_len < 12);
c71c1857 4115
a6b2c5d4 4116 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
c71c1857
AL
4117 ata_altstatus(ap); /* flush */
4118
4119 switch (qc->tf.protocol) {
4120 case ATA_PROT_ATAPI:
4121 ap->hsm_task_state = HSM_ST;
4122 break;
4123 case ATA_PROT_ATAPI_NODATA:
4124 ap->hsm_task_state = HSM_ST_LAST;
4125 break;
4126 case ATA_PROT_ATAPI_DMA:
4127 ap->hsm_task_state = HSM_ST_LAST;
4128 /* initiate bmdma */
4129 ap->ops->bmdma_start(qc);
4130 break;
4131 }
1da177e4
LT
4132}
4133
6ae4cfb5
AL
4134/**
4135 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4136 * @qc: Command on going
4137 * @bytes: number of bytes
4138 *
4139 * Transfer Transfer data from/to the ATAPI device.
4140 *
4141 * LOCKING:
4142 * Inherited from caller.
4143 *
4144 */
4145
1da177e4
LT
4146static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4147{
4148 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 4149 struct scatterlist *sg = qc->__sg;
1da177e4
LT
4150 struct ata_port *ap = qc->ap;
4151 struct page *page;
4152 unsigned char *buf;
4153 unsigned int offset, count;
4154
563a6e1f 4155 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 4156 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4157
4158next_sg:
563a6e1f 4159 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 4160 /*
563a6e1f
AL
4161 * The end of qc->sg is reached and the device expects
4162 * more data to transfer. In order not to overrun qc->sg
4163 * and fulfill length specified in the byte count register,
4164 * - for read case, discard trailing data from the device
4165 * - for write case, padding zero data to the device
4166 */
4167 u16 pad_buf[1] = { 0 };
4168 unsigned int words = bytes >> 1;
4169 unsigned int i;
4170
4171 if (words) /* warning if bytes > 1 */
f15a1daf
TH
4172 ata_dev_printk(qc->dev, KERN_WARNING,
4173 "%u bytes trailing data\n", bytes);
563a6e1f
AL
4174
4175 for (i = 0; i < words; i++)
a6b2c5d4 4176 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
563a6e1f 4177
14be71f4 4178 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
4179 return;
4180 }
4181
cedc9a47 4182 sg = &qc->__sg[qc->cursg];
1da177e4 4183
1da177e4
LT
4184 page = sg->page;
4185 offset = sg->offset + qc->cursg_ofs;
4186
4187 /* get the current page and offset */
4188 page = nth_page(page, (offset >> PAGE_SHIFT));
4189 offset %= PAGE_SIZE;
4190
6952df03 4191 /* don't overrun current sg */
32529e01 4192 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
4193
4194 /* don't cross page boundaries */
4195 count = min(count, (unsigned int)PAGE_SIZE - offset);
4196
7282aa4b
AL
4197 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4198
91b8b313
AL
4199 if (PageHighMem(page)) {
4200 unsigned long flags;
4201
a6b2c5d4 4202 /* FIXME: use bounce buffer */
91b8b313
AL
4203 local_irq_save(flags);
4204 buf = kmap_atomic(page, KM_IRQ0);
083958d3 4205
91b8b313 4206 /* do the actual data transfer */
a6b2c5d4 4207 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
7282aa4b 4208
91b8b313
AL
4209 kunmap_atomic(buf, KM_IRQ0);
4210 local_irq_restore(flags);
4211 } else {
4212 buf = page_address(page);
a6b2c5d4 4213 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
91b8b313 4214 }
1da177e4
LT
4215
4216 bytes -= count;
4217 qc->curbytes += count;
4218 qc->cursg_ofs += count;
4219
32529e01 4220 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
4221 qc->cursg++;
4222 qc->cursg_ofs = 0;
4223 }
4224
563a6e1f 4225 if (bytes)
1da177e4 4226 goto next_sg;
1da177e4
LT
4227}
4228
6ae4cfb5
AL
4229/**
4230 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4231 * @qc: Command on going
4232 *
4233 * Transfer Transfer data from/to the ATAPI device.
4234 *
4235 * LOCKING:
4236 * Inherited from caller.
6ae4cfb5
AL
4237 */
4238
1da177e4
LT
4239static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4240{
4241 struct ata_port *ap = qc->ap;
4242 struct ata_device *dev = qc->dev;
4243 unsigned int ireason, bc_lo, bc_hi, bytes;
4244 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4245
eec4c3f3
AL
4246 /* Abuse qc->result_tf for temp storage of intermediate TF
4247 * here to save some kernel stack usage.
4248 * For normal completion, qc->result_tf is not relevant. For
4249 * error, qc->result_tf is later overwritten by ata_qc_complete().
4250 * So, the correctness of qc->result_tf is not affected.
4251 */
4252 ap->ops->tf_read(ap, &qc->result_tf);
4253 ireason = qc->result_tf.nsect;
4254 bc_lo = qc->result_tf.lbam;
4255 bc_hi = qc->result_tf.lbah;
1da177e4
LT
4256 bytes = (bc_hi << 8) | bc_lo;
4257
4258 /* shall be cleared to zero, indicating xfer of data */
4259 if (ireason & (1 << 0))
4260 goto err_out;
4261
4262 /* make sure transfer direction matches expected */
4263 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4264 if (do_write != i_write)
4265 goto err_out;
4266
312f7da2
AL
4267 VPRINTK("ata%u: xfering %d bytes\n", ap->id, bytes);
4268
1da177e4
LT
4269 __atapi_pio_bytes(qc, bytes);
4270
4271 return;
4272
4273err_out:
f15a1daf 4274 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
11a56d24 4275 qc->err_mask |= AC_ERR_HSM;
14be71f4 4276 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
4277}
4278
4279/**
c234fb00
AL
4280 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4281 * @ap: the target ata_port
4282 * @qc: qc on going
1da177e4 4283 *
c234fb00
AL
4284 * RETURNS:
4285 * 1 if ok in workqueue, 0 otherwise.
1da177e4 4286 */
c234fb00
AL
4287
4288static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1da177e4 4289{
c234fb00
AL
4290 if (qc->tf.flags & ATA_TFLAG_POLLING)
4291 return 1;
1da177e4 4292
c234fb00
AL
4293 if (ap->hsm_task_state == HSM_ST_FIRST) {
4294 if (qc->tf.protocol == ATA_PROT_PIO &&
4295 (qc->tf.flags & ATA_TFLAG_WRITE))
4296 return 1;
1da177e4 4297
c234fb00
AL
4298 if (is_atapi_taskfile(&qc->tf) &&
4299 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4300 return 1;
fe79e683
AL
4301 }
4302
c234fb00
AL
4303 return 0;
4304}
1da177e4 4305
c17ea20d
TH
4306/**
4307 * ata_hsm_qc_complete - finish a qc running on standard HSM
4308 * @qc: Command to complete
4309 * @in_wq: 1 if called from workqueue, 0 otherwise
4310 *
4311 * Finish @qc which is running on standard HSM.
4312 *
4313 * LOCKING:
cca3974e 4314 * If @in_wq is zero, spin_lock_irqsave(host lock).
c17ea20d
TH
4315 * Otherwise, none on entry and grabs host lock.
4316 */
4317static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4318{
4319 struct ata_port *ap = qc->ap;
4320 unsigned long flags;
4321
4322 if (ap->ops->error_handler) {
4323 if (in_wq) {
ba6a1308 4324 spin_lock_irqsave(ap->lock, flags);
c17ea20d 4325
cca3974e
JG
4326 /* EH might have kicked in while host lock is
4327 * released.
c17ea20d
TH
4328 */
4329 qc = ata_qc_from_tag(ap, qc->tag);
4330 if (qc) {
4331 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
4332 ata_irq_on(ap);
4333 ata_qc_complete(qc);
4334 } else
4335 ata_port_freeze(ap);
4336 }
4337
ba6a1308 4338 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4339 } else {
4340 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4341 ata_qc_complete(qc);
4342 else
4343 ata_port_freeze(ap);
4344 }
4345 } else {
4346 if (in_wq) {
ba6a1308 4347 spin_lock_irqsave(ap->lock, flags);
c17ea20d
TH
4348 ata_irq_on(ap);
4349 ata_qc_complete(qc);
ba6a1308 4350 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4351 } else
4352 ata_qc_complete(qc);
4353 }
1da177e4 4354
c81e29b4 4355 ata_altstatus(ap); /* flush */
c17ea20d
TH
4356}
4357
bb5cb290
AL
4358/**
4359 * ata_hsm_move - move the HSM to the next state.
4360 * @ap: the target ata_port
4361 * @qc: qc on going
4362 * @status: current device status
4363 * @in_wq: 1 if called from workqueue, 0 otherwise
4364 *
4365 * RETURNS:
4366 * 1 when poll next status needed, 0 otherwise.
4367 */
9a1004d0
TH
4368int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4369 u8 status, int in_wq)
e2cec771 4370{
bb5cb290
AL
4371 unsigned long flags = 0;
4372 int poll_next;
4373
6912ccd5
AL
4374 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4375
bb5cb290
AL
4376 /* Make sure ata_qc_issue_prot() does not throw things
4377 * like DMA polling into the workqueue. Notice that
4378 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4379 */
c234fb00 4380 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
bb5cb290 4381
e2cec771 4382fsm_start:
999bb6f4
AL
4383 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4384 ap->id, qc->tf.protocol, ap->hsm_task_state, status);
4385
e2cec771
AL
4386 switch (ap->hsm_task_state) {
4387 case HSM_ST_FIRST:
bb5cb290
AL
4388 /* Send first data block or PACKET CDB */
4389
4390 /* If polling, we will stay in the work queue after
4391 * sending the data. Otherwise, interrupt handler
4392 * takes over after sending the data.
4393 */
4394 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4395
e2cec771 4396 /* check device status */
3655d1d3
AL
4397 if (unlikely((status & ATA_DRQ) == 0)) {
4398 /* handle BSY=0, DRQ=0 as error */
4399 if (likely(status & (ATA_ERR | ATA_DF)))
4400 /* device stops HSM for abort/error */
4401 qc->err_mask |= AC_ERR_DEV;
4402 else
4403 /* HSM violation. Let EH handle this */
4404 qc->err_mask |= AC_ERR_HSM;
4405
14be71f4 4406 ap->hsm_task_state = HSM_ST_ERR;
e2cec771 4407 goto fsm_start;
1da177e4
LT
4408 }
4409
71601958
AL
4410 /* Device should not ask for data transfer (DRQ=1)
4411 * when it finds something wrong.
eee6c32f
AL
4412 * We ignore DRQ here and stop the HSM by
4413 * changing hsm_task_state to HSM_ST_ERR and
4414 * let the EH abort the command or reset the device.
71601958
AL
4415 */
4416 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4417 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4418 ap->id, status);
3655d1d3 4419 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4420 ap->hsm_task_state = HSM_ST_ERR;
4421 goto fsm_start;
71601958 4422 }
1da177e4 4423
bb5cb290
AL
4424 /* Send the CDB (atapi) or the first data block (ata pio out).
4425 * During the state transition, interrupt handler shouldn't
4426 * be invoked before the data transfer is complete and
4427 * hsm_task_state is changed. Hence, the following locking.
4428 */
4429 if (in_wq)
ba6a1308 4430 spin_lock_irqsave(ap->lock, flags);
1da177e4 4431
bb5cb290
AL
4432 if (qc->tf.protocol == ATA_PROT_PIO) {
4433 /* PIO data out protocol.
4434 * send first data block.
4435 */
0565c26d 4436
bb5cb290
AL
4437 /* ata_pio_sectors() might change the state
4438 * to HSM_ST_LAST. so, the state is changed here
4439 * before ata_pio_sectors().
4440 */
4441 ap->hsm_task_state = HSM_ST;
4442 ata_pio_sectors(qc);
4443 ata_altstatus(ap); /* flush */
4444 } else
4445 /* send CDB */
4446 atapi_send_cdb(ap, qc);
4447
4448 if (in_wq)
ba6a1308 4449 spin_unlock_irqrestore(ap->lock, flags);
bb5cb290
AL
4450
4451 /* if polling, ata_pio_task() handles the rest.
4452 * otherwise, interrupt handler takes over from here.
4453 */
e2cec771 4454 break;
1c848984 4455
e2cec771
AL
4456 case HSM_ST:
4457 /* complete command or read/write the data register */
4458 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4459 /* ATAPI PIO protocol */
4460 if ((status & ATA_DRQ) == 0) {
3655d1d3
AL
4461 /* No more data to transfer or device error.
4462 * Device error will be tagged in HSM_ST_LAST.
4463 */
e2cec771
AL
4464 ap->hsm_task_state = HSM_ST_LAST;
4465 goto fsm_start;
4466 }
1da177e4 4467
71601958
AL
4468 /* Device should not ask for data transfer (DRQ=1)
4469 * when it finds something wrong.
eee6c32f
AL
4470 * We ignore DRQ here and stop the HSM by
4471 * changing hsm_task_state to HSM_ST_ERR and
4472 * let the EH abort the command or reset the device.
71601958
AL
4473 */
4474 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4475 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4476 ap->id, status);
3655d1d3 4477 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4478 ap->hsm_task_state = HSM_ST_ERR;
4479 goto fsm_start;
71601958 4480 }
1da177e4 4481
e2cec771 4482 atapi_pio_bytes(qc);
7fb6ec28 4483
e2cec771
AL
4484 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4485 /* bad ireason reported by device */
4486 goto fsm_start;
1da177e4 4487
e2cec771
AL
4488 } else {
4489 /* ATA PIO protocol */
4490 if (unlikely((status & ATA_DRQ) == 0)) {
4491 /* handle BSY=0, DRQ=0 as error */
3655d1d3
AL
4492 if (likely(status & (ATA_ERR | ATA_DF)))
4493 /* device stops HSM for abort/error */
4494 qc->err_mask |= AC_ERR_DEV;
4495 else
55a8e2c8
TH
4496 /* HSM violation. Let EH handle this.
4497 * Phantom devices also trigger this
4498 * condition. Mark hint.
4499 */
4500 qc->err_mask |= AC_ERR_HSM |
4501 AC_ERR_NODEV_HINT;
3655d1d3 4502
e2cec771
AL
4503 ap->hsm_task_state = HSM_ST_ERR;
4504 goto fsm_start;
4505 }
1da177e4 4506
eee6c32f
AL
4507 /* For PIO reads, some devices may ask for
4508 * data transfer (DRQ=1) alone with ERR=1.
4509 * We respect DRQ here and transfer one
4510 * block of junk data before changing the
4511 * hsm_task_state to HSM_ST_ERR.
4512 *
4513 * For PIO writes, ERR=1 DRQ=1 doesn't make
4514 * sense since the data block has been
4515 * transferred to the device.
71601958
AL
4516 */
4517 if (unlikely(status & (ATA_ERR | ATA_DF))) {
71601958
AL
4518 /* data might be corrputed */
4519 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
4520
4521 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4522 ata_pio_sectors(qc);
4523 ata_altstatus(ap);
4524 status = ata_wait_idle(ap);
4525 }
4526
3655d1d3
AL
4527 if (status & (ATA_BUSY | ATA_DRQ))
4528 qc->err_mask |= AC_ERR_HSM;
4529
eee6c32f
AL
4530 /* ata_pio_sectors() might change the
4531 * state to HSM_ST_LAST. so, the state
4532 * is changed after ata_pio_sectors().
4533 */
4534 ap->hsm_task_state = HSM_ST_ERR;
4535 goto fsm_start;
71601958
AL
4536 }
4537
e2cec771
AL
4538 ata_pio_sectors(qc);
4539
4540 if (ap->hsm_task_state == HSM_ST_LAST &&
4541 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4542 /* all data read */
4543 ata_altstatus(ap);
52a32205 4544 status = ata_wait_idle(ap);
e2cec771
AL
4545 goto fsm_start;
4546 }
4547 }
4548
4549 ata_altstatus(ap); /* flush */
bb5cb290 4550 poll_next = 1;
1da177e4
LT
4551 break;
4552
14be71f4 4553 case HSM_ST_LAST:
6912ccd5
AL
4554 if (unlikely(!ata_ok(status))) {
4555 qc->err_mask |= __ac_err_mask(status);
e2cec771
AL
4556 ap->hsm_task_state = HSM_ST_ERR;
4557 goto fsm_start;
4558 }
4559
4560 /* no more data to transfer */
4332a771
AL
4561 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4562 ap->id, qc->dev->devno, status);
e2cec771 4563
6912ccd5
AL
4564 WARN_ON(qc->err_mask);
4565
e2cec771 4566 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 4567
e2cec771 4568 /* complete taskfile transaction */
c17ea20d 4569 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
4570
4571 poll_next = 0;
1da177e4
LT
4572 break;
4573
14be71f4 4574 case HSM_ST_ERR:
e2cec771
AL
4575 /* make sure qc->err_mask is available to
4576 * know what's wrong and recover
4577 */
4578 WARN_ON(qc->err_mask == 0);
4579
4580 ap->hsm_task_state = HSM_ST_IDLE;
bb5cb290 4581
999bb6f4 4582 /* complete taskfile transaction */
c17ea20d 4583 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
4584
4585 poll_next = 0;
e2cec771
AL
4586 break;
4587 default:
bb5cb290 4588 poll_next = 0;
6912ccd5 4589 BUG();
1da177e4
LT
4590 }
4591
bb5cb290 4592 return poll_next;
1da177e4
LT
4593}
4594
1da177e4 4595static void ata_pio_task(void *_data)
8061f5f0 4596{
c91af2c8
TH
4597 struct ata_queued_cmd *qc = _data;
4598 struct ata_port *ap = qc->ap;
8061f5f0 4599 u8 status;
a1af3734 4600 int poll_next;
8061f5f0 4601
7fb6ec28 4602fsm_start:
a1af3734 4603 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
8061f5f0 4604
a1af3734
AL
4605 /*
4606 * This is purely heuristic. This is a fast path.
4607 * Sometimes when we enter, BSY will be cleared in
4608 * a chk-status or two. If not, the drive is probably seeking
4609 * or something. Snooze for a couple msecs, then
4610 * chk-status again. If still busy, queue delayed work.
4611 */
4612 status = ata_busy_wait(ap, ATA_BUSY, 5);
4613 if (status & ATA_BUSY) {
4614 msleep(2);
4615 status = ata_busy_wait(ap, ATA_BUSY, 10);
4616 if (status & ATA_BUSY) {
31ce6dae 4617 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
a1af3734
AL
4618 return;
4619 }
8061f5f0
TH
4620 }
4621
a1af3734
AL
4622 /* move the HSM */
4623 poll_next = ata_hsm_move(ap, qc, status, 1);
8061f5f0 4624
a1af3734
AL
4625 /* another command or interrupt handler
4626 * may be running at this point.
4627 */
4628 if (poll_next)
7fb6ec28 4629 goto fsm_start;
8061f5f0
TH
4630}
4631
1da177e4
LT
4632/**
4633 * ata_qc_new - Request an available ATA command, for queueing
4634 * @ap: Port associated with device @dev
4635 * @dev: Device from whom we request an available command structure
4636 *
4637 * LOCKING:
0cba632b 4638 * None.
1da177e4
LT
4639 */
4640
4641static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4642{
4643 struct ata_queued_cmd *qc = NULL;
4644 unsigned int i;
4645
e3180499 4646 /* no command while frozen */
b51e9e5d 4647 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
e3180499
TH
4648 return NULL;
4649
2ab7db1f
TH
4650 /* the last tag is reserved for internal command. */
4651 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
6cec4a39 4652 if (!test_and_set_bit(i, &ap->qc_allocated)) {
f69499f4 4653 qc = __ata_qc_from_tag(ap, i);
1da177e4
LT
4654 break;
4655 }
4656
4657 if (qc)
4658 qc->tag = i;
4659
4660 return qc;
4661}
4662
4663/**
4664 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
4665 * @dev: Device from whom we request an available command structure
4666 *
4667 * LOCKING:
0cba632b 4668 * None.
1da177e4
LT
4669 */
4670
3373efd8 4671struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 4672{
3373efd8 4673 struct ata_port *ap = dev->ap;
1da177e4
LT
4674 struct ata_queued_cmd *qc;
4675
4676 qc = ata_qc_new(ap);
4677 if (qc) {
1da177e4
LT
4678 qc->scsicmd = NULL;
4679 qc->ap = ap;
4680 qc->dev = dev;
1da177e4 4681
2c13b7ce 4682 ata_qc_reinit(qc);
1da177e4
LT
4683 }
4684
4685 return qc;
4686}
4687
1da177e4
LT
4688/**
4689 * ata_qc_free - free unused ata_queued_cmd
4690 * @qc: Command to complete
4691 *
4692 * Designed to free unused ata_queued_cmd object
4693 * in case something prevents using it.
4694 *
4695 * LOCKING:
cca3974e 4696 * spin_lock_irqsave(host lock)
1da177e4
LT
4697 */
4698void ata_qc_free(struct ata_queued_cmd *qc)
4699{
4ba946e9
TH
4700 struct ata_port *ap = qc->ap;
4701 unsigned int tag;
4702
a4631474 4703 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 4704
4ba946e9
TH
4705 qc->flags = 0;
4706 tag = qc->tag;
4707 if (likely(ata_tag_valid(tag))) {
4ba946e9 4708 qc->tag = ATA_TAG_POISON;
6cec4a39 4709 clear_bit(tag, &ap->qc_allocated);
4ba946e9 4710 }
1da177e4
LT
4711}
4712
76014427 4713void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 4714{
dedaf2b0
TH
4715 struct ata_port *ap = qc->ap;
4716
a4631474
TH
4717 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4718 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
4719
4720 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4721 ata_sg_clean(qc);
4722
7401abf2 4723 /* command should be marked inactive atomically with qc completion */
dedaf2b0
TH
4724 if (qc->tf.protocol == ATA_PROT_NCQ)
4725 ap->sactive &= ~(1 << qc->tag);
4726 else
4727 ap->active_tag = ATA_TAG_POISON;
7401abf2 4728
3f3791d3
AL
4729 /* atapi: mark qc as inactive to prevent the interrupt handler
4730 * from completing the command twice later, before the error handler
4731 * is called. (when rc != 0 and atapi request sense is needed)
4732 */
4733 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 4734 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 4735
1da177e4 4736 /* call completion callback */
77853bf2 4737 qc->complete_fn(qc);
1da177e4
LT
4738}
4739
39599a53
TH
4740static void fill_result_tf(struct ata_queued_cmd *qc)
4741{
4742 struct ata_port *ap = qc->ap;
4743
4744 ap->ops->tf_read(ap, &qc->result_tf);
4745 qc->result_tf.flags = qc->tf.flags;
4746}
4747
f686bcb8
TH
4748/**
4749 * ata_qc_complete - Complete an active ATA command
4750 * @qc: Command to complete
4751 * @err_mask: ATA Status register contents
4752 *
4753 * Indicate to the mid and upper layers that an ATA
4754 * command has completed, with either an ok or not-ok status.
4755 *
4756 * LOCKING:
cca3974e 4757 * spin_lock_irqsave(host lock)
f686bcb8
TH
4758 */
4759void ata_qc_complete(struct ata_queued_cmd *qc)
4760{
4761 struct ata_port *ap = qc->ap;
4762
4763 /* XXX: New EH and old EH use different mechanisms to
4764 * synchronize EH with regular execution path.
4765 *
4766 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4767 * Normal execution path is responsible for not accessing a
4768 * failed qc. libata core enforces the rule by returning NULL
4769 * from ata_qc_from_tag() for failed qcs.
4770 *
4771 * Old EH depends on ata_qc_complete() nullifying completion
4772 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4773 * not synchronize with interrupt handler. Only PIO task is
4774 * taken care of.
4775 */
4776 if (ap->ops->error_handler) {
b51e9e5d 4777 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
f686bcb8
TH
4778
4779 if (unlikely(qc->err_mask))
4780 qc->flags |= ATA_QCFLAG_FAILED;
4781
4782 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4783 if (!ata_tag_internal(qc->tag)) {
4784 /* always fill result TF for failed qc */
39599a53 4785 fill_result_tf(qc);
f686bcb8
TH
4786 ata_qc_schedule_eh(qc);
4787 return;
4788 }
4789 }
4790
4791 /* read result TF if requested */
4792 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 4793 fill_result_tf(qc);
f686bcb8
TH
4794
4795 __ata_qc_complete(qc);
4796 } else {
4797 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4798 return;
4799
4800 /* read result TF if failed or requested */
4801 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 4802 fill_result_tf(qc);
f686bcb8
TH
4803
4804 __ata_qc_complete(qc);
4805 }
4806}
4807
dedaf2b0
TH
4808/**
4809 * ata_qc_complete_multiple - Complete multiple qcs successfully
4810 * @ap: port in question
4811 * @qc_active: new qc_active mask
4812 * @finish_qc: LLDD callback invoked before completing a qc
4813 *
4814 * Complete in-flight commands. This functions is meant to be
4815 * called from low-level driver's interrupt routine to complete
4816 * requests normally. ap->qc_active and @qc_active is compared
4817 * and commands are completed accordingly.
4818 *
4819 * LOCKING:
cca3974e 4820 * spin_lock_irqsave(host lock)
dedaf2b0
TH
4821 *
4822 * RETURNS:
4823 * Number of completed commands on success, -errno otherwise.
4824 */
4825int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
4826 void (*finish_qc)(struct ata_queued_cmd *))
4827{
4828 int nr_done = 0;
4829 u32 done_mask;
4830 int i;
4831
4832 done_mask = ap->qc_active ^ qc_active;
4833
4834 if (unlikely(done_mask & qc_active)) {
4835 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4836 "(%08x->%08x)\n", ap->qc_active, qc_active);
4837 return -EINVAL;
4838 }
4839
4840 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4841 struct ata_queued_cmd *qc;
4842
4843 if (!(done_mask & (1 << i)))
4844 continue;
4845
4846 if ((qc = ata_qc_from_tag(ap, i))) {
4847 if (finish_qc)
4848 finish_qc(qc);
4849 ata_qc_complete(qc);
4850 nr_done++;
4851 }
4852 }
4853
4854 return nr_done;
4855}
4856
1da177e4
LT
4857static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4858{
4859 struct ata_port *ap = qc->ap;
4860
4861 switch (qc->tf.protocol) {
3dc1d881 4862 case ATA_PROT_NCQ:
1da177e4
LT
4863 case ATA_PROT_DMA:
4864 case ATA_PROT_ATAPI_DMA:
4865 return 1;
4866
4867 case ATA_PROT_ATAPI:
4868 case ATA_PROT_PIO:
1da177e4
LT
4869 if (ap->flags & ATA_FLAG_PIO_DMA)
4870 return 1;
4871
4872 /* fall through */
4873
4874 default:
4875 return 0;
4876 }
4877
4878 /* never reached */
4879}
4880
4881/**
4882 * ata_qc_issue - issue taskfile to device
4883 * @qc: command to issue to device
4884 *
4885 * Prepare an ATA command to submission to device.
4886 * This includes mapping the data into a DMA-able
4887 * area, filling in the S/G table, and finally
4888 * writing the taskfile to hardware, starting the command.
4889 *
4890 * LOCKING:
cca3974e 4891 * spin_lock_irqsave(host lock)
1da177e4 4892 */
8e0e694a 4893void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
4894{
4895 struct ata_port *ap = qc->ap;
4896
dedaf2b0
TH
4897 /* Make sure only one non-NCQ command is outstanding. The
4898 * check is skipped for old EH because it reuses active qc to
4899 * request ATAPI sense.
4900 */
4901 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
4902
4903 if (qc->tf.protocol == ATA_PROT_NCQ) {
4904 WARN_ON(ap->sactive & (1 << qc->tag));
4905 ap->sactive |= 1 << qc->tag;
4906 } else {
4907 WARN_ON(ap->sactive);
4908 ap->active_tag = qc->tag;
4909 }
4910
e4a70e76 4911 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 4912 ap->qc_active |= 1 << qc->tag;
e4a70e76 4913
1da177e4
LT
4914 if (ata_should_dma_map(qc)) {
4915 if (qc->flags & ATA_QCFLAG_SG) {
4916 if (ata_sg_setup(qc))
8e436af9 4917 goto sg_err;
1da177e4
LT
4918 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4919 if (ata_sg_setup_one(qc))
8e436af9 4920 goto sg_err;
1da177e4
LT
4921 }
4922 } else {
4923 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4924 }
4925
4926 ap->ops->qc_prep(qc);
4927
8e0e694a
TH
4928 qc->err_mask |= ap->ops->qc_issue(qc);
4929 if (unlikely(qc->err_mask))
4930 goto err;
4931 return;
1da177e4 4932
8e436af9
TH
4933sg_err:
4934 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
4935 qc->err_mask |= AC_ERR_SYSTEM;
4936err:
4937 ata_qc_complete(qc);
1da177e4
LT
4938}
4939
4940/**
4941 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4942 * @qc: command to issue to device
4943 *
4944 * Using various libata functions and hooks, this function
4945 * starts an ATA command. ATA commands are grouped into
4946 * classes called "protocols", and issuing each type of protocol
4947 * is slightly different.
4948 *
0baab86b
EF
4949 * May be used as the qc_issue() entry in ata_port_operations.
4950 *
1da177e4 4951 * LOCKING:
cca3974e 4952 * spin_lock_irqsave(host lock)
1da177e4
LT
4953 *
4954 * RETURNS:
9a3d9eb0 4955 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
4956 */
4957
9a3d9eb0 4958unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
4959{
4960 struct ata_port *ap = qc->ap;
4961
e50362ec
AL
4962 /* Use polling pio if the LLD doesn't handle
4963 * interrupt driven pio and atapi CDB interrupt.
4964 */
4965 if (ap->flags & ATA_FLAG_PIO_POLLING) {
4966 switch (qc->tf.protocol) {
4967 case ATA_PROT_PIO:
4968 case ATA_PROT_ATAPI:
4969 case ATA_PROT_ATAPI_NODATA:
4970 qc->tf.flags |= ATA_TFLAG_POLLING;
4971 break;
4972 case ATA_PROT_ATAPI_DMA:
4973 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
3a778275 4974 /* see ata_dma_blacklisted() */
e50362ec
AL
4975 BUG();
4976 break;
4977 default:
4978 break;
4979 }
4980 }
4981
3d3cca37
TH
4982 /* Some controllers show flaky interrupt behavior after
4983 * setting xfer mode. Use polling instead.
4984 */
4985 if (unlikely(qc->tf.command == ATA_CMD_SET_FEATURES &&
4986 qc->tf.feature == SETFEATURES_XFER) &&
4987 (ap->flags & ATA_FLAG_SETXFER_POLLING))
4988 qc->tf.flags |= ATA_TFLAG_POLLING;
4989
312f7da2 4990 /* select the device */
1da177e4
LT
4991 ata_dev_select(ap, qc->dev->devno, 1, 0);
4992
312f7da2 4993 /* start the command */
1da177e4
LT
4994 switch (qc->tf.protocol) {
4995 case ATA_PROT_NODATA:
312f7da2
AL
4996 if (qc->tf.flags & ATA_TFLAG_POLLING)
4997 ata_qc_set_polling(qc);
4998
e5338254 4999 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
5000 ap->hsm_task_state = HSM_ST_LAST;
5001
5002 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 5003 ata_port_queue_task(ap, ata_pio_task, qc, 0);
312f7da2 5004
1da177e4
LT
5005 break;
5006
5007 case ATA_PROT_DMA:
587005de 5008 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 5009
1da177e4
LT
5010 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5011 ap->ops->bmdma_setup(qc); /* set up bmdma */
5012 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 5013 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
5014 break;
5015
312f7da2
AL
5016 case ATA_PROT_PIO:
5017 if (qc->tf.flags & ATA_TFLAG_POLLING)
5018 ata_qc_set_polling(qc);
1da177e4 5019
e5338254 5020 ata_tf_to_host(ap, &qc->tf);
312f7da2 5021
54f00389
AL
5022 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5023 /* PIO data out protocol */
5024 ap->hsm_task_state = HSM_ST_FIRST;
31ce6dae 5025 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
5026
5027 /* always send first data block using
e27486db 5028 * the ata_pio_task() codepath.
54f00389 5029 */
312f7da2 5030 } else {
54f00389
AL
5031 /* PIO data in protocol */
5032 ap->hsm_task_state = HSM_ST;
5033
5034 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 5035 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
5036
5037 /* if polling, ata_pio_task() handles the rest.
5038 * otherwise, interrupt handler takes over from here.
5039 */
312f7da2
AL
5040 }
5041
1da177e4
LT
5042 break;
5043
1da177e4 5044 case ATA_PROT_ATAPI:
1da177e4 5045 case ATA_PROT_ATAPI_NODATA:
312f7da2
AL
5046 if (qc->tf.flags & ATA_TFLAG_POLLING)
5047 ata_qc_set_polling(qc);
5048
e5338254 5049 ata_tf_to_host(ap, &qc->tf);
f6ef65e6 5050
312f7da2
AL
5051 ap->hsm_task_state = HSM_ST_FIRST;
5052
5053 /* send cdb by polling if no cdb interrupt */
5054 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5055 (qc->tf.flags & ATA_TFLAG_POLLING))
31ce6dae 5056 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5057 break;
5058
5059 case ATA_PROT_ATAPI_DMA:
587005de 5060 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 5061
1da177e4
LT
5062 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5063 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
5064 ap->hsm_task_state = HSM_ST_FIRST;
5065
5066 /* send cdb by polling if no cdb interrupt */
5067 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
31ce6dae 5068 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5069 break;
5070
5071 default:
5072 WARN_ON(1);
9a3d9eb0 5073 return AC_ERR_SYSTEM;
1da177e4
LT
5074 }
5075
5076 return 0;
5077}
5078
1da177e4
LT
5079/**
5080 * ata_host_intr - Handle host interrupt for given (port, task)
5081 * @ap: Port on which interrupt arrived (possibly...)
5082 * @qc: Taskfile currently active in engine
5083 *
5084 * Handle host interrupt for given queued command. Currently,
5085 * only DMA interrupts are handled. All other commands are
5086 * handled via polling with interrupts disabled (nIEN bit).
5087 *
5088 * LOCKING:
cca3974e 5089 * spin_lock_irqsave(host lock)
1da177e4
LT
5090 *
5091 * RETURNS:
5092 * One if interrupt was handled, zero if not (shared irq).
5093 */
5094
5095inline unsigned int ata_host_intr (struct ata_port *ap,
5096 struct ata_queued_cmd *qc)
5097{
ea54763f 5098 struct ata_eh_info *ehi = &ap->eh_info;
312f7da2 5099 u8 status, host_stat = 0;
1da177e4 5100
312f7da2
AL
5101 VPRINTK("ata%u: protocol %d task_state %d\n",
5102 ap->id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 5103
312f7da2
AL
5104 /* Check whether we are expecting interrupt in this state */
5105 switch (ap->hsm_task_state) {
5106 case HSM_ST_FIRST:
6912ccd5
AL
5107 /* Some pre-ATAPI-4 devices assert INTRQ
5108 * at this state when ready to receive CDB.
5109 */
1da177e4 5110
312f7da2
AL
5111 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5112 * The flag was turned on only for atapi devices.
5113 * No need to check is_atapi_taskfile(&qc->tf) again.
5114 */
5115 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 5116 goto idle_irq;
1da177e4 5117 break;
312f7da2
AL
5118 case HSM_ST_LAST:
5119 if (qc->tf.protocol == ATA_PROT_DMA ||
5120 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5121 /* check status of DMA engine */
5122 host_stat = ap->ops->bmdma_status(ap);
5123 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
5124
5125 /* if it's not our irq... */
5126 if (!(host_stat & ATA_DMA_INTR))
5127 goto idle_irq;
5128
5129 /* before we do anything else, clear DMA-Start bit */
5130 ap->ops->bmdma_stop(qc);
a4f16610
AL
5131
5132 if (unlikely(host_stat & ATA_DMA_ERR)) {
5133 /* error when transfering data to/from memory */
5134 qc->err_mask |= AC_ERR_HOST_BUS;
5135 ap->hsm_task_state = HSM_ST_ERR;
5136 }
312f7da2
AL
5137 }
5138 break;
5139 case HSM_ST:
5140 break;
1da177e4
LT
5141 default:
5142 goto idle_irq;
5143 }
5144
312f7da2
AL
5145 /* check altstatus */
5146 status = ata_altstatus(ap);
5147 if (status & ATA_BUSY)
5148 goto idle_irq;
1da177e4 5149
312f7da2
AL
5150 /* check main status, clearing INTRQ */
5151 status = ata_chk_status(ap);
5152 if (unlikely(status & ATA_BUSY))
5153 goto idle_irq;
1da177e4 5154
312f7da2
AL
5155 /* ack bmdma irq events */
5156 ap->ops->irq_clear(ap);
1da177e4 5157
bb5cb290 5158 ata_hsm_move(ap, qc, status, 0);
ea54763f
TH
5159
5160 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5161 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5162 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5163
1da177e4
LT
5164 return 1; /* irq handled */
5165
5166idle_irq:
5167 ap->stats.idle_irq++;
5168
5169#ifdef ATA_IRQ_TRAP
5170 if ((ap->stats.idle_irq % 1000) == 0) {
1da177e4 5171 ata_irq_ack(ap, 0); /* debug trap */
f15a1daf 5172 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
23cfce89 5173 return 1;
1da177e4
LT
5174 }
5175#endif
5176 return 0; /* irq not handled */
5177}
5178
5179/**
5180 * ata_interrupt - Default ATA host interrupt handler
0cba632b 5181 * @irq: irq line (unused)
cca3974e 5182 * @dev_instance: pointer to our ata_host information structure
1da177e4 5183 *
0cba632b
JG
5184 * Default interrupt handler for PCI IDE devices. Calls
5185 * ata_host_intr() for each port that is not disabled.
5186 *
1da177e4 5187 * LOCKING:
cca3974e 5188 * Obtains host lock during operation.
1da177e4
LT
5189 *
5190 * RETURNS:
0cba632b 5191 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
5192 */
5193
7d12e780 5194irqreturn_t ata_interrupt (int irq, void *dev_instance)
1da177e4 5195{
cca3974e 5196 struct ata_host *host = dev_instance;
1da177e4
LT
5197 unsigned int i;
5198 unsigned int handled = 0;
5199 unsigned long flags;
5200
5201 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
cca3974e 5202 spin_lock_irqsave(&host->lock, flags);
1da177e4 5203
cca3974e 5204 for (i = 0; i < host->n_ports; i++) {
1da177e4
LT
5205 struct ata_port *ap;
5206
cca3974e 5207 ap = host->ports[i];
c1389503 5208 if (ap &&
029f5468 5209 !(ap->flags & ATA_FLAG_DISABLED)) {
1da177e4
LT
5210 struct ata_queued_cmd *qc;
5211
5212 qc = ata_qc_from_tag(ap, ap->active_tag);
312f7da2 5213 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 5214 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
5215 handled |= ata_host_intr(ap, qc);
5216 }
5217 }
5218
cca3974e 5219 spin_unlock_irqrestore(&host->lock, flags);
1da177e4
LT
5220
5221 return IRQ_RETVAL(handled);
5222}
5223
34bf2170
TH
5224/**
5225 * sata_scr_valid - test whether SCRs are accessible
5226 * @ap: ATA port to test SCR accessibility for
5227 *
5228 * Test whether SCRs are accessible for @ap.
5229 *
5230 * LOCKING:
5231 * None.
5232 *
5233 * RETURNS:
5234 * 1 if SCRs are accessible, 0 otherwise.
5235 */
5236int sata_scr_valid(struct ata_port *ap)
5237{
5238 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
5239}
5240
5241/**
5242 * sata_scr_read - read SCR register of the specified port
5243 * @ap: ATA port to read SCR for
5244 * @reg: SCR to read
5245 * @val: Place to store read value
5246 *
5247 * Read SCR register @reg of @ap into *@val. This function is
5248 * guaranteed to succeed if the cable type of the port is SATA
5249 * and the port implements ->scr_read.
5250 *
5251 * LOCKING:
5252 * None.
5253 *
5254 * RETURNS:
5255 * 0 on success, negative errno on failure.
5256 */
5257int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5258{
5259 if (sata_scr_valid(ap)) {
5260 *val = ap->ops->scr_read(ap, reg);
5261 return 0;
5262 }
5263 return -EOPNOTSUPP;
5264}
5265
5266/**
5267 * sata_scr_write - write SCR register of the specified port
5268 * @ap: ATA port to write SCR for
5269 * @reg: SCR to write
5270 * @val: value to write
5271 *
5272 * Write @val to SCR register @reg of @ap. This function is
5273 * guaranteed to succeed if the cable type of the port is SATA
5274 * and the port implements ->scr_read.
5275 *
5276 * LOCKING:
5277 * None.
5278 *
5279 * RETURNS:
5280 * 0 on success, negative errno on failure.
5281 */
5282int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5283{
5284 if (sata_scr_valid(ap)) {
5285 ap->ops->scr_write(ap, reg, val);
5286 return 0;
5287 }
5288 return -EOPNOTSUPP;
5289}
5290
5291/**
5292 * sata_scr_write_flush - write SCR register of the specified port and flush
5293 * @ap: ATA port to write SCR for
5294 * @reg: SCR to write
5295 * @val: value to write
5296 *
5297 * This function is identical to sata_scr_write() except that this
5298 * function performs flush after writing to the register.
5299 *
5300 * LOCKING:
5301 * None.
5302 *
5303 * RETURNS:
5304 * 0 on success, negative errno on failure.
5305 */
5306int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5307{
5308 if (sata_scr_valid(ap)) {
5309 ap->ops->scr_write(ap, reg, val);
5310 ap->ops->scr_read(ap, reg);
5311 return 0;
5312 }
5313 return -EOPNOTSUPP;
5314}
5315
5316/**
5317 * ata_port_online - test whether the given port is online
5318 * @ap: ATA port to test
5319 *
5320 * Test whether @ap is online. Note that this function returns 0
5321 * if online status of @ap cannot be obtained, so
5322 * ata_port_online(ap) != !ata_port_offline(ap).
5323 *
5324 * LOCKING:
5325 * None.
5326 *
5327 * RETURNS:
5328 * 1 if the port online status is available and online.
5329 */
5330int ata_port_online(struct ata_port *ap)
5331{
5332 u32 sstatus;
5333
5334 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5335 return 1;
5336 return 0;
5337}
5338
5339/**
5340 * ata_port_offline - test whether the given port is offline
5341 * @ap: ATA port to test
5342 *
5343 * Test whether @ap is offline. Note that this function returns
5344 * 0 if offline status of @ap cannot be obtained, so
5345 * ata_port_online(ap) != !ata_port_offline(ap).
5346 *
5347 * LOCKING:
5348 * None.
5349 *
5350 * RETURNS:
5351 * 1 if the port offline status is available and offline.
5352 */
5353int ata_port_offline(struct ata_port *ap)
5354{
5355 u32 sstatus;
5356
5357 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5358 return 1;
5359 return 0;
5360}
0baab86b 5361
77b08fb5 5362int ata_flush_cache(struct ata_device *dev)
9b847548 5363{
977e6b9f 5364 unsigned int err_mask;
9b847548
JA
5365 u8 cmd;
5366
5367 if (!ata_try_flush_cache(dev))
5368 return 0;
5369
6fc49adb 5370 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
9b847548
JA
5371 cmd = ATA_CMD_FLUSH_EXT;
5372 else
5373 cmd = ATA_CMD_FLUSH;
5374
977e6b9f
TH
5375 err_mask = ata_do_simple_cmd(dev, cmd);
5376 if (err_mask) {
5377 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5378 return -EIO;
5379 }
5380
5381 return 0;
9b847548
JA
5382}
5383
cca3974e
JG
5384static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5385 unsigned int action, unsigned int ehi_flags,
5386 int wait)
500530f6
TH
5387{
5388 unsigned long flags;
5389 int i, rc;
5390
cca3974e
JG
5391 for (i = 0; i < host->n_ports; i++) {
5392 struct ata_port *ap = host->ports[i];
500530f6
TH
5393
5394 /* Previous resume operation might still be in
5395 * progress. Wait for PM_PENDING to clear.
5396 */
5397 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5398 ata_port_wait_eh(ap);
5399 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5400 }
5401
5402 /* request PM ops to EH */
5403 spin_lock_irqsave(ap->lock, flags);
5404
5405 ap->pm_mesg = mesg;
5406 if (wait) {
5407 rc = 0;
5408 ap->pm_result = &rc;
5409 }
5410
5411 ap->pflags |= ATA_PFLAG_PM_PENDING;
5412 ap->eh_info.action |= action;
5413 ap->eh_info.flags |= ehi_flags;
5414
5415 ata_port_schedule_eh(ap);
5416
5417 spin_unlock_irqrestore(ap->lock, flags);
5418
5419 /* wait and check result */
5420 if (wait) {
5421 ata_port_wait_eh(ap);
5422 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5423 if (rc)
5424 return rc;
5425 }
5426 }
5427
5428 return 0;
5429}
5430
5431/**
cca3974e
JG
5432 * ata_host_suspend - suspend host
5433 * @host: host to suspend
500530f6
TH
5434 * @mesg: PM message
5435 *
cca3974e 5436 * Suspend @host. Actual operation is performed by EH. This
500530f6
TH
5437 * function requests EH to perform PM operations and waits for EH
5438 * to finish.
5439 *
5440 * LOCKING:
5441 * Kernel thread context (may sleep).
5442 *
5443 * RETURNS:
5444 * 0 on success, -errno on failure.
5445 */
cca3974e 5446int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6
TH
5447{
5448 int i, j, rc;
5449
cca3974e 5450 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
500530f6
TH
5451 if (rc)
5452 goto fail;
5453
5454 /* EH is quiescent now. Fail if we have any ready device.
5455 * This happens if hotplug occurs between completion of device
5456 * suspension and here.
5457 */
cca3974e
JG
5458 for (i = 0; i < host->n_ports; i++) {
5459 struct ata_port *ap = host->ports[i];
500530f6
TH
5460
5461 for (j = 0; j < ATA_MAX_DEVICES; j++) {
5462 struct ata_device *dev = &ap->device[j];
5463
5464 if (ata_dev_ready(dev)) {
5465 ata_port_printk(ap, KERN_WARNING,
5466 "suspend failed, device %d "
5467 "still active\n", dev->devno);
5468 rc = -EBUSY;
5469 goto fail;
5470 }
5471 }
5472 }
5473
cca3974e 5474 host->dev->power.power_state = mesg;
500530f6
TH
5475 return 0;
5476
5477 fail:
cca3974e 5478 ata_host_resume(host);
500530f6
TH
5479 return rc;
5480}
5481
5482/**
cca3974e
JG
5483 * ata_host_resume - resume host
5484 * @host: host to resume
500530f6 5485 *
cca3974e 5486 * Resume @host. Actual operation is performed by EH. This
500530f6
TH
5487 * function requests EH to perform PM operations and returns.
5488 * Note that all resume operations are performed parallely.
5489 *
5490 * LOCKING:
5491 * Kernel thread context (may sleep).
5492 */
cca3974e 5493void ata_host_resume(struct ata_host *host)
500530f6 5494{
cca3974e
JG
5495 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5496 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5497 host->dev->power.power_state = PMSG_ON;
500530f6
TH
5498}
5499
c893a3ae
RD
5500/**
5501 * ata_port_start - Set port up for dma.
5502 * @ap: Port to initialize
5503 *
5504 * Called just after data structures for each port are
5505 * initialized. Allocates space for PRD table.
5506 *
5507 * May be used as the port_start() entry in ata_port_operations.
5508 *
5509 * LOCKING:
5510 * Inherited from caller.
5511 */
5512
1da177e4
LT
5513int ata_port_start (struct ata_port *ap)
5514{
2f1f610b 5515 struct device *dev = ap->dev;
6037d6bb 5516 int rc;
1da177e4
LT
5517
5518 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
5519 if (!ap->prd)
5520 return -ENOMEM;
5521
6037d6bb
JG
5522 rc = ata_pad_alloc(ap, dev);
5523 if (rc) {
cedc9a47 5524 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 5525 return rc;
cedc9a47
JG
5526 }
5527
1da177e4
LT
5528 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
5529
5530 return 0;
5531}
5532
0baab86b
EF
5533
5534/**
5535 * ata_port_stop - Undo ata_port_start()
5536 * @ap: Port to shut down
5537 *
5538 * Frees the PRD table.
5539 *
5540 * May be used as the port_stop() entry in ata_port_operations.
5541 *
5542 * LOCKING:
6f0ef4fa 5543 * Inherited from caller.
0baab86b
EF
5544 */
5545
1da177e4
LT
5546void ata_port_stop (struct ata_port *ap)
5547{
2f1f610b 5548 struct device *dev = ap->dev;
1da177e4
LT
5549
5550 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 5551 ata_pad_free(ap, dev);
1da177e4
LT
5552}
5553
cca3974e 5554void ata_host_stop (struct ata_host *host)
aa8f0dc6 5555{
cca3974e
JG
5556 if (host->mmio_base)
5557 iounmap(host->mmio_base);
aa8f0dc6
JG
5558}
5559
3ef3b43d
TH
5560/**
5561 * ata_dev_init - Initialize an ata_device structure
5562 * @dev: Device structure to initialize
5563 *
5564 * Initialize @dev in preparation for probing.
5565 *
5566 * LOCKING:
5567 * Inherited from caller.
5568 */
5569void ata_dev_init(struct ata_device *dev)
5570{
5571 struct ata_port *ap = dev->ap;
72fa4b74
TH
5572 unsigned long flags;
5573
5a04bf4b
TH
5574 /* SATA spd limit is bound to the first device */
5575 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5576
72fa4b74
TH
5577 /* High bits of dev->flags are used to record warm plug
5578 * requests which occur asynchronously. Synchronize using
cca3974e 5579 * host lock.
72fa4b74 5580 */
ba6a1308 5581 spin_lock_irqsave(ap->lock, flags);
72fa4b74 5582 dev->flags &= ~ATA_DFLAG_INIT_MASK;
ba6a1308 5583 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 5584
72fa4b74
TH
5585 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5586 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
3ef3b43d
TH
5587 dev->pio_mask = UINT_MAX;
5588 dev->mwdma_mask = UINT_MAX;
5589 dev->udma_mask = UINT_MAX;
5590}
5591
1da177e4 5592/**
155a8a9c 5593 * ata_port_init - Initialize an ata_port structure
1da177e4 5594 * @ap: Structure to initialize
cca3974e 5595 * @host: Collection of hosts to which @ap belongs
1da177e4
LT
5596 * @ent: Probe information provided by low-level driver
5597 * @port_no: Port number associated with this ata_port
5598 *
155a8a9c 5599 * Initialize a new ata_port structure.
0cba632b 5600 *
1da177e4 5601 * LOCKING:
0cba632b 5602 * Inherited from caller.
1da177e4 5603 */
cca3974e 5604void ata_port_init(struct ata_port *ap, struct ata_host *host,
155a8a9c 5605 const struct ata_probe_ent *ent, unsigned int port_no)
1da177e4
LT
5606{
5607 unsigned int i;
5608
cca3974e 5609 ap->lock = &host->lock;
198e0fed 5610 ap->flags = ATA_FLAG_DISABLED;
155a8a9c 5611 ap->id = ata_unique_id++;
1da177e4 5612 ap->ctl = ATA_DEVCTL_OBS;
cca3974e 5613 ap->host = host;
2f1f610b 5614 ap->dev = ent->dev;
1da177e4 5615 ap->port_no = port_no;
fea63e38
TH
5616 if (port_no == 1 && ent->pinfo2) {
5617 ap->pio_mask = ent->pinfo2->pio_mask;
5618 ap->mwdma_mask = ent->pinfo2->mwdma_mask;
5619 ap->udma_mask = ent->pinfo2->udma_mask;
5620 ap->flags |= ent->pinfo2->flags;
5621 ap->ops = ent->pinfo2->port_ops;
5622 } else {
5623 ap->pio_mask = ent->pio_mask;
5624 ap->mwdma_mask = ent->mwdma_mask;
5625 ap->udma_mask = ent->udma_mask;
5626 ap->flags |= ent->port_flags;
5627 ap->ops = ent->port_ops;
5628 }
5a04bf4b 5629 ap->hw_sata_spd_limit = UINT_MAX;
1da177e4
LT
5630 ap->active_tag = ATA_TAG_POISON;
5631 ap->last_ctl = 0xFF;
bd5d825c
BP
5632
5633#if defined(ATA_VERBOSE_DEBUG)
5634 /* turn on all debugging levels */
5635 ap->msg_enable = 0x00FF;
5636#elif defined(ATA_DEBUG)
5637 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 5638#else
0dd4b21f 5639 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 5640#endif
1da177e4 5641
86e45b6b 5642 INIT_WORK(&ap->port_task, NULL, NULL);
580b2102 5643 INIT_WORK(&ap->hotplug_task, ata_scsi_hotplug, ap);
3057ac3c 5644 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan, ap);
a72ec4ce 5645 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 5646 init_waitqueue_head(&ap->eh_wait_q);
1da177e4 5647
838df628
TH
5648 /* set cable type */
5649 ap->cbl = ATA_CBL_NONE;
5650 if (ap->flags & ATA_FLAG_SATA)
5651 ap->cbl = ATA_CBL_SATA;
5652
acf356b1
TH
5653 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5654 struct ata_device *dev = &ap->device[i];
38d87234 5655 dev->ap = ap;
72fa4b74 5656 dev->devno = i;
3ef3b43d 5657 ata_dev_init(dev);
acf356b1 5658 }
1da177e4
LT
5659
5660#ifdef ATA_IRQ_TRAP
5661 ap->stats.unhandled_irq = 1;
5662 ap->stats.idle_irq = 1;
5663#endif
5664
5665 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5666}
5667
155a8a9c 5668/**
4608c160
TH
5669 * ata_port_init_shost - Initialize SCSI host associated with ATA port
5670 * @ap: ATA port to initialize SCSI host for
5671 * @shost: SCSI host associated with @ap
155a8a9c 5672 *
4608c160 5673 * Initialize SCSI host @shost associated with ATA port @ap.
155a8a9c
BK
5674 *
5675 * LOCKING:
5676 * Inherited from caller.
5677 */
4608c160 5678static void ata_port_init_shost(struct ata_port *ap, struct Scsi_Host *shost)
155a8a9c 5679{
cca3974e 5680 ap->scsi_host = shost;
155a8a9c 5681
4608c160
TH
5682 shost->unique_id = ap->id;
5683 shost->max_id = 16;
5684 shost->max_lun = 1;
5685 shost->max_channel = 1;
5686 shost->max_cmd_len = 12;
155a8a9c
BK
5687}
5688
1da177e4 5689/**
996139f1 5690 * ata_port_add - Attach low-level ATA driver to system
1da177e4 5691 * @ent: Information provided by low-level driver
cca3974e 5692 * @host: Collections of ports to which we add
1da177e4
LT
5693 * @port_no: Port number associated with this host
5694 *
0cba632b
JG
5695 * Attach low-level ATA driver to system.
5696 *
1da177e4 5697 * LOCKING:
0cba632b 5698 * PCI/etc. bus probe sem.
1da177e4
LT
5699 *
5700 * RETURNS:
0cba632b 5701 * New ata_port on success, for NULL on error.
1da177e4 5702 */
996139f1 5703static struct ata_port * ata_port_add(const struct ata_probe_ent *ent,
cca3974e 5704 struct ata_host *host,
1da177e4
LT
5705 unsigned int port_no)
5706{
996139f1 5707 struct Scsi_Host *shost;
1da177e4 5708 struct ata_port *ap;
1da177e4
LT
5709
5710 DPRINTK("ENTER\n");
aec5c3c1 5711
52783c5d 5712 if (!ent->port_ops->error_handler &&
cca3974e 5713 !(ent->port_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
aec5c3c1
TH
5714 printk(KERN_ERR "ata%u: no reset mechanism available\n",
5715 port_no);
5716 return NULL;
5717 }
5718
996139f1
JG
5719 shost = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5720 if (!shost)
1da177e4
LT
5721 return NULL;
5722
996139f1 5723 shost->transportt = &ata_scsi_transport_template;
30afc84c 5724
996139f1 5725 ap = ata_shost_to_port(shost);
1da177e4 5726
cca3974e 5727 ata_port_init(ap, host, ent, port_no);
996139f1 5728 ata_port_init_shost(ap, shost);
1da177e4 5729
1da177e4 5730 return ap;
1da177e4
LT
5731}
5732
b03732f0 5733/**
cca3974e
JG
5734 * ata_sas_host_init - Initialize a host struct
5735 * @host: host to initialize
5736 * @dev: device host is attached to
5737 * @flags: host flags
5738 * @ops: port_ops
b03732f0
BK
5739 *
5740 * LOCKING:
5741 * PCI/etc. bus probe sem.
5742 *
5743 */
5744
cca3974e
JG
5745void ata_host_init(struct ata_host *host, struct device *dev,
5746 unsigned long flags, const struct ata_port_operations *ops)
b03732f0 5747{
cca3974e
JG
5748 spin_lock_init(&host->lock);
5749 host->dev = dev;
5750 host->flags = flags;
5751 host->ops = ops;
b03732f0
BK
5752}
5753
1da177e4 5754/**
0cba632b
JG
5755 * ata_device_add - Register hardware device with ATA and SCSI layers
5756 * @ent: Probe information describing hardware device to be registered
5757 *
5758 * This function processes the information provided in the probe
5759 * information struct @ent, allocates the necessary ATA and SCSI
5760 * host information structures, initializes them, and registers
5761 * everything with requisite kernel subsystems.
5762 *
5763 * This function requests irqs, probes the ATA bus, and probes
5764 * the SCSI bus.
1da177e4
LT
5765 *
5766 * LOCKING:
0cba632b 5767 * PCI/etc. bus probe sem.
1da177e4
LT
5768 *
5769 * RETURNS:
0cba632b 5770 * Number of ports registered. Zero on error (no ports registered).
1da177e4 5771 */
057ace5e 5772int ata_device_add(const struct ata_probe_ent *ent)
1da177e4 5773{
6d0500df 5774 unsigned int i;
1da177e4 5775 struct device *dev = ent->dev;
cca3974e 5776 struct ata_host *host;
39b07ce6 5777 int rc;
1da177e4
LT
5778
5779 DPRINTK("ENTER\n");
02f076aa
AC
5780
5781 if (ent->irq == 0) {
5782 dev_printk(KERN_ERR, dev, "is not available: No interrupt assigned.\n");
5783 return 0;
5784 }
1da177e4 5785 /* alloc a container for our list of ATA ports (buses) */
cca3974e
JG
5786 host = kzalloc(sizeof(struct ata_host) +
5787 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
5788 if (!host)
1da177e4 5789 return 0;
1da177e4 5790
cca3974e
JG
5791 ata_host_init(host, dev, ent->_host_flags, ent->port_ops);
5792 host->n_ports = ent->n_ports;
5793 host->irq = ent->irq;
5794 host->irq2 = ent->irq2;
5795 host->mmio_base = ent->mmio_base;
5796 host->private_data = ent->private_data;
1da177e4
LT
5797
5798 /* register each port bound to this device */
cca3974e 5799 for (i = 0; i < host->n_ports; i++) {
1da177e4
LT
5800 struct ata_port *ap;
5801 unsigned long xfer_mode_mask;
2ec7df04 5802 int irq_line = ent->irq;
1da177e4 5803
cca3974e 5804 ap = ata_port_add(ent, host, i);
c38778c3 5805 host->ports[i] = ap;
1da177e4
LT
5806 if (!ap)
5807 goto err_out;
5808
dd5b06c4
TH
5809 /* dummy? */
5810 if (ent->dummy_port_mask & (1 << i)) {
5811 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
5812 ap->ops = &ata_dummy_port_ops;
5813 continue;
5814 }
5815
5816 /* start port */
5817 rc = ap->ops->port_start(ap);
5818 if (rc) {
cca3974e
JG
5819 host->ports[i] = NULL;
5820 scsi_host_put(ap->scsi_host);
dd5b06c4
TH
5821 goto err_out;
5822 }
5823
2ec7df04
AC
5824 /* Report the secondary IRQ for second channel legacy */
5825 if (i == 1 && ent->irq2)
5826 irq_line = ent->irq2;
5827
1da177e4
LT
5828 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5829 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5830 (ap->pio_mask << ATA_SHIFT_PIO);
5831
5832 /* print per-port info to dmesg */
f15a1daf 5833 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%lX "
2ec7df04 5834 "ctl 0x%lX bmdma 0x%lX irq %d\n",
f15a1daf
TH
5835 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5836 ata_mode_string(xfer_mode_mask),
5837 ap->ioaddr.cmd_addr,
5838 ap->ioaddr.ctl_addr,
5839 ap->ioaddr.bmdma_addr,
2ec7df04 5840 irq_line);
1da177e4 5841
0f0a3ad3
TH
5842 /* freeze port before requesting IRQ */
5843 ata_eh_freeze_port(ap);
1da177e4
LT
5844 }
5845
2ec7df04 5846 /* obtain irq, that may be shared between channels */
39b07ce6 5847 rc = request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
cca3974e 5848 DRV_NAME, host);
39b07ce6
JG
5849 if (rc) {
5850 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5851 ent->irq, rc);
1da177e4 5852 goto err_out;
39b07ce6 5853 }
1da177e4 5854
2ec7df04
AC
5855 /* do we have a second IRQ for the other channel, eg legacy mode */
5856 if (ent->irq2) {
5857 /* We will get weird core code crashes later if this is true
5858 so trap it now */
5859 BUG_ON(ent->irq == ent->irq2);
5860
5861 rc = request_irq(ent->irq2, ent->port_ops->irq_handler, ent->irq_flags,
cca3974e 5862 DRV_NAME, host);
2ec7df04
AC
5863 if (rc) {
5864 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5865 ent->irq2, rc);
5866 goto err_out_free_irq;
5867 }
5868 }
5869
1da177e4
LT
5870 /* perform each probe synchronously */
5871 DPRINTK("probe begin\n");
cca3974e
JG
5872 for (i = 0; i < host->n_ports; i++) {
5873 struct ata_port *ap = host->ports[i];
5a04bf4b 5874 u32 scontrol;
1da177e4
LT
5875 int rc;
5876
5a04bf4b
TH
5877 /* init sata_spd_limit to the current value */
5878 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
5879 int spd = (scontrol >> 4) & 0xf;
5880 ap->hw_sata_spd_limit &= (1 << spd) - 1;
5881 }
5882 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5883
cca3974e 5884 rc = scsi_add_host(ap->scsi_host, dev);
1da177e4 5885 if (rc) {
f15a1daf 5886 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
1da177e4
LT
5887 /* FIXME: do something useful here */
5888 /* FIXME: handle unconditional calls to
5889 * scsi_scan_host and ata_host_remove, below,
5890 * at the very least
5891 */
5892 }
3e706399 5893
52783c5d 5894 if (ap->ops->error_handler) {
1cdaf534 5895 struct ata_eh_info *ehi = &ap->eh_info;
3e706399
TH
5896 unsigned long flags;
5897
5898 ata_port_probe(ap);
5899
5900 /* kick EH for boot probing */
ba6a1308 5901 spin_lock_irqsave(ap->lock, flags);
3e706399 5902
1cdaf534
TH
5903 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
5904 ehi->action |= ATA_EH_SOFTRESET;
5905 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
3e706399 5906
b51e9e5d 5907 ap->pflags |= ATA_PFLAG_LOADING;
3e706399
TH
5908 ata_port_schedule_eh(ap);
5909
ba6a1308 5910 spin_unlock_irqrestore(ap->lock, flags);
3e706399
TH
5911
5912 /* wait for EH to finish */
5913 ata_port_wait_eh(ap);
5914 } else {
5915 DPRINTK("ata%u: bus probe begin\n", ap->id);
5916 rc = ata_bus_probe(ap);
5917 DPRINTK("ata%u: bus probe end\n", ap->id);
5918
5919 if (rc) {
5920 /* FIXME: do something useful here?
5921 * Current libata behavior will
5922 * tear down everything when
5923 * the module is removed
5924 * or the h/w is unplugged.
5925 */
5926 }
5927 }
1da177e4
LT
5928 }
5929
5930 /* probes are done, now scan each port's disk(s) */
c893a3ae 5931 DPRINTK("host probe begin\n");
cca3974e
JG
5932 for (i = 0; i < host->n_ports; i++) {
5933 struct ata_port *ap = host->ports[i];
1da177e4 5934
644dd0cc 5935 ata_scsi_scan_host(ap);
1da177e4
LT
5936 }
5937
cca3974e 5938 dev_set_drvdata(dev, host);
1da177e4
LT
5939
5940 VPRINTK("EXIT, returning %u\n", ent->n_ports);
5941 return ent->n_ports; /* success */
5942
2ec7df04 5943err_out_free_irq:
cca3974e 5944 free_irq(ent->irq, host);
1da177e4 5945err_out:
cca3974e
JG
5946 for (i = 0; i < host->n_ports; i++) {
5947 struct ata_port *ap = host->ports[i];
77f3f879
TH
5948 if (ap) {
5949 ap->ops->port_stop(ap);
cca3974e 5950 scsi_host_put(ap->scsi_host);
77f3f879 5951 }
1da177e4 5952 }
6d0500df 5953
cca3974e 5954 kfree(host);
1da177e4
LT
5955 VPRINTK("EXIT, returning 0\n");
5956 return 0;
5957}
5958
720ba126
TH
5959/**
5960 * ata_port_detach - Detach ATA port in prepration of device removal
5961 * @ap: ATA port to be detached
5962 *
5963 * Detach all ATA devices and the associated SCSI devices of @ap;
5964 * then, remove the associated SCSI host. @ap is guaranteed to
5965 * be quiescent on return from this function.
5966 *
5967 * LOCKING:
5968 * Kernel thread context (may sleep).
5969 */
5970void ata_port_detach(struct ata_port *ap)
5971{
5972 unsigned long flags;
5973 int i;
5974
5975 if (!ap->ops->error_handler)
c3cf30a9 5976 goto skip_eh;
720ba126
TH
5977
5978 /* tell EH we're leaving & flush EH */
ba6a1308 5979 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 5980 ap->pflags |= ATA_PFLAG_UNLOADING;
ba6a1308 5981 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
5982
5983 ata_port_wait_eh(ap);
5984
5985 /* EH is now guaranteed to see UNLOADING, so no new device
5986 * will be attached. Disable all existing devices.
5987 */
ba6a1308 5988 spin_lock_irqsave(ap->lock, flags);
720ba126
TH
5989
5990 for (i = 0; i < ATA_MAX_DEVICES; i++)
5991 ata_dev_disable(&ap->device[i]);
5992
ba6a1308 5993 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
5994
5995 /* Final freeze & EH. All in-flight commands are aborted. EH
5996 * will be skipped and retrials will be terminated with bad
5997 * target.
5998 */
ba6a1308 5999 spin_lock_irqsave(ap->lock, flags);
720ba126 6000 ata_port_freeze(ap); /* won't be thawed */
ba6a1308 6001 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6002
6003 ata_port_wait_eh(ap);
6004
6005 /* Flush hotplug task. The sequence is similar to
6006 * ata_port_flush_task().
6007 */
6008 flush_workqueue(ata_aux_wq);
6009 cancel_delayed_work(&ap->hotplug_task);
6010 flush_workqueue(ata_aux_wq);
6011
c3cf30a9 6012 skip_eh:
720ba126 6013 /* remove the associated SCSI host */
cca3974e 6014 scsi_remove_host(ap->scsi_host);
720ba126
TH
6015}
6016
17b14451 6017/**
cca3974e
JG
6018 * ata_host_remove - PCI layer callback for device removal
6019 * @host: ATA host set that was removed
17b14451 6020 *
2e9edbf8 6021 * Unregister all objects associated with this host set. Free those
17b14451
AC
6022 * objects.
6023 *
6024 * LOCKING:
6025 * Inherited from calling layer (may sleep).
6026 */
6027
cca3974e 6028void ata_host_remove(struct ata_host *host)
17b14451 6029{
17b14451
AC
6030 unsigned int i;
6031
cca3974e
JG
6032 for (i = 0; i < host->n_ports; i++)
6033 ata_port_detach(host->ports[i]);
17b14451 6034
cca3974e
JG
6035 free_irq(host->irq, host);
6036 if (host->irq2)
6037 free_irq(host->irq2, host);
17b14451 6038
cca3974e
JG
6039 for (i = 0; i < host->n_ports; i++) {
6040 struct ata_port *ap = host->ports[i];
17b14451 6041
cca3974e 6042 ata_scsi_release(ap->scsi_host);
17b14451
AC
6043
6044 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
6045 struct ata_ioports *ioaddr = &ap->ioaddr;
6046
2ec7df04
AC
6047 /* FIXME: Add -ac IDE pci mods to remove these special cases */
6048 if (ioaddr->cmd_addr == ATA_PRIMARY_CMD)
6049 release_region(ATA_PRIMARY_CMD, 8);
6050 else if (ioaddr->cmd_addr == ATA_SECONDARY_CMD)
6051 release_region(ATA_SECONDARY_CMD, 8);
17b14451
AC
6052 }
6053
cca3974e 6054 scsi_host_put(ap->scsi_host);
17b14451
AC
6055 }
6056
cca3974e
JG
6057 if (host->ops->host_stop)
6058 host->ops->host_stop(host);
17b14451 6059
cca3974e 6060 kfree(host);
17b14451
AC
6061}
6062
1da177e4
LT
6063/**
6064 * ata_scsi_release - SCSI layer callback hook for host unload
4f931374 6065 * @shost: libata host to be unloaded
1da177e4
LT
6066 *
6067 * Performs all duties necessary to shut down a libata port...
6068 * Kill port kthread, disable port, and release resources.
6069 *
6070 * LOCKING:
6071 * Inherited from SCSI layer.
6072 *
6073 * RETURNS:
6074 * One.
6075 */
6076
cca3974e 6077int ata_scsi_release(struct Scsi_Host *shost)
1da177e4 6078{
cca3974e 6079 struct ata_port *ap = ata_shost_to_port(shost);
1da177e4
LT
6080
6081 DPRINTK("ENTER\n");
6082
6083 ap->ops->port_disable(ap);
6543bc07 6084 ap->ops->port_stop(ap);
1da177e4
LT
6085
6086 DPRINTK("EXIT\n");
6087 return 1;
6088}
6089
f6d950e2
BK
6090struct ata_probe_ent *
6091ata_probe_ent_alloc(struct device *dev, const struct ata_port_info *port)
6092{
6093 struct ata_probe_ent *probe_ent;
6094
6095 probe_ent = kzalloc(sizeof(*probe_ent), GFP_KERNEL);
6096 if (!probe_ent) {
6097 printk(KERN_ERR DRV_NAME "(%s): out of memory\n",
6098 kobject_name(&(dev->kobj)));
6099 return NULL;
6100 }
6101
6102 INIT_LIST_HEAD(&probe_ent->node);
6103 probe_ent->dev = dev;
6104
6105 probe_ent->sht = port->sht;
cca3974e 6106 probe_ent->port_flags = port->flags;
f6d950e2
BK
6107 probe_ent->pio_mask = port->pio_mask;
6108 probe_ent->mwdma_mask = port->mwdma_mask;
6109 probe_ent->udma_mask = port->udma_mask;
6110 probe_ent->port_ops = port->port_ops;
d639ca94 6111 probe_ent->private_data = port->private_data;
f6d950e2
BK
6112
6113 return probe_ent;
6114}
6115
1da177e4
LT
6116/**
6117 * ata_std_ports - initialize ioaddr with standard port offsets.
6118 * @ioaddr: IO address structure to be initialized
0baab86b
EF
6119 *
6120 * Utility function which initializes data_addr, error_addr,
6121 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6122 * device_addr, status_addr, and command_addr to standard offsets
6123 * relative to cmd_addr.
6124 *
6125 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 6126 */
0baab86b 6127
1da177e4
LT
6128void ata_std_ports(struct ata_ioports *ioaddr)
6129{
6130 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6131 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6132 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6133 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6134 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6135 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6136 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6137 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6138 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6139 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6140}
6141
0baab86b 6142
374b1873
JG
6143#ifdef CONFIG_PCI
6144
cca3974e 6145void ata_pci_host_stop (struct ata_host *host)
374b1873 6146{
cca3974e 6147 struct pci_dev *pdev = to_pci_dev(host->dev);
374b1873 6148
cca3974e 6149 pci_iounmap(pdev, host->mmio_base);
374b1873
JG
6150}
6151
1da177e4
LT
6152/**
6153 * ata_pci_remove_one - PCI layer callback for device removal
6154 * @pdev: PCI device that was removed
6155 *
6156 * PCI layer indicates to libata via this hook that
6f0ef4fa 6157 * hot-unplug or module unload event has occurred.
1da177e4
LT
6158 * Handle this by unregistering all objects associated
6159 * with this PCI device. Free those objects. Then finally
6160 * release PCI resources and disable device.
6161 *
6162 * LOCKING:
6163 * Inherited from PCI layer (may sleep).
6164 */
6165
6166void ata_pci_remove_one (struct pci_dev *pdev)
6167{
6168 struct device *dev = pci_dev_to_dev(pdev);
cca3974e 6169 struct ata_host *host = dev_get_drvdata(dev);
1da177e4 6170
cca3974e 6171 ata_host_remove(host);
f0eb62b8 6172
1da177e4
LT
6173 pci_release_regions(pdev);
6174 pci_disable_device(pdev);
6175 dev_set_drvdata(dev, NULL);
6176}
6177
6178/* move to PCI subsystem */
057ace5e 6179int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
6180{
6181 unsigned long tmp = 0;
6182
6183 switch (bits->width) {
6184 case 1: {
6185 u8 tmp8 = 0;
6186 pci_read_config_byte(pdev, bits->reg, &tmp8);
6187 tmp = tmp8;
6188 break;
6189 }
6190 case 2: {
6191 u16 tmp16 = 0;
6192 pci_read_config_word(pdev, bits->reg, &tmp16);
6193 tmp = tmp16;
6194 break;
6195 }
6196 case 4: {
6197 u32 tmp32 = 0;
6198 pci_read_config_dword(pdev, bits->reg, &tmp32);
6199 tmp = tmp32;
6200 break;
6201 }
6202
6203 default:
6204 return -EINVAL;
6205 }
6206
6207 tmp &= bits->mask;
6208
6209 return (tmp == bits->val) ? 1 : 0;
6210}
9b847548 6211
3c5100c1 6212void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
6213{
6214 pci_save_state(pdev);
500530f6 6215
3c5100c1 6216 if (mesg.event == PM_EVENT_SUSPEND) {
500530f6
TH
6217 pci_disable_device(pdev);
6218 pci_set_power_state(pdev, PCI_D3hot);
6219 }
9b847548
JA
6220}
6221
500530f6 6222void ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548
JA
6223{
6224 pci_set_power_state(pdev, PCI_D0);
6225 pci_restore_state(pdev);
6226 pci_enable_device(pdev);
6227 pci_set_master(pdev);
500530f6
TH
6228}
6229
3c5100c1 6230int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 6231{
cca3974e 6232 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
6233 int rc = 0;
6234
cca3974e 6235 rc = ata_host_suspend(host, mesg);
500530f6
TH
6236 if (rc)
6237 return rc;
6238
3c5100c1 6239 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
6240
6241 return 0;
6242}
6243
6244int ata_pci_device_resume(struct pci_dev *pdev)
6245{
cca3974e 6246 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
6247
6248 ata_pci_device_do_resume(pdev);
cca3974e 6249 ata_host_resume(host);
9b847548
JA
6250 return 0;
6251}
1da177e4
LT
6252#endif /* CONFIG_PCI */
6253
6254
1da177e4
LT
6255static int __init ata_init(void)
6256{
a8601e5f 6257 ata_probe_timeout *= HZ;
1da177e4
LT
6258 ata_wq = create_workqueue("ata");
6259 if (!ata_wq)
6260 return -ENOMEM;
6261
453b07ac
TH
6262 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6263 if (!ata_aux_wq) {
6264 destroy_workqueue(ata_wq);
6265 return -ENOMEM;
6266 }
6267
1da177e4
LT
6268 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6269 return 0;
6270}
6271
6272static void __exit ata_exit(void)
6273{
6274 destroy_workqueue(ata_wq);
453b07ac 6275 destroy_workqueue(ata_aux_wq);
1da177e4
LT
6276}
6277
a4625085 6278subsys_initcall(ata_init);
1da177e4
LT
6279module_exit(ata_exit);
6280
67846b30 6281static unsigned long ratelimit_time;
34af946a 6282static DEFINE_SPINLOCK(ata_ratelimit_lock);
67846b30
JG
6283
6284int ata_ratelimit(void)
6285{
6286 int rc;
6287 unsigned long flags;
6288
6289 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6290
6291 if (time_after(jiffies, ratelimit_time)) {
6292 rc = 1;
6293 ratelimit_time = jiffies + (HZ/5);
6294 } else
6295 rc = 0;
6296
6297 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6298
6299 return rc;
6300}
6301
c22daff4
TH
6302/**
6303 * ata_wait_register - wait until register value changes
6304 * @reg: IO-mapped register
6305 * @mask: Mask to apply to read register value
6306 * @val: Wait condition
6307 * @interval_msec: polling interval in milliseconds
6308 * @timeout_msec: timeout in milliseconds
6309 *
6310 * Waiting for some bits of register to change is a common
6311 * operation for ATA controllers. This function reads 32bit LE
6312 * IO-mapped register @reg and tests for the following condition.
6313 *
6314 * (*@reg & mask) != val
6315 *
6316 * If the condition is met, it returns; otherwise, the process is
6317 * repeated after @interval_msec until timeout.
6318 *
6319 * LOCKING:
6320 * Kernel thread context (may sleep)
6321 *
6322 * RETURNS:
6323 * The final register value.
6324 */
6325u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6326 unsigned long interval_msec,
6327 unsigned long timeout_msec)
6328{
6329 unsigned long timeout;
6330 u32 tmp;
6331
6332 tmp = ioread32(reg);
6333
6334 /* Calculate timeout _after_ the first read to make sure
6335 * preceding writes reach the controller before starting to
6336 * eat away the timeout.
6337 */
6338 timeout = jiffies + (timeout_msec * HZ) / 1000;
6339
6340 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6341 msleep(interval_msec);
6342 tmp = ioread32(reg);
6343 }
6344
6345 return tmp;
6346}
6347
dd5b06c4
TH
6348/*
6349 * Dummy port_ops
6350 */
6351static void ata_dummy_noret(struct ata_port *ap) { }
6352static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6353static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6354
6355static u8 ata_dummy_check_status(struct ata_port *ap)
6356{
6357 return ATA_DRDY;
6358}
6359
6360static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6361{
6362 return AC_ERR_SYSTEM;
6363}
6364
6365const struct ata_port_operations ata_dummy_port_ops = {
6366 .port_disable = ata_port_disable,
6367 .check_status = ata_dummy_check_status,
6368 .check_altstatus = ata_dummy_check_status,
6369 .dev_select = ata_noop_dev_select,
6370 .qc_prep = ata_noop_qc_prep,
6371 .qc_issue = ata_dummy_qc_issue,
6372 .freeze = ata_dummy_noret,
6373 .thaw = ata_dummy_noret,
6374 .error_handler = ata_dummy_noret,
6375 .post_internal_cmd = ata_dummy_qc_noret,
6376 .irq_clear = ata_dummy_noret,
6377 .port_start = ata_dummy_ret0,
6378 .port_stop = ata_dummy_noret,
6379};
6380
1da177e4
LT
6381/*
6382 * libata is essentially a library of internal helper functions for
6383 * low-level ATA host controller drivers. As such, the API/ABI is
6384 * likely to change as new drivers are added and updated.
6385 * Do not depend on ABI/API stability.
6386 */
6387
e9c83914
TH
6388EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6389EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6390EXPORT_SYMBOL_GPL(sata_deb_timing_long);
dd5b06c4 6391EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
1da177e4
LT
6392EXPORT_SYMBOL_GPL(ata_std_bios_param);
6393EXPORT_SYMBOL_GPL(ata_std_ports);
cca3974e 6394EXPORT_SYMBOL_GPL(ata_host_init);
1da177e4 6395EXPORT_SYMBOL_GPL(ata_device_add);
720ba126 6396EXPORT_SYMBOL_GPL(ata_port_detach);
cca3974e 6397EXPORT_SYMBOL_GPL(ata_host_remove);
1da177e4
LT
6398EXPORT_SYMBOL_GPL(ata_sg_init);
6399EXPORT_SYMBOL_GPL(ata_sg_init_one);
9a1004d0 6400EXPORT_SYMBOL_GPL(ata_hsm_move);
f686bcb8 6401EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 6402EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
1da177e4 6403EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
6404EXPORT_SYMBOL_GPL(ata_tf_load);
6405EXPORT_SYMBOL_GPL(ata_tf_read);
6406EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6407EXPORT_SYMBOL_GPL(ata_std_dev_select);
6408EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6409EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6410EXPORT_SYMBOL_GPL(ata_check_status);
6411EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
6412EXPORT_SYMBOL_GPL(ata_exec_command);
6413EXPORT_SYMBOL_GPL(ata_port_start);
6414EXPORT_SYMBOL_GPL(ata_port_stop);
aa8f0dc6 6415EXPORT_SYMBOL_GPL(ata_host_stop);
1da177e4 6416EXPORT_SYMBOL_GPL(ata_interrupt);
a6b2c5d4
AC
6417EXPORT_SYMBOL_GPL(ata_mmio_data_xfer);
6418EXPORT_SYMBOL_GPL(ata_pio_data_xfer);
75e99585 6419EXPORT_SYMBOL_GPL(ata_pio_data_xfer_noirq);
1da177e4 6420EXPORT_SYMBOL_GPL(ata_qc_prep);
e46834cd 6421EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
6422EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6423EXPORT_SYMBOL_GPL(ata_bmdma_start);
6424EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6425EXPORT_SYMBOL_GPL(ata_bmdma_status);
6426EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6d97dbd7
TH
6427EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6428EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6429EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6430EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6431EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
1da177e4 6432EXPORT_SYMBOL_GPL(ata_port_probe);
3c567b7d 6433EXPORT_SYMBOL_GPL(sata_set_spd);
d7bb4cc7
TH
6434EXPORT_SYMBOL_GPL(sata_phy_debounce);
6435EXPORT_SYMBOL_GPL(sata_phy_resume);
1da177e4
LT
6436EXPORT_SYMBOL_GPL(sata_phy_reset);
6437EXPORT_SYMBOL_GPL(__sata_phy_reset);
6438EXPORT_SYMBOL_GPL(ata_bus_reset);
f5914a46 6439EXPORT_SYMBOL_GPL(ata_std_prereset);
c2bd5804 6440EXPORT_SYMBOL_GPL(ata_std_softreset);
b6103f6d 6441EXPORT_SYMBOL_GPL(sata_port_hardreset);
c2bd5804
TH
6442EXPORT_SYMBOL_GPL(sata_std_hardreset);
6443EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
6444EXPORT_SYMBOL_GPL(ata_dev_classify);
6445EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 6446EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 6447EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 6448EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 6449EXPORT_SYMBOL_GPL(ata_busy_sleep);
86e45b6b 6450EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
6451EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6452EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 6453EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 6454EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 6455EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
1da177e4
LT
6456EXPORT_SYMBOL_GPL(ata_scsi_release);
6457EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
6458EXPORT_SYMBOL_GPL(sata_scr_valid);
6459EXPORT_SYMBOL_GPL(sata_scr_read);
6460EXPORT_SYMBOL_GPL(sata_scr_write);
6461EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6462EXPORT_SYMBOL_GPL(ata_port_online);
6463EXPORT_SYMBOL_GPL(ata_port_offline);
cca3974e
JG
6464EXPORT_SYMBOL_GPL(ata_host_suspend);
6465EXPORT_SYMBOL_GPL(ata_host_resume);
6a62a04d
TH
6466EXPORT_SYMBOL_GPL(ata_id_string);
6467EXPORT_SYMBOL_GPL(ata_id_c_string);
6919a0a6 6468EXPORT_SYMBOL_GPL(ata_device_blacklisted);
1da177e4
LT
6469EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6470
1bc4ccff 6471EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
6472EXPORT_SYMBOL_GPL(ata_timing_compute);
6473EXPORT_SYMBOL_GPL(ata_timing_merge);
6474
1da177e4
LT
6475#ifdef CONFIG_PCI
6476EXPORT_SYMBOL_GPL(pci_test_config_bits);
374b1873 6477EXPORT_SYMBOL_GPL(ata_pci_host_stop);
1da177e4
LT
6478EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
6479EXPORT_SYMBOL_GPL(ata_pci_init_one);
6480EXPORT_SYMBOL_GPL(ata_pci_remove_one);
500530f6
TH
6481EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6482EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
6483EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6484EXPORT_SYMBOL_GPL(ata_pci_device_resume);
67951ade
AC
6485EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6486EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 6487#endif /* CONFIG_PCI */
9b847548 6488
9b847548
JA
6489EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
6490EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
ece1d636 6491
ece1d636 6492EXPORT_SYMBOL_GPL(ata_eng_timeout);
7b70fc03
TH
6493EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6494EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499
TH
6495EXPORT_SYMBOL_GPL(ata_port_freeze);
6496EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6497EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
6498EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6499EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
022bdb07 6500EXPORT_SYMBOL_GPL(ata_do_eh);
This page took 0.679084 seconds and 5 git commands to generate.