libata: implement ata_wait_after_reset()
[deliverable/linux.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
1da177e4
LT
35#include <linux/kernel.h>
36#include <linux/module.h>
37#include <linux/pci.h>
38#include <linux/init.h>
39#include <linux/list.h>
40#include <linux/mm.h>
41#include <linux/highmem.h>
42#include <linux/spinlock.h>
43#include <linux/blkdev.h>
44#include <linux/delay.h>
45#include <linux/timer.h>
46#include <linux/interrupt.h>
47#include <linux/completion.h>
48#include <linux/suspend.h>
49#include <linux/workqueue.h>
67846b30 50#include <linux/jiffies.h>
378f058c 51#include <linux/scatterlist.h>
2dcb407e 52#include <linux/io.h>
1da177e4 53#include <scsi/scsi.h>
193515d5 54#include <scsi/scsi_cmnd.h>
1da177e4
LT
55#include <scsi/scsi_host.h>
56#include <linux/libata.h>
1da177e4
LT
57#include <asm/semaphore.h>
58#include <asm/byteorder.h>
59
60#include "libata.h"
61
fda0efc5 62
d7bb4cc7 63/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
64const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
65const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
66const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 67
3373efd8
TH
68static unsigned int ata_dev_init_params(struct ata_device *dev,
69 u16 heads, u16 sectors);
70static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
218f3d30
JG
71static unsigned int ata_dev_set_feature(struct ata_device *dev,
72 u8 enable, u8 feature);
3373efd8 73static void ata_dev_xfermask(struct ata_device *dev);
75683fe7 74static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
1da177e4 75
f3187195 76unsigned int ata_print_id = 1;
1da177e4
LT
77static struct workqueue_struct *ata_wq;
78
453b07ac
TH
79struct workqueue_struct *ata_aux_wq;
80
418dc1f5 81int atapi_enabled = 1;
1623c81e
JG
82module_param(atapi_enabled, int, 0444);
83MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
84
95de719a
AL
85int atapi_dmadir = 0;
86module_param(atapi_dmadir, int, 0444);
87MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
88
baf4fdfa
ML
89int atapi_passthru16 = 1;
90module_param(atapi_passthru16, int, 0444);
91MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
92
c3c013a2
JG
93int libata_fua = 0;
94module_param_named(fua, libata_fua, int, 0444);
95MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
96
2dcb407e 97static int ata_ignore_hpa;
1e999736
AC
98module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
99MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
100
b3a70601
AC
101static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
102module_param_named(dma, libata_dma_mask, int, 0444);
103MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
104
a8601e5f
AM
105static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
106module_param(ata_probe_timeout, int, 0444);
107MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
108
6ebe9d86 109int libata_noacpi = 0;
d7d0dad6 110module_param_named(noacpi, libata_noacpi, int, 0444);
6ebe9d86 111MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set");
11ef697b 112
1da177e4
LT
113MODULE_AUTHOR("Jeff Garzik");
114MODULE_DESCRIPTION("Library module for ATA devices");
115MODULE_LICENSE("GPL");
116MODULE_VERSION(DRV_VERSION);
117
0baab86b 118
1da177e4
LT
119/**
120 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
121 * @tf: Taskfile to convert
1da177e4 122 * @pmp: Port multiplier port
9977126c
TH
123 * @is_cmd: This FIS is for command
124 * @fis: Buffer into which data will output
1da177e4
LT
125 *
126 * Converts a standard ATA taskfile to a Serial ATA
127 * FIS structure (Register - Host to Device).
128 *
129 * LOCKING:
130 * Inherited from caller.
131 */
9977126c 132void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
1da177e4 133{
9977126c
TH
134 fis[0] = 0x27; /* Register - Host to Device FIS */
135 fis[1] = pmp & 0xf; /* Port multiplier number*/
136 if (is_cmd)
137 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
138
1da177e4
LT
139 fis[2] = tf->command;
140 fis[3] = tf->feature;
141
142 fis[4] = tf->lbal;
143 fis[5] = tf->lbam;
144 fis[6] = tf->lbah;
145 fis[7] = tf->device;
146
147 fis[8] = tf->hob_lbal;
148 fis[9] = tf->hob_lbam;
149 fis[10] = tf->hob_lbah;
150 fis[11] = tf->hob_feature;
151
152 fis[12] = tf->nsect;
153 fis[13] = tf->hob_nsect;
154 fis[14] = 0;
155 fis[15] = tf->ctl;
156
157 fis[16] = 0;
158 fis[17] = 0;
159 fis[18] = 0;
160 fis[19] = 0;
161}
162
163/**
164 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
165 * @fis: Buffer from which data will be input
166 * @tf: Taskfile to output
167 *
e12a1be6 168 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
169 *
170 * LOCKING:
171 * Inherited from caller.
172 */
173
057ace5e 174void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
175{
176 tf->command = fis[2]; /* status */
177 tf->feature = fis[3]; /* error */
178
179 tf->lbal = fis[4];
180 tf->lbam = fis[5];
181 tf->lbah = fis[6];
182 tf->device = fis[7];
183
184 tf->hob_lbal = fis[8];
185 tf->hob_lbam = fis[9];
186 tf->hob_lbah = fis[10];
187
188 tf->nsect = fis[12];
189 tf->hob_nsect = fis[13];
190}
191
8cbd6df1
AL
192static const u8 ata_rw_cmds[] = {
193 /* pio multi */
194 ATA_CMD_READ_MULTI,
195 ATA_CMD_WRITE_MULTI,
196 ATA_CMD_READ_MULTI_EXT,
197 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
198 0,
199 0,
200 0,
201 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
202 /* pio */
203 ATA_CMD_PIO_READ,
204 ATA_CMD_PIO_WRITE,
205 ATA_CMD_PIO_READ_EXT,
206 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
207 0,
208 0,
209 0,
210 0,
8cbd6df1
AL
211 /* dma */
212 ATA_CMD_READ,
213 ATA_CMD_WRITE,
214 ATA_CMD_READ_EXT,
9a3dccc4
TH
215 ATA_CMD_WRITE_EXT,
216 0,
217 0,
218 0,
219 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 220};
1da177e4
LT
221
222/**
8cbd6df1 223 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
224 * @tf: command to examine and configure
225 * @dev: device tf belongs to
1da177e4 226 *
2e9edbf8 227 * Examine the device configuration and tf->flags to calculate
8cbd6df1 228 * the proper read/write commands and protocol to use.
1da177e4
LT
229 *
230 * LOCKING:
231 * caller.
232 */
bd056d7e 233static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 234{
9a3dccc4 235 u8 cmd;
1da177e4 236
9a3dccc4 237 int index, fua, lba48, write;
2e9edbf8 238
9a3dccc4 239 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
240 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
241 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 242
8cbd6df1
AL
243 if (dev->flags & ATA_DFLAG_PIO) {
244 tf->protocol = ATA_PROT_PIO;
9a3dccc4 245 index = dev->multi_count ? 0 : 8;
9af5c9c9 246 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
247 /* Unable to use DMA due to host limitation */
248 tf->protocol = ATA_PROT_PIO;
0565c26d 249 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
250 } else {
251 tf->protocol = ATA_PROT_DMA;
9a3dccc4 252 index = 16;
8cbd6df1 253 }
1da177e4 254
9a3dccc4
TH
255 cmd = ata_rw_cmds[index + fua + lba48 + write];
256 if (cmd) {
257 tf->command = cmd;
258 return 0;
259 }
260 return -1;
1da177e4
LT
261}
262
35b649fe
TH
263/**
264 * ata_tf_read_block - Read block address from ATA taskfile
265 * @tf: ATA taskfile of interest
266 * @dev: ATA device @tf belongs to
267 *
268 * LOCKING:
269 * None.
270 *
271 * Read block address from @tf. This function can handle all
272 * three address formats - LBA, LBA48 and CHS. tf->protocol and
273 * flags select the address format to use.
274 *
275 * RETURNS:
276 * Block address read from @tf.
277 */
278u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
279{
280 u64 block = 0;
281
282 if (tf->flags & ATA_TFLAG_LBA) {
283 if (tf->flags & ATA_TFLAG_LBA48) {
284 block |= (u64)tf->hob_lbah << 40;
285 block |= (u64)tf->hob_lbam << 32;
286 block |= tf->hob_lbal << 24;
287 } else
288 block |= (tf->device & 0xf) << 24;
289
290 block |= tf->lbah << 16;
291 block |= tf->lbam << 8;
292 block |= tf->lbal;
293 } else {
294 u32 cyl, head, sect;
295
296 cyl = tf->lbam | (tf->lbah << 8);
297 head = tf->device & 0xf;
298 sect = tf->lbal;
299
300 block = (cyl * dev->heads + head) * dev->sectors + sect;
301 }
302
303 return block;
304}
305
bd056d7e
TH
306/**
307 * ata_build_rw_tf - Build ATA taskfile for given read/write request
308 * @tf: Target ATA taskfile
309 * @dev: ATA device @tf belongs to
310 * @block: Block address
311 * @n_block: Number of blocks
312 * @tf_flags: RW/FUA etc...
313 * @tag: tag
314 *
315 * LOCKING:
316 * None.
317 *
318 * Build ATA taskfile @tf for read/write request described by
319 * @block, @n_block, @tf_flags and @tag on @dev.
320 *
321 * RETURNS:
322 *
323 * 0 on success, -ERANGE if the request is too large for @dev,
324 * -EINVAL if the request is invalid.
325 */
326int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
327 u64 block, u32 n_block, unsigned int tf_flags,
328 unsigned int tag)
329{
330 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
331 tf->flags |= tf_flags;
332
6d1245bf 333 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
334 /* yay, NCQ */
335 if (!lba_48_ok(block, n_block))
336 return -ERANGE;
337
338 tf->protocol = ATA_PROT_NCQ;
339 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
340
341 if (tf->flags & ATA_TFLAG_WRITE)
342 tf->command = ATA_CMD_FPDMA_WRITE;
343 else
344 tf->command = ATA_CMD_FPDMA_READ;
345
346 tf->nsect = tag << 3;
347 tf->hob_feature = (n_block >> 8) & 0xff;
348 tf->feature = n_block & 0xff;
349
350 tf->hob_lbah = (block >> 40) & 0xff;
351 tf->hob_lbam = (block >> 32) & 0xff;
352 tf->hob_lbal = (block >> 24) & 0xff;
353 tf->lbah = (block >> 16) & 0xff;
354 tf->lbam = (block >> 8) & 0xff;
355 tf->lbal = block & 0xff;
356
357 tf->device = 1 << 6;
358 if (tf->flags & ATA_TFLAG_FUA)
359 tf->device |= 1 << 7;
360 } else if (dev->flags & ATA_DFLAG_LBA) {
361 tf->flags |= ATA_TFLAG_LBA;
362
363 if (lba_28_ok(block, n_block)) {
364 /* use LBA28 */
365 tf->device |= (block >> 24) & 0xf;
366 } else if (lba_48_ok(block, n_block)) {
367 if (!(dev->flags & ATA_DFLAG_LBA48))
368 return -ERANGE;
369
370 /* use LBA48 */
371 tf->flags |= ATA_TFLAG_LBA48;
372
373 tf->hob_nsect = (n_block >> 8) & 0xff;
374
375 tf->hob_lbah = (block >> 40) & 0xff;
376 tf->hob_lbam = (block >> 32) & 0xff;
377 tf->hob_lbal = (block >> 24) & 0xff;
378 } else
379 /* request too large even for LBA48 */
380 return -ERANGE;
381
382 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
383 return -EINVAL;
384
385 tf->nsect = n_block & 0xff;
386
387 tf->lbah = (block >> 16) & 0xff;
388 tf->lbam = (block >> 8) & 0xff;
389 tf->lbal = block & 0xff;
390
391 tf->device |= ATA_LBA;
392 } else {
393 /* CHS */
394 u32 sect, head, cyl, track;
395
396 /* The request -may- be too large for CHS addressing. */
397 if (!lba_28_ok(block, n_block))
398 return -ERANGE;
399
400 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
401 return -EINVAL;
402
403 /* Convert LBA to CHS */
404 track = (u32)block / dev->sectors;
405 cyl = track / dev->heads;
406 head = track % dev->heads;
407 sect = (u32)block % dev->sectors + 1;
408
409 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
410 (u32)block, track, cyl, head, sect);
411
412 /* Check whether the converted CHS can fit.
413 Cylinder: 0-65535
414 Head: 0-15
415 Sector: 1-255*/
416 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
417 return -ERANGE;
418
419 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
420 tf->lbal = sect;
421 tf->lbam = cyl;
422 tf->lbah = cyl >> 8;
423 tf->device |= head;
424 }
425
426 return 0;
427}
428
cb95d562
TH
429/**
430 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
431 * @pio_mask: pio_mask
432 * @mwdma_mask: mwdma_mask
433 * @udma_mask: udma_mask
434 *
435 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
436 * unsigned int xfer_mask.
437 *
438 * LOCKING:
439 * None.
440 *
441 * RETURNS:
442 * Packed xfer_mask.
443 */
444static unsigned int ata_pack_xfermask(unsigned int pio_mask,
445 unsigned int mwdma_mask,
446 unsigned int udma_mask)
447{
448 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
449 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
450 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
451}
452
c0489e4e
TH
453/**
454 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
455 * @xfer_mask: xfer_mask to unpack
456 * @pio_mask: resulting pio_mask
457 * @mwdma_mask: resulting mwdma_mask
458 * @udma_mask: resulting udma_mask
459 *
460 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
461 * Any NULL distination masks will be ignored.
462 */
463static void ata_unpack_xfermask(unsigned int xfer_mask,
464 unsigned int *pio_mask,
465 unsigned int *mwdma_mask,
466 unsigned int *udma_mask)
467{
468 if (pio_mask)
469 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
470 if (mwdma_mask)
471 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
472 if (udma_mask)
473 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
474}
475
cb95d562 476static const struct ata_xfer_ent {
be9a50c8 477 int shift, bits;
cb95d562
TH
478 u8 base;
479} ata_xfer_tbl[] = {
480 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
481 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
482 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
483 { -1, },
484};
485
486/**
487 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
488 * @xfer_mask: xfer_mask of interest
489 *
490 * Return matching XFER_* value for @xfer_mask. Only the highest
491 * bit of @xfer_mask is considered.
492 *
493 * LOCKING:
494 * None.
495 *
496 * RETURNS:
497 * Matching XFER_* value, 0 if no match found.
498 */
499static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
500{
501 int highbit = fls(xfer_mask) - 1;
502 const struct ata_xfer_ent *ent;
503
504 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
505 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
506 return ent->base + highbit - ent->shift;
507 return 0;
508}
509
510/**
511 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
512 * @xfer_mode: XFER_* of interest
513 *
514 * Return matching xfer_mask for @xfer_mode.
515 *
516 * LOCKING:
517 * None.
518 *
519 * RETURNS:
520 * Matching xfer_mask, 0 if no match found.
521 */
522static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
523{
524 const struct ata_xfer_ent *ent;
525
526 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
527 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
528 return 1 << (ent->shift + xfer_mode - ent->base);
529 return 0;
530}
531
532/**
533 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
534 * @xfer_mode: XFER_* of interest
535 *
536 * Return matching xfer_shift for @xfer_mode.
537 *
538 * LOCKING:
539 * None.
540 *
541 * RETURNS:
542 * Matching xfer_shift, -1 if no match found.
543 */
544static int ata_xfer_mode2shift(unsigned int xfer_mode)
545{
546 const struct ata_xfer_ent *ent;
547
548 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
549 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
550 return ent->shift;
551 return -1;
552}
553
1da177e4 554/**
1da7b0d0
TH
555 * ata_mode_string - convert xfer_mask to string
556 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
557 *
558 * Determine string which represents the highest speed
1da7b0d0 559 * (highest bit in @modemask).
1da177e4
LT
560 *
561 * LOCKING:
562 * None.
563 *
564 * RETURNS:
565 * Constant C string representing highest speed listed in
1da7b0d0 566 * @mode_mask, or the constant C string "<n/a>".
1da177e4 567 */
1da7b0d0 568static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 569{
75f554bc
TH
570 static const char * const xfer_mode_str[] = {
571 "PIO0",
572 "PIO1",
573 "PIO2",
574 "PIO3",
575 "PIO4",
b352e57d
AC
576 "PIO5",
577 "PIO6",
75f554bc
TH
578 "MWDMA0",
579 "MWDMA1",
580 "MWDMA2",
b352e57d
AC
581 "MWDMA3",
582 "MWDMA4",
75f554bc
TH
583 "UDMA/16",
584 "UDMA/25",
585 "UDMA/33",
586 "UDMA/44",
587 "UDMA/66",
588 "UDMA/100",
589 "UDMA/133",
590 "UDMA7",
591 };
1da7b0d0 592 int highbit;
1da177e4 593
1da7b0d0
TH
594 highbit = fls(xfer_mask) - 1;
595 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
596 return xfer_mode_str[highbit];
1da177e4 597 return "<n/a>";
1da177e4
LT
598}
599
4c360c81
TH
600static const char *sata_spd_string(unsigned int spd)
601{
602 static const char * const spd_str[] = {
603 "1.5 Gbps",
604 "3.0 Gbps",
605 };
606
607 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
608 return "<unknown>";
609 return spd_str[spd - 1];
610}
611
3373efd8 612void ata_dev_disable(struct ata_device *dev)
0b8efb0a 613{
09d7f9b0 614 if (ata_dev_enabled(dev)) {
9af5c9c9 615 if (ata_msg_drv(dev->link->ap))
09d7f9b0 616 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
4ae72a1e
TH
617 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
618 ATA_DNXFER_QUIET);
0b8efb0a
TH
619 dev->class++;
620 }
621}
622
1da177e4 623/**
0d5ff566 624 * ata_devchk - PATA device presence detection
1da177e4
LT
625 * @ap: ATA channel to examine
626 * @device: Device to examine (starting at zero)
627 *
628 * This technique was originally described in
629 * Hale Landis's ATADRVR (www.ata-atapi.com), and
630 * later found its way into the ATA/ATAPI spec.
631 *
632 * Write a pattern to the ATA shadow registers,
633 * and if a device is present, it will respond by
634 * correctly storing and echoing back the
635 * ATA shadow register contents.
636 *
637 * LOCKING:
638 * caller.
639 */
640
0d5ff566 641static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1da177e4
LT
642{
643 struct ata_ioports *ioaddr = &ap->ioaddr;
644 u8 nsect, lbal;
645
646 ap->ops->dev_select(ap, device);
647
0d5ff566
TH
648 iowrite8(0x55, ioaddr->nsect_addr);
649 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 650
0d5ff566
TH
651 iowrite8(0xaa, ioaddr->nsect_addr);
652 iowrite8(0x55, ioaddr->lbal_addr);
1da177e4 653
0d5ff566
TH
654 iowrite8(0x55, ioaddr->nsect_addr);
655 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 656
0d5ff566
TH
657 nsect = ioread8(ioaddr->nsect_addr);
658 lbal = ioread8(ioaddr->lbal_addr);
1da177e4
LT
659
660 if ((nsect == 0x55) && (lbal == 0xaa))
661 return 1; /* we found a device */
662
663 return 0; /* nothing found */
664}
665
1da177e4
LT
666/**
667 * ata_dev_classify - determine device type based on ATA-spec signature
668 * @tf: ATA taskfile register set for device to be identified
669 *
670 * Determine from taskfile register contents whether a device is
671 * ATA or ATAPI, as per "Signature and persistence" section
672 * of ATA/PI spec (volume 1, sect 5.14).
673 *
674 * LOCKING:
675 * None.
676 *
677 * RETURNS:
633273a3
TH
678 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
679 * %ATA_DEV_UNKNOWN the event of failure.
1da177e4 680 */
057ace5e 681unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
682{
683 /* Apple's open source Darwin code hints that some devices only
684 * put a proper signature into the LBA mid/high registers,
685 * So, we only check those. It's sufficient for uniqueness.
633273a3
TH
686 *
687 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
688 * signatures for ATA and ATAPI devices attached on SerialATA,
689 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
690 * spec has never mentioned about using different signatures
691 * for ATA/ATAPI devices. Then, Serial ATA II: Port
692 * Multiplier specification began to use 0x69/0x96 to identify
693 * port multpliers and 0x3c/0xc3 to identify SEMB device.
694 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
695 * 0x69/0x96 shortly and described them as reserved for
696 * SerialATA.
697 *
698 * We follow the current spec and consider that 0x69/0x96
699 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1da177e4 700 */
633273a3 701 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1da177e4
LT
702 DPRINTK("found ATA device by sig\n");
703 return ATA_DEV_ATA;
704 }
705
633273a3 706 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1da177e4
LT
707 DPRINTK("found ATAPI device by sig\n");
708 return ATA_DEV_ATAPI;
709 }
710
633273a3
TH
711 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
712 DPRINTK("found PMP device by sig\n");
713 return ATA_DEV_PMP;
714 }
715
716 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
2dcb407e 717 printk(KERN_INFO "ata: SEMB device ignored\n");
633273a3
TH
718 return ATA_DEV_SEMB_UNSUP; /* not yet */
719 }
720
1da177e4
LT
721 DPRINTK("unknown device\n");
722 return ATA_DEV_UNKNOWN;
723}
724
725/**
726 * ata_dev_try_classify - Parse returned ATA device signature
3f19859e
TH
727 * @dev: ATA device to classify (starting at zero)
728 * @present: device seems present
b4dc7623 729 * @r_err: Value of error register on completion
1da177e4
LT
730 *
731 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
732 * an ATA/ATAPI-defined set of values is placed in the ATA
733 * shadow registers, indicating the results of device detection
734 * and diagnostics.
735 *
736 * Select the ATA device, and read the values from the ATA shadow
737 * registers. Then parse according to the Error register value,
738 * and the spec-defined values examined by ata_dev_classify().
739 *
740 * LOCKING:
741 * caller.
b4dc7623
TH
742 *
743 * RETURNS:
744 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4 745 */
3f19859e
TH
746unsigned int ata_dev_try_classify(struct ata_device *dev, int present,
747 u8 *r_err)
1da177e4 748{
3f19859e 749 struct ata_port *ap = dev->link->ap;
1da177e4
LT
750 struct ata_taskfile tf;
751 unsigned int class;
752 u8 err;
753
3f19859e 754 ap->ops->dev_select(ap, dev->devno);
1da177e4
LT
755
756 memset(&tf, 0, sizeof(tf));
757
1da177e4 758 ap->ops->tf_read(ap, &tf);
0169e284 759 err = tf.feature;
b4dc7623
TH
760 if (r_err)
761 *r_err = err;
1da177e4 762
93590859 763 /* see if device passed diags: if master then continue and warn later */
3f19859e 764 if (err == 0 && dev->devno == 0)
93590859 765 /* diagnostic fail : do nothing _YET_ */
3f19859e 766 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
93590859 767 else if (err == 1)
1da177e4 768 /* do nothing */ ;
3f19859e 769 else if ((dev->devno == 0) && (err == 0x81))
1da177e4
LT
770 /* do nothing */ ;
771 else
b4dc7623 772 return ATA_DEV_NONE;
1da177e4 773
b4dc7623 774 /* determine if device is ATA or ATAPI */
1da177e4 775 class = ata_dev_classify(&tf);
b4dc7623 776
d7fbee05
TH
777 if (class == ATA_DEV_UNKNOWN) {
778 /* If the device failed diagnostic, it's likely to
779 * have reported incorrect device signature too.
780 * Assume ATA device if the device seems present but
781 * device signature is invalid with diagnostic
782 * failure.
783 */
784 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
785 class = ATA_DEV_ATA;
786 else
787 class = ATA_DEV_NONE;
788 } else if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
789 class = ATA_DEV_NONE;
790
b4dc7623 791 return class;
1da177e4
LT
792}
793
794/**
6a62a04d 795 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
796 * @id: IDENTIFY DEVICE results we will examine
797 * @s: string into which data is output
798 * @ofs: offset into identify device page
799 * @len: length of string to return. must be an even number.
800 *
801 * The strings in the IDENTIFY DEVICE page are broken up into
802 * 16-bit chunks. Run through the string, and output each
803 * 8-bit chunk linearly, regardless of platform.
804 *
805 * LOCKING:
806 * caller.
807 */
808
6a62a04d
TH
809void ata_id_string(const u16 *id, unsigned char *s,
810 unsigned int ofs, unsigned int len)
1da177e4
LT
811{
812 unsigned int c;
813
814 while (len > 0) {
815 c = id[ofs] >> 8;
816 *s = c;
817 s++;
818
819 c = id[ofs] & 0xff;
820 *s = c;
821 s++;
822
823 ofs++;
824 len -= 2;
825 }
826}
827
0e949ff3 828/**
6a62a04d 829 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
830 * @id: IDENTIFY DEVICE results we will examine
831 * @s: string into which data is output
832 * @ofs: offset into identify device page
833 * @len: length of string to return. must be an odd number.
834 *
6a62a04d 835 * This function is identical to ata_id_string except that it
0e949ff3
TH
836 * trims trailing spaces and terminates the resulting string with
837 * null. @len must be actual maximum length (even number) + 1.
838 *
839 * LOCKING:
840 * caller.
841 */
6a62a04d
TH
842void ata_id_c_string(const u16 *id, unsigned char *s,
843 unsigned int ofs, unsigned int len)
0e949ff3
TH
844{
845 unsigned char *p;
846
847 WARN_ON(!(len & 1));
848
6a62a04d 849 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
850
851 p = s + strnlen(s, len - 1);
852 while (p > s && p[-1] == ' ')
853 p--;
854 *p = '\0';
855}
0baab86b 856
db6f8759
TH
857static u64 ata_id_n_sectors(const u16 *id)
858{
859 if (ata_id_has_lba(id)) {
860 if (ata_id_has_lba48(id))
861 return ata_id_u64(id, 100);
862 else
863 return ata_id_u32(id, 60);
864 } else {
865 if (ata_id_current_chs_valid(id))
866 return ata_id_u32(id, 57);
867 else
868 return id[1] * id[3] * id[6];
869 }
870}
871
1e999736
AC
872static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
873{
874 u64 sectors = 0;
875
876 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
877 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
878 sectors |= (tf->hob_lbal & 0xff) << 24;
879 sectors |= (tf->lbah & 0xff) << 16;
880 sectors |= (tf->lbam & 0xff) << 8;
881 sectors |= (tf->lbal & 0xff);
882
883 return ++sectors;
884}
885
886static u64 ata_tf_to_lba(struct ata_taskfile *tf)
887{
888 u64 sectors = 0;
889
890 sectors |= (tf->device & 0x0f) << 24;
891 sectors |= (tf->lbah & 0xff) << 16;
892 sectors |= (tf->lbam & 0xff) << 8;
893 sectors |= (tf->lbal & 0xff);
894
895 return ++sectors;
896}
897
898/**
c728a914
TH
899 * ata_read_native_max_address - Read native max address
900 * @dev: target device
901 * @max_sectors: out parameter for the result native max address
1e999736 902 *
c728a914
TH
903 * Perform an LBA48 or LBA28 native size query upon the device in
904 * question.
1e999736 905 *
c728a914
TH
906 * RETURNS:
907 * 0 on success, -EACCES if command is aborted by the drive.
908 * -EIO on other errors.
1e999736 909 */
c728a914 910static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1e999736 911{
c728a914 912 unsigned int err_mask;
1e999736 913 struct ata_taskfile tf;
c728a914 914 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
915
916 ata_tf_init(dev, &tf);
917
c728a914 918 /* always clear all address registers */
1e999736 919 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1e999736 920
c728a914
TH
921 if (lba48) {
922 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
923 tf.flags |= ATA_TFLAG_LBA48;
924 } else
925 tf.command = ATA_CMD_READ_NATIVE_MAX;
1e999736 926
1e999736 927 tf.protocol |= ATA_PROT_NODATA;
c728a914
TH
928 tf.device |= ATA_LBA;
929
2b789108 930 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914
TH
931 if (err_mask) {
932 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
933 "max address (err_mask=0x%x)\n", err_mask);
934 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
935 return -EACCES;
936 return -EIO;
937 }
1e999736 938
c728a914
TH
939 if (lba48)
940 *max_sectors = ata_tf_to_lba48(&tf);
941 else
942 *max_sectors = ata_tf_to_lba(&tf);
2dcb407e 943 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
93328e11 944 (*max_sectors)--;
c728a914 945 return 0;
1e999736
AC
946}
947
948/**
c728a914
TH
949 * ata_set_max_sectors - Set max sectors
950 * @dev: target device
6b38d1d1 951 * @new_sectors: new max sectors value to set for the device
1e999736 952 *
c728a914
TH
953 * Set max sectors of @dev to @new_sectors.
954 *
955 * RETURNS:
956 * 0 on success, -EACCES if command is aborted or denied (due to
957 * previous non-volatile SET_MAX) by the drive. -EIO on other
958 * errors.
1e999736 959 */
05027adc 960static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1e999736 961{
c728a914 962 unsigned int err_mask;
1e999736 963 struct ata_taskfile tf;
c728a914 964 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
965
966 new_sectors--;
967
968 ata_tf_init(dev, &tf);
969
1e999736 970 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
c728a914
TH
971
972 if (lba48) {
973 tf.command = ATA_CMD_SET_MAX_EXT;
974 tf.flags |= ATA_TFLAG_LBA48;
975
976 tf.hob_lbal = (new_sectors >> 24) & 0xff;
977 tf.hob_lbam = (new_sectors >> 32) & 0xff;
978 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1e582ba4 979 } else {
c728a914
TH
980 tf.command = ATA_CMD_SET_MAX;
981
1e582ba4
TH
982 tf.device |= (new_sectors >> 24) & 0xf;
983 }
984
1e999736 985 tf.protocol |= ATA_PROT_NODATA;
c728a914 986 tf.device |= ATA_LBA;
1e999736
AC
987
988 tf.lbal = (new_sectors >> 0) & 0xff;
989 tf.lbam = (new_sectors >> 8) & 0xff;
990 tf.lbah = (new_sectors >> 16) & 0xff;
1e999736 991
2b789108 992 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914
TH
993 if (err_mask) {
994 ata_dev_printk(dev, KERN_WARNING, "failed to set "
995 "max address (err_mask=0x%x)\n", err_mask);
996 if (err_mask == AC_ERR_DEV &&
997 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
998 return -EACCES;
999 return -EIO;
1000 }
1001
c728a914 1002 return 0;
1e999736
AC
1003}
1004
1005/**
1006 * ata_hpa_resize - Resize a device with an HPA set
1007 * @dev: Device to resize
1008 *
1009 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1010 * it if required to the full size of the media. The caller must check
1011 * the drive has the HPA feature set enabled.
05027adc
TH
1012 *
1013 * RETURNS:
1014 * 0 on success, -errno on failure.
1e999736 1015 */
05027adc 1016static int ata_hpa_resize(struct ata_device *dev)
1e999736 1017{
05027adc
TH
1018 struct ata_eh_context *ehc = &dev->link->eh_context;
1019 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1020 u64 sectors = ata_id_n_sectors(dev->id);
1021 u64 native_sectors;
c728a914 1022 int rc;
a617c09f 1023
05027adc
TH
1024 /* do we need to do it? */
1025 if (dev->class != ATA_DEV_ATA ||
1026 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1027 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
c728a914 1028 return 0;
1e999736 1029
05027adc
TH
1030 /* read native max address */
1031 rc = ata_read_native_max_address(dev, &native_sectors);
1032 if (rc) {
1033 /* If HPA isn't going to be unlocked, skip HPA
1034 * resizing from the next try.
1035 */
1036 if (!ata_ignore_hpa) {
1037 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1038 "broken, will skip HPA handling\n");
1039 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1040
1041 /* we can continue if device aborted the command */
1042 if (rc == -EACCES)
1043 rc = 0;
1e999736 1044 }
37301a55 1045
05027adc
TH
1046 return rc;
1047 }
1048
1049 /* nothing to do? */
1050 if (native_sectors <= sectors || !ata_ignore_hpa) {
1051 if (!print_info || native_sectors == sectors)
1052 return 0;
1053
1054 if (native_sectors > sectors)
1055 ata_dev_printk(dev, KERN_INFO,
1056 "HPA detected: current %llu, native %llu\n",
1057 (unsigned long long)sectors,
1058 (unsigned long long)native_sectors);
1059 else if (native_sectors < sectors)
1060 ata_dev_printk(dev, KERN_WARNING,
1061 "native sectors (%llu) is smaller than "
1062 "sectors (%llu)\n",
1063 (unsigned long long)native_sectors,
1064 (unsigned long long)sectors);
1065 return 0;
1066 }
1067
1068 /* let's unlock HPA */
1069 rc = ata_set_max_sectors(dev, native_sectors);
1070 if (rc == -EACCES) {
1071 /* if device aborted the command, skip HPA resizing */
1072 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1073 "(%llu -> %llu), skipping HPA handling\n",
1074 (unsigned long long)sectors,
1075 (unsigned long long)native_sectors);
1076 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1077 return 0;
1078 } else if (rc)
1079 return rc;
1080
1081 /* re-read IDENTIFY data */
1082 rc = ata_dev_reread_id(dev, 0);
1083 if (rc) {
1084 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1085 "data after HPA resizing\n");
1086 return rc;
1087 }
1088
1089 if (print_info) {
1090 u64 new_sectors = ata_id_n_sectors(dev->id);
1091 ata_dev_printk(dev, KERN_INFO,
1092 "HPA unlocked: %llu -> %llu, native %llu\n",
1093 (unsigned long long)sectors,
1094 (unsigned long long)new_sectors,
1095 (unsigned long long)native_sectors);
1096 }
1097
1098 return 0;
1e999736
AC
1099}
1100
10305f0f
A
1101/**
1102 * ata_id_to_dma_mode - Identify DMA mode from id block
1103 * @dev: device to identify
cc261267 1104 * @unknown: mode to assume if we cannot tell
10305f0f
A
1105 *
1106 * Set up the timing values for the device based upon the identify
1107 * reported values for the DMA mode. This function is used by drivers
1108 * which rely upon firmware configured modes, but wish to report the
1109 * mode correctly when possible.
1110 *
1111 * In addition we emit similarly formatted messages to the default
1112 * ata_dev_set_mode handler, in order to provide consistency of
1113 * presentation.
1114 */
1115
1116void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1117{
1118 unsigned int mask;
1119 u8 mode;
1120
1121 /* Pack the DMA modes */
1122 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1123 if (dev->id[53] & 0x04)
1124 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1125
1126 /* Select the mode in use */
1127 mode = ata_xfer_mask2mode(mask);
1128
1129 if (mode != 0) {
1130 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1131 ata_mode_string(mask));
1132 } else {
1133 /* SWDMA perhaps ? */
1134 mode = unknown;
1135 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1136 }
1137
1138 /* Configure the device reporting */
1139 dev->xfer_mode = mode;
1140 dev->xfer_shift = ata_xfer_mode2shift(mode);
1141}
1142
0baab86b
EF
1143/**
1144 * ata_noop_dev_select - Select device 0/1 on ATA bus
1145 * @ap: ATA channel to manipulate
1146 * @device: ATA device (numbered from zero) to select
1147 *
1148 * This function performs no actual function.
1149 *
1150 * May be used as the dev_select() entry in ata_port_operations.
1151 *
1152 * LOCKING:
1153 * caller.
1154 */
2dcb407e 1155void ata_noop_dev_select(struct ata_port *ap, unsigned int device)
1da177e4
LT
1156{
1157}
1158
0baab86b 1159
1da177e4
LT
1160/**
1161 * ata_std_dev_select - Select device 0/1 on ATA bus
1162 * @ap: ATA channel to manipulate
1163 * @device: ATA device (numbered from zero) to select
1164 *
1165 * Use the method defined in the ATA specification to
1166 * make either device 0, or device 1, active on the
0baab86b
EF
1167 * ATA channel. Works with both PIO and MMIO.
1168 *
1169 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
1170 *
1171 * LOCKING:
1172 * caller.
1173 */
1174
2dcb407e 1175void ata_std_dev_select(struct ata_port *ap, unsigned int device)
1da177e4
LT
1176{
1177 u8 tmp;
1178
1179 if (device == 0)
1180 tmp = ATA_DEVICE_OBS;
1181 else
1182 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1183
0d5ff566 1184 iowrite8(tmp, ap->ioaddr.device_addr);
1da177e4
LT
1185 ata_pause(ap); /* needed; also flushes, for mmio */
1186}
1187
1188/**
1189 * ata_dev_select - Select device 0/1 on ATA bus
1190 * @ap: ATA channel to manipulate
1191 * @device: ATA device (numbered from zero) to select
1192 * @wait: non-zero to wait for Status register BSY bit to clear
1193 * @can_sleep: non-zero if context allows sleeping
1194 *
1195 * Use the method defined in the ATA specification to
1196 * make either device 0, or device 1, active on the
1197 * ATA channel.
1198 *
1199 * This is a high-level version of ata_std_dev_select(),
1200 * which additionally provides the services of inserting
1201 * the proper pauses and status polling, where needed.
1202 *
1203 * LOCKING:
1204 * caller.
1205 */
1206
1207void ata_dev_select(struct ata_port *ap, unsigned int device,
1208 unsigned int wait, unsigned int can_sleep)
1209{
88574551 1210 if (ata_msg_probe(ap))
44877b4e
TH
1211 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1212 "device %u, wait %u\n", device, wait);
1da177e4
LT
1213
1214 if (wait)
1215 ata_wait_idle(ap);
1216
1217 ap->ops->dev_select(ap, device);
1218
1219 if (wait) {
9af5c9c9 1220 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
1da177e4
LT
1221 msleep(150);
1222 ata_wait_idle(ap);
1223 }
1224}
1225
1226/**
1227 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 1228 * @id: IDENTIFY DEVICE page to dump
1da177e4 1229 *
0bd3300a
TH
1230 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1231 * page.
1da177e4
LT
1232 *
1233 * LOCKING:
1234 * caller.
1235 */
1236
0bd3300a 1237static inline void ata_dump_id(const u16 *id)
1da177e4
LT
1238{
1239 DPRINTK("49==0x%04x "
1240 "53==0x%04x "
1241 "63==0x%04x "
1242 "64==0x%04x "
1243 "75==0x%04x \n",
0bd3300a
TH
1244 id[49],
1245 id[53],
1246 id[63],
1247 id[64],
1248 id[75]);
1da177e4
LT
1249 DPRINTK("80==0x%04x "
1250 "81==0x%04x "
1251 "82==0x%04x "
1252 "83==0x%04x "
1253 "84==0x%04x \n",
0bd3300a
TH
1254 id[80],
1255 id[81],
1256 id[82],
1257 id[83],
1258 id[84]);
1da177e4
LT
1259 DPRINTK("88==0x%04x "
1260 "93==0x%04x\n",
0bd3300a
TH
1261 id[88],
1262 id[93]);
1da177e4
LT
1263}
1264
cb95d562
TH
1265/**
1266 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1267 * @id: IDENTIFY data to compute xfer mask from
1268 *
1269 * Compute the xfermask for this device. This is not as trivial
1270 * as it seems if we must consider early devices correctly.
1271 *
1272 * FIXME: pre IDE drive timing (do we care ?).
1273 *
1274 * LOCKING:
1275 * None.
1276 *
1277 * RETURNS:
1278 * Computed xfermask
1279 */
1280static unsigned int ata_id_xfermask(const u16 *id)
1281{
1282 unsigned int pio_mask, mwdma_mask, udma_mask;
1283
1284 /* Usual case. Word 53 indicates word 64 is valid */
1285 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1286 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1287 pio_mask <<= 3;
1288 pio_mask |= 0x7;
1289 } else {
1290 /* If word 64 isn't valid then Word 51 high byte holds
1291 * the PIO timing number for the maximum. Turn it into
1292 * a mask.
1293 */
7a0f1c8a 1294 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb 1295 if (mode < 5) /* Valid PIO range */
2dcb407e 1296 pio_mask = (2 << mode) - 1;
46767aeb
AC
1297 else
1298 pio_mask = 1;
cb95d562
TH
1299
1300 /* But wait.. there's more. Design your standards by
1301 * committee and you too can get a free iordy field to
1302 * process. However its the speeds not the modes that
1303 * are supported... Note drivers using the timing API
1304 * will get this right anyway
1305 */
1306 }
1307
1308 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1309
b352e57d
AC
1310 if (ata_id_is_cfa(id)) {
1311 /*
1312 * Process compact flash extended modes
1313 */
1314 int pio = id[163] & 0x7;
1315 int dma = (id[163] >> 3) & 7;
1316
1317 if (pio)
1318 pio_mask |= (1 << 5);
1319 if (pio > 1)
1320 pio_mask |= (1 << 6);
1321 if (dma)
1322 mwdma_mask |= (1 << 3);
1323 if (dma > 1)
1324 mwdma_mask |= (1 << 4);
1325 }
1326
fb21f0d0
TH
1327 udma_mask = 0;
1328 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1329 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1330
1331 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1332}
1333
86e45b6b
TH
1334/**
1335 * ata_port_queue_task - Queue port_task
1336 * @ap: The ata_port to queue port_task for
e2a7f77a 1337 * @fn: workqueue function to be scheduled
65f27f38 1338 * @data: data for @fn to use
e2a7f77a 1339 * @delay: delay time for workqueue function
86e45b6b
TH
1340 *
1341 * Schedule @fn(@data) for execution after @delay jiffies using
1342 * port_task. There is one port_task per port and it's the
1343 * user(low level driver)'s responsibility to make sure that only
1344 * one task is active at any given time.
1345 *
1346 * libata core layer takes care of synchronization between
1347 * port_task and EH. ata_port_queue_task() may be ignored for EH
1348 * synchronization.
1349 *
1350 * LOCKING:
1351 * Inherited from caller.
1352 */
65f27f38 1353void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
86e45b6b
TH
1354 unsigned long delay)
1355{
65f27f38
DH
1356 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1357 ap->port_task_data = data;
86e45b6b 1358
45a66c1c
ON
1359 /* may fail if ata_port_flush_task() in progress */
1360 queue_delayed_work(ata_wq, &ap->port_task, delay);
86e45b6b
TH
1361}
1362
1363/**
1364 * ata_port_flush_task - Flush port_task
1365 * @ap: The ata_port to flush port_task for
1366 *
1367 * After this function completes, port_task is guranteed not to
1368 * be running or scheduled.
1369 *
1370 * LOCKING:
1371 * Kernel thread context (may sleep)
1372 */
1373void ata_port_flush_task(struct ata_port *ap)
1374{
86e45b6b
TH
1375 DPRINTK("ENTER\n");
1376
45a66c1c 1377 cancel_rearming_delayed_work(&ap->port_task);
86e45b6b 1378
0dd4b21f
BP
1379 if (ata_msg_ctl(ap))
1380 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
86e45b6b
TH
1381}
1382
7102d230 1383static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1384{
77853bf2 1385 struct completion *waiting = qc->private_data;
a2a7a662 1386
a2a7a662 1387 complete(waiting);
a2a7a662
TH
1388}
1389
1390/**
2432697b 1391 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1392 * @dev: Device to which the command is sent
1393 * @tf: Taskfile registers for the command and the result
d69cf37d 1394 * @cdb: CDB for packet command
a2a7a662 1395 * @dma_dir: Data tranfer direction of the command
5c1ad8b3 1396 * @sgl: sg list for the data buffer of the command
2432697b 1397 * @n_elem: Number of sg entries
2b789108 1398 * @timeout: Timeout in msecs (0 for default)
a2a7a662
TH
1399 *
1400 * Executes libata internal command with timeout. @tf contains
1401 * command on entry and result on return. Timeout and error
1402 * conditions are reported via return value. No recovery action
1403 * is taken after a command times out. It's caller's duty to
1404 * clean up after timeout.
1405 *
1406 * LOCKING:
1407 * None. Should be called with kernel context, might sleep.
551e8889
TH
1408 *
1409 * RETURNS:
1410 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1411 */
2432697b
TH
1412unsigned ata_exec_internal_sg(struct ata_device *dev,
1413 struct ata_taskfile *tf, const u8 *cdb,
87260216 1414 int dma_dir, struct scatterlist *sgl,
2b789108 1415 unsigned int n_elem, unsigned long timeout)
a2a7a662 1416{
9af5c9c9
TH
1417 struct ata_link *link = dev->link;
1418 struct ata_port *ap = link->ap;
a2a7a662
TH
1419 u8 command = tf->command;
1420 struct ata_queued_cmd *qc;
2ab7db1f 1421 unsigned int tag, preempted_tag;
dedaf2b0 1422 u32 preempted_sactive, preempted_qc_active;
da917d69 1423 int preempted_nr_active_links;
60be6b9a 1424 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1425 unsigned long flags;
77853bf2 1426 unsigned int err_mask;
d95a717f 1427 int rc;
a2a7a662 1428
ba6a1308 1429 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1430
e3180499 1431 /* no internal command while frozen */
b51e9e5d 1432 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1433 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1434 return AC_ERR_SYSTEM;
1435 }
1436
2ab7db1f 1437 /* initialize internal qc */
a2a7a662 1438
2ab7db1f
TH
1439 /* XXX: Tag 0 is used for drivers with legacy EH as some
1440 * drivers choke if any other tag is given. This breaks
1441 * ata_tag_internal() test for those drivers. Don't use new
1442 * EH stuff without converting to it.
1443 */
1444 if (ap->ops->error_handler)
1445 tag = ATA_TAG_INTERNAL;
1446 else
1447 tag = 0;
1448
6cec4a39 1449 if (test_and_set_bit(tag, &ap->qc_allocated))
2ab7db1f 1450 BUG();
f69499f4 1451 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1452
1453 qc->tag = tag;
1454 qc->scsicmd = NULL;
1455 qc->ap = ap;
1456 qc->dev = dev;
1457 ata_qc_reinit(qc);
1458
9af5c9c9
TH
1459 preempted_tag = link->active_tag;
1460 preempted_sactive = link->sactive;
dedaf2b0 1461 preempted_qc_active = ap->qc_active;
da917d69 1462 preempted_nr_active_links = ap->nr_active_links;
9af5c9c9
TH
1463 link->active_tag = ATA_TAG_POISON;
1464 link->sactive = 0;
dedaf2b0 1465 ap->qc_active = 0;
da917d69 1466 ap->nr_active_links = 0;
2ab7db1f
TH
1467
1468 /* prepare & issue qc */
a2a7a662 1469 qc->tf = *tf;
d69cf37d
TH
1470 if (cdb)
1471 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1472 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1473 qc->dma_dir = dma_dir;
1474 if (dma_dir != DMA_NONE) {
2432697b 1475 unsigned int i, buflen = 0;
87260216 1476 struct scatterlist *sg;
2432697b 1477
87260216
JA
1478 for_each_sg(sgl, sg, n_elem, i)
1479 buflen += sg->length;
2432697b 1480
87260216 1481 ata_sg_init(qc, sgl, n_elem);
49c80429 1482 qc->nbytes = buflen;
a2a7a662
TH
1483 }
1484
77853bf2 1485 qc->private_data = &wait;
a2a7a662
TH
1486 qc->complete_fn = ata_qc_complete_internal;
1487
8e0e694a 1488 ata_qc_issue(qc);
a2a7a662 1489
ba6a1308 1490 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1491
2b789108
TH
1492 if (!timeout)
1493 timeout = ata_probe_timeout * 1000 / HZ;
1494
1495 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
d95a717f
TH
1496
1497 ata_port_flush_task(ap);
41ade50c 1498
d95a717f 1499 if (!rc) {
ba6a1308 1500 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1501
1502 /* We're racing with irq here. If we lose, the
1503 * following test prevents us from completing the qc
d95a717f
TH
1504 * twice. If we win, the port is frozen and will be
1505 * cleaned up by ->post_internal_cmd().
a2a7a662 1506 */
77853bf2 1507 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1508 qc->err_mask |= AC_ERR_TIMEOUT;
1509
1510 if (ap->ops->error_handler)
1511 ata_port_freeze(ap);
1512 else
1513 ata_qc_complete(qc);
f15a1daf 1514
0dd4b21f
BP
1515 if (ata_msg_warn(ap))
1516 ata_dev_printk(dev, KERN_WARNING,
88574551 1517 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1518 }
1519
ba6a1308 1520 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1521 }
1522
d95a717f
TH
1523 /* do post_internal_cmd */
1524 if (ap->ops->post_internal_cmd)
1525 ap->ops->post_internal_cmd(qc);
1526
a51d644a
TH
1527 /* perform minimal error analysis */
1528 if (qc->flags & ATA_QCFLAG_FAILED) {
1529 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1530 qc->err_mask |= AC_ERR_DEV;
1531
1532 if (!qc->err_mask)
1533 qc->err_mask |= AC_ERR_OTHER;
1534
1535 if (qc->err_mask & ~AC_ERR_OTHER)
1536 qc->err_mask &= ~AC_ERR_OTHER;
d95a717f
TH
1537 }
1538
15869303 1539 /* finish up */
ba6a1308 1540 spin_lock_irqsave(ap->lock, flags);
15869303 1541
e61e0672 1542 *tf = qc->result_tf;
77853bf2
TH
1543 err_mask = qc->err_mask;
1544
1545 ata_qc_free(qc);
9af5c9c9
TH
1546 link->active_tag = preempted_tag;
1547 link->sactive = preempted_sactive;
dedaf2b0 1548 ap->qc_active = preempted_qc_active;
da917d69 1549 ap->nr_active_links = preempted_nr_active_links;
77853bf2 1550
1f7dd3e9
TH
1551 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1552 * Until those drivers are fixed, we detect the condition
1553 * here, fail the command with AC_ERR_SYSTEM and reenable the
1554 * port.
1555 *
1556 * Note that this doesn't change any behavior as internal
1557 * command failure results in disabling the device in the
1558 * higher layer for LLDDs without new reset/EH callbacks.
1559 *
1560 * Kill the following code as soon as those drivers are fixed.
1561 */
198e0fed 1562 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1563 err_mask |= AC_ERR_SYSTEM;
1564 ata_port_probe(ap);
1565 }
1566
ba6a1308 1567 spin_unlock_irqrestore(ap->lock, flags);
15869303 1568
77853bf2 1569 return err_mask;
a2a7a662
TH
1570}
1571
2432697b 1572/**
33480a0e 1573 * ata_exec_internal - execute libata internal command
2432697b
TH
1574 * @dev: Device to which the command is sent
1575 * @tf: Taskfile registers for the command and the result
1576 * @cdb: CDB for packet command
1577 * @dma_dir: Data tranfer direction of the command
1578 * @buf: Data buffer of the command
1579 * @buflen: Length of data buffer
2b789108 1580 * @timeout: Timeout in msecs (0 for default)
2432697b
TH
1581 *
1582 * Wrapper around ata_exec_internal_sg() which takes simple
1583 * buffer instead of sg list.
1584 *
1585 * LOCKING:
1586 * None. Should be called with kernel context, might sleep.
1587 *
1588 * RETURNS:
1589 * Zero on success, AC_ERR_* mask on failure
1590 */
1591unsigned ata_exec_internal(struct ata_device *dev,
1592 struct ata_taskfile *tf, const u8 *cdb,
2b789108
TH
1593 int dma_dir, void *buf, unsigned int buflen,
1594 unsigned long timeout)
2432697b 1595{
33480a0e
TH
1596 struct scatterlist *psg = NULL, sg;
1597 unsigned int n_elem = 0;
2432697b 1598
33480a0e
TH
1599 if (dma_dir != DMA_NONE) {
1600 WARN_ON(!buf);
1601 sg_init_one(&sg, buf, buflen);
1602 psg = &sg;
1603 n_elem++;
1604 }
2432697b 1605
2b789108
TH
1606 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1607 timeout);
2432697b
TH
1608}
1609
977e6b9f
TH
1610/**
1611 * ata_do_simple_cmd - execute simple internal command
1612 * @dev: Device to which the command is sent
1613 * @cmd: Opcode to execute
1614 *
1615 * Execute a 'simple' command, that only consists of the opcode
1616 * 'cmd' itself, without filling any other registers
1617 *
1618 * LOCKING:
1619 * Kernel thread context (may sleep).
1620 *
1621 * RETURNS:
1622 * Zero on success, AC_ERR_* mask on failure
e58eb583 1623 */
77b08fb5 1624unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1625{
1626 struct ata_taskfile tf;
e58eb583
TH
1627
1628 ata_tf_init(dev, &tf);
1629
1630 tf.command = cmd;
1631 tf.flags |= ATA_TFLAG_DEVICE;
1632 tf.protocol = ATA_PROT_NODATA;
1633
2b789108 1634 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
e58eb583
TH
1635}
1636
1bc4ccff
AC
1637/**
1638 * ata_pio_need_iordy - check if iordy needed
1639 * @adev: ATA device
1640 *
1641 * Check if the current speed of the device requires IORDY. Used
1642 * by various controllers for chip configuration.
1643 */
a617c09f 1644
1bc4ccff
AC
1645unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1646{
432729f0
AC
1647 /* Controller doesn't support IORDY. Probably a pointless check
1648 as the caller should know this */
9af5c9c9 1649 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1bc4ccff 1650 return 0;
432729f0
AC
1651 /* PIO3 and higher it is mandatory */
1652 if (adev->pio_mode > XFER_PIO_2)
1653 return 1;
1654 /* We turn it on when possible */
1655 if (ata_id_has_iordy(adev->id))
1bc4ccff 1656 return 1;
432729f0
AC
1657 return 0;
1658}
2e9edbf8 1659
432729f0
AC
1660/**
1661 * ata_pio_mask_no_iordy - Return the non IORDY mask
1662 * @adev: ATA device
1663 *
1664 * Compute the highest mode possible if we are not using iordy. Return
1665 * -1 if no iordy mode is available.
1666 */
a617c09f 1667
432729f0
AC
1668static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1669{
1bc4ccff 1670 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1bc4ccff 1671 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
432729f0 1672 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1bc4ccff
AC
1673 /* Is the speed faster than the drive allows non IORDY ? */
1674 if (pio) {
1675 /* This is cycle times not frequency - watch the logic! */
1676 if (pio > 240) /* PIO2 is 240nS per cycle */
432729f0
AC
1677 return 3 << ATA_SHIFT_PIO;
1678 return 7 << ATA_SHIFT_PIO;
1bc4ccff
AC
1679 }
1680 }
432729f0 1681 return 3 << ATA_SHIFT_PIO;
1bc4ccff
AC
1682}
1683
1da177e4 1684/**
49016aca 1685 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1686 * @dev: target device
1687 * @p_class: pointer to class of the target device (may be changed)
bff04647 1688 * @flags: ATA_READID_* flags
fe635c7e 1689 * @id: buffer to read IDENTIFY data into
1da177e4 1690 *
49016aca
TH
1691 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1692 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1693 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1694 * for pre-ATA4 drives.
1da177e4 1695 *
50a99018 1696 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2dcb407e 1697 * now we abort if we hit that case.
50a99018 1698 *
1da177e4 1699 * LOCKING:
49016aca
TH
1700 * Kernel thread context (may sleep)
1701 *
1702 * RETURNS:
1703 * 0 on success, -errno otherwise.
1da177e4 1704 */
a9beec95 1705int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 1706 unsigned int flags, u16 *id)
1da177e4 1707{
9af5c9c9 1708 struct ata_port *ap = dev->link->ap;
49016aca 1709 unsigned int class = *p_class;
a0123703 1710 struct ata_taskfile tf;
49016aca
TH
1711 unsigned int err_mask = 0;
1712 const char *reason;
54936f8b 1713 int may_fallback = 1, tried_spinup = 0;
49016aca 1714 int rc;
1da177e4 1715
0dd4b21f 1716 if (ata_msg_ctl(ap))
44877b4e 1717 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1718
49016aca 1719 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
49016aca 1720 retry:
3373efd8 1721 ata_tf_init(dev, &tf);
a0123703 1722
49016aca
TH
1723 switch (class) {
1724 case ATA_DEV_ATA:
a0123703 1725 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1726 break;
1727 case ATA_DEV_ATAPI:
a0123703 1728 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1729 break;
1730 default:
1731 rc = -ENODEV;
1732 reason = "unsupported class";
1733 goto err_out;
1da177e4
LT
1734 }
1735
a0123703 1736 tf.protocol = ATA_PROT_PIO;
81afe893
TH
1737
1738 /* Some devices choke if TF registers contain garbage. Make
1739 * sure those are properly initialized.
1740 */
1741 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1742
1743 /* Device presence detection is unreliable on some
1744 * controllers. Always poll IDENTIFY if available.
1745 */
1746 tf.flags |= ATA_TFLAG_POLLING;
1da177e4 1747
3373efd8 1748 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2b789108 1749 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
a0123703 1750 if (err_mask) {
800b3996 1751 if (err_mask & AC_ERR_NODEV_HINT) {
55a8e2c8 1752 DPRINTK("ata%u.%d: NODEV after polling detection\n",
44877b4e 1753 ap->print_id, dev->devno);
55a8e2c8
TH
1754 return -ENOENT;
1755 }
1756
54936f8b
TH
1757 /* Device or controller might have reported the wrong
1758 * device class. Give a shot at the other IDENTIFY if
1759 * the current one is aborted by the device.
1760 */
1761 if (may_fallback &&
1762 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1763 may_fallback = 0;
1764
1765 if (class == ATA_DEV_ATA)
1766 class = ATA_DEV_ATAPI;
1767 else
1768 class = ATA_DEV_ATA;
1769 goto retry;
1770 }
1771
49016aca
TH
1772 rc = -EIO;
1773 reason = "I/O error";
1da177e4
LT
1774 goto err_out;
1775 }
1776
54936f8b
TH
1777 /* Falling back doesn't make sense if ID data was read
1778 * successfully at least once.
1779 */
1780 may_fallback = 0;
1781
49016aca 1782 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1783
49016aca 1784 /* sanity check */
a4f5749b 1785 rc = -EINVAL;
6070068b 1786 reason = "device reports invalid type";
a4f5749b
TH
1787
1788 if (class == ATA_DEV_ATA) {
1789 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1790 goto err_out;
1791 } else {
1792 if (ata_id_is_ata(id))
1793 goto err_out;
49016aca
TH
1794 }
1795
169439c2
ML
1796 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1797 tried_spinup = 1;
1798 /*
1799 * Drive powered-up in standby mode, and requires a specific
1800 * SET_FEATURES spin-up subcommand before it will accept
1801 * anything other than the original IDENTIFY command.
1802 */
218f3d30 1803 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
fb0582f9 1804 if (err_mask && id[2] != 0x738c) {
169439c2
ML
1805 rc = -EIO;
1806 reason = "SPINUP failed";
1807 goto err_out;
1808 }
1809 /*
1810 * If the drive initially returned incomplete IDENTIFY info,
1811 * we now must reissue the IDENTIFY command.
1812 */
1813 if (id[2] == 0x37c8)
1814 goto retry;
1815 }
1816
bff04647 1817 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
49016aca
TH
1818 /*
1819 * The exact sequence expected by certain pre-ATA4 drives is:
1820 * SRST RESET
50a99018
AC
1821 * IDENTIFY (optional in early ATA)
1822 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
49016aca
TH
1823 * anything else..
1824 * Some drives were very specific about that exact sequence.
50a99018
AC
1825 *
1826 * Note that ATA4 says lba is mandatory so the second check
1827 * shoud never trigger.
49016aca
TH
1828 */
1829 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 1830 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
1831 if (err_mask) {
1832 rc = -EIO;
1833 reason = "INIT_DEV_PARAMS failed";
1834 goto err_out;
1835 }
1836
1837 /* current CHS translation info (id[53-58]) might be
1838 * changed. reread the identify device info.
1839 */
bff04647 1840 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
1841 goto retry;
1842 }
1843 }
1844
1845 *p_class = class;
fe635c7e 1846
49016aca
TH
1847 return 0;
1848
1849 err_out:
88574551 1850 if (ata_msg_warn(ap))
0dd4b21f 1851 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 1852 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
1853 return rc;
1854}
1855
3373efd8 1856static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 1857{
9af5c9c9
TH
1858 struct ata_port *ap = dev->link->ap;
1859 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
1860}
1861
a6e6ce8e
TH
1862static void ata_dev_config_ncq(struct ata_device *dev,
1863 char *desc, size_t desc_sz)
1864{
9af5c9c9 1865 struct ata_port *ap = dev->link->ap;
a6e6ce8e
TH
1866 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1867
1868 if (!ata_id_has_ncq(dev->id)) {
1869 desc[0] = '\0';
1870 return;
1871 }
75683fe7 1872 if (dev->horkage & ATA_HORKAGE_NONCQ) {
6919a0a6
AC
1873 snprintf(desc, desc_sz, "NCQ (not used)");
1874 return;
1875 }
a6e6ce8e 1876 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 1877 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
1878 dev->flags |= ATA_DFLAG_NCQ;
1879 }
1880
1881 if (hdepth >= ddepth)
1882 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1883 else
1884 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1885}
1886
49016aca 1887/**
ffeae418 1888 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
1889 * @dev: Target device to configure
1890 *
1891 * Configure @dev according to @dev->id. Generic and low-level
1892 * driver specific fixups are also applied.
49016aca
TH
1893 *
1894 * LOCKING:
ffeae418
TH
1895 * Kernel thread context (may sleep)
1896 *
1897 * RETURNS:
1898 * 0 on success, -errno otherwise
49016aca 1899 */
efdaedc4 1900int ata_dev_configure(struct ata_device *dev)
49016aca 1901{
9af5c9c9
TH
1902 struct ata_port *ap = dev->link->ap;
1903 struct ata_eh_context *ehc = &dev->link->eh_context;
6746544c 1904 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1148c3a7 1905 const u16 *id = dev->id;
ff8854b2 1906 unsigned int xfer_mask;
b352e57d 1907 char revbuf[7]; /* XYZ-99\0 */
3f64f565
EM
1908 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1909 char modelbuf[ATA_ID_PROD_LEN+1];
e6d902a3 1910 int rc;
49016aca 1911
0dd4b21f 1912 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
44877b4e
TH
1913 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1914 __FUNCTION__);
ffeae418 1915 return 0;
49016aca
TH
1916 }
1917
0dd4b21f 1918 if (ata_msg_probe(ap))
44877b4e 1919 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1920
75683fe7
TH
1921 /* set horkage */
1922 dev->horkage |= ata_dev_blacklisted(dev);
1923
6746544c
TH
1924 /* let ACPI work its magic */
1925 rc = ata_acpi_on_devcfg(dev);
1926 if (rc)
1927 return rc;
08573a86 1928
05027adc
TH
1929 /* massage HPA, do it early as it might change IDENTIFY data */
1930 rc = ata_hpa_resize(dev);
1931 if (rc)
1932 return rc;
1933
c39f5ebe 1934 /* print device capabilities */
0dd4b21f 1935 if (ata_msg_probe(ap))
88574551
TH
1936 ata_dev_printk(dev, KERN_DEBUG,
1937 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1938 "85:%04x 86:%04x 87:%04x 88:%04x\n",
0dd4b21f 1939 __FUNCTION__,
f15a1daf
TH
1940 id[49], id[82], id[83], id[84],
1941 id[85], id[86], id[87], id[88]);
c39f5ebe 1942
208a9933 1943 /* initialize to-be-configured parameters */
ea1dd4e1 1944 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
1945 dev->max_sectors = 0;
1946 dev->cdb_len = 0;
1947 dev->n_sectors = 0;
1948 dev->cylinders = 0;
1949 dev->heads = 0;
1950 dev->sectors = 0;
1951
1da177e4
LT
1952 /*
1953 * common ATA, ATAPI feature tests
1954 */
1955
ff8854b2 1956 /* find max transfer mode; for printk only */
1148c3a7 1957 xfer_mask = ata_id_xfermask(id);
1da177e4 1958
0dd4b21f
BP
1959 if (ata_msg_probe(ap))
1960 ata_dump_id(id);
1da177e4 1961
ef143d57
AL
1962 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1963 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1964 sizeof(fwrevbuf));
1965
1966 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1967 sizeof(modelbuf));
1968
1da177e4
LT
1969 /* ATA-specific feature tests */
1970 if (dev->class == ATA_DEV_ATA) {
b352e57d
AC
1971 if (ata_id_is_cfa(id)) {
1972 if (id[162] & 1) /* CPRM may make this media unusable */
44877b4e
TH
1973 ata_dev_printk(dev, KERN_WARNING,
1974 "supports DRM functions and may "
1975 "not be fully accessable.\n");
b352e57d 1976 snprintf(revbuf, 7, "CFA");
2dcb407e
JG
1977 } else
1978 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
b352e57d 1979
1148c3a7 1980 dev->n_sectors = ata_id_n_sectors(id);
2940740b 1981
3f64f565
EM
1982 if (dev->id[59] & 0x100)
1983 dev->multi_count = dev->id[59] & 0xff;
1984
1148c3a7 1985 if (ata_id_has_lba(id)) {
4c2d721a 1986 const char *lba_desc;
a6e6ce8e 1987 char ncq_desc[20];
8bf62ece 1988
4c2d721a
TH
1989 lba_desc = "LBA";
1990 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 1991 if (ata_id_has_lba48(id)) {
8bf62ece 1992 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 1993 lba_desc = "LBA48";
6fc49adb
TH
1994
1995 if (dev->n_sectors >= (1UL << 28) &&
1996 ata_id_has_flush_ext(id))
1997 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 1998 }
8bf62ece 1999
a6e6ce8e
TH
2000 /* config NCQ */
2001 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2002
8bf62ece 2003 /* print device info to dmesg */
3f64f565
EM
2004 if (ata_msg_drv(ap) && print_info) {
2005 ata_dev_printk(dev, KERN_INFO,
2006 "%s: %s, %s, max %s\n",
2007 revbuf, modelbuf, fwrevbuf,
2008 ata_mode_string(xfer_mask));
2009 ata_dev_printk(dev, KERN_INFO,
2010 "%Lu sectors, multi %u: %s %s\n",
f15a1daf 2011 (unsigned long long)dev->n_sectors,
3f64f565
EM
2012 dev->multi_count, lba_desc, ncq_desc);
2013 }
ffeae418 2014 } else {
8bf62ece
AL
2015 /* CHS */
2016
2017 /* Default translation */
1148c3a7
TH
2018 dev->cylinders = id[1];
2019 dev->heads = id[3];
2020 dev->sectors = id[6];
8bf62ece 2021
1148c3a7 2022 if (ata_id_current_chs_valid(id)) {
8bf62ece 2023 /* Current CHS translation is valid. */
1148c3a7
TH
2024 dev->cylinders = id[54];
2025 dev->heads = id[55];
2026 dev->sectors = id[56];
8bf62ece
AL
2027 }
2028
2029 /* print device info to dmesg */
3f64f565 2030 if (ata_msg_drv(ap) && print_info) {
88574551 2031 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
2032 "%s: %s, %s, max %s\n",
2033 revbuf, modelbuf, fwrevbuf,
2034 ata_mode_string(xfer_mask));
a84471fe 2035 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
2036 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2037 (unsigned long long)dev->n_sectors,
2038 dev->multi_count, dev->cylinders,
2039 dev->heads, dev->sectors);
2040 }
07f6f7d0
AL
2041 }
2042
6e7846e9 2043 dev->cdb_len = 16;
1da177e4
LT
2044 }
2045
2046 /* ATAPI-specific feature tests */
2c13b7ce 2047 else if (dev->class == ATA_DEV_ATAPI) {
854c73a2
TH
2048 const char *cdb_intr_string = "";
2049 const char *atapi_an_string = "";
7d77b247 2050 u32 sntf;
08a556db 2051
1148c3a7 2052 rc = atapi_cdb_len(id);
1da177e4 2053 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 2054 if (ata_msg_warn(ap))
88574551
TH
2055 ata_dev_printk(dev, KERN_WARNING,
2056 "unsupported CDB len\n");
ffeae418 2057 rc = -EINVAL;
1da177e4
LT
2058 goto err_out_nosup;
2059 }
6e7846e9 2060 dev->cdb_len = (unsigned int) rc;
1da177e4 2061
7d77b247
TH
2062 /* Enable ATAPI AN if both the host and device have
2063 * the support. If PMP is attached, SNTF is required
2064 * to enable ATAPI AN to discern between PHY status
2065 * changed notifications and ATAPI ANs.
9f45cbd3 2066 */
7d77b247
TH
2067 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2068 (!ap->nr_pmp_links ||
2069 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
854c73a2
TH
2070 unsigned int err_mask;
2071
9f45cbd3 2072 /* issue SET feature command to turn this on */
218f3d30
JG
2073 err_mask = ata_dev_set_feature(dev,
2074 SETFEATURES_SATA_ENABLE, SATA_AN);
854c73a2 2075 if (err_mask)
9f45cbd3 2076 ata_dev_printk(dev, KERN_ERR,
854c73a2
TH
2077 "failed to enable ATAPI AN "
2078 "(err_mask=0x%x)\n", err_mask);
2079 else {
9f45cbd3 2080 dev->flags |= ATA_DFLAG_AN;
854c73a2
TH
2081 atapi_an_string = ", ATAPI AN";
2082 }
9f45cbd3
KCA
2083 }
2084
08a556db 2085 if (ata_id_cdb_intr(dev->id)) {
312f7da2 2086 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
2087 cdb_intr_string = ", CDB intr";
2088 }
312f7da2 2089
1da177e4 2090 /* print device info to dmesg */
5afc8142 2091 if (ata_msg_drv(ap) && print_info)
ef143d57 2092 ata_dev_printk(dev, KERN_INFO,
854c73a2 2093 "ATAPI: %s, %s, max %s%s%s\n",
ef143d57 2094 modelbuf, fwrevbuf,
12436c30 2095 ata_mode_string(xfer_mask),
854c73a2 2096 cdb_intr_string, atapi_an_string);
1da177e4
LT
2097 }
2098
914ed354
TH
2099 /* determine max_sectors */
2100 dev->max_sectors = ATA_MAX_SECTORS;
2101 if (dev->flags & ATA_DFLAG_LBA48)
2102 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2103
93590859
AC
2104 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2105 /* Let the user know. We don't want to disallow opens for
2106 rescue purposes, or in case the vendor is just a blithering
2107 idiot */
2dcb407e 2108 if (print_info) {
93590859
AC
2109 ata_dev_printk(dev, KERN_WARNING,
2110"Drive reports diagnostics failure. This may indicate a drive\n");
2111 ata_dev_printk(dev, KERN_WARNING,
2112"fault or invalid emulation. Contact drive vendor for information.\n");
2113 }
2114 }
2115
4b2f3ede 2116 /* limit bridge transfers to udma5, 200 sectors */
3373efd8 2117 if (ata_dev_knobble(dev)) {
5afc8142 2118 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
2119 ata_dev_printk(dev, KERN_INFO,
2120 "applying bridge limits\n");
5a529139 2121 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
2122 dev->max_sectors = ATA_MAX_SECTORS;
2123 }
2124
75683fe7 2125 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
03ec52de
TH
2126 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2127 dev->max_sectors);
18d6e9d5 2128
4b2f3ede 2129 if (ap->ops->dev_config)
cd0d3bbc 2130 ap->ops->dev_config(dev);
4b2f3ede 2131
0dd4b21f
BP
2132 if (ata_msg_probe(ap))
2133 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2134 __FUNCTION__, ata_chk_status(ap));
ffeae418 2135 return 0;
1da177e4
LT
2136
2137err_out_nosup:
0dd4b21f 2138 if (ata_msg_probe(ap))
88574551
TH
2139 ata_dev_printk(dev, KERN_DEBUG,
2140 "%s: EXIT, err\n", __FUNCTION__);
ffeae418 2141 return rc;
1da177e4
LT
2142}
2143
be0d18df 2144/**
2e41e8e6 2145 * ata_cable_40wire - return 40 wire cable type
be0d18df
AC
2146 * @ap: port
2147 *
2e41e8e6 2148 * Helper method for drivers which want to hardwire 40 wire cable
be0d18df
AC
2149 * detection.
2150 */
2151
2152int ata_cable_40wire(struct ata_port *ap)
2153{
2154 return ATA_CBL_PATA40;
2155}
2156
2157/**
2e41e8e6 2158 * ata_cable_80wire - return 80 wire cable type
be0d18df
AC
2159 * @ap: port
2160 *
2e41e8e6 2161 * Helper method for drivers which want to hardwire 80 wire cable
be0d18df
AC
2162 * detection.
2163 */
2164
2165int ata_cable_80wire(struct ata_port *ap)
2166{
2167 return ATA_CBL_PATA80;
2168}
2169
2170/**
2171 * ata_cable_unknown - return unknown PATA cable.
2172 * @ap: port
2173 *
2174 * Helper method for drivers which have no PATA cable detection.
2175 */
2176
2177int ata_cable_unknown(struct ata_port *ap)
2178{
2179 return ATA_CBL_PATA_UNK;
2180}
2181
2182/**
2183 * ata_cable_sata - return SATA cable type
2184 * @ap: port
2185 *
2186 * Helper method for drivers which have SATA cables
2187 */
2188
2189int ata_cable_sata(struct ata_port *ap)
2190{
2191 return ATA_CBL_SATA;
2192}
2193
1da177e4
LT
2194/**
2195 * ata_bus_probe - Reset and probe ATA bus
2196 * @ap: Bus to probe
2197 *
0cba632b
JG
2198 * Master ATA bus probing function. Initiates a hardware-dependent
2199 * bus reset, then attempts to identify any devices found on
2200 * the bus.
2201 *
1da177e4 2202 * LOCKING:
0cba632b 2203 * PCI/etc. bus probe sem.
1da177e4
LT
2204 *
2205 * RETURNS:
96072e69 2206 * Zero on success, negative errno otherwise.
1da177e4
LT
2207 */
2208
80289167 2209int ata_bus_probe(struct ata_port *ap)
1da177e4 2210{
28ca5c57 2211 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1 2212 int tries[ATA_MAX_DEVICES];
f58229f8 2213 int rc;
e82cbdb9 2214 struct ata_device *dev;
1da177e4 2215
28ca5c57 2216 ata_port_probe(ap);
c19ba8af 2217
f58229f8
TH
2218 ata_link_for_each_dev(dev, &ap->link)
2219 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
14d2bac1
TH
2220
2221 retry:
2044470c 2222 /* reset and determine device classes */
52783c5d 2223 ap->ops->phy_reset(ap);
2061a47a 2224
f58229f8 2225 ata_link_for_each_dev(dev, &ap->link) {
52783c5d
TH
2226 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2227 dev->class != ATA_DEV_UNKNOWN)
2228 classes[dev->devno] = dev->class;
2229 else
2230 classes[dev->devno] = ATA_DEV_NONE;
2044470c 2231
52783c5d 2232 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 2233 }
1da177e4 2234
52783c5d 2235 ata_port_probe(ap);
2044470c 2236
b6079ca4
AC
2237 /* after the reset the device state is PIO 0 and the controller
2238 state is undefined. Record the mode */
2239
f58229f8
TH
2240 ata_link_for_each_dev(dev, &ap->link)
2241 dev->pio_mode = XFER_PIO_0;
b6079ca4 2242
f31f0cc2
JG
2243 /* read IDENTIFY page and configure devices. We have to do the identify
2244 specific sequence bass-ackwards so that PDIAG- is released by
2245 the slave device */
2246
f58229f8
TH
2247 ata_link_for_each_dev(dev, &ap->link) {
2248 if (tries[dev->devno])
2249 dev->class = classes[dev->devno];
ffeae418 2250
14d2bac1 2251 if (!ata_dev_enabled(dev))
ffeae418 2252 continue;
ffeae418 2253
bff04647
TH
2254 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2255 dev->id);
14d2bac1
TH
2256 if (rc)
2257 goto fail;
f31f0cc2
JG
2258 }
2259
be0d18df
AC
2260 /* Now ask for the cable type as PDIAG- should have been released */
2261 if (ap->ops->cable_detect)
2262 ap->cbl = ap->ops->cable_detect(ap);
2263
614fe29b
AC
2264 /* We may have SATA bridge glue hiding here irrespective of the
2265 reported cable types and sensed types */
2266 ata_link_for_each_dev(dev, &ap->link) {
2267 if (!ata_dev_enabled(dev))
2268 continue;
2269 /* SATA drives indicate we have a bridge. We don't know which
2270 end of the link the bridge is which is a problem */
2271 if (ata_id_is_sata(dev->id))
2272 ap->cbl = ATA_CBL_SATA;
2273 }
2274
f31f0cc2
JG
2275 /* After the identify sequence we can now set up the devices. We do
2276 this in the normal order so that the user doesn't get confused */
2277
f58229f8 2278 ata_link_for_each_dev(dev, &ap->link) {
f31f0cc2
JG
2279 if (!ata_dev_enabled(dev))
2280 continue;
14d2bac1 2281
9af5c9c9 2282 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
efdaedc4 2283 rc = ata_dev_configure(dev);
9af5c9c9 2284 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
2285 if (rc)
2286 goto fail;
1da177e4
LT
2287 }
2288
e82cbdb9 2289 /* configure transfer mode */
0260731f 2290 rc = ata_set_mode(&ap->link, &dev);
4ae72a1e 2291 if (rc)
51713d35 2292 goto fail;
1da177e4 2293
f58229f8
TH
2294 ata_link_for_each_dev(dev, &ap->link)
2295 if (ata_dev_enabled(dev))
e82cbdb9 2296 return 0;
1da177e4 2297
e82cbdb9
TH
2298 /* no device present, disable port */
2299 ata_port_disable(ap);
96072e69 2300 return -ENODEV;
14d2bac1
TH
2301
2302 fail:
4ae72a1e
TH
2303 tries[dev->devno]--;
2304
14d2bac1
TH
2305 switch (rc) {
2306 case -EINVAL:
4ae72a1e 2307 /* eeek, something went very wrong, give up */
14d2bac1
TH
2308 tries[dev->devno] = 0;
2309 break;
4ae72a1e
TH
2310
2311 case -ENODEV:
2312 /* give it just one more chance */
2313 tries[dev->devno] = min(tries[dev->devno], 1);
14d2bac1 2314 case -EIO:
4ae72a1e
TH
2315 if (tries[dev->devno] == 1) {
2316 /* This is the last chance, better to slow
2317 * down than lose it.
2318 */
936fd732 2319 sata_down_spd_limit(&ap->link);
4ae72a1e
TH
2320 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2321 }
14d2bac1
TH
2322 }
2323
4ae72a1e 2324 if (!tries[dev->devno])
3373efd8 2325 ata_dev_disable(dev);
ec573755 2326
14d2bac1 2327 goto retry;
1da177e4
LT
2328}
2329
2330/**
0cba632b
JG
2331 * ata_port_probe - Mark port as enabled
2332 * @ap: Port for which we indicate enablement
1da177e4 2333 *
0cba632b
JG
2334 * Modify @ap data structure such that the system
2335 * thinks that the entire port is enabled.
2336 *
cca3974e 2337 * LOCKING: host lock, or some other form of
0cba632b 2338 * serialization.
1da177e4
LT
2339 */
2340
2341void ata_port_probe(struct ata_port *ap)
2342{
198e0fed 2343 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
2344}
2345
3be680b7
TH
2346/**
2347 * sata_print_link_status - Print SATA link status
936fd732 2348 * @link: SATA link to printk link status about
3be680b7
TH
2349 *
2350 * This function prints link speed and status of a SATA link.
2351 *
2352 * LOCKING:
2353 * None.
2354 */
936fd732 2355void sata_print_link_status(struct ata_link *link)
3be680b7 2356{
6d5f9732 2357 u32 sstatus, scontrol, tmp;
3be680b7 2358
936fd732 2359 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3be680b7 2360 return;
936fd732 2361 sata_scr_read(link, SCR_CONTROL, &scontrol);
3be680b7 2362
936fd732 2363 if (ata_link_online(link)) {
3be680b7 2364 tmp = (sstatus >> 4) & 0xf;
936fd732 2365 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2366 "SATA link up %s (SStatus %X SControl %X)\n",
2367 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 2368 } else {
936fd732 2369 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2370 "SATA link down (SStatus %X SControl %X)\n",
2371 sstatus, scontrol);
3be680b7
TH
2372 }
2373}
2374
1da177e4 2375/**
780a87f7
JG
2376 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2377 * @ap: SATA port associated with target SATA PHY.
1da177e4 2378 *
780a87f7
JG
2379 * This function issues commands to standard SATA Sxxx
2380 * PHY registers, to wake up the phy (and device), and
2381 * clear any reset condition.
1da177e4
LT
2382 *
2383 * LOCKING:
0cba632b 2384 * PCI/etc. bus probe sem.
1da177e4
LT
2385 *
2386 */
2387void __sata_phy_reset(struct ata_port *ap)
2388{
936fd732 2389 struct ata_link *link = &ap->link;
1da177e4 2390 unsigned long timeout = jiffies + (HZ * 5);
936fd732 2391 u32 sstatus;
1da177e4
LT
2392
2393 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e 2394 /* issue phy wake/reset */
936fd732 2395 sata_scr_write_flush(link, SCR_CONTROL, 0x301);
62ba2841
TH
2396 /* Couldn't find anything in SATA I/II specs, but
2397 * AHCI-1.1 10.4.2 says at least 1 ms. */
2398 mdelay(1);
1da177e4 2399 }
81952c54 2400 /* phy wake/clear reset */
936fd732 2401 sata_scr_write_flush(link, SCR_CONTROL, 0x300);
1da177e4
LT
2402
2403 /* wait for phy to become ready, if necessary */
2404 do {
2405 msleep(200);
936fd732 2406 sata_scr_read(link, SCR_STATUS, &sstatus);
1da177e4
LT
2407 if ((sstatus & 0xf) != 1)
2408 break;
2409 } while (time_before(jiffies, timeout));
2410
3be680b7 2411 /* print link status */
936fd732 2412 sata_print_link_status(link);
656563e3 2413
3be680b7 2414 /* TODO: phy layer with polling, timeouts, etc. */
936fd732 2415 if (!ata_link_offline(link))
1da177e4 2416 ata_port_probe(ap);
3be680b7 2417 else
1da177e4 2418 ata_port_disable(ap);
1da177e4 2419
198e0fed 2420 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2421 return;
2422
2423 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2424 ata_port_disable(ap);
2425 return;
2426 }
2427
2428 ap->cbl = ATA_CBL_SATA;
2429}
2430
2431/**
780a87f7
JG
2432 * sata_phy_reset - Reset SATA bus.
2433 * @ap: SATA port associated with target SATA PHY.
1da177e4 2434 *
780a87f7
JG
2435 * This function resets the SATA bus, and then probes
2436 * the bus for devices.
1da177e4
LT
2437 *
2438 * LOCKING:
0cba632b 2439 * PCI/etc. bus probe sem.
1da177e4
LT
2440 *
2441 */
2442void sata_phy_reset(struct ata_port *ap)
2443{
2444 __sata_phy_reset(ap);
198e0fed 2445 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2446 return;
2447 ata_bus_reset(ap);
2448}
2449
ebdfca6e
AC
2450/**
2451 * ata_dev_pair - return other device on cable
ebdfca6e
AC
2452 * @adev: device
2453 *
2454 * Obtain the other device on the same cable, or if none is
2455 * present NULL is returned
2456 */
2e9edbf8 2457
3373efd8 2458struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2459{
9af5c9c9
TH
2460 struct ata_link *link = adev->link;
2461 struct ata_device *pair = &link->device[1 - adev->devno];
e1211e3f 2462 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2463 return NULL;
2464 return pair;
2465}
2466
1da177e4 2467/**
780a87f7
JG
2468 * ata_port_disable - Disable port.
2469 * @ap: Port to be disabled.
1da177e4 2470 *
780a87f7
JG
2471 * Modify @ap data structure such that the system
2472 * thinks that the entire port is disabled, and should
2473 * never attempt to probe or communicate with devices
2474 * on this port.
2475 *
cca3974e 2476 * LOCKING: host lock, or some other form of
780a87f7 2477 * serialization.
1da177e4
LT
2478 */
2479
2480void ata_port_disable(struct ata_port *ap)
2481{
9af5c9c9
TH
2482 ap->link.device[0].class = ATA_DEV_NONE;
2483 ap->link.device[1].class = ATA_DEV_NONE;
198e0fed 2484 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
2485}
2486
1c3fae4d 2487/**
3c567b7d 2488 * sata_down_spd_limit - adjust SATA spd limit downward
936fd732 2489 * @link: Link to adjust SATA spd limit for
1c3fae4d 2490 *
936fd732 2491 * Adjust SATA spd limit of @link downward. Note that this
1c3fae4d 2492 * function only adjusts the limit. The change must be applied
3c567b7d 2493 * using sata_set_spd().
1c3fae4d
TH
2494 *
2495 * LOCKING:
2496 * Inherited from caller.
2497 *
2498 * RETURNS:
2499 * 0 on success, negative errno on failure
2500 */
936fd732 2501int sata_down_spd_limit(struct ata_link *link)
1c3fae4d 2502{
81952c54
TH
2503 u32 sstatus, spd, mask;
2504 int rc, highbit;
1c3fae4d 2505
936fd732 2506 if (!sata_scr_valid(link))
008a7896
TH
2507 return -EOPNOTSUPP;
2508
2509 /* If SCR can be read, use it to determine the current SPD.
936fd732 2510 * If not, use cached value in link->sata_spd.
008a7896 2511 */
936fd732 2512 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
008a7896
TH
2513 if (rc == 0)
2514 spd = (sstatus >> 4) & 0xf;
2515 else
936fd732 2516 spd = link->sata_spd;
1c3fae4d 2517
936fd732 2518 mask = link->sata_spd_limit;
1c3fae4d
TH
2519 if (mask <= 1)
2520 return -EINVAL;
008a7896
TH
2521
2522 /* unconditionally mask off the highest bit */
1c3fae4d
TH
2523 highbit = fls(mask) - 1;
2524 mask &= ~(1 << highbit);
2525
008a7896
TH
2526 /* Mask off all speeds higher than or equal to the current
2527 * one. Force 1.5Gbps if current SPD is not available.
2528 */
2529 if (spd > 1)
2530 mask &= (1 << (spd - 1)) - 1;
2531 else
2532 mask &= 1;
2533
2534 /* were we already at the bottom? */
1c3fae4d
TH
2535 if (!mask)
2536 return -EINVAL;
2537
936fd732 2538 link->sata_spd_limit = mask;
1c3fae4d 2539
936fd732 2540 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
f15a1daf 2541 sata_spd_string(fls(mask)));
1c3fae4d
TH
2542
2543 return 0;
2544}
2545
936fd732 2546static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
1c3fae4d
TH
2547{
2548 u32 spd, limit;
2549
936fd732 2550 if (link->sata_spd_limit == UINT_MAX)
1c3fae4d
TH
2551 limit = 0;
2552 else
936fd732 2553 limit = fls(link->sata_spd_limit);
1c3fae4d
TH
2554
2555 spd = (*scontrol >> 4) & 0xf;
2556 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2557
2558 return spd != limit;
2559}
2560
2561/**
3c567b7d 2562 * sata_set_spd_needed - is SATA spd configuration needed
936fd732 2563 * @link: Link in question
1c3fae4d
TH
2564 *
2565 * Test whether the spd limit in SControl matches
936fd732 2566 * @link->sata_spd_limit. This function is used to determine
1c3fae4d
TH
2567 * whether hardreset is necessary to apply SATA spd
2568 * configuration.
2569 *
2570 * LOCKING:
2571 * Inherited from caller.
2572 *
2573 * RETURNS:
2574 * 1 if SATA spd configuration is needed, 0 otherwise.
2575 */
936fd732 2576int sata_set_spd_needed(struct ata_link *link)
1c3fae4d
TH
2577{
2578 u32 scontrol;
2579
936fd732 2580 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
1c3fae4d
TH
2581 return 0;
2582
936fd732 2583 return __sata_set_spd_needed(link, &scontrol);
1c3fae4d
TH
2584}
2585
2586/**
3c567b7d 2587 * sata_set_spd - set SATA spd according to spd limit
936fd732 2588 * @link: Link to set SATA spd for
1c3fae4d 2589 *
936fd732 2590 * Set SATA spd of @link according to sata_spd_limit.
1c3fae4d
TH
2591 *
2592 * LOCKING:
2593 * Inherited from caller.
2594 *
2595 * RETURNS:
2596 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 2597 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 2598 */
936fd732 2599int sata_set_spd(struct ata_link *link)
1c3fae4d
TH
2600{
2601 u32 scontrol;
81952c54 2602 int rc;
1c3fae4d 2603
936fd732 2604 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 2605 return rc;
1c3fae4d 2606
936fd732 2607 if (!__sata_set_spd_needed(link, &scontrol))
1c3fae4d
TH
2608 return 0;
2609
936fd732 2610 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54
TH
2611 return rc;
2612
1c3fae4d
TH
2613 return 1;
2614}
2615
452503f9
AC
2616/*
2617 * This mode timing computation functionality is ported over from
2618 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2619 */
2620/*
b352e57d 2621 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 2622 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
2623 * for UDMA6, which is currently supported only by Maxtor drives.
2624 *
2625 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
2626 */
2627
2628static const struct ata_timing ata_timing[] = {
2629
2630 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2631 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2632 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2633 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2634
b352e57d
AC
2635 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2636 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
452503f9
AC
2637 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2638 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2639 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2640
2641/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 2642
452503f9
AC
2643 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2644 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2645 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 2646
452503f9
AC
2647 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2648 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2649 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2650
b352e57d
AC
2651 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2652 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
452503f9
AC
2653 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2654 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2655
2656 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2657 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2658 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2659
2660/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2661
2662 { 0xFF }
2663};
2664
2dcb407e
JG
2665#define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2666#define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
452503f9
AC
2667
2668static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2669{
2670 q->setup = EZ(t->setup * 1000, T);
2671 q->act8b = EZ(t->act8b * 1000, T);
2672 q->rec8b = EZ(t->rec8b * 1000, T);
2673 q->cyc8b = EZ(t->cyc8b * 1000, T);
2674 q->active = EZ(t->active * 1000, T);
2675 q->recover = EZ(t->recover * 1000, T);
2676 q->cycle = EZ(t->cycle * 1000, T);
2677 q->udma = EZ(t->udma * 1000, UT);
2678}
2679
2680void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2681 struct ata_timing *m, unsigned int what)
2682{
2683 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2684 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2685 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2686 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2687 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2688 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2689 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2690 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2691}
2692
2dcb407e 2693static const struct ata_timing *ata_timing_find_mode(unsigned short speed)
452503f9
AC
2694{
2695 const struct ata_timing *t;
2696
2697 for (t = ata_timing; t->mode != speed; t++)
91190758 2698 if (t->mode == 0xFF)
452503f9 2699 return NULL;
2e9edbf8 2700 return t;
452503f9
AC
2701}
2702
2703int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2704 struct ata_timing *t, int T, int UT)
2705{
2706 const struct ata_timing *s;
2707 struct ata_timing p;
2708
2709 /*
2e9edbf8 2710 * Find the mode.
75b1f2f8 2711 */
452503f9
AC
2712
2713 if (!(s = ata_timing_find_mode(speed)))
2714 return -EINVAL;
2715
75b1f2f8
AL
2716 memcpy(t, s, sizeof(*s));
2717
452503f9
AC
2718 /*
2719 * If the drive is an EIDE drive, it can tell us it needs extended
2720 * PIO/MW_DMA cycle timing.
2721 */
2722
2723 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2724 memset(&p, 0, sizeof(p));
2dcb407e 2725 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
452503f9
AC
2726 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2727 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2dcb407e 2728 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
452503f9
AC
2729 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2730 }
2731 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2732 }
2733
2734 /*
2735 * Convert the timing to bus clock counts.
2736 */
2737
75b1f2f8 2738 ata_timing_quantize(t, t, T, UT);
452503f9
AC
2739
2740 /*
c893a3ae
RD
2741 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2742 * S.M.A.R.T * and some other commands. We have to ensure that the
2743 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
2744 */
2745
fd3367af 2746 if (speed > XFER_PIO_6) {
452503f9
AC
2747 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2748 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2749 }
2750
2751 /*
c893a3ae 2752 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
2753 */
2754
2755 if (t->act8b + t->rec8b < t->cyc8b) {
2756 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2757 t->rec8b = t->cyc8b - t->act8b;
2758 }
2759
2760 if (t->active + t->recover < t->cycle) {
2761 t->active += (t->cycle - (t->active + t->recover)) / 2;
2762 t->recover = t->cycle - t->active;
2763 }
a617c09f 2764
4f701d1e
AC
2765 /* In a few cases quantisation may produce enough errors to
2766 leave t->cycle too low for the sum of active and recovery
2767 if so we must correct this */
2768 if (t->active + t->recover > t->cycle)
2769 t->cycle = t->active + t->recover;
452503f9
AC
2770
2771 return 0;
2772}
2773
cf176e1a
TH
2774/**
2775 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a 2776 * @dev: Device to adjust xfer masks
458337db 2777 * @sel: ATA_DNXFER_* selector
cf176e1a
TH
2778 *
2779 * Adjust xfer masks of @dev downward. Note that this function
2780 * does not apply the change. Invoking ata_set_mode() afterwards
2781 * will apply the limit.
2782 *
2783 * LOCKING:
2784 * Inherited from caller.
2785 *
2786 * RETURNS:
2787 * 0 on success, negative errno on failure
2788 */
458337db 2789int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
cf176e1a 2790{
458337db
TH
2791 char buf[32];
2792 unsigned int orig_mask, xfer_mask;
2793 unsigned int pio_mask, mwdma_mask, udma_mask;
2794 int quiet, highbit;
cf176e1a 2795
458337db
TH
2796 quiet = !!(sel & ATA_DNXFER_QUIET);
2797 sel &= ~ATA_DNXFER_QUIET;
cf176e1a 2798
458337db
TH
2799 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2800 dev->mwdma_mask,
2801 dev->udma_mask);
2802 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
cf176e1a 2803
458337db
TH
2804 switch (sel) {
2805 case ATA_DNXFER_PIO:
2806 highbit = fls(pio_mask) - 1;
2807 pio_mask &= ~(1 << highbit);
2808 break;
2809
2810 case ATA_DNXFER_DMA:
2811 if (udma_mask) {
2812 highbit = fls(udma_mask) - 1;
2813 udma_mask &= ~(1 << highbit);
2814 if (!udma_mask)
2815 return -ENOENT;
2816 } else if (mwdma_mask) {
2817 highbit = fls(mwdma_mask) - 1;
2818 mwdma_mask &= ~(1 << highbit);
2819 if (!mwdma_mask)
2820 return -ENOENT;
2821 }
2822 break;
2823
2824 case ATA_DNXFER_40C:
2825 udma_mask &= ATA_UDMA_MASK_40C;
2826 break;
2827
2828 case ATA_DNXFER_FORCE_PIO0:
2829 pio_mask &= 1;
2830 case ATA_DNXFER_FORCE_PIO:
2831 mwdma_mask = 0;
2832 udma_mask = 0;
2833 break;
2834
458337db
TH
2835 default:
2836 BUG();
2837 }
2838
2839 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2840
2841 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2842 return -ENOENT;
2843
2844 if (!quiet) {
2845 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2846 snprintf(buf, sizeof(buf), "%s:%s",
2847 ata_mode_string(xfer_mask),
2848 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2849 else
2850 snprintf(buf, sizeof(buf), "%s",
2851 ata_mode_string(xfer_mask));
2852
2853 ata_dev_printk(dev, KERN_WARNING,
2854 "limiting speed to %s\n", buf);
2855 }
cf176e1a
TH
2856
2857 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2858 &dev->udma_mask);
2859
cf176e1a 2860 return 0;
cf176e1a
TH
2861}
2862
3373efd8 2863static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 2864{
9af5c9c9 2865 struct ata_eh_context *ehc = &dev->link->eh_context;
83206a29
TH
2866 unsigned int err_mask;
2867 int rc;
1da177e4 2868
e8384607 2869 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
2870 if (dev->xfer_shift == ATA_SHIFT_PIO)
2871 dev->flags |= ATA_DFLAG_PIO;
2872
3373efd8 2873 err_mask = ata_dev_set_xfermode(dev);
2dcb407e 2874
11750a40
A
2875 /* Old CFA may refuse this command, which is just fine */
2876 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2dcb407e
JG
2877 err_mask &= ~AC_ERR_DEV;
2878
0bc2a79a
AC
2879 /* Some very old devices and some bad newer ones fail any kind of
2880 SET_XFERMODE request but support PIO0-2 timings and no IORDY */
2881 if (dev->xfer_shift == ATA_SHIFT_PIO && !ata_id_has_iordy(dev->id) &&
2882 dev->pio_mode <= XFER_PIO_2)
2883 err_mask &= ~AC_ERR_DEV;
2dcb407e 2884
3acaf94b
AC
2885 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
2886 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
2887 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
2888 dev->dma_mode == XFER_MW_DMA_0 &&
2889 (dev->id[63] >> 8) & 1)
2890 err_mask &= ~AC_ERR_DEV;
2891
83206a29 2892 if (err_mask) {
f15a1daf
TH
2893 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2894 "(err_mask=0x%x)\n", err_mask);
83206a29
TH
2895 return -EIO;
2896 }
1da177e4 2897
baa1e78a 2898 ehc->i.flags |= ATA_EHI_POST_SETMODE;
422c9daa 2899 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
baa1e78a 2900 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
5eb45c02 2901 if (rc)
83206a29 2902 return rc;
48a8a14f 2903
23e71c3d
TH
2904 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2905 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 2906
f15a1daf
TH
2907 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2908 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 2909 return 0;
1da177e4
LT
2910}
2911
1da177e4 2912/**
04351821 2913 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
0260731f 2914 * @link: link on which timings will be programmed
e82cbdb9 2915 * @r_failed_dev: out paramter for failed device
1da177e4 2916 *
04351821
A
2917 * Standard implementation of the function used to tune and set
2918 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2919 * ata_dev_set_mode() fails, pointer to the failing device is
e82cbdb9 2920 * returned in @r_failed_dev.
780a87f7 2921 *
1da177e4 2922 * LOCKING:
0cba632b 2923 * PCI/etc. bus probe sem.
e82cbdb9
TH
2924 *
2925 * RETURNS:
2926 * 0 on success, negative errno otherwise
1da177e4 2927 */
04351821 2928
0260731f 2929int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
1da177e4 2930{
0260731f 2931 struct ata_port *ap = link->ap;
e8e0619f 2932 struct ata_device *dev;
f58229f8 2933 int rc = 0, used_dma = 0, found = 0;
3adcebb2 2934
a6d5a51c 2935 /* step 1: calculate xfer_mask */
f58229f8 2936 ata_link_for_each_dev(dev, link) {
acf356b1 2937 unsigned int pio_mask, dma_mask;
b3a70601 2938 unsigned int mode_mask;
a6d5a51c 2939
e1211e3f 2940 if (!ata_dev_enabled(dev))
a6d5a51c
TH
2941 continue;
2942
b3a70601
AC
2943 mode_mask = ATA_DMA_MASK_ATA;
2944 if (dev->class == ATA_DEV_ATAPI)
2945 mode_mask = ATA_DMA_MASK_ATAPI;
2946 else if (ata_id_is_cfa(dev->id))
2947 mode_mask = ATA_DMA_MASK_CFA;
2948
3373efd8 2949 ata_dev_xfermask(dev);
1da177e4 2950
acf356b1
TH
2951 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2952 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
b3a70601
AC
2953
2954 if (libata_dma_mask & mode_mask)
2955 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2956 else
2957 dma_mask = 0;
2958
acf356b1
TH
2959 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2960 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 2961
4f65977d 2962 found = 1;
5444a6f4
AC
2963 if (dev->dma_mode)
2964 used_dma = 1;
a6d5a51c 2965 }
4f65977d 2966 if (!found)
e82cbdb9 2967 goto out;
a6d5a51c
TH
2968
2969 /* step 2: always set host PIO timings */
f58229f8 2970 ata_link_for_each_dev(dev, link) {
e8e0619f
TH
2971 if (!ata_dev_enabled(dev))
2972 continue;
2973
2974 if (!dev->pio_mode) {
f15a1daf 2975 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 2976 rc = -EINVAL;
e82cbdb9 2977 goto out;
e8e0619f
TH
2978 }
2979
2980 dev->xfer_mode = dev->pio_mode;
2981 dev->xfer_shift = ATA_SHIFT_PIO;
2982 if (ap->ops->set_piomode)
2983 ap->ops->set_piomode(ap, dev);
2984 }
1da177e4 2985
a6d5a51c 2986 /* step 3: set host DMA timings */
f58229f8 2987 ata_link_for_each_dev(dev, link) {
e8e0619f
TH
2988 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2989 continue;
2990
2991 dev->xfer_mode = dev->dma_mode;
2992 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2993 if (ap->ops->set_dmamode)
2994 ap->ops->set_dmamode(ap, dev);
2995 }
1da177e4
LT
2996
2997 /* step 4: update devices' xfer mode */
f58229f8 2998 ata_link_for_each_dev(dev, link) {
18d90deb 2999 /* don't update suspended devices' xfer mode */
9666f400 3000 if (!ata_dev_enabled(dev))
83206a29
TH
3001 continue;
3002
3373efd8 3003 rc = ata_dev_set_mode(dev);
5bbc53f4 3004 if (rc)
e82cbdb9 3005 goto out;
83206a29 3006 }
1da177e4 3007
e8e0619f
TH
3008 /* Record simplex status. If we selected DMA then the other
3009 * host channels are not permitted to do so.
5444a6f4 3010 */
cca3974e 3011 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
032af1ce 3012 ap->host->simplex_claimed = ap;
5444a6f4 3013
e82cbdb9
TH
3014 out:
3015 if (rc)
3016 *r_failed_dev = dev;
3017 return rc;
1da177e4
LT
3018}
3019
04351821
A
3020/**
3021 * ata_set_mode - Program timings and issue SET FEATURES - XFER
0260731f 3022 * @link: link on which timings will be programmed
04351821
A
3023 * @r_failed_dev: out paramter for failed device
3024 *
3025 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3026 * ata_set_mode() fails, pointer to the failing device is
3027 * returned in @r_failed_dev.
3028 *
3029 * LOCKING:
3030 * PCI/etc. bus probe sem.
3031 *
3032 * RETURNS:
3033 * 0 on success, negative errno otherwise
3034 */
0260731f 3035int ata_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
04351821 3036{
0260731f
TH
3037 struct ata_port *ap = link->ap;
3038
04351821
A
3039 /* has private set_mode? */
3040 if (ap->ops->set_mode)
0260731f
TH
3041 return ap->ops->set_mode(link, r_failed_dev);
3042 return ata_do_set_mode(link, r_failed_dev);
04351821
A
3043}
3044
1fdffbce
JG
3045/**
3046 * ata_tf_to_host - issue ATA taskfile to host controller
3047 * @ap: port to which command is being issued
3048 * @tf: ATA taskfile register set
3049 *
3050 * Issues ATA taskfile register set to ATA host controller,
3051 * with proper synchronization with interrupt handler and
3052 * other threads.
3053 *
3054 * LOCKING:
cca3974e 3055 * spin_lock_irqsave(host lock)
1fdffbce
JG
3056 */
3057
3058static inline void ata_tf_to_host(struct ata_port *ap,
3059 const struct ata_taskfile *tf)
3060{
3061 ap->ops->tf_load(ap, tf);
3062 ap->ops->exec_command(ap, tf);
3063}
3064
1da177e4
LT
3065/**
3066 * ata_busy_sleep - sleep until BSY clears, or timeout
3067 * @ap: port containing status register to be polled
3068 * @tmout_pat: impatience timeout
3069 * @tmout: overall timeout
3070 *
780a87f7
JG
3071 * Sleep until ATA Status register bit BSY clears,
3072 * or a timeout occurs.
3073 *
d1adc1bb
TH
3074 * LOCKING:
3075 * Kernel thread context (may sleep).
3076 *
3077 * RETURNS:
3078 * 0 on success, -errno otherwise.
1da177e4 3079 */
d1adc1bb
TH
3080int ata_busy_sleep(struct ata_port *ap,
3081 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
3082{
3083 unsigned long timer_start, timeout;
3084 u8 status;
3085
3086 status = ata_busy_wait(ap, ATA_BUSY, 300);
3087 timer_start = jiffies;
3088 timeout = timer_start + tmout_pat;
d1adc1bb
TH
3089 while (status != 0xff && (status & ATA_BUSY) &&
3090 time_before(jiffies, timeout)) {
1da177e4
LT
3091 msleep(50);
3092 status = ata_busy_wait(ap, ATA_BUSY, 3);
3093 }
3094
d1adc1bb 3095 if (status != 0xff && (status & ATA_BUSY))
f15a1daf 3096 ata_port_printk(ap, KERN_WARNING,
35aa7a43
JG
3097 "port is slow to respond, please be patient "
3098 "(Status 0x%x)\n", status);
1da177e4
LT
3099
3100 timeout = timer_start + tmout;
d1adc1bb
TH
3101 while (status != 0xff && (status & ATA_BUSY) &&
3102 time_before(jiffies, timeout)) {
1da177e4
LT
3103 msleep(50);
3104 status = ata_chk_status(ap);
3105 }
3106
d1adc1bb
TH
3107 if (status == 0xff)
3108 return -ENODEV;
3109
1da177e4 3110 if (status & ATA_BUSY) {
f15a1daf 3111 ata_port_printk(ap, KERN_ERR, "port failed to respond "
35aa7a43
JG
3112 "(%lu secs, Status 0x%x)\n",
3113 tmout / HZ, status);
d1adc1bb 3114 return -EBUSY;
1da177e4
LT
3115 }
3116
3117 return 0;
3118}
3119
88ff6eaf
TH
3120/**
3121 * ata_wait_after_reset - wait before checking status after reset
3122 * @ap: port containing status register to be polled
3123 * @deadline: deadline jiffies for the operation
3124 *
3125 * After reset, we need to pause a while before reading status.
3126 * Also, certain combination of controller and device report 0xff
3127 * for some duration (e.g. until SATA PHY is up and running)
3128 * which is interpreted as empty port in ATA world. This
3129 * function also waits for such devices to get out of 0xff
3130 * status.
3131 *
3132 * LOCKING:
3133 * Kernel thread context (may sleep).
3134 */
3135void ata_wait_after_reset(struct ata_port *ap, unsigned long deadline)
3136{
3137 unsigned long until = jiffies + ATA_TMOUT_FF_WAIT;
3138
3139 if (time_before(until, deadline))
3140 deadline = until;
3141
3142 /* Spec mandates ">= 2ms" before checking status. We wait
3143 * 150ms, because that was the magic delay used for ATAPI
3144 * devices in Hale Landis's ATADRVR, for the period of time
3145 * between when the ATA command register is written, and then
3146 * status is checked. Because waiting for "a while" before
3147 * checking status is fine, post SRST, we perform this magic
3148 * delay here as well.
3149 *
3150 * Old drivers/ide uses the 2mS rule and then waits for ready.
3151 */
3152 msleep(150);
3153
3154 /* Wait for 0xff to clear. Some SATA devices take a long time
3155 * to clear 0xff after reset. For example, HHD424020F7SV00
3156 * iVDR needs >= 800ms while. Quantum GoVault needs even more
3157 * than that.
3158 */
3159 while (1) {
3160 u8 status = ata_chk_status(ap);
3161
3162 if (status != 0xff || time_after(jiffies, deadline))
3163 return;
3164
3165 msleep(50);
3166 }
3167}
3168
d4b2bab4
TH
3169/**
3170 * ata_wait_ready - sleep until BSY clears, or timeout
3171 * @ap: port containing status register to be polled
3172 * @deadline: deadline jiffies for the operation
3173 *
3174 * Sleep until ATA Status register bit BSY clears, or timeout
3175 * occurs.
3176 *
3177 * LOCKING:
3178 * Kernel thread context (may sleep).
3179 *
3180 * RETURNS:
3181 * 0 on success, -errno otherwise.
3182 */
3183int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
3184{
3185 unsigned long start = jiffies;
3186 int warned = 0;
3187
3188 while (1) {
3189 u8 status = ata_chk_status(ap);
3190 unsigned long now = jiffies;
3191
3192 if (!(status & ATA_BUSY))
3193 return 0;
936fd732 3194 if (!ata_link_online(&ap->link) && status == 0xff)
d4b2bab4
TH
3195 return -ENODEV;
3196 if (time_after(now, deadline))
3197 return -EBUSY;
3198
3199 if (!warned && time_after(now, start + 5 * HZ) &&
3200 (deadline - now > 3 * HZ)) {
3201 ata_port_printk(ap, KERN_WARNING,
3202 "port is slow to respond, please be patient "
3203 "(Status 0x%x)\n", status);
3204 warned = 1;
3205 }
3206
3207 msleep(50);
3208 }
3209}
3210
3211static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3212 unsigned long deadline)
1da177e4
LT
3213{
3214 struct ata_ioports *ioaddr = &ap->ioaddr;
3215 unsigned int dev0 = devmask & (1 << 0);
3216 unsigned int dev1 = devmask & (1 << 1);
9b89391c 3217 int rc, ret = 0;
1da177e4
LT
3218
3219 /* if device 0 was found in ata_devchk, wait for its
3220 * BSY bit to clear
3221 */
d4b2bab4
TH
3222 if (dev0) {
3223 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3224 if (rc) {
3225 if (rc != -ENODEV)
3226 return rc;
3227 ret = rc;
3228 }
d4b2bab4 3229 }
1da177e4 3230
e141d999
TH
3231 /* if device 1 was found in ata_devchk, wait for register
3232 * access briefly, then wait for BSY to clear.
1da177e4 3233 */
e141d999
TH
3234 if (dev1) {
3235 int i;
1da177e4
LT
3236
3237 ap->ops->dev_select(ap, 1);
e141d999
TH
3238
3239 /* Wait for register access. Some ATAPI devices fail
3240 * to set nsect/lbal after reset, so don't waste too
3241 * much time on it. We're gonna wait for !BSY anyway.
3242 */
3243 for (i = 0; i < 2; i++) {
3244 u8 nsect, lbal;
3245
3246 nsect = ioread8(ioaddr->nsect_addr);
3247 lbal = ioread8(ioaddr->lbal_addr);
3248 if ((nsect == 1) && (lbal == 1))
3249 break;
3250 msleep(50); /* give drive a breather */
3251 }
3252
d4b2bab4 3253 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3254 if (rc) {
3255 if (rc != -ENODEV)
3256 return rc;
3257 ret = rc;
3258 }
d4b2bab4 3259 }
1da177e4
LT
3260
3261 /* is all this really necessary? */
3262 ap->ops->dev_select(ap, 0);
3263 if (dev1)
3264 ap->ops->dev_select(ap, 1);
3265 if (dev0)
3266 ap->ops->dev_select(ap, 0);
d4b2bab4 3267
9b89391c 3268 return ret;
1da177e4
LT
3269}
3270
d4b2bab4
TH
3271static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3272 unsigned long deadline)
1da177e4
LT
3273{
3274 struct ata_ioports *ioaddr = &ap->ioaddr;
681c80b5
AC
3275 struct ata_device *dev;
3276 int i = 0;
1da177e4 3277
44877b4e 3278 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1da177e4
LT
3279
3280 /* software reset. causes dev0 to be selected */
0d5ff566
TH
3281 iowrite8(ap->ctl, ioaddr->ctl_addr);
3282 udelay(20); /* FIXME: flush */
3283 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3284 udelay(20); /* FIXME: flush */
3285 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4 3286
681c80b5
AC
3287 /* If we issued an SRST then an ATA drive (not ATAPI)
3288 * may have changed configuration and be in PIO0 timing. If
3289 * we did a hard reset (or are coming from power on) this is
3290 * true for ATA or ATAPI. Until we've set a suitable controller
3291 * mode we should not touch the bus as we may be talking too fast.
3292 */
3293
3294 ata_link_for_each_dev(dev, &ap->link)
3295 dev->pio_mode = XFER_PIO_0;
3296
3297 /* If the controller has a pio mode setup function then use
3298 it to set the chipset to rights. Don't touch the DMA setup
3299 as that will be dealt with when revalidating */
3300 if (ap->ops->set_piomode) {
3301 ata_link_for_each_dev(dev, &ap->link)
3302 if (devmask & (1 << i++))
3303 ap->ops->set_piomode(ap, dev);
3304 }
3305
88ff6eaf
TH
3306 /* wait a while before checking status */
3307 ata_wait_after_reset(ap, deadline);
1da177e4 3308
2e9edbf8 3309 /* Before we perform post reset processing we want to see if
298a41ca
TH
3310 * the bus shows 0xFF because the odd clown forgets the D7
3311 * pulldown resistor.
3312 */
150981b0 3313 if (ata_chk_status(ap) == 0xFF)
9b89391c 3314 return -ENODEV;
09c7ad79 3315
d4b2bab4 3316 return ata_bus_post_reset(ap, devmask, deadline);
1da177e4
LT
3317}
3318
3319/**
3320 * ata_bus_reset - reset host port and associated ATA channel
3321 * @ap: port to reset
3322 *
3323 * This is typically the first time we actually start issuing
3324 * commands to the ATA channel. We wait for BSY to clear, then
3325 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3326 * result. Determine what devices, if any, are on the channel
3327 * by looking at the device 0/1 error register. Look at the signature
3328 * stored in each device's taskfile registers, to determine if
3329 * the device is ATA or ATAPI.
3330 *
3331 * LOCKING:
0cba632b 3332 * PCI/etc. bus probe sem.
cca3974e 3333 * Obtains host lock.
1da177e4
LT
3334 *
3335 * SIDE EFFECTS:
198e0fed 3336 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
3337 */
3338
3339void ata_bus_reset(struct ata_port *ap)
3340{
9af5c9c9 3341 struct ata_device *device = ap->link.device;
1da177e4
LT
3342 struct ata_ioports *ioaddr = &ap->ioaddr;
3343 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3344 u8 err;
aec5c3c1 3345 unsigned int dev0, dev1 = 0, devmask = 0;
9b89391c 3346 int rc;
1da177e4 3347
44877b4e 3348 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
1da177e4
LT
3349
3350 /* determine if device 0/1 are present */
3351 if (ap->flags & ATA_FLAG_SATA_RESET)
3352 dev0 = 1;
3353 else {
3354 dev0 = ata_devchk(ap, 0);
3355 if (slave_possible)
3356 dev1 = ata_devchk(ap, 1);
3357 }
3358
3359 if (dev0)
3360 devmask |= (1 << 0);
3361 if (dev1)
3362 devmask |= (1 << 1);
3363
3364 /* select device 0 again */
3365 ap->ops->dev_select(ap, 0);
3366
3367 /* issue bus reset */
9b89391c
TH
3368 if (ap->flags & ATA_FLAG_SRST) {
3369 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3370 if (rc && rc != -ENODEV)
aec5c3c1 3371 goto err_out;
9b89391c 3372 }
1da177e4
LT
3373
3374 /*
3375 * determine by signature whether we have ATA or ATAPI devices
3376 */
3f19859e 3377 device[0].class = ata_dev_try_classify(&device[0], dev0, &err);
1da177e4 3378 if ((slave_possible) && (err != 0x81))
3f19859e 3379 device[1].class = ata_dev_try_classify(&device[1], dev1, &err);
1da177e4 3380
1da177e4 3381 /* is double-select really necessary? */
9af5c9c9 3382 if (device[1].class != ATA_DEV_NONE)
1da177e4 3383 ap->ops->dev_select(ap, 1);
9af5c9c9 3384 if (device[0].class != ATA_DEV_NONE)
1da177e4
LT
3385 ap->ops->dev_select(ap, 0);
3386
3387 /* if no devices were detected, disable this port */
9af5c9c9
TH
3388 if ((device[0].class == ATA_DEV_NONE) &&
3389 (device[1].class == ATA_DEV_NONE))
1da177e4
LT
3390 goto err_out;
3391
3392 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3393 /* set up device control for ATA_FLAG_SATA_RESET */
0d5ff566 3394 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
3395 }
3396
3397 DPRINTK("EXIT\n");
3398 return;
3399
3400err_out:
f15a1daf 3401 ata_port_printk(ap, KERN_ERR, "disabling port\n");
ac8869d5 3402 ata_port_disable(ap);
1da177e4
LT
3403
3404 DPRINTK("EXIT\n");
3405}
3406
d7bb4cc7 3407/**
936fd732
TH
3408 * sata_link_debounce - debounce SATA phy status
3409 * @link: ATA link to debounce SATA phy status for
d7bb4cc7 3410 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3411 * @deadline: deadline jiffies for the operation
d7bb4cc7 3412 *
936fd732 3413* Make sure SStatus of @link reaches stable state, determined by
d7bb4cc7
TH
3414 * holding the same value where DET is not 1 for @duration polled
3415 * every @interval, before @timeout. Timeout constraints the
d4b2bab4
TH
3416 * beginning of the stable state. Because DET gets stuck at 1 on
3417 * some controllers after hot unplugging, this functions waits
d7bb4cc7
TH
3418 * until timeout then returns 0 if DET is stable at 1.
3419 *
d4b2bab4
TH
3420 * @timeout is further limited by @deadline. The sooner of the
3421 * two is used.
3422 *
d7bb4cc7
TH
3423 * LOCKING:
3424 * Kernel thread context (may sleep)
3425 *
3426 * RETURNS:
3427 * 0 on success, -errno on failure.
3428 */
936fd732
TH
3429int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3430 unsigned long deadline)
7a7921e8 3431{
d7bb4cc7 3432 unsigned long interval_msec = params[0];
d4b2bab4
TH
3433 unsigned long duration = msecs_to_jiffies(params[1]);
3434 unsigned long last_jiffies, t;
d7bb4cc7
TH
3435 u32 last, cur;
3436 int rc;
3437
d4b2bab4
TH
3438 t = jiffies + msecs_to_jiffies(params[2]);
3439 if (time_before(t, deadline))
3440 deadline = t;
3441
936fd732 3442 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3443 return rc;
3444 cur &= 0xf;
3445
3446 last = cur;
3447 last_jiffies = jiffies;
3448
3449 while (1) {
3450 msleep(interval_msec);
936fd732 3451 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3452 return rc;
3453 cur &= 0xf;
3454
3455 /* DET stable? */
3456 if (cur == last) {
d4b2bab4 3457 if (cur == 1 && time_before(jiffies, deadline))
d7bb4cc7
TH
3458 continue;
3459 if (time_after(jiffies, last_jiffies + duration))
3460 return 0;
3461 continue;
3462 }
3463
3464 /* unstable, start over */
3465 last = cur;
3466 last_jiffies = jiffies;
3467
f1545154
TH
3468 /* Check deadline. If debouncing failed, return
3469 * -EPIPE to tell upper layer to lower link speed.
3470 */
d4b2bab4 3471 if (time_after(jiffies, deadline))
f1545154 3472 return -EPIPE;
d7bb4cc7
TH
3473 }
3474}
3475
3476/**
936fd732
TH
3477 * sata_link_resume - resume SATA link
3478 * @link: ATA link to resume SATA
d7bb4cc7 3479 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3480 * @deadline: deadline jiffies for the operation
d7bb4cc7 3481 *
936fd732 3482 * Resume SATA phy @link and debounce it.
d7bb4cc7
TH
3483 *
3484 * LOCKING:
3485 * Kernel thread context (may sleep)
3486 *
3487 * RETURNS:
3488 * 0 on success, -errno on failure.
3489 */
936fd732
TH
3490int sata_link_resume(struct ata_link *link, const unsigned long *params,
3491 unsigned long deadline)
d7bb4cc7
TH
3492{
3493 u32 scontrol;
81952c54
TH
3494 int rc;
3495
936fd732 3496 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 3497 return rc;
7a7921e8 3498
852ee16a 3499 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54 3500
936fd732 3501 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54 3502 return rc;
7a7921e8 3503
d7bb4cc7
TH
3504 /* Some PHYs react badly if SStatus is pounded immediately
3505 * after resuming. Delay 200ms before debouncing.
3506 */
3507 msleep(200);
7a7921e8 3508
936fd732 3509 return sata_link_debounce(link, params, deadline);
7a7921e8
TH
3510}
3511
f5914a46
TH
3512/**
3513 * ata_std_prereset - prepare for reset
cc0680a5 3514 * @link: ATA link to be reset
d4b2bab4 3515 * @deadline: deadline jiffies for the operation
f5914a46 3516 *
cc0680a5 3517 * @link is about to be reset. Initialize it. Failure from
b8cffc6a
TH
3518 * prereset makes libata abort whole reset sequence and give up
3519 * that port, so prereset should be best-effort. It does its
3520 * best to prepare for reset sequence but if things go wrong, it
3521 * should just whine, not fail.
f5914a46
TH
3522 *
3523 * LOCKING:
3524 * Kernel thread context (may sleep)
3525 *
3526 * RETURNS:
3527 * 0 on success, -errno otherwise.
3528 */
cc0680a5 3529int ata_std_prereset(struct ata_link *link, unsigned long deadline)
f5914a46 3530{
cc0680a5 3531 struct ata_port *ap = link->ap;
936fd732 3532 struct ata_eh_context *ehc = &link->eh_context;
e9c83914 3533 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
3534 int rc;
3535
31daabda 3536 /* handle link resume */
28324304 3537 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
0c88758b 3538 (link->flags & ATA_LFLAG_HRST_TO_RESUME))
28324304
TH
3539 ehc->i.action |= ATA_EH_HARDRESET;
3540
633273a3
TH
3541 /* Some PMPs don't work with only SRST, force hardreset if PMP
3542 * is supported.
3543 */
3544 if (ap->flags & ATA_FLAG_PMP)
3545 ehc->i.action |= ATA_EH_HARDRESET;
3546
f5914a46
TH
3547 /* if we're about to do hardreset, nothing more to do */
3548 if (ehc->i.action & ATA_EH_HARDRESET)
3549 return 0;
3550
936fd732 3551 /* if SATA, resume link */
a16abc0b 3552 if (ap->flags & ATA_FLAG_SATA) {
936fd732 3553 rc = sata_link_resume(link, timing, deadline);
b8cffc6a
TH
3554 /* whine about phy resume failure but proceed */
3555 if (rc && rc != -EOPNOTSUPP)
cc0680a5 3556 ata_link_printk(link, KERN_WARNING, "failed to resume "
f5914a46 3557 "link for reset (errno=%d)\n", rc);
f5914a46
TH
3558 }
3559
3560 /* Wait for !BSY if the controller can wait for the first D2H
3561 * Reg FIS and we don't know that no device is attached.
3562 */
0c88758b 3563 if (!(link->flags & ATA_LFLAG_SKIP_D2H_BSY) && !ata_link_offline(link)) {
b8cffc6a 3564 rc = ata_wait_ready(ap, deadline);
6dffaf61 3565 if (rc && rc != -ENODEV) {
cc0680a5 3566 ata_link_printk(link, KERN_WARNING, "device not ready "
b8cffc6a
TH
3567 "(errno=%d), forcing hardreset\n", rc);
3568 ehc->i.action |= ATA_EH_HARDRESET;
3569 }
3570 }
f5914a46
TH
3571
3572 return 0;
3573}
3574
c2bd5804
TH
3575/**
3576 * ata_std_softreset - reset host port via ATA SRST
cc0680a5 3577 * @link: ATA link to reset
c2bd5804 3578 * @classes: resulting classes of attached devices
d4b2bab4 3579 * @deadline: deadline jiffies for the operation
c2bd5804 3580 *
52783c5d 3581 * Reset host port using ATA SRST.
c2bd5804
TH
3582 *
3583 * LOCKING:
3584 * Kernel thread context (may sleep)
3585 *
3586 * RETURNS:
3587 * 0 on success, -errno otherwise.
3588 */
cc0680a5 3589int ata_std_softreset(struct ata_link *link, unsigned int *classes,
d4b2bab4 3590 unsigned long deadline)
c2bd5804 3591{
cc0680a5 3592 struct ata_port *ap = link->ap;
c2bd5804 3593 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
d4b2bab4
TH
3594 unsigned int devmask = 0;
3595 int rc;
c2bd5804
TH
3596 u8 err;
3597
3598 DPRINTK("ENTER\n");
3599
936fd732 3600 if (ata_link_offline(link)) {
3a39746a
TH
3601 classes[0] = ATA_DEV_NONE;
3602 goto out;
3603 }
3604
c2bd5804
TH
3605 /* determine if device 0/1 are present */
3606 if (ata_devchk(ap, 0))
3607 devmask |= (1 << 0);
3608 if (slave_possible && ata_devchk(ap, 1))
3609 devmask |= (1 << 1);
3610
c2bd5804
TH
3611 /* select device 0 again */
3612 ap->ops->dev_select(ap, 0);
3613
3614 /* issue bus reset */
3615 DPRINTK("about to softreset, devmask=%x\n", devmask);
d4b2bab4 3616 rc = ata_bus_softreset(ap, devmask, deadline);
9b89391c 3617 /* if link is occupied, -ENODEV too is an error */
936fd732 3618 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
cc0680a5 3619 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
d4b2bab4 3620 return rc;
c2bd5804
TH
3621 }
3622
3623 /* determine by signature whether we have ATA or ATAPI devices */
3f19859e
TH
3624 classes[0] = ata_dev_try_classify(&link->device[0],
3625 devmask & (1 << 0), &err);
c2bd5804 3626 if (slave_possible && err != 0x81)
3f19859e
TH
3627 classes[1] = ata_dev_try_classify(&link->device[1],
3628 devmask & (1 << 1), &err);
c2bd5804 3629
3a39746a 3630 out:
c2bd5804
TH
3631 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3632 return 0;
3633}
3634
3635/**
cc0680a5
TH
3636 * sata_link_hardreset - reset link via SATA phy reset
3637 * @link: link to reset
b6103f6d 3638 * @timing: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3639 * @deadline: deadline jiffies for the operation
c2bd5804 3640 *
cc0680a5 3641 * SATA phy-reset @link using DET bits of SControl register.
c2bd5804
TH
3642 *
3643 * LOCKING:
3644 * Kernel thread context (may sleep)
3645 *
3646 * RETURNS:
3647 * 0 on success, -errno otherwise.
3648 */
cc0680a5 3649int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
d4b2bab4 3650 unsigned long deadline)
c2bd5804 3651{
852ee16a 3652 u32 scontrol;
81952c54 3653 int rc;
852ee16a 3654
c2bd5804
TH
3655 DPRINTK("ENTER\n");
3656
936fd732 3657 if (sata_set_spd_needed(link)) {
1c3fae4d
TH
3658 /* SATA spec says nothing about how to reconfigure
3659 * spd. To be on the safe side, turn off phy during
3660 * reconfiguration. This works for at least ICH7 AHCI
3661 * and Sil3124.
3662 */
936fd732 3663 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3664 goto out;
81952c54 3665
a34b6fc0 3666 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54 3667
936fd732 3668 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
b6103f6d 3669 goto out;
1c3fae4d 3670
936fd732 3671 sata_set_spd(link);
1c3fae4d
TH
3672 }
3673
3674 /* issue phy wake/reset */
936fd732 3675 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3676 goto out;
81952c54 3677
852ee16a 3678 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54 3679
936fd732 3680 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
b6103f6d 3681 goto out;
c2bd5804 3682
1c3fae4d 3683 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
3684 * 10.4.2 says at least 1 ms.
3685 */
3686 msleep(1);
3687
936fd732
TH
3688 /* bring link back */
3689 rc = sata_link_resume(link, timing, deadline);
b6103f6d
TH
3690 out:
3691 DPRINTK("EXIT, rc=%d\n", rc);
3692 return rc;
3693}
3694
3695/**
3696 * sata_std_hardreset - reset host port via SATA phy reset
cc0680a5 3697 * @link: link to reset
b6103f6d 3698 * @class: resulting class of attached device
d4b2bab4 3699 * @deadline: deadline jiffies for the operation
b6103f6d
TH
3700 *
3701 * SATA phy-reset host port using DET bits of SControl register,
3702 * wait for !BSY and classify the attached device.
3703 *
3704 * LOCKING:
3705 * Kernel thread context (may sleep)
3706 *
3707 * RETURNS:
3708 * 0 on success, -errno otherwise.
3709 */
cc0680a5 3710int sata_std_hardreset(struct ata_link *link, unsigned int *class,
d4b2bab4 3711 unsigned long deadline)
b6103f6d 3712{
cc0680a5 3713 struct ata_port *ap = link->ap;
936fd732 3714 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
b6103f6d
TH
3715 int rc;
3716
3717 DPRINTK("ENTER\n");
3718
3719 /* do hardreset */
cc0680a5 3720 rc = sata_link_hardreset(link, timing, deadline);
b6103f6d 3721 if (rc) {
cc0680a5 3722 ata_link_printk(link, KERN_ERR,
b6103f6d
TH
3723 "COMRESET failed (errno=%d)\n", rc);
3724 return rc;
3725 }
c2bd5804 3726
c2bd5804 3727 /* TODO: phy layer with polling, timeouts, etc. */
936fd732 3728 if (ata_link_offline(link)) {
c2bd5804
TH
3729 *class = ATA_DEV_NONE;
3730 DPRINTK("EXIT, link offline\n");
3731 return 0;
3732 }
3733
88ff6eaf
TH
3734 /* wait a while before checking status */
3735 ata_wait_after_reset(ap, deadline);
34fee227 3736
633273a3
TH
3737 /* If PMP is supported, we have to do follow-up SRST. Note
3738 * that some PMPs don't send D2H Reg FIS after hardreset at
3739 * all if the first port is empty. Wait for it just for a
3740 * second and request follow-up SRST.
3741 */
3742 if (ap->flags & ATA_FLAG_PMP) {
3743 ata_wait_ready(ap, jiffies + HZ);
3744 return -EAGAIN;
3745 }
3746
d4b2bab4 3747 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3748 /* link occupied, -ENODEV too is an error */
3749 if (rc) {
cc0680a5 3750 ata_link_printk(link, KERN_ERR,
d4b2bab4
TH
3751 "COMRESET failed (errno=%d)\n", rc);
3752 return rc;
c2bd5804
TH
3753 }
3754
3a39746a
TH
3755 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3756
3f19859e 3757 *class = ata_dev_try_classify(link->device, 1, NULL);
c2bd5804
TH
3758
3759 DPRINTK("EXIT, class=%u\n", *class);
3760 return 0;
3761}
3762
3763/**
3764 * ata_std_postreset - standard postreset callback
cc0680a5 3765 * @link: the target ata_link
c2bd5804
TH
3766 * @classes: classes of attached devices
3767 *
3768 * This function is invoked after a successful reset. Note that
3769 * the device might have been reset more than once using
3770 * different reset methods before postreset is invoked.
c2bd5804 3771 *
c2bd5804
TH
3772 * LOCKING:
3773 * Kernel thread context (may sleep)
3774 */
cc0680a5 3775void ata_std_postreset(struct ata_link *link, unsigned int *classes)
c2bd5804 3776{
cc0680a5 3777 struct ata_port *ap = link->ap;
dc2b3515
TH
3778 u32 serror;
3779
c2bd5804
TH
3780 DPRINTK("ENTER\n");
3781
c2bd5804 3782 /* print link status */
936fd732 3783 sata_print_link_status(link);
c2bd5804 3784
dc2b3515 3785 /* clear SError */
936fd732
TH
3786 if (sata_scr_read(link, SCR_ERROR, &serror) == 0)
3787 sata_scr_write(link, SCR_ERROR, serror);
dc2b3515 3788
c2bd5804
TH
3789 /* is double-select really necessary? */
3790 if (classes[0] != ATA_DEV_NONE)
3791 ap->ops->dev_select(ap, 1);
3792 if (classes[1] != ATA_DEV_NONE)
3793 ap->ops->dev_select(ap, 0);
3794
3a39746a
TH
3795 /* bail out if no device is present */
3796 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3797 DPRINTK("EXIT, no device\n");
3798 return;
3799 }
3800
3801 /* set up device control */
0d5ff566
TH
3802 if (ap->ioaddr.ctl_addr)
3803 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
c2bd5804
TH
3804
3805 DPRINTK("EXIT\n");
3806}
3807
623a3128
TH
3808/**
3809 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
3810 * @dev: device to compare against
3811 * @new_class: class of the new device
3812 * @new_id: IDENTIFY page of the new device
3813 *
3814 * Compare @new_class and @new_id against @dev and determine
3815 * whether @dev is the device indicated by @new_class and
3816 * @new_id.
3817 *
3818 * LOCKING:
3819 * None.
3820 *
3821 * RETURNS:
3822 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3823 */
3373efd8
TH
3824static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3825 const u16 *new_id)
623a3128
TH
3826{
3827 const u16 *old_id = dev->id;
a0cf733b
TH
3828 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3829 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
3830
3831 if (dev->class != new_class) {
f15a1daf
TH
3832 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3833 dev->class, new_class);
623a3128
TH
3834 return 0;
3835 }
3836
a0cf733b
TH
3837 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3838 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3839 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3840 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
3841
3842 if (strcmp(model[0], model[1])) {
f15a1daf
TH
3843 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3844 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
3845 return 0;
3846 }
3847
3848 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
3849 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3850 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
3851 return 0;
3852 }
3853
623a3128
TH
3854 return 1;
3855}
3856
3857/**
fe30911b 3858 * ata_dev_reread_id - Re-read IDENTIFY data
3fae450c 3859 * @dev: target ATA device
bff04647 3860 * @readid_flags: read ID flags
623a3128
TH
3861 *
3862 * Re-read IDENTIFY page and make sure @dev is still attached to
3863 * the port.
3864 *
3865 * LOCKING:
3866 * Kernel thread context (may sleep)
3867 *
3868 * RETURNS:
3869 * 0 on success, negative errno otherwise
3870 */
fe30911b 3871int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
623a3128 3872{
5eb45c02 3873 unsigned int class = dev->class;
9af5c9c9 3874 u16 *id = (void *)dev->link->ap->sector_buf;
623a3128
TH
3875 int rc;
3876
fe635c7e 3877 /* read ID data */
bff04647 3878 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128 3879 if (rc)
fe30911b 3880 return rc;
623a3128
TH
3881
3882 /* is the device still there? */
fe30911b
TH
3883 if (!ata_dev_same_device(dev, class, id))
3884 return -ENODEV;
623a3128 3885
fe635c7e 3886 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
fe30911b
TH
3887 return 0;
3888}
3889
3890/**
3891 * ata_dev_revalidate - Revalidate ATA device
3892 * @dev: device to revalidate
422c9daa 3893 * @new_class: new class code
fe30911b
TH
3894 * @readid_flags: read ID flags
3895 *
3896 * Re-read IDENTIFY page, make sure @dev is still attached to the
3897 * port and reconfigure it according to the new IDENTIFY page.
3898 *
3899 * LOCKING:
3900 * Kernel thread context (may sleep)
3901 *
3902 * RETURNS:
3903 * 0 on success, negative errno otherwise
3904 */
422c9daa
TH
3905int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3906 unsigned int readid_flags)
fe30911b 3907{
6ddcd3b0 3908 u64 n_sectors = dev->n_sectors;
fe30911b
TH
3909 int rc;
3910
3911 if (!ata_dev_enabled(dev))
3912 return -ENODEV;
3913
422c9daa
TH
3914 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3915 if (ata_class_enabled(new_class) &&
3916 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) {
3917 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
3918 dev->class, new_class);
3919 rc = -ENODEV;
3920 goto fail;
3921 }
3922
fe30911b
TH
3923 /* re-read ID */
3924 rc = ata_dev_reread_id(dev, readid_flags);
3925 if (rc)
3926 goto fail;
623a3128
TH
3927
3928 /* configure device according to the new ID */
efdaedc4 3929 rc = ata_dev_configure(dev);
6ddcd3b0
TH
3930 if (rc)
3931 goto fail;
3932
3933 /* verify n_sectors hasn't changed */
b54eebd6
TH
3934 if (dev->class == ATA_DEV_ATA && n_sectors &&
3935 dev->n_sectors != n_sectors) {
6ddcd3b0
TH
3936 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3937 "%llu != %llu\n",
3938 (unsigned long long)n_sectors,
3939 (unsigned long long)dev->n_sectors);
8270bec4
TH
3940
3941 /* restore original n_sectors */
3942 dev->n_sectors = n_sectors;
3943
6ddcd3b0
TH
3944 rc = -ENODEV;
3945 goto fail;
3946 }
3947
3948 return 0;
623a3128
TH
3949
3950 fail:
f15a1daf 3951 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
3952 return rc;
3953}
3954
6919a0a6
AC
3955struct ata_blacklist_entry {
3956 const char *model_num;
3957 const char *model_rev;
3958 unsigned long horkage;
3959};
3960
3961static const struct ata_blacklist_entry ata_device_blacklist [] = {
3962 /* Devices with DMA related problems under Linux */
3963 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3964 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3965 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3966 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3967 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3968 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3969 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3970 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3971 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3972 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3973 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3974 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3975 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3976 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3977 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3978 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3979 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3980 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3981 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3982 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3983 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3984 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3985 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3986 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3987 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3988 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
3989 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3990 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
2dcb407e 3991 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
39f19886 3992 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
3af9a77a
TH
3993 /* Odd clown on sil3726/4726 PMPs */
3994 { "Config Disk", NULL, ATA_HORKAGE_NODMA |
3995 ATA_HORKAGE_SKIP_PM },
6919a0a6 3996
18d6e9d5 3997 /* Weird ATAPI devices */
40a1d531 3998 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
18d6e9d5 3999
6919a0a6
AC
4000 /* Devices we expect to fail diagnostics */
4001
4002 /* Devices where NCQ should be avoided */
4003 /* NCQ is slow */
2dcb407e 4004 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
09125ea6
TH
4005 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4006 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
7acfaf30 4007 /* NCQ is broken */
539cc7c7 4008 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
0e3dbc01 4009 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
0b0a43e0
DM
4010 { "HITACHI HDS7250SASUN500G*", NULL, ATA_HORKAGE_NONCQ },
4011 { "HITACHI HDS7225SBSUN250G*", NULL, ATA_HORKAGE_NONCQ },
da6f0ec2 4012 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
539cc7c7 4013
36e337d0
RH
4014 /* Blacklist entries taken from Silicon Image 3124/3132
4015 Windows driver .inf file - also several Linux problem reports */
4016 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4017 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4018 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
bd9c5a39
TH
4019 /* Drives which do spurious command completion */
4020 { "HTS541680J9SA00", "SB2IC7EP", ATA_HORKAGE_NONCQ, },
2f8fcebb 4021 { "HTS541612J9SA00", "SBDIC7JP", ATA_HORKAGE_NONCQ, },
70edb185 4022 { "HDT722516DLA380", "V43OA96A", ATA_HORKAGE_NONCQ, },
e14cbfa6 4023 { "Hitachi HTS541616J9SA00", "SB4OC70P", ATA_HORKAGE_NONCQ, },
0c173174 4024 { "Hitachi HTS542525K9SA00", "BBFOC31P", ATA_HORKAGE_NONCQ, },
2f8fcebb 4025 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
7f567620 4026 { "WDC WD3200AAJS-00RYA0", "12.01B01", ATA_HORKAGE_NONCQ, },
a520f261 4027 { "FUJITSU MHV2080BH", "00840028", ATA_HORKAGE_NONCQ, },
7f567620 4028 { "ST9120822AS", "3.CLF", ATA_HORKAGE_NONCQ, },
3fb6589c 4029 { "ST9160821AS", "3.CLF", ATA_HORKAGE_NONCQ, },
954bb005 4030 { "ST9160821AS", "3.ALD", ATA_HORKAGE_NONCQ, },
13587960 4031 { "ST9160821AS", "3.CCD", ATA_HORKAGE_NONCQ, },
7f567620
TH
4032 { "ST3160812AS", "3.ADJ", ATA_HORKAGE_NONCQ, },
4033 { "ST980813AS", "3.ADB", ATA_HORKAGE_NONCQ, },
5d6aca8d 4034 { "SAMSUNG HD401LJ", "ZZ100-15", ATA_HORKAGE_NONCQ, },
6919a0a6 4035
16c55b03
TH
4036 /* devices which puke on READ_NATIVE_MAX */
4037 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4038 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4039 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4040 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
6919a0a6 4041
93328e11
AC
4042 /* Devices which report 1 sector over size HPA */
4043 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4044 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4045
6919a0a6
AC
4046 /* End Marker */
4047 { }
1da177e4 4048};
2e9edbf8 4049
741b7763 4050static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
539cc7c7
JG
4051{
4052 const char *p;
4053 int len;
4054
4055 /*
4056 * check for trailing wildcard: *\0
4057 */
4058 p = strchr(patt, wildchar);
4059 if (p && ((*(p + 1)) == 0))
4060 len = p - patt;
317b50b8 4061 else {
539cc7c7 4062 len = strlen(name);
317b50b8
AP
4063 if (!len) {
4064 if (!*patt)
4065 return 0;
4066 return -1;
4067 }
4068 }
539cc7c7
JG
4069
4070 return strncmp(patt, name, len);
4071}
4072
75683fe7 4073static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
1da177e4 4074{
8bfa79fc
TH
4075 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4076 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 4077 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 4078
8bfa79fc
TH
4079 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4080 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 4081
6919a0a6 4082 while (ad->model_num) {
539cc7c7 4083 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
6919a0a6
AC
4084 if (ad->model_rev == NULL)
4085 return ad->horkage;
539cc7c7 4086 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
6919a0a6 4087 return ad->horkage;
f4b15fef 4088 }
6919a0a6 4089 ad++;
f4b15fef 4090 }
1da177e4
LT
4091 return 0;
4092}
4093
6919a0a6
AC
4094static int ata_dma_blacklisted(const struct ata_device *dev)
4095{
4096 /* We don't support polling DMA.
4097 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4098 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4099 */
9af5c9c9 4100 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
6919a0a6
AC
4101 (dev->flags & ATA_DFLAG_CDB_INTR))
4102 return 1;
75683fe7 4103 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
6919a0a6
AC
4104}
4105
a6d5a51c
TH
4106/**
4107 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
4108 * @dev: Device to compute xfermask for
4109 *
acf356b1
TH
4110 * Compute supported xfermask of @dev and store it in
4111 * dev->*_mask. This function is responsible for applying all
4112 * known limits including host controller limits, device
4113 * blacklist, etc...
a6d5a51c
TH
4114 *
4115 * LOCKING:
4116 * None.
a6d5a51c 4117 */
3373efd8 4118static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 4119{
9af5c9c9
TH
4120 struct ata_link *link = dev->link;
4121 struct ata_port *ap = link->ap;
cca3974e 4122 struct ata_host *host = ap->host;
a6d5a51c 4123 unsigned long xfer_mask;
1da177e4 4124
37deecb5 4125 /* controller modes available */
565083e1
TH
4126 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4127 ap->mwdma_mask, ap->udma_mask);
4128
8343f889 4129 /* drive modes available */
37deecb5
TH
4130 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4131 dev->mwdma_mask, dev->udma_mask);
4132 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 4133
b352e57d
AC
4134 /*
4135 * CFA Advanced TrueIDE timings are not allowed on a shared
4136 * cable
4137 */
4138 if (ata_dev_pair(dev)) {
4139 /* No PIO5 or PIO6 */
4140 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4141 /* No MWDMA3 or MWDMA 4 */
4142 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4143 }
4144
37deecb5
TH
4145 if (ata_dma_blacklisted(dev)) {
4146 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
f15a1daf
TH
4147 ata_dev_printk(dev, KERN_WARNING,
4148 "device is on DMA blacklist, disabling DMA\n");
37deecb5 4149 }
a6d5a51c 4150
14d66ab7 4151 if ((host->flags & ATA_HOST_SIMPLEX) &&
2dcb407e 4152 host->simplex_claimed && host->simplex_claimed != ap) {
37deecb5
TH
4153 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4154 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4155 "other device, disabling DMA\n");
5444a6f4 4156 }
565083e1 4157
e424675f
JG
4158 if (ap->flags & ATA_FLAG_NO_IORDY)
4159 xfer_mask &= ata_pio_mask_no_iordy(dev);
4160
5444a6f4 4161 if (ap->ops->mode_filter)
a76b62ca 4162 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
5444a6f4 4163
8343f889
RH
4164 /* Apply cable rule here. Don't apply it early because when
4165 * we handle hot plug the cable type can itself change.
4166 * Check this last so that we know if the transfer rate was
4167 * solely limited by the cable.
4168 * Unknown or 80 wire cables reported host side are checked
4169 * drive side as well. Cases where we know a 40wire cable
4170 * is used safely for 80 are not checked here.
4171 */
4172 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4173 /* UDMA/44 or higher would be available */
2dcb407e
JG
4174 if ((ap->cbl == ATA_CBL_PATA40) ||
4175 (ata_drive_40wire(dev->id) &&
4176 (ap->cbl == ATA_CBL_PATA_UNK ||
4177 ap->cbl == ATA_CBL_PATA80))) {
4178 ata_dev_printk(dev, KERN_WARNING,
8343f889
RH
4179 "limited to UDMA/33 due to 40-wire cable\n");
4180 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4181 }
4182
565083e1
TH
4183 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4184 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
4185}
4186
1da177e4
LT
4187/**
4188 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
4189 * @dev: Device to which command will be sent
4190 *
780a87f7
JG
4191 * Issue SET FEATURES - XFER MODE command to device @dev
4192 * on port @ap.
4193 *
1da177e4 4194 * LOCKING:
0cba632b 4195 * PCI/etc. bus probe sem.
83206a29
TH
4196 *
4197 * RETURNS:
4198 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
4199 */
4200
3373efd8 4201static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 4202{
a0123703 4203 struct ata_taskfile tf;
83206a29 4204 unsigned int err_mask;
1da177e4
LT
4205
4206 /* set up set-features taskfile */
4207 DPRINTK("set features - xfer mode\n");
4208
464cf177
TH
4209 /* Some controllers and ATAPI devices show flaky interrupt
4210 * behavior after setting xfer mode. Use polling instead.
4211 */
3373efd8 4212 ata_tf_init(dev, &tf);
a0123703
TH
4213 tf.command = ATA_CMD_SET_FEATURES;
4214 tf.feature = SETFEATURES_XFER;
464cf177 4215 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
a0123703
TH
4216 tf.protocol = ATA_PROT_NODATA;
4217 tf.nsect = dev->xfer_mode;
1da177e4 4218
2b789108 4219 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
9f45cbd3
KCA
4220
4221 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4222 return err_mask;
4223}
9f45cbd3 4224/**
218f3d30 4225 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
9f45cbd3
KCA
4226 * @dev: Device to which command will be sent
4227 * @enable: Whether to enable or disable the feature
218f3d30 4228 * @feature: The sector count represents the feature to set
9f45cbd3
KCA
4229 *
4230 * Issue SET FEATURES - SATA FEATURES command to device @dev
218f3d30 4231 * on port @ap with sector count
9f45cbd3
KCA
4232 *
4233 * LOCKING:
4234 * PCI/etc. bus probe sem.
4235 *
4236 * RETURNS:
4237 * 0 on success, AC_ERR_* mask otherwise.
4238 */
218f3d30
JG
4239static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4240 u8 feature)
9f45cbd3
KCA
4241{
4242 struct ata_taskfile tf;
4243 unsigned int err_mask;
4244
4245 /* set up set-features taskfile */
4246 DPRINTK("set features - SATA features\n");
4247
4248 ata_tf_init(dev, &tf);
4249 tf.command = ATA_CMD_SET_FEATURES;
4250 tf.feature = enable;
4251 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4252 tf.protocol = ATA_PROT_NODATA;
218f3d30 4253 tf.nsect = feature;
9f45cbd3 4254
2b789108 4255 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1da177e4 4256
83206a29
TH
4257 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4258 return err_mask;
1da177e4
LT
4259}
4260
8bf62ece
AL
4261/**
4262 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 4263 * @dev: Device to which command will be sent
e2a7f77a
RD
4264 * @heads: Number of heads (taskfile parameter)
4265 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
4266 *
4267 * LOCKING:
6aff8f1f
TH
4268 * Kernel thread context (may sleep)
4269 *
4270 * RETURNS:
4271 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 4272 */
3373efd8
TH
4273static unsigned int ata_dev_init_params(struct ata_device *dev,
4274 u16 heads, u16 sectors)
8bf62ece 4275{
a0123703 4276 struct ata_taskfile tf;
6aff8f1f 4277 unsigned int err_mask;
8bf62ece
AL
4278
4279 /* Number of sectors per track 1-255. Number of heads 1-16 */
4280 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 4281 return AC_ERR_INVALID;
8bf62ece
AL
4282
4283 /* set up init dev params taskfile */
4284 DPRINTK("init dev params \n");
4285
3373efd8 4286 ata_tf_init(dev, &tf);
a0123703
TH
4287 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4288 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4289 tf.protocol = ATA_PROT_NODATA;
4290 tf.nsect = sectors;
4291 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 4292
2b789108 4293 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
18b2466c
AC
4294 /* A clean abort indicates an original or just out of spec drive
4295 and we should continue as we issue the setup based on the
4296 drive reported working geometry */
4297 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4298 err_mask = 0;
8bf62ece 4299
6aff8f1f
TH
4300 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4301 return err_mask;
8bf62ece
AL
4302}
4303
1da177e4 4304/**
0cba632b
JG
4305 * ata_sg_clean - Unmap DMA memory associated with command
4306 * @qc: Command containing DMA memory to be released
4307 *
4308 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
4309 *
4310 * LOCKING:
cca3974e 4311 * spin_lock_irqsave(host lock)
1da177e4 4312 */
70e6ad0c 4313void ata_sg_clean(struct ata_queued_cmd *qc)
1da177e4
LT
4314{
4315 struct ata_port *ap = qc->ap;
cedc9a47 4316 struct scatterlist *sg = qc->__sg;
1da177e4 4317 int dir = qc->dma_dir;
cedc9a47 4318 void *pad_buf = NULL;
1da177e4 4319
a4631474
TH
4320 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
4321 WARN_ON(sg == NULL);
1da177e4
LT
4322
4323 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 4324 WARN_ON(qc->n_elem > 1);
1da177e4 4325
2c13b7ce 4326 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 4327
cedc9a47
JG
4328 /* if we padded the buffer out to 32-bit bound, and data
4329 * xfer direction is from-device, we must copy from the
4330 * pad buffer back into the supplied buffer
4331 */
4332 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4333 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4334
4335 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 4336 if (qc->n_elem)
2f1f610b 4337 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47 4338 /* restore last sg */
87260216 4339 sg_last(sg, qc->orig_n_elem)->length += qc->pad_len;
cedc9a47
JG
4340 if (pad_buf) {
4341 struct scatterlist *psg = &qc->pad_sgent;
45711f1a 4342 void *addr = kmap_atomic(sg_page(psg), KM_IRQ0);
cedc9a47 4343 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 4344 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4345 }
4346 } else {
2e242fa9 4347 if (qc->n_elem)
2f1f610b 4348 dma_unmap_single(ap->dev,
e1410f2d
JG
4349 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4350 dir);
cedc9a47
JG
4351 /* restore sg */
4352 sg->length += qc->pad_len;
4353 if (pad_buf)
4354 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4355 pad_buf, qc->pad_len);
4356 }
1da177e4
LT
4357
4358 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 4359 qc->__sg = NULL;
1da177e4
LT
4360}
4361
4362/**
4363 * ata_fill_sg - Fill PCI IDE PRD table
4364 * @qc: Metadata associated with taskfile to be transferred
4365 *
780a87f7
JG
4366 * Fill PCI IDE PRD (scatter-gather) table with segments
4367 * associated with the current disk command.
4368 *
1da177e4 4369 * LOCKING:
cca3974e 4370 * spin_lock_irqsave(host lock)
1da177e4
LT
4371 *
4372 */
4373static void ata_fill_sg(struct ata_queued_cmd *qc)
4374{
1da177e4 4375 struct ata_port *ap = qc->ap;
cedc9a47
JG
4376 struct scatterlist *sg;
4377 unsigned int idx;
1da177e4 4378
a4631474 4379 WARN_ON(qc->__sg == NULL);
f131883e 4380 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
4381
4382 idx = 0;
cedc9a47 4383 ata_for_each_sg(sg, qc) {
1da177e4
LT
4384 u32 addr, offset;
4385 u32 sg_len, len;
4386
4387 /* determine if physical DMA addr spans 64K boundary.
4388 * Note h/w doesn't support 64-bit, so we unconditionally
4389 * truncate dma_addr_t to u32.
4390 */
4391 addr = (u32) sg_dma_address(sg);
4392 sg_len = sg_dma_len(sg);
4393
4394 while (sg_len) {
4395 offset = addr & 0xffff;
4396 len = sg_len;
4397 if ((offset + sg_len) > 0x10000)
4398 len = 0x10000 - offset;
4399
4400 ap->prd[idx].addr = cpu_to_le32(addr);
4401 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4402 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4403
4404 idx++;
4405 sg_len -= len;
4406 addr += len;
4407 }
4408 }
4409
4410 if (idx)
4411 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4412}
b9a4197e 4413
d26fc955
AC
4414/**
4415 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4416 * @qc: Metadata associated with taskfile to be transferred
4417 *
4418 * Fill PCI IDE PRD (scatter-gather) table with segments
4419 * associated with the current disk command. Perform the fill
4420 * so that we avoid writing any length 64K records for
4421 * controllers that don't follow the spec.
4422 *
4423 * LOCKING:
4424 * spin_lock_irqsave(host lock)
4425 *
4426 */
4427static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
4428{
4429 struct ata_port *ap = qc->ap;
4430 struct scatterlist *sg;
4431 unsigned int idx;
4432
4433 WARN_ON(qc->__sg == NULL);
4434 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4435
4436 idx = 0;
4437 ata_for_each_sg(sg, qc) {
4438 u32 addr, offset;
4439 u32 sg_len, len, blen;
4440
2dcb407e 4441 /* determine if physical DMA addr spans 64K boundary.
d26fc955
AC
4442 * Note h/w doesn't support 64-bit, so we unconditionally
4443 * truncate dma_addr_t to u32.
4444 */
4445 addr = (u32) sg_dma_address(sg);
4446 sg_len = sg_dma_len(sg);
4447
4448 while (sg_len) {
4449 offset = addr & 0xffff;
4450 len = sg_len;
4451 if ((offset + sg_len) > 0x10000)
4452 len = 0x10000 - offset;
4453
4454 blen = len & 0xffff;
4455 ap->prd[idx].addr = cpu_to_le32(addr);
4456 if (blen == 0) {
4457 /* Some PATA chipsets like the CS5530 can't
4458 cope with 0x0000 meaning 64K as the spec says */
4459 ap->prd[idx].flags_len = cpu_to_le32(0x8000);
4460 blen = 0x8000;
4461 ap->prd[++idx].addr = cpu_to_le32(addr + 0x8000);
4462 }
4463 ap->prd[idx].flags_len = cpu_to_le32(blen);
4464 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4465
4466 idx++;
4467 sg_len -= len;
4468 addr += len;
4469 }
4470 }
4471
4472 if (idx)
4473 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4474}
4475
1da177e4
LT
4476/**
4477 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4478 * @qc: Metadata associated with taskfile to check
4479 *
780a87f7
JG
4480 * Allow low-level driver to filter ATA PACKET commands, returning
4481 * a status indicating whether or not it is OK to use DMA for the
4482 * supplied PACKET command.
4483 *
1da177e4 4484 * LOCKING:
cca3974e 4485 * spin_lock_irqsave(host lock)
0cba632b 4486 *
1da177e4
LT
4487 * RETURNS: 0 when ATAPI DMA can be used
4488 * nonzero otherwise
4489 */
4490int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4491{
4492 struct ata_port *ap = qc->ap;
b9a4197e
TH
4493
4494 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4495 * few ATAPI devices choke on such DMA requests.
4496 */
4497 if (unlikely(qc->nbytes & 15))
4498 return 1;
6f23a31d 4499
1da177e4 4500 if (ap->ops->check_atapi_dma)
b9a4197e 4501 return ap->ops->check_atapi_dma(qc);
1da177e4 4502
b9a4197e 4503 return 0;
1da177e4 4504}
b9a4197e 4505
31cc23b3
TH
4506/**
4507 * ata_std_qc_defer - Check whether a qc needs to be deferred
4508 * @qc: ATA command in question
4509 *
4510 * Non-NCQ commands cannot run with any other command, NCQ or
4511 * not. As upper layer only knows the queue depth, we are
4512 * responsible for maintaining exclusion. This function checks
4513 * whether a new command @qc can be issued.
4514 *
4515 * LOCKING:
4516 * spin_lock_irqsave(host lock)
4517 *
4518 * RETURNS:
4519 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4520 */
4521int ata_std_qc_defer(struct ata_queued_cmd *qc)
4522{
4523 struct ata_link *link = qc->dev->link;
4524
4525 if (qc->tf.protocol == ATA_PROT_NCQ) {
4526 if (!ata_tag_valid(link->active_tag))
4527 return 0;
4528 } else {
4529 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4530 return 0;
4531 }
4532
4533 return ATA_DEFER_LINK;
4534}
4535
1da177e4
LT
4536/**
4537 * ata_qc_prep - Prepare taskfile for submission
4538 * @qc: Metadata associated with taskfile to be prepared
4539 *
780a87f7
JG
4540 * Prepare ATA taskfile for submission.
4541 *
1da177e4 4542 * LOCKING:
cca3974e 4543 * spin_lock_irqsave(host lock)
1da177e4
LT
4544 */
4545void ata_qc_prep(struct ata_queued_cmd *qc)
4546{
4547 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4548 return;
4549
4550 ata_fill_sg(qc);
4551}
4552
d26fc955
AC
4553/**
4554 * ata_dumb_qc_prep - Prepare taskfile for submission
4555 * @qc: Metadata associated with taskfile to be prepared
4556 *
4557 * Prepare ATA taskfile for submission.
4558 *
4559 * LOCKING:
4560 * spin_lock_irqsave(host lock)
4561 */
4562void ata_dumb_qc_prep(struct ata_queued_cmd *qc)
4563{
4564 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4565 return;
4566
4567 ata_fill_sg_dumb(qc);
4568}
4569
e46834cd
BK
4570void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4571
0cba632b
JG
4572/**
4573 * ata_sg_init_one - Associate command with memory buffer
4574 * @qc: Command to be associated
4575 * @buf: Memory buffer
4576 * @buflen: Length of memory buffer, in bytes.
4577 *
4578 * Initialize the data-related elements of queued_cmd @qc
4579 * to point to a single memory buffer, @buf of byte length @buflen.
4580 *
4581 * LOCKING:
cca3974e 4582 * spin_lock_irqsave(host lock)
0cba632b
JG
4583 */
4584
1da177e4
LT
4585void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4586{
1da177e4
LT
4587 qc->flags |= ATA_QCFLAG_SINGLE;
4588
cedc9a47 4589 qc->__sg = &qc->sgent;
1da177e4 4590 qc->n_elem = 1;
cedc9a47 4591 qc->orig_n_elem = 1;
1da177e4 4592 qc->buf_virt = buf;
233277ca 4593 qc->nbytes = buflen;
87260216 4594 qc->cursg = qc->__sg;
1da177e4 4595
61c0596c 4596 sg_init_one(&qc->sgent, buf, buflen);
1da177e4
LT
4597}
4598
0cba632b
JG
4599/**
4600 * ata_sg_init - Associate command with scatter-gather table.
4601 * @qc: Command to be associated
4602 * @sg: Scatter-gather table.
4603 * @n_elem: Number of elements in s/g table.
4604 *
4605 * Initialize the data-related elements of queued_cmd @qc
4606 * to point to a scatter-gather table @sg, containing @n_elem
4607 * elements.
4608 *
4609 * LOCKING:
cca3974e 4610 * spin_lock_irqsave(host lock)
0cba632b
JG
4611 */
4612
1da177e4
LT
4613void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4614 unsigned int n_elem)
4615{
4616 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 4617 qc->__sg = sg;
1da177e4 4618 qc->n_elem = n_elem;
cedc9a47 4619 qc->orig_n_elem = n_elem;
87260216 4620 qc->cursg = qc->__sg;
1da177e4
LT
4621}
4622
4623/**
0cba632b
JG
4624 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4625 * @qc: Command with memory buffer to be mapped.
4626 *
4627 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
4628 *
4629 * LOCKING:
cca3974e 4630 * spin_lock_irqsave(host lock)
1da177e4
LT
4631 *
4632 * RETURNS:
0cba632b 4633 * Zero on success, negative on error.
1da177e4
LT
4634 */
4635
4636static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4637{
4638 struct ata_port *ap = qc->ap;
4639 int dir = qc->dma_dir;
cedc9a47 4640 struct scatterlist *sg = qc->__sg;
1da177e4 4641 dma_addr_t dma_address;
2e242fa9 4642 int trim_sg = 0;
1da177e4 4643
cedc9a47
JG
4644 /* we must lengthen transfers to end on a 32-bit boundary */
4645 qc->pad_len = sg->length & 3;
4646 if (qc->pad_len) {
4647 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4648 struct scatterlist *psg = &qc->pad_sgent;
4649
a4631474 4650 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4651
4652 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4653
4654 if (qc->tf.flags & ATA_TFLAG_WRITE)
4655 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4656 qc->pad_len);
4657
4658 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4659 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4660 /* trim sg */
4661 sg->length -= qc->pad_len;
2e242fa9
TH
4662 if (sg->length == 0)
4663 trim_sg = 1;
cedc9a47
JG
4664
4665 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4666 sg->length, qc->pad_len);
4667 }
4668
2e242fa9
TH
4669 if (trim_sg) {
4670 qc->n_elem--;
e1410f2d
JG
4671 goto skip_map;
4672 }
4673
2f1f610b 4674 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 4675 sg->length, dir);
537a95d9
TH
4676 if (dma_mapping_error(dma_address)) {
4677 /* restore sg */
4678 sg->length += qc->pad_len;
1da177e4 4679 return -1;
537a95d9 4680 }
1da177e4
LT
4681
4682 sg_dma_address(sg) = dma_address;
32529e01 4683 sg_dma_len(sg) = sg->length;
1da177e4 4684
2e242fa9 4685skip_map:
1da177e4
LT
4686 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4687 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4688
4689 return 0;
4690}
4691
4692/**
0cba632b
JG
4693 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4694 * @qc: Command with scatter-gather table to be mapped.
4695 *
4696 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
4697 *
4698 * LOCKING:
cca3974e 4699 * spin_lock_irqsave(host lock)
1da177e4
LT
4700 *
4701 * RETURNS:
0cba632b 4702 * Zero on success, negative on error.
1da177e4
LT
4703 *
4704 */
4705
4706static int ata_sg_setup(struct ata_queued_cmd *qc)
4707{
4708 struct ata_port *ap = qc->ap;
cedc9a47 4709 struct scatterlist *sg = qc->__sg;
87260216 4710 struct scatterlist *lsg = sg_last(qc->__sg, qc->n_elem);
e1410f2d 4711 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4 4712
44877b4e 4713 VPRINTK("ENTER, ata%u\n", ap->print_id);
a4631474 4714 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 4715
cedc9a47
JG
4716 /* we must lengthen transfers to end on a 32-bit boundary */
4717 qc->pad_len = lsg->length & 3;
4718 if (qc->pad_len) {
4719 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4720 struct scatterlist *psg = &qc->pad_sgent;
4721 unsigned int offset;
4722
a4631474 4723 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4724
4725 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4726
4727 /*
4728 * psg->page/offset are used to copy to-be-written
4729 * data in this function or read data in ata_sg_clean.
4730 */
4731 offset = lsg->offset + lsg->length - qc->pad_len;
642f1490
JA
4732 sg_set_page(psg, nth_page(sg_page(lsg), offset >> PAGE_SHIFT),
4733 qc->pad_len, offset_in_page(offset));
cedc9a47
JG
4734
4735 if (qc->tf.flags & ATA_TFLAG_WRITE) {
45711f1a 4736 void *addr = kmap_atomic(sg_page(psg), KM_IRQ0);
cedc9a47 4737 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 4738 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4739 }
4740
4741 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4742 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4743 /* trim last sg */
4744 lsg->length -= qc->pad_len;
e1410f2d
JG
4745 if (lsg->length == 0)
4746 trim_sg = 1;
cedc9a47
JG
4747
4748 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4749 qc->n_elem - 1, lsg->length, qc->pad_len);
4750 }
4751
e1410f2d
JG
4752 pre_n_elem = qc->n_elem;
4753 if (trim_sg && pre_n_elem)
4754 pre_n_elem--;
4755
4756 if (!pre_n_elem) {
4757 n_elem = 0;
4758 goto skip_map;
4759 }
4760
1da177e4 4761 dir = qc->dma_dir;
2f1f610b 4762 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
4763 if (n_elem < 1) {
4764 /* restore last sg */
4765 lsg->length += qc->pad_len;
1da177e4 4766 return -1;
537a95d9 4767 }
1da177e4
LT
4768
4769 DPRINTK("%d sg elements mapped\n", n_elem);
4770
e1410f2d 4771skip_map:
1da177e4
LT
4772 qc->n_elem = n_elem;
4773
4774 return 0;
4775}
4776
0baab86b 4777/**
c893a3ae 4778 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
4779 * @buf: Buffer to swap
4780 * @buf_words: Number of 16-bit words in buffer.
4781 *
4782 * Swap halves of 16-bit words if needed to convert from
4783 * little-endian byte order to native cpu byte order, or
4784 * vice-versa.
4785 *
4786 * LOCKING:
6f0ef4fa 4787 * Inherited from caller.
0baab86b 4788 */
1da177e4
LT
4789void swap_buf_le16(u16 *buf, unsigned int buf_words)
4790{
4791#ifdef __BIG_ENDIAN
4792 unsigned int i;
4793
4794 for (i = 0; i < buf_words; i++)
4795 buf[i] = le16_to_cpu(buf[i]);
4796#endif /* __BIG_ENDIAN */
4797}
4798
6ae4cfb5 4799/**
0d5ff566 4800 * ata_data_xfer - Transfer data by PIO
a6b2c5d4 4801 * @adev: device to target
6ae4cfb5
AL
4802 * @buf: data buffer
4803 * @buflen: buffer length
344babaa 4804 * @write_data: read/write
6ae4cfb5
AL
4805 *
4806 * Transfer data from/to the device data register by PIO.
4807 *
4808 * LOCKING:
4809 * Inherited from caller.
6ae4cfb5 4810 */
0d5ff566
TH
4811void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4812 unsigned int buflen, int write_data)
1da177e4 4813{
9af5c9c9 4814 struct ata_port *ap = adev->link->ap;
6ae4cfb5 4815 unsigned int words = buflen >> 1;
1da177e4 4816
6ae4cfb5 4817 /* Transfer multiple of 2 bytes */
1da177e4 4818 if (write_data)
0d5ff566 4819 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
1da177e4 4820 else
0d5ff566 4821 ioread16_rep(ap->ioaddr.data_addr, buf, words);
6ae4cfb5
AL
4822
4823 /* Transfer trailing 1 byte, if any. */
4824 if (unlikely(buflen & 0x01)) {
4825 u16 align_buf[1] = { 0 };
4826 unsigned char *trailing_buf = buf + buflen - 1;
4827
4828 if (write_data) {
4829 memcpy(align_buf, trailing_buf, 1);
0d5ff566 4830 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
6ae4cfb5 4831 } else {
0d5ff566 4832 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
6ae4cfb5
AL
4833 memcpy(trailing_buf, align_buf, 1);
4834 }
4835 }
1da177e4
LT
4836}
4837
75e99585 4838/**
0d5ff566 4839 * ata_data_xfer_noirq - Transfer data by PIO
75e99585
AC
4840 * @adev: device to target
4841 * @buf: data buffer
4842 * @buflen: buffer length
4843 * @write_data: read/write
4844 *
88574551 4845 * Transfer data from/to the device data register by PIO. Do the
75e99585
AC
4846 * transfer with interrupts disabled.
4847 *
4848 * LOCKING:
4849 * Inherited from caller.
4850 */
0d5ff566
TH
4851void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4852 unsigned int buflen, int write_data)
75e99585
AC
4853{
4854 unsigned long flags;
4855 local_irq_save(flags);
0d5ff566 4856 ata_data_xfer(adev, buf, buflen, write_data);
75e99585
AC
4857 local_irq_restore(flags);
4858}
4859
4860
6ae4cfb5 4861/**
5a5dbd18 4862 * ata_pio_sector - Transfer a sector of data.
6ae4cfb5
AL
4863 * @qc: Command on going
4864 *
5a5dbd18 4865 * Transfer qc->sect_size bytes of data from/to the ATA device.
6ae4cfb5
AL
4866 *
4867 * LOCKING:
4868 * Inherited from caller.
4869 */
4870
1da177e4
LT
4871static void ata_pio_sector(struct ata_queued_cmd *qc)
4872{
4873 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
1da177e4
LT
4874 struct ata_port *ap = qc->ap;
4875 struct page *page;
4876 unsigned int offset;
4877 unsigned char *buf;
4878
5a5dbd18 4879 if (qc->curbytes == qc->nbytes - qc->sect_size)
14be71f4 4880 ap->hsm_task_state = HSM_ST_LAST;
1da177e4 4881
45711f1a 4882 page = sg_page(qc->cursg);
87260216 4883 offset = qc->cursg->offset + qc->cursg_ofs;
1da177e4
LT
4884
4885 /* get the current page and offset */
4886 page = nth_page(page, (offset >> PAGE_SHIFT));
4887 offset %= PAGE_SIZE;
4888
1da177e4
LT
4889 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4890
91b8b313
AL
4891 if (PageHighMem(page)) {
4892 unsigned long flags;
4893
a6b2c5d4 4894 /* FIXME: use a bounce buffer */
91b8b313
AL
4895 local_irq_save(flags);
4896 buf = kmap_atomic(page, KM_IRQ0);
083958d3 4897
91b8b313 4898 /* do the actual data transfer */
5a5dbd18 4899 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
1da177e4 4900
91b8b313
AL
4901 kunmap_atomic(buf, KM_IRQ0);
4902 local_irq_restore(flags);
4903 } else {
4904 buf = page_address(page);
5a5dbd18 4905 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
91b8b313 4906 }
1da177e4 4907
5a5dbd18
ML
4908 qc->curbytes += qc->sect_size;
4909 qc->cursg_ofs += qc->sect_size;
1da177e4 4910
87260216
JA
4911 if (qc->cursg_ofs == qc->cursg->length) {
4912 qc->cursg = sg_next(qc->cursg);
1da177e4
LT
4913 qc->cursg_ofs = 0;
4914 }
1da177e4 4915}
1da177e4 4916
07f6f7d0 4917/**
5a5dbd18 4918 * ata_pio_sectors - Transfer one or many sectors.
07f6f7d0
AL
4919 * @qc: Command on going
4920 *
5a5dbd18 4921 * Transfer one or many sectors of data from/to the
07f6f7d0
AL
4922 * ATA device for the DRQ request.
4923 *
4924 * LOCKING:
4925 * Inherited from caller.
4926 */
1da177e4 4927
07f6f7d0
AL
4928static void ata_pio_sectors(struct ata_queued_cmd *qc)
4929{
4930 if (is_multi_taskfile(&qc->tf)) {
4931 /* READ/WRITE MULTIPLE */
4932 unsigned int nsect;
4933
587005de 4934 WARN_ON(qc->dev->multi_count == 0);
1da177e4 4935
5a5dbd18 4936 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
726f0785 4937 qc->dev->multi_count);
07f6f7d0
AL
4938 while (nsect--)
4939 ata_pio_sector(qc);
4940 } else
4941 ata_pio_sector(qc);
4cc980b3
AL
4942
4943 ata_altstatus(qc->ap); /* flush */
07f6f7d0
AL
4944}
4945
c71c1857
AL
4946/**
4947 * atapi_send_cdb - Write CDB bytes to hardware
4948 * @ap: Port to which ATAPI device is attached.
4949 * @qc: Taskfile currently active
4950 *
4951 * When device has indicated its readiness to accept
4952 * a CDB, this function is called. Send the CDB.
4953 *
4954 * LOCKING:
4955 * caller.
4956 */
4957
4958static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4959{
4960 /* send SCSI cdb */
4961 DPRINTK("send cdb\n");
db024d53 4962 WARN_ON(qc->dev->cdb_len < 12);
c71c1857 4963
a6b2c5d4 4964 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
c71c1857
AL
4965 ata_altstatus(ap); /* flush */
4966
4967 switch (qc->tf.protocol) {
4968 case ATA_PROT_ATAPI:
4969 ap->hsm_task_state = HSM_ST;
4970 break;
4971 case ATA_PROT_ATAPI_NODATA:
4972 ap->hsm_task_state = HSM_ST_LAST;
4973 break;
4974 case ATA_PROT_ATAPI_DMA:
4975 ap->hsm_task_state = HSM_ST_LAST;
4976 /* initiate bmdma */
4977 ap->ops->bmdma_start(qc);
4978 break;
4979 }
1da177e4
LT
4980}
4981
6ae4cfb5
AL
4982/**
4983 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4984 * @qc: Command on going
4985 * @bytes: number of bytes
4986 *
4987 * Transfer Transfer data from/to the ATAPI device.
4988 *
4989 * LOCKING:
4990 * Inherited from caller.
4991 *
4992 */
4993
1da177e4
LT
4994static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4995{
4996 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 4997 struct scatterlist *sg = qc->__sg;
0874ee76 4998 struct scatterlist *lsg = sg_last(qc->__sg, qc->n_elem);
1da177e4
LT
4999 struct ata_port *ap = qc->ap;
5000 struct page *page;
5001 unsigned char *buf;
5002 unsigned int offset, count;
0874ee76 5003 int no_more_sg = 0;
1da177e4 5004
563a6e1f 5005 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 5006 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
5007
5008next_sg:
0874ee76 5009 if (unlikely(no_more_sg)) {
7fb6ec28 5010 /*
563a6e1f
AL
5011 * The end of qc->sg is reached and the device expects
5012 * more data to transfer. In order not to overrun qc->sg
5013 * and fulfill length specified in the byte count register,
5014 * - for read case, discard trailing data from the device
5015 * - for write case, padding zero data to the device
5016 */
5017 u16 pad_buf[1] = { 0 };
5018 unsigned int words = bytes >> 1;
5019 unsigned int i;
5020
5021 if (words) /* warning if bytes > 1 */
f15a1daf
TH
5022 ata_dev_printk(qc->dev, KERN_WARNING,
5023 "%u bytes trailing data\n", bytes);
563a6e1f
AL
5024
5025 for (i = 0; i < words; i++)
2dcb407e 5026 ap->ops->data_xfer(qc->dev, (unsigned char *)pad_buf, 2, do_write);
563a6e1f 5027
14be71f4 5028 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
5029 return;
5030 }
5031
87260216 5032 sg = qc->cursg;
1da177e4 5033
45711f1a 5034 page = sg_page(sg);
1da177e4
LT
5035 offset = sg->offset + qc->cursg_ofs;
5036
5037 /* get the current page and offset */
5038 page = nth_page(page, (offset >> PAGE_SHIFT));
5039 offset %= PAGE_SIZE;
5040
6952df03 5041 /* don't overrun current sg */
32529e01 5042 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
5043
5044 /* don't cross page boundaries */
5045 count = min(count, (unsigned int)PAGE_SIZE - offset);
5046
7282aa4b
AL
5047 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
5048
91b8b313
AL
5049 if (PageHighMem(page)) {
5050 unsigned long flags;
5051
a6b2c5d4 5052 /* FIXME: use bounce buffer */
91b8b313
AL
5053 local_irq_save(flags);
5054 buf = kmap_atomic(page, KM_IRQ0);
083958d3 5055
91b8b313 5056 /* do the actual data transfer */
a6b2c5d4 5057 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
7282aa4b 5058
91b8b313
AL
5059 kunmap_atomic(buf, KM_IRQ0);
5060 local_irq_restore(flags);
5061 } else {
5062 buf = page_address(page);
a6b2c5d4 5063 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
91b8b313 5064 }
1da177e4
LT
5065
5066 bytes -= count;
5067 qc->curbytes += count;
5068 qc->cursg_ofs += count;
5069
32529e01 5070 if (qc->cursg_ofs == sg->length) {
0874ee76
FT
5071 if (qc->cursg == lsg)
5072 no_more_sg = 1;
5073
87260216 5074 qc->cursg = sg_next(qc->cursg);
1da177e4
LT
5075 qc->cursg_ofs = 0;
5076 }
5077
563a6e1f 5078 if (bytes)
1da177e4 5079 goto next_sg;
1da177e4
LT
5080}
5081
6ae4cfb5
AL
5082/**
5083 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
5084 * @qc: Command on going
5085 *
5086 * Transfer Transfer data from/to the ATAPI device.
5087 *
5088 * LOCKING:
5089 * Inherited from caller.
6ae4cfb5
AL
5090 */
5091
1da177e4
LT
5092static void atapi_pio_bytes(struct ata_queued_cmd *qc)
5093{
5094 struct ata_port *ap = qc->ap;
5095 struct ata_device *dev = qc->dev;
5096 unsigned int ireason, bc_lo, bc_hi, bytes;
5097 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
5098
eec4c3f3
AL
5099 /* Abuse qc->result_tf for temp storage of intermediate TF
5100 * here to save some kernel stack usage.
5101 * For normal completion, qc->result_tf is not relevant. For
5102 * error, qc->result_tf is later overwritten by ata_qc_complete().
5103 * So, the correctness of qc->result_tf is not affected.
5104 */
5105 ap->ops->tf_read(ap, &qc->result_tf);
5106 ireason = qc->result_tf.nsect;
5107 bc_lo = qc->result_tf.lbam;
5108 bc_hi = qc->result_tf.lbah;
1da177e4
LT
5109 bytes = (bc_hi << 8) | bc_lo;
5110
5111 /* shall be cleared to zero, indicating xfer of data */
5112 if (ireason & (1 << 0))
5113 goto err_out;
5114
5115 /* make sure transfer direction matches expected */
5116 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
5117 if (do_write != i_write)
5118 goto err_out;
5119
44877b4e 5120 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
312f7da2 5121
1da177e4 5122 __atapi_pio_bytes(qc, bytes);
4cc980b3 5123 ata_altstatus(ap); /* flush */
1da177e4
LT
5124
5125 return;
5126
5127err_out:
f15a1daf 5128 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
11a56d24 5129 qc->err_mask |= AC_ERR_HSM;
14be71f4 5130 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
5131}
5132
5133/**
c234fb00
AL
5134 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
5135 * @ap: the target ata_port
5136 * @qc: qc on going
1da177e4 5137 *
c234fb00
AL
5138 * RETURNS:
5139 * 1 if ok in workqueue, 0 otherwise.
1da177e4 5140 */
c234fb00
AL
5141
5142static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1da177e4 5143{
c234fb00
AL
5144 if (qc->tf.flags & ATA_TFLAG_POLLING)
5145 return 1;
1da177e4 5146
c234fb00
AL
5147 if (ap->hsm_task_state == HSM_ST_FIRST) {
5148 if (qc->tf.protocol == ATA_PROT_PIO &&
5149 (qc->tf.flags & ATA_TFLAG_WRITE))
5150 return 1;
1da177e4 5151
c234fb00
AL
5152 if (is_atapi_taskfile(&qc->tf) &&
5153 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5154 return 1;
fe79e683
AL
5155 }
5156
c234fb00
AL
5157 return 0;
5158}
1da177e4 5159
c17ea20d
TH
5160/**
5161 * ata_hsm_qc_complete - finish a qc running on standard HSM
5162 * @qc: Command to complete
5163 * @in_wq: 1 if called from workqueue, 0 otherwise
5164 *
5165 * Finish @qc which is running on standard HSM.
5166 *
5167 * LOCKING:
cca3974e 5168 * If @in_wq is zero, spin_lock_irqsave(host lock).
c17ea20d
TH
5169 * Otherwise, none on entry and grabs host lock.
5170 */
5171static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
5172{
5173 struct ata_port *ap = qc->ap;
5174 unsigned long flags;
5175
5176 if (ap->ops->error_handler) {
5177 if (in_wq) {
ba6a1308 5178 spin_lock_irqsave(ap->lock, flags);
c17ea20d 5179
cca3974e
JG
5180 /* EH might have kicked in while host lock is
5181 * released.
c17ea20d
TH
5182 */
5183 qc = ata_qc_from_tag(ap, qc->tag);
5184 if (qc) {
5185 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
83625006 5186 ap->ops->irq_on(ap);
c17ea20d
TH
5187 ata_qc_complete(qc);
5188 } else
5189 ata_port_freeze(ap);
5190 }
5191
ba6a1308 5192 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
5193 } else {
5194 if (likely(!(qc->err_mask & AC_ERR_HSM)))
5195 ata_qc_complete(qc);
5196 else
5197 ata_port_freeze(ap);
5198 }
5199 } else {
5200 if (in_wq) {
ba6a1308 5201 spin_lock_irqsave(ap->lock, flags);
83625006 5202 ap->ops->irq_on(ap);
c17ea20d 5203 ata_qc_complete(qc);
ba6a1308 5204 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
5205 } else
5206 ata_qc_complete(qc);
5207 }
5208}
5209
bb5cb290
AL
5210/**
5211 * ata_hsm_move - move the HSM to the next state.
5212 * @ap: the target ata_port
5213 * @qc: qc on going
5214 * @status: current device status
5215 * @in_wq: 1 if called from workqueue, 0 otherwise
5216 *
5217 * RETURNS:
5218 * 1 when poll next status needed, 0 otherwise.
5219 */
9a1004d0
TH
5220int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
5221 u8 status, int in_wq)
e2cec771 5222{
bb5cb290
AL
5223 unsigned long flags = 0;
5224 int poll_next;
5225
6912ccd5
AL
5226 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
5227
bb5cb290
AL
5228 /* Make sure ata_qc_issue_prot() does not throw things
5229 * like DMA polling into the workqueue. Notice that
5230 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
5231 */
c234fb00 5232 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
bb5cb290 5233
e2cec771 5234fsm_start:
999bb6f4 5235 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
44877b4e 5236 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
999bb6f4 5237
e2cec771
AL
5238 switch (ap->hsm_task_state) {
5239 case HSM_ST_FIRST:
bb5cb290
AL
5240 /* Send first data block or PACKET CDB */
5241
5242 /* If polling, we will stay in the work queue after
5243 * sending the data. Otherwise, interrupt handler
5244 * takes over after sending the data.
5245 */
5246 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
5247
e2cec771 5248 /* check device status */
3655d1d3
AL
5249 if (unlikely((status & ATA_DRQ) == 0)) {
5250 /* handle BSY=0, DRQ=0 as error */
5251 if (likely(status & (ATA_ERR | ATA_DF)))
5252 /* device stops HSM for abort/error */
5253 qc->err_mask |= AC_ERR_DEV;
5254 else
5255 /* HSM violation. Let EH handle this */
5256 qc->err_mask |= AC_ERR_HSM;
5257
14be71f4 5258 ap->hsm_task_state = HSM_ST_ERR;
e2cec771 5259 goto fsm_start;
1da177e4
LT
5260 }
5261
71601958
AL
5262 /* Device should not ask for data transfer (DRQ=1)
5263 * when it finds something wrong.
eee6c32f
AL
5264 * We ignore DRQ here and stop the HSM by
5265 * changing hsm_task_state to HSM_ST_ERR and
5266 * let the EH abort the command or reset the device.
71601958
AL
5267 */
5268 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
5269 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
5270 "error, dev_stat 0x%X\n", status);
3655d1d3 5271 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
5272 ap->hsm_task_state = HSM_ST_ERR;
5273 goto fsm_start;
71601958 5274 }
1da177e4 5275
bb5cb290
AL
5276 /* Send the CDB (atapi) or the first data block (ata pio out).
5277 * During the state transition, interrupt handler shouldn't
5278 * be invoked before the data transfer is complete and
5279 * hsm_task_state is changed. Hence, the following locking.
5280 */
5281 if (in_wq)
ba6a1308 5282 spin_lock_irqsave(ap->lock, flags);
1da177e4 5283
bb5cb290
AL
5284 if (qc->tf.protocol == ATA_PROT_PIO) {
5285 /* PIO data out protocol.
5286 * send first data block.
5287 */
0565c26d 5288
bb5cb290
AL
5289 /* ata_pio_sectors() might change the state
5290 * to HSM_ST_LAST. so, the state is changed here
5291 * before ata_pio_sectors().
5292 */
5293 ap->hsm_task_state = HSM_ST;
5294 ata_pio_sectors(qc);
bb5cb290
AL
5295 } else
5296 /* send CDB */
5297 atapi_send_cdb(ap, qc);
5298
5299 if (in_wq)
ba6a1308 5300 spin_unlock_irqrestore(ap->lock, flags);
bb5cb290
AL
5301
5302 /* if polling, ata_pio_task() handles the rest.
5303 * otherwise, interrupt handler takes over from here.
5304 */
e2cec771 5305 break;
1c848984 5306
e2cec771
AL
5307 case HSM_ST:
5308 /* complete command or read/write the data register */
5309 if (qc->tf.protocol == ATA_PROT_ATAPI) {
5310 /* ATAPI PIO protocol */
5311 if ((status & ATA_DRQ) == 0) {
3655d1d3
AL
5312 /* No more data to transfer or device error.
5313 * Device error will be tagged in HSM_ST_LAST.
5314 */
e2cec771
AL
5315 ap->hsm_task_state = HSM_ST_LAST;
5316 goto fsm_start;
5317 }
1da177e4 5318
71601958
AL
5319 /* Device should not ask for data transfer (DRQ=1)
5320 * when it finds something wrong.
eee6c32f
AL
5321 * We ignore DRQ here and stop the HSM by
5322 * changing hsm_task_state to HSM_ST_ERR and
5323 * let the EH abort the command or reset the device.
71601958
AL
5324 */
5325 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
5326 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
5327 "device error, dev_stat 0x%X\n",
5328 status);
3655d1d3 5329 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
5330 ap->hsm_task_state = HSM_ST_ERR;
5331 goto fsm_start;
71601958 5332 }
1da177e4 5333
e2cec771 5334 atapi_pio_bytes(qc);
7fb6ec28 5335
e2cec771
AL
5336 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
5337 /* bad ireason reported by device */
5338 goto fsm_start;
1da177e4 5339
e2cec771
AL
5340 } else {
5341 /* ATA PIO protocol */
5342 if (unlikely((status & ATA_DRQ) == 0)) {
5343 /* handle BSY=0, DRQ=0 as error */
3655d1d3
AL
5344 if (likely(status & (ATA_ERR | ATA_DF)))
5345 /* device stops HSM for abort/error */
5346 qc->err_mask |= AC_ERR_DEV;
5347 else
55a8e2c8
TH
5348 /* HSM violation. Let EH handle this.
5349 * Phantom devices also trigger this
5350 * condition. Mark hint.
5351 */
5352 qc->err_mask |= AC_ERR_HSM |
5353 AC_ERR_NODEV_HINT;
3655d1d3 5354
e2cec771
AL
5355 ap->hsm_task_state = HSM_ST_ERR;
5356 goto fsm_start;
5357 }
1da177e4 5358
eee6c32f
AL
5359 /* For PIO reads, some devices may ask for
5360 * data transfer (DRQ=1) alone with ERR=1.
5361 * We respect DRQ here and transfer one
5362 * block of junk data before changing the
5363 * hsm_task_state to HSM_ST_ERR.
5364 *
5365 * For PIO writes, ERR=1 DRQ=1 doesn't make
5366 * sense since the data block has been
5367 * transferred to the device.
71601958
AL
5368 */
5369 if (unlikely(status & (ATA_ERR | ATA_DF))) {
71601958
AL
5370 /* data might be corrputed */
5371 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
5372
5373 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
5374 ata_pio_sectors(qc);
eee6c32f
AL
5375 status = ata_wait_idle(ap);
5376 }
5377
3655d1d3
AL
5378 if (status & (ATA_BUSY | ATA_DRQ))
5379 qc->err_mask |= AC_ERR_HSM;
5380
eee6c32f
AL
5381 /* ata_pio_sectors() might change the
5382 * state to HSM_ST_LAST. so, the state
5383 * is changed after ata_pio_sectors().
5384 */
5385 ap->hsm_task_state = HSM_ST_ERR;
5386 goto fsm_start;
71601958
AL
5387 }
5388
e2cec771
AL
5389 ata_pio_sectors(qc);
5390
5391 if (ap->hsm_task_state == HSM_ST_LAST &&
5392 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
5393 /* all data read */
52a32205 5394 status = ata_wait_idle(ap);
e2cec771
AL
5395 goto fsm_start;
5396 }
5397 }
5398
bb5cb290 5399 poll_next = 1;
1da177e4
LT
5400 break;
5401
14be71f4 5402 case HSM_ST_LAST:
6912ccd5
AL
5403 if (unlikely(!ata_ok(status))) {
5404 qc->err_mask |= __ac_err_mask(status);
e2cec771
AL
5405 ap->hsm_task_state = HSM_ST_ERR;
5406 goto fsm_start;
5407 }
5408
5409 /* no more data to transfer */
4332a771 5410 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
44877b4e 5411 ap->print_id, qc->dev->devno, status);
e2cec771 5412
6912ccd5
AL
5413 WARN_ON(qc->err_mask);
5414
e2cec771 5415 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 5416
e2cec771 5417 /* complete taskfile transaction */
c17ea20d 5418 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5419
5420 poll_next = 0;
1da177e4
LT
5421 break;
5422
14be71f4 5423 case HSM_ST_ERR:
e2cec771
AL
5424 /* make sure qc->err_mask is available to
5425 * know what's wrong and recover
5426 */
5427 WARN_ON(qc->err_mask == 0);
5428
5429 ap->hsm_task_state = HSM_ST_IDLE;
bb5cb290 5430
999bb6f4 5431 /* complete taskfile transaction */
c17ea20d 5432 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5433
5434 poll_next = 0;
e2cec771
AL
5435 break;
5436 default:
bb5cb290 5437 poll_next = 0;
6912ccd5 5438 BUG();
1da177e4
LT
5439 }
5440
bb5cb290 5441 return poll_next;
1da177e4
LT
5442}
5443
65f27f38 5444static void ata_pio_task(struct work_struct *work)
8061f5f0 5445{
65f27f38
DH
5446 struct ata_port *ap =
5447 container_of(work, struct ata_port, port_task.work);
5448 struct ata_queued_cmd *qc = ap->port_task_data;
8061f5f0 5449 u8 status;
a1af3734 5450 int poll_next;
8061f5f0 5451
7fb6ec28 5452fsm_start:
a1af3734 5453 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
8061f5f0 5454
a1af3734
AL
5455 /*
5456 * This is purely heuristic. This is a fast path.
5457 * Sometimes when we enter, BSY will be cleared in
5458 * a chk-status or two. If not, the drive is probably seeking
5459 * or something. Snooze for a couple msecs, then
5460 * chk-status again. If still busy, queue delayed work.
5461 */
5462 status = ata_busy_wait(ap, ATA_BUSY, 5);
5463 if (status & ATA_BUSY) {
5464 msleep(2);
5465 status = ata_busy_wait(ap, ATA_BUSY, 10);
5466 if (status & ATA_BUSY) {
31ce6dae 5467 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
a1af3734
AL
5468 return;
5469 }
8061f5f0
TH
5470 }
5471
a1af3734
AL
5472 /* move the HSM */
5473 poll_next = ata_hsm_move(ap, qc, status, 1);
8061f5f0 5474
a1af3734
AL
5475 /* another command or interrupt handler
5476 * may be running at this point.
5477 */
5478 if (poll_next)
7fb6ec28 5479 goto fsm_start;
8061f5f0
TH
5480}
5481
1da177e4
LT
5482/**
5483 * ata_qc_new - Request an available ATA command, for queueing
5484 * @ap: Port associated with device @dev
5485 * @dev: Device from whom we request an available command structure
5486 *
5487 * LOCKING:
0cba632b 5488 * None.
1da177e4
LT
5489 */
5490
5491static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5492{
5493 struct ata_queued_cmd *qc = NULL;
5494 unsigned int i;
5495
e3180499 5496 /* no command while frozen */
b51e9e5d 5497 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
e3180499
TH
5498 return NULL;
5499
2ab7db1f
TH
5500 /* the last tag is reserved for internal command. */
5501 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
6cec4a39 5502 if (!test_and_set_bit(i, &ap->qc_allocated)) {
f69499f4 5503 qc = __ata_qc_from_tag(ap, i);
1da177e4
LT
5504 break;
5505 }
5506
5507 if (qc)
5508 qc->tag = i;
5509
5510 return qc;
5511}
5512
5513/**
5514 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
5515 * @dev: Device from whom we request an available command structure
5516 *
5517 * LOCKING:
0cba632b 5518 * None.
1da177e4
LT
5519 */
5520
3373efd8 5521struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 5522{
9af5c9c9 5523 struct ata_port *ap = dev->link->ap;
1da177e4
LT
5524 struct ata_queued_cmd *qc;
5525
5526 qc = ata_qc_new(ap);
5527 if (qc) {
1da177e4
LT
5528 qc->scsicmd = NULL;
5529 qc->ap = ap;
5530 qc->dev = dev;
1da177e4 5531
2c13b7ce 5532 ata_qc_reinit(qc);
1da177e4
LT
5533 }
5534
5535 return qc;
5536}
5537
1da177e4
LT
5538/**
5539 * ata_qc_free - free unused ata_queued_cmd
5540 * @qc: Command to complete
5541 *
5542 * Designed to free unused ata_queued_cmd object
5543 * in case something prevents using it.
5544 *
5545 * LOCKING:
cca3974e 5546 * spin_lock_irqsave(host lock)
1da177e4
LT
5547 */
5548void ata_qc_free(struct ata_queued_cmd *qc)
5549{
4ba946e9
TH
5550 struct ata_port *ap = qc->ap;
5551 unsigned int tag;
5552
a4631474 5553 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 5554
4ba946e9
TH
5555 qc->flags = 0;
5556 tag = qc->tag;
5557 if (likely(ata_tag_valid(tag))) {
4ba946e9 5558 qc->tag = ATA_TAG_POISON;
6cec4a39 5559 clear_bit(tag, &ap->qc_allocated);
4ba946e9 5560 }
1da177e4
LT
5561}
5562
76014427 5563void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 5564{
dedaf2b0 5565 struct ata_port *ap = qc->ap;
9af5c9c9 5566 struct ata_link *link = qc->dev->link;
dedaf2b0 5567
a4631474
TH
5568 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5569 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
5570
5571 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5572 ata_sg_clean(qc);
5573
7401abf2 5574 /* command should be marked inactive atomically with qc completion */
da917d69 5575 if (qc->tf.protocol == ATA_PROT_NCQ) {
9af5c9c9 5576 link->sactive &= ~(1 << qc->tag);
da917d69
TH
5577 if (!link->sactive)
5578 ap->nr_active_links--;
5579 } else {
9af5c9c9 5580 link->active_tag = ATA_TAG_POISON;
da917d69
TH
5581 ap->nr_active_links--;
5582 }
5583
5584 /* clear exclusive status */
5585 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5586 ap->excl_link == link))
5587 ap->excl_link = NULL;
7401abf2 5588
3f3791d3
AL
5589 /* atapi: mark qc as inactive to prevent the interrupt handler
5590 * from completing the command twice later, before the error handler
5591 * is called. (when rc != 0 and atapi request sense is needed)
5592 */
5593 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 5594 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 5595
1da177e4 5596 /* call completion callback */
77853bf2 5597 qc->complete_fn(qc);
1da177e4
LT
5598}
5599
39599a53
TH
5600static void fill_result_tf(struct ata_queued_cmd *qc)
5601{
5602 struct ata_port *ap = qc->ap;
5603
39599a53 5604 qc->result_tf.flags = qc->tf.flags;
4742d54f 5605 ap->ops->tf_read(ap, &qc->result_tf);
39599a53
TH
5606}
5607
f686bcb8
TH
5608/**
5609 * ata_qc_complete - Complete an active ATA command
5610 * @qc: Command to complete
5611 * @err_mask: ATA Status register contents
5612 *
5613 * Indicate to the mid and upper layers that an ATA
5614 * command has completed, with either an ok or not-ok status.
5615 *
5616 * LOCKING:
cca3974e 5617 * spin_lock_irqsave(host lock)
f686bcb8
TH
5618 */
5619void ata_qc_complete(struct ata_queued_cmd *qc)
5620{
5621 struct ata_port *ap = qc->ap;
5622
5623 /* XXX: New EH and old EH use different mechanisms to
5624 * synchronize EH with regular execution path.
5625 *
5626 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5627 * Normal execution path is responsible for not accessing a
5628 * failed qc. libata core enforces the rule by returning NULL
5629 * from ata_qc_from_tag() for failed qcs.
5630 *
5631 * Old EH depends on ata_qc_complete() nullifying completion
5632 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5633 * not synchronize with interrupt handler. Only PIO task is
5634 * taken care of.
5635 */
5636 if (ap->ops->error_handler) {
4dbfa39b
TH
5637 struct ata_device *dev = qc->dev;
5638 struct ata_eh_info *ehi = &dev->link->eh_info;
5639
b51e9e5d 5640 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
f686bcb8
TH
5641
5642 if (unlikely(qc->err_mask))
5643 qc->flags |= ATA_QCFLAG_FAILED;
5644
5645 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5646 if (!ata_tag_internal(qc->tag)) {
5647 /* always fill result TF for failed qc */
39599a53 5648 fill_result_tf(qc);
f686bcb8
TH
5649 ata_qc_schedule_eh(qc);
5650 return;
5651 }
5652 }
5653
5654 /* read result TF if requested */
5655 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5656 fill_result_tf(qc);
f686bcb8 5657
4dbfa39b
TH
5658 /* Some commands need post-processing after successful
5659 * completion.
5660 */
5661 switch (qc->tf.command) {
5662 case ATA_CMD_SET_FEATURES:
5663 if (qc->tf.feature != SETFEATURES_WC_ON &&
5664 qc->tf.feature != SETFEATURES_WC_OFF)
5665 break;
5666 /* fall through */
5667 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5668 case ATA_CMD_SET_MULTI: /* multi_count changed */
5669 /* revalidate device */
5670 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5671 ata_port_schedule_eh(ap);
5672 break;
054a5fba
TH
5673
5674 case ATA_CMD_SLEEP:
5675 dev->flags |= ATA_DFLAG_SLEEPING;
5676 break;
4dbfa39b
TH
5677 }
5678
f686bcb8
TH
5679 __ata_qc_complete(qc);
5680 } else {
5681 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5682 return;
5683
5684 /* read result TF if failed or requested */
5685 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5686 fill_result_tf(qc);
f686bcb8
TH
5687
5688 __ata_qc_complete(qc);
5689 }
5690}
5691
dedaf2b0
TH
5692/**
5693 * ata_qc_complete_multiple - Complete multiple qcs successfully
5694 * @ap: port in question
5695 * @qc_active: new qc_active mask
5696 * @finish_qc: LLDD callback invoked before completing a qc
5697 *
5698 * Complete in-flight commands. This functions is meant to be
5699 * called from low-level driver's interrupt routine to complete
5700 * requests normally. ap->qc_active and @qc_active is compared
5701 * and commands are completed accordingly.
5702 *
5703 * LOCKING:
cca3974e 5704 * spin_lock_irqsave(host lock)
dedaf2b0
TH
5705 *
5706 * RETURNS:
5707 * Number of completed commands on success, -errno otherwise.
5708 */
5709int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5710 void (*finish_qc)(struct ata_queued_cmd *))
5711{
5712 int nr_done = 0;
5713 u32 done_mask;
5714 int i;
5715
5716 done_mask = ap->qc_active ^ qc_active;
5717
5718 if (unlikely(done_mask & qc_active)) {
5719 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5720 "(%08x->%08x)\n", ap->qc_active, qc_active);
5721 return -EINVAL;
5722 }
5723
5724 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5725 struct ata_queued_cmd *qc;
5726
5727 if (!(done_mask & (1 << i)))
5728 continue;
5729
5730 if ((qc = ata_qc_from_tag(ap, i))) {
5731 if (finish_qc)
5732 finish_qc(qc);
5733 ata_qc_complete(qc);
5734 nr_done++;
5735 }
5736 }
5737
5738 return nr_done;
5739}
5740
1da177e4
LT
5741static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5742{
5743 struct ata_port *ap = qc->ap;
5744
5745 switch (qc->tf.protocol) {
3dc1d881 5746 case ATA_PROT_NCQ:
1da177e4
LT
5747 case ATA_PROT_DMA:
5748 case ATA_PROT_ATAPI_DMA:
5749 return 1;
5750
5751 case ATA_PROT_ATAPI:
5752 case ATA_PROT_PIO:
1da177e4
LT
5753 if (ap->flags & ATA_FLAG_PIO_DMA)
5754 return 1;
5755
5756 /* fall through */
5757
5758 default:
5759 return 0;
5760 }
5761
5762 /* never reached */
5763}
5764
5765/**
5766 * ata_qc_issue - issue taskfile to device
5767 * @qc: command to issue to device
5768 *
5769 * Prepare an ATA command to submission to device.
5770 * This includes mapping the data into a DMA-able
5771 * area, filling in the S/G table, and finally
5772 * writing the taskfile to hardware, starting the command.
5773 *
5774 * LOCKING:
cca3974e 5775 * spin_lock_irqsave(host lock)
1da177e4 5776 */
8e0e694a 5777void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
5778{
5779 struct ata_port *ap = qc->ap;
9af5c9c9 5780 struct ata_link *link = qc->dev->link;
1da177e4 5781
dedaf2b0
TH
5782 /* Make sure only one non-NCQ command is outstanding. The
5783 * check is skipped for old EH because it reuses active qc to
5784 * request ATAPI sense.
5785 */
9af5c9c9 5786 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag));
dedaf2b0
TH
5787
5788 if (qc->tf.protocol == ATA_PROT_NCQ) {
9af5c9c9 5789 WARN_ON(link->sactive & (1 << qc->tag));
da917d69
TH
5790
5791 if (!link->sactive)
5792 ap->nr_active_links++;
9af5c9c9 5793 link->sactive |= 1 << qc->tag;
dedaf2b0 5794 } else {
9af5c9c9 5795 WARN_ON(link->sactive);
da917d69
TH
5796
5797 ap->nr_active_links++;
9af5c9c9 5798 link->active_tag = qc->tag;
dedaf2b0
TH
5799 }
5800
e4a70e76 5801 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 5802 ap->qc_active |= 1 << qc->tag;
e4a70e76 5803
1da177e4
LT
5804 if (ata_should_dma_map(qc)) {
5805 if (qc->flags & ATA_QCFLAG_SG) {
5806 if (ata_sg_setup(qc))
8e436af9 5807 goto sg_err;
1da177e4
LT
5808 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5809 if (ata_sg_setup_one(qc))
8e436af9 5810 goto sg_err;
1da177e4
LT
5811 }
5812 } else {
5813 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5814 }
5815
054a5fba
TH
5816 /* if device is sleeping, schedule softreset and abort the link */
5817 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5818 link->eh_info.action |= ATA_EH_SOFTRESET;
5819 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5820 ata_link_abort(link);
5821 return;
5822 }
5823
1da177e4
LT
5824 ap->ops->qc_prep(qc);
5825
8e0e694a
TH
5826 qc->err_mask |= ap->ops->qc_issue(qc);
5827 if (unlikely(qc->err_mask))
5828 goto err;
5829 return;
1da177e4 5830
8e436af9
TH
5831sg_err:
5832 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
5833 qc->err_mask |= AC_ERR_SYSTEM;
5834err:
5835 ata_qc_complete(qc);
1da177e4
LT
5836}
5837
5838/**
5839 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5840 * @qc: command to issue to device
5841 *
5842 * Using various libata functions and hooks, this function
5843 * starts an ATA command. ATA commands are grouped into
5844 * classes called "protocols", and issuing each type of protocol
5845 * is slightly different.
5846 *
0baab86b
EF
5847 * May be used as the qc_issue() entry in ata_port_operations.
5848 *
1da177e4 5849 * LOCKING:
cca3974e 5850 * spin_lock_irqsave(host lock)
1da177e4
LT
5851 *
5852 * RETURNS:
9a3d9eb0 5853 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
5854 */
5855
9a3d9eb0 5856unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
5857{
5858 struct ata_port *ap = qc->ap;
5859
e50362ec
AL
5860 /* Use polling pio if the LLD doesn't handle
5861 * interrupt driven pio and atapi CDB interrupt.
5862 */
5863 if (ap->flags & ATA_FLAG_PIO_POLLING) {
5864 switch (qc->tf.protocol) {
5865 case ATA_PROT_PIO:
e3472cbe 5866 case ATA_PROT_NODATA:
e50362ec
AL
5867 case ATA_PROT_ATAPI:
5868 case ATA_PROT_ATAPI_NODATA:
5869 qc->tf.flags |= ATA_TFLAG_POLLING;
5870 break;
5871 case ATA_PROT_ATAPI_DMA:
5872 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
3a778275 5873 /* see ata_dma_blacklisted() */
e50362ec
AL
5874 BUG();
5875 break;
5876 default:
5877 break;
5878 }
5879 }
5880
312f7da2 5881 /* select the device */
1da177e4
LT
5882 ata_dev_select(ap, qc->dev->devno, 1, 0);
5883
312f7da2 5884 /* start the command */
1da177e4
LT
5885 switch (qc->tf.protocol) {
5886 case ATA_PROT_NODATA:
312f7da2
AL
5887 if (qc->tf.flags & ATA_TFLAG_POLLING)
5888 ata_qc_set_polling(qc);
5889
e5338254 5890 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
5891 ap->hsm_task_state = HSM_ST_LAST;
5892
5893 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 5894 ata_port_queue_task(ap, ata_pio_task, qc, 0);
312f7da2 5895
1da177e4
LT
5896 break;
5897
5898 case ATA_PROT_DMA:
587005de 5899 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 5900
1da177e4
LT
5901 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5902 ap->ops->bmdma_setup(qc); /* set up bmdma */
5903 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 5904 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
5905 break;
5906
312f7da2
AL
5907 case ATA_PROT_PIO:
5908 if (qc->tf.flags & ATA_TFLAG_POLLING)
5909 ata_qc_set_polling(qc);
1da177e4 5910
e5338254 5911 ata_tf_to_host(ap, &qc->tf);
312f7da2 5912
54f00389
AL
5913 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5914 /* PIO data out protocol */
5915 ap->hsm_task_state = HSM_ST_FIRST;
31ce6dae 5916 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
5917
5918 /* always send first data block using
e27486db 5919 * the ata_pio_task() codepath.
54f00389 5920 */
312f7da2 5921 } else {
54f00389
AL
5922 /* PIO data in protocol */
5923 ap->hsm_task_state = HSM_ST;
5924
5925 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 5926 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
5927
5928 /* if polling, ata_pio_task() handles the rest.
5929 * otherwise, interrupt handler takes over from here.
5930 */
312f7da2
AL
5931 }
5932
1da177e4
LT
5933 break;
5934
1da177e4 5935 case ATA_PROT_ATAPI:
1da177e4 5936 case ATA_PROT_ATAPI_NODATA:
312f7da2
AL
5937 if (qc->tf.flags & ATA_TFLAG_POLLING)
5938 ata_qc_set_polling(qc);
5939
e5338254 5940 ata_tf_to_host(ap, &qc->tf);
f6ef65e6 5941
312f7da2
AL
5942 ap->hsm_task_state = HSM_ST_FIRST;
5943
5944 /* send cdb by polling if no cdb interrupt */
5945 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5946 (qc->tf.flags & ATA_TFLAG_POLLING))
31ce6dae 5947 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5948 break;
5949
5950 case ATA_PROT_ATAPI_DMA:
587005de 5951 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 5952
1da177e4
LT
5953 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5954 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
5955 ap->hsm_task_state = HSM_ST_FIRST;
5956
5957 /* send cdb by polling if no cdb interrupt */
5958 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
31ce6dae 5959 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5960 break;
5961
5962 default:
5963 WARN_ON(1);
9a3d9eb0 5964 return AC_ERR_SYSTEM;
1da177e4
LT
5965 }
5966
5967 return 0;
5968}
5969
1da177e4
LT
5970/**
5971 * ata_host_intr - Handle host interrupt for given (port, task)
5972 * @ap: Port on which interrupt arrived (possibly...)
5973 * @qc: Taskfile currently active in engine
5974 *
5975 * Handle host interrupt for given queued command. Currently,
5976 * only DMA interrupts are handled. All other commands are
5977 * handled via polling with interrupts disabled (nIEN bit).
5978 *
5979 * LOCKING:
cca3974e 5980 * spin_lock_irqsave(host lock)
1da177e4
LT
5981 *
5982 * RETURNS:
5983 * One if interrupt was handled, zero if not (shared irq).
5984 */
5985
2dcb407e
JG
5986inline unsigned int ata_host_intr(struct ata_port *ap,
5987 struct ata_queued_cmd *qc)
1da177e4 5988{
9af5c9c9 5989 struct ata_eh_info *ehi = &ap->link.eh_info;
312f7da2 5990 u8 status, host_stat = 0;
1da177e4 5991
312f7da2 5992 VPRINTK("ata%u: protocol %d task_state %d\n",
44877b4e 5993 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 5994
312f7da2
AL
5995 /* Check whether we are expecting interrupt in this state */
5996 switch (ap->hsm_task_state) {
5997 case HSM_ST_FIRST:
6912ccd5
AL
5998 /* Some pre-ATAPI-4 devices assert INTRQ
5999 * at this state when ready to receive CDB.
6000 */
1da177e4 6001
312f7da2
AL
6002 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
6003 * The flag was turned on only for atapi devices.
6004 * No need to check is_atapi_taskfile(&qc->tf) again.
6005 */
6006 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 6007 goto idle_irq;
1da177e4 6008 break;
312f7da2
AL
6009 case HSM_ST_LAST:
6010 if (qc->tf.protocol == ATA_PROT_DMA ||
6011 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
6012 /* check status of DMA engine */
6013 host_stat = ap->ops->bmdma_status(ap);
44877b4e
TH
6014 VPRINTK("ata%u: host_stat 0x%X\n",
6015 ap->print_id, host_stat);
312f7da2
AL
6016
6017 /* if it's not our irq... */
6018 if (!(host_stat & ATA_DMA_INTR))
6019 goto idle_irq;
6020
6021 /* before we do anything else, clear DMA-Start bit */
6022 ap->ops->bmdma_stop(qc);
a4f16610
AL
6023
6024 if (unlikely(host_stat & ATA_DMA_ERR)) {
6025 /* error when transfering data to/from memory */
6026 qc->err_mask |= AC_ERR_HOST_BUS;
6027 ap->hsm_task_state = HSM_ST_ERR;
6028 }
312f7da2
AL
6029 }
6030 break;
6031 case HSM_ST:
6032 break;
1da177e4
LT
6033 default:
6034 goto idle_irq;
6035 }
6036
312f7da2
AL
6037 /* check altstatus */
6038 status = ata_altstatus(ap);
6039 if (status & ATA_BUSY)
6040 goto idle_irq;
1da177e4 6041
312f7da2
AL
6042 /* check main status, clearing INTRQ */
6043 status = ata_chk_status(ap);
6044 if (unlikely(status & ATA_BUSY))
6045 goto idle_irq;
1da177e4 6046
312f7da2
AL
6047 /* ack bmdma irq events */
6048 ap->ops->irq_clear(ap);
1da177e4 6049
bb5cb290 6050 ata_hsm_move(ap, qc, status, 0);
ea54763f
TH
6051
6052 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
6053 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
6054 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
6055
1da177e4
LT
6056 return 1; /* irq handled */
6057
6058idle_irq:
6059 ap->stats.idle_irq++;
6060
6061#ifdef ATA_IRQ_TRAP
6062 if ((ap->stats.idle_irq % 1000) == 0) {
6d32d30f
JG
6063 ata_chk_status(ap);
6064 ap->ops->irq_clear(ap);
f15a1daf 6065 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
23cfce89 6066 return 1;
1da177e4
LT
6067 }
6068#endif
6069 return 0; /* irq not handled */
6070}
6071
6072/**
6073 * ata_interrupt - Default ATA host interrupt handler
0cba632b 6074 * @irq: irq line (unused)
cca3974e 6075 * @dev_instance: pointer to our ata_host information structure
1da177e4 6076 *
0cba632b
JG
6077 * Default interrupt handler for PCI IDE devices. Calls
6078 * ata_host_intr() for each port that is not disabled.
6079 *
1da177e4 6080 * LOCKING:
cca3974e 6081 * Obtains host lock during operation.
1da177e4
LT
6082 *
6083 * RETURNS:
0cba632b 6084 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
6085 */
6086
2dcb407e 6087irqreturn_t ata_interrupt(int irq, void *dev_instance)
1da177e4 6088{
cca3974e 6089 struct ata_host *host = dev_instance;
1da177e4
LT
6090 unsigned int i;
6091 unsigned int handled = 0;
6092 unsigned long flags;
6093
6094 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
cca3974e 6095 spin_lock_irqsave(&host->lock, flags);
1da177e4 6096
cca3974e 6097 for (i = 0; i < host->n_ports; i++) {
1da177e4
LT
6098 struct ata_port *ap;
6099
cca3974e 6100 ap = host->ports[i];
c1389503 6101 if (ap &&
029f5468 6102 !(ap->flags & ATA_FLAG_DISABLED)) {
1da177e4
LT
6103 struct ata_queued_cmd *qc;
6104
9af5c9c9 6105 qc = ata_qc_from_tag(ap, ap->link.active_tag);
312f7da2 6106 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 6107 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
6108 handled |= ata_host_intr(ap, qc);
6109 }
6110 }
6111
cca3974e 6112 spin_unlock_irqrestore(&host->lock, flags);
1da177e4
LT
6113
6114 return IRQ_RETVAL(handled);
6115}
6116
34bf2170
TH
6117/**
6118 * sata_scr_valid - test whether SCRs are accessible
936fd732 6119 * @link: ATA link to test SCR accessibility for
34bf2170 6120 *
936fd732 6121 * Test whether SCRs are accessible for @link.
34bf2170
TH
6122 *
6123 * LOCKING:
6124 * None.
6125 *
6126 * RETURNS:
6127 * 1 if SCRs are accessible, 0 otherwise.
6128 */
936fd732 6129int sata_scr_valid(struct ata_link *link)
34bf2170 6130{
936fd732
TH
6131 struct ata_port *ap = link->ap;
6132
a16abc0b 6133 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
34bf2170
TH
6134}
6135
6136/**
6137 * sata_scr_read - read SCR register of the specified port
936fd732 6138 * @link: ATA link to read SCR for
34bf2170
TH
6139 * @reg: SCR to read
6140 * @val: Place to store read value
6141 *
936fd732 6142 * Read SCR register @reg of @link into *@val. This function is
633273a3
TH
6143 * guaranteed to succeed if @link is ap->link, the cable type of
6144 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
6145 *
6146 * LOCKING:
633273a3 6147 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
6148 *
6149 * RETURNS:
6150 * 0 on success, negative errno on failure.
6151 */
936fd732 6152int sata_scr_read(struct ata_link *link, int reg, u32 *val)
34bf2170 6153{
633273a3
TH
6154 if (ata_is_host_link(link)) {
6155 struct ata_port *ap = link->ap;
936fd732 6156
633273a3
TH
6157 if (sata_scr_valid(link))
6158 return ap->ops->scr_read(ap, reg, val);
6159 return -EOPNOTSUPP;
6160 }
6161
6162 return sata_pmp_scr_read(link, reg, val);
34bf2170
TH
6163}
6164
6165/**
6166 * sata_scr_write - write SCR register of the specified port
936fd732 6167 * @link: ATA link to write SCR for
34bf2170
TH
6168 * @reg: SCR to write
6169 * @val: value to write
6170 *
936fd732 6171 * Write @val to SCR register @reg of @link. This function is
633273a3
TH
6172 * guaranteed to succeed if @link is ap->link, the cable type of
6173 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
6174 *
6175 * LOCKING:
633273a3 6176 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
6177 *
6178 * RETURNS:
6179 * 0 on success, negative errno on failure.
6180 */
936fd732 6181int sata_scr_write(struct ata_link *link, int reg, u32 val)
34bf2170 6182{
633273a3
TH
6183 if (ata_is_host_link(link)) {
6184 struct ata_port *ap = link->ap;
6185
6186 if (sata_scr_valid(link))
6187 return ap->ops->scr_write(ap, reg, val);
6188 return -EOPNOTSUPP;
6189 }
936fd732 6190
633273a3 6191 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
6192}
6193
6194/**
6195 * sata_scr_write_flush - write SCR register of the specified port and flush
936fd732 6196 * @link: ATA link to write SCR for
34bf2170
TH
6197 * @reg: SCR to write
6198 * @val: value to write
6199 *
6200 * This function is identical to sata_scr_write() except that this
6201 * function performs flush after writing to the register.
6202 *
6203 * LOCKING:
633273a3 6204 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
6205 *
6206 * RETURNS:
6207 * 0 on success, negative errno on failure.
6208 */
936fd732 6209int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
34bf2170 6210{
633273a3
TH
6211 if (ata_is_host_link(link)) {
6212 struct ata_port *ap = link->ap;
6213 int rc;
da3dbb17 6214
633273a3
TH
6215 if (sata_scr_valid(link)) {
6216 rc = ap->ops->scr_write(ap, reg, val);
6217 if (rc == 0)
6218 rc = ap->ops->scr_read(ap, reg, &val);
6219 return rc;
6220 }
6221 return -EOPNOTSUPP;
34bf2170 6222 }
633273a3
TH
6223
6224 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
6225}
6226
6227/**
936fd732
TH
6228 * ata_link_online - test whether the given link is online
6229 * @link: ATA link to test
34bf2170 6230 *
936fd732
TH
6231 * Test whether @link is online. Note that this function returns
6232 * 0 if online status of @link cannot be obtained, so
6233 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
6234 *
6235 * LOCKING:
6236 * None.
6237 *
6238 * RETURNS:
6239 * 1 if the port online status is available and online.
6240 */
936fd732 6241int ata_link_online(struct ata_link *link)
34bf2170
TH
6242{
6243 u32 sstatus;
6244
936fd732
TH
6245 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6246 (sstatus & 0xf) == 0x3)
34bf2170
TH
6247 return 1;
6248 return 0;
6249}
6250
6251/**
936fd732
TH
6252 * ata_link_offline - test whether the given link is offline
6253 * @link: ATA link to test
34bf2170 6254 *
936fd732
TH
6255 * Test whether @link is offline. Note that this function
6256 * returns 0 if offline status of @link cannot be obtained, so
6257 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
6258 *
6259 * LOCKING:
6260 * None.
6261 *
6262 * RETURNS:
6263 * 1 if the port offline status is available and offline.
6264 */
936fd732 6265int ata_link_offline(struct ata_link *link)
34bf2170
TH
6266{
6267 u32 sstatus;
6268
936fd732
TH
6269 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6270 (sstatus & 0xf) != 0x3)
34bf2170
TH
6271 return 1;
6272 return 0;
6273}
0baab86b 6274
77b08fb5 6275int ata_flush_cache(struct ata_device *dev)
9b847548 6276{
977e6b9f 6277 unsigned int err_mask;
9b847548
JA
6278 u8 cmd;
6279
6280 if (!ata_try_flush_cache(dev))
6281 return 0;
6282
6fc49adb 6283 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
9b847548
JA
6284 cmd = ATA_CMD_FLUSH_EXT;
6285 else
6286 cmd = ATA_CMD_FLUSH;
6287
4f34337b
AC
6288 /* This is wrong. On a failed flush we get back the LBA of the lost
6289 sector and we should (assuming it wasn't aborted as unknown) issue
2dcb407e 6290 a further flush command to continue the writeback until it
4f34337b 6291 does not error */
977e6b9f
TH
6292 err_mask = ata_do_simple_cmd(dev, cmd);
6293 if (err_mask) {
6294 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
6295 return -EIO;
6296 }
6297
6298 return 0;
9b847548
JA
6299}
6300
6ffa01d8 6301#ifdef CONFIG_PM
cca3974e
JG
6302static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
6303 unsigned int action, unsigned int ehi_flags,
6304 int wait)
500530f6
TH
6305{
6306 unsigned long flags;
6307 int i, rc;
6308
cca3974e
JG
6309 for (i = 0; i < host->n_ports; i++) {
6310 struct ata_port *ap = host->ports[i];
e3667ebf 6311 struct ata_link *link;
500530f6
TH
6312
6313 /* Previous resume operation might still be in
6314 * progress. Wait for PM_PENDING to clear.
6315 */
6316 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
6317 ata_port_wait_eh(ap);
6318 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6319 }
6320
6321 /* request PM ops to EH */
6322 spin_lock_irqsave(ap->lock, flags);
6323
6324 ap->pm_mesg = mesg;
6325 if (wait) {
6326 rc = 0;
6327 ap->pm_result = &rc;
6328 }
6329
6330 ap->pflags |= ATA_PFLAG_PM_PENDING;
e3667ebf
TH
6331 __ata_port_for_each_link(link, ap) {
6332 link->eh_info.action |= action;
6333 link->eh_info.flags |= ehi_flags;
6334 }
500530f6
TH
6335
6336 ata_port_schedule_eh(ap);
6337
6338 spin_unlock_irqrestore(ap->lock, flags);
6339
6340 /* wait and check result */
6341 if (wait) {
6342 ata_port_wait_eh(ap);
6343 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6344 if (rc)
6345 return rc;
6346 }
6347 }
6348
6349 return 0;
6350}
6351
6352/**
cca3974e
JG
6353 * ata_host_suspend - suspend host
6354 * @host: host to suspend
500530f6
TH
6355 * @mesg: PM message
6356 *
cca3974e 6357 * Suspend @host. Actual operation is performed by EH. This
500530f6
TH
6358 * function requests EH to perform PM operations and waits for EH
6359 * to finish.
6360 *
6361 * LOCKING:
6362 * Kernel thread context (may sleep).
6363 *
6364 * RETURNS:
6365 * 0 on success, -errno on failure.
6366 */
cca3974e 6367int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6 6368{
9666f400 6369 int rc;
500530f6 6370
cca3974e 6371 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
9666f400
TH
6372 if (rc == 0)
6373 host->dev->power.power_state = mesg;
500530f6
TH
6374 return rc;
6375}
6376
6377/**
cca3974e
JG
6378 * ata_host_resume - resume host
6379 * @host: host to resume
500530f6 6380 *
cca3974e 6381 * Resume @host. Actual operation is performed by EH. This
500530f6
TH
6382 * function requests EH to perform PM operations and returns.
6383 * Note that all resume operations are performed parallely.
6384 *
6385 * LOCKING:
6386 * Kernel thread context (may sleep).
6387 */
cca3974e 6388void ata_host_resume(struct ata_host *host)
500530f6 6389{
cca3974e
JG
6390 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
6391 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
6392 host->dev->power.power_state = PMSG_ON;
500530f6 6393}
6ffa01d8 6394#endif
500530f6 6395
c893a3ae
RD
6396/**
6397 * ata_port_start - Set port up for dma.
6398 * @ap: Port to initialize
6399 *
6400 * Called just after data structures for each port are
6401 * initialized. Allocates space for PRD table.
6402 *
6403 * May be used as the port_start() entry in ata_port_operations.
6404 *
6405 * LOCKING:
6406 * Inherited from caller.
6407 */
f0d36efd 6408int ata_port_start(struct ata_port *ap)
1da177e4 6409{
2f1f610b 6410 struct device *dev = ap->dev;
6037d6bb 6411 int rc;
1da177e4 6412
f0d36efd
TH
6413 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
6414 GFP_KERNEL);
1da177e4
LT
6415 if (!ap->prd)
6416 return -ENOMEM;
6417
6037d6bb 6418 rc = ata_pad_alloc(ap, dev);
f0d36efd 6419 if (rc)
6037d6bb 6420 return rc;
1da177e4 6421
f0d36efd
TH
6422 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
6423 (unsigned long long)ap->prd_dma);
1da177e4
LT
6424 return 0;
6425}
6426
3ef3b43d
TH
6427/**
6428 * ata_dev_init - Initialize an ata_device structure
6429 * @dev: Device structure to initialize
6430 *
6431 * Initialize @dev in preparation for probing.
6432 *
6433 * LOCKING:
6434 * Inherited from caller.
6435 */
6436void ata_dev_init(struct ata_device *dev)
6437{
9af5c9c9
TH
6438 struct ata_link *link = dev->link;
6439 struct ata_port *ap = link->ap;
72fa4b74
TH
6440 unsigned long flags;
6441
5a04bf4b 6442 /* SATA spd limit is bound to the first device */
9af5c9c9
TH
6443 link->sata_spd_limit = link->hw_sata_spd_limit;
6444 link->sata_spd = 0;
5a04bf4b 6445
72fa4b74
TH
6446 /* High bits of dev->flags are used to record warm plug
6447 * requests which occur asynchronously. Synchronize using
cca3974e 6448 * host lock.
72fa4b74 6449 */
ba6a1308 6450 spin_lock_irqsave(ap->lock, flags);
72fa4b74 6451 dev->flags &= ~ATA_DFLAG_INIT_MASK;
3dcc323f 6452 dev->horkage = 0;
ba6a1308 6453 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 6454
72fa4b74
TH
6455 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
6456 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
3ef3b43d
TH
6457 dev->pio_mask = UINT_MAX;
6458 dev->mwdma_mask = UINT_MAX;
6459 dev->udma_mask = UINT_MAX;
6460}
6461
4fb37a25
TH
6462/**
6463 * ata_link_init - Initialize an ata_link structure
6464 * @ap: ATA port link is attached to
6465 * @link: Link structure to initialize
8989805d 6466 * @pmp: Port multiplier port number
4fb37a25
TH
6467 *
6468 * Initialize @link.
6469 *
6470 * LOCKING:
6471 * Kernel thread context (may sleep)
6472 */
fb7fd614 6473void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
4fb37a25
TH
6474{
6475 int i;
6476
6477 /* clear everything except for devices */
6478 memset(link, 0, offsetof(struct ata_link, device[0]));
6479
6480 link->ap = ap;
8989805d 6481 link->pmp = pmp;
4fb37a25
TH
6482 link->active_tag = ATA_TAG_POISON;
6483 link->hw_sata_spd_limit = UINT_MAX;
6484
6485 /* can't use iterator, ap isn't initialized yet */
6486 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6487 struct ata_device *dev = &link->device[i];
6488
6489 dev->link = link;
6490 dev->devno = dev - link->device;
6491 ata_dev_init(dev);
6492 }
6493}
6494
6495/**
6496 * sata_link_init_spd - Initialize link->sata_spd_limit
6497 * @link: Link to configure sata_spd_limit for
6498 *
6499 * Initialize @link->[hw_]sata_spd_limit to the currently
6500 * configured value.
6501 *
6502 * LOCKING:
6503 * Kernel thread context (may sleep).
6504 *
6505 * RETURNS:
6506 * 0 on success, -errno on failure.
6507 */
fb7fd614 6508int sata_link_init_spd(struct ata_link *link)
4fb37a25
TH
6509{
6510 u32 scontrol, spd;
6511 int rc;
6512
6513 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
6514 if (rc)
6515 return rc;
6516
6517 spd = (scontrol >> 4) & 0xf;
6518 if (spd)
6519 link->hw_sata_spd_limit &= (1 << spd) - 1;
6520
6521 link->sata_spd_limit = link->hw_sata_spd_limit;
6522
6523 return 0;
6524}
6525
1da177e4 6526/**
f3187195
TH
6527 * ata_port_alloc - allocate and initialize basic ATA port resources
6528 * @host: ATA host this allocated port belongs to
1da177e4 6529 *
f3187195
TH
6530 * Allocate and initialize basic ATA port resources.
6531 *
6532 * RETURNS:
6533 * Allocate ATA port on success, NULL on failure.
0cba632b 6534 *
1da177e4 6535 * LOCKING:
f3187195 6536 * Inherited from calling layer (may sleep).
1da177e4 6537 */
f3187195 6538struct ata_port *ata_port_alloc(struct ata_host *host)
1da177e4 6539{
f3187195 6540 struct ata_port *ap;
1da177e4 6541
f3187195
TH
6542 DPRINTK("ENTER\n");
6543
6544 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6545 if (!ap)
6546 return NULL;
6547
f4d6d004 6548 ap->pflags |= ATA_PFLAG_INITIALIZING;
cca3974e 6549 ap->lock = &host->lock;
198e0fed 6550 ap->flags = ATA_FLAG_DISABLED;
f3187195 6551 ap->print_id = -1;
1da177e4 6552 ap->ctl = ATA_DEVCTL_OBS;
cca3974e 6553 ap->host = host;
f3187195 6554 ap->dev = host->dev;
1da177e4 6555 ap->last_ctl = 0xFF;
bd5d825c
BP
6556
6557#if defined(ATA_VERBOSE_DEBUG)
6558 /* turn on all debugging levels */
6559 ap->msg_enable = 0x00FF;
6560#elif defined(ATA_DEBUG)
6561 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 6562#else
0dd4b21f 6563 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 6564#endif
1da177e4 6565
65f27f38
DH
6566 INIT_DELAYED_WORK(&ap->port_task, NULL);
6567 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6568 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 6569 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 6570 init_waitqueue_head(&ap->eh_wait_q);
5ddf24c5
TH
6571 init_timer_deferrable(&ap->fastdrain_timer);
6572 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
6573 ap->fastdrain_timer.data = (unsigned long)ap;
1da177e4 6574
838df628 6575 ap->cbl = ATA_CBL_NONE;
838df628 6576
8989805d 6577 ata_link_init(ap, &ap->link, 0);
1da177e4
LT
6578
6579#ifdef ATA_IRQ_TRAP
6580 ap->stats.unhandled_irq = 1;
6581 ap->stats.idle_irq = 1;
6582#endif
1da177e4 6583 return ap;
1da177e4
LT
6584}
6585
f0d36efd
TH
6586static void ata_host_release(struct device *gendev, void *res)
6587{
6588 struct ata_host *host = dev_get_drvdata(gendev);
6589 int i;
6590
6591 for (i = 0; i < host->n_ports; i++) {
6592 struct ata_port *ap = host->ports[i];
6593
ecef7253
TH
6594 if (!ap)
6595 continue;
6596
6597 if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop)
f0d36efd 6598 ap->ops->port_stop(ap);
f0d36efd
TH
6599 }
6600
ecef7253 6601 if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop)
f0d36efd 6602 host->ops->host_stop(host);
1aa56cca 6603
1aa506e4
TH
6604 for (i = 0; i < host->n_ports; i++) {
6605 struct ata_port *ap = host->ports[i];
6606
4911487a
TH
6607 if (!ap)
6608 continue;
6609
6610 if (ap->scsi_host)
1aa506e4
TH
6611 scsi_host_put(ap->scsi_host);
6612
633273a3 6613 kfree(ap->pmp_link);
4911487a 6614 kfree(ap);
1aa506e4
TH
6615 host->ports[i] = NULL;
6616 }
6617
1aa56cca 6618 dev_set_drvdata(gendev, NULL);
f0d36efd
TH
6619}
6620
f3187195
TH
6621/**
6622 * ata_host_alloc - allocate and init basic ATA host resources
6623 * @dev: generic device this host is associated with
6624 * @max_ports: maximum number of ATA ports associated with this host
6625 *
6626 * Allocate and initialize basic ATA host resources. LLD calls
6627 * this function to allocate a host, initializes it fully and
6628 * attaches it using ata_host_register().
6629 *
6630 * @max_ports ports are allocated and host->n_ports is
6631 * initialized to @max_ports. The caller is allowed to decrease
6632 * host->n_ports before calling ata_host_register(). The unused
6633 * ports will be automatically freed on registration.
6634 *
6635 * RETURNS:
6636 * Allocate ATA host on success, NULL on failure.
6637 *
6638 * LOCKING:
6639 * Inherited from calling layer (may sleep).
6640 */
6641struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6642{
6643 struct ata_host *host;
6644 size_t sz;
6645 int i;
6646
6647 DPRINTK("ENTER\n");
6648
6649 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6650 return NULL;
6651
6652 /* alloc a container for our list of ATA ports (buses) */
6653 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6654 /* alloc a container for our list of ATA ports (buses) */
6655 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6656 if (!host)
6657 goto err_out;
6658
6659 devres_add(dev, host);
6660 dev_set_drvdata(dev, host);
6661
6662 spin_lock_init(&host->lock);
6663 host->dev = dev;
6664 host->n_ports = max_ports;
6665
6666 /* allocate ports bound to this host */
6667 for (i = 0; i < max_ports; i++) {
6668 struct ata_port *ap;
6669
6670 ap = ata_port_alloc(host);
6671 if (!ap)
6672 goto err_out;
6673
6674 ap->port_no = i;
6675 host->ports[i] = ap;
6676 }
6677
6678 devres_remove_group(dev, NULL);
6679 return host;
6680
6681 err_out:
6682 devres_release_group(dev, NULL);
6683 return NULL;
6684}
6685
f5cda257
TH
6686/**
6687 * ata_host_alloc_pinfo - alloc host and init with port_info array
6688 * @dev: generic device this host is associated with
6689 * @ppi: array of ATA port_info to initialize host with
6690 * @n_ports: number of ATA ports attached to this host
6691 *
6692 * Allocate ATA host and initialize with info from @ppi. If NULL
6693 * terminated, @ppi may contain fewer entries than @n_ports. The
6694 * last entry will be used for the remaining ports.
6695 *
6696 * RETURNS:
6697 * Allocate ATA host on success, NULL on failure.
6698 *
6699 * LOCKING:
6700 * Inherited from calling layer (may sleep).
6701 */
6702struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6703 const struct ata_port_info * const * ppi,
6704 int n_ports)
6705{
6706 const struct ata_port_info *pi;
6707 struct ata_host *host;
6708 int i, j;
6709
6710 host = ata_host_alloc(dev, n_ports);
6711 if (!host)
6712 return NULL;
6713
6714 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6715 struct ata_port *ap = host->ports[i];
6716
6717 if (ppi[j])
6718 pi = ppi[j++];
6719
6720 ap->pio_mask = pi->pio_mask;
6721 ap->mwdma_mask = pi->mwdma_mask;
6722 ap->udma_mask = pi->udma_mask;
6723 ap->flags |= pi->flags;
0c88758b 6724 ap->link.flags |= pi->link_flags;
f5cda257
TH
6725 ap->ops = pi->port_ops;
6726
6727 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6728 host->ops = pi->port_ops;
6729 if (!host->private_data && pi->private_data)
6730 host->private_data = pi->private_data;
6731 }
6732
6733 return host;
6734}
6735
ecef7253
TH
6736/**
6737 * ata_host_start - start and freeze ports of an ATA host
6738 * @host: ATA host to start ports for
6739 *
6740 * Start and then freeze ports of @host. Started status is
6741 * recorded in host->flags, so this function can be called
6742 * multiple times. Ports are guaranteed to get started only
f3187195
TH
6743 * once. If host->ops isn't initialized yet, its set to the
6744 * first non-dummy port ops.
ecef7253
TH
6745 *
6746 * LOCKING:
6747 * Inherited from calling layer (may sleep).
6748 *
6749 * RETURNS:
6750 * 0 if all ports are started successfully, -errno otherwise.
6751 */
6752int ata_host_start(struct ata_host *host)
6753{
6754 int i, rc;
6755
6756 if (host->flags & ATA_HOST_STARTED)
6757 return 0;
6758
6759 for (i = 0; i < host->n_ports; i++) {
6760 struct ata_port *ap = host->ports[i];
6761
f3187195
TH
6762 if (!host->ops && !ata_port_is_dummy(ap))
6763 host->ops = ap->ops;
6764
ecef7253
TH
6765 if (ap->ops->port_start) {
6766 rc = ap->ops->port_start(ap);
6767 if (rc) {
6768 ata_port_printk(ap, KERN_ERR, "failed to "
6769 "start port (errno=%d)\n", rc);
6770 goto err_out;
6771 }
6772 }
6773
6774 ata_eh_freeze_port(ap);
6775 }
6776
6777 host->flags |= ATA_HOST_STARTED;
6778 return 0;
6779
6780 err_out:
6781 while (--i >= 0) {
6782 struct ata_port *ap = host->ports[i];
6783
6784 if (ap->ops->port_stop)
6785 ap->ops->port_stop(ap);
6786 }
6787 return rc;
6788}
6789
b03732f0 6790/**
cca3974e
JG
6791 * ata_sas_host_init - Initialize a host struct
6792 * @host: host to initialize
6793 * @dev: device host is attached to
6794 * @flags: host flags
6795 * @ops: port_ops
b03732f0
BK
6796 *
6797 * LOCKING:
6798 * PCI/etc. bus probe sem.
6799 *
6800 */
f3187195 6801/* KILLME - the only user left is ipr */
cca3974e
JG
6802void ata_host_init(struct ata_host *host, struct device *dev,
6803 unsigned long flags, const struct ata_port_operations *ops)
b03732f0 6804{
cca3974e
JG
6805 spin_lock_init(&host->lock);
6806 host->dev = dev;
6807 host->flags = flags;
6808 host->ops = ops;
b03732f0
BK
6809}
6810
f3187195
TH
6811/**
6812 * ata_host_register - register initialized ATA host
6813 * @host: ATA host to register
6814 * @sht: template for SCSI host
6815 *
6816 * Register initialized ATA host. @host is allocated using
6817 * ata_host_alloc() and fully initialized by LLD. This function
6818 * starts ports, registers @host with ATA and SCSI layers and
6819 * probe registered devices.
6820 *
6821 * LOCKING:
6822 * Inherited from calling layer (may sleep).
6823 *
6824 * RETURNS:
6825 * 0 on success, -errno otherwise.
6826 */
6827int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6828{
6829 int i, rc;
6830
6831 /* host must have been started */
6832 if (!(host->flags & ATA_HOST_STARTED)) {
6833 dev_printk(KERN_ERR, host->dev,
6834 "BUG: trying to register unstarted host\n");
6835 WARN_ON(1);
6836 return -EINVAL;
6837 }
6838
6839 /* Blow away unused ports. This happens when LLD can't
6840 * determine the exact number of ports to allocate at
6841 * allocation time.
6842 */
6843 for (i = host->n_ports; host->ports[i]; i++)
6844 kfree(host->ports[i]);
6845
6846 /* give ports names and add SCSI hosts */
6847 for (i = 0; i < host->n_ports; i++)
6848 host->ports[i]->print_id = ata_print_id++;
6849
6850 rc = ata_scsi_add_hosts(host, sht);
6851 if (rc)
6852 return rc;
6853
fafbae87
TH
6854 /* associate with ACPI nodes */
6855 ata_acpi_associate(host);
6856
f3187195
TH
6857 /* set cable, sata_spd_limit and report */
6858 for (i = 0; i < host->n_ports; i++) {
6859 struct ata_port *ap = host->ports[i];
f3187195
TH
6860 unsigned long xfer_mask;
6861
6862 /* set SATA cable type if still unset */
6863 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6864 ap->cbl = ATA_CBL_SATA;
6865
6866 /* init sata_spd_limit to the current value */
4fb37a25 6867 sata_link_init_spd(&ap->link);
f3187195 6868
cbcdd875 6869 /* print per-port info to dmesg */
f3187195
TH
6870 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6871 ap->udma_mask);
6872
abf6e8ed 6873 if (!ata_port_is_dummy(ap)) {
cbcdd875
TH
6874 ata_port_printk(ap, KERN_INFO,
6875 "%cATA max %s %s\n",
a16abc0b 6876 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
f3187195 6877 ata_mode_string(xfer_mask),
cbcdd875 6878 ap->link.eh_info.desc);
abf6e8ed
TH
6879 ata_ehi_clear_desc(&ap->link.eh_info);
6880 } else
f3187195
TH
6881 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6882 }
6883
6884 /* perform each probe synchronously */
6885 DPRINTK("probe begin\n");
6886 for (i = 0; i < host->n_ports; i++) {
6887 struct ata_port *ap = host->ports[i];
6888 int rc;
6889
6890 /* probe */
6891 if (ap->ops->error_handler) {
9af5c9c9 6892 struct ata_eh_info *ehi = &ap->link.eh_info;
f3187195
TH
6893 unsigned long flags;
6894
6895 ata_port_probe(ap);
6896
6897 /* kick EH for boot probing */
6898 spin_lock_irqsave(ap->lock, flags);
6899
f58229f8
TH
6900 ehi->probe_mask =
6901 (1 << ata_link_max_devices(&ap->link)) - 1;
f3187195
TH
6902 ehi->action |= ATA_EH_SOFTRESET;
6903 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6904
f4d6d004 6905 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
f3187195
TH
6906 ap->pflags |= ATA_PFLAG_LOADING;
6907 ata_port_schedule_eh(ap);
6908
6909 spin_unlock_irqrestore(ap->lock, flags);
6910
6911 /* wait for EH to finish */
6912 ata_port_wait_eh(ap);
6913 } else {
6914 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6915 rc = ata_bus_probe(ap);
6916 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6917
6918 if (rc) {
6919 /* FIXME: do something useful here?
6920 * Current libata behavior will
6921 * tear down everything when
6922 * the module is removed
6923 * or the h/w is unplugged.
6924 */
6925 }
6926 }
6927 }
6928
6929 /* probes are done, now scan each port's disk(s) */
6930 DPRINTK("host probe begin\n");
6931 for (i = 0; i < host->n_ports; i++) {
6932 struct ata_port *ap = host->ports[i];
6933
1ae46317 6934 ata_scsi_scan_host(ap, 1);
f3187195
TH
6935 }
6936
6937 return 0;
6938}
6939
f5cda257
TH
6940/**
6941 * ata_host_activate - start host, request IRQ and register it
6942 * @host: target ATA host
6943 * @irq: IRQ to request
6944 * @irq_handler: irq_handler used when requesting IRQ
6945 * @irq_flags: irq_flags used when requesting IRQ
6946 * @sht: scsi_host_template to use when registering the host
6947 *
6948 * After allocating an ATA host and initializing it, most libata
6949 * LLDs perform three steps to activate the host - start host,
6950 * request IRQ and register it. This helper takes necessasry
6951 * arguments and performs the three steps in one go.
6952 *
6953 * LOCKING:
6954 * Inherited from calling layer (may sleep).
6955 *
6956 * RETURNS:
6957 * 0 on success, -errno otherwise.
6958 */
6959int ata_host_activate(struct ata_host *host, int irq,
6960 irq_handler_t irq_handler, unsigned long irq_flags,
6961 struct scsi_host_template *sht)
6962{
cbcdd875 6963 int i, rc;
f5cda257
TH
6964
6965 rc = ata_host_start(host);
6966 if (rc)
6967 return rc;
6968
6969 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6970 dev_driver_string(host->dev), host);
6971 if (rc)
6972 return rc;
6973
cbcdd875
TH
6974 for (i = 0; i < host->n_ports; i++)
6975 ata_port_desc(host->ports[i], "irq %d", irq);
4031826b 6976
f5cda257
TH
6977 rc = ata_host_register(host, sht);
6978 /* if failed, just free the IRQ and leave ports alone */
6979 if (rc)
6980 devm_free_irq(host->dev, irq, host);
6981
6982 return rc;
6983}
6984
720ba126
TH
6985/**
6986 * ata_port_detach - Detach ATA port in prepration of device removal
6987 * @ap: ATA port to be detached
6988 *
6989 * Detach all ATA devices and the associated SCSI devices of @ap;
6990 * then, remove the associated SCSI host. @ap is guaranteed to
6991 * be quiescent on return from this function.
6992 *
6993 * LOCKING:
6994 * Kernel thread context (may sleep).
6995 */
741b7763 6996static void ata_port_detach(struct ata_port *ap)
720ba126
TH
6997{
6998 unsigned long flags;
41bda9c9 6999 struct ata_link *link;
f58229f8 7000 struct ata_device *dev;
720ba126
TH
7001
7002 if (!ap->ops->error_handler)
c3cf30a9 7003 goto skip_eh;
720ba126
TH
7004
7005 /* tell EH we're leaving & flush EH */
ba6a1308 7006 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 7007 ap->pflags |= ATA_PFLAG_UNLOADING;
ba6a1308 7008 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
7009
7010 ata_port_wait_eh(ap);
7011
7012 /* EH is now guaranteed to see UNLOADING, so no new device
7013 * will be attached. Disable all existing devices.
7014 */
ba6a1308 7015 spin_lock_irqsave(ap->lock, flags);
720ba126 7016
41bda9c9
TH
7017 ata_port_for_each_link(link, ap) {
7018 ata_link_for_each_dev(dev, link)
7019 ata_dev_disable(dev);
7020 }
720ba126 7021
ba6a1308 7022 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
7023
7024 /* Final freeze & EH. All in-flight commands are aborted. EH
7025 * will be skipped and retrials will be terminated with bad
7026 * target.
7027 */
ba6a1308 7028 spin_lock_irqsave(ap->lock, flags);
720ba126 7029 ata_port_freeze(ap); /* won't be thawed */
ba6a1308 7030 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
7031
7032 ata_port_wait_eh(ap);
45a66c1c 7033 cancel_rearming_delayed_work(&ap->hotplug_task);
720ba126 7034
c3cf30a9 7035 skip_eh:
720ba126 7036 /* remove the associated SCSI host */
cca3974e 7037 scsi_remove_host(ap->scsi_host);
720ba126
TH
7038}
7039
0529c159
TH
7040/**
7041 * ata_host_detach - Detach all ports of an ATA host
7042 * @host: Host to detach
7043 *
7044 * Detach all ports of @host.
7045 *
7046 * LOCKING:
7047 * Kernel thread context (may sleep).
7048 */
7049void ata_host_detach(struct ata_host *host)
7050{
7051 int i;
7052
7053 for (i = 0; i < host->n_ports; i++)
7054 ata_port_detach(host->ports[i]);
7055}
7056
1da177e4
LT
7057/**
7058 * ata_std_ports - initialize ioaddr with standard port offsets.
7059 * @ioaddr: IO address structure to be initialized
0baab86b
EF
7060 *
7061 * Utility function which initializes data_addr, error_addr,
7062 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
7063 * device_addr, status_addr, and command_addr to standard offsets
7064 * relative to cmd_addr.
7065 *
7066 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 7067 */
0baab86b 7068
1da177e4
LT
7069void ata_std_ports(struct ata_ioports *ioaddr)
7070{
7071 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
7072 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
7073 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
7074 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
7075 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
7076 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
7077 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
7078 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
7079 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
7080 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
7081}
7082
0baab86b 7083
374b1873
JG
7084#ifdef CONFIG_PCI
7085
1da177e4
LT
7086/**
7087 * ata_pci_remove_one - PCI layer callback for device removal
7088 * @pdev: PCI device that was removed
7089 *
b878ca5d
TH
7090 * PCI layer indicates to libata via this hook that hot-unplug or
7091 * module unload event has occurred. Detach all ports. Resource
7092 * release is handled via devres.
1da177e4
LT
7093 *
7094 * LOCKING:
7095 * Inherited from PCI layer (may sleep).
7096 */
f0d36efd 7097void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4 7098{
2855568b 7099 struct device *dev = &pdev->dev;
cca3974e 7100 struct ata_host *host = dev_get_drvdata(dev);
1da177e4 7101
b878ca5d 7102 ata_host_detach(host);
1da177e4
LT
7103}
7104
7105/* move to PCI subsystem */
057ace5e 7106int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
7107{
7108 unsigned long tmp = 0;
7109
7110 switch (bits->width) {
7111 case 1: {
7112 u8 tmp8 = 0;
7113 pci_read_config_byte(pdev, bits->reg, &tmp8);
7114 tmp = tmp8;
7115 break;
7116 }
7117 case 2: {
7118 u16 tmp16 = 0;
7119 pci_read_config_word(pdev, bits->reg, &tmp16);
7120 tmp = tmp16;
7121 break;
7122 }
7123 case 4: {
7124 u32 tmp32 = 0;
7125 pci_read_config_dword(pdev, bits->reg, &tmp32);
7126 tmp = tmp32;
7127 break;
7128 }
7129
7130 default:
7131 return -EINVAL;
7132 }
7133
7134 tmp &= bits->mask;
7135
7136 return (tmp == bits->val) ? 1 : 0;
7137}
9b847548 7138
6ffa01d8 7139#ifdef CONFIG_PM
3c5100c1 7140void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
7141{
7142 pci_save_state(pdev);
4c90d971 7143 pci_disable_device(pdev);
500530f6 7144
4c90d971 7145 if (mesg.event == PM_EVENT_SUSPEND)
500530f6 7146 pci_set_power_state(pdev, PCI_D3hot);
9b847548
JA
7147}
7148
553c4aa6 7149int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 7150{
553c4aa6
TH
7151 int rc;
7152
9b847548
JA
7153 pci_set_power_state(pdev, PCI_D0);
7154 pci_restore_state(pdev);
553c4aa6 7155
b878ca5d 7156 rc = pcim_enable_device(pdev);
553c4aa6
TH
7157 if (rc) {
7158 dev_printk(KERN_ERR, &pdev->dev,
7159 "failed to enable device after resume (%d)\n", rc);
7160 return rc;
7161 }
7162
9b847548 7163 pci_set_master(pdev);
553c4aa6 7164 return 0;
500530f6
TH
7165}
7166
3c5100c1 7167int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 7168{
cca3974e 7169 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
7170 int rc = 0;
7171
cca3974e 7172 rc = ata_host_suspend(host, mesg);
500530f6
TH
7173 if (rc)
7174 return rc;
7175
3c5100c1 7176 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
7177
7178 return 0;
7179}
7180
7181int ata_pci_device_resume(struct pci_dev *pdev)
7182{
cca3974e 7183 struct ata_host *host = dev_get_drvdata(&pdev->dev);
553c4aa6 7184 int rc;
500530f6 7185
553c4aa6
TH
7186 rc = ata_pci_device_do_resume(pdev);
7187 if (rc == 0)
7188 ata_host_resume(host);
7189 return rc;
9b847548 7190}
6ffa01d8
TH
7191#endif /* CONFIG_PM */
7192
1da177e4
LT
7193#endif /* CONFIG_PCI */
7194
7195
1da177e4
LT
7196static int __init ata_init(void)
7197{
a8601e5f 7198 ata_probe_timeout *= HZ;
1da177e4
LT
7199 ata_wq = create_workqueue("ata");
7200 if (!ata_wq)
7201 return -ENOMEM;
7202
453b07ac
TH
7203 ata_aux_wq = create_singlethread_workqueue("ata_aux");
7204 if (!ata_aux_wq) {
7205 destroy_workqueue(ata_wq);
7206 return -ENOMEM;
7207 }
7208
1da177e4
LT
7209 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
7210 return 0;
7211}
7212
7213static void __exit ata_exit(void)
7214{
7215 destroy_workqueue(ata_wq);
453b07ac 7216 destroy_workqueue(ata_aux_wq);
1da177e4
LT
7217}
7218
a4625085 7219subsys_initcall(ata_init);
1da177e4
LT
7220module_exit(ata_exit);
7221
67846b30 7222static unsigned long ratelimit_time;
34af946a 7223static DEFINE_SPINLOCK(ata_ratelimit_lock);
67846b30
JG
7224
7225int ata_ratelimit(void)
7226{
7227 int rc;
7228 unsigned long flags;
7229
7230 spin_lock_irqsave(&ata_ratelimit_lock, flags);
7231
7232 if (time_after(jiffies, ratelimit_time)) {
7233 rc = 1;
7234 ratelimit_time = jiffies + (HZ/5);
7235 } else
7236 rc = 0;
7237
7238 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
7239
7240 return rc;
7241}
7242
c22daff4
TH
7243/**
7244 * ata_wait_register - wait until register value changes
7245 * @reg: IO-mapped register
7246 * @mask: Mask to apply to read register value
7247 * @val: Wait condition
7248 * @interval_msec: polling interval in milliseconds
7249 * @timeout_msec: timeout in milliseconds
7250 *
7251 * Waiting for some bits of register to change is a common
7252 * operation for ATA controllers. This function reads 32bit LE
7253 * IO-mapped register @reg and tests for the following condition.
7254 *
7255 * (*@reg & mask) != val
7256 *
7257 * If the condition is met, it returns; otherwise, the process is
7258 * repeated after @interval_msec until timeout.
7259 *
7260 * LOCKING:
7261 * Kernel thread context (may sleep)
7262 *
7263 * RETURNS:
7264 * The final register value.
7265 */
7266u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
7267 unsigned long interval_msec,
7268 unsigned long timeout_msec)
7269{
7270 unsigned long timeout;
7271 u32 tmp;
7272
7273 tmp = ioread32(reg);
7274
7275 /* Calculate timeout _after_ the first read to make sure
7276 * preceding writes reach the controller before starting to
7277 * eat away the timeout.
7278 */
7279 timeout = jiffies + (timeout_msec * HZ) / 1000;
7280
7281 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
7282 msleep(interval_msec);
7283 tmp = ioread32(reg);
7284 }
7285
7286 return tmp;
7287}
7288
dd5b06c4
TH
7289/*
7290 * Dummy port_ops
7291 */
7292static void ata_dummy_noret(struct ata_port *ap) { }
7293static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
7294static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
7295
7296static u8 ata_dummy_check_status(struct ata_port *ap)
7297{
7298 return ATA_DRDY;
7299}
7300
7301static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
7302{
7303 return AC_ERR_SYSTEM;
7304}
7305
7306const struct ata_port_operations ata_dummy_port_ops = {
dd5b06c4
TH
7307 .check_status = ata_dummy_check_status,
7308 .check_altstatus = ata_dummy_check_status,
7309 .dev_select = ata_noop_dev_select,
7310 .qc_prep = ata_noop_qc_prep,
7311 .qc_issue = ata_dummy_qc_issue,
7312 .freeze = ata_dummy_noret,
7313 .thaw = ata_dummy_noret,
7314 .error_handler = ata_dummy_noret,
7315 .post_internal_cmd = ata_dummy_qc_noret,
7316 .irq_clear = ata_dummy_noret,
7317 .port_start = ata_dummy_ret0,
7318 .port_stop = ata_dummy_noret,
7319};
7320
21b0ad4f
TH
7321const struct ata_port_info ata_dummy_port_info = {
7322 .port_ops = &ata_dummy_port_ops,
7323};
7324
1da177e4
LT
7325/*
7326 * libata is essentially a library of internal helper functions for
7327 * low-level ATA host controller drivers. As such, the API/ABI is
7328 * likely to change as new drivers are added and updated.
7329 * Do not depend on ABI/API stability.
7330 */
7331
e9c83914
TH
7332EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7333EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7334EXPORT_SYMBOL_GPL(sata_deb_timing_long);
dd5b06c4 7335EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
21b0ad4f 7336EXPORT_SYMBOL_GPL(ata_dummy_port_info);
1da177e4
LT
7337EXPORT_SYMBOL_GPL(ata_std_bios_param);
7338EXPORT_SYMBOL_GPL(ata_std_ports);
cca3974e 7339EXPORT_SYMBOL_GPL(ata_host_init);
f3187195 7340EXPORT_SYMBOL_GPL(ata_host_alloc);
f5cda257 7341EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
ecef7253 7342EXPORT_SYMBOL_GPL(ata_host_start);
f3187195 7343EXPORT_SYMBOL_GPL(ata_host_register);
f5cda257 7344EXPORT_SYMBOL_GPL(ata_host_activate);
0529c159 7345EXPORT_SYMBOL_GPL(ata_host_detach);
1da177e4
LT
7346EXPORT_SYMBOL_GPL(ata_sg_init);
7347EXPORT_SYMBOL_GPL(ata_sg_init_one);
9a1004d0 7348EXPORT_SYMBOL_GPL(ata_hsm_move);
f686bcb8 7349EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 7350EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
1da177e4 7351EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
7352EXPORT_SYMBOL_GPL(ata_tf_load);
7353EXPORT_SYMBOL_GPL(ata_tf_read);
7354EXPORT_SYMBOL_GPL(ata_noop_dev_select);
7355EXPORT_SYMBOL_GPL(ata_std_dev_select);
43727fbc 7356EXPORT_SYMBOL_GPL(sata_print_link_status);
1da177e4
LT
7357EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7358EXPORT_SYMBOL_GPL(ata_tf_from_fis);
7359EXPORT_SYMBOL_GPL(ata_check_status);
7360EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
7361EXPORT_SYMBOL_GPL(ata_exec_command);
7362EXPORT_SYMBOL_GPL(ata_port_start);
d92e74d3 7363EXPORT_SYMBOL_GPL(ata_sff_port_start);
1da177e4 7364EXPORT_SYMBOL_GPL(ata_interrupt);
04351821 7365EXPORT_SYMBOL_GPL(ata_do_set_mode);
0d5ff566
TH
7366EXPORT_SYMBOL_GPL(ata_data_xfer);
7367EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
31cc23b3 7368EXPORT_SYMBOL_GPL(ata_std_qc_defer);
1da177e4 7369EXPORT_SYMBOL_GPL(ata_qc_prep);
d26fc955 7370EXPORT_SYMBOL_GPL(ata_dumb_qc_prep);
e46834cd 7371EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
7372EXPORT_SYMBOL_GPL(ata_bmdma_setup);
7373EXPORT_SYMBOL_GPL(ata_bmdma_start);
7374EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
7375EXPORT_SYMBOL_GPL(ata_bmdma_status);
7376EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6d97dbd7
TH
7377EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
7378EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
7379EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
7380EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
7381EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
1da177e4 7382EXPORT_SYMBOL_GPL(ata_port_probe);
10305f0f 7383EXPORT_SYMBOL_GPL(ata_dev_disable);
3c567b7d 7384EXPORT_SYMBOL_GPL(sata_set_spd);
936fd732
TH
7385EXPORT_SYMBOL_GPL(sata_link_debounce);
7386EXPORT_SYMBOL_GPL(sata_link_resume);
1da177e4
LT
7387EXPORT_SYMBOL_GPL(sata_phy_reset);
7388EXPORT_SYMBOL_GPL(__sata_phy_reset);
7389EXPORT_SYMBOL_GPL(ata_bus_reset);
f5914a46 7390EXPORT_SYMBOL_GPL(ata_std_prereset);
c2bd5804 7391EXPORT_SYMBOL_GPL(ata_std_softreset);
cc0680a5 7392EXPORT_SYMBOL_GPL(sata_link_hardreset);
c2bd5804
TH
7393EXPORT_SYMBOL_GPL(sata_std_hardreset);
7394EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
7395EXPORT_SYMBOL_GPL(ata_dev_classify);
7396EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 7397EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 7398EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 7399EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 7400EXPORT_SYMBOL_GPL(ata_busy_sleep);
88ff6eaf 7401EXPORT_SYMBOL_GPL(ata_wait_after_reset);
d4b2bab4 7402EXPORT_SYMBOL_GPL(ata_wait_ready);
86e45b6b 7403EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
7404EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
7405EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 7406EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 7407EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 7408EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
1da177e4 7409EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
7410EXPORT_SYMBOL_GPL(sata_scr_valid);
7411EXPORT_SYMBOL_GPL(sata_scr_read);
7412EXPORT_SYMBOL_GPL(sata_scr_write);
7413EXPORT_SYMBOL_GPL(sata_scr_write_flush);
936fd732
TH
7414EXPORT_SYMBOL_GPL(ata_link_online);
7415EXPORT_SYMBOL_GPL(ata_link_offline);
6ffa01d8 7416#ifdef CONFIG_PM
cca3974e
JG
7417EXPORT_SYMBOL_GPL(ata_host_suspend);
7418EXPORT_SYMBOL_GPL(ata_host_resume);
6ffa01d8 7419#endif /* CONFIG_PM */
6a62a04d
TH
7420EXPORT_SYMBOL_GPL(ata_id_string);
7421EXPORT_SYMBOL_GPL(ata_id_c_string);
10305f0f 7422EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
1da177e4
LT
7423EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7424
1bc4ccff 7425EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
7426EXPORT_SYMBOL_GPL(ata_timing_compute);
7427EXPORT_SYMBOL_GPL(ata_timing_merge);
7428
1da177e4
LT
7429#ifdef CONFIG_PCI
7430EXPORT_SYMBOL_GPL(pci_test_config_bits);
d583bc18 7431EXPORT_SYMBOL_GPL(ata_pci_init_sff_host);
1626aeb8 7432EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
d583bc18 7433EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host);
1da177e4
LT
7434EXPORT_SYMBOL_GPL(ata_pci_init_one);
7435EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6ffa01d8 7436#ifdef CONFIG_PM
500530f6
TH
7437EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7438EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
7439EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7440EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6ffa01d8 7441#endif /* CONFIG_PM */
67951ade
AC
7442EXPORT_SYMBOL_GPL(ata_pci_default_filter);
7443EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 7444#endif /* CONFIG_PCI */
9b847548 7445
31f88384 7446EXPORT_SYMBOL_GPL(sata_pmp_qc_defer_cmd_switch);
3af9a77a
TH
7447EXPORT_SYMBOL_GPL(sata_pmp_std_prereset);
7448EXPORT_SYMBOL_GPL(sata_pmp_std_hardreset);
7449EXPORT_SYMBOL_GPL(sata_pmp_std_postreset);
7450EXPORT_SYMBOL_GPL(sata_pmp_do_eh);
7451
b64bbc39
TH
7452EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7453EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7454EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
cbcdd875
TH
7455EXPORT_SYMBOL_GPL(ata_port_desc);
7456#ifdef CONFIG_PCI
7457EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7458#endif /* CONFIG_PCI */
ece1d636 7459EXPORT_SYMBOL_GPL(ata_eng_timeout);
7b70fc03 7460EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
dbd82616 7461EXPORT_SYMBOL_GPL(ata_link_abort);
7b70fc03 7462EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499 7463EXPORT_SYMBOL_GPL(ata_port_freeze);
7d77b247 7464EXPORT_SYMBOL_GPL(sata_async_notification);
e3180499
TH
7465EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7466EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
7467EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7468EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
022bdb07 7469EXPORT_SYMBOL_GPL(ata_do_eh);
83625006 7470EXPORT_SYMBOL_GPL(ata_irq_on);
a619f981 7471EXPORT_SYMBOL_GPL(ata_dev_try_classify);
be0d18df
AC
7472
7473EXPORT_SYMBOL_GPL(ata_cable_40wire);
7474EXPORT_SYMBOL_GPL(ata_cable_80wire);
7475EXPORT_SYMBOL_GPL(ata_cable_unknown);
7476EXPORT_SYMBOL_GPL(ata_cable_sata);
This page took 1.663649 seconds and 5 git commands to generate.