drivers/block/loop.c: emit uevent on auto release
[deliverable/linux.git] / drivers / block / loop.c
CommitLineData
1da177e4
LT
1/*
2 * linux/drivers/block/loop.c
3 *
4 * Written by Theodore Ts'o, 3/29/93
5 *
6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
7 * permitted under the GNU General Public License.
8 *
9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11 *
12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14 *
15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16 *
17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18 *
19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20 *
21 * Loadable modules and other fixes by AK, 1998
22 *
23 * Make real block number available to downstream transfer functions, enables
24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
25 * Reed H. Petty, rhp@draper.net
26 *
27 * Maximum number of loop devices now dynamic via max_loop module parameter.
28 * Russell Kroll <rkroll@exploits.org> 19990701
29 *
30 * Maximum number of loop devices when compiled-in now selectable by passing
31 * max_loop=<1-255> to the kernel on boot.
96de0e25 32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
1da177e4
LT
33 *
34 * Completely rewrite request handling to be make_request_fn style and
35 * non blocking, pushing work to a helper thread. Lots of fixes from
36 * Al Viro too.
37 * Jens Axboe <axboe@suse.de>, Nov 2000
38 *
39 * Support up to 256 loop devices
40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41 *
42 * Support for falling back on the write file operation when the address space
4e02ed4b 43 * operations write_begin is not available on the backing filesystem.
1da177e4
LT
44 * Anton Altaparmakov, 16 Feb 2005
45 *
46 * Still To Fix:
47 * - Advisory locking is ignored here.
48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49 *
50 */
51
1da177e4
LT
52#include <linux/module.h>
53#include <linux/moduleparam.h>
54#include <linux/sched.h>
55#include <linux/fs.h>
56#include <linux/file.h>
57#include <linux/stat.h>
58#include <linux/errno.h>
59#include <linux/major.h>
60#include <linux/wait.h>
61#include <linux/blkdev.h>
62#include <linux/blkpg.h>
63#include <linux/init.h>
1da177e4
LT
64#include <linux/swap.h>
65#include <linux/slab.h>
66#include <linux/loop.h>
863d5b82 67#include <linux/compat.h>
1da177e4 68#include <linux/suspend.h>
83144186 69#include <linux/freezer.h>
2a48fc0a 70#include <linux/mutex.h>
1da177e4
LT
71#include <linux/writeback.h>
72#include <linux/buffer_head.h> /* for invalidate_bdev() */
73#include <linux/completion.h>
74#include <linux/highmem.h>
6c997918 75#include <linux/kthread.h>
d6b29d7c 76#include <linux/splice.h>
ee862730 77#include <linux/sysfs.h>
dfaa2ef6 78#include <linux/falloc.h>
1da177e4
LT
79
80#include <asm/uaccess.h>
81
73285082
KC
82static LIST_HEAD(loop_devices);
83static DEFINE_MUTEX(loop_devices_mutex);
1da177e4 84
476a4813
LV
85static int max_part;
86static int part_shift;
87
1da177e4
LT
88/*
89 * Transfer functions
90 */
91static int transfer_none(struct loop_device *lo, int cmd,
92 struct page *raw_page, unsigned raw_off,
93 struct page *loop_page, unsigned loop_off,
94 int size, sector_t real_block)
95{
96 char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
97 char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
98
99 if (cmd == READ)
100 memcpy(loop_buf, raw_buf, size);
101 else
102 memcpy(raw_buf, loop_buf, size);
103
1da177e4 104 kunmap_atomic(loop_buf, KM_USER1);
61ecdb80 105 kunmap_atomic(raw_buf, KM_USER0);
1da177e4
LT
106 cond_resched();
107 return 0;
108}
109
110static int transfer_xor(struct loop_device *lo, int cmd,
111 struct page *raw_page, unsigned raw_off,
112 struct page *loop_page, unsigned loop_off,
113 int size, sector_t real_block)
114{
115 char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
116 char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
117 char *in, *out, *key;
118 int i, keysize;
119
120 if (cmd == READ) {
121 in = raw_buf;
122 out = loop_buf;
123 } else {
124 in = loop_buf;
125 out = raw_buf;
126 }
127
128 key = lo->lo_encrypt_key;
129 keysize = lo->lo_encrypt_key_size;
130 for (i = 0; i < size; i++)
131 *out++ = *in++ ^ key[(i & 511) % keysize];
132
1da177e4 133 kunmap_atomic(loop_buf, KM_USER1);
61ecdb80 134 kunmap_atomic(raw_buf, KM_USER0);
1da177e4
LT
135 cond_resched();
136 return 0;
137}
138
139static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
140{
141 if (unlikely(info->lo_encrypt_key_size <= 0))
142 return -EINVAL;
143 return 0;
144}
145
146static struct loop_func_table none_funcs = {
147 .number = LO_CRYPT_NONE,
148 .transfer = transfer_none,
149};
150
151static struct loop_func_table xor_funcs = {
152 .number = LO_CRYPT_XOR,
153 .transfer = transfer_xor,
154 .init = xor_init
155};
156
157/* xfer_funcs[0] is special - its release function is never called */
158static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
159 &none_funcs,
160 &xor_funcs
161};
162
163static loff_t get_loop_size(struct loop_device *lo, struct file *file)
164{
165 loff_t size, offset, loopsize;
166
167 /* Compute loopsize in bytes */
168 size = i_size_read(file->f_mapping->host);
169 offset = lo->lo_offset;
170 loopsize = size - offset;
171 if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize)
172 loopsize = lo->lo_sizelimit;
173
174 /*
175 * Unfortunately, if we want to do I/O on the device,
176 * the number of 512-byte sectors has to fit into a sector_t.
177 */
178 return loopsize >> 9;
179}
180
181static int
182figure_loop_size(struct loop_device *lo)
183{
184 loff_t size = get_loop_size(lo, lo->lo_backing_file);
185 sector_t x = (sector_t)size;
186
187 if (unlikely((loff_t)x != size))
188 return -EFBIG;
189
73285082 190 set_capacity(lo->lo_disk, x);
1da177e4
LT
191 return 0;
192}
193
194static inline int
195lo_do_transfer(struct loop_device *lo, int cmd,
196 struct page *rpage, unsigned roffs,
197 struct page *lpage, unsigned loffs,
198 int size, sector_t rblock)
199{
200 if (unlikely(!lo->transfer))
201 return 0;
202
203 return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
204}
205
206/**
207 * do_lo_send_aops - helper for writing data to a loop device
208 *
209 * This is the fast version for backing filesystems which implement the address
afddba49 210 * space operations write_begin and write_end.
1da177e4
LT
211 */
212static int do_lo_send_aops(struct loop_device *lo, struct bio_vec *bvec,
511de73f 213 loff_t pos, struct page *unused)
1da177e4
LT
214{
215 struct file *file = lo->lo_backing_file; /* kudos to NFsckingS */
216 struct address_space *mapping = file->f_mapping;
1da177e4
LT
217 pgoff_t index;
218 unsigned offset, bv_offs;
994fc28c 219 int len, ret;
1da177e4 220
1b1dcc1b 221 mutex_lock(&mapping->host->i_mutex);
1da177e4
LT
222 index = pos >> PAGE_CACHE_SHIFT;
223 offset = pos & ((pgoff_t)PAGE_CACHE_SIZE - 1);
224 bv_offs = bvec->bv_offset;
225 len = bvec->bv_len;
226 while (len > 0) {
227 sector_t IV;
afddba49 228 unsigned size, copied;
1da177e4 229 int transfer_result;
afddba49
NP
230 struct page *page;
231 void *fsdata;
1da177e4
LT
232
233 IV = ((sector_t)index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9);
234 size = PAGE_CACHE_SIZE - offset;
235 if (size > len)
236 size = len;
afddba49
NP
237
238 ret = pagecache_write_begin(file, mapping, pos, size, 0,
239 &page, &fsdata);
240 if (ret)
1da177e4 241 goto fail;
afddba49 242
02246c41
NK
243 file_update_time(file);
244
1da177e4
LT
245 transfer_result = lo_do_transfer(lo, WRITE, page, offset,
246 bvec->bv_page, bv_offs, size, IV);
afddba49 247 copied = size;
1da177e4 248 if (unlikely(transfer_result))
afddba49
NP
249 copied = 0;
250
251 ret = pagecache_write_end(file, mapping, pos, size, copied,
252 page, fsdata);
8268f5a7 253 if (ret < 0 || ret != copied)
afddba49 254 goto fail;
afddba49
NP
255
256 if (unlikely(transfer_result))
257 goto fail;
258
259 bv_offs += copied;
260 len -= copied;
1da177e4
LT
261 offset = 0;
262 index++;
afddba49 263 pos += copied;
1da177e4 264 }
994fc28c 265 ret = 0;
1da177e4 266out:
1b1dcc1b 267 mutex_unlock(&mapping->host->i_mutex);
1da177e4 268 return ret;
1da177e4
LT
269fail:
270 ret = -1;
271 goto out;
272}
273
274/**
275 * __do_lo_send_write - helper for writing data to a loop device
276 *
277 * This helper just factors out common code between do_lo_send_direct_write()
278 * and do_lo_send_write().
279 */
858119e1 280static int __do_lo_send_write(struct file *file,
98ae6ccd 281 u8 *buf, const int len, loff_t pos)
1da177e4
LT
282{
283 ssize_t bw;
284 mm_segment_t old_fs = get_fs();
285
286 set_fs(get_ds());
287 bw = file->f_op->write(file, buf, len, &pos);
288 set_fs(old_fs);
289 if (likely(bw == len))
290 return 0;
291 printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n",
292 (unsigned long long)pos, len);
293 if (bw >= 0)
294 bw = -EIO;
295 return bw;
296}
297
298/**
299 * do_lo_send_direct_write - helper for writing data to a loop device
300 *
301 * This is the fast, non-transforming version for backing filesystems which do
afddba49 302 * not implement the address space operations write_begin and write_end.
1da177e4
LT
303 * It uses the write file operation which should be present on all writeable
304 * filesystems.
305 */
306static int do_lo_send_direct_write(struct loop_device *lo,
511de73f 307 struct bio_vec *bvec, loff_t pos, struct page *page)
1da177e4
LT
308{
309 ssize_t bw = __do_lo_send_write(lo->lo_backing_file,
98ae6ccd 310 kmap(bvec->bv_page) + bvec->bv_offset,
1da177e4
LT
311 bvec->bv_len, pos);
312 kunmap(bvec->bv_page);
313 cond_resched();
314 return bw;
315}
316
317/**
318 * do_lo_send_write - helper for writing data to a loop device
319 *
320 * This is the slow, transforming version for filesystems which do not
afddba49 321 * implement the address space operations write_begin and write_end. It
1da177e4
LT
322 * uses the write file operation which should be present on all writeable
323 * filesystems.
324 *
325 * Using fops->write is slower than using aops->{prepare,commit}_write in the
326 * transforming case because we need to double buffer the data as we cannot do
327 * the transformations in place as we do not have direct access to the
328 * destination pages of the backing file.
329 */
330static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec,
511de73f 331 loff_t pos, struct page *page)
1da177e4
LT
332{
333 int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page,
334 bvec->bv_offset, bvec->bv_len, pos >> 9);
335 if (likely(!ret))
336 return __do_lo_send_write(lo->lo_backing_file,
98ae6ccd 337 page_address(page), bvec->bv_len,
1da177e4
LT
338 pos);
339 printk(KERN_ERR "loop: Transfer error at byte offset %llu, "
340 "length %i.\n", (unsigned long long)pos, bvec->bv_len);
341 if (ret > 0)
342 ret = -EIO;
343 return ret;
344}
345
511de73f 346static int lo_send(struct loop_device *lo, struct bio *bio, loff_t pos)
1da177e4 347{
511de73f 348 int (*do_lo_send)(struct loop_device *, struct bio_vec *, loff_t,
1da177e4
LT
349 struct page *page);
350 struct bio_vec *bvec;
351 struct page *page = NULL;
352 int i, ret = 0;
353
354 do_lo_send = do_lo_send_aops;
355 if (!(lo->lo_flags & LO_FLAGS_USE_AOPS)) {
356 do_lo_send = do_lo_send_direct_write;
357 if (lo->transfer != transfer_none) {
358 page = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
359 if (unlikely(!page))
360 goto fail;
361 kmap(page);
362 do_lo_send = do_lo_send_write;
363 }
364 }
365 bio_for_each_segment(bvec, bio, i) {
511de73f 366 ret = do_lo_send(lo, bvec, pos, page);
1da177e4
LT
367 if (ret < 0)
368 break;
369 pos += bvec->bv_len;
370 }
371 if (page) {
372 kunmap(page);
373 __free_page(page);
374 }
375out:
376 return ret;
377fail:
378 printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n");
379 ret = -ENOMEM;
380 goto out;
381}
382
383struct lo_read_data {
384 struct loop_device *lo;
385 struct page *page;
386 unsigned offset;
387 int bsize;
388};
389
390static int
fd582140
JA
391lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
392 struct splice_desc *sd)
1da177e4 393{
fd582140 394 struct lo_read_data *p = sd->u.data;
1da177e4 395 struct loop_device *lo = p->lo;
fd582140 396 struct page *page = buf->page;
1da177e4 397 sector_t IV;
3603b8ea 398 int size;
1da177e4 399
fd582140
JA
400 IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) +
401 (buf->offset >> 9);
402 size = sd->len;
403 if (size > p->bsize)
404 size = p->bsize;
1da177e4 405
fd582140 406 if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) {
1da177e4
LT
407 printk(KERN_ERR "loop: transfer error block %ld\n",
408 page->index);
fd582140 409 size = -EINVAL;
1da177e4
LT
410 }
411
412 flush_dcache_page(p->page);
413
fd582140
JA
414 if (size > 0)
415 p->offset += size;
416
1da177e4
LT
417 return size;
418}
419
fd582140
JA
420static int
421lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd)
422{
423 return __splice_from_pipe(pipe, sd, lo_splice_actor);
424}
425
1da177e4
LT
426static int
427do_lo_receive(struct loop_device *lo,
428 struct bio_vec *bvec, int bsize, loff_t pos)
429{
430 struct lo_read_data cookie;
fd582140 431 struct splice_desc sd;
1da177e4 432 struct file *file;
fd582140 433 long retval;
1da177e4
LT
434
435 cookie.lo = lo;
436 cookie.page = bvec->bv_page;
437 cookie.offset = bvec->bv_offset;
438 cookie.bsize = bsize;
fd582140
JA
439
440 sd.len = 0;
441 sd.total_len = bvec->bv_len;
442 sd.flags = 0;
443 sd.pos = pos;
444 sd.u.data = &cookie;
445
1da177e4 446 file = lo->lo_backing_file;
fd582140
JA
447 retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor);
448
449 if (retval < 0)
450 return retval;
451
452 return 0;
1da177e4
LT
453}
454
455static int
456lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos)
457{
458 struct bio_vec *bvec;
459 int i, ret = 0;
460
461 bio_for_each_segment(bvec, bio, i) {
462 ret = do_lo_receive(lo, bvec, bsize, pos);
463 if (ret < 0)
464 break;
465 pos += bvec->bv_len;
466 }
467 return ret;
468}
469
470static int do_bio_filebacked(struct loop_device *lo, struct bio *bio)
471{
472 loff_t pos;
473 int ret;
474
475 pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset;
68db1961
NK
476
477 if (bio_rw(bio) == WRITE) {
68db1961
NK
478 struct file *file = lo->lo_backing_file;
479
6259f284 480 if (bio->bi_rw & REQ_FLUSH) {
8018ab05 481 ret = vfs_fsync(file, 0);
6259f284 482 if (unlikely(ret && ret != -EINVAL)) {
68db1961
NK
483 ret = -EIO;
484 goto out;
485 }
486 }
487
dfaa2ef6
LC
488 /*
489 * We use punch hole to reclaim the free space used by the
490 * image a.k.a. discard. However we do support discard if
491 * encryption is enabled, because it may give an attacker
492 * useful information.
493 */
494 if (bio->bi_rw & REQ_DISCARD) {
495 struct file *file = lo->lo_backing_file;
496 int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
497
498 if ((!file->f_op->fallocate) ||
499 lo->lo_encrypt_key_size) {
500 ret = -EOPNOTSUPP;
501 goto out;
502 }
503 ret = file->f_op->fallocate(file, mode, pos,
504 bio->bi_size);
505 if (unlikely(ret && ret != -EINVAL &&
506 ret != -EOPNOTSUPP))
507 ret = -EIO;
508 goto out;
509 }
510
511de73f 511 ret = lo_send(lo, bio, pos);
68db1961 512
6259f284 513 if ((bio->bi_rw & REQ_FUA) && !ret) {
8018ab05 514 ret = vfs_fsync(file, 0);
6259f284 515 if (unlikely(ret && ret != -EINVAL))
68db1961
NK
516 ret = -EIO;
517 }
518 } else
1da177e4 519 ret = lo_receive(lo, bio, lo->lo_blocksize, pos);
68db1961
NK
520
521out:
1da177e4
LT
522 return ret;
523}
524
525/*
526 * Add bio to back of pending list
527 */
528static void loop_add_bio(struct loop_device *lo, struct bio *bio)
529{
e686307f 530 bio_list_add(&lo->lo_bio_list, bio);
1da177e4
LT
531}
532
533/*
534 * Grab first pending buffer
535 */
536static struct bio *loop_get_bio(struct loop_device *lo)
537{
e686307f 538 return bio_list_pop(&lo->lo_bio_list);
1da177e4
LT
539}
540
165125e1 541static int loop_make_request(struct request_queue *q, struct bio *old_bio)
1da177e4
LT
542{
543 struct loop_device *lo = q->queuedata;
544 int rw = bio_rw(old_bio);
545
35a82d1a
NP
546 if (rw == READA)
547 rw = READ;
548
549 BUG_ON(!lo || (rw != READ && rw != WRITE));
1da177e4
LT
550
551 spin_lock_irq(&lo->lo_lock);
552 if (lo->lo_state != Lo_bound)
35a82d1a
NP
553 goto out;
554 if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY)))
555 goto out;
1da177e4 556 loop_add_bio(lo, old_bio);
6c997918 557 wake_up(&lo->lo_event);
35a82d1a 558 spin_unlock_irq(&lo->lo_lock);
1da177e4 559 return 0;
35a82d1a 560
1da177e4 561out:
35a82d1a 562 spin_unlock_irq(&lo->lo_lock);
6712ecf8 563 bio_io_error(old_bio);
1da177e4 564 return 0;
1da177e4
LT
565}
566
1da177e4
LT
567struct switch_request {
568 struct file *file;
569 struct completion wait;
570};
571
572static void do_loop_switch(struct loop_device *, struct switch_request *);
573
574static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio)
575{
1da177e4
LT
576 if (unlikely(!bio->bi_bdev)) {
577 do_loop_switch(lo, bio->bi_private);
578 bio_put(bio);
579 } else {
35a82d1a 580 int ret = do_bio_filebacked(lo, bio);
6712ecf8 581 bio_endio(bio, ret);
1da177e4
LT
582 }
583}
584
585/*
586 * worker thread that handles reads/writes to file backed loop devices,
587 * to avoid blocking in our make_request_fn. it also does loop decrypting
588 * on reads for block backed loop, as that is too heavy to do from
589 * b_end_io context where irqs may be disabled.
6c997918
SH
590 *
591 * Loop explanation: loop_clr_fd() sets lo_state to Lo_rundown before
592 * calling kthread_stop(). Therefore once kthread_should_stop() is
593 * true, make_request will not place any more requests. Therefore
594 * once kthread_should_stop() is true and lo_bio is NULL, we are
595 * done with the loop.
1da177e4
LT
596 */
597static int loop_thread(void *data)
598{
599 struct loop_device *lo = data;
600 struct bio *bio;
601
1da177e4
LT
602 set_user_nice(current, -20);
603
e686307f 604 while (!kthread_should_stop() || !bio_list_empty(&lo->lo_bio_list)) {
09c0dc68 605
6c997918 606 wait_event_interruptible(lo->lo_event,
e686307f
AM
607 !bio_list_empty(&lo->lo_bio_list) ||
608 kthread_should_stop());
35a82d1a 609
e686307f 610 if (bio_list_empty(&lo->lo_bio_list))
35a82d1a 611 continue;
35a82d1a 612 spin_lock_irq(&lo->lo_lock);
1da177e4 613 bio = loop_get_bio(lo);
35a82d1a
NP
614 spin_unlock_irq(&lo->lo_lock);
615
616 BUG_ON(!bio);
1da177e4 617 loop_handle_bio(lo, bio);
1da177e4
LT
618 }
619
1da177e4
LT
620 return 0;
621}
622
623/*
624 * loop_switch performs the hard work of switching a backing store.
625 * First it needs to flush existing IO, it does this by sending a magic
626 * BIO down the pipe. The completion of this BIO does the actual switch.
627 */
628static int loop_switch(struct loop_device *lo, struct file *file)
629{
630 struct switch_request w;
a24eab1e 631 struct bio *bio = bio_alloc(GFP_KERNEL, 0);
1da177e4
LT
632 if (!bio)
633 return -ENOMEM;
634 init_completion(&w.wait);
635 w.file = file;
636 bio->bi_private = &w;
637 bio->bi_bdev = NULL;
638 loop_make_request(lo->lo_queue, bio);
639 wait_for_completion(&w.wait);
640 return 0;
641}
642
14f27939
MB
643/*
644 * Helper to flush the IOs in loop, but keeping loop thread running
645 */
646static int loop_flush(struct loop_device *lo)
647{
648 /* loop not yet configured, no running thread, nothing to flush */
649 if (!lo->lo_thread)
650 return 0;
651
652 return loop_switch(lo, NULL);
653}
654
1da177e4
LT
655/*
656 * Do the actual switch; called from the BIO completion routine
657 */
658static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
659{
660 struct file *file = p->file;
661 struct file *old_file = lo->lo_backing_file;
14f27939
MB
662 struct address_space *mapping;
663
664 /* if no new file, only flush of queued bios requested */
665 if (!file)
666 goto out;
1da177e4 667
14f27939 668 mapping = file->f_mapping;
1da177e4
LT
669 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
670 lo->lo_backing_file = file;
ba52de12
TT
671 lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
672 mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
1da177e4
LT
673 lo->old_gfp_mask = mapping_gfp_mask(mapping);
674 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
14f27939 675out:
1da177e4
LT
676 complete(&p->wait);
677}
678
679
680/*
681 * loop_change_fd switched the backing store of a loopback device to
682 * a new file. This is useful for operating system installers to free up
683 * the original file and in High Availability environments to switch to
684 * an alternative location for the content in case of server meltdown.
685 * This can only work if the loop device is used read-only, and if the
686 * new backing store is the same size and type as the old backing store.
687 */
bb214884
AV
688static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
689 unsigned int arg)
1da177e4
LT
690{
691 struct file *file, *old_file;
692 struct inode *inode;
693 int error;
694
695 error = -ENXIO;
696 if (lo->lo_state != Lo_bound)
697 goto out;
698
699 /* the loop device has to be read-only */
700 error = -EINVAL;
701 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
702 goto out;
703
704 error = -EBADF;
705 file = fget(arg);
706 if (!file)
707 goto out;
708
709 inode = file->f_mapping->host;
710 old_file = lo->lo_backing_file;
711
712 error = -EINVAL;
713
714 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
715 goto out_putf;
716
1da177e4
LT
717 /* size of the new backing store needs to be the same */
718 if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
719 goto out_putf;
720
721 /* and ... switch */
722 error = loop_switch(lo, file);
723 if (error)
724 goto out_putf;
725
726 fput(old_file);
e03c8dd1 727 if (lo->lo_flags & LO_FLAGS_PARTSCAN)
476a4813 728 ioctl_by_bdev(bdev, BLKRRPART, 0);
1da177e4
LT
729 return 0;
730
731 out_putf:
732 fput(file);
733 out:
734 return error;
735}
736
737static inline int is_loop_device(struct file *file)
738{
739 struct inode *i = file->f_mapping->host;
740
741 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
742}
743
ee862730
MB
744/* loop sysfs attributes */
745
746static ssize_t loop_attr_show(struct device *dev, char *page,
747 ssize_t (*callback)(struct loop_device *, char *))
748{
749 struct loop_device *l, *lo = NULL;
750
751 mutex_lock(&loop_devices_mutex);
752 list_for_each_entry(l, &loop_devices, lo_list)
753 if (disk_to_dev(l->lo_disk) == dev) {
754 lo = l;
755 break;
756 }
757 mutex_unlock(&loop_devices_mutex);
758
759 return lo ? callback(lo, page) : -EIO;
760}
761
762#define LOOP_ATTR_RO(_name) \
763static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \
764static ssize_t loop_attr_do_show_##_name(struct device *d, \
765 struct device_attribute *attr, char *b) \
766{ \
767 return loop_attr_show(d, b, loop_attr_##_name##_show); \
768} \
769static struct device_attribute loop_attr_##_name = \
770 __ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
771
772static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
773{
774 ssize_t ret;
775 char *p = NULL;
776
777 mutex_lock(&lo->lo_ctl_mutex);
778 if (lo->lo_backing_file)
779 p = d_path(&lo->lo_backing_file->f_path, buf, PAGE_SIZE - 1);
780 mutex_unlock(&lo->lo_ctl_mutex);
781
782 if (IS_ERR_OR_NULL(p))
783 ret = PTR_ERR(p);
784 else {
785 ret = strlen(p);
786 memmove(buf, p, ret);
787 buf[ret++] = '\n';
788 buf[ret] = 0;
789 }
790
791 return ret;
792}
793
794static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
795{
796 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
797}
798
799static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
800{
801 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
802}
803
804static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
805{
806 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
807
808 return sprintf(buf, "%s\n", autoclear ? "1" : "0");
809}
810
e03c8dd1
KS
811static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
812{
813 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
814
815 return sprintf(buf, "%s\n", partscan ? "1" : "0");
816}
817
ee862730
MB
818LOOP_ATTR_RO(backing_file);
819LOOP_ATTR_RO(offset);
820LOOP_ATTR_RO(sizelimit);
821LOOP_ATTR_RO(autoclear);
e03c8dd1 822LOOP_ATTR_RO(partscan);
ee862730
MB
823
824static struct attribute *loop_attrs[] = {
825 &loop_attr_backing_file.attr,
826 &loop_attr_offset.attr,
827 &loop_attr_sizelimit.attr,
828 &loop_attr_autoclear.attr,
e03c8dd1 829 &loop_attr_partscan.attr,
ee862730
MB
830 NULL,
831};
832
833static struct attribute_group loop_attribute_group = {
834 .name = "loop",
835 .attrs= loop_attrs,
836};
837
838static int loop_sysfs_init(struct loop_device *lo)
839{
840 return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
841 &loop_attribute_group);
842}
843
844static void loop_sysfs_exit(struct loop_device *lo)
845{
846 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
847 &loop_attribute_group);
848}
849
dfaa2ef6
LC
850static void loop_config_discard(struct loop_device *lo)
851{
852 struct file *file = lo->lo_backing_file;
853 struct inode *inode = file->f_mapping->host;
854 struct request_queue *q = lo->lo_queue;
855
856 /*
857 * We use punch hole to reclaim the free space used by the
858 * image a.k.a. discard. However we do support discard if
859 * encryption is enabled, because it may give an attacker
860 * useful information.
861 */
862 if ((!file->f_op->fallocate) ||
863 lo->lo_encrypt_key_size) {
864 q->limits.discard_granularity = 0;
865 q->limits.discard_alignment = 0;
866 q->limits.max_discard_sectors = 0;
867 q->limits.discard_zeroes_data = 0;
868 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
869 return;
870 }
871
872 q->limits.discard_granularity = inode->i_sb->s_blocksize;
873 q->limits.discard_alignment = inode->i_sb->s_blocksize;
874 q->limits.max_discard_sectors = UINT_MAX >> 9;
875 q->limits.discard_zeroes_data = 1;
876 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
877}
878
bb214884 879static int loop_set_fd(struct loop_device *lo, fmode_t mode,
1da177e4
LT
880 struct block_device *bdev, unsigned int arg)
881{
882 struct file *file, *f;
883 struct inode *inode;
884 struct address_space *mapping;
885 unsigned lo_blocksize;
886 int lo_flags = 0;
887 int error;
888 loff_t size;
889
890 /* This is safe, since we have a reference from open(). */
891 __module_get(THIS_MODULE);
892
893 error = -EBADF;
894 file = fget(arg);
895 if (!file)
896 goto out;
897
898 error = -EBUSY;
899 if (lo->lo_state != Lo_unbound)
900 goto out_putf;
901
902 /* Avoid recursion */
903 f = file;
904 while (is_loop_device(f)) {
905 struct loop_device *l;
906
bb214884 907 if (f->f_mapping->host->i_bdev == bdev)
1da177e4
LT
908 goto out_putf;
909
910 l = f->f_mapping->host->i_bdev->bd_disk->private_data;
911 if (l->lo_state == Lo_unbound) {
912 error = -EINVAL;
913 goto out_putf;
914 }
915 f = l->lo_backing_file;
916 }
917
918 mapping = file->f_mapping;
919 inode = mapping->host;
920
921 if (!(file->f_mode & FMODE_WRITE))
922 lo_flags |= LO_FLAGS_READ_ONLY;
923
924 error = -EINVAL;
925 if (S_ISREG(inode->i_mode) || S_ISBLK(inode->i_mode)) {
f5e54d6e 926 const struct address_space_operations *aops = mapping->a_ops;
6818173b 927
4e02ed4b 928 if (aops->write_begin)
1da177e4
LT
929 lo_flags |= LO_FLAGS_USE_AOPS;
930 if (!(lo_flags & LO_FLAGS_USE_AOPS) && !file->f_op->write)
931 lo_flags |= LO_FLAGS_READ_ONLY;
932
ba52de12
TT
933 lo_blocksize = S_ISBLK(inode->i_mode) ?
934 inode->i_bdev->bd_block_size : PAGE_SIZE;
935
1da177e4
LT
936 error = 0;
937 } else {
938 goto out_putf;
939 }
940
941 size = get_loop_size(lo, file);
942
943 if ((loff_t)(sector_t)size != size) {
944 error = -EFBIG;
945 goto out_putf;
946 }
947
bb214884 948 if (!(mode & FMODE_WRITE))
1da177e4
LT
949 lo_flags |= LO_FLAGS_READ_ONLY;
950
951 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
952
953 lo->lo_blocksize = lo_blocksize;
954 lo->lo_device = bdev;
955 lo->lo_flags = lo_flags;
956 lo->lo_backing_file = file;
eefe85ee 957 lo->transfer = transfer_none;
1da177e4
LT
958 lo->ioctl = NULL;
959 lo->lo_sizelimit = 0;
960 lo->old_gfp_mask = mapping_gfp_mask(mapping);
961 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
962
e686307f 963 bio_list_init(&lo->lo_bio_list);
1da177e4
LT
964
965 /*
966 * set queue make_request_fn, and add limits based on lower level
967 * device
968 */
969 blk_queue_make_request(lo->lo_queue, loop_make_request);
970 lo->lo_queue->queuedata = lo;
1da177e4 971
68db1961 972 if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
4913efe4 973 blk_queue_flush(lo->lo_queue, REQ_FLUSH);
68db1961 974
73285082 975 set_capacity(lo->lo_disk, size);
1da177e4 976 bd_set_size(bdev, size << 9);
ee862730 977 loop_sysfs_init(lo);
c3473c63
DZ
978 /* let user-space know about the new size */
979 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1da177e4
LT
980
981 set_blocksize(bdev, lo_blocksize);
982
6c997918
SH
983 lo->lo_thread = kthread_create(loop_thread, lo, "loop%d",
984 lo->lo_number);
985 if (IS_ERR(lo->lo_thread)) {
986 error = PTR_ERR(lo->lo_thread);
a7422bf8 987 goto out_clr;
6c997918
SH
988 }
989 lo->lo_state = Lo_bound;
990 wake_up_process(lo->lo_thread);
e03c8dd1
KS
991 if (part_shift)
992 lo->lo_flags |= LO_FLAGS_PARTSCAN;
993 if (lo->lo_flags & LO_FLAGS_PARTSCAN)
476a4813 994 ioctl_by_bdev(bdev, BLKRRPART, 0);
1da177e4
LT
995 return 0;
996
a7422bf8 997out_clr:
ee862730 998 loop_sysfs_exit(lo);
a7422bf8
SH
999 lo->lo_thread = NULL;
1000 lo->lo_device = NULL;
1001 lo->lo_backing_file = NULL;
1002 lo->lo_flags = 0;
73285082 1003 set_capacity(lo->lo_disk, 0);
f98393a6 1004 invalidate_bdev(bdev);
a7422bf8 1005 bd_set_size(bdev, 0);
c3473c63 1006 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
a7422bf8
SH
1007 mapping_set_gfp_mask(mapping, lo->old_gfp_mask);
1008 lo->lo_state = Lo_unbound;
1da177e4
LT
1009 out_putf:
1010 fput(file);
1011 out:
1012 /* This is safe: open() is still holding a reference. */
1013 module_put(THIS_MODULE);
1014 return error;
1015}
1016
1017static int
1018loop_release_xfer(struct loop_device *lo)
1019{
1020 int err = 0;
1021 struct loop_func_table *xfer = lo->lo_encryption;
1022
1023 if (xfer) {
1024 if (xfer->release)
1025 err = xfer->release(lo);
1026 lo->transfer = NULL;
1027 lo->lo_encryption = NULL;
1028 module_put(xfer->owner);
1029 }
1030 return err;
1031}
1032
1033static int
1034loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
1035 const struct loop_info64 *i)
1036{
1037 int err = 0;
1038
1039 if (xfer) {
1040 struct module *owner = xfer->owner;
1041
1042 if (!try_module_get(owner))
1043 return -EINVAL;
1044 if (xfer->init)
1045 err = xfer->init(lo, i);
1046 if (err)
1047 module_put(owner);
1048 else
1049 lo->lo_encryption = xfer;
1050 }
1051 return err;
1052}
1053
1054static int loop_clr_fd(struct loop_device *lo, struct block_device *bdev)
1055{
1056 struct file *filp = lo->lo_backing_file;
b4e3ca1a 1057 gfp_t gfp = lo->old_gfp_mask;
1da177e4
LT
1058
1059 if (lo->lo_state != Lo_bound)
1060 return -ENXIO;
1061
1062 if (lo->lo_refcnt > 1) /* we needed one fd for the ioctl */
1063 return -EBUSY;
1064
1065 if (filp == NULL)
1066 return -EINVAL;
1067
1068 spin_lock_irq(&lo->lo_lock);
1069 lo->lo_state = Lo_rundown;
1da177e4
LT
1070 spin_unlock_irq(&lo->lo_lock);
1071
6c997918 1072 kthread_stop(lo->lo_thread);
1da177e4
LT
1073
1074 lo->lo_backing_file = NULL;
1075
1076 loop_release_xfer(lo);
1077 lo->transfer = NULL;
1078 lo->ioctl = NULL;
1079 lo->lo_device = NULL;
1080 lo->lo_encryption = NULL;
1081 lo->lo_offset = 0;
1082 lo->lo_sizelimit = 0;
1083 lo->lo_encrypt_key_size = 0;
6c997918 1084 lo->lo_thread = NULL;
1da177e4
LT
1085 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1086 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1087 memset(lo->lo_file_name, 0, LO_NAME_SIZE);
bb214884
AV
1088 if (bdev)
1089 invalidate_bdev(bdev);
73285082 1090 set_capacity(lo->lo_disk, 0);
51a0bb0c 1091 loop_sysfs_exit(lo);
c3473c63 1092 if (bdev) {
bb214884 1093 bd_set_size(bdev, 0);
c3473c63
DZ
1094 /* let user-space know about this change */
1095 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1096 }
1da177e4
LT
1097 mapping_set_gfp_mask(filp->f_mapping, gfp);
1098 lo->lo_state = Lo_unbound;
1da177e4
LT
1099 /* This is safe: open() is still holding a reference. */
1100 module_put(THIS_MODULE);
e03c8dd1 1101 if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev)
476a4813 1102 ioctl_by_bdev(bdev, BLKRRPART, 0);
e03c8dd1
KS
1103 lo->lo_flags = 0;
1104 if (!part_shift)
1105 lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
f028f3b2
NK
1106 mutex_unlock(&lo->lo_ctl_mutex);
1107 /*
1108 * Need not hold lo_ctl_mutex to fput backing file.
1109 * Calling fput holding lo_ctl_mutex triggers a circular
1110 * lock dependency possibility warning as fput can take
1111 * bd_mutex which is usually taken before lo_ctl_mutex.
1112 */
1113 fput(filp);
1da177e4
LT
1114 return 0;
1115}
1116
1117static int
1118loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1119{
1120 int err;
1121 struct loop_func_table *xfer;
b0fafa81 1122 uid_t uid = current_uid();
1da177e4 1123
b0fafa81
DH
1124 if (lo->lo_encrypt_key_size &&
1125 lo->lo_key_owner != uid &&
1da177e4
LT
1126 !capable(CAP_SYS_ADMIN))
1127 return -EPERM;
1128 if (lo->lo_state != Lo_bound)
1129 return -ENXIO;
1130 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1131 return -EINVAL;
1132
1133 err = loop_release_xfer(lo);
1134 if (err)
1135 return err;
1136
1137 if (info->lo_encrypt_type) {
1138 unsigned int type = info->lo_encrypt_type;
1139
1140 if (type >= MAX_LO_CRYPT)
1141 return -EINVAL;
1142 xfer = xfer_funcs[type];
1143 if (xfer == NULL)
1144 return -EINVAL;
1145 } else
1146 xfer = NULL;
1147
1148 err = loop_init_xfer(lo, xfer, info);
1149 if (err)
1150 return err;
1151
1152 if (lo->lo_offset != info->lo_offset ||
1153 lo->lo_sizelimit != info->lo_sizelimit) {
1154 lo->lo_offset = info->lo_offset;
1155 lo->lo_sizelimit = info->lo_sizelimit;
1156 if (figure_loop_size(lo))
1157 return -EFBIG;
1158 }
dfaa2ef6 1159 loop_config_discard(lo);
1da177e4
LT
1160
1161 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1162 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1163 lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1164 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1165
1166 if (!xfer)
1167 xfer = &none_funcs;
1168 lo->transfer = xfer->transfer;
1169 lo->ioctl = xfer->ioctl;
1170
96c58655
DW
1171 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1172 (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1173 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1174
e03c8dd1
KS
1175 if ((info->lo_flags & LO_FLAGS_PARTSCAN) &&
1176 !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
1177 lo->lo_flags |= LO_FLAGS_PARTSCAN;
1178 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1179 ioctl_by_bdev(lo->lo_device, BLKRRPART, 0);
1180 }
1181
1da177e4
LT
1182 lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1183 lo->lo_init[0] = info->lo_init[0];
1184 lo->lo_init[1] = info->lo_init[1];
1185 if (info->lo_encrypt_key_size) {
1186 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1187 info->lo_encrypt_key_size);
b0fafa81 1188 lo->lo_key_owner = uid;
1da177e4
LT
1189 }
1190
1191 return 0;
1192}
1193
1194static int
1195loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1196{
1197 struct file *file = lo->lo_backing_file;
1198 struct kstat stat;
1199 int error;
1200
1201 if (lo->lo_state != Lo_bound)
1202 return -ENXIO;
6c648be6 1203 error = vfs_getattr(file->f_path.mnt, file->f_path.dentry, &stat);
1da177e4
LT
1204 if (error)
1205 return error;
1206 memset(info, 0, sizeof(*info));
1207 info->lo_number = lo->lo_number;
1208 info->lo_device = huge_encode_dev(stat.dev);
1209 info->lo_inode = stat.ino;
1210 info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1211 info->lo_offset = lo->lo_offset;
1212 info->lo_sizelimit = lo->lo_sizelimit;
1213 info->lo_flags = lo->lo_flags;
1214 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1215 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1216 info->lo_encrypt_type =
1217 lo->lo_encryption ? lo->lo_encryption->number : 0;
1218 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1219 info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1220 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1221 lo->lo_encrypt_key_size);
1222 }
1223 return 0;
1224}
1225
1226static void
1227loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1228{
1229 memset(info64, 0, sizeof(*info64));
1230 info64->lo_number = info->lo_number;
1231 info64->lo_device = info->lo_device;
1232 info64->lo_inode = info->lo_inode;
1233 info64->lo_rdevice = info->lo_rdevice;
1234 info64->lo_offset = info->lo_offset;
1235 info64->lo_sizelimit = 0;
1236 info64->lo_encrypt_type = info->lo_encrypt_type;
1237 info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1238 info64->lo_flags = info->lo_flags;
1239 info64->lo_init[0] = info->lo_init[0];
1240 info64->lo_init[1] = info->lo_init[1];
1241 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1242 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1243 else
1244 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1245 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1246}
1247
1248static int
1249loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1250{
1251 memset(info, 0, sizeof(*info));
1252 info->lo_number = info64->lo_number;
1253 info->lo_device = info64->lo_device;
1254 info->lo_inode = info64->lo_inode;
1255 info->lo_rdevice = info64->lo_rdevice;
1256 info->lo_offset = info64->lo_offset;
1257 info->lo_encrypt_type = info64->lo_encrypt_type;
1258 info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1259 info->lo_flags = info64->lo_flags;
1260 info->lo_init[0] = info64->lo_init[0];
1261 info->lo_init[1] = info64->lo_init[1];
1262 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1263 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1264 else
1265 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1266 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1267
1268 /* error in case values were truncated */
1269 if (info->lo_device != info64->lo_device ||
1270 info->lo_rdevice != info64->lo_rdevice ||
1271 info->lo_inode != info64->lo_inode ||
1272 info->lo_offset != info64->lo_offset)
1273 return -EOVERFLOW;
1274
1275 return 0;
1276}
1277
1278static int
1279loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1280{
1281 struct loop_info info;
1282 struct loop_info64 info64;
1283
1284 if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1285 return -EFAULT;
1286 loop_info64_from_old(&info, &info64);
1287 return loop_set_status(lo, &info64);
1288}
1289
1290static int
1291loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1292{
1293 struct loop_info64 info64;
1294
1295 if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1296 return -EFAULT;
1297 return loop_set_status(lo, &info64);
1298}
1299
1300static int
1301loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1302 struct loop_info info;
1303 struct loop_info64 info64;
1304 int err = 0;
1305
1306 if (!arg)
1307 err = -EINVAL;
1308 if (!err)
1309 err = loop_get_status(lo, &info64);
1310 if (!err)
1311 err = loop_info64_to_old(&info64, &info);
1312 if (!err && copy_to_user(arg, &info, sizeof(info)))
1313 err = -EFAULT;
1314
1315 return err;
1316}
1317
1318static int
1319loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1320 struct loop_info64 info64;
1321 int err = 0;
1322
1323 if (!arg)
1324 err = -EINVAL;
1325 if (!err)
1326 err = loop_get_status(lo, &info64);
1327 if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1328 err = -EFAULT;
1329
1330 return err;
1331}
1332
53d66608
O
1333static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev)
1334{
1335 int err;
1336 sector_t sec;
1337 loff_t sz;
1338
1339 err = -ENXIO;
1340 if (unlikely(lo->lo_state != Lo_bound))
1341 goto out;
1342 err = figure_loop_size(lo);
1343 if (unlikely(err))
1344 goto out;
1345 sec = get_capacity(lo->lo_disk);
1346 /* the width of sector_t may be narrow for bit-shift */
1347 sz = sec;
1348 sz <<= 9;
1349 mutex_lock(&bdev->bd_mutex);
1350 bd_set_size(bdev, sz);
c3473c63
DZ
1351 /* let user-space know about the new size */
1352 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
53d66608
O
1353 mutex_unlock(&bdev->bd_mutex);
1354
1355 out:
1356 return err;
1357}
1358
bb214884 1359static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1da177e4
LT
1360 unsigned int cmd, unsigned long arg)
1361{
bb214884 1362 struct loop_device *lo = bdev->bd_disk->private_data;
1da177e4
LT
1363 int err;
1364
f028f3b2 1365 mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1da177e4
LT
1366 switch (cmd) {
1367 case LOOP_SET_FD:
bb214884 1368 err = loop_set_fd(lo, mode, bdev, arg);
1da177e4
LT
1369 break;
1370 case LOOP_CHANGE_FD:
bb214884 1371 err = loop_change_fd(lo, bdev, arg);
1da177e4
LT
1372 break;
1373 case LOOP_CLR_FD:
f028f3b2 1374 /* loop_clr_fd would have unlocked lo_ctl_mutex on success */
bb214884 1375 err = loop_clr_fd(lo, bdev);
f028f3b2
NK
1376 if (!err)
1377 goto out_unlocked;
1da177e4
LT
1378 break;
1379 case LOOP_SET_STATUS:
1380 err = loop_set_status_old(lo, (struct loop_info __user *) arg);
1381 break;
1382 case LOOP_GET_STATUS:
1383 err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1384 break;
1385 case LOOP_SET_STATUS64:
1386 err = loop_set_status64(lo, (struct loop_info64 __user *) arg);
1387 break;
1388 case LOOP_GET_STATUS64:
1389 err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1390 break;
53d66608
O
1391 case LOOP_SET_CAPACITY:
1392 err = -EPERM;
1393 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1394 err = loop_set_capacity(lo, bdev);
1395 break;
1da177e4
LT
1396 default:
1397 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1398 }
f85221dd 1399 mutex_unlock(&lo->lo_ctl_mutex);
f028f3b2
NK
1400
1401out_unlocked:
1da177e4
LT
1402 return err;
1403}
1404
863d5b82
DH
1405#ifdef CONFIG_COMPAT
1406struct compat_loop_info {
1407 compat_int_t lo_number; /* ioctl r/o */
1408 compat_dev_t lo_device; /* ioctl r/o */
1409 compat_ulong_t lo_inode; /* ioctl r/o */
1410 compat_dev_t lo_rdevice; /* ioctl r/o */
1411 compat_int_t lo_offset;
1412 compat_int_t lo_encrypt_type;
1413 compat_int_t lo_encrypt_key_size; /* ioctl w/o */
1414 compat_int_t lo_flags; /* ioctl r/o */
1415 char lo_name[LO_NAME_SIZE];
1416 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1417 compat_ulong_t lo_init[2];
1418 char reserved[4];
1419};
1420
1421/*
1422 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1423 * - noinlined to reduce stack space usage in main part of driver
1424 */
1425static noinline int
ba674cfc 1426loop_info64_from_compat(const struct compat_loop_info __user *arg,
863d5b82
DH
1427 struct loop_info64 *info64)
1428{
1429 struct compat_loop_info info;
1430
1431 if (copy_from_user(&info, arg, sizeof(info)))
1432 return -EFAULT;
1433
1434 memset(info64, 0, sizeof(*info64));
1435 info64->lo_number = info.lo_number;
1436 info64->lo_device = info.lo_device;
1437 info64->lo_inode = info.lo_inode;
1438 info64->lo_rdevice = info.lo_rdevice;
1439 info64->lo_offset = info.lo_offset;
1440 info64->lo_sizelimit = 0;
1441 info64->lo_encrypt_type = info.lo_encrypt_type;
1442 info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1443 info64->lo_flags = info.lo_flags;
1444 info64->lo_init[0] = info.lo_init[0];
1445 info64->lo_init[1] = info.lo_init[1];
1446 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1447 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1448 else
1449 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1450 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1451 return 0;
1452}
1453
1454/*
1455 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1456 * - noinlined to reduce stack space usage in main part of driver
1457 */
1458static noinline int
1459loop_info64_to_compat(const struct loop_info64 *info64,
1460 struct compat_loop_info __user *arg)
1461{
1462 struct compat_loop_info info;
1463
1464 memset(&info, 0, sizeof(info));
1465 info.lo_number = info64->lo_number;
1466 info.lo_device = info64->lo_device;
1467 info.lo_inode = info64->lo_inode;
1468 info.lo_rdevice = info64->lo_rdevice;
1469 info.lo_offset = info64->lo_offset;
1470 info.lo_encrypt_type = info64->lo_encrypt_type;
1471 info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1472 info.lo_flags = info64->lo_flags;
1473 info.lo_init[0] = info64->lo_init[0];
1474 info.lo_init[1] = info64->lo_init[1];
1475 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1476 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1477 else
1478 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1479 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1480
1481 /* error in case values were truncated */
1482 if (info.lo_device != info64->lo_device ||
1483 info.lo_rdevice != info64->lo_rdevice ||
1484 info.lo_inode != info64->lo_inode ||
1485 info.lo_offset != info64->lo_offset ||
1486 info.lo_init[0] != info64->lo_init[0] ||
1487 info.lo_init[1] != info64->lo_init[1])
1488 return -EOVERFLOW;
1489
1490 if (copy_to_user(arg, &info, sizeof(info)))
1491 return -EFAULT;
1492 return 0;
1493}
1494
1495static int
1496loop_set_status_compat(struct loop_device *lo,
1497 const struct compat_loop_info __user *arg)
1498{
1499 struct loop_info64 info64;
1500 int ret;
1501
1502 ret = loop_info64_from_compat(arg, &info64);
1503 if (ret < 0)
1504 return ret;
1505 return loop_set_status(lo, &info64);
1506}
1507
1508static int
1509loop_get_status_compat(struct loop_device *lo,
1510 struct compat_loop_info __user *arg)
1511{
1512 struct loop_info64 info64;
1513 int err = 0;
1514
1515 if (!arg)
1516 err = -EINVAL;
1517 if (!err)
1518 err = loop_get_status(lo, &info64);
1519 if (!err)
1520 err = loop_info64_to_compat(&info64, arg);
1521 return err;
1522}
1523
bb214884
AV
1524static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1525 unsigned int cmd, unsigned long arg)
863d5b82 1526{
bb214884 1527 struct loop_device *lo = bdev->bd_disk->private_data;
863d5b82
DH
1528 int err;
1529
863d5b82
DH
1530 switch(cmd) {
1531 case LOOP_SET_STATUS:
1532 mutex_lock(&lo->lo_ctl_mutex);
1533 err = loop_set_status_compat(
1534 lo, (const struct compat_loop_info __user *) arg);
1535 mutex_unlock(&lo->lo_ctl_mutex);
1536 break;
1537 case LOOP_GET_STATUS:
1538 mutex_lock(&lo->lo_ctl_mutex);
1539 err = loop_get_status_compat(
1540 lo, (struct compat_loop_info __user *) arg);
1541 mutex_unlock(&lo->lo_ctl_mutex);
1542 break;
53d66608 1543 case LOOP_SET_CAPACITY:
863d5b82
DH
1544 case LOOP_CLR_FD:
1545 case LOOP_GET_STATUS64:
1546 case LOOP_SET_STATUS64:
1547 arg = (unsigned long) compat_ptr(arg);
1548 case LOOP_SET_FD:
1549 case LOOP_CHANGE_FD:
bb214884 1550 err = lo_ioctl(bdev, mode, cmd, arg);
863d5b82
DH
1551 break;
1552 default:
1553 err = -ENOIOCTLCMD;
1554 break;
1555 }
863d5b82
DH
1556 return err;
1557}
1558#endif
1559
bb214884 1560static int lo_open(struct block_device *bdev, fmode_t mode)
1da177e4 1561{
bb214884 1562 struct loop_device *lo = bdev->bd_disk->private_data;
1da177e4 1563
f85221dd 1564 mutex_lock(&lo->lo_ctl_mutex);
1da177e4 1565 lo->lo_refcnt++;
f85221dd 1566 mutex_unlock(&lo->lo_ctl_mutex);
1da177e4
LT
1567
1568 return 0;
1569}
1570
bb214884 1571static int lo_release(struct gendisk *disk, fmode_t mode)
1da177e4 1572{
bb214884 1573 struct loop_device *lo = disk->private_data;
ffcd7dca 1574 int err;
1da177e4 1575
f85221dd 1576 mutex_lock(&lo->lo_ctl_mutex);
96c58655 1577
14f27939
MB
1578 if (--lo->lo_refcnt)
1579 goto out;
1580
1581 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1582 /*
1583 * In autoclear mode, stop the loop thread
1584 * and remove configuration after last close.
1585 */
8a9c5944 1586 err = loop_clr_fd(lo, lo->lo_device);
ffcd7dca
AB
1587 if (!err)
1588 goto out_unlocked;
14f27939
MB
1589 } else {
1590 /*
1591 * Otherwise keep thread (if running) and config,
1592 * but flush possible ongoing bios in thread.
1593 */
1594 loop_flush(lo);
1595 }
96c58655 1596
14f27939 1597out:
f85221dd 1598 mutex_unlock(&lo->lo_ctl_mutex);
ffcd7dca 1599out_unlocked:
1da177e4
LT
1600 return 0;
1601}
1602
83d5cde4 1603static const struct block_device_operations lo_fops = {
1da177e4 1604 .owner = THIS_MODULE,
bb214884
AV
1605 .open = lo_open,
1606 .release = lo_release,
1607 .ioctl = lo_ioctl,
863d5b82 1608#ifdef CONFIG_COMPAT
bb214884 1609 .compat_ioctl = lo_compat_ioctl,
863d5b82 1610#endif
1da177e4
LT
1611};
1612
1613/*
1614 * And now the modules code and kernel interface.
1615 */
73285082 1616static int max_loop;
ac04fee0 1617module_param(max_loop, int, S_IRUGO);
a47653fc 1618MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
ac04fee0 1619module_param(max_part, int, S_IRUGO);
476a4813 1620MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1da177e4
LT
1621MODULE_LICENSE("GPL");
1622MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1623
1624int loop_register_transfer(struct loop_func_table *funcs)
1625{
1626 unsigned int n = funcs->number;
1627
1628 if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1629 return -EINVAL;
1630 xfer_funcs[n] = funcs;
1631 return 0;
1632}
1633
1634int loop_unregister_transfer(int number)
1635{
1636 unsigned int n = number;
1637 struct loop_device *lo;
1638 struct loop_func_table *xfer;
1639
1640 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1641 return -EINVAL;
1642
1643 xfer_funcs[n] = NULL;
1644
73285082 1645 list_for_each_entry(lo, &loop_devices, lo_list) {
f85221dd 1646 mutex_lock(&lo->lo_ctl_mutex);
1da177e4
LT
1647
1648 if (lo->lo_encryption == xfer)
1649 loop_release_xfer(lo);
1650
f85221dd 1651 mutex_unlock(&lo->lo_ctl_mutex);
1da177e4
LT
1652 }
1653
1654 return 0;
1655}
1656
1657EXPORT_SYMBOL(loop_register_transfer);
1658EXPORT_SYMBOL(loop_unregister_transfer);
1659
a47653fc 1660static struct loop_device *loop_alloc(int i)
73285082
KC
1661{
1662 struct loop_device *lo;
1663 struct gendisk *disk;
1664
1665 lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1666 if (!lo)
1667 goto out;
1668
1669 lo->lo_queue = blk_alloc_queue(GFP_KERNEL);
1670 if (!lo->lo_queue)
1671 goto out_free_dev;
1672
476a4813 1673 disk = lo->lo_disk = alloc_disk(1 << part_shift);
73285082
KC
1674 if (!disk)
1675 goto out_free_queue;
1676
e03c8dd1
KS
1677 /*
1678 * Disable partition scanning by default. The in-kernel partition
1679 * scanning can be requested individually per-device during its
1680 * setup. Userspace can always add and remove partitions from all
1681 * devices. The needed partition minors are allocated from the
1682 * extended minor space, the main loop device numbers will continue
1683 * to match the loop minors, regardless of the number of partitions
1684 * used.
1685 *
1686 * If max_part is given, partition scanning is globally enabled for
1687 * all loop devices. The minors for the main loop devices will be
1688 * multiples of max_part.
1689 *
1690 * Note: Global-for-all-devices, set-only-at-init, read-only module
1691 * parameteters like 'max_loop' and 'max_part' make things needlessly
1692 * complicated, are too static, inflexible and may surprise
1693 * userspace tools. Parameters like this in general should be avoided.
1694 */
1695 if (!part_shift)
1696 disk->flags |= GENHD_FL_NO_PART_SCAN;
1697 disk->flags |= GENHD_FL_EXT_DEVT;
73285082
KC
1698 mutex_init(&lo->lo_ctl_mutex);
1699 lo->lo_number = i;
1700 lo->lo_thread = NULL;
1701 init_waitqueue_head(&lo->lo_event);
1702 spin_lock_init(&lo->lo_lock);
1703 disk->major = LOOP_MAJOR;
476a4813 1704 disk->first_minor = i << part_shift;
73285082
KC
1705 disk->fops = &lo_fops;
1706 disk->private_data = lo;
1707 disk->queue = lo->lo_queue;
1708 sprintf(disk->disk_name, "loop%d", i);
73285082
KC
1709 return lo;
1710
1711out_free_queue:
1712 blk_cleanup_queue(lo->lo_queue);
1713out_free_dev:
1714 kfree(lo);
1715out:
07002e99 1716 return NULL;
73285082
KC
1717}
1718
a47653fc 1719static void loop_free(struct loop_device *lo)
1da177e4 1720{
73285082
KC
1721 blk_cleanup_queue(lo->lo_queue);
1722 put_disk(lo->lo_disk);
1723 list_del(&lo->lo_list);
1724 kfree(lo);
1725}
1da177e4 1726
a47653fc
KC
1727static struct loop_device *loop_init_one(int i)
1728{
1729 struct loop_device *lo;
1730
1731 list_for_each_entry(lo, &loop_devices, lo_list) {
1732 if (lo->lo_number == i)
1733 return lo;
1734 }
1735
1736 lo = loop_alloc(i);
1737 if (lo) {
1738 add_disk(lo->lo_disk);
1739 list_add_tail(&lo->lo_list, &loop_devices);
1740 }
1741 return lo;
1742}
1743
1744static void loop_del_one(struct loop_device *lo)
1745{
1746 del_gendisk(lo->lo_disk);
1747 loop_free(lo);
1748}
1749
73285082
KC
1750static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1751{
705962cc 1752 struct loop_device *lo;
07002e99 1753 struct kobject *kobj;
73285082 1754
705962cc 1755 mutex_lock(&loop_devices_mutex);
a1c15c59 1756 lo = loop_init_one(MINOR(dev) >> part_shift);
07002e99 1757 kobj = lo ? get_disk(lo->lo_disk) : ERR_PTR(-ENOMEM);
73285082
KC
1758 mutex_unlock(&loop_devices_mutex);
1759
1760 *part = 0;
07002e99 1761 return kobj;
73285082
KC
1762}
1763
1764static int __init loop_init(void)
1765{
a47653fc
KC
1766 int i, nr;
1767 unsigned long range;
1768 struct loop_device *lo, *next;
1769
1770 /*
1771 * loop module now has a feature to instantiate underlying device
1772 * structure on-demand, provided that there is an access dev node.
1773 * However, this will not work well with user space tool that doesn't
1774 * know about such "feature". In order to not break any existing
1775 * tool, we do the following:
1776 *
1777 * (1) if max_loop is specified, create that many upfront, and this
1778 * also becomes a hard limit.
1779 * (2) if max_loop is not specified, create 8 loop device on module
1780 * load, user can further extend loop device by create dev node
1781 * themselves and have kernel automatically instantiate actual
1782 * device on-demand.
1783 */
476a4813
LV
1784
1785 part_shift = 0;
ac04fee0 1786 if (max_part > 0) {
476a4813
LV
1787 part_shift = fls(max_part);
1788
ac04fee0
NK
1789 /*
1790 * Adjust max_part according to part_shift as it is exported
1791 * to user space so that user can decide correct minor number
1792 * if [s]he want to create more devices.
1793 *
1794 * Note that -1 is required because partition 0 is reserved
1795 * for the whole disk.
1796 */
1797 max_part = (1UL << part_shift) - 1;
1798 }
1799
78f4bb36
NK
1800 if ((1UL << part_shift) > DISK_MAX_PARTS)
1801 return -EINVAL;
1802
476a4813 1803 if (max_loop > 1UL << (MINORBITS - part_shift))
a47653fc 1804 return -EINVAL;
1da177e4 1805
73285082 1806 if (max_loop) {
a47653fc 1807 nr = max_loop;
a1c15c59 1808 range = max_loop << part_shift;
a47653fc
KC
1809 } else {
1810 nr = 8;
a1c15c59 1811 range = 1UL << MINORBITS;
a47653fc
KC
1812 }
1813
1814 if (register_blkdev(LOOP_MAJOR, "loop"))
1815 return -EIO;
1da177e4 1816
a47653fc
KC
1817 for (i = 0; i < nr; i++) {
1818 lo = loop_alloc(i);
1819 if (!lo)
1820 goto Enomem;
1821 list_add_tail(&lo->lo_list, &loop_devices);
1da177e4 1822 }
a47653fc
KC
1823
1824 /* point of no return */
1825
1826 list_for_each_entry(lo, &loop_devices, lo_list)
1827 add_disk(lo->lo_disk);
1828
1829 blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
1830 THIS_MODULE, loop_probe, NULL, NULL);
1831
73285082 1832 printk(KERN_INFO "loop: module loaded\n");
1da177e4 1833 return 0;
a47653fc
KC
1834
1835Enomem:
1836 printk(KERN_INFO "loop: out of memory\n");
1837
1838 list_for_each_entry_safe(lo, next, &loop_devices, lo_list)
1839 loop_free(lo);
1840
1841 unregister_blkdev(LOOP_MAJOR, "loop");
1842 return -ENOMEM;
1da177e4
LT
1843}
1844
73285082 1845static void __exit loop_exit(void)
1da177e4 1846{
a47653fc 1847 unsigned long range;
73285082 1848 struct loop_device *lo, *next;
1da177e4 1849
a1c15c59 1850 range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
a47653fc 1851
73285082
KC
1852 list_for_each_entry_safe(lo, next, &loop_devices, lo_list)
1853 loop_del_one(lo);
1854
a47653fc 1855 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
00d59405 1856 unregister_blkdev(LOOP_MAJOR, "loop");
1da177e4
LT
1857}
1858
1859module_init(loop_init);
1860module_exit(loop_exit);
1861
1862#ifndef MODULE
1863static int __init max_loop_setup(char *str)
1864{
1865 max_loop = simple_strtol(str, NULL, 0);
1866 return 1;
1867}
1868
1869__setup("max_loop=", max_loop_setup);
1870#endif
This page took 0.655614 seconds and 5 git commands to generate.