ipmi: Make some data const that was only read
[deliverable/linux.git] / drivers / char / ipmi / ipmi_si_intf.c
CommitLineData
1da177e4
LT
1/*
2 * ipmi_si.c
3 *
4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5 * BT).
6 *
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
9 * source@mvista.com
10 *
11 * Copyright 2002 MontaVista Software Inc.
dba9b4f6 12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
1da177e4
LT
13 *
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 of the License, or (at your
17 * option) any later version.
18 *
19 *
20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 *
31 * You should have received a copy of the GNU General Public License along
32 * with this program; if not, write to the Free Software Foundation, Inc.,
33 * 675 Mass Ave, Cambridge, MA 02139, USA.
34 */
35
36/*
37 * This file holds the "policy" for the interface to the SMI state
38 * machine. It does the configuration, handles timers and interrupts,
39 * and drives the real SMI state machine.
40 */
41
1da177e4
LT
42#include <linux/module.h>
43#include <linux/moduleparam.h>
1da177e4 44#include <linux/sched.h>
07412736 45#include <linux/seq_file.h>
1da177e4
LT
46#include <linux/timer.h>
47#include <linux/errno.h>
48#include <linux/spinlock.h>
49#include <linux/slab.h>
50#include <linux/delay.h>
51#include <linux/list.h>
52#include <linux/pci.h>
53#include <linux/ioport.h>
ea94027b 54#include <linux/notifier.h>
b0defcdb 55#include <linux/mutex.h>
e9a705a0 56#include <linux/kthread.h>
1da177e4 57#include <asm/irq.h>
1da177e4
LT
58#include <linux/interrupt.h>
59#include <linux/rcupdate.h>
16f4232c 60#include <linux/ipmi.h>
1da177e4
LT
61#include <linux/ipmi_smi.h>
62#include <asm/io.h>
63#include "ipmi_si_sm.h"
b224cd3a 64#include <linux/dmi.h>
b361e27b
CM
65#include <linux/string.h>
66#include <linux/ctype.h>
11c675ce
SR
67#include <linux/of_device.h>
68#include <linux/of_platform.h>
672d8eaf
RH
69#include <linux/of_address.h>
70#include <linux/of_irq.h>
dba9b4f6 71
fdbeb7de
TB
72#ifdef CONFIG_PARISC
73#include <asm/hardware.h> /* for register_parisc_driver() stuff */
74#include <asm/parisc-device.h>
75#endif
76
b361e27b 77#define PFX "ipmi_si: "
1da177e4
LT
78
79/* Measure times between events in the driver. */
80#undef DEBUG_TIMING
81
82/* Call every 10 ms. */
83#define SI_TIMEOUT_TIME_USEC 10000
84#define SI_USEC_PER_JIFFY (1000000/HZ)
85#define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
86#define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
c305e3d3 87 short timeout */
1da177e4
LT
88
89enum si_intf_state {
90 SI_NORMAL,
91 SI_GETTING_FLAGS,
92 SI_GETTING_EVENTS,
93 SI_CLEARING_FLAGS,
1da177e4 94 SI_GETTING_MESSAGES,
d9b7e4f7
CM
95 SI_CHECKING_ENABLES,
96 SI_SETTING_ENABLES
1da177e4
LT
97 /* FIXME - add watchdog stuff. */
98};
99
9dbf68f9
CM
100/* Some BT-specific defines we need here. */
101#define IPMI_BT_INTMASK_REG 2
102#define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
103#define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
104
1da177e4
LT
105enum si_type {
106 SI_KCS, SI_SMIC, SI_BT
107};
b361e27b 108static char *si_to_str[] = { "kcs", "smic", "bt" };
1da177e4 109
50c812b2
CM
110#define DEVICE_NAME "ipmi_si"
111
a1e9c9dd 112static struct platform_driver ipmi_driver;
64959e2d
CM
113
114/*
115 * Indexes into stats[] in smi_info below.
116 */
ba8ff1c6
CM
117enum si_stat_indexes {
118 /*
119 * Number of times the driver requested a timer while an operation
120 * was in progress.
121 */
122 SI_STAT_short_timeouts = 0,
123
124 /*
125 * Number of times the driver requested a timer while nothing was in
126 * progress.
127 */
128 SI_STAT_long_timeouts,
129
130 /* Number of times the interface was idle while being polled. */
131 SI_STAT_idles,
132
133 /* Number of interrupts the driver handled. */
134 SI_STAT_interrupts,
135
136 /* Number of time the driver got an ATTN from the hardware. */
137 SI_STAT_attentions,
64959e2d 138
ba8ff1c6
CM
139 /* Number of times the driver requested flags from the hardware. */
140 SI_STAT_flag_fetches,
141
142 /* Number of times the hardware didn't follow the state machine. */
143 SI_STAT_hosed_count,
144
145 /* Number of completed messages. */
146 SI_STAT_complete_transactions,
147
148 /* Number of IPMI events received from the hardware. */
149 SI_STAT_events,
150
151 /* Number of watchdog pretimeouts. */
152 SI_STAT_watchdog_pretimeouts,
153
b3834be5 154 /* Number of asynchronous messages received. */
ba8ff1c6
CM
155 SI_STAT_incoming_messages,
156
157
158 /* This *must* remain last, add new values above this. */
159 SI_NUM_STATS
160};
64959e2d 161
c305e3d3 162struct smi_info {
a9a2c44f 163 int intf_num;
1da177e4
LT
164 ipmi_smi_t intf;
165 struct si_sm_data *si_sm;
81d02b7f 166 const struct si_sm_handlers *handlers;
1da177e4
LT
167 enum si_type si_type;
168 spinlock_t si_lock;
b874b985 169 struct ipmi_smi_msg *waiting_msg;
1da177e4
LT
170 struct ipmi_smi_msg *curr_msg;
171 enum si_intf_state si_state;
172
c305e3d3
CM
173 /*
174 * Used to handle the various types of I/O that can occur with
175 * IPMI
176 */
1da177e4
LT
177 struct si_sm_io io;
178 int (*io_setup)(struct smi_info *info);
179 void (*io_cleanup)(struct smi_info *info);
180 int (*irq_setup)(struct smi_info *info);
181 void (*irq_cleanup)(struct smi_info *info);
182 unsigned int io_size;
5fedc4a2 183 enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
b0defcdb
CM
184 void (*addr_source_cleanup)(struct smi_info *info);
185 void *addr_source_data;
1da177e4 186
c305e3d3
CM
187 /*
188 * Per-OEM handler, called from handle_flags(). Returns 1
189 * when handle_flags() needs to be re-run or 0 indicating it
190 * set si_state itself.
191 */
3ae0e0f9
CM
192 int (*oem_data_avail_handler)(struct smi_info *smi_info);
193
c305e3d3
CM
194 /*
195 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
196 * is set to hold the flags until we are done handling everything
197 * from the flags.
198 */
1da177e4
LT
199#define RECEIVE_MSG_AVAIL 0x01
200#define EVENT_MSG_BUFFER_FULL 0x02
201#define WDT_PRE_TIMEOUT_INT 0x08
3ae0e0f9
CM
202#define OEM0_DATA_AVAIL 0x20
203#define OEM1_DATA_AVAIL 0x40
204#define OEM2_DATA_AVAIL 0x80
205#define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
c305e3d3
CM
206 OEM1_DATA_AVAIL | \
207 OEM2_DATA_AVAIL)
1da177e4
LT
208 unsigned char msg_flags;
209
40112ae7 210 /* Does the BMC have an event buffer? */
7aefac26 211 bool has_event_buffer;
40112ae7 212
c305e3d3
CM
213 /*
214 * If set to true, this will request events the next time the
215 * state machine is idle.
216 */
1da177e4
LT
217 atomic_t req_events;
218
c305e3d3
CM
219 /*
220 * If true, run the state machine to completion on every send
221 * call. Generally used after a panic to make sure stuff goes
222 * out.
223 */
7aefac26 224 bool run_to_completion;
1da177e4
LT
225
226 /* The I/O port of an SI interface. */
227 int port;
228
c305e3d3
CM
229 /*
230 * The space between start addresses of the two ports. For
231 * instance, if the first port is 0xca2 and the spacing is 4, then
232 * the second port is 0xca6.
233 */
1da177e4
LT
234 unsigned int spacing;
235
236 /* zero if no irq; */
237 int irq;
238
239 /* The timer for this si. */
240 struct timer_list si_timer;
241
48e8ac29
BS
242 /* This flag is set, if the timer is running (timer_pending() isn't enough) */
243 bool timer_running;
244
1da177e4
LT
245 /* The time (in jiffies) the last timeout occurred at. */
246 unsigned long last_timeout_jiffies;
247
89986496
CM
248 /* Are we waiting for the events, pretimeouts, received msgs? */
249 atomic_t need_watch;
250
c305e3d3
CM
251 /*
252 * The driver will disable interrupts when it gets into a
253 * situation where it cannot handle messages due to lack of
254 * memory. Once that situation clears up, it will re-enable
255 * interrupts.
256 */
7aefac26 257 bool interrupt_disabled;
1da177e4 258
d9b7e4f7
CM
259 /*
260 * Does the BMC support events?
261 */
262 bool supports_event_msg_buff;
263
1e7d6a45
CM
264 /*
265 * Can we clear the global enables receive irq bit?
266 */
267 bool cannot_clear_recv_irq_bit;
268
a8df150c
CM
269 /*
270 * Did we get an attention that we did not handle?
271 */
272 bool got_attn;
273
50c812b2 274 /* From the get device id response... */
3ae0e0f9 275 struct ipmi_device_id device_id;
1da177e4 276
50c812b2
CM
277 /* Driver model stuff. */
278 struct device *dev;
279 struct platform_device *pdev;
280
c305e3d3
CM
281 /*
282 * True if we allocated the device, false if it came from
283 * someplace else (like PCI).
284 */
7aefac26 285 bool dev_registered;
50c812b2 286
1da177e4
LT
287 /* Slave address, could be reported from DMI. */
288 unsigned char slave_addr;
289
290 /* Counters and things for the proc filesystem. */
64959e2d 291 atomic_t stats[SI_NUM_STATS];
a9a2c44f 292
c305e3d3 293 struct task_struct *thread;
b0defcdb
CM
294
295 struct list_head link;
16f4232c 296 union ipmi_smi_info_union addr_info;
1da177e4
LT
297};
298
64959e2d
CM
299#define smi_inc_stat(smi, stat) \
300 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
301#define smi_get_stat(smi, stat) \
302 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
303
a51f4a81
CM
304#define SI_MAX_PARMS 4
305
306static int force_kipmid[SI_MAX_PARMS];
307static int num_force_kipmid;
56480287 308#ifdef CONFIG_PCI
7aefac26 309static bool pci_registered;
56480287 310#endif
fdbeb7de 311#ifdef CONFIG_PARISC
7aefac26 312static bool parisc_registered;
fdbeb7de 313#endif
a51f4a81 314
ae74e823
MW
315static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
316static int num_max_busy_us;
317
7aefac26 318static bool unload_when_empty = true;
b361e27b 319
2407d77a 320static int add_smi(struct smi_info *smi);
b0defcdb 321static int try_smi_init(struct smi_info *smi);
b361e27b 322static void cleanup_one_si(struct smi_info *to_clean);
d2478521 323static void cleanup_ipmi_si(void);
b0defcdb 324
f93aae9f
JS
325#ifdef DEBUG_TIMING
326void debug_timestamp(char *msg)
327{
48862ea2 328 struct timespec64 t;
f93aae9f 329
48862ea2
JS
330 getnstimeofday64(&t);
331 pr_debug("**%s: %lld.%9.9ld\n", msg, (long long) t.tv_sec, t.tv_nsec);
f93aae9f
JS
332}
333#else
334#define debug_timestamp(x)
335#endif
336
e041c683 337static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
c305e3d3 338static int register_xaction_notifier(struct notifier_block *nb)
ea94027b 339{
e041c683 340 return atomic_notifier_chain_register(&xaction_notifier_list, nb);
ea94027b
CM
341}
342
1da177e4
LT
343static void deliver_recv_msg(struct smi_info *smi_info,
344 struct ipmi_smi_msg *msg)
345{
7adf579c 346 /* Deliver the message to the upper layer. */
968bf7cc
CM
347 if (smi_info->intf)
348 ipmi_smi_msg_received(smi_info->intf, msg);
349 else
350 ipmi_free_smi_msg(msg);
1da177e4
LT
351}
352
4d7cbac7 353static void return_hosed_msg(struct smi_info *smi_info, int cCode)
1da177e4
LT
354{
355 struct ipmi_smi_msg *msg = smi_info->curr_msg;
356
4d7cbac7
CM
357 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
358 cCode = IPMI_ERR_UNSPECIFIED;
359 /* else use it as is */
360
25985edc 361 /* Make it a response */
1da177e4
LT
362 msg->rsp[0] = msg->data[0] | 4;
363 msg->rsp[1] = msg->data[1];
4d7cbac7 364 msg->rsp[2] = cCode;
1da177e4
LT
365 msg->rsp_size = 3;
366
367 smi_info->curr_msg = NULL;
368 deliver_recv_msg(smi_info, msg);
369}
370
371static enum si_sm_result start_next_msg(struct smi_info *smi_info)
372{
373 int rv;
1da177e4 374
b874b985 375 if (!smi_info->waiting_msg) {
1da177e4
LT
376 smi_info->curr_msg = NULL;
377 rv = SI_SM_IDLE;
378 } else {
379 int err;
380
b874b985
CM
381 smi_info->curr_msg = smi_info->waiting_msg;
382 smi_info->waiting_msg = NULL;
f93aae9f 383 debug_timestamp("Start2");
e041c683
AS
384 err = atomic_notifier_call_chain(&xaction_notifier_list,
385 0, smi_info);
ea94027b
CM
386 if (err & NOTIFY_STOP_MASK) {
387 rv = SI_SM_CALL_WITHOUT_DELAY;
388 goto out;
389 }
1da177e4
LT
390 err = smi_info->handlers->start_transaction(
391 smi_info->si_sm,
392 smi_info->curr_msg->data,
393 smi_info->curr_msg->data_size);
c305e3d3 394 if (err)
4d7cbac7 395 return_hosed_msg(smi_info, err);
1da177e4
LT
396
397 rv = SI_SM_CALL_WITHOUT_DELAY;
398 }
c305e3d3 399 out:
1da177e4
LT
400 return rv;
401}
402
d9b7e4f7 403static void start_check_enables(struct smi_info *smi_info)
ee6cd5f8
CM
404{
405 unsigned char msg[2];
406
407 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
408 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
409
410 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
d9b7e4f7 411 smi_info->si_state = SI_CHECKING_ENABLES;
ee6cd5f8
CM
412}
413
1da177e4
LT
414static void start_clear_flags(struct smi_info *smi_info)
415{
416 unsigned char msg[3];
417
418 /* Make sure the watchdog pre-timeout flag is not set at startup. */
419 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
420 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
421 msg[2] = WDT_PRE_TIMEOUT_INT;
422
423 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
424 smi_info->si_state = SI_CLEARING_FLAGS;
425}
426
968bf7cc
CM
427static void start_getting_msg_queue(struct smi_info *smi_info)
428{
429 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
430 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
431 smi_info->curr_msg->data_size = 2;
432
433 smi_info->handlers->start_transaction(
434 smi_info->si_sm,
435 smi_info->curr_msg->data,
436 smi_info->curr_msg->data_size);
437 smi_info->si_state = SI_GETTING_MESSAGES;
438}
439
440static void start_getting_events(struct smi_info *smi_info)
441{
442 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
443 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
444 smi_info->curr_msg->data_size = 2;
445
446 smi_info->handlers->start_transaction(
447 smi_info->si_sm,
448 smi_info->curr_msg->data,
449 smi_info->curr_msg->data_size);
450 smi_info->si_state = SI_GETTING_EVENTS;
451}
452
48e8ac29
BS
453static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
454{
455 smi_info->last_timeout_jiffies = jiffies;
456 mod_timer(&smi_info->si_timer, new_val);
457 smi_info->timer_running = true;
458}
459
c305e3d3
CM
460/*
461 * When we have a situtaion where we run out of memory and cannot
462 * allocate messages, we just leave them in the BMC and run the system
463 * polled until we can allocate some memory. Once we have some
464 * memory, we will re-enable the interrupt.
1e7d6a45
CM
465 *
466 * Note that we cannot just use disable_irq(), since the interrupt may
467 * be shared.
c305e3d3 468 */
968bf7cc 469static inline bool disable_si_irq(struct smi_info *smi_info)
1da177e4 470{
b0defcdb 471 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
7aefac26 472 smi_info->interrupt_disabled = true;
d9b7e4f7 473 start_check_enables(smi_info);
968bf7cc 474 return true;
1da177e4 475 }
968bf7cc 476 return false;
1da177e4
LT
477}
478
968bf7cc 479static inline bool enable_si_irq(struct smi_info *smi_info)
1da177e4
LT
480{
481 if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
7aefac26 482 smi_info->interrupt_disabled = false;
d9b7e4f7 483 start_check_enables(smi_info);
968bf7cc
CM
484 return true;
485 }
486 return false;
487}
488
489/*
490 * Allocate a message. If unable to allocate, start the interrupt
491 * disable process and return NULL. If able to allocate but
492 * interrupts are disabled, free the message and return NULL after
493 * starting the interrupt enable process.
494 */
495static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
496{
497 struct ipmi_smi_msg *msg;
498
499 msg = ipmi_alloc_smi_msg();
500 if (!msg) {
501 if (!disable_si_irq(smi_info))
502 smi_info->si_state = SI_NORMAL;
503 } else if (enable_si_irq(smi_info)) {
504 ipmi_free_smi_msg(msg);
505 msg = NULL;
1da177e4 506 }
968bf7cc 507 return msg;
1da177e4
LT
508}
509
510static void handle_flags(struct smi_info *smi_info)
511{
3ae0e0f9 512 retry:
1da177e4
LT
513 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
514 /* Watchdog pre-timeout */
64959e2d 515 smi_inc_stat(smi_info, watchdog_pretimeouts);
1da177e4
LT
516
517 start_clear_flags(smi_info);
518 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
968bf7cc
CM
519 if (smi_info->intf)
520 ipmi_smi_watchdog_pretimeout(smi_info->intf);
1da177e4
LT
521 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
522 /* Messages available. */
968bf7cc
CM
523 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
524 if (!smi_info->curr_msg)
1da177e4 525 return;
1da177e4 526
968bf7cc 527 start_getting_msg_queue(smi_info);
1da177e4
LT
528 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
529 /* Events available. */
968bf7cc
CM
530 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
531 if (!smi_info->curr_msg)
1da177e4 532 return;
1da177e4 533
968bf7cc 534 start_getting_events(smi_info);
4064d5ef 535 } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
c305e3d3 536 smi_info->oem_data_avail_handler) {
4064d5ef
CM
537 if (smi_info->oem_data_avail_handler(smi_info))
538 goto retry;
c305e3d3 539 } else
1da177e4 540 smi_info->si_state = SI_NORMAL;
1da177e4
LT
541}
542
d9b7e4f7
CM
543/*
544 * Global enables we care about.
545 */
546#define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
547 IPMI_BMC_EVT_MSG_INTR)
548
95c97b59
CM
549static u8 current_global_enables(struct smi_info *smi_info, u8 base,
550 bool *irq_on)
d9b7e4f7
CM
551{
552 u8 enables = 0;
553
554 if (smi_info->supports_event_msg_buff)
555 enables |= IPMI_BMC_EVT_MSG_BUFF;
d9b7e4f7 556
1e7d6a45
CM
557 if ((smi_info->irq && !smi_info->interrupt_disabled) ||
558 smi_info->cannot_clear_recv_irq_bit)
d9b7e4f7 559 enables |= IPMI_BMC_RCV_MSG_INTR;
d9b7e4f7
CM
560
561 if (smi_info->supports_event_msg_buff &&
562 smi_info->irq && !smi_info->interrupt_disabled)
563
564 enables |= IPMI_BMC_EVT_MSG_INTR;
d9b7e4f7 565
95c97b59
CM
566 *irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
567
d9b7e4f7
CM
568 return enables;
569}
570
95c97b59
CM
571static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
572{
573 u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
574
575 irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
576
577 if ((bool)irqstate == irq_on)
578 return;
579
580 if (irq_on)
581 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
582 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
583 else
584 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
585}
586
1da177e4
LT
587static void handle_transaction_done(struct smi_info *smi_info)
588{
589 struct ipmi_smi_msg *msg;
1da177e4 590
f93aae9f 591 debug_timestamp("Done");
1da177e4
LT
592 switch (smi_info->si_state) {
593 case SI_NORMAL:
b0defcdb 594 if (!smi_info->curr_msg)
1da177e4
LT
595 break;
596
597 smi_info->curr_msg->rsp_size
598 = smi_info->handlers->get_result(
599 smi_info->si_sm,
600 smi_info->curr_msg->rsp,
601 IPMI_MAX_MSG_LENGTH);
602
c305e3d3
CM
603 /*
604 * Do this here becase deliver_recv_msg() releases the
605 * lock, and a new message can be put in during the
606 * time the lock is released.
607 */
1da177e4
LT
608 msg = smi_info->curr_msg;
609 smi_info->curr_msg = NULL;
610 deliver_recv_msg(smi_info, msg);
611 break;
612
613 case SI_GETTING_FLAGS:
614 {
615 unsigned char msg[4];
616 unsigned int len;
617
618 /* We got the flags from the SMI, now handle them. */
619 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
620 if (msg[2] != 0) {
c305e3d3 621 /* Error fetching flags, just give up for now. */
1da177e4
LT
622 smi_info->si_state = SI_NORMAL;
623 } else if (len < 4) {
c305e3d3
CM
624 /*
625 * Hmm, no flags. That's technically illegal, but
626 * don't use uninitialized data.
627 */
1da177e4
LT
628 smi_info->si_state = SI_NORMAL;
629 } else {
630 smi_info->msg_flags = msg[3];
631 handle_flags(smi_info);
632 }
633 break;
634 }
635
636 case SI_CLEARING_FLAGS:
1da177e4
LT
637 {
638 unsigned char msg[3];
639
640 /* We cleared the flags. */
641 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
642 if (msg[2] != 0) {
643 /* Error clearing flags */
279fbd0c
MS
644 dev_warn(smi_info->dev,
645 "Error clearing flags: %2.2x\n", msg[2]);
1da177e4 646 }
d9b7e4f7 647 smi_info->si_state = SI_NORMAL;
1da177e4
LT
648 break;
649 }
650
651 case SI_GETTING_EVENTS:
652 {
653 smi_info->curr_msg->rsp_size
654 = smi_info->handlers->get_result(
655 smi_info->si_sm,
656 smi_info->curr_msg->rsp,
657 IPMI_MAX_MSG_LENGTH);
658
c305e3d3
CM
659 /*
660 * Do this here becase deliver_recv_msg() releases the
661 * lock, and a new message can be put in during the
662 * time the lock is released.
663 */
1da177e4
LT
664 msg = smi_info->curr_msg;
665 smi_info->curr_msg = NULL;
666 if (msg->rsp[2] != 0) {
667 /* Error getting event, probably done. */
668 msg->done(msg);
669
670 /* Take off the event flag. */
671 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
672 handle_flags(smi_info);
673 } else {
64959e2d 674 smi_inc_stat(smi_info, events);
1da177e4 675
c305e3d3
CM
676 /*
677 * Do this before we deliver the message
678 * because delivering the message releases the
679 * lock and something else can mess with the
680 * state.
681 */
1da177e4
LT
682 handle_flags(smi_info);
683
684 deliver_recv_msg(smi_info, msg);
685 }
686 break;
687 }
688
689 case SI_GETTING_MESSAGES:
690 {
691 smi_info->curr_msg->rsp_size
692 = smi_info->handlers->get_result(
693 smi_info->si_sm,
694 smi_info->curr_msg->rsp,
695 IPMI_MAX_MSG_LENGTH);
696
c305e3d3
CM
697 /*
698 * Do this here becase deliver_recv_msg() releases the
699 * lock, and a new message can be put in during the
700 * time the lock is released.
701 */
1da177e4
LT
702 msg = smi_info->curr_msg;
703 smi_info->curr_msg = NULL;
704 if (msg->rsp[2] != 0) {
705 /* Error getting event, probably done. */
706 msg->done(msg);
707
708 /* Take off the msg flag. */
709 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
710 handle_flags(smi_info);
711 } else {
64959e2d 712 smi_inc_stat(smi_info, incoming_messages);
1da177e4 713
c305e3d3
CM
714 /*
715 * Do this before we deliver the message
716 * because delivering the message releases the
717 * lock and something else can mess with the
718 * state.
719 */
1da177e4
LT
720 handle_flags(smi_info);
721
722 deliver_recv_msg(smi_info, msg);
723 }
724 break;
725 }
726
d9b7e4f7 727 case SI_CHECKING_ENABLES:
1da177e4
LT
728 {
729 unsigned char msg[4];
d9b7e4f7 730 u8 enables;
95c97b59 731 bool irq_on;
1da177e4
LT
732
733 /* We got the flags from the SMI, now handle them. */
734 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
735 if (msg[2] != 0) {
0849bfec
CM
736 dev_warn(smi_info->dev,
737 "Couldn't get irq info: %x.\n", msg[2]);
738 dev_warn(smi_info->dev,
739 "Maybe ok, but ipmi might run very slowly.\n");
1da177e4 740 smi_info->si_state = SI_NORMAL;
d9b7e4f7
CM
741 break;
742 }
95c97b59
CM
743 enables = current_global_enables(smi_info, 0, &irq_on);
744 if (smi_info->si_type == SI_BT)
745 /* BT has its own interrupt enable bit. */
746 check_bt_irq(smi_info, irq_on);
d9b7e4f7
CM
747 if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
748 /* Enables are not correct, fix them. */
1da177e4
LT
749 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
750 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
d9b7e4f7 751 msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
1da177e4
LT
752 smi_info->handlers->start_transaction(
753 smi_info->si_sm, msg, 3);
d9b7e4f7
CM
754 smi_info->si_state = SI_SETTING_ENABLES;
755 } else if (smi_info->supports_event_msg_buff) {
756 smi_info->curr_msg = ipmi_alloc_smi_msg();
757 if (!smi_info->curr_msg) {
758 smi_info->si_state = SI_NORMAL;
759 break;
760 }
761 start_getting_msg_queue(smi_info);
762 } else {
763 smi_info->si_state = SI_NORMAL;
1da177e4
LT
764 }
765 break;
766 }
767
d9b7e4f7 768 case SI_SETTING_ENABLES:
1da177e4
LT
769 {
770 unsigned char msg[4];
771
1da177e4 772 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
d9b7e4f7 773 if (msg[2] != 0)
0849bfec 774 dev_warn(smi_info->dev,
d9b7e4f7
CM
775 "Could not set the global enables: 0x%x.\n",
776 msg[2]);
777
778 if (smi_info->supports_event_msg_buff) {
779 smi_info->curr_msg = ipmi_alloc_smi_msg();
780 if (!smi_info->curr_msg) {
781 smi_info->si_state = SI_NORMAL;
782 break;
783 }
784 start_getting_msg_queue(smi_info);
ee6cd5f8 785 } else {
d9b7e4f7 786 smi_info->si_state = SI_NORMAL;
ee6cd5f8 787 }
ee6cd5f8
CM
788 break;
789 }
1da177e4
LT
790 }
791}
792
c305e3d3
CM
793/*
794 * Called on timeouts and events. Timeouts should pass the elapsed
795 * time, interrupts should pass in zero. Must be called with
796 * si_lock held and interrupts disabled.
797 */
1da177e4
LT
798static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
799 int time)
800{
801 enum si_sm_result si_sm_result;
802
803 restart:
c305e3d3
CM
804 /*
805 * There used to be a loop here that waited a little while
806 * (around 25us) before giving up. That turned out to be
807 * pointless, the minimum delays I was seeing were in the 300us
808 * range, which is far too long to wait in an interrupt. So
809 * we just run until the state machine tells us something
810 * happened or it needs a delay.
811 */
1da177e4
LT
812 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
813 time = 0;
814 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
1da177e4 815 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
1da177e4 816
c305e3d3 817 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
64959e2d 818 smi_inc_stat(smi_info, complete_transactions);
1da177e4
LT
819
820 handle_transaction_done(smi_info);
821 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
c305e3d3 822 } else if (si_sm_result == SI_SM_HOSED) {
64959e2d 823 smi_inc_stat(smi_info, hosed_count);
1da177e4 824
c305e3d3
CM
825 /*
826 * Do the before return_hosed_msg, because that
827 * releases the lock.
828 */
1da177e4
LT
829 smi_info->si_state = SI_NORMAL;
830 if (smi_info->curr_msg != NULL) {
c305e3d3
CM
831 /*
832 * If we were handling a user message, format
833 * a response to send to the upper layer to
834 * tell it about the error.
835 */
4d7cbac7 836 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
1da177e4
LT
837 }
838 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
839 }
840
4ea18425
CM
841 /*
842 * We prefer handling attn over new messages. But don't do
843 * this if there is not yet an upper layer to handle anything.
844 */
a8df150c
CM
845 if (likely(smi_info->intf) &&
846 (si_sm_result == SI_SM_ATTN || smi_info->got_attn)) {
1da177e4
LT
847 unsigned char msg[2];
848
a8df150c
CM
849 if (smi_info->si_state != SI_NORMAL) {
850 /*
851 * We got an ATTN, but we are doing something else.
852 * Handle the ATTN later.
853 */
854 smi_info->got_attn = true;
855 } else {
856 smi_info->got_attn = false;
857 smi_inc_stat(smi_info, attentions);
1da177e4 858
a8df150c
CM
859 /*
860 * Got a attn, send down a get message flags to see
861 * what's causing it. It would be better to handle
862 * this in the upper layer, but due to the way
863 * interrupts work with the SMI, that's not really
864 * possible.
865 */
866 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
867 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
1da177e4 868
a8df150c
CM
869 smi_info->handlers->start_transaction(
870 smi_info->si_sm, msg, 2);
871 smi_info->si_state = SI_GETTING_FLAGS;
872 goto restart;
873 }
1da177e4
LT
874 }
875
876 /* If we are currently idle, try to start the next message. */
877 if (si_sm_result == SI_SM_IDLE) {
64959e2d 878 smi_inc_stat(smi_info, idles);
1da177e4
LT
879
880 si_sm_result = start_next_msg(smi_info);
881 if (si_sm_result != SI_SM_IDLE)
882 goto restart;
c305e3d3 883 }
1da177e4
LT
884
885 if ((si_sm_result == SI_SM_IDLE)
c305e3d3
CM
886 && (atomic_read(&smi_info->req_events))) {
887 /*
888 * We are idle and the upper layer requested that I fetch
889 * events, so do so.
890 */
55162fb1 891 atomic_set(&smi_info->req_events, 0);
1da177e4 892
d9b7e4f7
CM
893 /*
894 * Take this opportunity to check the interrupt and
895 * message enable state for the BMC. The BMC can be
896 * asynchronously reset, and may thus get interrupts
897 * disable and messages disabled.
898 */
899 if (smi_info->supports_event_msg_buff || smi_info->irq) {
900 start_check_enables(smi_info);
901 } else {
902 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
903 if (!smi_info->curr_msg)
904 goto out;
1da177e4 905
d9b7e4f7
CM
906 start_getting_events(smi_info);
907 }
1da177e4
LT
908 goto restart;
909 }
55162fb1 910 out:
1da177e4
LT
911 return si_sm_result;
912}
913
89986496
CM
914static void check_start_timer_thread(struct smi_info *smi_info)
915{
916 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
917 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
918
919 if (smi_info->thread)
920 wake_up_process(smi_info->thread);
921
922 start_next_msg(smi_info);
923 smi_event_handler(smi_info, 0);
924 }
925}
926
1da177e4 927static void sender(void *send_info,
99ab32f3 928 struct ipmi_smi_msg *msg)
1da177e4
LT
929{
930 struct smi_info *smi_info = send_info;
931 enum si_sm_result result;
932 unsigned long flags;
1da177e4 933
f93aae9f 934 debug_timestamp("Enqueue");
1da177e4
LT
935
936 if (smi_info->run_to_completion) {
bda4c30a 937 /*
b874b985
CM
938 * If we are running to completion, start it and run
939 * transactions until everything is clear.
bda4c30a 940 */
9f812704 941 smi_info->waiting_msg = msg;
bda4c30a
CM
942
943 /*
944 * Run to completion means we are single-threaded, no
945 * need for locks.
946 */
1da177e4 947
1da177e4
LT
948 result = smi_event_handler(smi_info, 0);
949 while (result != SI_SM_IDLE) {
950 udelay(SI_SHORT_TIMEOUT_USEC);
951 result = smi_event_handler(smi_info,
952 SI_SHORT_TIMEOUT_USEC);
953 }
1da177e4 954 return;
1da177e4 955 }
1da177e4 956
f60adf42 957 spin_lock_irqsave(&smi_info->si_lock, flags);
1d86e29b
CM
958 /*
959 * The following two lines don't need to be under the lock for
960 * the lock's sake, but they do need SMP memory barriers to
961 * avoid getting things out of order. We are already claiming
962 * the lock, anyway, so just do it under the lock to avoid the
963 * ordering problem.
964 */
965 BUG_ON(smi_info->waiting_msg);
966 smi_info->waiting_msg = msg;
89986496 967 check_start_timer_thread(smi_info);
bda4c30a 968 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1da177e4
LT
969}
970
7aefac26 971static void set_run_to_completion(void *send_info, bool i_run_to_completion)
1da177e4
LT
972{
973 struct smi_info *smi_info = send_info;
974 enum si_sm_result result;
1da177e4
LT
975
976 smi_info->run_to_completion = i_run_to_completion;
977 if (i_run_to_completion) {
978 result = smi_event_handler(smi_info, 0);
979 while (result != SI_SM_IDLE) {
980 udelay(SI_SHORT_TIMEOUT_USEC);
981 result = smi_event_handler(smi_info,
982 SI_SHORT_TIMEOUT_USEC);
983 }
984 }
1da177e4
LT
985}
986
ae74e823
MW
987/*
988 * Use -1 in the nsec value of the busy waiting timespec to tell that
989 * we are spinning in kipmid looking for something and not delaying
990 * between checks
991 */
48862ea2 992static inline void ipmi_si_set_not_busy(struct timespec64 *ts)
ae74e823
MW
993{
994 ts->tv_nsec = -1;
995}
48862ea2 996static inline int ipmi_si_is_busy(struct timespec64 *ts)
ae74e823
MW
997{
998 return ts->tv_nsec != -1;
999}
1000
cc4cbe90
AB
1001static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result,
1002 const struct smi_info *smi_info,
48862ea2 1003 struct timespec64 *busy_until)
ae74e823
MW
1004{
1005 unsigned int max_busy_us = 0;
1006
1007 if (smi_info->intf_num < num_max_busy_us)
1008 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
1009 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
1010 ipmi_si_set_not_busy(busy_until);
1011 else if (!ipmi_si_is_busy(busy_until)) {
48862ea2
JS
1012 getnstimeofday64(busy_until);
1013 timespec64_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
ae74e823 1014 } else {
48862ea2
JS
1015 struct timespec64 now;
1016
1017 getnstimeofday64(&now);
1018 if (unlikely(timespec64_compare(&now, busy_until) > 0)) {
ae74e823
MW
1019 ipmi_si_set_not_busy(busy_until);
1020 return 0;
1021 }
1022 }
1023 return 1;
1024}
1025
1026
1027/*
1028 * A busy-waiting loop for speeding up IPMI operation.
1029 *
1030 * Lousy hardware makes this hard. This is only enabled for systems
1031 * that are not BT and do not have interrupts. It starts spinning
1032 * when an operation is complete or until max_busy tells it to stop
1033 * (if that is enabled). See the paragraph on kimid_max_busy_us in
1034 * Documentation/IPMI.txt for details.
1035 */
a9a2c44f
CM
1036static int ipmi_thread(void *data)
1037{
1038 struct smi_info *smi_info = data;
e9a705a0 1039 unsigned long flags;
a9a2c44f 1040 enum si_sm_result smi_result;
48862ea2 1041 struct timespec64 busy_until;
a9a2c44f 1042
ae74e823 1043 ipmi_si_set_not_busy(&busy_until);
8698a745 1044 set_user_nice(current, MAX_NICE);
e9a705a0 1045 while (!kthread_should_stop()) {
ae74e823
MW
1046 int busy_wait;
1047
a9a2c44f 1048 spin_lock_irqsave(&(smi_info->si_lock), flags);
8a3628d5 1049 smi_result = smi_event_handler(smi_info, 0);
48e8ac29
BS
1050
1051 /*
1052 * If the driver is doing something, there is a possible
1053 * race with the timer. If the timer handler see idle,
1054 * and the thread here sees something else, the timer
1055 * handler won't restart the timer even though it is
1056 * required. So start it here if necessary.
1057 */
1058 if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
1059 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1060
a9a2c44f 1061 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
ae74e823
MW
1062 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1063 &busy_until);
c305e3d3
CM
1064 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1065 ; /* do nothing */
ae74e823 1066 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
33979734 1067 schedule();
89986496
CM
1068 else if (smi_result == SI_SM_IDLE) {
1069 if (atomic_read(&smi_info->need_watch)) {
1070 schedule_timeout_interruptible(100);
1071 } else {
1072 /* Wait to be woken up when we are needed. */
1073 __set_current_state(TASK_INTERRUPTIBLE);
1074 schedule();
1075 }
1076 } else
8d1f66dc 1077 schedule_timeout_interruptible(1);
a9a2c44f 1078 }
a9a2c44f
CM
1079 return 0;
1080}
1081
1082
1da177e4
LT
1083static void poll(void *send_info)
1084{
1085 struct smi_info *smi_info = send_info;
f60adf42 1086 unsigned long flags = 0;
7aefac26 1087 bool run_to_completion = smi_info->run_to_completion;
1da177e4 1088
15c62e10
CM
1089 /*
1090 * Make sure there is some delay in the poll loop so we can
1091 * drive time forward and timeout things.
1092 */
1093 udelay(10);
f60adf42
CM
1094 if (!run_to_completion)
1095 spin_lock_irqsave(&smi_info->si_lock, flags);
15c62e10 1096 smi_event_handler(smi_info, 10);
f60adf42
CM
1097 if (!run_to_completion)
1098 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1da177e4
LT
1099}
1100
1101static void request_events(void *send_info)
1102{
1103 struct smi_info *smi_info = send_info;
1104
b874b985 1105 if (!smi_info->has_event_buffer)
b361e27b
CM
1106 return;
1107
1da177e4
LT
1108 atomic_set(&smi_info->req_events, 1);
1109}
1110
7aefac26 1111static void set_need_watch(void *send_info, bool enable)
89986496
CM
1112{
1113 struct smi_info *smi_info = send_info;
1114 unsigned long flags;
1115
1116 atomic_set(&smi_info->need_watch, enable);
1117 spin_lock_irqsave(&smi_info->si_lock, flags);
1118 check_start_timer_thread(smi_info);
1119 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1120}
1121
0c8204b3 1122static int initialized;
1da177e4 1123
1da177e4
LT
1124static void smi_timeout(unsigned long data)
1125{
1126 struct smi_info *smi_info = (struct smi_info *) data;
1127 enum si_sm_result smi_result;
1128 unsigned long flags;
1129 unsigned long jiffies_now;
c4edff1c 1130 long time_diff;
3326f4f2 1131 long timeout;
1da177e4 1132
1da177e4 1133 spin_lock_irqsave(&(smi_info->si_lock), flags);
f93aae9f
JS
1134 debug_timestamp("Timer");
1135
1da177e4 1136 jiffies_now = jiffies;
c4edff1c 1137 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1da177e4
LT
1138 * SI_USEC_PER_JIFFY);
1139 smi_result = smi_event_handler(smi_info, time_diff);
1140
b0defcdb 1141 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1da177e4 1142 /* Running with interrupts, only do long timeouts. */
3326f4f2 1143 timeout = jiffies + SI_TIMEOUT_JIFFIES;
64959e2d 1144 smi_inc_stat(smi_info, long_timeouts);
3326f4f2 1145 goto do_mod_timer;
1da177e4
LT
1146 }
1147
c305e3d3
CM
1148 /*
1149 * If the state machine asks for a short delay, then shorten
1150 * the timer timeout.
1151 */
1da177e4 1152 if (smi_result == SI_SM_CALL_WITH_DELAY) {
64959e2d 1153 smi_inc_stat(smi_info, short_timeouts);
3326f4f2 1154 timeout = jiffies + 1;
1da177e4 1155 } else {
64959e2d 1156 smi_inc_stat(smi_info, long_timeouts);
3326f4f2 1157 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1da177e4
LT
1158 }
1159
3326f4f2
MG
1160 do_mod_timer:
1161 if (smi_result != SI_SM_IDLE)
48e8ac29
BS
1162 smi_mod_timer(smi_info, timeout);
1163 else
1164 smi_info->timer_running = false;
1165 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1da177e4
LT
1166}
1167
7d12e780 1168static irqreturn_t si_irq_handler(int irq, void *data)
1da177e4
LT
1169{
1170 struct smi_info *smi_info = data;
1171 unsigned long flags;
1da177e4
LT
1172
1173 spin_lock_irqsave(&(smi_info->si_lock), flags);
1174
64959e2d 1175 smi_inc_stat(smi_info, interrupts);
1da177e4 1176
f93aae9f
JS
1177 debug_timestamp("Interrupt");
1178
1da177e4 1179 smi_event_handler(smi_info, 0);
1da177e4
LT
1180 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1181 return IRQ_HANDLED;
1182}
1183
7d12e780 1184static irqreturn_t si_bt_irq_handler(int irq, void *data)
9dbf68f9
CM
1185{
1186 struct smi_info *smi_info = data;
1187 /* We need to clear the IRQ flag for the BT interface. */
1188 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1189 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1190 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
7d12e780 1191 return si_irq_handler(irq, data);
9dbf68f9
CM
1192}
1193
453823ba
CM
1194static int smi_start_processing(void *send_info,
1195 ipmi_smi_t intf)
1196{
1197 struct smi_info *new_smi = send_info;
a51f4a81 1198 int enable = 0;
453823ba
CM
1199
1200 new_smi->intf = intf;
1201
c45adc39
CM
1202 /* Try to claim any interrupts. */
1203 if (new_smi->irq_setup)
1204 new_smi->irq_setup(new_smi);
1205
453823ba
CM
1206 /* Set up the timer that drives the interface. */
1207 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
48e8ac29 1208 smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
453823ba 1209
a51f4a81
CM
1210 /*
1211 * Check if the user forcefully enabled the daemon.
1212 */
1213 if (new_smi->intf_num < num_force_kipmid)
1214 enable = force_kipmid[new_smi->intf_num];
df3fe8de
CM
1215 /*
1216 * The BT interface is efficient enough to not need a thread,
1217 * and there is no need for a thread if we have interrupts.
1218 */
c305e3d3 1219 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
a51f4a81
CM
1220 enable = 1;
1221
1222 if (enable) {
453823ba
CM
1223 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1224 "kipmi%d", new_smi->intf_num);
1225 if (IS_ERR(new_smi->thread)) {
279fbd0c
MS
1226 dev_notice(new_smi->dev, "Could not start"
1227 " kernel thread due to error %ld, only using"
1228 " timers to drive the interface\n",
1229 PTR_ERR(new_smi->thread));
453823ba
CM
1230 new_smi->thread = NULL;
1231 }
1232 }
1233
1234 return 0;
1235}
9dbf68f9 1236
16f4232c
ZY
1237static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1238{
1239 struct smi_info *smi = send_info;
1240
1241 data->addr_src = smi->addr_source;
1242 data->dev = smi->dev;
1243 data->addr_info = smi->addr_info;
1244 get_device(smi->dev);
1245
1246 return 0;
1247}
1248
7aefac26 1249static void set_maintenance_mode(void *send_info, bool enable)
b9675136
CM
1250{
1251 struct smi_info *smi_info = send_info;
1252
1253 if (!enable)
1254 atomic_set(&smi_info->req_events, 0);
1255}
1256
81d02b7f 1257static const struct ipmi_smi_handlers handlers = {
1da177e4 1258 .owner = THIS_MODULE,
453823ba 1259 .start_processing = smi_start_processing,
16f4232c 1260 .get_smi_info = get_smi_info,
1da177e4
LT
1261 .sender = sender,
1262 .request_events = request_events,
89986496 1263 .set_need_watch = set_need_watch,
b9675136 1264 .set_maintenance_mode = set_maintenance_mode,
1da177e4
LT
1265 .set_run_to_completion = set_run_to_completion,
1266 .poll = poll,
1267};
1268
c305e3d3
CM
1269/*
1270 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1271 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS.
1272 */
1da177e4 1273
b0defcdb 1274static LIST_HEAD(smi_infos);
d6dfd131 1275static DEFINE_MUTEX(smi_infos_lock);
b0defcdb 1276static int smi_num; /* Used to sequence the SMIs */
1da177e4 1277
1da177e4 1278#define DEFAULT_REGSPACING 1
dba9b4f6 1279#define DEFAULT_REGSIZE 1
1da177e4 1280
d941aeae 1281#ifdef CONFIG_ACPI
fedb25ea 1282static bool si_tryacpi = true;
d941aeae
CM
1283#endif
1284#ifdef CONFIG_DMI
fedb25ea 1285static bool si_trydmi = true;
d941aeae 1286#endif
fedb25ea 1287static bool si_tryplatform = true;
f2afae46 1288#ifdef CONFIG_PCI
fedb25ea 1289static bool si_trypci = true;
f2afae46 1290#endif
0dfe6e7e 1291static bool si_trydefaults = IS_ENABLED(CONFIG_IPMI_SI_PROBE_DEFAULTS);
1da177e4
LT
1292static char *si_type[SI_MAX_PARMS];
1293#define MAX_SI_TYPE_STR 30
1294static char si_type_str[MAX_SI_TYPE_STR];
1295static unsigned long addrs[SI_MAX_PARMS];
64a6f950 1296static unsigned int num_addrs;
1da177e4 1297static unsigned int ports[SI_MAX_PARMS];
64a6f950 1298static unsigned int num_ports;
1da177e4 1299static int irqs[SI_MAX_PARMS];
64a6f950 1300static unsigned int num_irqs;
1da177e4 1301static int regspacings[SI_MAX_PARMS];
64a6f950 1302static unsigned int num_regspacings;
1da177e4 1303static int regsizes[SI_MAX_PARMS];
64a6f950 1304static unsigned int num_regsizes;
1da177e4 1305static int regshifts[SI_MAX_PARMS];
64a6f950 1306static unsigned int num_regshifts;
2f95d513 1307static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
64a6f950 1308static unsigned int num_slave_addrs;
1da177e4 1309
b361e27b
CM
1310#define IPMI_IO_ADDR_SPACE 0
1311#define IPMI_MEM_ADDR_SPACE 1
1d5636cc 1312static char *addr_space_to_str[] = { "i/o", "mem" };
b361e27b
CM
1313
1314static int hotmod_handler(const char *val, struct kernel_param *kp);
1315
1316module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1317MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See"
1318 " Documentation/IPMI.txt in the kernel sources for the"
1319 " gory details.");
1da177e4 1320
d941aeae
CM
1321#ifdef CONFIG_ACPI
1322module_param_named(tryacpi, si_tryacpi, bool, 0);
1323MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1324 " default scan of the interfaces identified via ACPI");
1325#endif
1326#ifdef CONFIG_DMI
1327module_param_named(trydmi, si_trydmi, bool, 0);
1328MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
1329 " default scan of the interfaces identified via DMI");
1330#endif
f2afae46
CM
1331module_param_named(tryplatform, si_tryplatform, bool, 0);
1332MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1333 " default scan of the interfaces identified via platform"
1334 " interfaces like openfirmware");
1335#ifdef CONFIG_PCI
1336module_param_named(trypci, si_trypci, bool, 0);
1337MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1338 " default scan of the interfaces identified via pci");
1339#endif
1da177e4
LT
1340module_param_named(trydefaults, si_trydefaults, bool, 0);
1341MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1342 " default scan of the KCS and SMIC interface at the standard"
1343 " address");
1344module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1345MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1346 " interface separated by commas. The types are 'kcs',"
1347 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
1348 " the first interface to kcs and the second to bt");
64a6f950 1349module_param_array(addrs, ulong, &num_addrs, 0);
1da177e4
LT
1350MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1351 " addresses separated by commas. Only use if an interface"
1352 " is in memory. Otherwise, set it to zero or leave"
1353 " it blank.");
64a6f950 1354module_param_array(ports, uint, &num_ports, 0);
1da177e4
LT
1355MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1356 " addresses separated by commas. Only use if an interface"
1357 " is a port. Otherwise, set it to zero or leave"
1358 " it blank.");
1359module_param_array(irqs, int, &num_irqs, 0);
1360MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1361 " addresses separated by commas. Only use if an interface"
1362 " has an interrupt. Otherwise, set it to zero or leave"
1363 " it blank.");
1364module_param_array(regspacings, int, &num_regspacings, 0);
1365MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1366 " and each successive register used by the interface. For"
1367 " instance, if the start address is 0xca2 and the spacing"
1368 " is 2, then the second address is at 0xca4. Defaults"
1369 " to 1.");
1370module_param_array(regsizes, int, &num_regsizes, 0);
1371MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1372 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1373 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1374 " the 8-bit IPMI register has to be read from a larger"
1375 " register.");
1376module_param_array(regshifts, int, &num_regshifts, 0);
1377MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1378 " IPMI register, in bits. For instance, if the data"
1379 " is read from a 32-bit word and the IPMI data is in"
1380 " bit 8-15, then the shift would be 8");
1381module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1382MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1383 " the controller. Normally this is 0x20, but can be"
1384 " overridden by this parm. This is an array indexed"
1385 " by interface number.");
a51f4a81
CM
1386module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1387MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1388 " disabled(0). Normally the IPMI driver auto-detects"
1389 " this, but the value may be overridden by this parm.");
7aefac26 1390module_param(unload_when_empty, bool, 0);
b361e27b
CM
1391MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1392 " specified or found, default is 1. Setting to 0"
1393 " is useful for hot add of devices using hotmod.");
ae74e823
MW
1394module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1395MODULE_PARM_DESC(kipmid_max_busy_us,
1396 "Max time (in microseconds) to busy-wait for IPMI data before"
1397 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1398 " if kipmid is using up a lot of CPU time.");
1da177e4
LT
1399
1400
b0defcdb 1401static void std_irq_cleanup(struct smi_info *info)
1da177e4 1402{
b0defcdb
CM
1403 if (info->si_type == SI_BT)
1404 /* Disable the interrupt in the BT interface. */
1405 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1406 free_irq(info->irq, info);
1da177e4 1407}
1da177e4
LT
1408
1409static int std_irq_setup(struct smi_info *info)
1410{
1411 int rv;
1412
b0defcdb 1413 if (!info->irq)
1da177e4
LT
1414 return 0;
1415
9dbf68f9
CM
1416 if (info->si_type == SI_BT) {
1417 rv = request_irq(info->irq,
1418 si_bt_irq_handler,
aa5b2bab 1419 IRQF_SHARED,
9dbf68f9
CM
1420 DEVICE_NAME,
1421 info);
b0defcdb 1422 if (!rv)
9dbf68f9
CM
1423 /* Enable the interrupt in the BT interface. */
1424 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1425 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1426 } else
1427 rv = request_irq(info->irq,
1428 si_irq_handler,
aa5b2bab 1429 IRQF_SHARED,
9dbf68f9
CM
1430 DEVICE_NAME,
1431 info);
1da177e4 1432 if (rv) {
279fbd0c
MS
1433 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1434 " running polled\n",
1435 DEVICE_NAME, info->irq);
1da177e4
LT
1436 info->irq = 0;
1437 } else {
b0defcdb 1438 info->irq_cleanup = std_irq_cleanup;
279fbd0c 1439 dev_info(info->dev, "Using irq %d\n", info->irq);
1da177e4
LT
1440 }
1441
1442 return rv;
1443}
1444
81d02b7f 1445static unsigned char port_inb(const struct si_sm_io *io, unsigned int offset)
1da177e4 1446{
b0defcdb 1447 unsigned int addr = io->addr_data;
1da177e4 1448
b0defcdb 1449 return inb(addr + (offset * io->regspacing));
1da177e4
LT
1450}
1451
81d02b7f 1452static void port_outb(const struct si_sm_io *io, unsigned int offset,
1da177e4
LT
1453 unsigned char b)
1454{
b0defcdb 1455 unsigned int addr = io->addr_data;
1da177e4 1456
b0defcdb 1457 outb(b, addr + (offset * io->regspacing));
1da177e4
LT
1458}
1459
81d02b7f 1460static unsigned char port_inw(const struct si_sm_io *io, unsigned int offset)
1da177e4 1461{
b0defcdb 1462 unsigned int addr = io->addr_data;
1da177e4 1463
b0defcdb 1464 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1da177e4
LT
1465}
1466
81d02b7f 1467static void port_outw(const struct si_sm_io *io, unsigned int offset,
1da177e4
LT
1468 unsigned char b)
1469{
b0defcdb 1470 unsigned int addr = io->addr_data;
1da177e4 1471
b0defcdb 1472 outw(b << io->regshift, addr + (offset * io->regspacing));
1da177e4
LT
1473}
1474
81d02b7f 1475static unsigned char port_inl(const struct si_sm_io *io, unsigned int offset)
1da177e4 1476{
b0defcdb 1477 unsigned int addr = io->addr_data;
1da177e4 1478
b0defcdb 1479 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1da177e4
LT
1480}
1481
81d02b7f 1482static void port_outl(const struct si_sm_io *io, unsigned int offset,
1da177e4
LT
1483 unsigned char b)
1484{
b0defcdb 1485 unsigned int addr = io->addr_data;
1da177e4 1486
b0defcdb 1487 outl(b << io->regshift, addr+(offset * io->regspacing));
1da177e4
LT
1488}
1489
1490static void port_cleanup(struct smi_info *info)
1491{
b0defcdb 1492 unsigned int addr = info->io.addr_data;
d61a3ead 1493 int idx;
1da177e4 1494
b0defcdb 1495 if (addr) {
c305e3d3 1496 for (idx = 0; idx < info->io_size; idx++)
d61a3ead
CM
1497 release_region(addr + idx * info->io.regspacing,
1498 info->io.regsize);
1da177e4 1499 }
1da177e4
LT
1500}
1501
1502static int port_setup(struct smi_info *info)
1503{
b0defcdb 1504 unsigned int addr = info->io.addr_data;
d61a3ead 1505 int idx;
1da177e4 1506
b0defcdb 1507 if (!addr)
1da177e4
LT
1508 return -ENODEV;
1509
1510 info->io_cleanup = port_cleanup;
1511
c305e3d3
CM
1512 /*
1513 * Figure out the actual inb/inw/inl/etc routine to use based
1514 * upon the register size.
1515 */
1da177e4
LT
1516 switch (info->io.regsize) {
1517 case 1:
1518 info->io.inputb = port_inb;
1519 info->io.outputb = port_outb;
1520 break;
1521 case 2:
1522 info->io.inputb = port_inw;
1523 info->io.outputb = port_outw;
1524 break;
1525 case 4:
1526 info->io.inputb = port_inl;
1527 info->io.outputb = port_outl;
1528 break;
1529 default:
279fbd0c
MS
1530 dev_warn(info->dev, "Invalid register size: %d\n",
1531 info->io.regsize);
1da177e4
LT
1532 return -EINVAL;
1533 }
1534
c305e3d3
CM
1535 /*
1536 * Some BIOSes reserve disjoint I/O regions in their ACPI
d61a3ead
CM
1537 * tables. This causes problems when trying to register the
1538 * entire I/O region. Therefore we must register each I/O
1539 * port separately.
1540 */
c305e3d3 1541 for (idx = 0; idx < info->io_size; idx++) {
d61a3ead
CM
1542 if (request_region(addr + idx * info->io.regspacing,
1543 info->io.regsize, DEVICE_NAME) == NULL) {
1544 /* Undo allocations */
1545 while (idx--) {
1546 release_region(addr + idx * info->io.regspacing,
1547 info->io.regsize);
1548 }
1549 return -EIO;
1550 }
1551 }
1da177e4
LT
1552 return 0;
1553}
1554
81d02b7f
CM
1555static unsigned char intf_mem_inb(const struct si_sm_io *io,
1556 unsigned int offset)
1da177e4
LT
1557{
1558 return readb((io->addr)+(offset * io->regspacing));
1559}
1560
81d02b7f
CM
1561static void intf_mem_outb(const struct si_sm_io *io, unsigned int offset,
1562 unsigned char b)
1da177e4
LT
1563{
1564 writeb(b, (io->addr)+(offset * io->regspacing));
1565}
1566
81d02b7f
CM
1567static unsigned char intf_mem_inw(const struct si_sm_io *io,
1568 unsigned int offset)
1da177e4
LT
1569{
1570 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
64d9fe69 1571 & 0xff;
1da177e4
LT
1572}
1573
81d02b7f
CM
1574static void intf_mem_outw(const struct si_sm_io *io, unsigned int offset,
1575 unsigned char b)
1da177e4
LT
1576{
1577 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1578}
1579
81d02b7f
CM
1580static unsigned char intf_mem_inl(const struct si_sm_io *io,
1581 unsigned int offset)
1da177e4
LT
1582{
1583 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
64d9fe69 1584 & 0xff;
1da177e4
LT
1585}
1586
81d02b7f
CM
1587static void intf_mem_outl(const struct si_sm_io *io, unsigned int offset,
1588 unsigned char b)
1da177e4
LT
1589{
1590 writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1591}
1592
1593#ifdef readq
81d02b7f 1594static unsigned char mem_inq(const struct si_sm_io *io, unsigned int offset)
1da177e4
LT
1595{
1596 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
64d9fe69 1597 & 0xff;
1da177e4
LT
1598}
1599
81d02b7f 1600static void mem_outq(const struct si_sm_io *io, unsigned int offset,
1da177e4
LT
1601 unsigned char b)
1602{
1603 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1604}
1605#endif
1606
1607static void mem_cleanup(struct smi_info *info)
1608{
b0defcdb 1609 unsigned long addr = info->io.addr_data;
1da177e4
LT
1610 int mapsize;
1611
1612 if (info->io.addr) {
1613 iounmap(info->io.addr);
1614
1615 mapsize = ((info->io_size * info->io.regspacing)
1616 - (info->io.regspacing - info->io.regsize));
1617
b0defcdb 1618 release_mem_region(addr, mapsize);
1da177e4 1619 }
1da177e4
LT
1620}
1621
1622static int mem_setup(struct smi_info *info)
1623{
b0defcdb 1624 unsigned long addr = info->io.addr_data;
1da177e4
LT
1625 int mapsize;
1626
b0defcdb 1627 if (!addr)
1da177e4
LT
1628 return -ENODEV;
1629
1630 info->io_cleanup = mem_cleanup;
1631
c305e3d3
CM
1632 /*
1633 * Figure out the actual readb/readw/readl/etc routine to use based
1634 * upon the register size.
1635 */
1da177e4
LT
1636 switch (info->io.regsize) {
1637 case 1:
546cfdf4
AD
1638 info->io.inputb = intf_mem_inb;
1639 info->io.outputb = intf_mem_outb;
1da177e4
LT
1640 break;
1641 case 2:
546cfdf4
AD
1642 info->io.inputb = intf_mem_inw;
1643 info->io.outputb = intf_mem_outw;
1da177e4
LT
1644 break;
1645 case 4:
546cfdf4
AD
1646 info->io.inputb = intf_mem_inl;
1647 info->io.outputb = intf_mem_outl;
1da177e4
LT
1648 break;
1649#ifdef readq
1650 case 8:
1651 info->io.inputb = mem_inq;
1652 info->io.outputb = mem_outq;
1653 break;
1654#endif
1655 default:
279fbd0c
MS
1656 dev_warn(info->dev, "Invalid register size: %d\n",
1657 info->io.regsize);
1da177e4
LT
1658 return -EINVAL;
1659 }
1660
c305e3d3
CM
1661 /*
1662 * Calculate the total amount of memory to claim. This is an
1da177e4
LT
1663 * unusual looking calculation, but it avoids claiming any
1664 * more memory than it has to. It will claim everything
1665 * between the first address to the end of the last full
c305e3d3
CM
1666 * register.
1667 */
1da177e4
LT
1668 mapsize = ((info->io_size * info->io.regspacing)
1669 - (info->io.regspacing - info->io.regsize));
1670
b0defcdb 1671 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1da177e4
LT
1672 return -EIO;
1673
b0defcdb 1674 info->io.addr = ioremap(addr, mapsize);
1da177e4 1675 if (info->io.addr == NULL) {
b0defcdb 1676 release_mem_region(addr, mapsize);
1da177e4
LT
1677 return -EIO;
1678 }
1679 return 0;
1680}
1681
b361e27b
CM
1682/*
1683 * Parms come in as <op1>[:op2[:op3...]]. ops are:
1684 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1685 * Options are:
1686 * rsp=<regspacing>
1687 * rsi=<regsize>
1688 * rsh=<regshift>
1689 * irq=<irq>
1690 * ipmb=<ipmb addr>
1691 */
1692enum hotmod_op { HM_ADD, HM_REMOVE };
1693struct hotmod_vals {
1694 char *name;
1695 int val;
1696};
1697static struct hotmod_vals hotmod_ops[] = {
1698 { "add", HM_ADD },
1699 { "remove", HM_REMOVE },
1700 { NULL }
1701};
1702static struct hotmod_vals hotmod_si[] = {
1703 { "kcs", SI_KCS },
1704 { "smic", SI_SMIC },
1705 { "bt", SI_BT },
1706 { NULL }
1707};
1708static struct hotmod_vals hotmod_as[] = {
1709 { "mem", IPMI_MEM_ADDR_SPACE },
1710 { "i/o", IPMI_IO_ADDR_SPACE },
1711 { NULL }
1712};
1d5636cc 1713
b361e27b
CM
1714static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1715{
1716 char *s;
1717 int i;
1718
1719 s = strchr(*curr, ',');
1720 if (!s) {
1721 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1722 return -EINVAL;
1723 }
1724 *s = '\0';
1725 s++;
ceb51ca8 1726 for (i = 0; v[i].name; i++) {
1d5636cc 1727 if (strcmp(*curr, v[i].name) == 0) {
b361e27b
CM
1728 *val = v[i].val;
1729 *curr = s;
1730 return 0;
1731 }
1732 }
1733
1734 printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1735 return -EINVAL;
1736}
1737
1d5636cc
CM
1738static int check_hotmod_int_op(const char *curr, const char *option,
1739 const char *name, int *val)
1740{
1741 char *n;
1742
1743 if (strcmp(curr, name) == 0) {
1744 if (!option) {
1745 printk(KERN_WARNING PFX
1746 "No option given for '%s'\n",
1747 curr);
1748 return -EINVAL;
1749 }
1750 *val = simple_strtoul(option, &n, 0);
1751 if ((*n != '\0') || (*option == '\0')) {
1752 printk(KERN_WARNING PFX
1753 "Bad option given for '%s'\n",
1754 curr);
1755 return -EINVAL;
1756 }
1757 return 1;
1758 }
1759 return 0;
1760}
1761
de5e2ddf
ED
1762static struct smi_info *smi_info_alloc(void)
1763{
1764 struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1765
f60adf42 1766 if (info)
de5e2ddf 1767 spin_lock_init(&info->si_lock);
de5e2ddf
ED
1768 return info;
1769}
1770
b361e27b
CM
1771static int hotmod_handler(const char *val, struct kernel_param *kp)
1772{
1773 char *str = kstrdup(val, GFP_KERNEL);
1d5636cc 1774 int rv;
b361e27b
CM
1775 char *next, *curr, *s, *n, *o;
1776 enum hotmod_op op;
1777 enum si_type si_type;
1778 int addr_space;
1779 unsigned long addr;
1780 int regspacing;
1781 int regsize;
1782 int regshift;
1783 int irq;
1784 int ipmb;
1785 int ival;
1d5636cc 1786 int len;
b361e27b
CM
1787 struct smi_info *info;
1788
1789 if (!str)
1790 return -ENOMEM;
1791
1792 /* Kill any trailing spaces, as we can get a "\n" from echo. */
1d5636cc
CM
1793 len = strlen(str);
1794 ival = len - 1;
b361e27b
CM
1795 while ((ival >= 0) && isspace(str[ival])) {
1796 str[ival] = '\0';
1797 ival--;
1798 }
1799
1800 for (curr = str; curr; curr = next) {
1801 regspacing = 1;
1802 regsize = 1;
1803 regshift = 0;
1804 irq = 0;
2f95d513 1805 ipmb = 0; /* Choose the default if not specified */
b361e27b
CM
1806
1807 next = strchr(curr, ':');
1808 if (next) {
1809 *next = '\0';
1810 next++;
1811 }
1812
1813 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1814 if (rv)
1815 break;
1816 op = ival;
1817
1818 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1819 if (rv)
1820 break;
1821 si_type = ival;
1822
1823 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1824 if (rv)
1825 break;
1826
1827 s = strchr(curr, ',');
1828 if (s) {
1829 *s = '\0';
1830 s++;
1831 }
1832 addr = simple_strtoul(curr, &n, 0);
1833 if ((*n != '\0') || (*curr == '\0')) {
1834 printk(KERN_WARNING PFX "Invalid hotmod address"
1835 " '%s'\n", curr);
1836 break;
1837 }
1838
1839 while (s) {
1840 curr = s;
1841 s = strchr(curr, ',');
1842 if (s) {
1843 *s = '\0';
1844 s++;
1845 }
1846 o = strchr(curr, '=');
1847 if (o) {
1848 *o = '\0';
1849 o++;
1850 }
1d5636cc
CM
1851 rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1852 if (rv < 0)
b361e27b 1853 goto out;
1d5636cc
CM
1854 else if (rv)
1855 continue;
1856 rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1857 if (rv < 0)
1858 goto out;
1859 else if (rv)
1860 continue;
1861 rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1862 if (rv < 0)
1863 goto out;
1864 else if (rv)
1865 continue;
1866 rv = check_hotmod_int_op(curr, o, "irq", &irq);
1867 if (rv < 0)
1868 goto out;
1869 else if (rv)
1870 continue;
1871 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1872 if (rv < 0)
1873 goto out;
1874 else if (rv)
1875 continue;
1876
1877 rv = -EINVAL;
1878 printk(KERN_WARNING PFX
1879 "Invalid hotmod option '%s'\n",
1880 curr);
1881 goto out;
b361e27b
CM
1882 }
1883
1884 if (op == HM_ADD) {
de5e2ddf 1885 info = smi_info_alloc();
b361e27b
CM
1886 if (!info) {
1887 rv = -ENOMEM;
1888 goto out;
1889 }
1890
5fedc4a2 1891 info->addr_source = SI_HOTMOD;
b361e27b
CM
1892 info->si_type = si_type;
1893 info->io.addr_data = addr;
1894 info->io.addr_type = addr_space;
1895 if (addr_space == IPMI_MEM_ADDR_SPACE)
1896 info->io_setup = mem_setup;
1897 else
1898 info->io_setup = port_setup;
1899
1900 info->io.addr = NULL;
1901 info->io.regspacing = regspacing;
1902 if (!info->io.regspacing)
1903 info->io.regspacing = DEFAULT_REGSPACING;
1904 info->io.regsize = regsize;
1905 if (!info->io.regsize)
1906 info->io.regsize = DEFAULT_REGSPACING;
1907 info->io.regshift = regshift;
1908 info->irq = irq;
1909 if (info->irq)
1910 info->irq_setup = std_irq_setup;
1911 info->slave_addr = ipmb;
1912
d02b3709
CM
1913 rv = add_smi(info);
1914 if (rv) {
7faefea6 1915 kfree(info);
d02b3709
CM
1916 goto out;
1917 }
1918 rv = try_smi_init(info);
1919 if (rv) {
1920 cleanup_one_si(info);
1921 goto out;
7faefea6 1922 }
b361e27b
CM
1923 } else {
1924 /* remove */
1925 struct smi_info *e, *tmp_e;
1926
1927 mutex_lock(&smi_infos_lock);
1928 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1929 if (e->io.addr_type != addr_space)
1930 continue;
1931 if (e->si_type != si_type)
1932 continue;
1933 if (e->io.addr_data == addr)
1934 cleanup_one_si(e);
1935 }
1936 mutex_unlock(&smi_infos_lock);
1937 }
1938 }
1d5636cc 1939 rv = len;
b361e27b
CM
1940 out:
1941 kfree(str);
1942 return rv;
1943}
b0defcdb 1944
2223cbec 1945static int hardcode_find_bmc(void)
1da177e4 1946{
a1e9c9dd 1947 int ret = -ENODEV;
b0defcdb 1948 int i;
1da177e4
LT
1949 struct smi_info *info;
1950
b0defcdb
CM
1951 for (i = 0; i < SI_MAX_PARMS; i++) {
1952 if (!ports[i] && !addrs[i])
1953 continue;
1da177e4 1954
de5e2ddf 1955 info = smi_info_alloc();
b0defcdb 1956 if (!info)
a1e9c9dd 1957 return -ENOMEM;
1da177e4 1958
5fedc4a2 1959 info->addr_source = SI_HARDCODED;
279fbd0c 1960 printk(KERN_INFO PFX "probing via hardcoded address\n");
1da177e4 1961
1d5636cc 1962 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
b0defcdb 1963 info->si_type = SI_KCS;
1d5636cc 1964 } else if (strcmp(si_type[i], "smic") == 0) {
b0defcdb 1965 info->si_type = SI_SMIC;
1d5636cc 1966 } else if (strcmp(si_type[i], "bt") == 0) {
b0defcdb
CM
1967 info->si_type = SI_BT;
1968 } else {
279fbd0c 1969 printk(KERN_WARNING PFX "Interface type specified "
b0defcdb
CM
1970 "for interface %d, was invalid: %s\n",
1971 i, si_type[i]);
1972 kfree(info);
1973 continue;
1974 }
1da177e4 1975
b0defcdb
CM
1976 if (ports[i]) {
1977 /* An I/O port */
1978 info->io_setup = port_setup;
1979 info->io.addr_data = ports[i];
1980 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1981 } else if (addrs[i]) {
1982 /* A memory port */
1983 info->io_setup = mem_setup;
1984 info->io.addr_data = addrs[i];
1985 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1986 } else {
279fbd0c
MS
1987 printk(KERN_WARNING PFX "Interface type specified "
1988 "for interface %d, but port and address were "
1989 "not set or set to zero.\n", i);
b0defcdb
CM
1990 kfree(info);
1991 continue;
1992 }
1da177e4 1993
b0defcdb
CM
1994 info->io.addr = NULL;
1995 info->io.regspacing = regspacings[i];
1996 if (!info->io.regspacing)
1997 info->io.regspacing = DEFAULT_REGSPACING;
1998 info->io.regsize = regsizes[i];
1999 if (!info->io.regsize)
2000 info->io.regsize = DEFAULT_REGSPACING;
2001 info->io.regshift = regshifts[i];
2002 info->irq = irqs[i];
2003 if (info->irq)
2004 info->irq_setup = std_irq_setup;
2f95d513 2005 info->slave_addr = slave_addrs[i];
1da177e4 2006
7faefea6 2007 if (!add_smi(info)) {
2407d77a
MG
2008 if (try_smi_init(info))
2009 cleanup_one_si(info);
a1e9c9dd 2010 ret = 0;
7faefea6
YL
2011 } else {
2012 kfree(info);
2013 }
b0defcdb 2014 }
a1e9c9dd 2015 return ret;
b0defcdb 2016}
1da177e4 2017
8466361a 2018#ifdef CONFIG_ACPI
1da177e4
LT
2019
2020#include <linux/acpi.h>
2021
c305e3d3
CM
2022/*
2023 * Once we get an ACPI failure, we don't try any more, because we go
2024 * through the tables sequentially. Once we don't find a table, there
2025 * are no more.
2026 */
0c8204b3 2027static int acpi_failure;
1da177e4
LT
2028
2029/* For GPE-type interrupts. */
8b6cd8ad
LM
2030static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
2031 u32 gpe_number, void *context)
1da177e4
LT
2032{
2033 struct smi_info *smi_info = context;
2034 unsigned long flags;
1da177e4
LT
2035
2036 spin_lock_irqsave(&(smi_info->si_lock), flags);
2037
64959e2d 2038 smi_inc_stat(smi_info, interrupts);
1da177e4 2039
f93aae9f
JS
2040 debug_timestamp("ACPI_GPE");
2041
1da177e4 2042 smi_event_handler(smi_info, 0);
1da177e4
LT
2043 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
2044
2045 return ACPI_INTERRUPT_HANDLED;
2046}
2047
b0defcdb
CM
2048static void acpi_gpe_irq_cleanup(struct smi_info *info)
2049{
2050 if (!info->irq)
2051 return;
2052
2053 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
2054}
2055
1da177e4
LT
2056static int acpi_gpe_irq_setup(struct smi_info *info)
2057{
2058 acpi_status status;
2059
b0defcdb 2060 if (!info->irq)
1da177e4
LT
2061 return 0;
2062
1da177e4
LT
2063 status = acpi_install_gpe_handler(NULL,
2064 info->irq,
2065 ACPI_GPE_LEVEL_TRIGGERED,
2066 &ipmi_acpi_gpe,
2067 info);
2068 if (status != AE_OK) {
279fbd0c
MS
2069 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
2070 " running polled\n", DEVICE_NAME, info->irq);
1da177e4
LT
2071 info->irq = 0;
2072 return -EINVAL;
2073 } else {
b0defcdb 2074 info->irq_cleanup = acpi_gpe_irq_cleanup;
279fbd0c 2075 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
1da177e4
LT
2076 return 0;
2077 }
2078}
2079
1da177e4
LT
2080/*
2081 * Defined at
631dd1a8 2082 * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
1da177e4
LT
2083 */
2084struct SPMITable {
2085 s8 Signature[4];
2086 u32 Length;
2087 u8 Revision;
2088 u8 Checksum;
2089 s8 OEMID[6];
2090 s8 OEMTableID[8];
2091 s8 OEMRevision[4];
2092 s8 CreatorID[4];
2093 s8 CreatorRevision[4];
2094 u8 InterfaceType;
2095 u8 IPMIlegacy;
2096 s16 SpecificationRevision;
2097
2098 /*
2099 * Bit 0 - SCI interrupt supported
2100 * Bit 1 - I/O APIC/SAPIC
2101 */
2102 u8 InterruptType;
2103
c305e3d3
CM
2104 /*
2105 * If bit 0 of InterruptType is set, then this is the SCI
2106 * interrupt in the GPEx_STS register.
2107 */
1da177e4
LT
2108 u8 GPE;
2109
2110 s16 Reserved;
2111
c305e3d3
CM
2112 /*
2113 * If bit 1 of InterruptType is set, then this is the I/O
2114 * APIC/SAPIC interrupt.
2115 */
1da177e4
LT
2116 u32 GlobalSystemInterrupt;
2117
2118 /* The actual register address. */
2119 struct acpi_generic_address addr;
2120
2121 u8 UID[4];
2122
2123 s8 spmi_id[1]; /* A '\0' terminated array starts here. */
2124};
2125
2223cbec 2126static int try_init_spmi(struct SPMITable *spmi)
1da177e4
LT
2127{
2128 struct smi_info *info;
d02b3709 2129 int rv;
1da177e4 2130
1da177e4 2131 if (spmi->IPMIlegacy != 1) {
279fbd0c
MS
2132 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2133 return -ENODEV;
1da177e4
LT
2134 }
2135
de5e2ddf 2136 info = smi_info_alloc();
b0defcdb 2137 if (!info) {
279fbd0c 2138 printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
b0defcdb
CM
2139 return -ENOMEM;
2140 }
2141
5fedc4a2 2142 info->addr_source = SI_SPMI;
279fbd0c 2143 printk(KERN_INFO PFX "probing via SPMI\n");
1da177e4 2144
1da177e4 2145 /* Figure out the interface type. */
c305e3d3 2146 switch (spmi->InterfaceType) {
1da177e4 2147 case 1: /* KCS */
b0defcdb 2148 info->si_type = SI_KCS;
1da177e4 2149 break;
1da177e4 2150 case 2: /* SMIC */
b0defcdb 2151 info->si_type = SI_SMIC;
1da177e4 2152 break;
1da177e4 2153 case 3: /* BT */
b0defcdb 2154 info->si_type = SI_BT;
1da177e4 2155 break;
ab42bf24
CM
2156 case 4: /* SSIF, just ignore */
2157 kfree(info);
2158 return -EIO;
1da177e4 2159 default:
279fbd0c
MS
2160 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2161 spmi->InterfaceType);
b0defcdb 2162 kfree(info);
1da177e4
LT
2163 return -EIO;
2164 }
2165
1da177e4
LT
2166 if (spmi->InterruptType & 1) {
2167 /* We've got a GPE interrupt. */
2168 info->irq = spmi->GPE;
2169 info->irq_setup = acpi_gpe_irq_setup;
1da177e4
LT
2170 } else if (spmi->InterruptType & 2) {
2171 /* We've got an APIC/SAPIC interrupt. */
2172 info->irq = spmi->GlobalSystemInterrupt;
2173 info->irq_setup = std_irq_setup;
1da177e4
LT
2174 } else {
2175 /* Use the default interrupt setting. */
2176 info->irq = 0;
2177 info->irq_setup = NULL;
2178 }
2179
15a58ed1 2180 if (spmi->addr.bit_width) {
35bc37a0 2181 /* A (hopefully) properly formed register bit width. */
15a58ed1 2182 info->io.regspacing = spmi->addr.bit_width / 8;
35bc37a0 2183 } else {
35bc37a0
CM
2184 info->io.regspacing = DEFAULT_REGSPACING;
2185 }
b0defcdb 2186 info->io.regsize = info->io.regspacing;
15a58ed1 2187 info->io.regshift = spmi->addr.bit_offset;
1da177e4 2188
15a58ed1 2189 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1da177e4 2190 info->io_setup = mem_setup;
8fe1425a 2191 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
15a58ed1 2192 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1da177e4 2193 info->io_setup = port_setup;
8fe1425a 2194 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1da177e4
LT
2195 } else {
2196 kfree(info);
279fbd0c 2197 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
1da177e4
LT
2198 return -EIO;
2199 }
b0defcdb 2200 info->io.addr_data = spmi->addr.address;
1da177e4 2201
7bb671e3
YL
2202 pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2203 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2204 info->io.addr_data, info->io.regsize, info->io.regspacing,
2205 info->irq);
2206
d02b3709
CM
2207 rv = add_smi(info);
2208 if (rv)
7faefea6 2209 kfree(info);
1da177e4 2210
d02b3709 2211 return rv;
1da177e4 2212}
b0defcdb 2213
2223cbec 2214static void spmi_find_bmc(void)
b0defcdb
CM
2215{
2216 acpi_status status;
2217 struct SPMITable *spmi;
2218 int i;
2219
2220 if (acpi_disabled)
2221 return;
2222
2223 if (acpi_failure)
2224 return;
2225
2226 for (i = 0; ; i++) {
15a58ed1
AS
2227 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2228 (struct acpi_table_header **)&spmi);
b0defcdb
CM
2229 if (status != AE_OK)
2230 return;
2231
18a3e0bf 2232 try_init_spmi(spmi);
b0defcdb
CM
2233 }
2234}
1da177e4
LT
2235#endif
2236
a9fad4cc 2237#ifdef CONFIG_DMI
c305e3d3 2238struct dmi_ipmi_data {
1da177e4
LT
2239 u8 type;
2240 u8 addr_space;
2241 unsigned long base_addr;
2242 u8 irq;
2243 u8 offset;
2244 u8 slave_addr;
b0defcdb 2245};
1da177e4 2246
2223cbec 2247static int decode_dmi(const struct dmi_header *dm,
b0defcdb 2248 struct dmi_ipmi_data *dmi)
1da177e4 2249{
1855256c 2250 const u8 *data = (const u8 *)dm;
1da177e4
LT
2251 unsigned long base_addr;
2252 u8 reg_spacing;
b224cd3a 2253 u8 len = dm->length;
1da177e4 2254
b0defcdb 2255 dmi->type = data[4];
1da177e4
LT
2256
2257 memcpy(&base_addr, data+8, sizeof(unsigned long));
2258 if (len >= 0x11) {
2259 if (base_addr & 1) {
2260 /* I/O */
2261 base_addr &= 0xFFFE;
b0defcdb 2262 dmi->addr_space = IPMI_IO_ADDR_SPACE;
c305e3d3 2263 } else
1da177e4 2264 /* Memory */
b0defcdb 2265 dmi->addr_space = IPMI_MEM_ADDR_SPACE;
c305e3d3 2266
1da177e4
LT
2267 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2268 is odd. */
b0defcdb 2269 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
1da177e4 2270
b0defcdb 2271 dmi->irq = data[0x11];
1da177e4
LT
2272
2273 /* The top two bits of byte 0x10 hold the register spacing. */
b224cd3a 2274 reg_spacing = (data[0x10] & 0xC0) >> 6;
c305e3d3 2275 switch (reg_spacing) {
1da177e4 2276 case 0x00: /* Byte boundaries */
b0defcdb 2277 dmi->offset = 1;
1da177e4
LT
2278 break;
2279 case 0x01: /* 32-bit boundaries */
b0defcdb 2280 dmi->offset = 4;
1da177e4
LT
2281 break;
2282 case 0x02: /* 16-byte boundaries */
b0defcdb 2283 dmi->offset = 16;
1da177e4
LT
2284 break;
2285 default:
2286 /* Some other interface, just ignore it. */
2287 return -EIO;
2288 }
2289 } else {
2290 /* Old DMI spec. */
c305e3d3
CM
2291 /*
2292 * Note that technically, the lower bit of the base
92068801
CM
2293 * address should be 1 if the address is I/O and 0 if
2294 * the address is in memory. So many systems get that
2295 * wrong (and all that I have seen are I/O) so we just
2296 * ignore that bit and assume I/O. Systems that use
c305e3d3
CM
2297 * memory should use the newer spec, anyway.
2298 */
b0defcdb
CM
2299 dmi->base_addr = base_addr & 0xfffe;
2300 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2301 dmi->offset = 1;
1da177e4
LT
2302 }
2303
b0defcdb 2304 dmi->slave_addr = data[6];
1da177e4 2305
b0defcdb 2306 return 0;
1da177e4
LT
2307}
2308
2223cbec 2309static void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
1da177e4 2310{
b0defcdb 2311 struct smi_info *info;
1da177e4 2312
de5e2ddf 2313 info = smi_info_alloc();
b0defcdb 2314 if (!info) {
279fbd0c 2315 printk(KERN_ERR PFX "Could not allocate SI data\n");
b0defcdb 2316 return;
1da177e4 2317 }
1da177e4 2318
5fedc4a2 2319 info->addr_source = SI_SMBIOS;
279fbd0c 2320 printk(KERN_INFO PFX "probing via SMBIOS\n");
1da177e4 2321
e8b33617 2322 switch (ipmi_data->type) {
b0defcdb
CM
2323 case 0x01: /* KCS */
2324 info->si_type = SI_KCS;
2325 break;
2326 case 0x02: /* SMIC */
2327 info->si_type = SI_SMIC;
2328 break;
2329 case 0x03: /* BT */
2330 info->si_type = SI_BT;
2331 break;
2332 default:
80cd6920 2333 kfree(info);
b0defcdb 2334 return;
1da177e4 2335 }
1da177e4 2336
b0defcdb
CM
2337 switch (ipmi_data->addr_space) {
2338 case IPMI_MEM_ADDR_SPACE:
1da177e4 2339 info->io_setup = mem_setup;
b0defcdb
CM
2340 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2341 break;
2342
2343 case IPMI_IO_ADDR_SPACE:
1da177e4 2344 info->io_setup = port_setup;
b0defcdb
CM
2345 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2346 break;
2347
2348 default:
1da177e4 2349 kfree(info);
279fbd0c 2350 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
b0defcdb
CM
2351 ipmi_data->addr_space);
2352 return;
1da177e4 2353 }
b0defcdb 2354 info->io.addr_data = ipmi_data->base_addr;
1da177e4 2355
b0defcdb
CM
2356 info->io.regspacing = ipmi_data->offset;
2357 if (!info->io.regspacing)
1da177e4
LT
2358 info->io.regspacing = DEFAULT_REGSPACING;
2359 info->io.regsize = DEFAULT_REGSPACING;
b0defcdb 2360 info->io.regshift = 0;
1da177e4
LT
2361
2362 info->slave_addr = ipmi_data->slave_addr;
2363
b0defcdb
CM
2364 info->irq = ipmi_data->irq;
2365 if (info->irq)
2366 info->irq_setup = std_irq_setup;
1da177e4 2367
7bb671e3
YL
2368 pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2369 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2370 info->io.addr_data, info->io.regsize, info->io.regspacing,
2371 info->irq);
2372
7faefea6
YL
2373 if (add_smi(info))
2374 kfree(info);
b0defcdb 2375}
1da177e4 2376
2223cbec 2377static void dmi_find_bmc(void)
b0defcdb 2378{
1855256c 2379 const struct dmi_device *dev = NULL;
b0defcdb
CM
2380 struct dmi_ipmi_data data;
2381 int rv;
2382
2383 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
397f4ebf 2384 memset(&data, 0, sizeof(data));
1855256c
JG
2385 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2386 &data);
b0defcdb
CM
2387 if (!rv)
2388 try_init_dmi(&data);
2389 }
1da177e4 2390}
a9fad4cc 2391#endif /* CONFIG_DMI */
1da177e4
LT
2392
2393#ifdef CONFIG_PCI
2394
b0defcdb
CM
2395#define PCI_ERMC_CLASSCODE 0x0C0700
2396#define PCI_ERMC_CLASSCODE_MASK 0xffffff00
2397#define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
2398#define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
2399#define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
2400#define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
2401
1da177e4
LT
2402#define PCI_HP_VENDOR_ID 0x103C
2403#define PCI_MMC_DEVICE_ID 0x121A
2404#define PCI_MMC_ADDR_CW 0x10
2405
b0defcdb
CM
2406static void ipmi_pci_cleanup(struct smi_info *info)
2407{
2408 struct pci_dev *pdev = info->addr_source_data;
2409
2410 pci_disable_device(pdev);
2411}
1da177e4 2412
2223cbec 2413static int ipmi_pci_probe_regspacing(struct smi_info *info)
a6c16c28
CM
2414{
2415 if (info->si_type == SI_KCS) {
2416 unsigned char status;
2417 int regspacing;
2418
2419 info->io.regsize = DEFAULT_REGSIZE;
2420 info->io.regshift = 0;
2421 info->io_size = 2;
2422 info->handlers = &kcs_smi_handlers;
2423
2424 /* detect 1, 4, 16byte spacing */
2425 for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2426 info->io.regspacing = regspacing;
2427 if (info->io_setup(info)) {
2428 dev_err(info->dev,
2429 "Could not setup I/O space\n");
2430 return DEFAULT_REGSPACING;
2431 }
2432 /* write invalid cmd */
2433 info->io.outputb(&info->io, 1, 0x10);
2434 /* read status back */
2435 status = info->io.inputb(&info->io, 1);
2436 info->io_cleanup(info);
2437 if (status)
2438 return regspacing;
2439 regspacing *= 4;
2440 }
2441 }
2442 return DEFAULT_REGSPACING;
2443}
2444
2223cbec 2445static int ipmi_pci_probe(struct pci_dev *pdev,
b0defcdb 2446 const struct pci_device_id *ent)
1da177e4 2447{
b0defcdb
CM
2448 int rv;
2449 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2450 struct smi_info *info;
1da177e4 2451
de5e2ddf 2452 info = smi_info_alloc();
b0defcdb 2453 if (!info)
1cd441f9 2454 return -ENOMEM;
1da177e4 2455
5fedc4a2 2456 info->addr_source = SI_PCI;
279fbd0c 2457 dev_info(&pdev->dev, "probing via PCI");
1da177e4 2458
b0defcdb
CM
2459 switch (class_type) {
2460 case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2461 info->si_type = SI_SMIC;
2462 break;
1da177e4 2463
b0defcdb
CM
2464 case PCI_ERMC_CLASSCODE_TYPE_KCS:
2465 info->si_type = SI_KCS;
2466 break;
2467
2468 case PCI_ERMC_CLASSCODE_TYPE_BT:
2469 info->si_type = SI_BT;
2470 break;
2471
2472 default:
2473 kfree(info);
279fbd0c 2474 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
1cd441f9 2475 return -ENOMEM;
1da177e4
LT
2476 }
2477
b0defcdb
CM
2478 rv = pci_enable_device(pdev);
2479 if (rv) {
279fbd0c 2480 dev_err(&pdev->dev, "couldn't enable PCI device\n");
b0defcdb
CM
2481 kfree(info);
2482 return rv;
1da177e4
LT
2483 }
2484
b0defcdb
CM
2485 info->addr_source_cleanup = ipmi_pci_cleanup;
2486 info->addr_source_data = pdev;
1da177e4 2487
b0defcdb
CM
2488 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2489 info->io_setup = port_setup;
2490 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2491 } else {
2492 info->io_setup = mem_setup;
2493 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1da177e4 2494 }
b0defcdb 2495 info->io.addr_data = pci_resource_start(pdev, 0);
1da177e4 2496
a6c16c28
CM
2497 info->io.regspacing = ipmi_pci_probe_regspacing(info);
2498 info->io.regsize = DEFAULT_REGSIZE;
b0defcdb 2499 info->io.regshift = 0;
1da177e4 2500
b0defcdb
CM
2501 info->irq = pdev->irq;
2502 if (info->irq)
2503 info->irq_setup = std_irq_setup;
1da177e4 2504
50c812b2 2505 info->dev = &pdev->dev;
fca3b747 2506 pci_set_drvdata(pdev, info);
50c812b2 2507
279fbd0c
MS
2508 dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2509 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2510 info->irq);
2511
d02b3709
CM
2512 rv = add_smi(info);
2513 if (rv) {
7faefea6 2514 kfree(info);
d02b3709
CM
2515 pci_disable_device(pdev);
2516 }
7faefea6 2517
d02b3709 2518 return rv;
b0defcdb 2519}
1da177e4 2520
39af33fc 2521static void ipmi_pci_remove(struct pci_dev *pdev)
b0defcdb 2522{
fca3b747
CM
2523 struct smi_info *info = pci_get_drvdata(pdev);
2524 cleanup_one_si(info);
d02b3709 2525 pci_disable_device(pdev);
b0defcdb 2526}
1da177e4 2527
81d02b7f 2528static const struct pci_device_id ipmi_pci_devices[] = {
b0defcdb 2529 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
248bdd5e
KC
2530 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2531 { 0, }
b0defcdb
CM
2532};
2533MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2534
2535static struct pci_driver ipmi_pci_driver = {
c305e3d3
CM
2536 .name = DEVICE_NAME,
2537 .id_table = ipmi_pci_devices,
2538 .probe = ipmi_pci_probe,
bcd2982a 2539 .remove = ipmi_pci_remove,
b0defcdb
CM
2540};
2541#endif /* CONFIG_PCI */
1da177e4 2542
a1e9c9dd 2543#ifdef CONFIG_OF
0fbcf4af
CM
2544static const struct of_device_id of_ipmi_match[] = {
2545 { .type = "ipmi", .compatible = "ipmi-kcs",
2546 .data = (void *)(unsigned long) SI_KCS },
2547 { .type = "ipmi", .compatible = "ipmi-smic",
2548 .data = (void *)(unsigned long) SI_SMIC },
2549 { .type = "ipmi", .compatible = "ipmi-bt",
2550 .data = (void *)(unsigned long) SI_BT },
2551 {},
2552};
2553
2554static int of_ipmi_probe(struct platform_device *dev)
2555{
b1608d69 2556 const struct of_device_id *match;
dba9b4f6
CM
2557 struct smi_info *info;
2558 struct resource resource;
da81c3b9 2559 const __be32 *regsize, *regspacing, *regshift;
61c7a080 2560 struct device_node *np = dev->dev.of_node;
dba9b4f6
CM
2561 int ret;
2562 int proplen;
2563
279fbd0c 2564 dev_info(&dev->dev, "probing via device tree\n");
dba9b4f6 2565
0fbcf4af 2566 match = of_match_device(of_ipmi_match, &dev->dev);
b1608d69 2567 if (!match)
0fbcf4af 2568 return -ENODEV;
a1e9c9dd 2569
08dc4169
BH
2570 if (!of_device_is_available(np))
2571 return -EINVAL;
2572
dba9b4f6
CM
2573 ret = of_address_to_resource(np, 0, &resource);
2574 if (ret) {
2575 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2576 return ret;
2577 }
2578
9c25099d 2579 regsize = of_get_property(np, "reg-size", &proplen);
dba9b4f6
CM
2580 if (regsize && proplen != 4) {
2581 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2582 return -EINVAL;
2583 }
2584
9c25099d 2585 regspacing = of_get_property(np, "reg-spacing", &proplen);
dba9b4f6
CM
2586 if (regspacing && proplen != 4) {
2587 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2588 return -EINVAL;
2589 }
2590
9c25099d 2591 regshift = of_get_property(np, "reg-shift", &proplen);
dba9b4f6
CM
2592 if (regshift && proplen != 4) {
2593 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2594 return -EINVAL;
2595 }
2596
de5e2ddf 2597 info = smi_info_alloc();
dba9b4f6
CM
2598
2599 if (!info) {
2600 dev_err(&dev->dev,
279fbd0c 2601 "could not allocate memory for OF probe\n");
dba9b4f6
CM
2602 return -ENOMEM;
2603 }
2604
b1608d69 2605 info->si_type = (enum si_type) match->data;
5fedc4a2 2606 info->addr_source = SI_DEVICETREE;
dba9b4f6
CM
2607 info->irq_setup = std_irq_setup;
2608
3b7ec117
NC
2609 if (resource.flags & IORESOURCE_IO) {
2610 info->io_setup = port_setup;
2611 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2612 } else {
2613 info->io_setup = mem_setup;
2614 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2615 }
2616
dba9b4f6
CM
2617 info->io.addr_data = resource.start;
2618
da81c3b9
RH
2619 info->io.regsize = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2620 info->io.regspacing = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2621 info->io.regshift = regshift ? be32_to_cpup(regshift) : 0;
dba9b4f6 2622
61c7a080 2623 info->irq = irq_of_parse_and_map(dev->dev.of_node, 0);
dba9b4f6
CM
2624 info->dev = &dev->dev;
2625
279fbd0c 2626 dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
dba9b4f6
CM
2627 info->io.addr_data, info->io.regsize, info->io.regspacing,
2628 info->irq);
2629
9de33df4 2630 dev_set_drvdata(&dev->dev, info);
dba9b4f6 2631
d02b3709
CM
2632 ret = add_smi(info);
2633 if (ret) {
7faefea6 2634 kfree(info);
d02b3709 2635 return ret;
7faefea6 2636 }
7faefea6 2637 return 0;
dba9b4f6 2638}
0fbcf4af
CM
2639#else
2640#define of_ipmi_match NULL
2641static int of_ipmi_probe(struct platform_device *dev)
2642{
2643 return -ENODEV;
2644}
2645#endif
dba9b4f6 2646
0fbcf4af
CM
2647#ifdef CONFIG_ACPI
2648static int acpi_ipmi_probe(struct platform_device *dev)
dba9b4f6 2649{
0fbcf4af
CM
2650 struct smi_info *info;
2651 struct resource *res, *res_second;
2652 acpi_handle handle;
2653 acpi_status status;
2654 unsigned long long tmp;
2655 int rv = -EINVAL;
2656
2657 handle = ACPI_HANDLE(&dev->dev);
2658 if (!handle)
2659 return -ENODEV;
2660
2661 info = smi_info_alloc();
2662 if (!info)
2663 return -ENOMEM;
2664
2665 info->addr_source = SI_ACPI;
2666 dev_info(&dev->dev, PFX "probing via ACPI\n");
2667
2668 info->addr_info.acpi_info.acpi_handle = handle;
2669
2670 /* _IFT tells us the interface type: KCS, BT, etc */
2671 status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2672 if (ACPI_FAILURE(status)) {
2673 dev_err(&dev->dev, "Could not find ACPI IPMI interface type\n");
2674 goto err_free;
2675 }
2676
2677 switch (tmp) {
2678 case 1:
2679 info->si_type = SI_KCS;
2680 break;
2681 case 2:
2682 info->si_type = SI_SMIC;
2683 break;
2684 case 3:
2685 info->si_type = SI_BT;
2686 break;
2687 case 4: /* SSIF, just ignore */
2688 rv = -ENODEV;
2689 goto err_free;
2690 default:
2691 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2692 goto err_free;
2693 }
2694
2695 res = platform_get_resource(dev, IORESOURCE_IO, 0);
2696 if (res) {
2697 info->io_setup = port_setup;
2698 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2699 } else {
2700 res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2701 if (res) {
2702 info->io_setup = mem_setup;
2703 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2704 }
2705 }
2706 if (!res) {
2707 dev_err(&dev->dev, "no I/O or memory address\n");
2708 goto err_free;
2709 }
2710 info->io.addr_data = res->start;
2711
2712 info->io.regspacing = DEFAULT_REGSPACING;
2713 res_second = platform_get_resource(dev,
2714 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2715 IORESOURCE_IO : IORESOURCE_MEM,
2716 1);
2717 if (res_second) {
2718 if (res_second->start > info->io.addr_data)
2719 info->io.regspacing =
2720 res_second->start - info->io.addr_data;
2721 }
2722 info->io.regsize = DEFAULT_REGSPACING;
2723 info->io.regshift = 0;
2724
2725 /* If _GPE exists, use it; otherwise use standard interrupts */
2726 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2727 if (ACPI_SUCCESS(status)) {
2728 info->irq = tmp;
2729 info->irq_setup = acpi_gpe_irq_setup;
2730 } else {
2731 int irq = platform_get_irq(dev, 0);
2732
2733 if (irq > 0) {
2734 info->irq = irq;
2735 info->irq_setup = std_irq_setup;
2736 }
2737 }
2738
2739 info->dev = &dev->dev;
2740 platform_set_drvdata(dev, info);
2741
2742 dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2743 res, info->io.regsize, info->io.regspacing,
2744 info->irq);
2745
2746 rv = add_smi(info);
2747 if (rv)
2748 kfree(info);
2749
2750 return rv;
2751
2752err_free:
2753 kfree(info);
2754 return rv;
2755}
2756
81d02b7f 2757static const struct acpi_device_id acpi_ipmi_match[] = {
0fbcf4af
CM
2758 { "IPI0001", 0 },
2759 { },
2760};
2761MODULE_DEVICE_TABLE(acpi, acpi_ipmi_match);
2762#else
2763static int acpi_ipmi_probe(struct platform_device *dev)
2764{
2765 return -ENODEV;
2766}
a1e9c9dd 2767#endif
0fbcf4af
CM
2768
2769static int ipmi_probe(struct platform_device *dev)
2770{
2771 if (of_ipmi_probe(dev) == 0)
2772 return 0;
2773
2774 return acpi_ipmi_probe(dev);
dba9b4f6
CM
2775}
2776
0fbcf4af 2777static int ipmi_remove(struct platform_device *dev)
dba9b4f6 2778{
0fbcf4af
CM
2779 struct smi_info *info = dev_get_drvdata(&dev->dev);
2780
a7930899 2781 cleanup_one_si(info);
0fbcf4af
CM
2782 return 0;
2783}
dba9b4f6 2784
a1e9c9dd 2785static struct platform_driver ipmi_driver = {
4018294b 2786 .driver = {
a1e9c9dd 2787 .name = DEVICE_NAME,
0fbcf4af
CM
2788 .of_match_table = of_ipmi_match,
2789 .acpi_match_table = ACPI_PTR(acpi_ipmi_match),
4018294b 2790 },
a1e9c9dd 2791 .probe = ipmi_probe,
bcd2982a 2792 .remove = ipmi_remove,
dba9b4f6 2793};
dba9b4f6 2794
fdbeb7de
TB
2795#ifdef CONFIG_PARISC
2796static int ipmi_parisc_probe(struct parisc_device *dev)
2797{
2798 struct smi_info *info;
dfa19426 2799 int rv;
fdbeb7de
TB
2800
2801 info = smi_info_alloc();
2802
2803 if (!info) {
2804 dev_err(&dev->dev,
2805 "could not allocate memory for PARISC probe\n");
2806 return -ENOMEM;
2807 }
2808
2809 info->si_type = SI_KCS;
2810 info->addr_source = SI_DEVICETREE;
2811 info->io_setup = mem_setup;
2812 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2813 info->io.addr_data = dev->hpa.start;
2814 info->io.regsize = 1;
2815 info->io.regspacing = 1;
2816 info->io.regshift = 0;
2817 info->irq = 0; /* no interrupt */
2818 info->irq_setup = NULL;
2819 info->dev = &dev->dev;
2820
2821 dev_dbg(&dev->dev, "addr 0x%lx\n", info->io.addr_data);
2822
2823 dev_set_drvdata(&dev->dev, info);
2824
d02b3709
CM
2825 rv = add_smi(info);
2826 if (rv) {
fdbeb7de 2827 kfree(info);
d02b3709 2828 return rv;
fdbeb7de
TB
2829 }
2830
2831 return 0;
2832}
2833
2834static int ipmi_parisc_remove(struct parisc_device *dev)
2835{
2836 cleanup_one_si(dev_get_drvdata(&dev->dev));
2837 return 0;
2838}
2839
2840static struct parisc_device_id ipmi_parisc_tbl[] = {
2841 { HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 },
2842 { 0, }
2843};
2844
2845static struct parisc_driver ipmi_parisc_driver = {
2846 .name = "ipmi",
2847 .id_table = ipmi_parisc_tbl,
2848 .probe = ipmi_parisc_probe,
2849 .remove = ipmi_parisc_remove,
2850};
2851#endif /* CONFIG_PARISC */
2852
40112ae7 2853static int wait_for_msg_done(struct smi_info *smi_info)
1da177e4 2854{
50c812b2 2855 enum si_sm_result smi_result;
1da177e4
LT
2856
2857 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
c305e3d3 2858 for (;;) {
c3e7e791
CM
2859 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2860 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
da4cd8df 2861 schedule_timeout_uninterruptible(1);
1da177e4 2862 smi_result = smi_info->handlers->event(
e21404dc 2863 smi_info->si_sm, jiffies_to_usecs(1));
c305e3d3 2864 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
1da177e4
LT
2865 smi_result = smi_info->handlers->event(
2866 smi_info->si_sm, 0);
c305e3d3 2867 } else
1da177e4
LT
2868 break;
2869 }
40112ae7 2870 if (smi_result == SI_SM_HOSED)
c305e3d3
CM
2871 /*
2872 * We couldn't get the state machine to run, so whatever's at
2873 * the port is probably not an IPMI SMI interface.
2874 */
40112ae7
CM
2875 return -ENODEV;
2876
2877 return 0;
2878}
2879
2880static int try_get_dev_id(struct smi_info *smi_info)
2881{
2882 unsigned char msg[2];
2883 unsigned char *resp;
2884 unsigned long resp_len;
2885 int rv = 0;
2886
2887 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2888 if (!resp)
2889 return -ENOMEM;
2890
2891 /*
2892 * Do a Get Device ID command, since it comes back with some
2893 * useful info.
2894 */
2895 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2896 msg[1] = IPMI_GET_DEVICE_ID_CMD;
2897 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2898
2899 rv = wait_for_msg_done(smi_info);
2900 if (rv)
1da177e4 2901 goto out;
1da177e4 2902
1da177e4
LT
2903 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2904 resp, IPMI_MAX_MSG_LENGTH);
1da177e4 2905
d8c98618
CM
2906 /* Check and record info from the get device id, in case we need it. */
2907 rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
1da177e4
LT
2908
2909 out:
2910 kfree(resp);
2911 return rv;
2912}
2913
1e7d6a45
CM
2914/*
2915 * Some BMCs do not support clearing the receive irq bit in the global
2916 * enables (even if they don't support interrupts on the BMC). Check
2917 * for this and handle it properly.
2918 */
2919static void check_clr_rcv_irq(struct smi_info *smi_info)
2920{
2921 unsigned char msg[3];
2922 unsigned char *resp;
2923 unsigned long resp_len;
2924 int rv;
2925
2926 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2927 if (!resp) {
2928 printk(KERN_WARNING PFX "Out of memory allocating response for"
2929 " global enables command, cannot check recv irq bit"
2930 " handling.\n");
2931 return;
2932 }
2933
2934 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2935 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2936 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2937
2938 rv = wait_for_msg_done(smi_info);
2939 if (rv) {
2940 printk(KERN_WARNING PFX "Error getting response from get"
2941 " global enables command, cannot check recv irq bit"
2942 " handling.\n");
2943 goto out;
2944 }
2945
2946 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2947 resp, IPMI_MAX_MSG_LENGTH);
2948
2949 if (resp_len < 4 ||
2950 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2951 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
2952 resp[2] != 0) {
2953 printk(KERN_WARNING PFX "Invalid return from get global"
2954 " enables command, cannot check recv irq bit"
2955 " handling.\n");
2956 rv = -EINVAL;
2957 goto out;
2958 }
2959
2960 if ((resp[3] & IPMI_BMC_RCV_MSG_INTR) == 0)
2961 /* Already clear, should work ok. */
2962 goto out;
2963
2964 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2965 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2966 msg[2] = resp[3] & ~IPMI_BMC_RCV_MSG_INTR;
2967 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2968
2969 rv = wait_for_msg_done(smi_info);
2970 if (rv) {
2971 printk(KERN_WARNING PFX "Error getting response from set"
2972 " global enables command, cannot check recv irq bit"
2973 " handling.\n");
2974 goto out;
2975 }
2976
2977 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2978 resp, IPMI_MAX_MSG_LENGTH);
2979
2980 if (resp_len < 3 ||
2981 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2982 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2983 printk(KERN_WARNING PFX "Invalid return from get global"
2984 " enables command, cannot check recv irq bit"
2985 " handling.\n");
2986 rv = -EINVAL;
2987 goto out;
2988 }
2989
2990 if (resp[2] != 0) {
2991 /*
2992 * An error when setting the event buffer bit means
2993 * clearing the bit is not supported.
2994 */
2995 printk(KERN_WARNING PFX "The BMC does not support clearing"
2996 " the recv irq bit, compensating, but the BMC needs to"
2997 " be fixed.\n");
2998 smi_info->cannot_clear_recv_irq_bit = true;
2999 }
3000 out:
3001 kfree(resp);
3002}
3003
40112ae7
CM
3004static int try_enable_event_buffer(struct smi_info *smi_info)
3005{
3006 unsigned char msg[3];
3007 unsigned char *resp;
3008 unsigned long resp_len;
3009 int rv = 0;
3010
3011 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
3012 if (!resp)
3013 return -ENOMEM;
3014
3015 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3016 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
3017 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
3018
3019 rv = wait_for_msg_done(smi_info);
3020 if (rv) {
279fbd0c
MS
3021 printk(KERN_WARNING PFX "Error getting response from get"
3022 " global enables command, the event buffer is not"
40112ae7
CM
3023 " enabled.\n");
3024 goto out;
3025 }
3026
3027 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3028 resp, IPMI_MAX_MSG_LENGTH);
3029
3030 if (resp_len < 4 ||
3031 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3032 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
3033 resp[2] != 0) {
279fbd0c
MS
3034 printk(KERN_WARNING PFX "Invalid return from get global"
3035 " enables command, cannot enable the event buffer.\n");
40112ae7
CM
3036 rv = -EINVAL;
3037 goto out;
3038 }
3039
d9b7e4f7 3040 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
40112ae7 3041 /* buffer is already enabled, nothing to do. */
d9b7e4f7 3042 smi_info->supports_event_msg_buff = true;
40112ae7 3043 goto out;
d9b7e4f7 3044 }
40112ae7
CM
3045
3046 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3047 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
3048 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
3049 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
3050
3051 rv = wait_for_msg_done(smi_info);
3052 if (rv) {
279fbd0c
MS
3053 printk(KERN_WARNING PFX "Error getting response from set"
3054 " global, enables command, the event buffer is not"
40112ae7
CM
3055 " enabled.\n");
3056 goto out;
3057 }
3058
3059 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3060 resp, IPMI_MAX_MSG_LENGTH);
3061
3062 if (resp_len < 3 ||
3063 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3064 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
279fbd0c
MS
3065 printk(KERN_WARNING PFX "Invalid return from get global,"
3066 "enables command, not enable the event buffer.\n");
40112ae7
CM
3067 rv = -EINVAL;
3068 goto out;
3069 }
3070
3071 if (resp[2] != 0)
3072 /*
3073 * An error when setting the event buffer bit means
3074 * that the event buffer is not supported.
3075 */
3076 rv = -ENOENT;
d9b7e4f7
CM
3077 else
3078 smi_info->supports_event_msg_buff = true;
3079
40112ae7
CM
3080 out:
3081 kfree(resp);
3082 return rv;
3083}
3084
07412736 3085static int smi_type_proc_show(struct seq_file *m, void *v)
1da177e4 3086{
07412736 3087 struct smi_info *smi = m->private;
1da177e4 3088
d6c5dc18
JP
3089 seq_printf(m, "%s\n", si_to_str[smi->si_type]);
3090
5e33cd0c 3091 return 0;
1da177e4
LT
3092}
3093
07412736 3094static int smi_type_proc_open(struct inode *inode, struct file *file)
1da177e4 3095{
d9dda78b 3096 return single_open(file, smi_type_proc_show, PDE_DATA(inode));
07412736
AD
3097}
3098
3099static const struct file_operations smi_type_proc_ops = {
3100 .open = smi_type_proc_open,
3101 .read = seq_read,
3102 .llseek = seq_lseek,
3103 .release = single_release,
3104};
3105
3106static int smi_si_stats_proc_show(struct seq_file *m, void *v)
3107{
3108 struct smi_info *smi = m->private;
1da177e4 3109
07412736 3110 seq_printf(m, "interrupts_enabled: %d\n",
b0defcdb 3111 smi->irq && !smi->interrupt_disabled);
07412736 3112 seq_printf(m, "short_timeouts: %u\n",
64959e2d 3113 smi_get_stat(smi, short_timeouts));
07412736 3114 seq_printf(m, "long_timeouts: %u\n",
64959e2d 3115 smi_get_stat(smi, long_timeouts));
07412736 3116 seq_printf(m, "idles: %u\n",
64959e2d 3117 smi_get_stat(smi, idles));
07412736 3118 seq_printf(m, "interrupts: %u\n",
64959e2d 3119 smi_get_stat(smi, interrupts));
07412736 3120 seq_printf(m, "attentions: %u\n",
64959e2d 3121 smi_get_stat(smi, attentions));
07412736 3122 seq_printf(m, "flag_fetches: %u\n",
64959e2d 3123 smi_get_stat(smi, flag_fetches));
07412736 3124 seq_printf(m, "hosed_count: %u\n",
64959e2d 3125 smi_get_stat(smi, hosed_count));
07412736 3126 seq_printf(m, "complete_transactions: %u\n",
64959e2d 3127 smi_get_stat(smi, complete_transactions));
07412736 3128 seq_printf(m, "events: %u\n",
64959e2d 3129 smi_get_stat(smi, events));
07412736 3130 seq_printf(m, "watchdog_pretimeouts: %u\n",
64959e2d 3131 smi_get_stat(smi, watchdog_pretimeouts));
07412736 3132 seq_printf(m, "incoming_messages: %u\n",
64959e2d 3133 smi_get_stat(smi, incoming_messages));
07412736
AD
3134 return 0;
3135}
1da177e4 3136
07412736
AD
3137static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
3138{
d9dda78b 3139 return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
b361e27b
CM
3140}
3141
07412736
AD
3142static const struct file_operations smi_si_stats_proc_ops = {
3143 .open = smi_si_stats_proc_open,
3144 .read = seq_read,
3145 .llseek = seq_lseek,
3146 .release = single_release,
3147};
3148
3149static int smi_params_proc_show(struct seq_file *m, void *v)
b361e27b 3150{
07412736 3151 struct smi_info *smi = m->private;
b361e27b 3152
d6c5dc18
JP
3153 seq_printf(m,
3154 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
3155 si_to_str[smi->si_type],
3156 addr_space_to_str[smi->io.addr_type],
3157 smi->io.addr_data,
3158 smi->io.regspacing,
3159 smi->io.regsize,
3160 smi->io.regshift,
3161 smi->irq,
3162 smi->slave_addr);
3163
5e33cd0c 3164 return 0;
1da177e4
LT
3165}
3166
07412736
AD
3167static int smi_params_proc_open(struct inode *inode, struct file *file)
3168{
d9dda78b 3169 return single_open(file, smi_params_proc_show, PDE_DATA(inode));
07412736
AD
3170}
3171
3172static const struct file_operations smi_params_proc_ops = {
3173 .open = smi_params_proc_open,
3174 .read = seq_read,
3175 .llseek = seq_lseek,
3176 .release = single_release,
3177};
3178
3ae0e0f9
CM
3179/*
3180 * oem_data_avail_to_receive_msg_avail
3181 * @info - smi_info structure with msg_flags set
3182 *
3183 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
3184 * Returns 1 indicating need to re-run handle_flags().
3185 */
3186static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
3187{
e8b33617 3188 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
c305e3d3 3189 RECEIVE_MSG_AVAIL);
3ae0e0f9
CM
3190 return 1;
3191}
3192
3193/*
3194 * setup_dell_poweredge_oem_data_handler
3195 * @info - smi_info.device_id must be populated
3196 *
3197 * Systems that match, but have firmware version < 1.40 may assert
3198 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
3199 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
3200 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
3201 * as RECEIVE_MSG_AVAIL instead.
3202 *
3203 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
3204 * assert the OEM[012] bits, and if it did, the driver would have to
3205 * change to handle that properly, we don't actually check for the
3206 * firmware version.
3207 * Device ID = 0x20 BMC on PowerEdge 8G servers
3208 * Device Revision = 0x80
3209 * Firmware Revision1 = 0x01 BMC version 1.40
3210 * Firmware Revision2 = 0x40 BCD encoded
3211 * IPMI Version = 0x51 IPMI 1.5
3212 * Manufacturer ID = A2 02 00 Dell IANA
3213 *
d5a2b89a
CM
3214 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
3215 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
3216 *
3ae0e0f9
CM
3217 */
3218#define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
3219#define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
3220#define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
50c812b2 3221#define DELL_IANA_MFR_ID 0x0002a2
3ae0e0f9
CM
3222static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
3223{
3224 struct ipmi_device_id *id = &smi_info->device_id;
50c812b2 3225 if (id->manufacturer_id == DELL_IANA_MFR_ID) {
d5a2b89a
CM
3226 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
3227 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
50c812b2 3228 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
d5a2b89a
CM
3229 smi_info->oem_data_avail_handler =
3230 oem_data_avail_to_receive_msg_avail;
c305e3d3
CM
3231 } else if (ipmi_version_major(id) < 1 ||
3232 (ipmi_version_major(id) == 1 &&
3233 ipmi_version_minor(id) < 5)) {
d5a2b89a
CM
3234 smi_info->oem_data_avail_handler =
3235 oem_data_avail_to_receive_msg_avail;
3236 }
3ae0e0f9
CM
3237 }
3238}
3239
ea94027b
CM
3240#define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
3241static void return_hosed_msg_badsize(struct smi_info *smi_info)
3242{
3243 struct ipmi_smi_msg *msg = smi_info->curr_msg;
3244
25985edc 3245 /* Make it a response */
ea94027b
CM
3246 msg->rsp[0] = msg->data[0] | 4;
3247 msg->rsp[1] = msg->data[1];
3248 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
3249 msg->rsp_size = 3;
3250 smi_info->curr_msg = NULL;
3251 deliver_recv_msg(smi_info, msg);
3252}
3253
3254/*
3255 * dell_poweredge_bt_xaction_handler
3256 * @info - smi_info.device_id must be populated
3257 *
3258 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3259 * not respond to a Get SDR command if the length of the data
3260 * requested is exactly 0x3A, which leads to command timeouts and no
3261 * data returned. This intercepts such commands, and causes userspace
3262 * callers to try again with a different-sized buffer, which succeeds.
3263 */
3264
3265#define STORAGE_NETFN 0x0A
3266#define STORAGE_CMD_GET_SDR 0x23
3267static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
3268 unsigned long unused,
3269 void *in)
3270{
3271 struct smi_info *smi_info = in;
3272 unsigned char *data = smi_info->curr_msg->data;
3273 unsigned int size = smi_info->curr_msg->data_size;
3274 if (size >= 8 &&
3275 (data[0]>>2) == STORAGE_NETFN &&
3276 data[1] == STORAGE_CMD_GET_SDR &&
3277 data[7] == 0x3A) {
3278 return_hosed_msg_badsize(smi_info);
3279 return NOTIFY_STOP;
3280 }
3281 return NOTIFY_DONE;
3282}
3283
3284static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3285 .notifier_call = dell_poweredge_bt_xaction_handler,
3286};
3287
3288/*
3289 * setup_dell_poweredge_bt_xaction_handler
3290 * @info - smi_info.device_id must be filled in already
3291 *
3292 * Fills in smi_info.device_id.start_transaction_pre_hook
3293 * when we know what function to use there.
3294 */
3295static void
3296setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3297{
3298 struct ipmi_device_id *id = &smi_info->device_id;
50c812b2 3299 if (id->manufacturer_id == DELL_IANA_MFR_ID &&
ea94027b
CM
3300 smi_info->si_type == SI_BT)
3301 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3302}
3303
3ae0e0f9
CM
3304/*
3305 * setup_oem_data_handler
3306 * @info - smi_info.device_id must be filled in already
3307 *
3308 * Fills in smi_info.device_id.oem_data_available_handler
3309 * when we know what function to use there.
3310 */
3311
3312static void setup_oem_data_handler(struct smi_info *smi_info)
3313{
3314 setup_dell_poweredge_oem_data_handler(smi_info);
3315}
3316
ea94027b
CM
3317static void setup_xaction_handlers(struct smi_info *smi_info)
3318{
3319 setup_dell_poweredge_bt_xaction_handler(smi_info);
3320}
3321
a9a2c44f
CM
3322static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3323{
b874b985
CM
3324 if (smi_info->thread != NULL)
3325 kthread_stop(smi_info->thread);
3326 if (smi_info->timer_running)
453823ba 3327 del_timer_sync(&smi_info->si_timer);
a9a2c44f
CM
3328}
3329
81d02b7f 3330static const struct ipmi_default_vals
b0defcdb
CM
3331{
3332 int type;
3333 int port;
7420884c 3334} ipmi_defaults[] =
b0defcdb
CM
3335{
3336 { .type = SI_KCS, .port = 0xca2 },
3337 { .type = SI_SMIC, .port = 0xca9 },
3338 { .type = SI_BT, .port = 0xe4 },
3339 { .port = 0 }
3340};
3341
2223cbec 3342static void default_find_bmc(void)
b0defcdb
CM
3343{
3344 struct smi_info *info;
3345 int i;
3346
3347 for (i = 0; ; i++) {
3348 if (!ipmi_defaults[i].port)
3349 break;
68e1ee62 3350#ifdef CONFIG_PPC
4ff31d77
CK
3351 if (check_legacy_ioport(ipmi_defaults[i].port))
3352 continue;
3353#endif
de5e2ddf 3354 info = smi_info_alloc();
a09f4855
AM
3355 if (!info)
3356 return;
4ff31d77 3357
5fedc4a2 3358 info->addr_source = SI_DEFAULT;
b0defcdb
CM
3359
3360 info->si_type = ipmi_defaults[i].type;
3361 info->io_setup = port_setup;
3362 info->io.addr_data = ipmi_defaults[i].port;
3363 info->io.addr_type = IPMI_IO_ADDR_SPACE;
3364
3365 info->io.addr = NULL;
3366 info->io.regspacing = DEFAULT_REGSPACING;
3367 info->io.regsize = DEFAULT_REGSPACING;
3368 info->io.regshift = 0;
3369
2407d77a
MG
3370 if (add_smi(info) == 0) {
3371 if ((try_smi_init(info)) == 0) {
3372 /* Found one... */
279fbd0c 3373 printk(KERN_INFO PFX "Found default %s"
2407d77a
MG
3374 " state machine at %s address 0x%lx\n",
3375 si_to_str[info->si_type],
3376 addr_space_to_str[info->io.addr_type],
3377 info->io.addr_data);
3378 } else
3379 cleanup_one_si(info);
7faefea6
YL
3380 } else {
3381 kfree(info);
b0defcdb
CM
3382 }
3383 }
3384}
3385
3386static int is_new_interface(struct smi_info *info)
1da177e4 3387{
b0defcdb 3388 struct smi_info *e;
1da177e4 3389
b0defcdb
CM
3390 list_for_each_entry(e, &smi_infos, link) {
3391 if (e->io.addr_type != info->io.addr_type)
3392 continue;
3393 if (e->io.addr_data == info->io.addr_data)
3394 return 0;
3395 }
1da177e4 3396
b0defcdb
CM
3397 return 1;
3398}
1da177e4 3399
2407d77a 3400static int add_smi(struct smi_info *new_smi)
b0defcdb 3401{
2407d77a 3402 int rv = 0;
b0defcdb 3403
279fbd0c 3404 printk(KERN_INFO PFX "Adding %s-specified %s state machine",
7e50387b
CM
3405 ipmi_addr_src_to_str(new_smi->addr_source),
3406 si_to_str[new_smi->si_type]);
d6dfd131 3407 mutex_lock(&smi_infos_lock);
b0defcdb 3408 if (!is_new_interface(new_smi)) {
7bb671e3 3409 printk(KERN_CONT " duplicate interface\n");
b0defcdb
CM
3410 rv = -EBUSY;
3411 goto out_err;
3412 }
1da177e4 3413
2407d77a
MG
3414 printk(KERN_CONT "\n");
3415
1da177e4
LT
3416 /* So we know not to free it unless we have allocated one. */
3417 new_smi->intf = NULL;
3418 new_smi->si_sm = NULL;
3419 new_smi->handlers = NULL;
3420
2407d77a
MG
3421 list_add_tail(&new_smi->link, &smi_infos);
3422
3423out_err:
3424 mutex_unlock(&smi_infos_lock);
3425 return rv;
3426}
3427
3428static int try_smi_init(struct smi_info *new_smi)
3429{
3430 int rv = 0;
3431 int i;
3432
279fbd0c 3433 printk(KERN_INFO PFX "Trying %s-specified %s state"
2407d77a
MG
3434 " machine at %s address 0x%lx, slave address 0x%x,"
3435 " irq %d\n",
7e50387b 3436 ipmi_addr_src_to_str(new_smi->addr_source),
2407d77a
MG
3437 si_to_str[new_smi->si_type],
3438 addr_space_to_str[new_smi->io.addr_type],
3439 new_smi->io.addr_data,
3440 new_smi->slave_addr, new_smi->irq);
3441
b0defcdb
CM
3442 switch (new_smi->si_type) {
3443 case SI_KCS:
1da177e4 3444 new_smi->handlers = &kcs_smi_handlers;
b0defcdb
CM
3445 break;
3446
3447 case SI_SMIC:
1da177e4 3448 new_smi->handlers = &smic_smi_handlers;
b0defcdb
CM
3449 break;
3450
3451 case SI_BT:
1da177e4 3452 new_smi->handlers = &bt_smi_handlers;
b0defcdb
CM
3453 break;
3454
3455 default:
1da177e4
LT
3456 /* No support for anything else yet. */
3457 rv = -EIO;
3458 goto out_err;
3459 }
3460
3461 /* Allocate the state machine's data and initialize it. */
3462 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
b0defcdb 3463 if (!new_smi->si_sm) {
279fbd0c
MS
3464 printk(KERN_ERR PFX
3465 "Could not allocate state machine memory\n");
1da177e4
LT
3466 rv = -ENOMEM;
3467 goto out_err;
3468 }
3469 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3470 &new_smi->io);
3471
3472 /* Now that we know the I/O size, we can set up the I/O. */
3473 rv = new_smi->io_setup(new_smi);
3474 if (rv) {
279fbd0c 3475 printk(KERN_ERR PFX "Could not set up I/O space\n");
1da177e4
LT
3476 goto out_err;
3477 }
3478
1da177e4
LT
3479 /* Do low-level detection first. */
3480 if (new_smi->handlers->detect(new_smi->si_sm)) {
b0defcdb 3481 if (new_smi->addr_source)
279fbd0c 3482 printk(KERN_INFO PFX "Interface detection failed\n");
1da177e4
LT
3483 rv = -ENODEV;
3484 goto out_err;
3485 }
3486
c305e3d3
CM
3487 /*
3488 * Attempt a get device id command. If it fails, we probably
3489 * don't have a BMC here.
3490 */
1da177e4 3491 rv = try_get_dev_id(new_smi);
b0defcdb
CM
3492 if (rv) {
3493 if (new_smi->addr_source)
279fbd0c 3494 printk(KERN_INFO PFX "There appears to be no BMC"
b0defcdb 3495 " at this location\n");
1da177e4 3496 goto out_err;
b0defcdb 3497 }
1da177e4 3498
1e7d6a45
CM
3499 check_clr_rcv_irq(new_smi);
3500
3ae0e0f9 3501 setup_oem_data_handler(new_smi);
ea94027b 3502 setup_xaction_handlers(new_smi);
3ae0e0f9 3503
b874b985 3504 new_smi->waiting_msg = NULL;
1da177e4
LT
3505 new_smi->curr_msg = NULL;
3506 atomic_set(&new_smi->req_events, 0);
7aefac26 3507 new_smi->run_to_completion = false;
64959e2d
CM
3508 for (i = 0; i < SI_NUM_STATS; i++)
3509 atomic_set(&new_smi->stats[i], 0);
1da177e4 3510
7aefac26 3511 new_smi->interrupt_disabled = true;
89986496 3512 atomic_set(&new_smi->need_watch, 0);
b0defcdb
CM
3513 new_smi->intf_num = smi_num;
3514 smi_num++;
1da177e4 3515
40112ae7
CM
3516 rv = try_enable_event_buffer(new_smi);
3517 if (rv == 0)
7aefac26 3518 new_smi->has_event_buffer = true;
40112ae7 3519
c305e3d3
CM
3520 /*
3521 * Start clearing the flags before we enable interrupts or the
3522 * timer to avoid racing with the timer.
3523 */
1da177e4 3524 start_clear_flags(new_smi);
d9b7e4f7
CM
3525
3526 /*
3527 * IRQ is defined to be set when non-zero. req_events will
3528 * cause a global flags check that will enable interrupts.
3529 */
3530 if (new_smi->irq) {
3531 new_smi->interrupt_disabled = false;
3532 atomic_set(&new_smi->req_events, 1);
3533 }
1da177e4 3534
50c812b2 3535 if (!new_smi->dev) {
c305e3d3
CM
3536 /*
3537 * If we don't already have a device from something
3538 * else (like PCI), then register a new one.
3539 */
50c812b2
CM
3540 new_smi->pdev = platform_device_alloc("ipmi_si",
3541 new_smi->intf_num);
8b32b5d0 3542 if (!new_smi->pdev) {
279fbd0c
MS
3543 printk(KERN_ERR PFX
3544 "Unable to allocate platform device\n");
453823ba 3545 goto out_err;
50c812b2
CM
3546 }
3547 new_smi->dev = &new_smi->pdev->dev;
fe2d5ffc 3548 new_smi->dev->driver = &ipmi_driver.driver;
50c812b2 3549
b48f5457 3550 rv = platform_device_add(new_smi->pdev);
50c812b2 3551 if (rv) {
279fbd0c
MS
3552 printk(KERN_ERR PFX
3553 "Unable to register system interface device:"
50c812b2
CM
3554 " %d\n",
3555 rv);
453823ba 3556 goto out_err;
50c812b2 3557 }
7aefac26 3558 new_smi->dev_registered = true;
50c812b2
CM
3559 }
3560
1da177e4
LT
3561 rv = ipmi_register_smi(&handlers,
3562 new_smi,
50c812b2
CM
3563 &new_smi->device_id,
3564 new_smi->dev,
453823ba 3565 new_smi->slave_addr);
1da177e4 3566 if (rv) {
279fbd0c
MS
3567 dev_err(new_smi->dev, "Unable to register device: error %d\n",
3568 rv);
1da177e4
LT
3569 goto out_err_stop_timer;
3570 }
3571
3572 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
07412736 3573 &smi_type_proc_ops,
99b76233 3574 new_smi);
1da177e4 3575 if (rv) {
279fbd0c 3576 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
1da177e4
LT
3577 goto out_err_stop_timer;
3578 }
3579
3580 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
07412736 3581 &smi_si_stats_proc_ops,
99b76233 3582 new_smi);
1da177e4 3583 if (rv) {
279fbd0c 3584 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
1da177e4
LT
3585 goto out_err_stop_timer;
3586 }
3587
b361e27b 3588 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
07412736 3589 &smi_params_proc_ops,
99b76233 3590 new_smi);
b361e27b 3591 if (rv) {
279fbd0c 3592 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
b361e27b
CM
3593 goto out_err_stop_timer;
3594 }
3595
279fbd0c
MS
3596 dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3597 si_to_str[new_smi->si_type]);
1da177e4
LT
3598
3599 return 0;
3600
3601 out_err_stop_timer:
a9a2c44f 3602 wait_for_timer_and_thread(new_smi);
1da177e4
LT
3603
3604 out_err:
7aefac26 3605 new_smi->interrupt_disabled = true;
2407d77a
MG
3606
3607 if (new_smi->intf) {
b874b985 3608 ipmi_smi_t intf = new_smi->intf;
2407d77a 3609 new_smi->intf = NULL;
b874b985 3610 ipmi_unregister_smi(intf);
2407d77a 3611 }
1da177e4 3612
2407d77a 3613 if (new_smi->irq_cleanup) {
b0defcdb 3614 new_smi->irq_cleanup(new_smi);
2407d77a
MG
3615 new_smi->irq_cleanup = NULL;
3616 }
1da177e4 3617
c305e3d3
CM
3618 /*
3619 * Wait until we know that we are out of any interrupt
3620 * handlers might have been running before we freed the
3621 * interrupt.
3622 */
fbd568a3 3623 synchronize_sched();
1da177e4
LT
3624
3625 if (new_smi->si_sm) {
3626 if (new_smi->handlers)
3627 new_smi->handlers->cleanup(new_smi->si_sm);
3628 kfree(new_smi->si_sm);
2407d77a 3629 new_smi->si_sm = NULL;
1da177e4 3630 }
2407d77a 3631 if (new_smi->addr_source_cleanup) {
b0defcdb 3632 new_smi->addr_source_cleanup(new_smi);
2407d77a
MG
3633 new_smi->addr_source_cleanup = NULL;
3634 }
3635 if (new_smi->io_cleanup) {
7767e126 3636 new_smi->io_cleanup(new_smi);
2407d77a
MG
3637 new_smi->io_cleanup = NULL;
3638 }
1da177e4 3639
2407d77a 3640 if (new_smi->dev_registered) {
50c812b2 3641 platform_device_unregister(new_smi->pdev);
7aefac26 3642 new_smi->dev_registered = false;
2407d77a 3643 }
b0defcdb 3644
1da177e4
LT
3645 return rv;
3646}
3647
2223cbec 3648static int init_ipmi_si(void)
1da177e4 3649{
1da177e4
LT
3650 int i;
3651 char *str;
50c812b2 3652 int rv;
2407d77a 3653 struct smi_info *e;
06ee4594 3654 enum ipmi_addr_src type = SI_INVALID;
1da177e4
LT
3655
3656 if (initialized)
3657 return 0;
3658 initialized = 1;
3659
f2afae46
CM
3660 if (si_tryplatform) {
3661 rv = platform_driver_register(&ipmi_driver);
3662 if (rv) {
3663 printk(KERN_ERR PFX "Unable to register "
3664 "driver: %d\n", rv);
3665 return rv;
3666 }
50c812b2
CM
3667 }
3668
1da177e4
LT
3669 /* Parse out the si_type string into its components. */
3670 str = si_type_str;
3671 if (*str != '\0') {
e8b33617 3672 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
1da177e4
LT
3673 si_type[i] = str;
3674 str = strchr(str, ',');
3675 if (str) {
3676 *str = '\0';
3677 str++;
3678 } else {
3679 break;
3680 }
3681 }
3682 }
3683
1fdd75bd 3684 printk(KERN_INFO "IPMI System Interface driver.\n");
1da177e4 3685
d8cc5267 3686 /* If the user gave us a device, they presumably want us to use it */
a1e9c9dd 3687 if (!hardcode_find_bmc())
d8cc5267 3688 return 0;
d8cc5267 3689
b0defcdb 3690#ifdef CONFIG_PCI
f2afae46
CM
3691 if (si_trypci) {
3692 rv = pci_register_driver(&ipmi_pci_driver);
3693 if (rv)
3694 printk(KERN_ERR PFX "Unable to register "
3695 "PCI driver: %d\n", rv);
3696 else
7aefac26 3697 pci_registered = true;
f2afae46 3698 }
b0defcdb
CM
3699#endif
3700
754d4531 3701#ifdef CONFIG_DMI
d941aeae
CM
3702 if (si_trydmi)
3703 dmi_find_bmc();
754d4531
MG
3704#endif
3705
3706#ifdef CONFIG_ACPI
d941aeae
CM
3707 if (si_tryacpi)
3708 spmi_find_bmc();
754d4531
MG
3709#endif
3710
fdbeb7de
TB
3711#ifdef CONFIG_PARISC
3712 register_parisc_driver(&ipmi_parisc_driver);
7aefac26 3713 parisc_registered = true;
fdbeb7de
TB
3714 /* poking PC IO addresses will crash machine, don't do it */
3715 si_trydefaults = 0;
3716#endif
3717
06ee4594
MG
3718 /* We prefer devices with interrupts, but in the case of a machine
3719 with multiple BMCs we assume that there will be several instances
3720 of a given type so if we succeed in registering a type then also
3721 try to register everything else of the same type */
d8cc5267 3722
2407d77a
MG
3723 mutex_lock(&smi_infos_lock);
3724 list_for_each_entry(e, &smi_infos, link) {
06ee4594
MG
3725 /* Try to register a device if it has an IRQ and we either
3726 haven't successfully registered a device yet or this
3727 device has the same type as one we successfully registered */
3728 if (e->irq && (!type || e->addr_source == type)) {
d8cc5267 3729 if (!try_smi_init(e)) {
06ee4594 3730 type = e->addr_source;
d8cc5267
MG
3731 }
3732 }
3733 }
3734
06ee4594
MG
3735 /* type will only have been set if we successfully registered an si */
3736 if (type) {
3737 mutex_unlock(&smi_infos_lock);
3738 return 0;
3739 }
3740
d8cc5267
MG
3741 /* Fall back to the preferred device */
3742
3743 list_for_each_entry(e, &smi_infos, link) {
06ee4594 3744 if (!e->irq && (!type || e->addr_source == type)) {
d8cc5267 3745 if (!try_smi_init(e)) {
06ee4594 3746 type = e->addr_source;
d8cc5267
MG
3747 }
3748 }
2407d77a
MG
3749 }
3750 mutex_unlock(&smi_infos_lock);
3751
06ee4594
MG
3752 if (type)
3753 return 0;
3754
b0defcdb 3755 if (si_trydefaults) {
d6dfd131 3756 mutex_lock(&smi_infos_lock);
b0defcdb
CM
3757 if (list_empty(&smi_infos)) {
3758 /* No BMC was found, try defaults. */
d6dfd131 3759 mutex_unlock(&smi_infos_lock);
b0defcdb 3760 default_find_bmc();
2407d77a 3761 } else
d6dfd131 3762 mutex_unlock(&smi_infos_lock);
1da177e4
LT
3763 }
3764
d6dfd131 3765 mutex_lock(&smi_infos_lock);
b361e27b 3766 if (unload_when_empty && list_empty(&smi_infos)) {
d6dfd131 3767 mutex_unlock(&smi_infos_lock);
d2478521 3768 cleanup_ipmi_si();
279fbd0c
MS
3769 printk(KERN_WARNING PFX
3770 "Unable to find any System Interface(s)\n");
1da177e4 3771 return -ENODEV;
b0defcdb 3772 } else {
d6dfd131 3773 mutex_unlock(&smi_infos_lock);
b0defcdb 3774 return 0;
1da177e4 3775 }
1da177e4
LT
3776}
3777module_init(init_ipmi_si);
3778
b361e27b 3779static void cleanup_one_si(struct smi_info *to_clean)
1da177e4 3780{
2407d77a 3781 int rv = 0;
1da177e4 3782
b0defcdb 3783 if (!to_clean)
1da177e4
LT
3784 return;
3785
b874b985
CM
3786 if (to_clean->intf) {
3787 ipmi_smi_t intf = to_clean->intf;
3788
3789 to_clean->intf = NULL;
3790 rv = ipmi_unregister_smi(intf);
3791 if (rv) {
3792 pr_err(PFX "Unable to unregister device: errno=%d\n",
3793 rv);
3794 }
3795 }
3796
567eded9
TI
3797 if (to_clean->dev)
3798 dev_set_drvdata(to_clean->dev, NULL);
3799
b0defcdb
CM
3800 list_del(&to_clean->link);
3801
c305e3d3 3802 /*
b874b985
CM
3803 * Make sure that interrupts, the timer and the thread are
3804 * stopped and will not run again.
c305e3d3 3805 */
b874b985
CM
3806 if (to_clean->irq_cleanup)
3807 to_clean->irq_cleanup(to_clean);
a9a2c44f 3808 wait_for_timer_and_thread(to_clean);
1da177e4 3809
c305e3d3
CM
3810 /*
3811 * Timeouts are stopped, now make sure the interrupts are off
b874b985
CM
3812 * in the BMC. Note that timers and CPU interrupts are off,
3813 * so no need for locks.
c305e3d3 3814 */
ee6cd5f8 3815 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
ee6cd5f8
CM
3816 poll(to_clean);
3817 schedule_timeout_uninterruptible(1);
ee6cd5f8
CM
3818 }
3819 disable_si_irq(to_clean);
e8b33617 3820 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
1da177e4 3821 poll(to_clean);
da4cd8df 3822 schedule_timeout_uninterruptible(1);
1da177e4
LT
3823 }
3824
2407d77a
MG
3825 if (to_clean->handlers)
3826 to_clean->handlers->cleanup(to_clean->si_sm);
1da177e4
LT
3827
3828 kfree(to_clean->si_sm);
3829
b0defcdb
CM
3830 if (to_clean->addr_source_cleanup)
3831 to_clean->addr_source_cleanup(to_clean);
7767e126
PG
3832 if (to_clean->io_cleanup)
3833 to_clean->io_cleanup(to_clean);
50c812b2
CM
3834
3835 if (to_clean->dev_registered)
3836 platform_device_unregister(to_clean->pdev);
3837
3838 kfree(to_clean);
1da177e4
LT
3839}
3840
0dcf334c 3841static void cleanup_ipmi_si(void)
1da177e4 3842{
b0defcdb 3843 struct smi_info *e, *tmp_e;
1da177e4 3844
b0defcdb 3845 if (!initialized)
1da177e4
LT
3846 return;
3847
b0defcdb 3848#ifdef CONFIG_PCI
56480287
MG
3849 if (pci_registered)
3850 pci_unregister_driver(&ipmi_pci_driver);
b0defcdb 3851#endif
fdbeb7de
TB
3852#ifdef CONFIG_PARISC
3853 if (parisc_registered)
3854 unregister_parisc_driver(&ipmi_parisc_driver);
3855#endif
b0defcdb 3856
a1e9c9dd 3857 platform_driver_unregister(&ipmi_driver);
dba9b4f6 3858
d6dfd131 3859 mutex_lock(&smi_infos_lock);
b0defcdb
CM
3860 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3861 cleanup_one_si(e);
d6dfd131 3862 mutex_unlock(&smi_infos_lock);
1da177e4
LT
3863}
3864module_exit(cleanup_ipmi_si);
3865
3866MODULE_LICENSE("GPL");
1fdd75bd 3867MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
c305e3d3
CM
3868MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3869 " system interfaces.");
This page took 1.507199 seconds and 5 git commands to generate.