IPMI: don't init irq until ready
[deliverable/linux.git] / drivers / char / ipmi / ipmi_si_intf.c
CommitLineData
1da177e4
LT
1/*
2 * ipmi_si.c
3 *
4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5 * BT).
6 *
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
9 * source@mvista.com
10 *
11 * Copyright 2002 MontaVista Software Inc.
dba9b4f6 12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
1da177e4
LT
13 *
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 of the License, or (at your
17 * option) any later version.
18 *
19 *
20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 *
31 * You should have received a copy of the GNU General Public License along
32 * with this program; if not, write to the Free Software Foundation, Inc.,
33 * 675 Mass Ave, Cambridge, MA 02139, USA.
34 */
35
36/*
37 * This file holds the "policy" for the interface to the SMI state
38 * machine. It does the configuration, handles timers and interrupts,
39 * and drives the real SMI state machine.
40 */
41
1da177e4
LT
42#include <linux/module.h>
43#include <linux/moduleparam.h>
44#include <asm/system.h>
45#include <linux/sched.h>
46#include <linux/timer.h>
47#include <linux/errno.h>
48#include <linux/spinlock.h>
49#include <linux/slab.h>
50#include <linux/delay.h>
51#include <linux/list.h>
52#include <linux/pci.h>
53#include <linux/ioport.h>
ea94027b 54#include <linux/notifier.h>
b0defcdb 55#include <linux/mutex.h>
e9a705a0 56#include <linux/kthread.h>
1da177e4 57#include <asm/irq.h>
1da177e4
LT
58#include <linux/interrupt.h>
59#include <linux/rcupdate.h>
60#include <linux/ipmi_smi.h>
61#include <asm/io.h>
62#include "ipmi_si_sm.h"
63#include <linux/init.h>
b224cd3a 64#include <linux/dmi.h>
b361e27b
CM
65#include <linux/string.h>
66#include <linux/ctype.h>
67
dba9b4f6
CM
68#ifdef CONFIG_PPC_OF
69#include <asm/of_device.h>
70#include <asm/of_platform.h>
71#endif
72
b361e27b 73#define PFX "ipmi_si: "
1da177e4
LT
74
75/* Measure times between events in the driver. */
76#undef DEBUG_TIMING
77
78/* Call every 10 ms. */
79#define SI_TIMEOUT_TIME_USEC 10000
80#define SI_USEC_PER_JIFFY (1000000/HZ)
81#define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
82#define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
83 short timeout */
84
ee6cd5f8
CM
85/* Bit for BMC global enables. */
86#define IPMI_BMC_RCV_MSG_INTR 0x01
87#define IPMI_BMC_EVT_MSG_INTR 0x02
88#define IPMI_BMC_EVT_MSG_BUFF 0x04
89#define IPMI_BMC_SYS_LOG 0x08
90
1da177e4
LT
91enum si_intf_state {
92 SI_NORMAL,
93 SI_GETTING_FLAGS,
94 SI_GETTING_EVENTS,
95 SI_CLEARING_FLAGS,
96 SI_CLEARING_FLAGS_THEN_SET_IRQ,
97 SI_GETTING_MESSAGES,
98 SI_ENABLE_INTERRUPTS1,
ee6cd5f8
CM
99 SI_ENABLE_INTERRUPTS2,
100 SI_DISABLE_INTERRUPTS1,
101 SI_DISABLE_INTERRUPTS2
1da177e4
LT
102 /* FIXME - add watchdog stuff. */
103};
104
9dbf68f9
CM
105/* Some BT-specific defines we need here. */
106#define IPMI_BT_INTMASK_REG 2
107#define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
108#define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
109
1da177e4
LT
110enum si_type {
111 SI_KCS, SI_SMIC, SI_BT
112};
b361e27b 113static char *si_to_str[] = { "kcs", "smic", "bt" };
1da177e4 114
50c812b2
CM
115#define DEVICE_NAME "ipmi_si"
116
117static struct device_driver ipmi_driver =
118{
119 .name = DEVICE_NAME,
120 .bus = &platform_bus_type
121};
3ae0e0f9 122
1da177e4
LT
123struct smi_info
124{
a9a2c44f 125 int intf_num;
1da177e4
LT
126 ipmi_smi_t intf;
127 struct si_sm_data *si_sm;
128 struct si_sm_handlers *handlers;
129 enum si_type si_type;
130 spinlock_t si_lock;
131 spinlock_t msg_lock;
132 struct list_head xmit_msgs;
133 struct list_head hp_xmit_msgs;
134 struct ipmi_smi_msg *curr_msg;
135 enum si_intf_state si_state;
136
137 /* Used to handle the various types of I/O that can occur with
138 IPMI */
139 struct si_sm_io io;
140 int (*io_setup)(struct smi_info *info);
141 void (*io_cleanup)(struct smi_info *info);
142 int (*irq_setup)(struct smi_info *info);
143 void (*irq_cleanup)(struct smi_info *info);
144 unsigned int io_size;
b0defcdb
CM
145 char *addr_source; /* ACPI, PCI, SMBIOS, hardcode, default. */
146 void (*addr_source_cleanup)(struct smi_info *info);
147 void *addr_source_data;
1da177e4 148
3ae0e0f9
CM
149 /* Per-OEM handler, called from handle_flags().
150 Returns 1 when handle_flags() needs to be re-run
151 or 0 indicating it set si_state itself.
152 */
153 int (*oem_data_avail_handler)(struct smi_info *smi_info);
154
1da177e4
LT
155 /* Flags from the last GET_MSG_FLAGS command, used when an ATTN
156 is set to hold the flags until we are done handling everything
157 from the flags. */
158#define RECEIVE_MSG_AVAIL 0x01
159#define EVENT_MSG_BUFFER_FULL 0x02
160#define WDT_PRE_TIMEOUT_INT 0x08
3ae0e0f9
CM
161#define OEM0_DATA_AVAIL 0x20
162#define OEM1_DATA_AVAIL 0x40
163#define OEM2_DATA_AVAIL 0x80
164#define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
165 OEM1_DATA_AVAIL | \
166 OEM2_DATA_AVAIL)
1da177e4
LT
167 unsigned char msg_flags;
168
169 /* If set to true, this will request events the next time the
170 state machine is idle. */
171 atomic_t req_events;
172
173 /* If true, run the state machine to completion on every send
174 call. Generally used after a panic to make sure stuff goes
175 out. */
176 int run_to_completion;
177
178 /* The I/O port of an SI interface. */
179 int port;
180
181 /* The space between start addresses of the two ports. For
182 instance, if the first port is 0xca2 and the spacing is 4, then
183 the second port is 0xca6. */
184 unsigned int spacing;
185
186 /* zero if no irq; */
187 int irq;
188
189 /* The timer for this si. */
190 struct timer_list si_timer;
191
192 /* The time (in jiffies) the last timeout occurred at. */
193 unsigned long last_timeout_jiffies;
194
195 /* Used to gracefully stop the timer without race conditions. */
a9a2c44f 196 atomic_t stop_operation;
1da177e4
LT
197
198 /* The driver will disable interrupts when it gets into a
199 situation where it cannot handle messages due to lack of
200 memory. Once that situation clears up, it will re-enable
201 interrupts. */
202 int interrupt_disabled;
203
50c812b2 204 /* From the get device id response... */
3ae0e0f9 205 struct ipmi_device_id device_id;
1da177e4 206
50c812b2
CM
207 /* Driver model stuff. */
208 struct device *dev;
209 struct platform_device *pdev;
210
211 /* True if we allocated the device, false if it came from
212 * someplace else (like PCI). */
213 int dev_registered;
214
1da177e4
LT
215 /* Slave address, could be reported from DMI. */
216 unsigned char slave_addr;
217
218 /* Counters and things for the proc filesystem. */
219 spinlock_t count_lock;
220 unsigned long short_timeouts;
221 unsigned long long_timeouts;
222 unsigned long timeout_restarts;
223 unsigned long idles;
224 unsigned long interrupts;
225 unsigned long attentions;
226 unsigned long flag_fetches;
227 unsigned long hosed_count;
228 unsigned long complete_transactions;
229 unsigned long events;
230 unsigned long watchdog_pretimeouts;
231 unsigned long incoming_messages;
a9a2c44f 232
e9a705a0 233 struct task_struct *thread;
b0defcdb
CM
234
235 struct list_head link;
1da177e4
LT
236};
237
a51f4a81
CM
238#define SI_MAX_PARMS 4
239
240static int force_kipmid[SI_MAX_PARMS];
241static int num_force_kipmid;
242
b361e27b
CM
243static int unload_when_empty = 1;
244
b0defcdb 245static int try_smi_init(struct smi_info *smi);
b361e27b 246static void cleanup_one_si(struct smi_info *to_clean);
b0defcdb 247
e041c683 248static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
ea94027b
CM
249static int register_xaction_notifier(struct notifier_block * nb)
250{
e041c683 251 return atomic_notifier_chain_register(&xaction_notifier_list, nb);
ea94027b
CM
252}
253
1da177e4
LT
254static void deliver_recv_msg(struct smi_info *smi_info,
255 struct ipmi_smi_msg *msg)
256{
257 /* Deliver the message to the upper layer with the lock
258 released. */
259 spin_unlock(&(smi_info->si_lock));
260 ipmi_smi_msg_received(smi_info->intf, msg);
261 spin_lock(&(smi_info->si_lock));
262}
263
4d7cbac7 264static void return_hosed_msg(struct smi_info *smi_info, int cCode)
1da177e4
LT
265{
266 struct ipmi_smi_msg *msg = smi_info->curr_msg;
267
4d7cbac7
CM
268 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
269 cCode = IPMI_ERR_UNSPECIFIED;
270 /* else use it as is */
271
1da177e4
LT
272 /* Make it a reponse */
273 msg->rsp[0] = msg->data[0] | 4;
274 msg->rsp[1] = msg->data[1];
4d7cbac7 275 msg->rsp[2] = cCode;
1da177e4
LT
276 msg->rsp_size = 3;
277
278 smi_info->curr_msg = NULL;
279 deliver_recv_msg(smi_info, msg);
280}
281
282static enum si_sm_result start_next_msg(struct smi_info *smi_info)
283{
284 int rv;
285 struct list_head *entry = NULL;
286#ifdef DEBUG_TIMING
287 struct timeval t;
288#endif
289
290 /* No need to save flags, we aleady have interrupts off and we
291 already hold the SMI lock. */
292 spin_lock(&(smi_info->msg_lock));
293
294 /* Pick the high priority queue first. */
b0defcdb 295 if (!list_empty(&(smi_info->hp_xmit_msgs))) {
1da177e4 296 entry = smi_info->hp_xmit_msgs.next;
b0defcdb 297 } else if (!list_empty(&(smi_info->xmit_msgs))) {
1da177e4
LT
298 entry = smi_info->xmit_msgs.next;
299 }
300
b0defcdb 301 if (!entry) {
1da177e4
LT
302 smi_info->curr_msg = NULL;
303 rv = SI_SM_IDLE;
304 } else {
305 int err;
306
307 list_del(entry);
308 smi_info->curr_msg = list_entry(entry,
309 struct ipmi_smi_msg,
310 link);
311#ifdef DEBUG_TIMING
312 do_gettimeofday(&t);
313 printk("**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
314#endif
e041c683
AS
315 err = atomic_notifier_call_chain(&xaction_notifier_list,
316 0, smi_info);
ea94027b
CM
317 if (err & NOTIFY_STOP_MASK) {
318 rv = SI_SM_CALL_WITHOUT_DELAY;
319 goto out;
320 }
1da177e4
LT
321 err = smi_info->handlers->start_transaction(
322 smi_info->si_sm,
323 smi_info->curr_msg->data,
324 smi_info->curr_msg->data_size);
325 if (err) {
4d7cbac7 326 return_hosed_msg(smi_info, err);
1da177e4
LT
327 }
328
329 rv = SI_SM_CALL_WITHOUT_DELAY;
330 }
ea94027b 331 out:
1da177e4
LT
332 spin_unlock(&(smi_info->msg_lock));
333
334 return rv;
335}
336
337static void start_enable_irq(struct smi_info *smi_info)
338{
339 unsigned char msg[2];
340
341 /* If we are enabling interrupts, we have to tell the
342 BMC to use them. */
343 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
344 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
345
346 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
347 smi_info->si_state = SI_ENABLE_INTERRUPTS1;
348}
349
ee6cd5f8
CM
350static void start_disable_irq(struct smi_info *smi_info)
351{
352 unsigned char msg[2];
353
354 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
355 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
356
357 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
358 smi_info->si_state = SI_DISABLE_INTERRUPTS1;
359}
360
1da177e4
LT
361static void start_clear_flags(struct smi_info *smi_info)
362{
363 unsigned char msg[3];
364
365 /* Make sure the watchdog pre-timeout flag is not set at startup. */
366 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
367 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
368 msg[2] = WDT_PRE_TIMEOUT_INT;
369
370 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
371 smi_info->si_state = SI_CLEARING_FLAGS;
372}
373
374/* When we have a situtaion where we run out of memory and cannot
375 allocate messages, we just leave them in the BMC and run the system
376 polled until we can allocate some memory. Once we have some
377 memory, we will re-enable the interrupt. */
378static inline void disable_si_irq(struct smi_info *smi_info)
379{
b0defcdb 380 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
ee6cd5f8 381 start_disable_irq(smi_info);
1da177e4
LT
382 smi_info->interrupt_disabled = 1;
383 }
384}
385
386static inline void enable_si_irq(struct smi_info *smi_info)
387{
388 if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
ee6cd5f8 389 start_enable_irq(smi_info);
1da177e4
LT
390 smi_info->interrupt_disabled = 0;
391 }
392}
393
394static void handle_flags(struct smi_info *smi_info)
395{
3ae0e0f9 396 retry:
1da177e4
LT
397 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
398 /* Watchdog pre-timeout */
399 spin_lock(&smi_info->count_lock);
400 smi_info->watchdog_pretimeouts++;
401 spin_unlock(&smi_info->count_lock);
402
403 start_clear_flags(smi_info);
404 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
405 spin_unlock(&(smi_info->si_lock));
406 ipmi_smi_watchdog_pretimeout(smi_info->intf);
407 spin_lock(&(smi_info->si_lock));
408 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
409 /* Messages available. */
410 smi_info->curr_msg = ipmi_alloc_smi_msg();
b0defcdb 411 if (!smi_info->curr_msg) {
1da177e4
LT
412 disable_si_irq(smi_info);
413 smi_info->si_state = SI_NORMAL;
414 return;
415 }
416 enable_si_irq(smi_info);
417
418 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
419 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
420 smi_info->curr_msg->data_size = 2;
421
422 smi_info->handlers->start_transaction(
423 smi_info->si_sm,
424 smi_info->curr_msg->data,
425 smi_info->curr_msg->data_size);
426 smi_info->si_state = SI_GETTING_MESSAGES;
427 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
428 /* Events available. */
429 smi_info->curr_msg = ipmi_alloc_smi_msg();
b0defcdb 430 if (!smi_info->curr_msg) {
1da177e4
LT
431 disable_si_irq(smi_info);
432 smi_info->si_state = SI_NORMAL;
433 return;
434 }
435 enable_si_irq(smi_info);
436
437 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
438 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
439 smi_info->curr_msg->data_size = 2;
440
441 smi_info->handlers->start_transaction(
442 smi_info->si_sm,
443 smi_info->curr_msg->data,
444 smi_info->curr_msg->data_size);
445 smi_info->si_state = SI_GETTING_EVENTS;
4064d5ef
CM
446 } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
447 smi_info->oem_data_avail_handler) {
448 if (smi_info->oem_data_avail_handler(smi_info))
449 goto retry;
1da177e4
LT
450 } else {
451 smi_info->si_state = SI_NORMAL;
452 }
453}
454
455static void handle_transaction_done(struct smi_info *smi_info)
456{
457 struct ipmi_smi_msg *msg;
458#ifdef DEBUG_TIMING
459 struct timeval t;
460
461 do_gettimeofday(&t);
462 printk("**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
463#endif
464 switch (smi_info->si_state) {
465 case SI_NORMAL:
b0defcdb 466 if (!smi_info->curr_msg)
1da177e4
LT
467 break;
468
469 smi_info->curr_msg->rsp_size
470 = smi_info->handlers->get_result(
471 smi_info->si_sm,
472 smi_info->curr_msg->rsp,
473 IPMI_MAX_MSG_LENGTH);
474
475 /* Do this here becase deliver_recv_msg() releases the
476 lock, and a new message can be put in during the
477 time the lock is released. */
478 msg = smi_info->curr_msg;
479 smi_info->curr_msg = NULL;
480 deliver_recv_msg(smi_info, msg);
481 break;
482
483 case SI_GETTING_FLAGS:
484 {
485 unsigned char msg[4];
486 unsigned int len;
487
488 /* We got the flags from the SMI, now handle them. */
489 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
490 if (msg[2] != 0) {
491 /* Error fetching flags, just give up for
492 now. */
493 smi_info->si_state = SI_NORMAL;
494 } else if (len < 4) {
495 /* Hmm, no flags. That's technically illegal, but
496 don't use uninitialized data. */
497 smi_info->si_state = SI_NORMAL;
498 } else {
499 smi_info->msg_flags = msg[3];
500 handle_flags(smi_info);
501 }
502 break;
503 }
504
505 case SI_CLEARING_FLAGS:
506 case SI_CLEARING_FLAGS_THEN_SET_IRQ:
507 {
508 unsigned char msg[3];
509
510 /* We cleared the flags. */
511 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
512 if (msg[2] != 0) {
513 /* Error clearing flags */
514 printk(KERN_WARNING
515 "ipmi_si: Error clearing flags: %2.2x\n",
516 msg[2]);
517 }
518 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
519 start_enable_irq(smi_info);
520 else
521 smi_info->si_state = SI_NORMAL;
522 break;
523 }
524
525 case SI_GETTING_EVENTS:
526 {
527 smi_info->curr_msg->rsp_size
528 = smi_info->handlers->get_result(
529 smi_info->si_sm,
530 smi_info->curr_msg->rsp,
531 IPMI_MAX_MSG_LENGTH);
532
533 /* Do this here becase deliver_recv_msg() releases the
534 lock, and a new message can be put in during the
535 time the lock is released. */
536 msg = smi_info->curr_msg;
537 smi_info->curr_msg = NULL;
538 if (msg->rsp[2] != 0) {
539 /* Error getting event, probably done. */
540 msg->done(msg);
541
542 /* Take off the event flag. */
543 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
544 handle_flags(smi_info);
545 } else {
546 spin_lock(&smi_info->count_lock);
547 smi_info->events++;
548 spin_unlock(&smi_info->count_lock);
549
550 /* Do this before we deliver the message
551 because delivering the message releases the
552 lock and something else can mess with the
553 state. */
554 handle_flags(smi_info);
555
556 deliver_recv_msg(smi_info, msg);
557 }
558 break;
559 }
560
561 case SI_GETTING_MESSAGES:
562 {
563 smi_info->curr_msg->rsp_size
564 = smi_info->handlers->get_result(
565 smi_info->si_sm,
566 smi_info->curr_msg->rsp,
567 IPMI_MAX_MSG_LENGTH);
568
569 /* Do this here becase deliver_recv_msg() releases the
570 lock, and a new message can be put in during the
571 time the lock is released. */
572 msg = smi_info->curr_msg;
573 smi_info->curr_msg = NULL;
574 if (msg->rsp[2] != 0) {
575 /* Error getting event, probably done. */
576 msg->done(msg);
577
578 /* Take off the msg flag. */
579 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
580 handle_flags(smi_info);
581 } else {
582 spin_lock(&smi_info->count_lock);
583 smi_info->incoming_messages++;
584 spin_unlock(&smi_info->count_lock);
585
586 /* Do this before we deliver the message
587 because delivering the message releases the
588 lock and something else can mess with the
589 state. */
590 handle_flags(smi_info);
591
592 deliver_recv_msg(smi_info, msg);
593 }
594 break;
595 }
596
597 case SI_ENABLE_INTERRUPTS1:
598 {
599 unsigned char msg[4];
600
601 /* We got the flags from the SMI, now handle them. */
602 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
603 if (msg[2] != 0) {
604 printk(KERN_WARNING
605 "ipmi_si: Could not enable interrupts"
606 ", failed get, using polled mode.\n");
607 smi_info->si_state = SI_NORMAL;
608 } else {
609 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
610 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
ee6cd5f8
CM
611 msg[2] = (msg[3] |
612 IPMI_BMC_RCV_MSG_INTR |
613 IPMI_BMC_EVT_MSG_INTR);
1da177e4
LT
614 smi_info->handlers->start_transaction(
615 smi_info->si_sm, msg, 3);
616 smi_info->si_state = SI_ENABLE_INTERRUPTS2;
617 }
618 break;
619 }
620
621 case SI_ENABLE_INTERRUPTS2:
622 {
623 unsigned char msg[4];
624
625 /* We got the flags from the SMI, now handle them. */
626 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
627 if (msg[2] != 0) {
628 printk(KERN_WARNING
629 "ipmi_si: Could not enable interrupts"
630 ", failed set, using polled mode.\n");
631 }
632 smi_info->si_state = SI_NORMAL;
633 break;
634 }
ee6cd5f8
CM
635
636 case SI_DISABLE_INTERRUPTS1:
637 {
638 unsigned char msg[4];
639
640 /* We got the flags from the SMI, now handle them. */
641 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
642 if (msg[2] != 0) {
643 printk(KERN_WARNING
644 "ipmi_si: Could not disable interrupts"
645 ", failed get.\n");
646 smi_info->si_state = SI_NORMAL;
647 } else {
648 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
649 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
650 msg[2] = (msg[3] &
651 ~(IPMI_BMC_RCV_MSG_INTR |
652 IPMI_BMC_EVT_MSG_INTR));
653 smi_info->handlers->start_transaction(
654 smi_info->si_sm, msg, 3);
655 smi_info->si_state = SI_DISABLE_INTERRUPTS2;
656 }
657 break;
658 }
659
660 case SI_DISABLE_INTERRUPTS2:
661 {
662 unsigned char msg[4];
663
664 /* We got the flags from the SMI, now handle them. */
665 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
666 if (msg[2] != 0) {
667 printk(KERN_WARNING
668 "ipmi_si: Could not disable interrupts"
669 ", failed set.\n");
670 }
671 smi_info->si_state = SI_NORMAL;
672 break;
673 }
1da177e4
LT
674 }
675}
676
677/* Called on timeouts and events. Timeouts should pass the elapsed
678 time, interrupts should pass in zero. */
679static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
680 int time)
681{
682 enum si_sm_result si_sm_result;
683
684 restart:
685 /* There used to be a loop here that waited a little while
686 (around 25us) before giving up. That turned out to be
687 pointless, the minimum delays I was seeing were in the 300us
688 range, which is far too long to wait in an interrupt. So
689 we just run until the state machine tells us something
690 happened or it needs a delay. */
691 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
692 time = 0;
693 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
694 {
695 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
696 }
697
698 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE)
699 {
700 spin_lock(&smi_info->count_lock);
701 smi_info->complete_transactions++;
702 spin_unlock(&smi_info->count_lock);
703
704 handle_transaction_done(smi_info);
705 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
706 }
707 else if (si_sm_result == SI_SM_HOSED)
708 {
709 spin_lock(&smi_info->count_lock);
710 smi_info->hosed_count++;
711 spin_unlock(&smi_info->count_lock);
712
713 /* Do the before return_hosed_msg, because that
714 releases the lock. */
715 smi_info->si_state = SI_NORMAL;
716 if (smi_info->curr_msg != NULL) {
717 /* If we were handling a user message, format
718 a response to send to the upper layer to
719 tell it about the error. */
4d7cbac7 720 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
1da177e4
LT
721 }
722 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
723 }
724
725 /* We prefer handling attn over new messages. */
726 if (si_sm_result == SI_SM_ATTN)
727 {
728 unsigned char msg[2];
729
730 spin_lock(&smi_info->count_lock);
731 smi_info->attentions++;
732 spin_unlock(&smi_info->count_lock);
733
734 /* Got a attn, send down a get message flags to see
735 what's causing it. It would be better to handle
736 this in the upper layer, but due to the way
737 interrupts work with the SMI, that's not really
738 possible. */
739 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
740 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
741
742 smi_info->handlers->start_transaction(
743 smi_info->si_sm, msg, 2);
744 smi_info->si_state = SI_GETTING_FLAGS;
745 goto restart;
746 }
747
748 /* If we are currently idle, try to start the next message. */
749 if (si_sm_result == SI_SM_IDLE) {
750 spin_lock(&smi_info->count_lock);
751 smi_info->idles++;
752 spin_unlock(&smi_info->count_lock);
753
754 si_sm_result = start_next_msg(smi_info);
755 if (si_sm_result != SI_SM_IDLE)
756 goto restart;
757 }
758
759 if ((si_sm_result == SI_SM_IDLE)
760 && (atomic_read(&smi_info->req_events)))
761 {
762 /* We are idle and the upper layer requested that I fetch
763 events, so do so. */
55162fb1 764 atomic_set(&smi_info->req_events, 0);
1da177e4 765
55162fb1
CM
766 smi_info->curr_msg = ipmi_alloc_smi_msg();
767 if (!smi_info->curr_msg)
768 goto out;
1da177e4 769
55162fb1
CM
770 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
771 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
772 smi_info->curr_msg->data_size = 2;
1da177e4
LT
773
774 smi_info->handlers->start_transaction(
55162fb1
CM
775 smi_info->si_sm,
776 smi_info->curr_msg->data,
777 smi_info->curr_msg->data_size);
778 smi_info->si_state = SI_GETTING_EVENTS;
1da177e4
LT
779 goto restart;
780 }
55162fb1 781 out:
1da177e4
LT
782 return si_sm_result;
783}
784
785static void sender(void *send_info,
786 struct ipmi_smi_msg *msg,
787 int priority)
788{
789 struct smi_info *smi_info = send_info;
790 enum si_sm_result result;
791 unsigned long flags;
792#ifdef DEBUG_TIMING
793 struct timeval t;
794#endif
795
b361e27b
CM
796 if (atomic_read(&smi_info->stop_operation)) {
797 msg->rsp[0] = msg->data[0] | 4;
798 msg->rsp[1] = msg->data[1];
799 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
800 msg->rsp_size = 3;
801 deliver_recv_msg(smi_info, msg);
802 return;
803 }
804
1da177e4
LT
805 spin_lock_irqsave(&(smi_info->msg_lock), flags);
806#ifdef DEBUG_TIMING
807 do_gettimeofday(&t);
808 printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
809#endif
810
811 if (smi_info->run_to_completion) {
812 /* If we are running to completion, then throw it in
813 the list and run transactions until everything is
814 clear. Priority doesn't matter here. */
815 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
816
817 /* We have to release the msg lock and claim the smi
818 lock in this case, because of race conditions. */
819 spin_unlock_irqrestore(&(smi_info->msg_lock), flags);
820
821 spin_lock_irqsave(&(smi_info->si_lock), flags);
822 result = smi_event_handler(smi_info, 0);
823 while (result != SI_SM_IDLE) {
824 udelay(SI_SHORT_TIMEOUT_USEC);
825 result = smi_event_handler(smi_info,
826 SI_SHORT_TIMEOUT_USEC);
827 }
828 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
829 return;
830 } else {
831 if (priority > 0) {
832 list_add_tail(&(msg->link), &(smi_info->hp_xmit_msgs));
833 } else {
834 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
835 }
836 }
837 spin_unlock_irqrestore(&(smi_info->msg_lock), flags);
838
839 spin_lock_irqsave(&(smi_info->si_lock), flags);
840 if ((smi_info->si_state == SI_NORMAL)
841 && (smi_info->curr_msg == NULL))
842 {
843 start_next_msg(smi_info);
1da177e4
LT
844 }
845 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
846}
847
848static void set_run_to_completion(void *send_info, int i_run_to_completion)
849{
850 struct smi_info *smi_info = send_info;
851 enum si_sm_result result;
852 unsigned long flags;
853
854 spin_lock_irqsave(&(smi_info->si_lock), flags);
855
856 smi_info->run_to_completion = i_run_to_completion;
857 if (i_run_to_completion) {
858 result = smi_event_handler(smi_info, 0);
859 while (result != SI_SM_IDLE) {
860 udelay(SI_SHORT_TIMEOUT_USEC);
861 result = smi_event_handler(smi_info,
862 SI_SHORT_TIMEOUT_USEC);
863 }
864 }
865
866 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
867}
868
a9a2c44f
CM
869static int ipmi_thread(void *data)
870{
871 struct smi_info *smi_info = data;
e9a705a0 872 unsigned long flags;
a9a2c44f
CM
873 enum si_sm_result smi_result;
874
a9a2c44f 875 set_user_nice(current, 19);
e9a705a0 876 while (!kthread_should_stop()) {
a9a2c44f 877 spin_lock_irqsave(&(smi_info->si_lock), flags);
8a3628d5 878 smi_result = smi_event_handler(smi_info, 0);
a9a2c44f 879 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
e9a705a0
MD
880 if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
881 /* do nothing */
a9a2c44f 882 }
e9a705a0 883 else if (smi_result == SI_SM_CALL_WITH_DELAY)
33979734 884 schedule();
e9a705a0
MD
885 else
886 schedule_timeout_interruptible(1);
a9a2c44f 887 }
a9a2c44f
CM
888 return 0;
889}
890
891
1da177e4
LT
892static void poll(void *send_info)
893{
894 struct smi_info *smi_info = send_info;
895
15c62e10
CM
896 /*
897 * Make sure there is some delay in the poll loop so we can
898 * drive time forward and timeout things.
899 */
900 udelay(10);
901 smi_event_handler(smi_info, 10);
1da177e4
LT
902}
903
904static void request_events(void *send_info)
905{
906 struct smi_info *smi_info = send_info;
907
b361e27b
CM
908 if (atomic_read(&smi_info->stop_operation))
909 return;
910
1da177e4
LT
911 atomic_set(&smi_info->req_events, 1);
912}
913
0c8204b3 914static int initialized;
1da177e4 915
1da177e4
LT
916static void smi_timeout(unsigned long data)
917{
918 struct smi_info *smi_info = (struct smi_info *) data;
919 enum si_sm_result smi_result;
920 unsigned long flags;
921 unsigned long jiffies_now;
c4edff1c 922 long time_diff;
1da177e4
LT
923#ifdef DEBUG_TIMING
924 struct timeval t;
925#endif
926
1da177e4
LT
927 spin_lock_irqsave(&(smi_info->si_lock), flags);
928#ifdef DEBUG_TIMING
929 do_gettimeofday(&t);
930 printk("**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
931#endif
932 jiffies_now = jiffies;
c4edff1c 933 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1da177e4
LT
934 * SI_USEC_PER_JIFFY);
935 smi_result = smi_event_handler(smi_info, time_diff);
936
937 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
938
939 smi_info->last_timeout_jiffies = jiffies_now;
940
b0defcdb 941 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1da177e4
LT
942 /* Running with interrupts, only do long timeouts. */
943 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
944 spin_lock_irqsave(&smi_info->count_lock, flags);
945 smi_info->long_timeouts++;
946 spin_unlock_irqrestore(&smi_info->count_lock, flags);
947 goto do_add_timer;
948 }
949
950 /* If the state machine asks for a short delay, then shorten
951 the timer timeout. */
952 if (smi_result == SI_SM_CALL_WITH_DELAY) {
953 spin_lock_irqsave(&smi_info->count_lock, flags);
954 smi_info->short_timeouts++;
955 spin_unlock_irqrestore(&smi_info->count_lock, flags);
1da177e4 956 smi_info->si_timer.expires = jiffies + 1;
1da177e4
LT
957 } else {
958 spin_lock_irqsave(&smi_info->count_lock, flags);
959 smi_info->long_timeouts++;
960 spin_unlock_irqrestore(&smi_info->count_lock, flags);
961 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
1da177e4
LT
962 }
963
964 do_add_timer:
965 add_timer(&(smi_info->si_timer));
966}
967
7d12e780 968static irqreturn_t si_irq_handler(int irq, void *data)
1da177e4
LT
969{
970 struct smi_info *smi_info = data;
971 unsigned long flags;
972#ifdef DEBUG_TIMING
973 struct timeval t;
974#endif
975
976 spin_lock_irqsave(&(smi_info->si_lock), flags);
977
978 spin_lock(&smi_info->count_lock);
979 smi_info->interrupts++;
980 spin_unlock(&smi_info->count_lock);
981
1da177e4
LT
982#ifdef DEBUG_TIMING
983 do_gettimeofday(&t);
984 printk("**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
985#endif
986 smi_event_handler(smi_info, 0);
1da177e4
LT
987 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
988 return IRQ_HANDLED;
989}
990
7d12e780 991static irqreturn_t si_bt_irq_handler(int irq, void *data)
9dbf68f9
CM
992{
993 struct smi_info *smi_info = data;
994 /* We need to clear the IRQ flag for the BT interface. */
995 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
996 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
997 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
7d12e780 998 return si_irq_handler(irq, data);
9dbf68f9
CM
999}
1000
453823ba
CM
1001static int smi_start_processing(void *send_info,
1002 ipmi_smi_t intf)
1003{
1004 struct smi_info *new_smi = send_info;
a51f4a81 1005 int enable = 0;
453823ba
CM
1006
1007 new_smi->intf = intf;
1008
c45adc39
CM
1009 /* Try to claim any interrupts. */
1010 if (new_smi->irq_setup)
1011 new_smi->irq_setup(new_smi);
1012
453823ba
CM
1013 /* Set up the timer that drives the interface. */
1014 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1015 new_smi->last_timeout_jiffies = jiffies;
1016 mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1017
a51f4a81
CM
1018 /*
1019 * Check if the user forcefully enabled the daemon.
1020 */
1021 if (new_smi->intf_num < num_force_kipmid)
1022 enable = force_kipmid[new_smi->intf_num];
df3fe8de
CM
1023 /*
1024 * The BT interface is efficient enough to not need a thread,
1025 * and there is no need for a thread if we have interrupts.
1026 */
a51f4a81
CM
1027 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1028 enable = 1;
1029
1030 if (enable) {
453823ba
CM
1031 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1032 "kipmi%d", new_smi->intf_num);
1033 if (IS_ERR(new_smi->thread)) {
1034 printk(KERN_NOTICE "ipmi_si_intf: Could not start"
1035 " kernel thread due to error %ld, only using"
1036 " timers to drive the interface\n",
1037 PTR_ERR(new_smi->thread));
1038 new_smi->thread = NULL;
1039 }
1040 }
1041
1042 return 0;
1043}
9dbf68f9 1044
b9675136
CM
1045static void set_maintenance_mode(void *send_info, int enable)
1046{
1047 struct smi_info *smi_info = send_info;
1048
1049 if (!enable)
1050 atomic_set(&smi_info->req_events, 0);
1051}
1052
1da177e4
LT
1053static struct ipmi_smi_handlers handlers =
1054{
1055 .owner = THIS_MODULE,
453823ba 1056 .start_processing = smi_start_processing,
1da177e4
LT
1057 .sender = sender,
1058 .request_events = request_events,
b9675136 1059 .set_maintenance_mode = set_maintenance_mode,
1da177e4
LT
1060 .set_run_to_completion = set_run_to_completion,
1061 .poll = poll,
1062};
1063
1064/* There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1065 a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS */
1066
b0defcdb 1067static LIST_HEAD(smi_infos);
d6dfd131 1068static DEFINE_MUTEX(smi_infos_lock);
b0defcdb 1069static int smi_num; /* Used to sequence the SMIs */
1da177e4 1070
1da177e4 1071#define DEFAULT_REGSPACING 1
dba9b4f6 1072#define DEFAULT_REGSIZE 1
1da177e4
LT
1073
1074static int si_trydefaults = 1;
1075static char *si_type[SI_MAX_PARMS];
1076#define MAX_SI_TYPE_STR 30
1077static char si_type_str[MAX_SI_TYPE_STR];
1078static unsigned long addrs[SI_MAX_PARMS];
64a6f950 1079static unsigned int num_addrs;
1da177e4 1080static unsigned int ports[SI_MAX_PARMS];
64a6f950 1081static unsigned int num_ports;
1da177e4 1082static int irqs[SI_MAX_PARMS];
64a6f950 1083static unsigned int num_irqs;
1da177e4 1084static int regspacings[SI_MAX_PARMS];
64a6f950 1085static unsigned int num_regspacings;
1da177e4 1086static int regsizes[SI_MAX_PARMS];
64a6f950 1087static unsigned int num_regsizes;
1da177e4 1088static int regshifts[SI_MAX_PARMS];
64a6f950 1089static unsigned int num_regshifts;
1da177e4 1090static int slave_addrs[SI_MAX_PARMS];
64a6f950 1091static unsigned int num_slave_addrs;
1da177e4 1092
b361e27b
CM
1093#define IPMI_IO_ADDR_SPACE 0
1094#define IPMI_MEM_ADDR_SPACE 1
1d5636cc 1095static char *addr_space_to_str[] = { "i/o", "mem" };
b361e27b
CM
1096
1097static int hotmod_handler(const char *val, struct kernel_param *kp);
1098
1099module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1100MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See"
1101 " Documentation/IPMI.txt in the kernel sources for the"
1102 " gory details.");
1da177e4
LT
1103
1104module_param_named(trydefaults, si_trydefaults, bool, 0);
1105MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1106 " default scan of the KCS and SMIC interface at the standard"
1107 " address");
1108module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1109MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1110 " interface separated by commas. The types are 'kcs',"
1111 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
1112 " the first interface to kcs and the second to bt");
64a6f950 1113module_param_array(addrs, ulong, &num_addrs, 0);
1da177e4
LT
1114MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1115 " addresses separated by commas. Only use if an interface"
1116 " is in memory. Otherwise, set it to zero or leave"
1117 " it blank.");
64a6f950 1118module_param_array(ports, uint, &num_ports, 0);
1da177e4
LT
1119MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1120 " addresses separated by commas. Only use if an interface"
1121 " is a port. Otherwise, set it to zero or leave"
1122 " it blank.");
1123module_param_array(irqs, int, &num_irqs, 0);
1124MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1125 " addresses separated by commas. Only use if an interface"
1126 " has an interrupt. Otherwise, set it to zero or leave"
1127 " it blank.");
1128module_param_array(regspacings, int, &num_regspacings, 0);
1129MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1130 " and each successive register used by the interface. For"
1131 " instance, if the start address is 0xca2 and the spacing"
1132 " is 2, then the second address is at 0xca4. Defaults"
1133 " to 1.");
1134module_param_array(regsizes, int, &num_regsizes, 0);
1135MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1136 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1137 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1138 " the 8-bit IPMI register has to be read from a larger"
1139 " register.");
1140module_param_array(regshifts, int, &num_regshifts, 0);
1141MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1142 " IPMI register, in bits. For instance, if the data"
1143 " is read from a 32-bit word and the IPMI data is in"
1144 " bit 8-15, then the shift would be 8");
1145module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1146MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1147 " the controller. Normally this is 0x20, but can be"
1148 " overridden by this parm. This is an array indexed"
1149 " by interface number.");
a51f4a81
CM
1150module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1151MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1152 " disabled(0). Normally the IPMI driver auto-detects"
1153 " this, but the value may be overridden by this parm.");
b361e27b
CM
1154module_param(unload_when_empty, int, 0);
1155MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1156 " specified or found, default is 1. Setting to 0"
1157 " is useful for hot add of devices using hotmod.");
1da177e4
LT
1158
1159
b0defcdb 1160static void std_irq_cleanup(struct smi_info *info)
1da177e4 1161{
b0defcdb
CM
1162 if (info->si_type == SI_BT)
1163 /* Disable the interrupt in the BT interface. */
1164 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1165 free_irq(info->irq, info);
1da177e4 1166}
1da177e4
LT
1167
1168static int std_irq_setup(struct smi_info *info)
1169{
1170 int rv;
1171
b0defcdb 1172 if (!info->irq)
1da177e4
LT
1173 return 0;
1174
9dbf68f9
CM
1175 if (info->si_type == SI_BT) {
1176 rv = request_irq(info->irq,
1177 si_bt_irq_handler,
ee6cd5f8 1178 IRQF_SHARED | IRQF_DISABLED,
9dbf68f9
CM
1179 DEVICE_NAME,
1180 info);
b0defcdb 1181 if (!rv)
9dbf68f9
CM
1182 /* Enable the interrupt in the BT interface. */
1183 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1184 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1185 } else
1186 rv = request_irq(info->irq,
1187 si_irq_handler,
ee6cd5f8 1188 IRQF_SHARED | IRQF_DISABLED,
9dbf68f9
CM
1189 DEVICE_NAME,
1190 info);
1da177e4
LT
1191 if (rv) {
1192 printk(KERN_WARNING
1193 "ipmi_si: %s unable to claim interrupt %d,"
1194 " running polled\n",
1195 DEVICE_NAME, info->irq);
1196 info->irq = 0;
1197 } else {
b0defcdb 1198 info->irq_cleanup = std_irq_cleanup;
1da177e4
LT
1199 printk(" Using irq %d\n", info->irq);
1200 }
1201
1202 return rv;
1203}
1204
1da177e4
LT
1205static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1206{
b0defcdb 1207 unsigned int addr = io->addr_data;
1da177e4 1208
b0defcdb 1209 return inb(addr + (offset * io->regspacing));
1da177e4
LT
1210}
1211
1212static void port_outb(struct si_sm_io *io, unsigned int offset,
1213 unsigned char b)
1214{
b0defcdb 1215 unsigned int addr = io->addr_data;
1da177e4 1216
b0defcdb 1217 outb(b, addr + (offset * io->regspacing));
1da177e4
LT
1218}
1219
1220static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1221{
b0defcdb 1222 unsigned int addr = io->addr_data;
1da177e4 1223
b0defcdb 1224 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1da177e4
LT
1225}
1226
1227static void port_outw(struct si_sm_io *io, unsigned int offset,
1228 unsigned char b)
1229{
b0defcdb 1230 unsigned int addr = io->addr_data;
1da177e4 1231
b0defcdb 1232 outw(b << io->regshift, addr + (offset * io->regspacing));
1da177e4
LT
1233}
1234
1235static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1236{
b0defcdb 1237 unsigned int addr = io->addr_data;
1da177e4 1238
b0defcdb 1239 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1da177e4
LT
1240}
1241
1242static void port_outl(struct si_sm_io *io, unsigned int offset,
1243 unsigned char b)
1244{
b0defcdb 1245 unsigned int addr = io->addr_data;
1da177e4 1246
b0defcdb 1247 outl(b << io->regshift, addr+(offset * io->regspacing));
1da177e4
LT
1248}
1249
1250static void port_cleanup(struct smi_info *info)
1251{
b0defcdb 1252 unsigned int addr = info->io.addr_data;
d61a3ead 1253 int idx;
1da177e4 1254
b0defcdb 1255 if (addr) {
d61a3ead
CM
1256 for (idx = 0; idx < info->io_size; idx++) {
1257 release_region(addr + idx * info->io.regspacing,
1258 info->io.regsize);
1259 }
1da177e4 1260 }
1da177e4
LT
1261}
1262
1263static int port_setup(struct smi_info *info)
1264{
b0defcdb 1265 unsigned int addr = info->io.addr_data;
d61a3ead 1266 int idx;
1da177e4 1267
b0defcdb 1268 if (!addr)
1da177e4
LT
1269 return -ENODEV;
1270
1271 info->io_cleanup = port_cleanup;
1272
1273 /* Figure out the actual inb/inw/inl/etc routine to use based
1274 upon the register size. */
1275 switch (info->io.regsize) {
1276 case 1:
1277 info->io.inputb = port_inb;
1278 info->io.outputb = port_outb;
1279 break;
1280 case 2:
1281 info->io.inputb = port_inw;
1282 info->io.outputb = port_outw;
1283 break;
1284 case 4:
1285 info->io.inputb = port_inl;
1286 info->io.outputb = port_outl;
1287 break;
1288 default:
1289 printk("ipmi_si: Invalid register size: %d\n",
1290 info->io.regsize);
1291 return -EINVAL;
1292 }
1293
d61a3ead
CM
1294 /* Some BIOSes reserve disjoint I/O regions in their ACPI
1295 * tables. This causes problems when trying to register the
1296 * entire I/O region. Therefore we must register each I/O
1297 * port separately.
1298 */
1299 for (idx = 0; idx < info->io_size; idx++) {
1300 if (request_region(addr + idx * info->io.regspacing,
1301 info->io.regsize, DEVICE_NAME) == NULL) {
1302 /* Undo allocations */
1303 while (idx--) {
1304 release_region(addr + idx * info->io.regspacing,
1305 info->io.regsize);
1306 }
1307 return -EIO;
1308 }
1309 }
1da177e4
LT
1310 return 0;
1311}
1312
546cfdf4 1313static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1da177e4
LT
1314{
1315 return readb((io->addr)+(offset * io->regspacing));
1316}
1317
546cfdf4 1318static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1da177e4
LT
1319 unsigned char b)
1320{
1321 writeb(b, (io->addr)+(offset * io->regspacing));
1322}
1323
546cfdf4 1324static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1da177e4
LT
1325{
1326 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
64d9fe69 1327 & 0xff;
1da177e4
LT
1328}
1329
546cfdf4 1330static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1da177e4
LT
1331 unsigned char b)
1332{
1333 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1334}
1335
546cfdf4 1336static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1da177e4
LT
1337{
1338 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
64d9fe69 1339 & 0xff;
1da177e4
LT
1340}
1341
546cfdf4 1342static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1da177e4
LT
1343 unsigned char b)
1344{
1345 writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1346}
1347
1348#ifdef readq
1349static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1350{
1351 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
64d9fe69 1352 & 0xff;
1da177e4
LT
1353}
1354
1355static void mem_outq(struct si_sm_io *io, unsigned int offset,
1356 unsigned char b)
1357{
1358 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1359}
1360#endif
1361
1362static void mem_cleanup(struct smi_info *info)
1363{
b0defcdb 1364 unsigned long addr = info->io.addr_data;
1da177e4
LT
1365 int mapsize;
1366
1367 if (info->io.addr) {
1368 iounmap(info->io.addr);
1369
1370 mapsize = ((info->io_size * info->io.regspacing)
1371 - (info->io.regspacing - info->io.regsize));
1372
b0defcdb 1373 release_mem_region(addr, mapsize);
1da177e4 1374 }
1da177e4
LT
1375}
1376
1377static int mem_setup(struct smi_info *info)
1378{
b0defcdb 1379 unsigned long addr = info->io.addr_data;
1da177e4
LT
1380 int mapsize;
1381
b0defcdb 1382 if (!addr)
1da177e4
LT
1383 return -ENODEV;
1384
1385 info->io_cleanup = mem_cleanup;
1386
1387 /* Figure out the actual readb/readw/readl/etc routine to use based
1388 upon the register size. */
1389 switch (info->io.regsize) {
1390 case 1:
546cfdf4
AD
1391 info->io.inputb = intf_mem_inb;
1392 info->io.outputb = intf_mem_outb;
1da177e4
LT
1393 break;
1394 case 2:
546cfdf4
AD
1395 info->io.inputb = intf_mem_inw;
1396 info->io.outputb = intf_mem_outw;
1da177e4
LT
1397 break;
1398 case 4:
546cfdf4
AD
1399 info->io.inputb = intf_mem_inl;
1400 info->io.outputb = intf_mem_outl;
1da177e4
LT
1401 break;
1402#ifdef readq
1403 case 8:
1404 info->io.inputb = mem_inq;
1405 info->io.outputb = mem_outq;
1406 break;
1407#endif
1408 default:
1409 printk("ipmi_si: Invalid register size: %d\n",
1410 info->io.regsize);
1411 return -EINVAL;
1412 }
1413
1414 /* Calculate the total amount of memory to claim. This is an
1415 * unusual looking calculation, but it avoids claiming any
1416 * more memory than it has to. It will claim everything
1417 * between the first address to the end of the last full
1418 * register. */
1419 mapsize = ((info->io_size * info->io.regspacing)
1420 - (info->io.regspacing - info->io.regsize));
1421
b0defcdb 1422 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1da177e4
LT
1423 return -EIO;
1424
b0defcdb 1425 info->io.addr = ioremap(addr, mapsize);
1da177e4 1426 if (info->io.addr == NULL) {
b0defcdb 1427 release_mem_region(addr, mapsize);
1da177e4
LT
1428 return -EIO;
1429 }
1430 return 0;
1431}
1432
b361e27b
CM
1433/*
1434 * Parms come in as <op1>[:op2[:op3...]]. ops are:
1435 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1436 * Options are:
1437 * rsp=<regspacing>
1438 * rsi=<regsize>
1439 * rsh=<regshift>
1440 * irq=<irq>
1441 * ipmb=<ipmb addr>
1442 */
1443enum hotmod_op { HM_ADD, HM_REMOVE };
1444struct hotmod_vals {
1445 char *name;
1446 int val;
1447};
1448static struct hotmod_vals hotmod_ops[] = {
1449 { "add", HM_ADD },
1450 { "remove", HM_REMOVE },
1451 { NULL }
1452};
1453static struct hotmod_vals hotmod_si[] = {
1454 { "kcs", SI_KCS },
1455 { "smic", SI_SMIC },
1456 { "bt", SI_BT },
1457 { NULL }
1458};
1459static struct hotmod_vals hotmod_as[] = {
1460 { "mem", IPMI_MEM_ADDR_SPACE },
1461 { "i/o", IPMI_IO_ADDR_SPACE },
1462 { NULL }
1463};
1d5636cc 1464
b361e27b
CM
1465static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1466{
1467 char *s;
1468 int i;
1469
1470 s = strchr(*curr, ',');
1471 if (!s) {
1472 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1473 return -EINVAL;
1474 }
1475 *s = '\0';
1476 s++;
1477 for (i = 0; hotmod_ops[i].name; i++) {
1d5636cc 1478 if (strcmp(*curr, v[i].name) == 0) {
b361e27b
CM
1479 *val = v[i].val;
1480 *curr = s;
1481 return 0;
1482 }
1483 }
1484
1485 printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1486 return -EINVAL;
1487}
1488
1d5636cc
CM
1489static int check_hotmod_int_op(const char *curr, const char *option,
1490 const char *name, int *val)
1491{
1492 char *n;
1493
1494 if (strcmp(curr, name) == 0) {
1495 if (!option) {
1496 printk(KERN_WARNING PFX
1497 "No option given for '%s'\n",
1498 curr);
1499 return -EINVAL;
1500 }
1501 *val = simple_strtoul(option, &n, 0);
1502 if ((*n != '\0') || (*option == '\0')) {
1503 printk(KERN_WARNING PFX
1504 "Bad option given for '%s'\n",
1505 curr);
1506 return -EINVAL;
1507 }
1508 return 1;
1509 }
1510 return 0;
1511}
1512
b361e27b
CM
1513static int hotmod_handler(const char *val, struct kernel_param *kp)
1514{
1515 char *str = kstrdup(val, GFP_KERNEL);
1d5636cc 1516 int rv;
b361e27b
CM
1517 char *next, *curr, *s, *n, *o;
1518 enum hotmod_op op;
1519 enum si_type si_type;
1520 int addr_space;
1521 unsigned long addr;
1522 int regspacing;
1523 int regsize;
1524 int regshift;
1525 int irq;
1526 int ipmb;
1527 int ival;
1d5636cc 1528 int len;
b361e27b
CM
1529 struct smi_info *info;
1530
1531 if (!str)
1532 return -ENOMEM;
1533
1534 /* Kill any trailing spaces, as we can get a "\n" from echo. */
1d5636cc
CM
1535 len = strlen(str);
1536 ival = len - 1;
b361e27b
CM
1537 while ((ival >= 0) && isspace(str[ival])) {
1538 str[ival] = '\0';
1539 ival--;
1540 }
1541
1542 for (curr = str; curr; curr = next) {
1543 regspacing = 1;
1544 regsize = 1;
1545 regshift = 0;
1546 irq = 0;
1547 ipmb = 0x20;
1548
1549 next = strchr(curr, ':');
1550 if (next) {
1551 *next = '\0';
1552 next++;
1553 }
1554
1555 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1556 if (rv)
1557 break;
1558 op = ival;
1559
1560 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1561 if (rv)
1562 break;
1563 si_type = ival;
1564
1565 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1566 if (rv)
1567 break;
1568
1569 s = strchr(curr, ',');
1570 if (s) {
1571 *s = '\0';
1572 s++;
1573 }
1574 addr = simple_strtoul(curr, &n, 0);
1575 if ((*n != '\0') || (*curr == '\0')) {
1576 printk(KERN_WARNING PFX "Invalid hotmod address"
1577 " '%s'\n", curr);
1578 break;
1579 }
1580
1581 while (s) {
1582 curr = s;
1583 s = strchr(curr, ',');
1584 if (s) {
1585 *s = '\0';
1586 s++;
1587 }
1588 o = strchr(curr, '=');
1589 if (o) {
1590 *o = '\0';
1591 o++;
1592 }
1d5636cc
CM
1593 rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1594 if (rv < 0)
b361e27b 1595 goto out;
1d5636cc
CM
1596 else if (rv)
1597 continue;
1598 rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1599 if (rv < 0)
1600 goto out;
1601 else if (rv)
1602 continue;
1603 rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1604 if (rv < 0)
1605 goto out;
1606 else if (rv)
1607 continue;
1608 rv = check_hotmod_int_op(curr, o, "irq", &irq);
1609 if (rv < 0)
1610 goto out;
1611 else if (rv)
1612 continue;
1613 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1614 if (rv < 0)
1615 goto out;
1616 else if (rv)
1617 continue;
1618
1619 rv = -EINVAL;
1620 printk(KERN_WARNING PFX
1621 "Invalid hotmod option '%s'\n",
1622 curr);
1623 goto out;
b361e27b
CM
1624 }
1625
1626 if (op == HM_ADD) {
1627 info = kzalloc(sizeof(*info), GFP_KERNEL);
1628 if (!info) {
1629 rv = -ENOMEM;
1630 goto out;
1631 }
1632
1633 info->addr_source = "hotmod";
1634 info->si_type = si_type;
1635 info->io.addr_data = addr;
1636 info->io.addr_type = addr_space;
1637 if (addr_space == IPMI_MEM_ADDR_SPACE)
1638 info->io_setup = mem_setup;
1639 else
1640 info->io_setup = port_setup;
1641
1642 info->io.addr = NULL;
1643 info->io.regspacing = regspacing;
1644 if (!info->io.regspacing)
1645 info->io.regspacing = DEFAULT_REGSPACING;
1646 info->io.regsize = regsize;
1647 if (!info->io.regsize)
1648 info->io.regsize = DEFAULT_REGSPACING;
1649 info->io.regshift = regshift;
1650 info->irq = irq;
1651 if (info->irq)
1652 info->irq_setup = std_irq_setup;
1653 info->slave_addr = ipmb;
1654
1655 try_smi_init(info);
1656 } else {
1657 /* remove */
1658 struct smi_info *e, *tmp_e;
1659
1660 mutex_lock(&smi_infos_lock);
1661 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1662 if (e->io.addr_type != addr_space)
1663 continue;
1664 if (e->si_type != si_type)
1665 continue;
1666 if (e->io.addr_data == addr)
1667 cleanup_one_si(e);
1668 }
1669 mutex_unlock(&smi_infos_lock);
1670 }
1671 }
1d5636cc 1672 rv = len;
b361e27b
CM
1673 out:
1674 kfree(str);
1675 return rv;
1676}
b0defcdb
CM
1677
1678static __devinit void hardcode_find_bmc(void)
1da177e4 1679{
b0defcdb 1680 int i;
1da177e4
LT
1681 struct smi_info *info;
1682
b0defcdb
CM
1683 for (i = 0; i < SI_MAX_PARMS; i++) {
1684 if (!ports[i] && !addrs[i])
1685 continue;
1da177e4 1686
b0defcdb
CM
1687 info = kzalloc(sizeof(*info), GFP_KERNEL);
1688 if (!info)
1689 return;
1da177e4 1690
b0defcdb 1691 info->addr_source = "hardcoded";
1da177e4 1692
1d5636cc 1693 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
b0defcdb 1694 info->si_type = SI_KCS;
1d5636cc 1695 } else if (strcmp(si_type[i], "smic") == 0) {
b0defcdb 1696 info->si_type = SI_SMIC;
1d5636cc 1697 } else if (strcmp(si_type[i], "bt") == 0) {
b0defcdb
CM
1698 info->si_type = SI_BT;
1699 } else {
1700 printk(KERN_WARNING
1701 "ipmi_si: Interface type specified "
1702 "for interface %d, was invalid: %s\n",
1703 i, si_type[i]);
1704 kfree(info);
1705 continue;
1706 }
1da177e4 1707
b0defcdb
CM
1708 if (ports[i]) {
1709 /* An I/O port */
1710 info->io_setup = port_setup;
1711 info->io.addr_data = ports[i];
1712 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1713 } else if (addrs[i]) {
1714 /* A memory port */
1715 info->io_setup = mem_setup;
1716 info->io.addr_data = addrs[i];
1717 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1718 } else {
1719 printk(KERN_WARNING
1720 "ipmi_si: Interface type specified "
1721 "for interface %d, "
1722 "but port and address were not set or "
1723 "set to zero.\n", i);
1724 kfree(info);
1725 continue;
1726 }
1da177e4 1727
b0defcdb
CM
1728 info->io.addr = NULL;
1729 info->io.regspacing = regspacings[i];
1730 if (!info->io.regspacing)
1731 info->io.regspacing = DEFAULT_REGSPACING;
1732 info->io.regsize = regsizes[i];
1733 if (!info->io.regsize)
1734 info->io.regsize = DEFAULT_REGSPACING;
1735 info->io.regshift = regshifts[i];
1736 info->irq = irqs[i];
1737 if (info->irq)
1738 info->irq_setup = std_irq_setup;
1da177e4 1739
b0defcdb
CM
1740 try_smi_init(info);
1741 }
1742}
1da177e4 1743
8466361a 1744#ifdef CONFIG_ACPI
1da177e4
LT
1745
1746#include <linux/acpi.h>
1747
1748/* Once we get an ACPI failure, we don't try any more, because we go
1749 through the tables sequentially. Once we don't find a table, there
1750 are no more. */
0c8204b3 1751static int acpi_failure;
1da177e4
LT
1752
1753/* For GPE-type interrupts. */
1754static u32 ipmi_acpi_gpe(void *context)
1755{
1756 struct smi_info *smi_info = context;
1757 unsigned long flags;
1758#ifdef DEBUG_TIMING
1759 struct timeval t;
1760#endif
1761
1762 spin_lock_irqsave(&(smi_info->si_lock), flags);
1763
1764 spin_lock(&smi_info->count_lock);
1765 smi_info->interrupts++;
1766 spin_unlock(&smi_info->count_lock);
1767
1da177e4
LT
1768#ifdef DEBUG_TIMING
1769 do_gettimeofday(&t);
1770 printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1771#endif
1772 smi_event_handler(smi_info, 0);
1da177e4
LT
1773 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1774
1775 return ACPI_INTERRUPT_HANDLED;
1776}
1777
b0defcdb
CM
1778static void acpi_gpe_irq_cleanup(struct smi_info *info)
1779{
1780 if (!info->irq)
1781 return;
1782
1783 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1784}
1785
1da177e4
LT
1786static int acpi_gpe_irq_setup(struct smi_info *info)
1787{
1788 acpi_status status;
1789
b0defcdb 1790 if (!info->irq)
1da177e4
LT
1791 return 0;
1792
1793 /* FIXME - is level triggered right? */
1794 status = acpi_install_gpe_handler(NULL,
1795 info->irq,
1796 ACPI_GPE_LEVEL_TRIGGERED,
1797 &ipmi_acpi_gpe,
1798 info);
1799 if (status != AE_OK) {
1800 printk(KERN_WARNING
1801 "ipmi_si: %s unable to claim ACPI GPE %d,"
1802 " running polled\n",
1803 DEVICE_NAME, info->irq);
1804 info->irq = 0;
1805 return -EINVAL;
1806 } else {
b0defcdb 1807 info->irq_cleanup = acpi_gpe_irq_cleanup;
1da177e4
LT
1808 printk(" Using ACPI GPE %d\n", info->irq);
1809 return 0;
1810 }
1811}
1812
1da177e4
LT
1813/*
1814 * Defined at
1815 * http://h21007.www2.hp.com/dspp/files/unprotected/devresource/Docs/TechPapers/IA64/hpspmi.pdf
1816 */
1817struct SPMITable {
1818 s8 Signature[4];
1819 u32 Length;
1820 u8 Revision;
1821 u8 Checksum;
1822 s8 OEMID[6];
1823 s8 OEMTableID[8];
1824 s8 OEMRevision[4];
1825 s8 CreatorID[4];
1826 s8 CreatorRevision[4];
1827 u8 InterfaceType;
1828 u8 IPMIlegacy;
1829 s16 SpecificationRevision;
1830
1831 /*
1832 * Bit 0 - SCI interrupt supported
1833 * Bit 1 - I/O APIC/SAPIC
1834 */
1835 u8 InterruptType;
1836
1837 /* If bit 0 of InterruptType is set, then this is the SCI
1838 interrupt in the GPEx_STS register. */
1839 u8 GPE;
1840
1841 s16 Reserved;
1842
1843 /* If bit 1 of InterruptType is set, then this is the I/O
1844 APIC/SAPIC interrupt. */
1845 u32 GlobalSystemInterrupt;
1846
1847 /* The actual register address. */
1848 struct acpi_generic_address addr;
1849
1850 u8 UID[4];
1851
1852 s8 spmi_id[1]; /* A '\0' terminated array starts here. */
1853};
1854
b0defcdb 1855static __devinit int try_init_acpi(struct SPMITable *spmi)
1da177e4
LT
1856{
1857 struct smi_info *info;
1da177e4
LT
1858 u8 addr_space;
1859
1da177e4
LT
1860 if (spmi->IPMIlegacy != 1) {
1861 printk(KERN_INFO "IPMI: Bad SPMI legacy %d\n", spmi->IPMIlegacy);
1862 return -ENODEV;
1863 }
1864
15a58ed1 1865 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1da177e4
LT
1866 addr_space = IPMI_MEM_ADDR_SPACE;
1867 else
1868 addr_space = IPMI_IO_ADDR_SPACE;
b0defcdb
CM
1869
1870 info = kzalloc(sizeof(*info), GFP_KERNEL);
1871 if (!info) {
1872 printk(KERN_ERR "ipmi_si: Could not allocate SI data (3)\n");
1873 return -ENOMEM;
1874 }
1875
1876 info->addr_source = "ACPI";
1da177e4 1877
1da177e4
LT
1878 /* Figure out the interface type. */
1879 switch (spmi->InterfaceType)
1880 {
1881 case 1: /* KCS */
b0defcdb 1882 info->si_type = SI_KCS;
1da177e4 1883 break;
1da177e4 1884 case 2: /* SMIC */
b0defcdb 1885 info->si_type = SI_SMIC;
1da177e4 1886 break;
1da177e4 1887 case 3: /* BT */
b0defcdb 1888 info->si_type = SI_BT;
1da177e4 1889 break;
1da177e4
LT
1890 default:
1891 printk(KERN_INFO "ipmi_si: Unknown ACPI/SPMI SI type %d\n",
1892 spmi->InterfaceType);
b0defcdb 1893 kfree(info);
1da177e4
LT
1894 return -EIO;
1895 }
1896
1da177e4
LT
1897 if (spmi->InterruptType & 1) {
1898 /* We've got a GPE interrupt. */
1899 info->irq = spmi->GPE;
1900 info->irq_setup = acpi_gpe_irq_setup;
1da177e4
LT
1901 } else if (spmi->InterruptType & 2) {
1902 /* We've got an APIC/SAPIC interrupt. */
1903 info->irq = spmi->GlobalSystemInterrupt;
1904 info->irq_setup = std_irq_setup;
1da177e4
LT
1905 } else {
1906 /* Use the default interrupt setting. */
1907 info->irq = 0;
1908 info->irq_setup = NULL;
1909 }
1910
15a58ed1 1911 if (spmi->addr.bit_width) {
35bc37a0 1912 /* A (hopefully) properly formed register bit width. */
15a58ed1 1913 info->io.regspacing = spmi->addr.bit_width / 8;
35bc37a0 1914 } else {
35bc37a0
CM
1915 info->io.regspacing = DEFAULT_REGSPACING;
1916 }
b0defcdb 1917 info->io.regsize = info->io.regspacing;
15a58ed1 1918 info->io.regshift = spmi->addr.bit_offset;
1da177e4 1919
15a58ed1 1920 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1da177e4 1921 info->io_setup = mem_setup;
8fe1425a 1922 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
15a58ed1 1923 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1da177e4 1924 info->io_setup = port_setup;
8fe1425a 1925 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1da177e4
LT
1926 } else {
1927 kfree(info);
1928 printk("ipmi_si: Unknown ACPI I/O Address type\n");
1929 return -EIO;
1930 }
b0defcdb 1931 info->io.addr_data = spmi->addr.address;
1da177e4 1932
b0defcdb 1933 try_smi_init(info);
1da177e4 1934
1da177e4
LT
1935 return 0;
1936}
b0defcdb
CM
1937
1938static __devinit void acpi_find_bmc(void)
1939{
1940 acpi_status status;
1941 struct SPMITable *spmi;
1942 int i;
1943
1944 if (acpi_disabled)
1945 return;
1946
1947 if (acpi_failure)
1948 return;
1949
1950 for (i = 0; ; i++) {
15a58ed1
AS
1951 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
1952 (struct acpi_table_header **)&spmi);
b0defcdb
CM
1953 if (status != AE_OK)
1954 return;
1955
1956 try_init_acpi(spmi);
1957 }
1958}
1da177e4
LT
1959#endif
1960
a9fad4cc 1961#ifdef CONFIG_DMI
b0defcdb 1962struct dmi_ipmi_data
1da177e4
LT
1963{
1964 u8 type;
1965 u8 addr_space;
1966 unsigned long base_addr;
1967 u8 irq;
1968 u8 offset;
1969 u8 slave_addr;
b0defcdb 1970};
1da177e4 1971
1855256c 1972static int __devinit decode_dmi(const struct dmi_header *dm,
b0defcdb 1973 struct dmi_ipmi_data *dmi)
1da177e4 1974{
1855256c 1975 const u8 *data = (const u8 *)dm;
1da177e4
LT
1976 unsigned long base_addr;
1977 u8 reg_spacing;
b224cd3a 1978 u8 len = dm->length;
1da177e4 1979
b0defcdb 1980 dmi->type = data[4];
1da177e4
LT
1981
1982 memcpy(&base_addr, data+8, sizeof(unsigned long));
1983 if (len >= 0x11) {
1984 if (base_addr & 1) {
1985 /* I/O */
1986 base_addr &= 0xFFFE;
b0defcdb 1987 dmi->addr_space = IPMI_IO_ADDR_SPACE;
1da177e4
LT
1988 }
1989 else {
1990 /* Memory */
b0defcdb 1991 dmi->addr_space = IPMI_MEM_ADDR_SPACE;
1da177e4
LT
1992 }
1993 /* If bit 4 of byte 0x10 is set, then the lsb for the address
1994 is odd. */
b0defcdb 1995 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
1da177e4 1996
b0defcdb 1997 dmi->irq = data[0x11];
1da177e4
LT
1998
1999 /* The top two bits of byte 0x10 hold the register spacing. */
b224cd3a 2000 reg_spacing = (data[0x10] & 0xC0) >> 6;
1da177e4
LT
2001 switch(reg_spacing){
2002 case 0x00: /* Byte boundaries */
b0defcdb 2003 dmi->offset = 1;
1da177e4
LT
2004 break;
2005 case 0x01: /* 32-bit boundaries */
b0defcdb 2006 dmi->offset = 4;
1da177e4
LT
2007 break;
2008 case 0x02: /* 16-byte boundaries */
b0defcdb 2009 dmi->offset = 16;
1da177e4
LT
2010 break;
2011 default:
2012 /* Some other interface, just ignore it. */
2013 return -EIO;
2014 }
2015 } else {
2016 /* Old DMI spec. */
92068801
CM
2017 /* Note that technically, the lower bit of the base
2018 * address should be 1 if the address is I/O and 0 if
2019 * the address is in memory. So many systems get that
2020 * wrong (and all that I have seen are I/O) so we just
2021 * ignore that bit and assume I/O. Systems that use
2022 * memory should use the newer spec, anyway. */
b0defcdb
CM
2023 dmi->base_addr = base_addr & 0xfffe;
2024 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2025 dmi->offset = 1;
1da177e4
LT
2026 }
2027
b0defcdb 2028 dmi->slave_addr = data[6];
1da177e4 2029
b0defcdb 2030 return 0;
1da177e4
LT
2031}
2032
b0defcdb 2033static __devinit void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
1da177e4 2034{
b0defcdb 2035 struct smi_info *info;
1da177e4 2036
b0defcdb
CM
2037 info = kzalloc(sizeof(*info), GFP_KERNEL);
2038 if (!info) {
2039 printk(KERN_ERR
2040 "ipmi_si: Could not allocate SI data\n");
2041 return;
1da177e4 2042 }
1da177e4 2043
b0defcdb 2044 info->addr_source = "SMBIOS";
1da177e4 2045
e8b33617 2046 switch (ipmi_data->type) {
b0defcdb
CM
2047 case 0x01: /* KCS */
2048 info->si_type = SI_KCS;
2049 break;
2050 case 0x02: /* SMIC */
2051 info->si_type = SI_SMIC;
2052 break;
2053 case 0x03: /* BT */
2054 info->si_type = SI_BT;
2055 break;
2056 default:
80cd6920 2057 kfree(info);
b0defcdb 2058 return;
1da177e4 2059 }
1da177e4 2060
b0defcdb
CM
2061 switch (ipmi_data->addr_space) {
2062 case IPMI_MEM_ADDR_SPACE:
1da177e4 2063 info->io_setup = mem_setup;
b0defcdb
CM
2064 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2065 break;
2066
2067 case IPMI_IO_ADDR_SPACE:
1da177e4 2068 info->io_setup = port_setup;
b0defcdb
CM
2069 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2070 break;
2071
2072 default:
1da177e4 2073 kfree(info);
b0defcdb
CM
2074 printk(KERN_WARNING
2075 "ipmi_si: Unknown SMBIOS I/O Address type: %d.\n",
2076 ipmi_data->addr_space);
2077 return;
1da177e4 2078 }
b0defcdb 2079 info->io.addr_data = ipmi_data->base_addr;
1da177e4 2080
b0defcdb
CM
2081 info->io.regspacing = ipmi_data->offset;
2082 if (!info->io.regspacing)
1da177e4
LT
2083 info->io.regspacing = DEFAULT_REGSPACING;
2084 info->io.regsize = DEFAULT_REGSPACING;
b0defcdb 2085 info->io.regshift = 0;
1da177e4
LT
2086
2087 info->slave_addr = ipmi_data->slave_addr;
2088
b0defcdb
CM
2089 info->irq = ipmi_data->irq;
2090 if (info->irq)
2091 info->irq_setup = std_irq_setup;
1da177e4 2092
b0defcdb
CM
2093 try_smi_init(info);
2094}
1da177e4 2095
b0defcdb
CM
2096static void __devinit dmi_find_bmc(void)
2097{
1855256c 2098 const struct dmi_device *dev = NULL;
b0defcdb
CM
2099 struct dmi_ipmi_data data;
2100 int rv;
2101
2102 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
397f4ebf 2103 memset(&data, 0, sizeof(data));
1855256c
JG
2104 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2105 &data);
b0defcdb
CM
2106 if (!rv)
2107 try_init_dmi(&data);
2108 }
1da177e4 2109}
a9fad4cc 2110#endif /* CONFIG_DMI */
1da177e4
LT
2111
2112#ifdef CONFIG_PCI
2113
b0defcdb
CM
2114#define PCI_ERMC_CLASSCODE 0x0C0700
2115#define PCI_ERMC_CLASSCODE_MASK 0xffffff00
2116#define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
2117#define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
2118#define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
2119#define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
2120
1da177e4
LT
2121#define PCI_HP_VENDOR_ID 0x103C
2122#define PCI_MMC_DEVICE_ID 0x121A
2123#define PCI_MMC_ADDR_CW 0x10
2124
b0defcdb
CM
2125static void ipmi_pci_cleanup(struct smi_info *info)
2126{
2127 struct pci_dev *pdev = info->addr_source_data;
2128
2129 pci_disable_device(pdev);
2130}
1da177e4 2131
b0defcdb
CM
2132static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
2133 const struct pci_device_id *ent)
1da177e4 2134{
b0defcdb
CM
2135 int rv;
2136 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2137 struct smi_info *info;
2138 int first_reg_offset = 0;
1da177e4 2139
b0defcdb
CM
2140 info = kzalloc(sizeof(*info), GFP_KERNEL);
2141 if (!info)
1cd441f9 2142 return -ENOMEM;
1da177e4 2143
b0defcdb 2144 info->addr_source = "PCI";
1da177e4 2145
b0defcdb
CM
2146 switch (class_type) {
2147 case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2148 info->si_type = SI_SMIC;
2149 break;
1da177e4 2150
b0defcdb
CM
2151 case PCI_ERMC_CLASSCODE_TYPE_KCS:
2152 info->si_type = SI_KCS;
2153 break;
2154
2155 case PCI_ERMC_CLASSCODE_TYPE_BT:
2156 info->si_type = SI_BT;
2157 break;
2158
2159 default:
2160 kfree(info);
2161 printk(KERN_INFO "ipmi_si: %s: Unknown IPMI type: %d\n",
2162 pci_name(pdev), class_type);
1cd441f9 2163 return -ENOMEM;
1da177e4
LT
2164 }
2165
b0defcdb
CM
2166 rv = pci_enable_device(pdev);
2167 if (rv) {
2168 printk(KERN_ERR "ipmi_si: %s: couldn't enable PCI device\n",
2169 pci_name(pdev));
2170 kfree(info);
2171 return rv;
1da177e4
LT
2172 }
2173
b0defcdb
CM
2174 info->addr_source_cleanup = ipmi_pci_cleanup;
2175 info->addr_source_data = pdev;
1da177e4 2176
b0defcdb
CM
2177 if (pdev->subsystem_vendor == PCI_HP_VENDOR_ID)
2178 first_reg_offset = 1;
1da177e4 2179
b0defcdb
CM
2180 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2181 info->io_setup = port_setup;
2182 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2183 } else {
2184 info->io_setup = mem_setup;
2185 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1da177e4 2186 }
b0defcdb 2187 info->io.addr_data = pci_resource_start(pdev, 0);
1da177e4 2188
b0defcdb 2189 info->io.regspacing = DEFAULT_REGSPACING;
1da177e4 2190 info->io.regsize = DEFAULT_REGSPACING;
b0defcdb 2191 info->io.regshift = 0;
1da177e4 2192
b0defcdb
CM
2193 info->irq = pdev->irq;
2194 if (info->irq)
2195 info->irq_setup = std_irq_setup;
1da177e4 2196
50c812b2 2197 info->dev = &pdev->dev;
fca3b747 2198 pci_set_drvdata(pdev, info);
50c812b2 2199
b0defcdb
CM
2200 return try_smi_init(info);
2201}
1da177e4 2202
b0defcdb
CM
2203static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
2204{
fca3b747
CM
2205 struct smi_info *info = pci_get_drvdata(pdev);
2206 cleanup_one_si(info);
b0defcdb 2207}
1da177e4 2208
b0defcdb
CM
2209#ifdef CONFIG_PM
2210static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2211{
1da177e4
LT
2212 return 0;
2213}
1da177e4 2214
b0defcdb 2215static int ipmi_pci_resume(struct pci_dev *pdev)
1da177e4 2216{
b0defcdb
CM
2217 return 0;
2218}
1da177e4 2219#endif
1da177e4 2220
b0defcdb
CM
2221static struct pci_device_id ipmi_pci_devices[] = {
2222 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
248bdd5e
KC
2223 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2224 { 0, }
b0defcdb
CM
2225};
2226MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2227
2228static struct pci_driver ipmi_pci_driver = {
2229 .name = DEVICE_NAME,
2230 .id_table = ipmi_pci_devices,
2231 .probe = ipmi_pci_probe,
2232 .remove = __devexit_p(ipmi_pci_remove),
2233#ifdef CONFIG_PM
2234 .suspend = ipmi_pci_suspend,
2235 .resume = ipmi_pci_resume,
2236#endif
2237};
2238#endif /* CONFIG_PCI */
1da177e4
LT
2239
2240
dba9b4f6
CM
2241#ifdef CONFIG_PPC_OF
2242static int __devinit ipmi_of_probe(struct of_device *dev,
2243 const struct of_device_id *match)
2244{
2245 struct smi_info *info;
2246 struct resource resource;
2247 const int *regsize, *regspacing, *regshift;
2248 struct device_node *np = dev->node;
2249 int ret;
2250 int proplen;
2251
2252 dev_info(&dev->dev, PFX "probing via device tree\n");
2253
2254 ret = of_address_to_resource(np, 0, &resource);
2255 if (ret) {
2256 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2257 return ret;
2258 }
2259
9c25099d 2260 regsize = of_get_property(np, "reg-size", &proplen);
dba9b4f6
CM
2261 if (regsize && proplen != 4) {
2262 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2263 return -EINVAL;
2264 }
2265
9c25099d 2266 regspacing = of_get_property(np, "reg-spacing", &proplen);
dba9b4f6
CM
2267 if (regspacing && proplen != 4) {
2268 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2269 return -EINVAL;
2270 }
2271
9c25099d 2272 regshift = of_get_property(np, "reg-shift", &proplen);
dba9b4f6
CM
2273 if (regshift && proplen != 4) {
2274 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2275 return -EINVAL;
2276 }
2277
2278 info = kzalloc(sizeof(*info), GFP_KERNEL);
2279
2280 if (!info) {
2281 dev_err(&dev->dev,
2282 PFX "could not allocate memory for OF probe\n");
2283 return -ENOMEM;
2284 }
2285
2286 info->si_type = (enum si_type) match->data;
2287 info->addr_source = "device-tree";
2288 info->io_setup = mem_setup;
2289 info->irq_setup = std_irq_setup;
2290
2291 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2292 info->io.addr_data = resource.start;
2293
2294 info->io.regsize = regsize ? *regsize : DEFAULT_REGSIZE;
2295 info->io.regspacing = regspacing ? *regspacing : DEFAULT_REGSPACING;
2296 info->io.regshift = regshift ? *regshift : 0;
2297
2298 info->irq = irq_of_parse_and_map(dev->node, 0);
2299 info->dev = &dev->dev;
2300
32d21985 2301 dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %x\n",
dba9b4f6
CM
2302 info->io.addr_data, info->io.regsize, info->io.regspacing,
2303 info->irq);
2304
2305 dev->dev.driver_data = (void*) info;
2306
2307 return try_smi_init(info);
2308}
2309
2310static int __devexit ipmi_of_remove(struct of_device *dev)
2311{
2312 cleanup_one_si(dev->dev.driver_data);
2313 return 0;
2314}
2315
2316static struct of_device_id ipmi_match[] =
2317{
2318 { .type = "ipmi", .compatible = "ipmi-kcs", .data = (void *)(unsigned long) SI_KCS },
2319 { .type = "ipmi", .compatible = "ipmi-smic", .data = (void *)(unsigned long) SI_SMIC },
2320 { .type = "ipmi", .compatible = "ipmi-bt", .data = (void *)(unsigned long) SI_BT },
2321 {},
2322};
2323
2324static struct of_platform_driver ipmi_of_platform_driver =
2325{
2326 .name = "ipmi",
2327 .match_table = ipmi_match,
2328 .probe = ipmi_of_probe,
2329 .remove = __devexit_p(ipmi_of_remove),
2330};
2331#endif /* CONFIG_PPC_OF */
2332
2333
1da177e4
LT
2334static int try_get_dev_id(struct smi_info *smi_info)
2335{
50c812b2
CM
2336 unsigned char msg[2];
2337 unsigned char *resp;
2338 unsigned long resp_len;
2339 enum si_sm_result smi_result;
2340 int rv = 0;
1da177e4
LT
2341
2342 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
b0defcdb 2343 if (!resp)
1da177e4
LT
2344 return -ENOMEM;
2345
2346 /* Do a Get Device ID command, since it comes back with some
2347 useful info. */
2348 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2349 msg[1] = IPMI_GET_DEVICE_ID_CMD;
2350 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2351
2352 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2353 for (;;)
2354 {
c3e7e791
CM
2355 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2356 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
da4cd8df 2357 schedule_timeout_uninterruptible(1);
1da177e4
LT
2358 smi_result = smi_info->handlers->event(
2359 smi_info->si_sm, 100);
2360 }
2361 else if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
2362 {
2363 smi_result = smi_info->handlers->event(
2364 smi_info->si_sm, 0);
2365 }
2366 else
2367 break;
2368 }
2369 if (smi_result == SI_SM_HOSED) {
2370 /* We couldn't get the state machine to run, so whatever's at
2371 the port is probably not an IPMI SMI interface. */
2372 rv = -ENODEV;
2373 goto out;
2374 }
2375
2376 /* Otherwise, we got some data. */
2377 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2378 resp, IPMI_MAX_MSG_LENGTH);
50c812b2 2379 if (resp_len < 14) {
1da177e4
LT
2380 /* That's odd, it should be longer. */
2381 rv = -EINVAL;
2382 goto out;
2383 }
2384
2385 if ((resp[1] != IPMI_GET_DEVICE_ID_CMD) || (resp[2] != 0)) {
2386 /* That's odd, it shouldn't be able to fail. */
2387 rv = -EINVAL;
2388 goto out;
2389 }
2390
2391 /* Record info from the get device id, in case we need it. */
50c812b2 2392 ipmi_demangle_device_id(resp+3, resp_len-3, &smi_info->device_id);
1da177e4
LT
2393
2394 out:
2395 kfree(resp);
2396 return rv;
2397}
2398
2399static int type_file_read_proc(char *page, char **start, off_t off,
2400 int count, int *eof, void *data)
2401{
1da177e4
LT
2402 struct smi_info *smi = data;
2403
b361e27b 2404 return sprintf(page, "%s\n", si_to_str[smi->si_type]);
1da177e4
LT
2405}
2406
2407static int stat_file_read_proc(char *page, char **start, off_t off,
2408 int count, int *eof, void *data)
2409{
2410 char *out = (char *) page;
2411 struct smi_info *smi = data;
2412
2413 out += sprintf(out, "interrupts_enabled: %d\n",
b0defcdb 2414 smi->irq && !smi->interrupt_disabled);
1da177e4
LT
2415 out += sprintf(out, "short_timeouts: %ld\n",
2416 smi->short_timeouts);
2417 out += sprintf(out, "long_timeouts: %ld\n",
2418 smi->long_timeouts);
2419 out += sprintf(out, "timeout_restarts: %ld\n",
2420 smi->timeout_restarts);
2421 out += sprintf(out, "idles: %ld\n",
2422 smi->idles);
2423 out += sprintf(out, "interrupts: %ld\n",
2424 smi->interrupts);
2425 out += sprintf(out, "attentions: %ld\n",
2426 smi->attentions);
2427 out += sprintf(out, "flag_fetches: %ld\n",
2428 smi->flag_fetches);
2429 out += sprintf(out, "hosed_count: %ld\n",
2430 smi->hosed_count);
2431 out += sprintf(out, "complete_transactions: %ld\n",
2432 smi->complete_transactions);
2433 out += sprintf(out, "events: %ld\n",
2434 smi->events);
2435 out += sprintf(out, "watchdog_pretimeouts: %ld\n",
2436 smi->watchdog_pretimeouts);
2437 out += sprintf(out, "incoming_messages: %ld\n",
2438 smi->incoming_messages);
2439
b361e27b
CM
2440 return out - page;
2441}
2442
2443static int param_read_proc(char *page, char **start, off_t off,
2444 int count, int *eof, void *data)
2445{
2446 struct smi_info *smi = data;
2447
2448 return sprintf(page,
2449 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2450 si_to_str[smi->si_type],
2451 addr_space_to_str[smi->io.addr_type],
2452 smi->io.addr_data,
2453 smi->io.regspacing,
2454 smi->io.regsize,
2455 smi->io.regshift,
2456 smi->irq,
2457 smi->slave_addr);
1da177e4
LT
2458}
2459
3ae0e0f9
CM
2460/*
2461 * oem_data_avail_to_receive_msg_avail
2462 * @info - smi_info structure with msg_flags set
2463 *
2464 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2465 * Returns 1 indicating need to re-run handle_flags().
2466 */
2467static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2468{
e8b33617
CM
2469 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2470 RECEIVE_MSG_AVAIL);
3ae0e0f9
CM
2471 return 1;
2472}
2473
2474/*
2475 * setup_dell_poweredge_oem_data_handler
2476 * @info - smi_info.device_id must be populated
2477 *
2478 * Systems that match, but have firmware version < 1.40 may assert
2479 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2480 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
2481 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2482 * as RECEIVE_MSG_AVAIL instead.
2483 *
2484 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2485 * assert the OEM[012] bits, and if it did, the driver would have to
2486 * change to handle that properly, we don't actually check for the
2487 * firmware version.
2488 * Device ID = 0x20 BMC on PowerEdge 8G servers
2489 * Device Revision = 0x80
2490 * Firmware Revision1 = 0x01 BMC version 1.40
2491 * Firmware Revision2 = 0x40 BCD encoded
2492 * IPMI Version = 0x51 IPMI 1.5
2493 * Manufacturer ID = A2 02 00 Dell IANA
2494 *
d5a2b89a
CM
2495 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2496 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2497 *
3ae0e0f9
CM
2498 */
2499#define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
2500#define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2501#define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
50c812b2 2502#define DELL_IANA_MFR_ID 0x0002a2
3ae0e0f9
CM
2503static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2504{
2505 struct ipmi_device_id *id = &smi_info->device_id;
50c812b2 2506 if (id->manufacturer_id == DELL_IANA_MFR_ID) {
d5a2b89a
CM
2507 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
2508 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
50c812b2 2509 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
d5a2b89a
CM
2510 smi_info->oem_data_avail_handler =
2511 oem_data_avail_to_receive_msg_avail;
2512 }
2513 else if (ipmi_version_major(id) < 1 ||
2514 (ipmi_version_major(id) == 1 &&
2515 ipmi_version_minor(id) < 5)) {
2516 smi_info->oem_data_avail_handler =
2517 oem_data_avail_to_receive_msg_avail;
2518 }
3ae0e0f9
CM
2519 }
2520}
2521
ea94027b
CM
2522#define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2523static void return_hosed_msg_badsize(struct smi_info *smi_info)
2524{
2525 struct ipmi_smi_msg *msg = smi_info->curr_msg;
2526
2527 /* Make it a reponse */
2528 msg->rsp[0] = msg->data[0] | 4;
2529 msg->rsp[1] = msg->data[1];
2530 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2531 msg->rsp_size = 3;
2532 smi_info->curr_msg = NULL;
2533 deliver_recv_msg(smi_info, msg);
2534}
2535
2536/*
2537 * dell_poweredge_bt_xaction_handler
2538 * @info - smi_info.device_id must be populated
2539 *
2540 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2541 * not respond to a Get SDR command if the length of the data
2542 * requested is exactly 0x3A, which leads to command timeouts and no
2543 * data returned. This intercepts such commands, and causes userspace
2544 * callers to try again with a different-sized buffer, which succeeds.
2545 */
2546
2547#define STORAGE_NETFN 0x0A
2548#define STORAGE_CMD_GET_SDR 0x23
2549static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2550 unsigned long unused,
2551 void *in)
2552{
2553 struct smi_info *smi_info = in;
2554 unsigned char *data = smi_info->curr_msg->data;
2555 unsigned int size = smi_info->curr_msg->data_size;
2556 if (size >= 8 &&
2557 (data[0]>>2) == STORAGE_NETFN &&
2558 data[1] == STORAGE_CMD_GET_SDR &&
2559 data[7] == 0x3A) {
2560 return_hosed_msg_badsize(smi_info);
2561 return NOTIFY_STOP;
2562 }
2563 return NOTIFY_DONE;
2564}
2565
2566static struct notifier_block dell_poweredge_bt_xaction_notifier = {
2567 .notifier_call = dell_poweredge_bt_xaction_handler,
2568};
2569
2570/*
2571 * setup_dell_poweredge_bt_xaction_handler
2572 * @info - smi_info.device_id must be filled in already
2573 *
2574 * Fills in smi_info.device_id.start_transaction_pre_hook
2575 * when we know what function to use there.
2576 */
2577static void
2578setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
2579{
2580 struct ipmi_device_id *id = &smi_info->device_id;
50c812b2 2581 if (id->manufacturer_id == DELL_IANA_MFR_ID &&
ea94027b
CM
2582 smi_info->si_type == SI_BT)
2583 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
2584}
2585
3ae0e0f9
CM
2586/*
2587 * setup_oem_data_handler
2588 * @info - smi_info.device_id must be filled in already
2589 *
2590 * Fills in smi_info.device_id.oem_data_available_handler
2591 * when we know what function to use there.
2592 */
2593
2594static void setup_oem_data_handler(struct smi_info *smi_info)
2595{
2596 setup_dell_poweredge_oem_data_handler(smi_info);
2597}
2598
ea94027b
CM
2599static void setup_xaction_handlers(struct smi_info *smi_info)
2600{
2601 setup_dell_poweredge_bt_xaction_handler(smi_info);
2602}
2603
a9a2c44f
CM
2604static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
2605{
453823ba
CM
2606 if (smi_info->intf) {
2607 /* The timer and thread are only running if the
2608 interface has been started up and registered. */
2609 if (smi_info->thread != NULL)
2610 kthread_stop(smi_info->thread);
2611 del_timer_sync(&smi_info->si_timer);
2612 }
a9a2c44f
CM
2613}
2614
7420884c 2615static __devinitdata struct ipmi_default_vals
b0defcdb
CM
2616{
2617 int type;
2618 int port;
7420884c 2619} ipmi_defaults[] =
b0defcdb
CM
2620{
2621 { .type = SI_KCS, .port = 0xca2 },
2622 { .type = SI_SMIC, .port = 0xca9 },
2623 { .type = SI_BT, .port = 0xe4 },
2624 { .port = 0 }
2625};
2626
2627static __devinit void default_find_bmc(void)
2628{
2629 struct smi_info *info;
2630 int i;
2631
2632 for (i = 0; ; i++) {
2633 if (!ipmi_defaults[i].port)
2634 break;
2635
2636 info = kzalloc(sizeof(*info), GFP_KERNEL);
2637 if (!info)
2638 return;
2639
4ff31d77
CK
2640#ifdef CONFIG_PPC_MERGE
2641 if (check_legacy_ioport(ipmi_defaults[i].port))
2642 continue;
2643#endif
2644
b0defcdb
CM
2645 info->addr_source = NULL;
2646
2647 info->si_type = ipmi_defaults[i].type;
2648 info->io_setup = port_setup;
2649 info->io.addr_data = ipmi_defaults[i].port;
2650 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2651
2652 info->io.addr = NULL;
2653 info->io.regspacing = DEFAULT_REGSPACING;
2654 info->io.regsize = DEFAULT_REGSPACING;
2655 info->io.regshift = 0;
2656
2657 if (try_smi_init(info) == 0) {
2658 /* Found one... */
2659 printk(KERN_INFO "ipmi_si: Found default %s state"
2660 " machine at %s address 0x%lx\n",
2661 si_to_str[info->si_type],
2662 addr_space_to_str[info->io.addr_type],
2663 info->io.addr_data);
2664 return;
2665 }
2666 }
2667}
2668
2669static int is_new_interface(struct smi_info *info)
1da177e4 2670{
b0defcdb 2671 struct smi_info *e;
1da177e4 2672
b0defcdb
CM
2673 list_for_each_entry(e, &smi_infos, link) {
2674 if (e->io.addr_type != info->io.addr_type)
2675 continue;
2676 if (e->io.addr_data == info->io.addr_data)
2677 return 0;
2678 }
1da177e4 2679
b0defcdb
CM
2680 return 1;
2681}
1da177e4 2682
b0defcdb
CM
2683static int try_smi_init(struct smi_info *new_smi)
2684{
2685 int rv;
2686
2687 if (new_smi->addr_source) {
2688 printk(KERN_INFO "ipmi_si: Trying %s-specified %s state"
2689 " machine at %s address 0x%lx, slave address 0x%x,"
2690 " irq %d\n",
2691 new_smi->addr_source,
2692 si_to_str[new_smi->si_type],
2693 addr_space_to_str[new_smi->io.addr_type],
2694 new_smi->io.addr_data,
2695 new_smi->slave_addr, new_smi->irq);
2696 }
2697
d6dfd131 2698 mutex_lock(&smi_infos_lock);
b0defcdb
CM
2699 if (!is_new_interface(new_smi)) {
2700 printk(KERN_WARNING "ipmi_si: duplicate interface\n");
2701 rv = -EBUSY;
2702 goto out_err;
2703 }
1da177e4
LT
2704
2705 /* So we know not to free it unless we have allocated one. */
2706 new_smi->intf = NULL;
2707 new_smi->si_sm = NULL;
2708 new_smi->handlers = NULL;
2709
b0defcdb
CM
2710 switch (new_smi->si_type) {
2711 case SI_KCS:
1da177e4 2712 new_smi->handlers = &kcs_smi_handlers;
b0defcdb
CM
2713 break;
2714
2715 case SI_SMIC:
1da177e4 2716 new_smi->handlers = &smic_smi_handlers;
b0defcdb
CM
2717 break;
2718
2719 case SI_BT:
1da177e4 2720 new_smi->handlers = &bt_smi_handlers;
b0defcdb
CM
2721 break;
2722
2723 default:
1da177e4
LT
2724 /* No support for anything else yet. */
2725 rv = -EIO;
2726 goto out_err;
2727 }
2728
2729 /* Allocate the state machine's data and initialize it. */
2730 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
b0defcdb 2731 if (!new_smi->si_sm) {
1da177e4
LT
2732 printk(" Could not allocate state machine memory\n");
2733 rv = -ENOMEM;
2734 goto out_err;
2735 }
2736 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
2737 &new_smi->io);
2738
2739 /* Now that we know the I/O size, we can set up the I/O. */
2740 rv = new_smi->io_setup(new_smi);
2741 if (rv) {
2742 printk(" Could not set up I/O space\n");
2743 goto out_err;
2744 }
2745
2746 spin_lock_init(&(new_smi->si_lock));
2747 spin_lock_init(&(new_smi->msg_lock));
2748 spin_lock_init(&(new_smi->count_lock));
2749
2750 /* Do low-level detection first. */
2751 if (new_smi->handlers->detect(new_smi->si_sm)) {
b0defcdb
CM
2752 if (new_smi->addr_source)
2753 printk(KERN_INFO "ipmi_si: Interface detection"
2754 " failed\n");
1da177e4
LT
2755 rv = -ENODEV;
2756 goto out_err;
2757 }
2758
2759 /* Attempt a get device id command. If it fails, we probably
b0defcdb 2760 don't have a BMC here. */
1da177e4 2761 rv = try_get_dev_id(new_smi);
b0defcdb
CM
2762 if (rv) {
2763 if (new_smi->addr_source)
2764 printk(KERN_INFO "ipmi_si: There appears to be no BMC"
2765 " at this location\n");
1da177e4 2766 goto out_err;
b0defcdb 2767 }
1da177e4 2768
3ae0e0f9 2769 setup_oem_data_handler(new_smi);
ea94027b 2770 setup_xaction_handlers(new_smi);
3ae0e0f9 2771
1da177e4
LT
2772 INIT_LIST_HEAD(&(new_smi->xmit_msgs));
2773 INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
2774 new_smi->curr_msg = NULL;
2775 atomic_set(&new_smi->req_events, 0);
2776 new_smi->run_to_completion = 0;
2777
2778 new_smi->interrupt_disabled = 0;
a9a2c44f 2779 atomic_set(&new_smi->stop_operation, 0);
b0defcdb
CM
2780 new_smi->intf_num = smi_num;
2781 smi_num++;
1da177e4
LT
2782
2783 /* Start clearing the flags before we enable interrupts or the
2784 timer to avoid racing with the timer. */
2785 start_clear_flags(new_smi);
2786 /* IRQ is defined to be set when non-zero. */
2787 if (new_smi->irq)
2788 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
2789
50c812b2
CM
2790 if (!new_smi->dev) {
2791 /* If we don't already have a device from something
2792 * else (like PCI), then register a new one. */
2793 new_smi->pdev = platform_device_alloc("ipmi_si",
2794 new_smi->intf_num);
2795 if (rv) {
2796 printk(KERN_ERR
2797 "ipmi_si_intf:"
2798 " Unable to allocate platform device\n");
453823ba 2799 goto out_err;
50c812b2
CM
2800 }
2801 new_smi->dev = &new_smi->pdev->dev;
2802 new_smi->dev->driver = &ipmi_driver;
2803
b48f5457 2804 rv = platform_device_add(new_smi->pdev);
50c812b2
CM
2805 if (rv) {
2806 printk(KERN_ERR
2807 "ipmi_si_intf:"
2808 " Unable to register system interface device:"
2809 " %d\n",
2810 rv);
453823ba 2811 goto out_err;
50c812b2
CM
2812 }
2813 new_smi->dev_registered = 1;
2814 }
2815
1da177e4
LT
2816 rv = ipmi_register_smi(&handlers,
2817 new_smi,
50c812b2
CM
2818 &new_smi->device_id,
2819 new_smi->dev,
759643b8 2820 "bmc",
453823ba 2821 new_smi->slave_addr);
1da177e4
LT
2822 if (rv) {
2823 printk(KERN_ERR
2824 "ipmi_si: Unable to register device: error %d\n",
2825 rv);
2826 goto out_err_stop_timer;
2827 }
2828
2829 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
2830 type_file_read_proc, NULL,
2831 new_smi, THIS_MODULE);
2832 if (rv) {
2833 printk(KERN_ERR
2834 "ipmi_si: Unable to create proc entry: %d\n",
2835 rv);
2836 goto out_err_stop_timer;
2837 }
2838
2839 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
2840 stat_file_read_proc, NULL,
2841 new_smi, THIS_MODULE);
2842 if (rv) {
2843 printk(KERN_ERR
2844 "ipmi_si: Unable to create proc entry: %d\n",
2845 rv);
2846 goto out_err_stop_timer;
2847 }
2848
b361e27b
CM
2849 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
2850 param_read_proc, NULL,
2851 new_smi, THIS_MODULE);
2852 if (rv) {
2853 printk(KERN_ERR
2854 "ipmi_si: Unable to create proc entry: %d\n",
2855 rv);
2856 goto out_err_stop_timer;
2857 }
2858
b0defcdb
CM
2859 list_add_tail(&new_smi->link, &smi_infos);
2860
d6dfd131 2861 mutex_unlock(&smi_infos_lock);
1da177e4 2862
8f14137e 2863 printk(KERN_INFO "IPMI %s interface initialized\n",si_to_str[new_smi->si_type]);
1da177e4
LT
2864
2865 return 0;
2866
2867 out_err_stop_timer:
a9a2c44f
CM
2868 atomic_inc(&new_smi->stop_operation);
2869 wait_for_timer_and_thread(new_smi);
1da177e4
LT
2870
2871 out_err:
2872 if (new_smi->intf)
2873 ipmi_unregister_smi(new_smi->intf);
2874
b0defcdb
CM
2875 if (new_smi->irq_cleanup)
2876 new_smi->irq_cleanup(new_smi);
1da177e4
LT
2877
2878 /* Wait until we know that we are out of any interrupt
2879 handlers might have been running before we freed the
2880 interrupt. */
fbd568a3 2881 synchronize_sched();
1da177e4
LT
2882
2883 if (new_smi->si_sm) {
2884 if (new_smi->handlers)
2885 new_smi->handlers->cleanup(new_smi->si_sm);
2886 kfree(new_smi->si_sm);
2887 }
b0defcdb
CM
2888 if (new_smi->addr_source_cleanup)
2889 new_smi->addr_source_cleanup(new_smi);
7767e126
PG
2890 if (new_smi->io_cleanup)
2891 new_smi->io_cleanup(new_smi);
1da177e4 2892
50c812b2
CM
2893 if (new_smi->dev_registered)
2894 platform_device_unregister(new_smi->pdev);
2895
2896 kfree(new_smi);
2897
d6dfd131 2898 mutex_unlock(&smi_infos_lock);
b0defcdb 2899
1da177e4
LT
2900 return rv;
2901}
2902
b0defcdb 2903static __devinit int init_ipmi_si(void)
1da177e4 2904{
1da177e4
LT
2905 int i;
2906 char *str;
50c812b2 2907 int rv;
1da177e4
LT
2908
2909 if (initialized)
2910 return 0;
2911 initialized = 1;
2912
50c812b2
CM
2913 /* Register the device drivers. */
2914 rv = driver_register(&ipmi_driver);
2915 if (rv) {
2916 printk(KERN_ERR
2917 "init_ipmi_si: Unable to register driver: %d\n",
2918 rv);
2919 return rv;
2920 }
2921
2922
1da177e4
LT
2923 /* Parse out the si_type string into its components. */
2924 str = si_type_str;
2925 if (*str != '\0') {
e8b33617 2926 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
1da177e4
LT
2927 si_type[i] = str;
2928 str = strchr(str, ',');
2929 if (str) {
2930 *str = '\0';
2931 str++;
2932 } else {
2933 break;
2934 }
2935 }
2936 }
2937
1fdd75bd 2938 printk(KERN_INFO "IPMI System Interface driver.\n");
1da177e4 2939
b0defcdb
CM
2940 hardcode_find_bmc();
2941
a9fad4cc 2942#ifdef CONFIG_DMI
b224cd3a 2943 dmi_find_bmc();
1da177e4
LT
2944#endif
2945
b0defcdb 2946#ifdef CONFIG_ACPI
1d5636cc 2947 acpi_find_bmc();
b0defcdb 2948#endif
1da177e4 2949
b0defcdb 2950#ifdef CONFIG_PCI
168b35a7
CM
2951 rv = pci_register_driver(&ipmi_pci_driver);
2952 if (rv){
2953 printk(KERN_ERR
2954 "init_ipmi_si: Unable to register PCI driver: %d\n",
2955 rv);
2956 }
b0defcdb
CM
2957#endif
2958
dba9b4f6
CM
2959#ifdef CONFIG_PPC_OF
2960 of_register_platform_driver(&ipmi_of_platform_driver);
2961#endif
2962
b0defcdb 2963 if (si_trydefaults) {
d6dfd131 2964 mutex_lock(&smi_infos_lock);
b0defcdb
CM
2965 if (list_empty(&smi_infos)) {
2966 /* No BMC was found, try defaults. */
d6dfd131 2967 mutex_unlock(&smi_infos_lock);
b0defcdb
CM
2968 default_find_bmc();
2969 } else {
d6dfd131 2970 mutex_unlock(&smi_infos_lock);
b0defcdb 2971 }
1da177e4
LT
2972 }
2973
d6dfd131 2974 mutex_lock(&smi_infos_lock);
b361e27b 2975 if (unload_when_empty && list_empty(&smi_infos)) {
d6dfd131 2976 mutex_unlock(&smi_infos_lock);
b0defcdb
CM
2977#ifdef CONFIG_PCI
2978 pci_unregister_driver(&ipmi_pci_driver);
2979#endif
10fb62e5
CK
2980
2981#ifdef CONFIG_PPC_OF
2982 of_unregister_platform_driver(&ipmi_of_platform_driver);
2983#endif
55ebcc38 2984 driver_unregister(&ipmi_driver);
1da177e4
LT
2985 printk("ipmi_si: Unable to find any System Interface(s)\n");
2986 return -ENODEV;
b0defcdb 2987 } else {
d6dfd131 2988 mutex_unlock(&smi_infos_lock);
b0defcdb 2989 return 0;
1da177e4 2990 }
1da177e4
LT
2991}
2992module_init(init_ipmi_si);
2993
b361e27b 2994static void cleanup_one_si(struct smi_info *to_clean)
1da177e4
LT
2995{
2996 int rv;
2997 unsigned long flags;
2998
b0defcdb 2999 if (!to_clean)
1da177e4
LT
3000 return;
3001
b0defcdb
CM
3002 list_del(&to_clean->link);
3003
ee6cd5f8 3004 /* Tell the driver that we are shutting down. */
a9a2c44f 3005 atomic_inc(&to_clean->stop_operation);
b0defcdb 3006
ee6cd5f8
CM
3007 /* Make sure the timer and thread are stopped and will not run
3008 again. */
a9a2c44f 3009 wait_for_timer_and_thread(to_clean);
1da177e4 3010
ee6cd5f8
CM
3011 /* Timeouts are stopped, now make sure the interrupts are off
3012 for the device. A little tricky with locks to make sure
3013 there are no races. */
3014 spin_lock_irqsave(&to_clean->si_lock, flags);
3015 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3016 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3017 poll(to_clean);
3018 schedule_timeout_uninterruptible(1);
3019 spin_lock_irqsave(&to_clean->si_lock, flags);
3020 }
3021 disable_si_irq(to_clean);
3022 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3023 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3024 poll(to_clean);
3025 schedule_timeout_uninterruptible(1);
3026 }
3027
3028 /* Clean up interrupts and make sure that everything is done. */
3029 if (to_clean->irq_cleanup)
3030 to_clean->irq_cleanup(to_clean);
e8b33617 3031 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
1da177e4 3032 poll(to_clean);
da4cd8df 3033 schedule_timeout_uninterruptible(1);
1da177e4
LT
3034 }
3035
3036 rv = ipmi_unregister_smi(to_clean->intf);
3037 if (rv) {
3038 printk(KERN_ERR
3039 "ipmi_si: Unable to unregister device: errno=%d\n",
3040 rv);
3041 }
3042
3043 to_clean->handlers->cleanup(to_clean->si_sm);
3044
3045 kfree(to_clean->si_sm);
3046
b0defcdb
CM
3047 if (to_clean->addr_source_cleanup)
3048 to_clean->addr_source_cleanup(to_clean);
7767e126
PG
3049 if (to_clean->io_cleanup)
3050 to_clean->io_cleanup(to_clean);
50c812b2
CM
3051
3052 if (to_clean->dev_registered)
3053 platform_device_unregister(to_clean->pdev);
3054
3055 kfree(to_clean);
1da177e4
LT
3056}
3057
3058static __exit void cleanup_ipmi_si(void)
3059{
b0defcdb 3060 struct smi_info *e, *tmp_e;
1da177e4 3061
b0defcdb 3062 if (!initialized)
1da177e4
LT
3063 return;
3064
b0defcdb
CM
3065#ifdef CONFIG_PCI
3066 pci_unregister_driver(&ipmi_pci_driver);
3067#endif
3068
dba9b4f6
CM
3069#ifdef CONFIG_PPC_OF
3070 of_unregister_platform_driver(&ipmi_of_platform_driver);
3071#endif
3072
d6dfd131 3073 mutex_lock(&smi_infos_lock);
b0defcdb
CM
3074 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3075 cleanup_one_si(e);
d6dfd131 3076 mutex_unlock(&smi_infos_lock);
50c812b2
CM
3077
3078 driver_unregister(&ipmi_driver);
1da177e4
LT
3079}
3080module_exit(cleanup_ipmi_si);
3081
3082MODULE_LICENSE("GPL");
1fdd75bd
CM
3083MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3084MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT system interfaces.");
This page took 0.47217 seconds and 5 git commands to generate.