Merge remote-tracking branch 'clk/clk-next'
[deliverable/linux.git] / drivers / clk / bcm / clk-bcm2835.c
CommitLineData
75fabc3f 1/*
41691b88 2 * Copyright (C) 2010,2015 Broadcom
75fabc3f
SA
3 * Copyright (C) 2012 Stephen Warren
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
75fabc3f
SA
15 */
16
41691b88
EA
17/**
18 * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain)
19 *
20 * The clock tree on the 2835 has several levels. There's a root
21 * oscillator running at 19.2Mhz. After the oscillator there are 5
22 * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays",
23 * and "HDMI displays". Those 5 PLLs each can divide their output to
24 * produce up to 4 channels. Finally, there is the level of clocks to
25 * be consumed by other hardware components (like "H264" or "HDMI
26 * state machine"), which divide off of some subset of the PLL
27 * channels.
28 *
29 * All of the clocks in the tree are exposed in the DT, because the DT
30 * may want to make assignments of the final layer of clocks to the
31 * PLL channels, and some components of the hardware will actually
32 * skip layers of the tree (for example, the pixel clock comes
33 * directly from the PLLH PIX channel without using a CM_*CTL clock
34 * generator).
35 */
36
75fabc3f
SA
37#include <linux/clk-provider.h>
38#include <linux/clkdev.h>
9e400c5c 39#include <linux/clk.h>
75fabc3f 40#include <linux/clk/bcm2835.h>
96bf9c69 41#include <linux/debugfs.h>
41691b88 42#include <linux/module.h>
526d239c 43#include <linux/of.h>
41691b88
EA
44#include <linux/platform_device.h>
45#include <linux/slab.h>
46#include <dt-bindings/clock/bcm2835.h>
47
48#define CM_PASSWORD 0x5a000000
49
50#define CM_GNRICCTL 0x000
51#define CM_GNRICDIV 0x004
52# define CM_DIV_FRAC_BITS 12
959ca92a 53# define CM_DIV_FRAC_MASK GENMASK(CM_DIV_FRAC_BITS - 1, 0)
41691b88
EA
54
55#define CM_VPUCTL 0x008
56#define CM_VPUDIV 0x00c
57#define CM_SYSCTL 0x010
58#define CM_SYSDIV 0x014
59#define CM_PERIACTL 0x018
60#define CM_PERIADIV 0x01c
61#define CM_PERIICTL 0x020
62#define CM_PERIIDIV 0x024
63#define CM_H264CTL 0x028
64#define CM_H264DIV 0x02c
65#define CM_ISPCTL 0x030
66#define CM_ISPDIV 0x034
67#define CM_V3DCTL 0x038
68#define CM_V3DDIV 0x03c
69#define CM_CAM0CTL 0x040
70#define CM_CAM0DIV 0x044
71#define CM_CAM1CTL 0x048
72#define CM_CAM1DIV 0x04c
73#define CM_CCP2CTL 0x050
74#define CM_CCP2DIV 0x054
75#define CM_DSI0ECTL 0x058
76#define CM_DSI0EDIV 0x05c
77#define CM_DSI0PCTL 0x060
78#define CM_DSI0PDIV 0x064
79#define CM_DPICTL 0x068
80#define CM_DPIDIV 0x06c
81#define CM_GP0CTL 0x070
82#define CM_GP0DIV 0x074
83#define CM_GP1CTL 0x078
84#define CM_GP1DIV 0x07c
85#define CM_GP2CTL 0x080
86#define CM_GP2DIV 0x084
87#define CM_HSMCTL 0x088
88#define CM_HSMDIV 0x08c
89#define CM_OTPCTL 0x090
90#define CM_OTPDIV 0x094
2103a215
MS
91#define CM_PCMCTL 0x098
92#define CM_PCMDIV 0x09c
41691b88
EA
93#define CM_PWMCTL 0x0a0
94#define CM_PWMDIV 0x0a4
2103a215
MS
95#define CM_SLIMCTL 0x0a8
96#define CM_SLIMDIV 0x0ac
41691b88
EA
97#define CM_SMICTL 0x0b0
98#define CM_SMIDIV 0x0b4
2103a215
MS
99/* no definition for 0x0b8 and 0x0bc */
100#define CM_TCNTCTL 0x0c0
101#define CM_TCNTDIV 0x0c4
102#define CM_TECCTL 0x0c8
103#define CM_TECDIV 0x0cc
104#define CM_TD0CTL 0x0d0
105#define CM_TD0DIV 0x0d4
106#define CM_TD1CTL 0x0d8
107#define CM_TD1DIV 0x0dc
41691b88
EA
108#define CM_TSENSCTL 0x0e0
109#define CM_TSENSDIV 0x0e4
110#define CM_TIMERCTL 0x0e8
111#define CM_TIMERDIV 0x0ec
112#define CM_UARTCTL 0x0f0
113#define CM_UARTDIV 0x0f4
114#define CM_VECCTL 0x0f8
115#define CM_VECDIV 0x0fc
116#define CM_PULSECTL 0x190
117#define CM_PULSEDIV 0x194
118#define CM_SDCCTL 0x1a8
119#define CM_SDCDIV 0x1ac
120#define CM_ARMCTL 0x1b0
d3d6f15f
MS
121#define CM_AVEOCTL 0x1b8
122#define CM_AVEODIV 0x1bc
41691b88
EA
123#define CM_EMMCCTL 0x1c0
124#define CM_EMMCDIV 0x1c4
125
126/* General bits for the CM_*CTL regs */
127# define CM_ENABLE BIT(4)
128# define CM_KILL BIT(5)
129# define CM_GATE_BIT 6
130# define CM_GATE BIT(CM_GATE_BIT)
131# define CM_BUSY BIT(7)
132# define CM_BUSYD BIT(8)
959ca92a 133# define CM_FRAC BIT(9)
41691b88
EA
134# define CM_SRC_SHIFT 0
135# define CM_SRC_BITS 4
136# define CM_SRC_MASK 0xf
137# define CM_SRC_GND 0
138# define CM_SRC_OSC 1
139# define CM_SRC_TESTDEBUG0 2
140# define CM_SRC_TESTDEBUG1 3
141# define CM_SRC_PLLA_CORE 4
142# define CM_SRC_PLLA_PER 4
143# define CM_SRC_PLLC_CORE0 5
144# define CM_SRC_PLLC_PER 5
145# define CM_SRC_PLLC_CORE1 8
146# define CM_SRC_PLLD_CORE 6
147# define CM_SRC_PLLD_PER 6
148# define CM_SRC_PLLH_AUX 7
149# define CM_SRC_PLLC_CORE1 8
150# define CM_SRC_PLLC_CORE2 9
151
152#define CM_OSCCOUNT 0x100
153
154#define CM_PLLA 0x104
155# define CM_PLL_ANARST BIT(8)
156# define CM_PLLA_HOLDPER BIT(7)
157# define CM_PLLA_LOADPER BIT(6)
158# define CM_PLLA_HOLDCORE BIT(5)
159# define CM_PLLA_LOADCORE BIT(4)
160# define CM_PLLA_HOLDCCP2 BIT(3)
161# define CM_PLLA_LOADCCP2 BIT(2)
162# define CM_PLLA_HOLDDSI0 BIT(1)
163# define CM_PLLA_LOADDSI0 BIT(0)
164
165#define CM_PLLC 0x108
166# define CM_PLLC_HOLDPER BIT(7)
167# define CM_PLLC_LOADPER BIT(6)
168# define CM_PLLC_HOLDCORE2 BIT(5)
169# define CM_PLLC_LOADCORE2 BIT(4)
170# define CM_PLLC_HOLDCORE1 BIT(3)
171# define CM_PLLC_LOADCORE1 BIT(2)
172# define CM_PLLC_HOLDCORE0 BIT(1)
173# define CM_PLLC_LOADCORE0 BIT(0)
174
175#define CM_PLLD 0x10c
176# define CM_PLLD_HOLDPER BIT(7)
177# define CM_PLLD_LOADPER BIT(6)
178# define CM_PLLD_HOLDCORE BIT(5)
179# define CM_PLLD_LOADCORE BIT(4)
180# define CM_PLLD_HOLDDSI1 BIT(3)
181# define CM_PLLD_LOADDSI1 BIT(2)
182# define CM_PLLD_HOLDDSI0 BIT(1)
183# define CM_PLLD_LOADDSI0 BIT(0)
184
185#define CM_PLLH 0x110
186# define CM_PLLH_LOADRCAL BIT(2)
187# define CM_PLLH_LOADAUX BIT(1)
188# define CM_PLLH_LOADPIX BIT(0)
189
190#define CM_LOCK 0x114
191# define CM_LOCK_FLOCKH BIT(12)
192# define CM_LOCK_FLOCKD BIT(11)
193# define CM_LOCK_FLOCKC BIT(10)
194# define CM_LOCK_FLOCKB BIT(9)
195# define CM_LOCK_FLOCKA BIT(8)
196
197#define CM_EVENT 0x118
198#define CM_DSI1ECTL 0x158
199#define CM_DSI1EDIV 0x15c
200#define CM_DSI1PCTL 0x160
201#define CM_DSI1PDIV 0x164
202#define CM_DFTCTL 0x168
203#define CM_DFTDIV 0x16c
204
205#define CM_PLLB 0x170
206# define CM_PLLB_HOLDARM BIT(1)
207# define CM_PLLB_LOADARM BIT(0)
208
209#define A2W_PLLA_CTRL 0x1100
210#define A2W_PLLC_CTRL 0x1120
211#define A2W_PLLD_CTRL 0x1140
212#define A2W_PLLH_CTRL 0x1160
213#define A2W_PLLB_CTRL 0x11e0
214# define A2W_PLL_CTRL_PRST_DISABLE BIT(17)
215# define A2W_PLL_CTRL_PWRDN BIT(16)
216# define A2W_PLL_CTRL_PDIV_MASK 0x000007000
217# define A2W_PLL_CTRL_PDIV_SHIFT 12
218# define A2W_PLL_CTRL_NDIV_MASK 0x0000003ff
219# define A2W_PLL_CTRL_NDIV_SHIFT 0
220
221#define A2W_PLLA_ANA0 0x1010
222#define A2W_PLLC_ANA0 0x1030
223#define A2W_PLLD_ANA0 0x1050
224#define A2W_PLLH_ANA0 0x1070
225#define A2W_PLLB_ANA0 0x10f0
226
227#define A2W_PLL_KA_SHIFT 7
228#define A2W_PLL_KA_MASK GENMASK(9, 7)
229#define A2W_PLL_KI_SHIFT 19
230#define A2W_PLL_KI_MASK GENMASK(21, 19)
231#define A2W_PLL_KP_SHIFT 15
232#define A2W_PLL_KP_MASK GENMASK(18, 15)
233
234#define A2W_PLLH_KA_SHIFT 19
235#define A2W_PLLH_KA_MASK GENMASK(21, 19)
236#define A2W_PLLH_KI_LOW_SHIFT 22
237#define A2W_PLLH_KI_LOW_MASK GENMASK(23, 22)
238#define A2W_PLLH_KI_HIGH_SHIFT 0
239#define A2W_PLLH_KI_HIGH_MASK GENMASK(0, 0)
240#define A2W_PLLH_KP_SHIFT 1
241#define A2W_PLLH_KP_MASK GENMASK(4, 1)
242
243#define A2W_XOSC_CTRL 0x1190
244# define A2W_XOSC_CTRL_PLLB_ENABLE BIT(7)
245# define A2W_XOSC_CTRL_PLLA_ENABLE BIT(6)
246# define A2W_XOSC_CTRL_PLLD_ENABLE BIT(5)
247# define A2W_XOSC_CTRL_DDR_ENABLE BIT(4)
248# define A2W_XOSC_CTRL_CPR1_ENABLE BIT(3)
249# define A2W_XOSC_CTRL_USB_ENABLE BIT(2)
250# define A2W_XOSC_CTRL_HDMI_ENABLE BIT(1)
251# define A2W_XOSC_CTRL_PLLC_ENABLE BIT(0)
252
253#define A2W_PLLA_FRAC 0x1200
254#define A2W_PLLC_FRAC 0x1220
255#define A2W_PLLD_FRAC 0x1240
256#define A2W_PLLH_FRAC 0x1260
257#define A2W_PLLB_FRAC 0x12e0
258# define A2W_PLL_FRAC_MASK ((1 << A2W_PLL_FRAC_BITS) - 1)
259# define A2W_PLL_FRAC_BITS 20
260
261#define A2W_PLL_CHANNEL_DISABLE BIT(8)
262#define A2W_PLL_DIV_BITS 8
263#define A2W_PLL_DIV_SHIFT 0
264
265#define A2W_PLLA_DSI0 0x1300
266#define A2W_PLLA_CORE 0x1400
267#define A2W_PLLA_PER 0x1500
268#define A2W_PLLA_CCP2 0x1600
269
270#define A2W_PLLC_CORE2 0x1320
271#define A2W_PLLC_CORE1 0x1420
272#define A2W_PLLC_PER 0x1520
273#define A2W_PLLC_CORE0 0x1620
274
275#define A2W_PLLD_DSI0 0x1340
276#define A2W_PLLD_CORE 0x1440
277#define A2W_PLLD_PER 0x1540
278#define A2W_PLLD_DSI1 0x1640
279
280#define A2W_PLLH_AUX 0x1360
281#define A2W_PLLH_RCAL 0x1460
282#define A2W_PLLH_PIX 0x1560
283#define A2W_PLLH_STS 0x1660
284
285#define A2W_PLLH_CTRLR 0x1960
286#define A2W_PLLH_FRACR 0x1a60
287#define A2W_PLLH_AUXR 0x1b60
288#define A2W_PLLH_RCALR 0x1c60
289#define A2W_PLLH_PIXR 0x1d60
290#define A2W_PLLH_STSR 0x1e60
291
292#define A2W_PLLB_ARM 0x13e0
293#define A2W_PLLB_SP0 0x14e0
294#define A2W_PLLB_SP1 0x15e0
295#define A2W_PLLB_SP2 0x16e0
296
297#define LOCK_TIMEOUT_NS 100000000
298#define BCM2835_MAX_FB_RATE 1750000000u
299
300struct bcm2835_cprman {
301 struct device *dev;
302 void __iomem *regs;
6e1e60da 303 spinlock_t regs_lock; /* spinlock for all clocks */
41691b88
EA
304 const char *osc_name;
305
306 struct clk_onecell_data onecell;
56eb3a2e 307 struct clk *clks[];
41691b88
EA
308};
309
310static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val)
311{
312 writel(CM_PASSWORD | val, cprman->regs + reg);
313}
314
315static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg)
316{
317 return readl(cprman->regs + reg);
318}
526d239c 319
96bf9c69
MS
320static int bcm2835_debugfs_regset(struct bcm2835_cprman *cprman, u32 base,
321 struct debugfs_reg32 *regs, size_t nregs,
322 struct dentry *dentry)
323{
324 struct dentry *regdump;
325 struct debugfs_regset32 *regset;
326
327 regset = devm_kzalloc(cprman->dev, sizeof(*regset), GFP_KERNEL);
328 if (!regset)
329 return -ENOMEM;
330
331 regset->regs = regs;
332 regset->nregs = nregs;
333 regset->base = cprman->regs + base;
334
335 regdump = debugfs_create_regset32("regdump", S_IRUGO, dentry,
336 regset);
337
338 return regdump ? 0 : -ENOMEM;
339}
340
75fabc3f
SA
341/*
342 * These are fixed clocks. They're probably not all root clocks and it may
343 * be possible to turn them on and off but until this is mapped out better
344 * it's the only way they can be used.
345 */
346void __init bcm2835_init_clocks(void)
347{
348 struct clk *clk;
349 int ret;
350
bd41aa67 351 clk = clk_register_fixed_rate(NULL, "apb_pclk", NULL, 0, 126000000);
0de9f23a 352 if (IS_ERR(clk))
75fabc3f
SA
353 pr_err("apb_pclk not registered\n");
354
bd41aa67 355 clk = clk_register_fixed_rate(NULL, "uart0_pclk", NULL, 0, 3000000);
0de9f23a 356 if (IS_ERR(clk))
75fabc3f
SA
357 pr_err("uart0_pclk not registered\n");
358 ret = clk_register_clkdev(clk, NULL, "20201000.uart");
359 if (ret)
360 pr_err("uart0_pclk alias not registered\n");
361
bd41aa67 362 clk = clk_register_fixed_rate(NULL, "uart1_pclk", NULL, 0, 125000000);
0de9f23a 363 if (IS_ERR(clk))
75fabc3f
SA
364 pr_err("uart1_pclk not registered\n");
365 ret = clk_register_clkdev(clk, NULL, "20215000.uart");
366 if (ret)
686ea585 367 pr_err("uart1_pclk alias not registered\n");
75fabc3f 368}
41691b88
EA
369
370struct bcm2835_pll_data {
371 const char *name;
372 u32 cm_ctrl_reg;
373 u32 a2w_ctrl_reg;
374 u32 frac_reg;
375 u32 ana_reg_base;
376 u32 reference_enable_mask;
377 /* Bit in CM_LOCK to indicate when the PLL has locked. */
378 u32 lock_mask;
379
380 const struct bcm2835_pll_ana_bits *ana;
381
382 unsigned long min_rate;
383 unsigned long max_rate;
384 /*
385 * Highest rate for the VCO before we have to use the
386 * pre-divide-by-2.
387 */
388 unsigned long max_fb_rate;
389};
390
391struct bcm2835_pll_ana_bits {
392 u32 mask0;
393 u32 set0;
394 u32 mask1;
395 u32 set1;
396 u32 mask3;
397 u32 set3;
398 u32 fb_prediv_mask;
399};
400
401static const struct bcm2835_pll_ana_bits bcm2835_ana_default = {
402 .mask0 = 0,
403 .set0 = 0,
286259ef 404 .mask1 = (u32)~(A2W_PLL_KI_MASK | A2W_PLL_KP_MASK),
41691b88 405 .set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT),
286259ef 406 .mask3 = (u32)~A2W_PLL_KA_MASK,
41691b88
EA
407 .set3 = (2 << A2W_PLL_KA_SHIFT),
408 .fb_prediv_mask = BIT(14),
409};
410
411static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = {
286259ef 412 .mask0 = (u32)~(A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK),
41691b88 413 .set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT),
286259ef 414 .mask1 = (u32)~(A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK),
41691b88
EA
415 .set1 = (6 << A2W_PLLH_KP_SHIFT),
416 .mask3 = 0,
417 .set3 = 0,
418 .fb_prediv_mask = BIT(11),
419};
420
41691b88
EA
421struct bcm2835_pll_divider_data {
422 const char *name;
3b15afef
MS
423 const char *source_pll;
424
41691b88
EA
425 u32 cm_reg;
426 u32 a2w_reg;
427
428 u32 load_mask;
429 u32 hold_mask;
430 u32 fixed_divider;
431};
432
41691b88
EA
433struct bcm2835_clock_data {
434 const char *name;
435
436 const char *const *parents;
437 int num_mux_parents;
438
439 u32 ctl_reg;
440 u32 div_reg;
441
442 /* Number of integer bits in the divider */
443 u32 int_bits;
444 /* Number of fractional bits in the divider */
445 u32 frac_bits;
446
e69fdcca
EA
447 u32 flags;
448
41691b88 449 bool is_vpu_clock;
959ca92a 450 bool is_mash_clock;
41691b88
EA
451};
452
56eb3a2e
MS
453struct bcm2835_gate_data {
454 const char *name;
455 const char *parent;
456
457 u32 ctl_reg;
458};
459
41691b88
EA
460struct bcm2835_pll {
461 struct clk_hw hw;
462 struct bcm2835_cprman *cprman;
463 const struct bcm2835_pll_data *data;
464};
465
466static int bcm2835_pll_is_on(struct clk_hw *hw)
467{
468 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
469 struct bcm2835_cprman *cprman = pll->cprman;
470 const struct bcm2835_pll_data *data = pll->data;
471
472 return cprman_read(cprman, data->a2w_ctrl_reg) &
473 A2W_PLL_CTRL_PRST_DISABLE;
474}
475
476static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate,
477 unsigned long parent_rate,
478 u32 *ndiv, u32 *fdiv)
479{
480 u64 div;
481
482 div = (u64)rate << A2W_PLL_FRAC_BITS;
483 do_div(div, parent_rate);
484
485 *ndiv = div >> A2W_PLL_FRAC_BITS;
486 *fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1);
487}
488
489static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate,
490 u32 ndiv, u32 fdiv, u32 pdiv)
491{
492 u64 rate;
493
494 if (pdiv == 0)
495 return 0;
496
497 rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv);
498 do_div(rate, pdiv);
499 return rate >> A2W_PLL_FRAC_BITS;
500}
501
502static long bcm2835_pll_round_rate(struct clk_hw *hw, unsigned long rate,
503 unsigned long *parent_rate)
504{
505 u32 ndiv, fdiv;
506
507 bcm2835_pll_choose_ndiv_and_fdiv(rate, *parent_rate, &ndiv, &fdiv);
508
509 return bcm2835_pll_rate_from_divisors(*parent_rate, ndiv, fdiv, 1);
510}
511
512static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw,
513 unsigned long parent_rate)
514{
515 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
516 struct bcm2835_cprman *cprman = pll->cprman;
517 const struct bcm2835_pll_data *data = pll->data;
518 u32 a2wctrl = cprman_read(cprman, data->a2w_ctrl_reg);
519 u32 ndiv, pdiv, fdiv;
520 bool using_prediv;
521
522 if (parent_rate == 0)
523 return 0;
524
525 fdiv = cprman_read(cprman, data->frac_reg) & A2W_PLL_FRAC_MASK;
526 ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT;
527 pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT;
528 using_prediv = cprman_read(cprman, data->ana_reg_base + 4) &
529 data->ana->fb_prediv_mask;
530
531 if (using_prediv)
532 ndiv *= 2;
533
534 return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv);
535}
536
537static void bcm2835_pll_off(struct clk_hw *hw)
538{
539 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
540 struct bcm2835_cprman *cprman = pll->cprman;
541 const struct bcm2835_pll_data *data = pll->data;
542
6727f086
MS
543 spin_lock(&cprman->regs_lock);
544 cprman_write(cprman, data->cm_ctrl_reg,
545 cprman_read(cprman, data->cm_ctrl_reg) |
546 CM_PLL_ANARST);
547 cprman_write(cprman, data->a2w_ctrl_reg,
548 cprman_read(cprman, data->a2w_ctrl_reg) |
549 A2W_PLL_CTRL_PWRDN);
550 spin_unlock(&cprman->regs_lock);
41691b88
EA
551}
552
553static int bcm2835_pll_on(struct clk_hw *hw)
554{
555 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
556 struct bcm2835_cprman *cprman = pll->cprman;
557 const struct bcm2835_pll_data *data = pll->data;
558 ktime_t timeout;
559
e708b383
EA
560 cprman_write(cprman, data->a2w_ctrl_reg,
561 cprman_read(cprman, data->a2w_ctrl_reg) &
562 ~A2W_PLL_CTRL_PWRDN);
563
41691b88
EA
564 /* Take the PLL out of reset. */
565 cprman_write(cprman, data->cm_ctrl_reg,
566 cprman_read(cprman, data->cm_ctrl_reg) & ~CM_PLL_ANARST);
567
568 /* Wait for the PLL to lock. */
569 timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
570 while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) {
571 if (ktime_after(ktime_get(), timeout)) {
572 dev_err(cprman->dev, "%s: couldn't lock PLL\n",
573 clk_hw_get_name(hw));
574 return -ETIMEDOUT;
575 }
576
577 cpu_relax();
578 }
579
580 return 0;
581}
582
583static void
584bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana)
585{
586 int i;
587
588 /*
589 * ANA register setup is done as a series of writes to
590 * ANA3-ANA0, in that order. This lets us write all 4
591 * registers as a single cycle of the serdes interface (taking
592 * 100 xosc clocks), whereas if we were to update ana0, 1, and
593 * 3 individually through their partial-write registers, each
594 * would be their own serdes cycle.
595 */
596 for (i = 3; i >= 0; i--)
597 cprman_write(cprman, ana_reg_base + i * 4, ana[i]);
598}
599
600static int bcm2835_pll_set_rate(struct clk_hw *hw,
601 unsigned long rate, unsigned long parent_rate)
602{
603 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
604 struct bcm2835_cprman *cprman = pll->cprman;
605 const struct bcm2835_pll_data *data = pll->data;
606 bool was_using_prediv, use_fb_prediv, do_ana_setup_first;
607 u32 ndiv, fdiv, a2w_ctl;
608 u32 ana[4];
609 int i;
610
611 if (rate < data->min_rate || rate > data->max_rate) {
612 dev_err(cprman->dev, "%s: rate out of spec: %lu vs (%lu, %lu)\n",
613 clk_hw_get_name(hw), rate,
614 data->min_rate, data->max_rate);
615 return -EINVAL;
616 }
617
618 if (rate > data->max_fb_rate) {
619 use_fb_prediv = true;
620 rate /= 2;
621 } else {
622 use_fb_prediv = false;
623 }
624
625 bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, &ndiv, &fdiv);
626
627 for (i = 3; i >= 0; i--)
628 ana[i] = cprman_read(cprman, data->ana_reg_base + i * 4);
629
630 was_using_prediv = ana[1] & data->ana->fb_prediv_mask;
631
632 ana[0] &= ~data->ana->mask0;
633 ana[0] |= data->ana->set0;
634 ana[1] &= ~data->ana->mask1;
635 ana[1] |= data->ana->set1;
636 ana[3] &= ~data->ana->mask3;
637 ana[3] |= data->ana->set3;
638
639 if (was_using_prediv && !use_fb_prediv) {
640 ana[1] &= ~data->ana->fb_prediv_mask;
641 do_ana_setup_first = true;
642 } else if (!was_using_prediv && use_fb_prediv) {
643 ana[1] |= data->ana->fb_prediv_mask;
644 do_ana_setup_first = false;
645 } else {
646 do_ana_setup_first = true;
647 }
648
649 /* Unmask the reference clock from the oscillator. */
650 cprman_write(cprman, A2W_XOSC_CTRL,
651 cprman_read(cprman, A2W_XOSC_CTRL) |
652 data->reference_enable_mask);
653
654 if (do_ana_setup_first)
655 bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
656
657 /* Set the PLL multiplier from the oscillator. */
658 cprman_write(cprman, data->frac_reg, fdiv);
659
660 a2w_ctl = cprman_read(cprman, data->a2w_ctrl_reg);
661 a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK;
662 a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT;
663 a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK;
664 a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT;
665 cprman_write(cprman, data->a2w_ctrl_reg, a2w_ctl);
666
667 if (!do_ana_setup_first)
668 bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
669
670 return 0;
671}
672
96bf9c69
MS
673static int bcm2835_pll_debug_init(struct clk_hw *hw,
674 struct dentry *dentry)
675{
676 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
677 struct bcm2835_cprman *cprman = pll->cprman;
678 const struct bcm2835_pll_data *data = pll->data;
679 struct debugfs_reg32 *regs;
680
681 regs = devm_kzalloc(cprman->dev, 7 * sizeof(*regs), GFP_KERNEL);
682 if (!regs)
683 return -ENOMEM;
684
685 regs[0].name = "cm_ctrl";
686 regs[0].offset = data->cm_ctrl_reg;
687 regs[1].name = "a2w_ctrl";
688 regs[1].offset = data->a2w_ctrl_reg;
689 regs[2].name = "frac";
690 regs[2].offset = data->frac_reg;
691 regs[3].name = "ana0";
692 regs[3].offset = data->ana_reg_base + 0 * 4;
693 regs[4].name = "ana1";
694 regs[4].offset = data->ana_reg_base + 1 * 4;
695 regs[5].name = "ana2";
696 regs[5].offset = data->ana_reg_base + 2 * 4;
697 regs[6].name = "ana3";
698 regs[6].offset = data->ana_reg_base + 3 * 4;
699
700 return bcm2835_debugfs_regset(cprman, 0, regs, 7, dentry);
701}
702
41691b88
EA
703static const struct clk_ops bcm2835_pll_clk_ops = {
704 .is_prepared = bcm2835_pll_is_on,
705 .prepare = bcm2835_pll_on,
706 .unprepare = bcm2835_pll_off,
707 .recalc_rate = bcm2835_pll_get_rate,
708 .set_rate = bcm2835_pll_set_rate,
709 .round_rate = bcm2835_pll_round_rate,
96bf9c69 710 .debug_init = bcm2835_pll_debug_init,
41691b88
EA
711};
712
713struct bcm2835_pll_divider {
714 struct clk_divider div;
715 struct bcm2835_cprman *cprman;
716 const struct bcm2835_pll_divider_data *data;
717};
718
719static struct bcm2835_pll_divider *
720bcm2835_pll_divider_from_hw(struct clk_hw *hw)
721{
722 return container_of(hw, struct bcm2835_pll_divider, div.hw);
723}
724
725static int bcm2835_pll_divider_is_on(struct clk_hw *hw)
726{
727 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
728 struct bcm2835_cprman *cprman = divider->cprman;
729 const struct bcm2835_pll_divider_data *data = divider->data;
730
731 return !(cprman_read(cprman, data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE);
732}
733
734static long bcm2835_pll_divider_round_rate(struct clk_hw *hw,
735 unsigned long rate,
736 unsigned long *parent_rate)
737{
738 return clk_divider_ops.round_rate(hw, rate, parent_rate);
739}
740
741static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw,
742 unsigned long parent_rate)
743{
79c1e2fc 744 return clk_divider_ops.recalc_rate(hw, parent_rate);
41691b88
EA
745}
746
747static void bcm2835_pll_divider_off(struct clk_hw *hw)
748{
749 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
750 struct bcm2835_cprman *cprman = divider->cprman;
751 const struct bcm2835_pll_divider_data *data = divider->data;
752
ec36a5c6 753 spin_lock(&cprman->regs_lock);
41691b88
EA
754 cprman_write(cprman, data->cm_reg,
755 (cprman_read(cprman, data->cm_reg) &
756 ~data->load_mask) | data->hold_mask);
757 cprman_write(cprman, data->a2w_reg, A2W_PLL_CHANNEL_DISABLE);
ec36a5c6 758 spin_unlock(&cprman->regs_lock);
41691b88
EA
759}
760
761static int bcm2835_pll_divider_on(struct clk_hw *hw)
762{
763 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
764 struct bcm2835_cprman *cprman = divider->cprman;
765 const struct bcm2835_pll_divider_data *data = divider->data;
766
ec36a5c6 767 spin_lock(&cprman->regs_lock);
41691b88
EA
768 cprman_write(cprman, data->a2w_reg,
769 cprman_read(cprman, data->a2w_reg) &
770 ~A2W_PLL_CHANNEL_DISABLE);
771
772 cprman_write(cprman, data->cm_reg,
773 cprman_read(cprman, data->cm_reg) & ~data->hold_mask);
ec36a5c6 774 spin_unlock(&cprman->regs_lock);
41691b88
EA
775
776 return 0;
777}
778
779static int bcm2835_pll_divider_set_rate(struct clk_hw *hw,
780 unsigned long rate,
781 unsigned long parent_rate)
782{
783 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
784 struct bcm2835_cprman *cprman = divider->cprman;
785 const struct bcm2835_pll_divider_data *data = divider->data;
773b3966 786 u32 cm, div, max_div = 1 << A2W_PLL_DIV_BITS;
41691b88 787
773b3966
EA
788 div = DIV_ROUND_UP_ULL(parent_rate, rate);
789
790 div = min(div, max_div);
791 if (div == max_div)
792 div = 0;
41691b88 793
773b3966 794 cprman_write(cprman, data->a2w_reg, div);
41691b88
EA
795 cm = cprman_read(cprman, data->cm_reg);
796 cprman_write(cprman, data->cm_reg, cm | data->load_mask);
797 cprman_write(cprman, data->cm_reg, cm & ~data->load_mask);
798
799 return 0;
800}
801
96bf9c69
MS
802static int bcm2835_pll_divider_debug_init(struct clk_hw *hw,
803 struct dentry *dentry)
804{
805 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
806 struct bcm2835_cprman *cprman = divider->cprman;
807 const struct bcm2835_pll_divider_data *data = divider->data;
808 struct debugfs_reg32 *regs;
809
810 regs = devm_kzalloc(cprman->dev, 7 * sizeof(*regs), GFP_KERNEL);
811 if (!regs)
812 return -ENOMEM;
813
814 regs[0].name = "cm";
815 regs[0].offset = data->cm_reg;
816 regs[1].name = "a2w";
817 regs[1].offset = data->a2w_reg;
818
819 return bcm2835_debugfs_regset(cprman, 0, regs, 2, dentry);
820}
821
41691b88
EA
822static const struct clk_ops bcm2835_pll_divider_clk_ops = {
823 .is_prepared = bcm2835_pll_divider_is_on,
824 .prepare = bcm2835_pll_divider_on,
825 .unprepare = bcm2835_pll_divider_off,
826 .recalc_rate = bcm2835_pll_divider_get_rate,
827 .set_rate = bcm2835_pll_divider_set_rate,
828 .round_rate = bcm2835_pll_divider_round_rate,
96bf9c69 829 .debug_init = bcm2835_pll_divider_debug_init,
41691b88
EA
830};
831
832/*
833 * The CM dividers do fixed-point division, so we can't use the
834 * generic integer divider code like the PLL dividers do (and we can't
835 * fake it by having some fixed shifts preceding it in the clock tree,
836 * because we'd run out of bits in a 32-bit unsigned long).
837 */
838struct bcm2835_clock {
839 struct clk_hw hw;
840 struct bcm2835_cprman *cprman;
841 const struct bcm2835_clock_data *data;
842};
843
844static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw)
845{
846 return container_of(hw, struct bcm2835_clock, hw);
847}
848
849static int bcm2835_clock_is_on(struct clk_hw *hw)
850{
851 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
852 struct bcm2835_cprman *cprman = clock->cprman;
853 const struct bcm2835_clock_data *data = clock->data;
854
855 return (cprman_read(cprman, data->ctl_reg) & CM_ENABLE) != 0;
856}
857
858static u32 bcm2835_clock_choose_div(struct clk_hw *hw,
859 unsigned long rate,
9c95b32c
RP
860 unsigned long parent_rate,
861 bool round_up)
41691b88
EA
862{
863 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
864 const struct bcm2835_clock_data *data = clock->data;
9c95b32c
RP
865 u32 unused_frac_mask =
866 GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0) >> 1;
41691b88 867 u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS;
9c95b32c 868 u64 rem;
959ca92a 869 u32 div, mindiv, maxdiv;
41691b88 870
9c95b32c 871 rem = do_div(temp, rate);
41691b88
EA
872 div = temp;
873
9c95b32c
RP
874 /* Round up and mask off the unused bits */
875 if (round_up && ((div & unused_frac_mask) != 0 || rem != 0))
876 div += unused_frac_mask + 1;
877 div &= ~unused_frac_mask;
41691b88 878
959ca92a
MS
879 /* different clamping limits apply for a mash clock */
880 if (data->is_mash_clock) {
881 /* clamp to min divider of 2 */
882 mindiv = 2 << CM_DIV_FRAC_BITS;
883 /* clamp to the highest possible integer divider */
884 maxdiv = (BIT(data->int_bits) - 1) << CM_DIV_FRAC_BITS;
885 } else {
886 /* clamp to min divider of 1 */
887 mindiv = 1 << CM_DIV_FRAC_BITS;
888 /* clamp to the highest possible fractional divider */
889 maxdiv = GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1,
890 CM_DIV_FRAC_BITS - data->frac_bits);
891 }
892
893 /* apply the clamping limits */
894 div = max_t(u32, div, mindiv);
895 div = min_t(u32, div, maxdiv);
41691b88
EA
896
897 return div;
898}
899
900static long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock,
901 unsigned long parent_rate,
902 u32 div)
903{
904 const struct bcm2835_clock_data *data = clock->data;
905 u64 temp;
906
907 /*
908 * The divisor is a 12.12 fixed point field, but only some of
909 * the bits are populated in any given clock.
910 */
911 div >>= CM_DIV_FRAC_BITS - data->frac_bits;
912 div &= (1 << (data->int_bits + data->frac_bits)) - 1;
913
914 if (div == 0)
915 return 0;
916
917 temp = (u64)parent_rate << data->frac_bits;
918
919 do_div(temp, div);
920
921 return temp;
922}
923
41691b88
EA
924static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw,
925 unsigned long parent_rate)
926{
927 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
928 struct bcm2835_cprman *cprman = clock->cprman;
929 const struct bcm2835_clock_data *data = clock->data;
930 u32 div = cprman_read(cprman, data->div_reg);
931
932 return bcm2835_clock_rate_from_divisor(clock, parent_rate, div);
933}
934
935static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock)
936{
937 struct bcm2835_cprman *cprman = clock->cprman;
938 const struct bcm2835_clock_data *data = clock->data;
939 ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
940
941 while (cprman_read(cprman, data->ctl_reg) & CM_BUSY) {
942 if (ktime_after(ktime_get(), timeout)) {
943 dev_err(cprman->dev, "%s: couldn't lock PLL\n",
944 clk_hw_get_name(&clock->hw));
945 return;
946 }
947 cpu_relax();
948 }
949}
950
951static void bcm2835_clock_off(struct clk_hw *hw)
952{
953 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
954 struct bcm2835_cprman *cprman = clock->cprman;
955 const struct bcm2835_clock_data *data = clock->data;
956
957 spin_lock(&cprman->regs_lock);
958 cprman_write(cprman, data->ctl_reg,
959 cprman_read(cprman, data->ctl_reg) & ~CM_ENABLE);
960 spin_unlock(&cprman->regs_lock);
961
962 /* BUSY will remain high until the divider completes its cycle. */
963 bcm2835_clock_wait_busy(clock);
964}
965
966static int bcm2835_clock_on(struct clk_hw *hw)
967{
968 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
969 struct bcm2835_cprman *cprman = clock->cprman;
970 const struct bcm2835_clock_data *data = clock->data;
971
972 spin_lock(&cprman->regs_lock);
973 cprman_write(cprman, data->ctl_reg,
974 cprman_read(cprman, data->ctl_reg) |
975 CM_ENABLE |
976 CM_GATE);
977 spin_unlock(&cprman->regs_lock);
978
979 return 0;
980}
981
982static int bcm2835_clock_set_rate(struct clk_hw *hw,
983 unsigned long rate, unsigned long parent_rate)
984{
985 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
986 struct bcm2835_cprman *cprman = clock->cprman;
987 const struct bcm2835_clock_data *data = clock->data;
9c95b32c 988 u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate, false);
959ca92a
MS
989 u32 ctl;
990
991 spin_lock(&cprman->regs_lock);
992
993 /*
994 * Setting up frac support
995 *
996 * In principle it is recommended to stop/start the clock first,
997 * but as we set CLK_SET_RATE_GATE during registration of the
998 * clock this requirement should be take care of by the
999 * clk-framework.
1000 */
1001 ctl = cprman_read(cprman, data->ctl_reg) & ~CM_FRAC;
1002 ctl |= (div & CM_DIV_FRAC_MASK) ? CM_FRAC : 0;
1003 cprman_write(cprman, data->ctl_reg, ctl);
41691b88
EA
1004
1005 cprman_write(cprman, data->div_reg, div);
1006
959ca92a
MS
1007 spin_unlock(&cprman->regs_lock);
1008
41691b88
EA
1009 return 0;
1010}
1011
67615c58
EA
1012static bool
1013bcm2835_clk_is_pllc(struct clk_hw *hw)
1014{
1015 if (!hw)
1016 return false;
1017
1018 return strncmp(clk_hw_get_name(hw), "pllc", 4) == 0;
1019}
1020
6d18b8ad 1021static int bcm2835_clock_determine_rate(struct clk_hw *hw,
6e1e60da 1022 struct clk_rate_request *req)
6d18b8ad
RP
1023{
1024 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1025 struct clk_hw *parent, *best_parent = NULL;
67615c58 1026 bool current_parent_is_pllc;
6d18b8ad
RP
1027 unsigned long rate, best_rate = 0;
1028 unsigned long prate, best_prate = 0;
1029 size_t i;
1030 u32 div;
1031
67615c58
EA
1032 current_parent_is_pllc = bcm2835_clk_is_pllc(clk_hw_get_parent(hw));
1033
6d18b8ad
RP
1034 /*
1035 * Select parent clock that results in the closest but lower rate
1036 */
1037 for (i = 0; i < clk_hw_get_num_parents(hw); ++i) {
1038 parent = clk_hw_get_parent_by_index(hw, i);
1039 if (!parent)
1040 continue;
67615c58
EA
1041
1042 /*
1043 * Don't choose a PLLC-derived clock as our parent
1044 * unless it had been manually set that way. PLLC's
1045 * frequency gets adjusted by the firmware due to
1046 * over-temp or under-voltage conditions, without
1047 * prior notification to our clock consumer.
1048 */
1049 if (bcm2835_clk_is_pllc(parent) && !current_parent_is_pllc)
1050 continue;
1051
6d18b8ad
RP
1052 prate = clk_hw_get_rate(parent);
1053 div = bcm2835_clock_choose_div(hw, req->rate, prate, true);
1054 rate = bcm2835_clock_rate_from_divisor(clock, prate, div);
1055 if (rate > best_rate && rate <= req->rate) {
1056 best_parent = parent;
1057 best_prate = prate;
1058 best_rate = rate;
1059 }
1060 }
1061
1062 if (!best_parent)
1063 return -EINVAL;
1064
1065 req->best_parent_hw = best_parent;
1066 req->best_parent_rate = best_prate;
1067
1068 req->rate = best_rate;
1069
1070 return 0;
1071}
1072
1073static int bcm2835_clock_set_parent(struct clk_hw *hw, u8 index)
1074{
1075 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1076 struct bcm2835_cprman *cprman = clock->cprman;
1077 const struct bcm2835_clock_data *data = clock->data;
1078 u8 src = (index << CM_SRC_SHIFT) & CM_SRC_MASK;
1079
1080 cprman_write(cprman, data->ctl_reg, src);
1081 return 0;
1082}
1083
1084static u8 bcm2835_clock_get_parent(struct clk_hw *hw)
1085{
1086 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1087 struct bcm2835_cprman *cprman = clock->cprman;
1088 const struct bcm2835_clock_data *data = clock->data;
1089 u32 src = cprman_read(cprman, data->ctl_reg);
1090
1091 return (src & CM_SRC_MASK) >> CM_SRC_SHIFT;
1092}
1093
96bf9c69
MS
1094static struct debugfs_reg32 bcm2835_debugfs_clock_reg32[] = {
1095 {
1096 .name = "ctl",
1097 .offset = 0,
1098 },
1099 {
1100 .name = "div",
1101 .offset = 4,
1102 },
1103};
1104
1105static int bcm2835_clock_debug_init(struct clk_hw *hw,
1106 struct dentry *dentry)
1107{
1108 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1109 struct bcm2835_cprman *cprman = clock->cprman;
1110 const struct bcm2835_clock_data *data = clock->data;
1111
1112 return bcm2835_debugfs_regset(
1113 cprman, data->ctl_reg,
1114 bcm2835_debugfs_clock_reg32,
1115 ARRAY_SIZE(bcm2835_debugfs_clock_reg32),
1116 dentry);
1117}
1118
41691b88
EA
1119static const struct clk_ops bcm2835_clock_clk_ops = {
1120 .is_prepared = bcm2835_clock_is_on,
1121 .prepare = bcm2835_clock_on,
1122 .unprepare = bcm2835_clock_off,
1123 .recalc_rate = bcm2835_clock_get_rate,
1124 .set_rate = bcm2835_clock_set_rate,
6d18b8ad
RP
1125 .determine_rate = bcm2835_clock_determine_rate,
1126 .set_parent = bcm2835_clock_set_parent,
1127 .get_parent = bcm2835_clock_get_parent,
96bf9c69 1128 .debug_init = bcm2835_clock_debug_init,
41691b88
EA
1129};
1130
1131static int bcm2835_vpu_clock_is_on(struct clk_hw *hw)
1132{
1133 return true;
1134}
1135
1136/*
1137 * The VPU clock can never be disabled (it doesn't have an ENABLE
1138 * bit), so it gets its own set of clock ops.
1139 */
1140static const struct clk_ops bcm2835_vpu_clock_clk_ops = {
1141 .is_prepared = bcm2835_vpu_clock_is_on,
1142 .recalc_rate = bcm2835_clock_get_rate,
1143 .set_rate = bcm2835_clock_set_rate,
6d18b8ad
RP
1144 .determine_rate = bcm2835_clock_determine_rate,
1145 .set_parent = bcm2835_clock_set_parent,
1146 .get_parent = bcm2835_clock_get_parent,
96bf9c69 1147 .debug_init = bcm2835_clock_debug_init,
41691b88
EA
1148};
1149
1150static struct clk *bcm2835_register_pll(struct bcm2835_cprman *cprman,
1151 const struct bcm2835_pll_data *data)
1152{
1153 struct bcm2835_pll *pll;
1154 struct clk_init_data init;
1155
1156 memset(&init, 0, sizeof(init));
1157
1158 /* All of the PLLs derive from the external oscillator. */
1159 init.parent_names = &cprman->osc_name;
1160 init.num_parents = 1;
1161 init.name = data->name;
1162 init.ops = &bcm2835_pll_clk_ops;
1163 init.flags = CLK_IGNORE_UNUSED;
1164
1165 pll = kzalloc(sizeof(*pll), GFP_KERNEL);
1166 if (!pll)
1167 return NULL;
1168
1169 pll->cprman = cprman;
1170 pll->data = data;
1171 pll->hw.init = &init;
1172
1173 return devm_clk_register(cprman->dev, &pll->hw);
1174}
1175
1176static struct clk *
1177bcm2835_register_pll_divider(struct bcm2835_cprman *cprman,
1178 const struct bcm2835_pll_divider_data *data)
1179{
1180 struct bcm2835_pll_divider *divider;
1181 struct clk_init_data init;
1182 struct clk *clk;
1183 const char *divider_name;
1184
1185 if (data->fixed_divider != 1) {
1186 divider_name = devm_kasprintf(cprman->dev, GFP_KERNEL,
1187 "%s_prediv", data->name);
1188 if (!divider_name)
1189 return NULL;
1190 } else {
1191 divider_name = data->name;
1192 }
1193
1194 memset(&init, 0, sizeof(init));
1195
3b15afef 1196 init.parent_names = &data->source_pll;
41691b88
EA
1197 init.num_parents = 1;
1198 init.name = divider_name;
1199 init.ops = &bcm2835_pll_divider_clk_ops;
1200 init.flags = CLK_SET_RATE_PARENT | CLK_IGNORE_UNUSED;
1201
1202 divider = devm_kzalloc(cprman->dev, sizeof(*divider), GFP_KERNEL);
1203 if (!divider)
1204 return NULL;
1205
1206 divider->div.reg = cprman->regs + data->a2w_reg;
1207 divider->div.shift = A2W_PLL_DIV_SHIFT;
1208 divider->div.width = A2W_PLL_DIV_BITS;
79c1e2fc 1209 divider->div.flags = CLK_DIVIDER_MAX_AT_ZERO;
41691b88
EA
1210 divider->div.lock = &cprman->regs_lock;
1211 divider->div.hw.init = &init;
1212 divider->div.table = NULL;
1213
1214 divider->cprman = cprman;
1215 divider->data = data;
1216
1217 clk = devm_clk_register(cprman->dev, &divider->div.hw);
1218 if (IS_ERR(clk))
1219 return clk;
1220
1221 /*
1222 * PLLH's channels have a fixed divide by 10 afterwards, which
1223 * is what our consumers are actually using.
1224 */
1225 if (data->fixed_divider != 1) {
1226 return clk_register_fixed_factor(cprman->dev, data->name,
1227 divider_name,
1228 CLK_SET_RATE_PARENT,
1229 1,
1230 data->fixed_divider);
1231 }
1232
1233 return clk;
1234}
1235
1236static struct clk *bcm2835_register_clock(struct bcm2835_cprman *cprman,
1237 const struct bcm2835_clock_data *data)
1238{
1239 struct bcm2835_clock *clock;
1240 struct clk_init_data init;
6d18b8ad
RP
1241 const char *parents[1 << CM_SRC_BITS];
1242 size_t i;
41691b88
EA
1243
1244 /*
6d18b8ad
RP
1245 * Replace our "xosc" references with the oscillator's
1246 * actual name.
41691b88 1247 */
6d18b8ad
RP
1248 for (i = 0; i < data->num_mux_parents; i++) {
1249 if (strcmp(data->parents[i], "xosc") == 0)
1250 parents[i] = cprman->osc_name;
1251 else
1252 parents[i] = data->parents[i];
41691b88
EA
1253 }
1254
1255 memset(&init, 0, sizeof(init));
6d18b8ad
RP
1256 init.parent_names = parents;
1257 init.num_parents = data->num_mux_parents;
41691b88 1258 init.name = data->name;
e69fdcca 1259 init.flags = data->flags | CLK_IGNORE_UNUSED;
41691b88
EA
1260
1261 if (data->is_vpu_clock) {
1262 init.ops = &bcm2835_vpu_clock_clk_ops;
1263 } else {
1264 init.ops = &bcm2835_clock_clk_ops;
1265 init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE;
eddcbe83
EA
1266
1267 /* If the clock wasn't actually enabled at boot, it's not
1268 * critical.
1269 */
1270 if (!(cprman_read(cprman, data->ctl_reg) & CM_ENABLE))
1271 init.flags &= ~CLK_IS_CRITICAL;
41691b88
EA
1272 }
1273
1274 clock = devm_kzalloc(cprman->dev, sizeof(*clock), GFP_KERNEL);
1275 if (!clock)
1276 return NULL;
1277
1278 clock->cprman = cprman;
1279 clock->data = data;
1280 clock->hw.init = &init;
1281
1282 return devm_clk_register(cprman->dev, &clock->hw);
1283}
1284
56eb3a2e
MS
1285static struct clk *bcm2835_register_gate(struct bcm2835_cprman *cprman,
1286 const struct bcm2835_gate_data *data)
1287{
1288 return clk_register_gate(cprman->dev, data->name, data->parent,
1289 CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE,
1290 cprman->regs + data->ctl_reg,
1291 CM_GATE_BIT, 0, &cprman->regs_lock);
1292}
1293
1294typedef struct clk *(*bcm2835_clk_register)(struct bcm2835_cprman *cprman,
1295 const void *data);
1296struct bcm2835_clk_desc {
1297 bcm2835_clk_register clk_register;
1298 const void *data;
1299};
1300
3b15afef
MS
1301/* assignment helper macros for different clock types */
1302#define _REGISTER(f, ...) { .clk_register = (bcm2835_clk_register)f, \
1303 .data = __VA_ARGS__ }
1304#define REGISTER_PLL(...) _REGISTER(&bcm2835_register_pll, \
1305 &(struct bcm2835_pll_data) \
1306 {__VA_ARGS__})
1307#define REGISTER_PLL_DIV(...) _REGISTER(&bcm2835_register_pll_divider, \
1308 &(struct bcm2835_pll_divider_data) \
1309 {__VA_ARGS__})
1310#define REGISTER_CLK(...) _REGISTER(&bcm2835_register_clock, \
1311 &(struct bcm2835_clock_data) \
1312 {__VA_ARGS__})
1313#define REGISTER_GATE(...) _REGISTER(&bcm2835_register_gate, \
1314 &(struct bcm2835_gate_data) \
1315 {__VA_ARGS__})
1316
1317/* parent mux arrays plus helper macros */
1318
1319/* main oscillator parent mux */
1320static const char *const bcm2835_clock_osc_parents[] = {
1321 "gnd",
1322 "xosc",
1323 "testdebug0",
1324 "testdebug1"
1325};
1326
1327#define REGISTER_OSC_CLK(...) REGISTER_CLK( \
1328 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents), \
1329 .parents = bcm2835_clock_osc_parents, \
1330 __VA_ARGS__)
1331
1332/* main peripherial parent mux */
1333static const char *const bcm2835_clock_per_parents[] = {
1334 "gnd",
1335 "xosc",
1336 "testdebug0",
1337 "testdebug1",
1338 "plla_per",
1339 "pllc_per",
1340 "plld_per",
1341 "pllh_aux",
1342};
1343
1344#define REGISTER_PER_CLK(...) REGISTER_CLK( \
1345 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents), \
1346 .parents = bcm2835_clock_per_parents, \
1347 __VA_ARGS__)
56eb3a2e 1348
3b15afef
MS
1349/* main vpu parent mux */
1350static const char *const bcm2835_clock_vpu_parents[] = {
1351 "gnd",
1352 "xosc",
1353 "testdebug0",
1354 "testdebug1",
1355 "plla_core",
1356 "pllc_core0",
1357 "plld_core",
1358 "pllh_aux",
1359 "pllc_core1",
1360 "pllc_core2",
1361};
1362
1363#define REGISTER_VPU_CLK(...) REGISTER_CLK( \
1364 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents), \
1365 .parents = bcm2835_clock_vpu_parents, \
1366 __VA_ARGS__)
1367
1368/*
1369 * the real definition of all the pll, pll_dividers and clocks
1370 * these make use of the above REGISTER_* macros
1371 */
56eb3a2e 1372static const struct bcm2835_clk_desc clk_desc_array[] = {
3b15afef
MS
1373 /* the PLL + PLL dividers */
1374
1375 /*
1376 * PLLA is the auxiliary PLL, used to drive the CCP2
1377 * (Compact Camera Port 2) transmitter clock.
1378 *
1379 * It is in the PX LDO power domain, which is on when the
1380 * AUDIO domain is on.
1381 */
1382 [BCM2835_PLLA] = REGISTER_PLL(
1383 .name = "plla",
1384 .cm_ctrl_reg = CM_PLLA,
1385 .a2w_ctrl_reg = A2W_PLLA_CTRL,
1386 .frac_reg = A2W_PLLA_FRAC,
1387 .ana_reg_base = A2W_PLLA_ANA0,
1388 .reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE,
1389 .lock_mask = CM_LOCK_FLOCKA,
1390
1391 .ana = &bcm2835_ana_default,
1392
1393 .min_rate = 600000000u,
1394 .max_rate = 2400000000u,
1395 .max_fb_rate = BCM2835_MAX_FB_RATE),
1396 [BCM2835_PLLA_CORE] = REGISTER_PLL_DIV(
1397 .name = "plla_core",
1398 .source_pll = "plla",
1399 .cm_reg = CM_PLLA,
1400 .a2w_reg = A2W_PLLA_CORE,
1401 .load_mask = CM_PLLA_LOADCORE,
1402 .hold_mask = CM_PLLA_HOLDCORE,
1403 .fixed_divider = 1),
1404 [BCM2835_PLLA_PER] = REGISTER_PLL_DIV(
1405 .name = "plla_per",
1406 .source_pll = "plla",
1407 .cm_reg = CM_PLLA,
1408 .a2w_reg = A2W_PLLA_PER,
1409 .load_mask = CM_PLLA_LOADPER,
1410 .hold_mask = CM_PLLA_HOLDPER,
1411 .fixed_divider = 1),
72843695
MS
1412 [BCM2835_PLLA_DSI0] = REGISTER_PLL_DIV(
1413 .name = "plla_dsi0",
1414 .source_pll = "plla",
1415 .cm_reg = CM_PLLA,
1416 .a2w_reg = A2W_PLLA_DSI0,
1417 .load_mask = CM_PLLA_LOADDSI0,
1418 .hold_mask = CM_PLLA_HOLDDSI0,
1419 .fixed_divider = 1),
1420 [BCM2835_PLLA_CCP2] = REGISTER_PLL_DIV(
1421 .name = "plla_ccp2",
1422 .source_pll = "plla",
1423 .cm_reg = CM_PLLA,
1424 .a2w_reg = A2W_PLLA_CCP2,
1425 .load_mask = CM_PLLA_LOADCCP2,
1426 .hold_mask = CM_PLLA_HOLDCCP2,
1427 .fixed_divider = 1),
3b15afef
MS
1428
1429 /* PLLB is used for the ARM's clock. */
1430 [BCM2835_PLLB] = REGISTER_PLL(
1431 .name = "pllb",
1432 .cm_ctrl_reg = CM_PLLB,
1433 .a2w_ctrl_reg = A2W_PLLB_CTRL,
1434 .frac_reg = A2W_PLLB_FRAC,
1435 .ana_reg_base = A2W_PLLB_ANA0,
1436 .reference_enable_mask = A2W_XOSC_CTRL_PLLB_ENABLE,
1437 .lock_mask = CM_LOCK_FLOCKB,
1438
1439 .ana = &bcm2835_ana_default,
1440
1441 .min_rate = 600000000u,
1442 .max_rate = 3000000000u,
1443 .max_fb_rate = BCM2835_MAX_FB_RATE),
1444 [BCM2835_PLLB_ARM] = REGISTER_PLL_DIV(
1445 .name = "pllb_arm",
1446 .source_pll = "pllb",
1447 .cm_reg = CM_PLLB,
1448 .a2w_reg = A2W_PLLB_ARM,
1449 .load_mask = CM_PLLB_LOADARM,
1450 .hold_mask = CM_PLLB_HOLDARM,
1451 .fixed_divider = 1),
1452
1453 /*
1454 * PLLC is the core PLL, used to drive the core VPU clock.
1455 *
1456 * It is in the PX LDO power domain, which is on when the
1457 * AUDIO domain is on.
1458 */
1459 [BCM2835_PLLC] = REGISTER_PLL(
1460 .name = "pllc",
1461 .cm_ctrl_reg = CM_PLLC,
1462 .a2w_ctrl_reg = A2W_PLLC_CTRL,
1463 .frac_reg = A2W_PLLC_FRAC,
1464 .ana_reg_base = A2W_PLLC_ANA0,
1465 .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1466 .lock_mask = CM_LOCK_FLOCKC,
1467
1468 .ana = &bcm2835_ana_default,
1469
1470 .min_rate = 600000000u,
1471 .max_rate = 3000000000u,
1472 .max_fb_rate = BCM2835_MAX_FB_RATE),
1473 [BCM2835_PLLC_CORE0] = REGISTER_PLL_DIV(
1474 .name = "pllc_core0",
1475 .source_pll = "pllc",
1476 .cm_reg = CM_PLLC,
1477 .a2w_reg = A2W_PLLC_CORE0,
1478 .load_mask = CM_PLLC_LOADCORE0,
1479 .hold_mask = CM_PLLC_HOLDCORE0,
1480 .fixed_divider = 1),
1481 [BCM2835_PLLC_CORE1] = REGISTER_PLL_DIV(
1482 .name = "pllc_core1",
1483 .source_pll = "pllc",
1484 .cm_reg = CM_PLLC,
1485 .a2w_reg = A2W_PLLC_CORE1,
1486 .load_mask = CM_PLLC_LOADCORE1,
1487 .hold_mask = CM_PLLC_HOLDCORE1,
1488 .fixed_divider = 1),
1489 [BCM2835_PLLC_CORE2] = REGISTER_PLL_DIV(
1490 .name = "pllc_core2",
1491 .source_pll = "pllc",
1492 .cm_reg = CM_PLLC,
1493 .a2w_reg = A2W_PLLC_CORE2,
1494 .load_mask = CM_PLLC_LOADCORE2,
1495 .hold_mask = CM_PLLC_HOLDCORE2,
1496 .fixed_divider = 1),
1497 [BCM2835_PLLC_PER] = REGISTER_PLL_DIV(
1498 .name = "pllc_per",
1499 .source_pll = "pllc",
1500 .cm_reg = CM_PLLC,
1501 .a2w_reg = A2W_PLLC_PER,
1502 .load_mask = CM_PLLC_LOADPER,
1503 .hold_mask = CM_PLLC_HOLDPER,
1504 .fixed_divider = 1),
1505
1506 /*
1507 * PLLD is the display PLL, used to drive DSI display panels.
1508 *
1509 * It is in the PX LDO power domain, which is on when the
1510 * AUDIO domain is on.
1511 */
1512 [BCM2835_PLLD] = REGISTER_PLL(
1513 .name = "plld",
1514 .cm_ctrl_reg = CM_PLLD,
1515 .a2w_ctrl_reg = A2W_PLLD_CTRL,
1516 .frac_reg = A2W_PLLD_FRAC,
1517 .ana_reg_base = A2W_PLLD_ANA0,
1518 .reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE,
1519 .lock_mask = CM_LOCK_FLOCKD,
1520
1521 .ana = &bcm2835_ana_default,
1522
1523 .min_rate = 600000000u,
1524 .max_rate = 2400000000u,
1525 .max_fb_rate = BCM2835_MAX_FB_RATE),
1526 [BCM2835_PLLD_CORE] = REGISTER_PLL_DIV(
1527 .name = "plld_core",
1528 .source_pll = "plld",
1529 .cm_reg = CM_PLLD,
1530 .a2w_reg = A2W_PLLD_CORE,
1531 .load_mask = CM_PLLD_LOADCORE,
1532 .hold_mask = CM_PLLD_HOLDCORE,
1533 .fixed_divider = 1),
1534 [BCM2835_PLLD_PER] = REGISTER_PLL_DIV(
1535 .name = "plld_per",
1536 .source_pll = "plld",
1537 .cm_reg = CM_PLLD,
1538 .a2w_reg = A2W_PLLD_PER,
1539 .load_mask = CM_PLLD_LOADPER,
1540 .hold_mask = CM_PLLD_HOLDPER,
1541 .fixed_divider = 1),
72843695
MS
1542 [BCM2835_PLLD_DSI0] = REGISTER_PLL_DIV(
1543 .name = "plld_dsi0",
1544 .source_pll = "plld",
1545 .cm_reg = CM_PLLD,
1546 .a2w_reg = A2W_PLLD_DSI0,
1547 .load_mask = CM_PLLD_LOADDSI0,
1548 .hold_mask = CM_PLLD_HOLDDSI0,
1549 .fixed_divider = 1),
1550 [BCM2835_PLLD_DSI1] = REGISTER_PLL_DIV(
1551 .name = "plld_dsi1",
1552 .source_pll = "plld",
1553 .cm_reg = CM_PLLD,
1554 .a2w_reg = A2W_PLLD_DSI1,
1555 .load_mask = CM_PLLD_LOADDSI1,
1556 .hold_mask = CM_PLLD_HOLDDSI1,
1557 .fixed_divider = 1),
3b15afef
MS
1558
1559 /*
1560 * PLLH is used to supply the pixel clock or the AUX clock for the
1561 * TV encoder.
1562 *
1563 * It is in the HDMI power domain.
1564 */
1565 [BCM2835_PLLH] = REGISTER_PLL(
1566 "pllh",
1567 .cm_ctrl_reg = CM_PLLH,
1568 .a2w_ctrl_reg = A2W_PLLH_CTRL,
1569 .frac_reg = A2W_PLLH_FRAC,
1570 .ana_reg_base = A2W_PLLH_ANA0,
1571 .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1572 .lock_mask = CM_LOCK_FLOCKH,
1573
1574 .ana = &bcm2835_ana_pllh,
1575
1576 .min_rate = 600000000u,
1577 .max_rate = 3000000000u,
1578 .max_fb_rate = BCM2835_MAX_FB_RATE),
1579 [BCM2835_PLLH_RCAL] = REGISTER_PLL_DIV(
1580 .name = "pllh_rcal",
1581 .source_pll = "pllh",
1582 .cm_reg = CM_PLLH,
1583 .a2w_reg = A2W_PLLH_RCAL,
1584 .load_mask = CM_PLLH_LOADRCAL,
1585 .hold_mask = 0,
1586 .fixed_divider = 10),
1587 [BCM2835_PLLH_AUX] = REGISTER_PLL_DIV(
1588 .name = "pllh_aux",
1589 .source_pll = "pllh",
1590 .cm_reg = CM_PLLH,
1591 .a2w_reg = A2W_PLLH_AUX,
1592 .load_mask = CM_PLLH_LOADAUX,
1593 .hold_mask = 0,
1594 .fixed_divider = 10),
1595 [BCM2835_PLLH_PIX] = REGISTER_PLL_DIV(
1596 .name = "pllh_pix",
1597 .source_pll = "pllh",
1598 .cm_reg = CM_PLLH,
1599 .a2w_reg = A2W_PLLH_PIX,
1600 .load_mask = CM_PLLH_LOADPIX,
1601 .hold_mask = 0,
1602 .fixed_divider = 10),
1603
56eb3a2e 1604 /* the clocks */
3b15afef
MS
1605
1606 /* clocks with oscillator parent mux */
1607
1608 /* One Time Programmable Memory clock. Maximum 10Mhz. */
1609 [BCM2835_CLOCK_OTP] = REGISTER_OSC_CLK(
1610 .name = "otp",
1611 .ctl_reg = CM_OTPCTL,
1612 .div_reg = CM_OTPDIV,
1613 .int_bits = 4,
1614 .frac_bits = 0),
1615 /*
1616 * Used for a 1Mhz clock for the system clocksource, and also used
1617 * bythe watchdog timer and the camera pulse generator.
1618 */
1619 [BCM2835_CLOCK_TIMER] = REGISTER_OSC_CLK(
1620 .name = "timer",
1621 .ctl_reg = CM_TIMERCTL,
1622 .div_reg = CM_TIMERDIV,
1623 .int_bits = 6,
1624 .frac_bits = 12),
1625 /*
1626 * Clock for the temperature sensor.
1627 * Generally run at 2Mhz, max 5Mhz.
1628 */
1629 [BCM2835_CLOCK_TSENS] = REGISTER_OSC_CLK(
1630 .name = "tsens",
1631 .ctl_reg = CM_TSENSCTL,
1632 .div_reg = CM_TSENSDIV,
1633 .int_bits = 5,
1634 .frac_bits = 0),
d3d6f15f
MS
1635 [BCM2835_CLOCK_TEC] = REGISTER_OSC_CLK(
1636 .name = "tec",
1637 .ctl_reg = CM_TECCTL,
1638 .div_reg = CM_TECDIV,
1639 .int_bits = 6,
1640 .frac_bits = 0),
3b15afef
MS
1641
1642 /* clocks with vpu parent mux */
1643 [BCM2835_CLOCK_H264] = REGISTER_VPU_CLK(
1644 .name = "h264",
1645 .ctl_reg = CM_H264CTL,
1646 .div_reg = CM_H264DIV,
1647 .int_bits = 4,
1648 .frac_bits = 8),
1649 [BCM2835_CLOCK_ISP] = REGISTER_VPU_CLK(
1650 .name = "isp",
1651 .ctl_reg = CM_ISPCTL,
1652 .div_reg = CM_ISPDIV,
1653 .int_bits = 4,
1654 .frac_bits = 8),
d3d6f15f 1655
3b15afef
MS
1656 /*
1657 * Secondary SDRAM clock. Used for low-voltage modes when the PLL
1658 * in the SDRAM controller can't be used.
1659 */
1660 [BCM2835_CLOCK_SDRAM] = REGISTER_VPU_CLK(
1661 .name = "sdram",
1662 .ctl_reg = CM_SDCCTL,
1663 .div_reg = CM_SDCDIV,
1664 .int_bits = 6,
1665 .frac_bits = 0),
1666 [BCM2835_CLOCK_V3D] = REGISTER_VPU_CLK(
1667 .name = "v3d",
1668 .ctl_reg = CM_V3DCTL,
1669 .div_reg = CM_V3DDIV,
1670 .int_bits = 4,
1671 .frac_bits = 8),
1672 /*
1673 * VPU clock. This doesn't have an enable bit, since it drives
1674 * the bus for everything else, and is special so it doesn't need
1675 * to be gated for rate changes. It is also known as "clk_audio"
1676 * in various hardware documentation.
1677 */
1678 [BCM2835_CLOCK_VPU] = REGISTER_VPU_CLK(
1679 .name = "vpu",
1680 .ctl_reg = CM_VPUCTL,
1681 .div_reg = CM_VPUDIV,
1682 .int_bits = 12,
1683 .frac_bits = 8,
e69fdcca 1684 .flags = CLK_IS_CRITICAL,
3b15afef
MS
1685 .is_vpu_clock = true),
1686
1687 /* clocks with per parent mux */
d3d6f15f
MS
1688 [BCM2835_CLOCK_AVEO] = REGISTER_PER_CLK(
1689 .name = "aveo",
1690 .ctl_reg = CM_AVEOCTL,
1691 .div_reg = CM_AVEODIV,
1692 .int_bits = 4,
1693 .frac_bits = 0),
1694 [BCM2835_CLOCK_CAM0] = REGISTER_PER_CLK(
1695 .name = "cam0",
1696 .ctl_reg = CM_CAM0CTL,
1697 .div_reg = CM_CAM0DIV,
1698 .int_bits = 4,
1699 .frac_bits = 8),
1700 [BCM2835_CLOCK_CAM1] = REGISTER_PER_CLK(
1701 .name = "cam1",
1702 .ctl_reg = CM_CAM1CTL,
1703 .div_reg = CM_CAM1DIV,
1704 .int_bits = 4,
1705 .frac_bits = 8),
1706 [BCM2835_CLOCK_DFT] = REGISTER_PER_CLK(
1707 .name = "dft",
1708 .ctl_reg = CM_DFTCTL,
1709 .div_reg = CM_DFTDIV,
1710 .int_bits = 5,
1711 .frac_bits = 0),
1712 [BCM2835_CLOCK_DPI] = REGISTER_PER_CLK(
1713 .name = "dpi",
1714 .ctl_reg = CM_DPICTL,
1715 .div_reg = CM_DPIDIV,
1716 .int_bits = 4,
1717 .frac_bits = 8),
3b15afef
MS
1718
1719 /* Arasan EMMC clock */
1720 [BCM2835_CLOCK_EMMC] = REGISTER_PER_CLK(
1721 .name = "emmc",
1722 .ctl_reg = CM_EMMCCTL,
1723 .div_reg = CM_EMMCDIV,
1724 .int_bits = 4,
1725 .frac_bits = 8),
d3d6f15f
MS
1726
1727 /* General purpose (GPIO) clocks */
1728 [BCM2835_CLOCK_GP0] = REGISTER_PER_CLK(
1729 .name = "gp0",
1730 .ctl_reg = CM_GP0CTL,
1731 .div_reg = CM_GP0DIV,
1732 .int_bits = 12,
1733 .frac_bits = 12,
1734 .is_mash_clock = true),
1735 [BCM2835_CLOCK_GP1] = REGISTER_PER_CLK(
1736 .name = "gp1",
1737 .ctl_reg = CM_GP1CTL,
1738 .div_reg = CM_GP1DIV,
1739 .int_bits = 12,
1740 .frac_bits = 12,
eddcbe83 1741 .flags = CLK_IS_CRITICAL,
d3d6f15f
MS
1742 .is_mash_clock = true),
1743 [BCM2835_CLOCK_GP2] = REGISTER_PER_CLK(
1744 .name = "gp2",
1745 .ctl_reg = CM_GP2CTL,
1746 .div_reg = CM_GP2DIV,
1747 .int_bits = 12,
eddcbe83
EA
1748 .frac_bits = 12,
1749 .flags = CLK_IS_CRITICAL),
d3d6f15f 1750
3b15afef
MS
1751 /* HDMI state machine */
1752 [BCM2835_CLOCK_HSM] = REGISTER_PER_CLK(
1753 .name = "hsm",
1754 .ctl_reg = CM_HSMCTL,
1755 .div_reg = CM_HSMDIV,
1756 .int_bits = 4,
1757 .frac_bits = 8),
33b68960
MS
1758 [BCM2835_CLOCK_PCM] = REGISTER_PER_CLK(
1759 .name = "pcm",
1760 .ctl_reg = CM_PCMCTL,
1761 .div_reg = CM_PCMDIV,
1762 .int_bits = 12,
1763 .frac_bits = 12,
1764 .is_mash_clock = true),
3b15afef
MS
1765 [BCM2835_CLOCK_PWM] = REGISTER_PER_CLK(
1766 .name = "pwm",
1767 .ctl_reg = CM_PWMCTL,
1768 .div_reg = CM_PWMDIV,
1769 .int_bits = 12,
1770 .frac_bits = 12,
1771 .is_mash_clock = true),
d3d6f15f
MS
1772 [BCM2835_CLOCK_SLIM] = REGISTER_PER_CLK(
1773 .name = "slim",
1774 .ctl_reg = CM_SLIMCTL,
1775 .div_reg = CM_SLIMDIV,
1776 .int_bits = 12,
1777 .frac_bits = 12,
1778 .is_mash_clock = true),
1779 [BCM2835_CLOCK_SMI] = REGISTER_PER_CLK(
1780 .name = "smi",
1781 .ctl_reg = CM_SMICTL,
1782 .div_reg = CM_SMIDIV,
1783 .int_bits = 4,
1784 .frac_bits = 8),
3b15afef
MS
1785 [BCM2835_CLOCK_UART] = REGISTER_PER_CLK(
1786 .name = "uart",
1787 .ctl_reg = CM_UARTCTL,
1788 .div_reg = CM_UARTDIV,
1789 .int_bits = 10,
1790 .frac_bits = 12),
d3d6f15f 1791
3b15afef
MS
1792 /* TV encoder clock. Only operating frequency is 108Mhz. */
1793 [BCM2835_CLOCK_VEC] = REGISTER_PER_CLK(
1794 .name = "vec",
1795 .ctl_reg = CM_VECCTL,
1796 .div_reg = CM_VECDIV,
1797 .int_bits = 4,
1798 .frac_bits = 0),
1799
d3d6f15f
MS
1800 /* dsi clocks */
1801 [BCM2835_CLOCK_DSI0E] = REGISTER_PER_CLK(
1802 .name = "dsi0e",
1803 .ctl_reg = CM_DSI0ECTL,
1804 .div_reg = CM_DSI0EDIV,
1805 .int_bits = 4,
1806 .frac_bits = 8),
1807 [BCM2835_CLOCK_DSI1E] = REGISTER_PER_CLK(
1808 .name = "dsi1e",
1809 .ctl_reg = CM_DSI1ECTL,
1810 .div_reg = CM_DSI1EDIV,
1811 .int_bits = 4,
1812 .frac_bits = 8),
1813
56eb3a2e 1814 /* the gates */
3b15afef
MS
1815
1816 /*
1817 * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if
1818 * you have the debug bit set in the power manager, which we
1819 * don't bother exposing) are individual gates off of the
1820 * non-stop vpu clock.
1821 */
56eb3a2e 1822 [BCM2835_CLOCK_PERI_IMAGE] = REGISTER_GATE(
3b15afef
MS
1823 .name = "peri_image",
1824 .parent = "vpu",
1825 .ctl_reg = CM_PERIICTL),
56eb3a2e
MS
1826};
1827
9e400c5c
EA
1828/*
1829 * Permanently take a reference on the parent of the SDRAM clock.
1830 *
1831 * While the SDRAM is being driven by its dedicated PLL most of the
1832 * time, there is a little loop running in the firmware that
1833 * periodically switches the SDRAM to using our CM clock to do PVT
1834 * recalibration, with the assumption that the previously configured
1835 * SDRAM parent is still enabled and running.
1836 */
1837static int bcm2835_mark_sdc_parent_critical(struct clk *sdc)
1838{
1839 struct clk *parent = clk_get_parent(sdc);
1840
1841 if (IS_ERR(parent))
1842 return PTR_ERR(parent);
1843
1844 return clk_prepare_enable(parent);
1845}
1846
41691b88
EA
1847static int bcm2835_clk_probe(struct platform_device *pdev)
1848{
1849 struct device *dev = &pdev->dev;
1850 struct clk **clks;
1851 struct bcm2835_cprman *cprman;
1852 struct resource *res;
56eb3a2e
MS
1853 const struct bcm2835_clk_desc *desc;
1854 const size_t asize = ARRAY_SIZE(clk_desc_array);
1855 size_t i;
9e400c5c 1856 int ret;
41691b88 1857
56eb3a2e
MS
1858 cprman = devm_kzalloc(dev,
1859 sizeof(*cprman) + asize * sizeof(*clks),
1860 GFP_KERNEL);
41691b88
EA
1861 if (!cprman)
1862 return -ENOMEM;
1863
1864 spin_lock_init(&cprman->regs_lock);
1865 cprman->dev = dev;
1866 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1867 cprman->regs = devm_ioremap_resource(dev, res);
1868 if (IS_ERR(cprman->regs))
1869 return PTR_ERR(cprman->regs);
1870
1871 cprman->osc_name = of_clk_get_parent_name(dev->of_node, 0);
1872 if (!cprman->osc_name)
1873 return -ENODEV;
1874
1875 platform_set_drvdata(pdev, cprman);
1876
56eb3a2e 1877 cprman->onecell.clk_num = asize;
41691b88
EA
1878 cprman->onecell.clks = cprman->clks;
1879 clks = cprman->clks;
1880
56eb3a2e
MS
1881 for (i = 0; i < asize; i++) {
1882 desc = &clk_desc_array[i];
1883 if (desc->clk_register && desc->data)
1884 clks[i] = desc->clk_register(cprman, desc->data);
1885 }
cfbab8fb 1886
9e400c5c
EA
1887 ret = bcm2835_mark_sdc_parent_critical(clks[BCM2835_CLOCK_SDRAM]);
1888 if (ret)
1889 return ret;
1890
41691b88
EA
1891 return of_clk_add_provider(dev->of_node, of_clk_src_onecell_get,
1892 &cprman->onecell);
1893}
1894
1895static const struct of_device_id bcm2835_clk_of_match[] = {
1896 { .compatible = "brcm,bcm2835-cprman", },
1897 {}
1898};
1899MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match);
1900
1901static struct platform_driver bcm2835_clk_driver = {
1902 .driver = {
1903 .name = "bcm2835-clk",
1904 .of_match_table = bcm2835_clk_of_match,
1905 },
1906 .probe = bcm2835_clk_probe,
1907};
1908
1909builtin_platform_driver(bcm2835_clk_driver);
1910
1911MODULE_AUTHOR("Eric Anholt <eric@anholt.net>");
1912MODULE_DESCRIPTION("BCM2835 clock driver");
1913MODULE_LICENSE("GPL v2");
This page took 0.278119 seconds and 5 git commands to generate.