uapi: export ila.h
[deliverable/linux.git] / drivers / clk / tegra / clk-dfll.c
CommitLineData
d8d7a08f
TT
1/*
2 * clk-dfll.c - Tegra DFLL clock source common code
3 *
4 * Copyright (C) 2012-2014 NVIDIA Corporation. All rights reserved.
5 *
6 * Aleksandr Frid <afrid@nvidia.com>
7 * Paul Walmsley <pwalmsley@nvidia.com>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * more details.
17 *
18 * This library is for the DVCO and DFLL IP blocks on the Tegra124
19 * SoC. These IP blocks together are also known at NVIDIA as
20 * "CL-DVFS". To try to avoid confusion, this code refers to them
21 * collectively as the "DFLL."
22 *
23 * The DFLL is a root clocksource which tolerates some amount of
24 * supply voltage noise. Tegra124 uses it to clock the fast CPU
25 * complex when the target CPU speed is above a particular rate. The
26 * DFLL can be operated in either open-loop mode or closed-loop mode.
27 * In open-loop mode, the DFLL generates an output clock appropriate
28 * to the supply voltage. In closed-loop mode, when configured with a
29 * target frequency, the DFLL minimizes supply voltage while
30 * delivering an average frequency equal to the target.
31 *
32 * Devices clocked by the DFLL must be able to tolerate frequency
33 * variation. In the case of the CPU, it's important to note that the
34 * CPU cycle time will vary. This has implications for
35 * performance-measurement code and any code that relies on the CPU
36 * cycle time to delay for a certain length of time.
37 *
38 */
39
40#include <linux/clk.h>
41#include <linux/clk-provider.h>
42#include <linux/debugfs.h>
43#include <linux/device.h>
44#include <linux/err.h>
45#include <linux/i2c.h>
46#include <linux/io.h>
47#include <linux/kernel.h>
48#include <linux/module.h>
49#include <linux/of.h>
50#include <linux/pm_opp.h>
51#include <linux/pm_runtime.h>
52#include <linux/regmap.h>
53#include <linux/regulator/consumer.h>
54#include <linux/reset.h>
55#include <linux/seq_file.h>
56
57#include "clk-dfll.h"
58
59/*
60 * DFLL control registers - access via dfll_{readl,writel}
61 */
62
63/* DFLL_CTRL: DFLL control register */
64#define DFLL_CTRL 0x00
65#define DFLL_CTRL_MODE_MASK 0x03
66
67/* DFLL_CONFIG: DFLL sample rate control */
68#define DFLL_CONFIG 0x04
69#define DFLL_CONFIG_DIV_MASK 0xff
70#define DFLL_CONFIG_DIV_PRESCALE 32
71
72/* DFLL_PARAMS: tuning coefficients for closed loop integrator */
73#define DFLL_PARAMS 0x08
74#define DFLL_PARAMS_CG_SCALE (0x1 << 24)
75#define DFLL_PARAMS_FORCE_MODE_SHIFT 22
76#define DFLL_PARAMS_FORCE_MODE_MASK (0x3 << DFLL_PARAMS_FORCE_MODE_SHIFT)
77#define DFLL_PARAMS_CF_PARAM_SHIFT 16
78#define DFLL_PARAMS_CF_PARAM_MASK (0x3f << DFLL_PARAMS_CF_PARAM_SHIFT)
79#define DFLL_PARAMS_CI_PARAM_SHIFT 8
80#define DFLL_PARAMS_CI_PARAM_MASK (0x7 << DFLL_PARAMS_CI_PARAM_SHIFT)
81#define DFLL_PARAMS_CG_PARAM_SHIFT 0
82#define DFLL_PARAMS_CG_PARAM_MASK (0xff << DFLL_PARAMS_CG_PARAM_SHIFT)
83
84/* DFLL_TUNE0: delay line configuration register 0 */
85#define DFLL_TUNE0 0x0c
86
87/* DFLL_TUNE1: delay line configuration register 1 */
88#define DFLL_TUNE1 0x10
89
90/* DFLL_FREQ_REQ: target DFLL frequency control */
91#define DFLL_FREQ_REQ 0x14
92#define DFLL_FREQ_REQ_FORCE_ENABLE (0x1 << 28)
93#define DFLL_FREQ_REQ_FORCE_SHIFT 16
94#define DFLL_FREQ_REQ_FORCE_MASK (0xfff << DFLL_FREQ_REQ_FORCE_SHIFT)
95#define FORCE_MAX 2047
96#define FORCE_MIN -2048
97#define DFLL_FREQ_REQ_SCALE_SHIFT 8
98#define DFLL_FREQ_REQ_SCALE_MASK (0xff << DFLL_FREQ_REQ_SCALE_SHIFT)
99#define DFLL_FREQ_REQ_SCALE_MAX 256
100#define DFLL_FREQ_REQ_FREQ_VALID (0x1 << 7)
101#define DFLL_FREQ_REQ_MULT_SHIFT 0
102#define DFLL_FREQ_REG_MULT_MASK (0x7f << DFLL_FREQ_REQ_MULT_SHIFT)
103#define FREQ_MAX 127
104
105/* DFLL_DROOP_CTRL: droop prevention control */
106#define DFLL_DROOP_CTRL 0x1c
107
108/* DFLL_OUTPUT_CFG: closed loop mode control registers */
109/* NOTE: access via dfll_i2c_{readl,writel} */
110#define DFLL_OUTPUT_CFG 0x20
111#define DFLL_OUTPUT_CFG_I2C_ENABLE (0x1 << 30)
112#define OUT_MASK 0x3f
113#define DFLL_OUTPUT_CFG_SAFE_SHIFT 24
114#define DFLL_OUTPUT_CFG_SAFE_MASK \
115 (OUT_MASK << DFLL_OUTPUT_CFG_SAFE_SHIFT)
116#define DFLL_OUTPUT_CFG_MAX_SHIFT 16
117#define DFLL_OUTPUT_CFG_MAX_MASK \
118 (OUT_MASK << DFLL_OUTPUT_CFG_MAX_SHIFT)
119#define DFLL_OUTPUT_CFG_MIN_SHIFT 8
120#define DFLL_OUTPUT_CFG_MIN_MASK \
121 (OUT_MASK << DFLL_OUTPUT_CFG_MIN_SHIFT)
122#define DFLL_OUTPUT_CFG_PWM_DELTA (0x1 << 7)
123#define DFLL_OUTPUT_CFG_PWM_ENABLE (0x1 << 6)
124#define DFLL_OUTPUT_CFG_PWM_DIV_SHIFT 0
125#define DFLL_OUTPUT_CFG_PWM_DIV_MASK \
126 (OUT_MASK << DFLL_OUTPUT_CFG_PWM_DIV_SHIFT)
127
128/* DFLL_OUTPUT_FORCE: closed loop mode voltage forcing control */
129#define DFLL_OUTPUT_FORCE 0x24
130#define DFLL_OUTPUT_FORCE_ENABLE (0x1 << 6)
131#define DFLL_OUTPUT_FORCE_VALUE_SHIFT 0
132#define DFLL_OUTPUT_FORCE_VALUE_MASK \
133 (OUT_MASK << DFLL_OUTPUT_FORCE_VALUE_SHIFT)
134
135/* DFLL_MONITOR_CTRL: internal monitor data source control */
136#define DFLL_MONITOR_CTRL 0x28
137#define DFLL_MONITOR_CTRL_FREQ 6
138
139/* DFLL_MONITOR_DATA: internal monitor data output */
140#define DFLL_MONITOR_DATA 0x2c
141#define DFLL_MONITOR_DATA_NEW_MASK (0x1 << 16)
142#define DFLL_MONITOR_DATA_VAL_SHIFT 0
143#define DFLL_MONITOR_DATA_VAL_MASK (0xFFFF << DFLL_MONITOR_DATA_VAL_SHIFT)
144
145/*
146 * I2C output control registers - access via dfll_i2c_{readl,writel}
147 */
148
149/* DFLL_I2C_CFG: I2C controller configuration register */
150#define DFLL_I2C_CFG 0x40
151#define DFLL_I2C_CFG_ARB_ENABLE (0x1 << 20)
152#define DFLL_I2C_CFG_HS_CODE_SHIFT 16
153#define DFLL_I2C_CFG_HS_CODE_MASK (0x7 << DFLL_I2C_CFG_HS_CODE_SHIFT)
154#define DFLL_I2C_CFG_PACKET_ENABLE (0x1 << 15)
155#define DFLL_I2C_CFG_SIZE_SHIFT 12
156#define DFLL_I2C_CFG_SIZE_MASK (0x7 << DFLL_I2C_CFG_SIZE_SHIFT)
157#define DFLL_I2C_CFG_SLAVE_ADDR_10 (0x1 << 10)
158#define DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_7BIT 1
159#define DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_10BIT 0
160
161/* DFLL_I2C_VDD_REG_ADDR: PMIC I2C address for closed loop mode */
162#define DFLL_I2C_VDD_REG_ADDR 0x44
163
164/* DFLL_I2C_STS: I2C controller status */
165#define DFLL_I2C_STS 0x48
166#define DFLL_I2C_STS_I2C_LAST_SHIFT 1
167#define DFLL_I2C_STS_I2C_REQ_PENDING 0x1
168
169/* DFLL_INTR_STS: DFLL interrupt status register */
170#define DFLL_INTR_STS 0x5c
171
172/* DFLL_INTR_EN: DFLL interrupt enable register */
173#define DFLL_INTR_EN 0x60
174#define DFLL_INTR_MIN_MASK 0x1
175#define DFLL_INTR_MAX_MASK 0x2
176
177/*
178 * Integrated I2C controller registers - relative to td->i2c_controller_base
179 */
180
181/* DFLL_I2C_CLK_DIVISOR: I2C controller clock divisor */
182#define DFLL_I2C_CLK_DIVISOR 0x6c
183#define DFLL_I2C_CLK_DIVISOR_MASK 0xffff
184#define DFLL_I2C_CLK_DIVISOR_FS_SHIFT 16
185#define DFLL_I2C_CLK_DIVISOR_HS_SHIFT 0
186#define DFLL_I2C_CLK_DIVISOR_PREDIV 8
187#define DFLL_I2C_CLK_DIVISOR_HSMODE_PREDIV 12
188
189/*
190 * Other constants
191 */
192
193/* MAX_DFLL_VOLTAGES: number of LUT entries in the DFLL IP block */
194#define MAX_DFLL_VOLTAGES 33
195
196/*
197 * REF_CLK_CYC_PER_DVCO_SAMPLE: the number of ref_clk cycles that the hardware
198 * integrates the DVCO counter over - used for debug rate monitoring and
199 * droop control
200 */
201#define REF_CLK_CYC_PER_DVCO_SAMPLE 4
202
203/*
204 * REF_CLOCK_RATE: the DFLL reference clock rate currently supported by this
205 * driver, in Hz
206 */
207#define REF_CLOCK_RATE 51000000UL
208
c4fe70ad
TT
209#define DVCO_RATE_TO_MULT(rate, ref_rate) ((rate) / ((ref_rate) / 2))
210#define MULT_TO_DVCO_RATE(mult, ref_rate) ((mult) * ((ref_rate) / 2))
d8d7a08f
TT
211
212/**
213 * enum dfll_ctrl_mode - DFLL hardware operating mode
214 * @DFLL_UNINITIALIZED: (uninitialized state - not in hardware bitfield)
215 * @DFLL_DISABLED: DFLL not generating an output clock
216 * @DFLL_OPEN_LOOP: DVCO running, but DFLL not adjusting voltage
c4fe70ad
TT
217 * @DFLL_CLOSED_LOOP: DVCO running, and DFLL adjusting voltage to match
218 * the requested rate
d8d7a08f
TT
219 *
220 * The integer corresponding to the last two states, minus one, is
221 * written to the DFLL hardware to change operating modes.
222 */
223enum dfll_ctrl_mode {
224 DFLL_UNINITIALIZED = 0,
225 DFLL_DISABLED = 1,
226 DFLL_OPEN_LOOP = 2,
c4fe70ad 227 DFLL_CLOSED_LOOP = 3,
d8d7a08f
TT
228};
229
230/**
231 * enum dfll_tune_range - voltage range that the driver believes it's in
232 * @DFLL_TUNE_UNINITIALIZED: DFLL tuning not yet programmed
233 * @DFLL_TUNE_LOW: DFLL in the low-voltage range (or open-loop mode)
234 *
235 * Some DFLL tuning parameters may need to change depending on the
236 * DVCO's voltage; these states represent the ranges that the driver
237 * supports. These are software states; these values are never
238 * written into registers.
239 */
240enum dfll_tune_range {
241 DFLL_TUNE_UNINITIALIZED = 0,
242 DFLL_TUNE_LOW = 1,
243};
244
c4fe70ad
TT
245/**
246 * struct dfll_rate_req - target DFLL rate request data
247 * @rate: target frequency, after the postscaling
248 * @dvco_target_rate: target frequency, after the postscaling
249 * @lut_index: LUT index at which voltage the dvco_target_rate will be reached
250 * @mult_bits: value to program to the MULT bits of the DFLL_FREQ_REQ register
251 * @scale_bits: value to program to the SCALE bits of the DFLL_FREQ_REQ register
252 */
253struct dfll_rate_req {
254 unsigned long rate;
255 unsigned long dvco_target_rate;
256 int lut_index;
257 u8 mult_bits;
258 u8 scale_bits;
259};
260
d8d7a08f
TT
261struct tegra_dfll {
262 struct device *dev;
263 struct tegra_dfll_soc_data *soc;
264
265 void __iomem *base;
266 void __iomem *i2c_base;
267 void __iomem *i2c_controller_base;
268 void __iomem *lut_base;
269
270 struct regulator *vdd_reg;
271 struct clk *soc_clk;
272 struct clk *ref_clk;
273 struct clk *i2c_clk;
274 struct clk *dfll_clk;
275 struct reset_control *dvco_rst;
276 unsigned long ref_rate;
277 unsigned long i2c_clk_rate;
278 unsigned long dvco_rate_min;
279
280 enum dfll_ctrl_mode mode;
281 enum dfll_tune_range tune_range;
282 struct dentry *debugfs_dir;
283 struct clk_hw dfll_clk_hw;
284 const char *output_clock_name;
c4fe70ad
TT
285 struct dfll_rate_req last_req;
286 unsigned long last_unrounded_rate;
d8d7a08f
TT
287
288 /* Parameters from DT */
289 u32 droop_ctrl;
c4fe70ad
TT
290 u32 sample_rate;
291 u32 force_mode;
292 u32 cf;
293 u32 ci;
294 u32 cg;
295 bool cg_scale;
296
297 /* I2C interface parameters */
298 u32 i2c_fs_rate;
299 u32 i2c_reg;
300 u32 i2c_slave_addr;
301
302 /* i2c_lut array entries are regulator framework selectors */
303 unsigned i2c_lut[MAX_DFLL_VOLTAGES];
304 int i2c_lut_size;
305 u8 lut_min, lut_max, lut_safe;
d8d7a08f
TT
306};
307
308#define clk_hw_to_dfll(_hw) container_of(_hw, struct tegra_dfll, dfll_clk_hw)
309
310/* mode_name: map numeric DFLL modes to names for friendly console messages */
311static const char * const mode_name[] = {
312 [DFLL_UNINITIALIZED] = "uninitialized",
313 [DFLL_DISABLED] = "disabled",
314 [DFLL_OPEN_LOOP] = "open_loop",
c4fe70ad 315 [DFLL_CLOSED_LOOP] = "closed_loop",
d8d7a08f
TT
316};
317
318/*
319 * Register accessors
320 */
321
322static inline u32 dfll_readl(struct tegra_dfll *td, u32 offs)
323{
324 return __raw_readl(td->base + offs);
325}
326
327static inline void dfll_writel(struct tegra_dfll *td, u32 val, u32 offs)
328{
329 WARN_ON(offs >= DFLL_I2C_CFG);
330 __raw_writel(val, td->base + offs);
331}
332
333static inline void dfll_wmb(struct tegra_dfll *td)
334{
335 dfll_readl(td, DFLL_CTRL);
336}
337
338/* I2C output control registers - for addresses above DFLL_I2C_CFG */
339
340static inline u32 dfll_i2c_readl(struct tegra_dfll *td, u32 offs)
341{
342 return __raw_readl(td->i2c_base + offs);
343}
344
345static inline void dfll_i2c_writel(struct tegra_dfll *td, u32 val, u32 offs)
346{
347 __raw_writel(val, td->i2c_base + offs);
348}
349
350static inline void dfll_i2c_wmb(struct tegra_dfll *td)
351{
352 dfll_i2c_readl(td, DFLL_I2C_CFG);
353}
354
355/**
356 * dfll_is_running - is the DFLL currently generating a clock?
357 * @td: DFLL instance
358 *
359 * If the DFLL is currently generating an output clock signal, return
360 * true; otherwise return false.
361 */
362static bool dfll_is_running(struct tegra_dfll *td)
363{
364 return td->mode >= DFLL_OPEN_LOOP;
365}
366
367/*
368 * Runtime PM suspend/resume callbacks
369 */
370
371/**
372 * tegra_dfll_runtime_resume - enable all clocks needed by the DFLL
373 * @dev: DFLL device *
374 *
375 * Enable all clocks needed by the DFLL. Assumes that clk_prepare()
376 * has already been called on all the clocks.
377 *
378 * XXX Should also handle context restore when returning from off.
379 */
380int tegra_dfll_runtime_resume(struct device *dev)
381{
382 struct tegra_dfll *td = dev_get_drvdata(dev);
383 int ret;
384
385 ret = clk_enable(td->ref_clk);
386 if (ret) {
387 dev_err(dev, "could not enable ref clock: %d\n", ret);
388 return ret;
389 }
390
391 ret = clk_enable(td->soc_clk);
392 if (ret) {
393 dev_err(dev, "could not enable register clock: %d\n", ret);
394 clk_disable(td->ref_clk);
395 return ret;
396 }
397
398 ret = clk_enable(td->i2c_clk);
399 if (ret) {
400 dev_err(dev, "could not enable i2c clock: %d\n", ret);
401 clk_disable(td->soc_clk);
402 clk_disable(td->ref_clk);
403 return ret;
404 }
405
406 return 0;
407}
408EXPORT_SYMBOL(tegra_dfll_runtime_resume);
409
410/**
411 * tegra_dfll_runtime_suspend - disable all clocks needed by the DFLL
412 * @dev: DFLL device *
413 *
414 * Disable all clocks needed by the DFLL. Assumes that other code
415 * will later call clk_unprepare().
416 */
417int tegra_dfll_runtime_suspend(struct device *dev)
418{
419 struct tegra_dfll *td = dev_get_drvdata(dev);
420
421 clk_disable(td->ref_clk);
422 clk_disable(td->soc_clk);
423 clk_disable(td->i2c_clk);
424
425 return 0;
426}
427EXPORT_SYMBOL(tegra_dfll_runtime_suspend);
428
429/*
430 * DFLL tuning operations (per-voltage-range tuning settings)
431 */
432
433/**
434 * dfll_tune_low - tune to DFLL and CPU settings valid for any voltage
435 * @td: DFLL instance
436 *
437 * Tune the DFLL oscillator parameters and the CPU clock shaper for
438 * the low-voltage range. These settings are valid for any voltage,
439 * but may not be optimal.
440 */
441static void dfll_tune_low(struct tegra_dfll *td)
442{
443 td->tune_range = DFLL_TUNE_LOW;
444
445 dfll_writel(td, td->soc->tune0_low, DFLL_TUNE0);
446 dfll_writel(td, td->soc->tune1, DFLL_TUNE1);
447 dfll_wmb(td);
448
449 if (td->soc->set_clock_trimmers_low)
450 td->soc->set_clock_trimmers_low();
451}
452
453/*
454 * Output clock scaler helpers
455 */
456
457/**
458 * dfll_scale_dvco_rate - calculate scaled rate from the DVCO rate
459 * @scale_bits: clock scaler value (bits in the DFLL_FREQ_REQ_SCALE field)
460 * @dvco_rate: the DVCO rate
461 *
462 * Apply the same scaling formula that the DFLL hardware uses to scale
463 * the DVCO rate.
464 */
465static unsigned long dfll_scale_dvco_rate(int scale_bits,
466 unsigned long dvco_rate)
467{
468 return (u64)dvco_rate * (scale_bits + 1) / DFLL_FREQ_REQ_SCALE_MAX;
469}
470
d8d7a08f
TT
471/*
472 * DFLL mode switching
473 */
474
475/**
476 * dfll_set_mode - change the DFLL control mode
477 * @td: DFLL instance
478 * @mode: DFLL control mode (see enum dfll_ctrl_mode)
479 *
480 * Change the DFLL's operating mode between disabled, open-loop mode,
481 * and closed-loop mode, or vice versa.
482 */
483static void dfll_set_mode(struct tegra_dfll *td,
484 enum dfll_ctrl_mode mode)
485{
486 td->mode = mode;
487 dfll_writel(td, mode - 1, DFLL_CTRL);
488 dfll_wmb(td);
489}
490
c4fe70ad
TT
491/*
492 * DFLL-to-I2C controller interface
493 */
494
495/**
496 * dfll_i2c_set_output_enabled - enable/disable I2C PMIC voltage requests
497 * @td: DFLL instance
498 * @enable: whether to enable or disable the I2C voltage requests
499 *
500 * Set the master enable control for I2C control value updates. If disabled,
501 * then I2C control messages are inhibited, regardless of the DFLL mode.
502 */
503static int dfll_i2c_set_output_enabled(struct tegra_dfll *td, bool enable)
504{
505 u32 val;
506
507 val = dfll_i2c_readl(td, DFLL_OUTPUT_CFG);
508
509 if (enable)
510 val |= DFLL_OUTPUT_CFG_I2C_ENABLE;
511 else
512 val &= ~DFLL_OUTPUT_CFG_I2C_ENABLE;
513
514 dfll_i2c_writel(td, val, DFLL_OUTPUT_CFG);
515 dfll_i2c_wmb(td);
516
517 return 0;
518}
519
520/**
521 * dfll_load_lut - load the voltage lookup table
522 * @td: struct tegra_dfll *
523 *
524 * Load the voltage-to-PMIC register value lookup table into the DFLL
525 * IP block memory. Look-up tables can be loaded at any time.
526 */
527static void dfll_load_i2c_lut(struct tegra_dfll *td)
528{
529 int i, lut_index;
530 u32 val;
531
532 for (i = 0; i < MAX_DFLL_VOLTAGES; i++) {
533 if (i < td->lut_min)
534 lut_index = td->lut_min;
535 else if (i > td->lut_max)
536 lut_index = td->lut_max;
537 else
538 lut_index = i;
539
c5a132a8 540 val = regulator_list_hardware_vsel(td->vdd_reg,
c4fe70ad
TT
541 td->i2c_lut[lut_index]);
542 __raw_writel(val, td->lut_base + i * 4);
543 }
544
545 dfll_i2c_wmb(td);
546}
547
548/**
549 * dfll_init_i2c_if - set up the DFLL's DFLL-I2C interface
550 * @td: DFLL instance
551 *
552 * During DFLL driver initialization, program the DFLL-I2C interface
553 * with the PMU slave address, vdd register offset, and transfer mode.
554 * This data is used by the DFLL to automatically construct I2C
555 * voltage-set commands, which are then passed to the DFLL's internal
556 * I2C controller.
557 */
558static void dfll_init_i2c_if(struct tegra_dfll *td)
559{
560 u32 val;
561
562 if (td->i2c_slave_addr > 0x7f) {
563 val = td->i2c_slave_addr << DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_10BIT;
564 val |= DFLL_I2C_CFG_SLAVE_ADDR_10;
565 } else {
566 val = td->i2c_slave_addr << DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_7BIT;
567 }
568 val |= DFLL_I2C_CFG_SIZE_MASK;
569 val |= DFLL_I2C_CFG_ARB_ENABLE;
570 dfll_i2c_writel(td, val, DFLL_I2C_CFG);
571
572 dfll_i2c_writel(td, td->i2c_reg, DFLL_I2C_VDD_REG_ADDR);
573
574 val = DIV_ROUND_UP(td->i2c_clk_rate, td->i2c_fs_rate * 8);
575 BUG_ON(!val || (val > DFLL_I2C_CLK_DIVISOR_MASK));
576 val = (val - 1) << DFLL_I2C_CLK_DIVISOR_FS_SHIFT;
577
578 /* default hs divisor just in case */
579 val |= 1 << DFLL_I2C_CLK_DIVISOR_HS_SHIFT;
580 __raw_writel(val, td->i2c_controller_base + DFLL_I2C_CLK_DIVISOR);
581 dfll_i2c_wmb(td);
582}
583
584/**
585 * dfll_init_out_if - prepare DFLL-to-PMIC interface
586 * @td: DFLL instance
587 *
588 * During DFLL driver initialization or resume from context loss,
589 * disable the I2C command output to the PMIC, set safe voltage and
590 * output limits, and disable and clear limit interrupts.
591 */
592static void dfll_init_out_if(struct tegra_dfll *td)
593{
594 u32 val;
595
596 td->lut_min = 0;
597 td->lut_max = td->i2c_lut_size - 1;
598 td->lut_safe = td->lut_min + 1;
599
600 dfll_i2c_writel(td, 0, DFLL_OUTPUT_CFG);
601 val = (td->lut_safe << DFLL_OUTPUT_CFG_SAFE_SHIFT) |
602 (td->lut_max << DFLL_OUTPUT_CFG_MAX_SHIFT) |
603 (td->lut_min << DFLL_OUTPUT_CFG_MIN_SHIFT);
604 dfll_i2c_writel(td, val, DFLL_OUTPUT_CFG);
605 dfll_i2c_wmb(td);
606
607 dfll_writel(td, 0, DFLL_OUTPUT_FORCE);
608 dfll_i2c_writel(td, 0, DFLL_INTR_EN);
609 dfll_i2c_writel(td, DFLL_INTR_MAX_MASK | DFLL_INTR_MIN_MASK,
610 DFLL_INTR_STS);
611
612 dfll_load_i2c_lut(td);
613 dfll_init_i2c_if(td);
614}
615
616/*
617 * Set/get the DFLL's targeted output clock rate
618 */
619
620/**
621 * find_lut_index_for_rate - determine I2C LUT index for given DFLL rate
622 * @td: DFLL instance
623 * @rate: clock rate
624 *
625 * Determines the index of a I2C LUT entry for a voltage that approximately
626 * produces the given DFLL clock rate. This is used when forcing a value
627 * to the integrator during rate changes. Returns -ENOENT if a suitable
628 * LUT index is not found.
629 */
630static int find_lut_index_for_rate(struct tegra_dfll *td, unsigned long rate)
631{
632 struct dev_pm_opp *opp;
633 int i, uv;
634
e1595d89
TR
635 rcu_read_lock();
636
62a8a094 637 opp = dev_pm_opp_find_freq_ceil(td->soc->dev, &rate);
e1595d89
TR
638 if (IS_ERR(opp)) {
639 rcu_read_unlock();
c4fe70ad 640 return PTR_ERR(opp);
e1595d89 641 }
c4fe70ad
TT
642 uv = dev_pm_opp_get_voltage(opp);
643
e1595d89
TR
644 rcu_read_unlock();
645
c4fe70ad
TT
646 for (i = 0; i < td->i2c_lut_size; i++) {
647 if (regulator_list_voltage(td->vdd_reg, td->i2c_lut[i]) == uv)
648 return i;
649 }
650
651 return -ENOENT;
652}
653
654/**
655 * dfll_calculate_rate_request - calculate DFLL parameters for a given rate
656 * @td: DFLL instance
657 * @req: DFLL-rate-request structure
658 * @rate: the desired DFLL rate
659 *
660 * Populate the DFLL-rate-request record @req fields with the scale_bits
661 * and mult_bits fields, based on the target input rate. Returns 0 upon
662 * success, or -EINVAL if the requested rate in req->rate is too high
663 * or low for the DFLL to generate.
664 */
665static int dfll_calculate_rate_request(struct tegra_dfll *td,
666 struct dfll_rate_req *req,
667 unsigned long rate)
668{
669 u32 val;
670
671 /*
672 * If requested rate is below the minimum DVCO rate, active the scaler.
673 * In the future the DVCO minimum voltage should be selected based on
674 * chip temperature and the actual minimum rate should be calibrated
675 * at runtime.
676 */
677 req->scale_bits = DFLL_FREQ_REQ_SCALE_MAX - 1;
678 if (rate < td->dvco_rate_min) {
679 int scale;
680
681 scale = DIV_ROUND_CLOSEST(rate / 1000 * DFLL_FREQ_REQ_SCALE_MAX,
682 td->dvco_rate_min / 1000);
683 if (!scale) {
684 dev_err(td->dev, "%s: Rate %lu is too low\n",
685 __func__, rate);
686 return -EINVAL;
687 }
688 req->scale_bits = scale - 1;
689 rate = td->dvco_rate_min;
690 }
691
692 /* Convert requested rate into frequency request and scale settings */
693 val = DVCO_RATE_TO_MULT(rate, td->ref_rate);
694 if (val > FREQ_MAX) {
695 dev_err(td->dev, "%s: Rate %lu is above dfll range\n",
696 __func__, rate);
697 return -EINVAL;
698 }
699 req->mult_bits = val;
700 req->dvco_target_rate = MULT_TO_DVCO_RATE(req->mult_bits, td->ref_rate);
701 req->rate = dfll_scale_dvco_rate(req->scale_bits,
702 req->dvco_target_rate);
703 req->lut_index = find_lut_index_for_rate(td, req->dvco_target_rate);
704 if (req->lut_index < 0)
705 return req->lut_index;
706
707 return 0;
708}
709
710/**
711 * dfll_set_frequency_request - start the frequency change operation
712 * @td: DFLL instance
713 * @req: rate request structure
714 *
715 * Tell the DFLL to try to change its output frequency to the
716 * frequency represented by @req. DFLL must be in closed-loop mode.
717 */
718static void dfll_set_frequency_request(struct tegra_dfll *td,
719 struct dfll_rate_req *req)
720{
721 u32 val = 0;
722 int force_val;
723 int coef = 128; /* FIXME: td->cg_scale? */;
724
725 force_val = (req->lut_index - td->lut_safe) * coef / td->cg;
726 force_val = clamp(force_val, FORCE_MIN, FORCE_MAX);
727
728 val |= req->mult_bits << DFLL_FREQ_REQ_MULT_SHIFT;
729 val |= req->scale_bits << DFLL_FREQ_REQ_SCALE_SHIFT;
730 val |= ((u32)force_val << DFLL_FREQ_REQ_FORCE_SHIFT) &
731 DFLL_FREQ_REQ_FORCE_MASK;
732 val |= DFLL_FREQ_REQ_FREQ_VALID | DFLL_FREQ_REQ_FORCE_ENABLE;
733
734 dfll_writel(td, val, DFLL_FREQ_REQ);
735 dfll_wmb(td);
736}
737
738/**
739 * tegra_dfll_request_rate - set the next rate for the DFLL to tune to
740 * @td: DFLL instance
741 * @rate: clock rate to target
742 *
743 * Convert the requested clock rate @rate into the DFLL control logic
744 * settings. In closed-loop mode, update new settings immediately to
745 * adjust DFLL output rate accordingly. Otherwise, just save them
746 * until the next switch to closed loop. Returns 0 upon success,
747 * -EPERM if the DFLL driver has not yet been initialized, or -EINVAL
748 * if @rate is outside the DFLL's tunable range.
749 */
750static int dfll_request_rate(struct tegra_dfll *td, unsigned long rate)
751{
752 int ret;
753 struct dfll_rate_req req;
754
755 if (td->mode == DFLL_UNINITIALIZED) {
756 dev_err(td->dev, "%s: Cannot set DFLL rate in %s mode\n",
757 __func__, mode_name[td->mode]);
758 return -EPERM;
759 }
760
761 ret = dfll_calculate_rate_request(td, &req, rate);
762 if (ret)
763 return ret;
764
765 td->last_unrounded_rate = rate;
766 td->last_req = req;
767
768 if (td->mode == DFLL_CLOSED_LOOP)
769 dfll_set_frequency_request(td, &td->last_req);
770
771 return 0;
772}
773
d8d7a08f
TT
774/*
775 * DFLL enable/disable & open-loop <-> closed-loop transitions
776 */
777
778/**
779 * dfll_disable - switch from open-loop mode to disabled mode
780 * @td: DFLL instance
781 *
782 * Switch from OPEN_LOOP state to DISABLED state. Returns 0 upon success
783 * or -EPERM if the DFLL is not currently in open-loop mode.
784 */
785static int dfll_disable(struct tegra_dfll *td)
786{
787 if (td->mode != DFLL_OPEN_LOOP) {
788 dev_err(td->dev, "cannot disable DFLL in %s mode\n",
789 mode_name[td->mode]);
790 return -EINVAL;
791 }
792
793 dfll_set_mode(td, DFLL_DISABLED);
794 pm_runtime_put_sync(td->dev);
795
796 return 0;
797}
798
799/**
800 * dfll_enable - switch a disabled DFLL to open-loop mode
801 * @td: DFLL instance
802 *
803 * Switch from DISABLED state to OPEN_LOOP state. Returns 0 upon success
804 * or -EPERM if the DFLL is not currently disabled.
805 */
806static int dfll_enable(struct tegra_dfll *td)
807{
808 if (td->mode != DFLL_DISABLED) {
809 dev_err(td->dev, "cannot enable DFLL in %s mode\n",
810 mode_name[td->mode]);
811 return -EPERM;
812 }
813
814 pm_runtime_get_sync(td->dev);
815 dfll_set_mode(td, DFLL_OPEN_LOOP);
816
817 return 0;
818}
819
820/**
821 * dfll_set_open_loop_config - prepare to switch to open-loop mode
822 * @td: DFLL instance
823 *
824 * Prepare to switch the DFLL to open-loop mode. This switches the
825 * DFLL to the low-voltage tuning range, ensures that I2C output
826 * forcing is disabled, and disables the output clock rate scaler.
827 * The DFLL's low-voltage tuning range parameters must be
828 * characterized to keep the downstream device stable at any DVCO
829 * input voltage. No return value.
830 */
831static void dfll_set_open_loop_config(struct tegra_dfll *td)
832{
833 u32 val;
834
835 /* always tune low (safe) in open loop */
836 if (td->tune_range != DFLL_TUNE_LOW)
837 dfll_tune_low(td);
838
839 val = dfll_readl(td, DFLL_FREQ_REQ);
840 val |= DFLL_FREQ_REQ_SCALE_MASK;
841 val &= ~DFLL_FREQ_REQ_FORCE_ENABLE;
842 dfll_writel(td, val, DFLL_FREQ_REQ);
843 dfll_wmb(td);
844}
845
c4fe70ad
TT
846/**
847 * tegra_dfll_lock - switch from open-loop to closed-loop mode
848 * @td: DFLL instance
849 *
850 * Switch from OPEN_LOOP state to CLOSED_LOOP state. Returns 0 upon success,
851 * -EINVAL if the DFLL's target rate hasn't been set yet, or -EPERM if the
852 * DFLL is not currently in open-loop mode.
853 */
854static int dfll_lock(struct tegra_dfll *td)
855{
856 struct dfll_rate_req *req = &td->last_req;
857
858 switch (td->mode) {
859 case DFLL_CLOSED_LOOP:
860 return 0;
861
862 case DFLL_OPEN_LOOP:
863 if (req->rate == 0) {
864 dev_err(td->dev, "%s: Cannot lock DFLL at rate 0\n",
865 __func__);
866 return -EINVAL;
867 }
868
869 dfll_i2c_set_output_enabled(td, true);
870 dfll_set_mode(td, DFLL_CLOSED_LOOP);
871 dfll_set_frequency_request(td, req);
872 return 0;
873
874 default:
875 BUG_ON(td->mode > DFLL_CLOSED_LOOP);
876 dev_err(td->dev, "%s: Cannot lock DFLL in %s mode\n",
877 __func__, mode_name[td->mode]);
878 return -EPERM;
879 }
880}
881
882/**
883 * tegra_dfll_unlock - switch from closed-loop to open-loop mode
884 * @td: DFLL instance
885 *
886 * Switch from CLOSED_LOOP state to OPEN_LOOP state. Returns 0 upon success,
887 * or -EPERM if the DFLL is not currently in open-loop mode.
888 */
889static int dfll_unlock(struct tegra_dfll *td)
890{
891 switch (td->mode) {
892 case DFLL_CLOSED_LOOP:
893 dfll_set_open_loop_config(td);
894 dfll_set_mode(td, DFLL_OPEN_LOOP);
895 dfll_i2c_set_output_enabled(td, false);
896 return 0;
897
898 case DFLL_OPEN_LOOP:
899 return 0;
900
901 default:
902 BUG_ON(td->mode > DFLL_CLOSED_LOOP);
903 dev_err(td->dev, "%s: Cannot unlock DFLL in %s mode\n",
904 __func__, mode_name[td->mode]);
905 return -EPERM;
906 }
907}
908
d8d7a08f
TT
909/*
910 * Clock framework integration
c4fe70ad
TT
911 *
912 * When the DFLL is being controlled by the CCF, always enter closed loop
913 * mode when the clk is enabled. This requires that a DFLL rate request
914 * has been set beforehand, which implies that a clk_set_rate() call is
915 * always required before a clk_enable().
d8d7a08f
TT
916 */
917
918static int dfll_clk_is_enabled(struct clk_hw *hw)
919{
920 struct tegra_dfll *td = clk_hw_to_dfll(hw);
921
922 return dfll_is_running(td);
923}
924
925static int dfll_clk_enable(struct clk_hw *hw)
926{
927 struct tegra_dfll *td = clk_hw_to_dfll(hw);
c4fe70ad
TT
928 int ret;
929
930 ret = dfll_enable(td);
931 if (ret)
932 return ret;
d8d7a08f 933
c4fe70ad
TT
934 ret = dfll_lock(td);
935 if (ret)
936 dfll_disable(td);
937
938 return ret;
d8d7a08f
TT
939}
940
941static void dfll_clk_disable(struct clk_hw *hw)
c4fe70ad
TT
942{
943 struct tegra_dfll *td = clk_hw_to_dfll(hw);
944 int ret;
945
946 ret = dfll_unlock(td);
947 if (!ret)
948 dfll_disable(td);
949}
950
951static unsigned long dfll_clk_recalc_rate(struct clk_hw *hw,
952 unsigned long parent_rate)
953{
954 struct tegra_dfll *td = clk_hw_to_dfll(hw);
955
956 return td->last_unrounded_rate;
957}
958
10d9be6e
MP
959/* Must use determine_rate since it allows for rates exceeding 2^31-1 */
960static int dfll_clk_determine_rate(struct clk_hw *hw,
961 struct clk_rate_request *clk_req)
c4fe70ad
TT
962{
963 struct tegra_dfll *td = clk_hw_to_dfll(hw);
964 struct dfll_rate_req req;
965 int ret;
966
10d9be6e 967 ret = dfll_calculate_rate_request(td, &req, clk_req->rate);
c4fe70ad
TT
968 if (ret)
969 return ret;
970
971 /*
10d9be6e 972 * Don't set the rounded rate, since it doesn't really matter as
c4fe70ad
TT
973 * the output rate will be voltage controlled anyway, and cpufreq
974 * freaks out if any rounding happens.
975 */
10d9be6e
MP
976
977 return 0;
c4fe70ad
TT
978}
979
980static int dfll_clk_set_rate(struct clk_hw *hw, unsigned long rate,
981 unsigned long parent_rate)
d8d7a08f
TT
982{
983 struct tegra_dfll *td = clk_hw_to_dfll(hw);
984
c4fe70ad 985 return dfll_request_rate(td, rate);
d8d7a08f
TT
986}
987
988static const struct clk_ops dfll_clk_ops = {
989 .is_enabled = dfll_clk_is_enabled,
990 .enable = dfll_clk_enable,
991 .disable = dfll_clk_disable,
c4fe70ad 992 .recalc_rate = dfll_clk_recalc_rate,
10d9be6e 993 .determine_rate = dfll_clk_determine_rate,
c4fe70ad 994 .set_rate = dfll_clk_set_rate,
d8d7a08f
TT
995};
996
997static struct clk_init_data dfll_clk_init_data = {
998 .flags = CLK_IS_ROOT,
999 .ops = &dfll_clk_ops,
1000 .num_parents = 0,
1001};
1002
1003/**
1004 * dfll_register_clk - register the DFLL output clock with the clock framework
1005 * @td: DFLL instance
1006 *
1007 * Register the DFLL's output clock with the Linux clock framework and register
1008 * the DFLL driver as an OF clock provider. Returns 0 upon success or -EINVAL
1009 * or -ENOMEM upon failure.
1010 */
1011static int dfll_register_clk(struct tegra_dfll *td)
1012{
1013 int ret;
1014
1015 dfll_clk_init_data.name = td->output_clock_name;
1016 td->dfll_clk_hw.init = &dfll_clk_init_data;
1017
1018 td->dfll_clk = clk_register(td->dev, &td->dfll_clk_hw);
1019 if (IS_ERR(td->dfll_clk)) {
1020 dev_err(td->dev, "DFLL clock registration error\n");
1021 return -EINVAL;
1022 }
1023
1024 ret = of_clk_add_provider(td->dev->of_node, of_clk_src_simple_get,
1025 td->dfll_clk);
1026 if (ret) {
1027 dev_err(td->dev, "of_clk_add_provider() failed\n");
1028
1029 clk_unregister(td->dfll_clk);
1030 return ret;
1031 }
1032
1033 return 0;
1034}
1035
1036/**
1037 * dfll_unregister_clk - unregister the DFLL output clock
1038 * @td: DFLL instance
1039 *
1040 * Unregister the DFLL's output clock from the Linux clock framework
1041 * and from clkdev. No return value.
1042 */
1043static void dfll_unregister_clk(struct tegra_dfll *td)
1044{
1045 of_clk_del_provider(td->dev->of_node);
1046 clk_unregister(td->dfll_clk);
1047 td->dfll_clk = NULL;
1048}
1049
1050/*
1051 * Debugfs interface
1052 */
1053
1054#ifdef CONFIG_DEBUG_FS
4182b8d4
TR
1055/*
1056 * Monitor control
1057 */
1058
1059/**
1060 * dfll_calc_monitored_rate - convert DFLL_MONITOR_DATA_VAL rate into real freq
1061 * @monitor_data: value read from the DFLL_MONITOR_DATA_VAL bitfield
1062 * @ref_rate: DFLL reference clock rate
1063 *
1064 * Convert @monitor_data from DFLL_MONITOR_DATA_VAL units into cycles
1065 * per second. Returns the converted value.
1066 */
1067static u64 dfll_calc_monitored_rate(u32 monitor_data,
1068 unsigned long ref_rate)
1069{
1070 return monitor_data * (ref_rate / REF_CLK_CYC_PER_DVCO_SAMPLE);
1071}
1072
1073/**
1074 * dfll_read_monitor_rate - return the DFLL's output rate from internal monitor
1075 * @td: DFLL instance
1076 *
1077 * If the DFLL is enabled, return the last rate reported by the DFLL's
1078 * internal monitoring hardware. This works in both open-loop and
1079 * closed-loop mode, and takes the output scaler setting into account.
1080 * Assumes that the monitor was programmed to monitor frequency before
1081 * the sample period started. If the driver believes that the DFLL is
1082 * currently uninitialized or disabled, it will return 0, since
1083 * otherwise the DFLL monitor data register will return the last
1084 * measured rate from when the DFLL was active.
1085 */
1086static u64 dfll_read_monitor_rate(struct tegra_dfll *td)
1087{
1088 u32 v, s;
1089 u64 pre_scaler_rate, post_scaler_rate;
1090
1091 if (!dfll_is_running(td))
1092 return 0;
1093
1094 v = dfll_readl(td, DFLL_MONITOR_DATA);
1095 v = (v & DFLL_MONITOR_DATA_VAL_MASK) >> DFLL_MONITOR_DATA_VAL_SHIFT;
1096 pre_scaler_rate = dfll_calc_monitored_rate(v, td->ref_rate);
1097
1098 s = dfll_readl(td, DFLL_FREQ_REQ);
1099 s = (s & DFLL_FREQ_REQ_SCALE_MASK) >> DFLL_FREQ_REQ_SCALE_SHIFT;
1100 post_scaler_rate = dfll_scale_dvco_rate(s, pre_scaler_rate);
1101
1102 return post_scaler_rate;
1103}
d8d7a08f
TT
1104
1105static int attr_enable_get(void *data, u64 *val)
1106{
1107 struct tegra_dfll *td = data;
1108
1109 *val = dfll_is_running(td);
1110
1111 return 0;
1112}
1113static int attr_enable_set(void *data, u64 val)
1114{
1115 struct tegra_dfll *td = data;
1116
1117 return val ? dfll_enable(td) : dfll_disable(td);
1118}
1119DEFINE_SIMPLE_ATTRIBUTE(enable_fops, attr_enable_get, attr_enable_set,
1120 "%llu\n");
1121
c4fe70ad
TT
1122static int attr_lock_get(void *data, u64 *val)
1123{
1124 struct tegra_dfll *td = data;
1125
1126 *val = (td->mode == DFLL_CLOSED_LOOP);
1127
1128 return 0;
1129}
1130static int attr_lock_set(void *data, u64 val)
1131{
1132 struct tegra_dfll *td = data;
1133
1134 return val ? dfll_lock(td) : dfll_unlock(td);
1135}
1136DEFINE_SIMPLE_ATTRIBUTE(lock_fops, attr_lock_get, attr_lock_set,
1137 "%llu\n");
1138
d8d7a08f
TT
1139static int attr_rate_get(void *data, u64 *val)
1140{
1141 struct tegra_dfll *td = data;
1142
1143 *val = dfll_read_monitor_rate(td);
1144
1145 return 0;
1146}
c4fe70ad
TT
1147
1148static int attr_rate_set(void *data, u64 val)
1149{
1150 struct tegra_dfll *td = data;
1151
1152 return dfll_request_rate(td, val);
1153}
1154DEFINE_SIMPLE_ATTRIBUTE(rate_fops, attr_rate_get, attr_rate_set, "%llu\n");
d8d7a08f
TT
1155
1156static int attr_registers_show(struct seq_file *s, void *data)
1157{
1158 u32 val, offs;
1159 struct tegra_dfll *td = s->private;
1160
1161 seq_puts(s, "CONTROL REGISTERS:\n");
1162 for (offs = 0; offs <= DFLL_MONITOR_DATA; offs += 4) {
1163 if (offs == DFLL_OUTPUT_CFG)
1164 val = dfll_i2c_readl(td, offs);
1165 else
1166 val = dfll_readl(td, offs);
1167 seq_printf(s, "[0x%02x] = 0x%08x\n", offs, val);
1168 }
1169
1170 seq_puts(s, "\nI2C and INTR REGISTERS:\n");
1171 for (offs = DFLL_I2C_CFG; offs <= DFLL_I2C_STS; offs += 4)
1172 seq_printf(s, "[0x%02x] = 0x%08x\n", offs,
1173 dfll_i2c_readl(td, offs));
1174 for (offs = DFLL_INTR_STS; offs <= DFLL_INTR_EN; offs += 4)
1175 seq_printf(s, "[0x%02x] = 0x%08x\n", offs,
1176 dfll_i2c_readl(td, offs));
1177
1178 seq_puts(s, "\nINTEGRATED I2C CONTROLLER REGISTERS:\n");
1179 offs = DFLL_I2C_CLK_DIVISOR;
1180 seq_printf(s, "[0x%02x] = 0x%08x\n", offs,
1181 __raw_readl(td->i2c_controller_base + offs));
1182
1183 seq_puts(s, "\nLUT:\n");
1184 for (offs = 0; offs < 4 * MAX_DFLL_VOLTAGES; offs += 4)
1185 seq_printf(s, "[0x%02x] = 0x%08x\n", offs,
1186 __raw_readl(td->lut_base + offs));
1187
1188 return 0;
1189}
1190
1191static int attr_registers_open(struct inode *inode, struct file *file)
1192{
1193 return single_open(file, attr_registers_show, inode->i_private);
1194}
1195
1196static const struct file_operations attr_registers_fops = {
1197 .open = attr_registers_open,
1198 .read = seq_read,
1199 .llseek = seq_lseek,
1200 .release = single_release,
1201};
1202
1203static int dfll_debug_init(struct tegra_dfll *td)
1204{
1205 int ret;
1206
1207 if (!td || (td->mode == DFLL_UNINITIALIZED))
1208 return 0;
1209
1210 td->debugfs_dir = debugfs_create_dir("tegra_dfll_fcpu", NULL);
1211 if (!td->debugfs_dir)
1212 return -ENOMEM;
1213
1214 ret = -ENOMEM;
1215
1216 if (!debugfs_create_file("enable", S_IRUGO | S_IWUSR,
1217 td->debugfs_dir, td, &enable_fops))
1218 goto err_out;
1219
c4fe70ad
TT
1220 if (!debugfs_create_file("lock", S_IRUGO,
1221 td->debugfs_dir, td, &lock_fops))
1222 goto err_out;
1223
d8d7a08f
TT
1224 if (!debugfs_create_file("rate", S_IRUGO,
1225 td->debugfs_dir, td, &rate_fops))
1226 goto err_out;
1227
1228 if (!debugfs_create_file("registers", S_IRUGO,
1229 td->debugfs_dir, td, &attr_registers_fops))
1230 goto err_out;
1231
1232 return 0;
1233
1234err_out:
1235 debugfs_remove_recursive(td->debugfs_dir);
1236 return ret;
1237}
1238
1239#endif /* CONFIG_DEBUG_FS */
1240
1241/*
1242 * DFLL initialization
1243 */
1244
1245/**
1246 * dfll_set_default_params - program non-output related DFLL parameters
1247 * @td: DFLL instance
1248 *
1249 * During DFLL driver initialization or resume from context loss,
1250 * program parameters for the closed loop integrator, DVCO tuning,
1251 * voltage droop control and monitor control.
1252 */
1253static void dfll_set_default_params(struct tegra_dfll *td)
1254{
c4fe70ad
TT
1255 u32 val;
1256
1257 val = DIV_ROUND_UP(td->ref_rate, td->sample_rate * 32);
1258 BUG_ON(val > DFLL_CONFIG_DIV_MASK);
1259 dfll_writel(td, val, DFLL_CONFIG);
1260
1261 val = (td->force_mode << DFLL_PARAMS_FORCE_MODE_SHIFT) |
1262 (td->cf << DFLL_PARAMS_CF_PARAM_SHIFT) |
1263 (td->ci << DFLL_PARAMS_CI_PARAM_SHIFT) |
1264 (td->cg << DFLL_PARAMS_CG_PARAM_SHIFT) |
1265 (td->cg_scale ? DFLL_PARAMS_CG_SCALE : 0);
1266 dfll_writel(td, val, DFLL_PARAMS);
1267
d8d7a08f
TT
1268 dfll_tune_low(td);
1269 dfll_writel(td, td->droop_ctrl, DFLL_DROOP_CTRL);
1270 dfll_writel(td, DFLL_MONITOR_CTRL_FREQ, DFLL_MONITOR_CTRL);
1271}
1272
1273/**
1274 * dfll_init_clks - clk_get() the DFLL source clocks
1275 * @td: DFLL instance
1276 *
1277 * Call clk_get() on the DFLL source clocks and save the pointers for later
1278 * use. Returns 0 upon success or error (see devm_clk_get) if one or more
1279 * of the clocks couldn't be looked up.
1280 */
1281static int dfll_init_clks(struct tegra_dfll *td)
1282{
1283 td->ref_clk = devm_clk_get(td->dev, "ref");
1284 if (IS_ERR(td->ref_clk)) {
1285 dev_err(td->dev, "missing ref clock\n");
1286 return PTR_ERR(td->ref_clk);
1287 }
1288
1289 td->soc_clk = devm_clk_get(td->dev, "soc");
1290 if (IS_ERR(td->soc_clk)) {
1291 dev_err(td->dev, "missing soc clock\n");
1292 return PTR_ERR(td->soc_clk);
1293 }
1294
1295 td->i2c_clk = devm_clk_get(td->dev, "i2c");
1296 if (IS_ERR(td->i2c_clk)) {
1297 dev_err(td->dev, "missing i2c clock\n");
1298 return PTR_ERR(td->i2c_clk);
1299 }
1300 td->i2c_clk_rate = clk_get_rate(td->i2c_clk);
1301
1302 return 0;
1303}
1304
1305/**
1306 * dfll_init - Prepare the DFLL IP block for use
1307 * @td: DFLL instance
1308 *
1309 * Do everything necessary to prepare the DFLL IP block for use. The
1310 * DFLL will be left in DISABLED state. Called by dfll_probe().
1311 * Returns 0 upon success, or passes along the error from whatever
1312 * function returned it.
1313 */
1314static int dfll_init(struct tegra_dfll *td)
1315{
1316 int ret;
1317
1318 td->ref_rate = clk_get_rate(td->ref_clk);
1319 if (td->ref_rate != REF_CLOCK_RATE) {
1320 dev_err(td->dev, "unexpected ref clk rate %lu, expecting %lu",
1321 td->ref_rate, REF_CLOCK_RATE);
1322 return -EINVAL;
1323 }
1324
1325 reset_control_deassert(td->dvco_rst);
1326
1327 ret = clk_prepare(td->ref_clk);
1328 if (ret) {
1329 dev_err(td->dev, "failed to prepare ref_clk\n");
1330 return ret;
1331 }
1332
1333 ret = clk_prepare(td->soc_clk);
1334 if (ret) {
1335 dev_err(td->dev, "failed to prepare soc_clk\n");
1336 goto di_err1;
1337 }
1338
1339 ret = clk_prepare(td->i2c_clk);
1340 if (ret) {
1341 dev_err(td->dev, "failed to prepare i2c_clk\n");
1342 goto di_err2;
1343 }
1344
c4fe70ad
TT
1345 td->last_unrounded_rate = 0;
1346
d8d7a08f
TT
1347 pm_runtime_enable(td->dev);
1348 pm_runtime_get_sync(td->dev);
1349
1350 dfll_set_mode(td, DFLL_DISABLED);
1351 dfll_set_default_params(td);
1352
1353 if (td->soc->init_clock_trimmers)
1354 td->soc->init_clock_trimmers();
1355
1356 dfll_set_open_loop_config(td);
1357
c4fe70ad
TT
1358 dfll_init_out_if(td);
1359
d8d7a08f
TT
1360 pm_runtime_put_sync(td->dev);
1361
1362 return 0;
1363
1364di_err2:
1365 clk_unprepare(td->soc_clk);
1366di_err1:
1367 clk_unprepare(td->ref_clk);
1368
1369 reset_control_assert(td->dvco_rst);
1370
1371 return ret;
1372}
1373
1374/*
1375 * DT data fetch
1376 */
1377
c4fe70ad
TT
1378/*
1379 * Find a PMIC voltage register-to-voltage mapping for the given voltage.
1380 * An exact voltage match is required.
1381 */
1382static int find_vdd_map_entry_exact(struct tegra_dfll *td, int uV)
1383{
1384 int i, n_voltages, reg_uV;
1385
1386 n_voltages = regulator_count_voltages(td->vdd_reg);
1387 for (i = 0; i < n_voltages; i++) {
1388 reg_uV = regulator_list_voltage(td->vdd_reg, i);
1389 if (reg_uV < 0)
1390 break;
1391
1392 if (uV == reg_uV)
1393 return i;
1394 }
1395
1396 dev_err(td->dev, "no voltage map entry for %d uV\n", uV);
1397 return -EINVAL;
1398}
1399
1400/*
1401 * Find a PMIC voltage register-to-voltage mapping for the given voltage,
1402 * rounding up to the closest supported voltage.
1403 * */
1404static int find_vdd_map_entry_min(struct tegra_dfll *td, int uV)
1405{
1406 int i, n_voltages, reg_uV;
1407
1408 n_voltages = regulator_count_voltages(td->vdd_reg);
1409 for (i = 0; i < n_voltages; i++) {
1410 reg_uV = regulator_list_voltage(td->vdd_reg, i);
1411 if (reg_uV < 0)
1412 break;
1413
1414 if (uV <= reg_uV)
1415 return i;
1416 }
1417
1418 dev_err(td->dev, "no voltage map entry rounding to %d uV\n", uV);
1419 return -EINVAL;
1420}
1421
1422/**
1423 * dfll_build_i2c_lut - build the I2C voltage register lookup table
1424 * @td: DFLL instance
1425 *
1426 * The DFLL hardware has 33 bytes of look-up table RAM that must be filled with
1427 * PMIC voltage register values that span the entire DFLL operating range.
1428 * This function builds the look-up table based on the OPP table provided by
1429 * the soc-specific platform driver (td->soc->opp_dev) and the PMIC
1430 * register-to-voltage mapping queried from the regulator framework.
1431 *
1432 * On success, fills in td->i2c_lut and returns 0, or -err on failure.
1433 */
1434static int dfll_build_i2c_lut(struct tegra_dfll *td)
1435{
1436 int ret = -EINVAL;
1437 int j, v, v_max, v_opp;
1438 int selector;
1439 unsigned long rate;
1440 struct dev_pm_opp *opp;
c5a132a8 1441 int lut;
c4fe70ad
TT
1442
1443 rcu_read_lock();
1444
1445 rate = ULONG_MAX;
62a8a094 1446 opp = dev_pm_opp_find_freq_floor(td->soc->dev, &rate);
c4fe70ad
TT
1447 if (IS_ERR(opp)) {
1448 dev_err(td->dev, "couldn't get vmax opp, empty opp table?\n");
1449 goto out;
1450 }
1451 v_max = dev_pm_opp_get_voltage(opp);
1452
1453 v = td->soc->min_millivolts * 1000;
c5a132a8
SB
1454 lut = find_vdd_map_entry_exact(td, v);
1455 if (lut < 0)
c4fe70ad 1456 goto out;
c5a132a8 1457 td->i2c_lut[0] = lut;
c4fe70ad
TT
1458
1459 for (j = 1, rate = 0; ; rate++) {
62a8a094 1460 opp = dev_pm_opp_find_freq_ceil(td->soc->dev, &rate);
c4fe70ad
TT
1461 if (IS_ERR(opp))
1462 break;
1463 v_opp = dev_pm_opp_get_voltage(opp);
1464
1465 if (v_opp <= td->soc->min_millivolts * 1000)
1466 td->dvco_rate_min = dev_pm_opp_get_freq(opp);
1467
1468 for (;;) {
1469 v += max(1, (v_max - v) / (MAX_DFLL_VOLTAGES - j));
1470 if (v >= v_opp)
1471 break;
1472
1473 selector = find_vdd_map_entry_min(td, v);
1474 if (selector < 0)
1475 goto out;
1476 if (selector != td->i2c_lut[j - 1])
1477 td->i2c_lut[j++] = selector;
1478 }
1479
1480 v = (j == MAX_DFLL_VOLTAGES - 1) ? v_max : v_opp;
1481 selector = find_vdd_map_entry_exact(td, v);
1482 if (selector < 0)
1483 goto out;
1484 if (selector != td->i2c_lut[j - 1])
1485 td->i2c_lut[j++] = selector;
1486
1487 if (v >= v_max)
1488 break;
1489 }
1490 td->i2c_lut_size = j;
1491
1492 if (!td->dvco_rate_min)
1493 dev_err(td->dev, "no opp above DFLL minimum voltage %d mV\n",
1494 td->soc->min_millivolts);
1495 else
1496 ret = 0;
1497
1498out:
1499 rcu_read_unlock();
1500
1501 return ret;
1502}
1503
d8d7a08f
TT
1504/**
1505 * read_dt_param - helper function for reading required parameters from the DT
1506 * @td: DFLL instance
1507 * @param: DT property name
1508 * @dest: output pointer for the value read
1509 *
1510 * Read a required numeric parameter from the DFLL device node, or complain
1511 * if the property doesn't exist. Returns a boolean indicating success for
1512 * easy chaining of multiple calls to this function.
1513 */
1514static bool read_dt_param(struct tegra_dfll *td, const char *param, u32 *dest)
1515{
1516 int err = of_property_read_u32(td->dev->of_node, param, dest);
1517
1518 if (err < 0) {
1519 dev_err(td->dev, "failed to read DT parameter %s: %d\n",
1520 param, err);
1521 return false;
1522 }
1523
1524 return true;
1525}
1526
c4fe70ad
TT
1527/**
1528 * dfll_fetch_i2c_params - query PMIC I2C params from DT & regulator subsystem
1529 * @td: DFLL instance
1530 *
1531 * Read all the parameters required for operation in I2C mode. The parameters
1532 * can originate from the device tree or the regulator subsystem.
1533 * Returns 0 on success or -err on failure.
1534 */
1535static int dfll_fetch_i2c_params(struct tegra_dfll *td)
1536{
1537 struct regmap *regmap;
1538 struct device *i2c_dev;
1539 struct i2c_client *i2c_client;
1540 int vsel_reg, vsel_mask;
1541 int ret;
1542
1543 if (!read_dt_param(td, "nvidia,i2c-fs-rate", &td->i2c_fs_rate))
1544 return -EINVAL;
1545
1546 regmap = regulator_get_regmap(td->vdd_reg);
1547 i2c_dev = regmap_get_device(regmap);
1548 i2c_client = to_i2c_client(i2c_dev);
1549
1550 td->i2c_slave_addr = i2c_client->addr;
1551
1552 ret = regulator_get_hardware_vsel_register(td->vdd_reg,
1553 &vsel_reg,
1554 &vsel_mask);
1555 if (ret < 0) {
1556 dev_err(td->dev,
1557 "regulator unsuitable for DFLL I2C operation\n");
1558 return -EINVAL;
1559 }
1560 td->i2c_reg = vsel_reg;
1561
1562 ret = dfll_build_i2c_lut(td);
1563 if (ret) {
1564 dev_err(td->dev, "couldn't build I2C LUT\n");
1565 return ret;
1566 }
1567
1568 return 0;
1569}
1570
d8d7a08f
TT
1571/**
1572 * dfll_fetch_common_params - read DFLL parameters from the device tree
1573 * @td: DFLL instance
1574 *
1575 * Read all the DT parameters that are common to both I2C and PWM operation.
1576 * Returns 0 on success or -EINVAL on any failure.
1577 */
1578static int dfll_fetch_common_params(struct tegra_dfll *td)
1579{
1580 bool ok = true;
1581
1582 ok &= read_dt_param(td, "nvidia,droop-ctrl", &td->droop_ctrl);
c4fe70ad
TT
1583 ok &= read_dt_param(td, "nvidia,sample-rate", &td->sample_rate);
1584 ok &= read_dt_param(td, "nvidia,force-mode", &td->force_mode);
1585 ok &= read_dt_param(td, "nvidia,cf", &td->cf);
1586 ok &= read_dt_param(td, "nvidia,ci", &td->ci);
1587 ok &= read_dt_param(td, "nvidia,cg", &td->cg);
1588 td->cg_scale = of_property_read_bool(td->dev->of_node,
1589 "nvidia,cg-scale");
d8d7a08f
TT
1590
1591 if (of_property_read_string(td->dev->of_node, "clock-output-names",
1592 &td->output_clock_name)) {
1593 dev_err(td->dev, "missing clock-output-names property\n");
1594 ok = false;
1595 }
1596
1597 return ok ? 0 : -EINVAL;
1598}
1599
1600/*
1601 * API exported to per-SoC platform drivers
1602 */
1603
1604/**
1605 * tegra_dfll_register - probe a Tegra DFLL device
1606 * @pdev: DFLL platform_device *
1607 * @soc: Per-SoC integration and characterization data for this DFLL instance
1608 *
1609 * Probe and initialize a DFLL device instance. Intended to be called
1610 * by a SoC-specific shim driver that passes in per-SoC integration
1611 * and configuration data via @soc. Returns 0 on success or -err on failure.
1612 */
1613int tegra_dfll_register(struct platform_device *pdev,
1614 struct tegra_dfll_soc_data *soc)
1615{
1616 struct resource *mem;
1617 struct tegra_dfll *td;
1618 int ret;
1619
1620 if (!soc) {
1621 dev_err(&pdev->dev, "no tegra_dfll_soc_data provided\n");
1622 return -EINVAL;
1623 }
1624
1625 td = devm_kzalloc(&pdev->dev, sizeof(*td), GFP_KERNEL);
1626 if (!td)
1627 return -ENOMEM;
1628 td->dev = &pdev->dev;
1629 platform_set_drvdata(pdev, td);
1630
1631 td->soc = soc;
1632
1633 td->vdd_reg = devm_regulator_get(td->dev, "vdd-cpu");
1634 if (IS_ERR(td->vdd_reg)) {
1635 dev_err(td->dev, "couldn't get vdd_cpu regulator\n");
1636 return PTR_ERR(td->vdd_reg);
1637 }
1638
1639 td->dvco_rst = devm_reset_control_get(td->dev, "dvco");
1640 if (IS_ERR(td->dvco_rst)) {
1641 dev_err(td->dev, "couldn't get dvco reset\n");
1642 return PTR_ERR(td->dvco_rst);
1643 }
1644
1645 ret = dfll_fetch_common_params(td);
1646 if (ret) {
1647 dev_err(td->dev, "couldn't parse device tree parameters\n");
1648 return ret;
1649 }
1650
c4fe70ad
TT
1651 ret = dfll_fetch_i2c_params(td);
1652 if (ret)
1653 return ret;
1654
d8d7a08f
TT
1655 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1656 if (!mem) {
1657 dev_err(td->dev, "no control register resource\n");
1658 return -ENODEV;
1659 }
1660
1661 td->base = devm_ioremap(td->dev, mem->start, resource_size(mem));
1662 if (!td->base) {
1663 dev_err(td->dev, "couldn't ioremap DFLL control registers\n");
1664 return -ENODEV;
1665 }
1666
1667 mem = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1668 if (!mem) {
1669 dev_err(td->dev, "no i2c_base resource\n");
1670 return -ENODEV;
1671 }
1672
1673 td->i2c_base = devm_ioremap(td->dev, mem->start, resource_size(mem));
1674 if (!td->i2c_base) {
1675 dev_err(td->dev, "couldn't ioremap i2c_base resource\n");
1676 return -ENODEV;
1677 }
1678
1679 mem = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1680 if (!mem) {
1681 dev_err(td->dev, "no i2c_controller_base resource\n");
1682 return -ENODEV;
1683 }
1684
1685 td->i2c_controller_base = devm_ioremap(td->dev, mem->start,
1686 resource_size(mem));
1687 if (!td->i2c_controller_base) {
1688 dev_err(td->dev,
1689 "couldn't ioremap i2c_controller_base resource\n");
1690 return -ENODEV;
1691 }
1692
1693 mem = platform_get_resource(pdev, IORESOURCE_MEM, 3);
1694 if (!mem) {
1695 dev_err(td->dev, "no lut_base resource\n");
1696 return -ENODEV;
1697 }
1698
1699 td->lut_base = devm_ioremap(td->dev, mem->start, resource_size(mem));
1700 if (!td->lut_base) {
1701 dev_err(td->dev,
1702 "couldn't ioremap lut_base resource\n");
1703 return -ENODEV;
1704 }
1705
1706 ret = dfll_init_clks(td);
1707 if (ret) {
1708 dev_err(&pdev->dev, "DFLL clock init error\n");
1709 return ret;
1710 }
1711
1712 /* Enable the clocks and set the device up */
1713 ret = dfll_init(td);
1714 if (ret)
1715 return ret;
1716
1717 ret = dfll_register_clk(td);
1718 if (ret) {
1719 dev_err(&pdev->dev, "DFLL clk registration failed\n");
1720 return ret;
1721 }
1722
1723#ifdef CONFIG_DEBUG_FS
1724 dfll_debug_init(td);
1725#endif
1726
1727 return 0;
1728}
1729EXPORT_SYMBOL(tegra_dfll_register);
1730
1731/**
1732 * tegra_dfll_unregister - release all of the DFLL driver resources for a device
1733 * @pdev: DFLL platform_device *
1734 *
1735 * Unbind this driver from the DFLL hardware device represented by
1736 * @pdev. The DFLL must be disabled for this to succeed. Returns 0
1737 * upon success or -EBUSY if the DFLL is still active.
1738 */
1739int tegra_dfll_unregister(struct platform_device *pdev)
1740{
1741 struct tegra_dfll *td = platform_get_drvdata(pdev);
1742
1743 /* Try to prevent removal while the DFLL is active */
1744 if (td->mode != DFLL_DISABLED) {
1745 dev_err(&pdev->dev,
1746 "must disable DFLL before removing driver\n");
1747 return -EBUSY;
1748 }
1749
1750 debugfs_remove_recursive(td->debugfs_dir);
1751
1752 dfll_unregister_clk(td);
1753 pm_runtime_disable(&pdev->dev);
1754
1755 clk_unprepare(td->ref_clk);
1756 clk_unprepare(td->soc_clk);
1757 clk_unprepare(td->i2c_clk);
1758
1759 reset_control_assert(td->dvco_rst);
1760
1761 return 0;
1762}
1763EXPORT_SYMBOL(tegra_dfll_unregister);
This page took 0.102087 seconds and 5 git commands to generate.