clocksource/drivers/exynos_mct: Staticize struct clocksource
[deliverable/linux.git] / drivers / clocksource / exynos_mct.c
CommitLineData
30d8bead
CY
1/* linux/arch/arm/mach-exynos4/mct.c
2 *
3 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4 * http://www.samsung.com
5 *
6 * EXYNOS4 MCT(Multi-Core Timer) support
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11*/
12
13#include <linux/sched.h>
14#include <linux/interrupt.h>
15#include <linux/irq.h>
16#include <linux/err.h>
17#include <linux/clk.h>
18#include <linux/clockchips.h>
ee98d27d 19#include <linux/cpu.h>
30d8bead
CY
20#include <linux/platform_device.h>
21#include <linux/delay.h>
22#include <linux/percpu.h>
2edb36c4 23#include <linux/of.h>
36ba5d52
TA
24#include <linux/of_irq.h>
25#include <linux/of_address.h>
9fbf0c85 26#include <linux/clocksource.h>
93bfb769 27#include <linux/sched_clock.h>
30d8bead 28
a1ba7a7a
TA
29#define EXYNOS4_MCTREG(x) (x)
30#define EXYNOS4_MCT_G_CNT_L EXYNOS4_MCTREG(0x100)
31#define EXYNOS4_MCT_G_CNT_U EXYNOS4_MCTREG(0x104)
32#define EXYNOS4_MCT_G_CNT_WSTAT EXYNOS4_MCTREG(0x110)
33#define EXYNOS4_MCT_G_COMP0_L EXYNOS4_MCTREG(0x200)
34#define EXYNOS4_MCT_G_COMP0_U EXYNOS4_MCTREG(0x204)
35#define EXYNOS4_MCT_G_COMP0_ADD_INCR EXYNOS4_MCTREG(0x208)
36#define EXYNOS4_MCT_G_TCON EXYNOS4_MCTREG(0x240)
37#define EXYNOS4_MCT_G_INT_CSTAT EXYNOS4_MCTREG(0x244)
38#define EXYNOS4_MCT_G_INT_ENB EXYNOS4_MCTREG(0x248)
39#define EXYNOS4_MCT_G_WSTAT EXYNOS4_MCTREG(0x24C)
40#define _EXYNOS4_MCT_L_BASE EXYNOS4_MCTREG(0x300)
41#define EXYNOS4_MCT_L_BASE(x) (_EXYNOS4_MCT_L_BASE + (0x100 * x))
42#define EXYNOS4_MCT_L_MASK (0xffffff00)
43
44#define MCT_L_TCNTB_OFFSET (0x00)
45#define MCT_L_ICNTB_OFFSET (0x08)
46#define MCT_L_TCON_OFFSET (0x20)
47#define MCT_L_INT_CSTAT_OFFSET (0x30)
48#define MCT_L_INT_ENB_OFFSET (0x34)
49#define MCT_L_WSTAT_OFFSET (0x40)
50#define MCT_G_TCON_START (1 << 8)
51#define MCT_G_TCON_COMP0_AUTO_INC (1 << 1)
52#define MCT_G_TCON_COMP0_ENABLE (1 << 0)
53#define MCT_L_TCON_INTERVAL_MODE (1 << 2)
54#define MCT_L_TCON_INT_START (1 << 1)
55#define MCT_L_TCON_TIMER_START (1 << 0)
56
4d2e4d7f
CY
57#define TICK_BASE_CNT 1
58
3a062281
CY
59enum {
60 MCT_INT_SPI,
61 MCT_INT_PPI
62};
63
c371dc60
TA
64enum {
65 MCT_G0_IRQ,
66 MCT_G1_IRQ,
67 MCT_G2_IRQ,
68 MCT_G3_IRQ,
69 MCT_L0_IRQ,
70 MCT_L1_IRQ,
71 MCT_L2_IRQ,
72 MCT_L3_IRQ,
6c16dedf
CK
73 MCT_L4_IRQ,
74 MCT_L5_IRQ,
75 MCT_L6_IRQ,
76 MCT_L7_IRQ,
c371dc60
TA
77 MCT_NR_IRQS,
78};
79
a1ba7a7a 80static void __iomem *reg_base;
30d8bead 81static unsigned long clk_rate;
3a062281 82static unsigned int mct_int_type;
c371dc60 83static int mct_irqs[MCT_NR_IRQS];
30d8bead
CY
84
85struct mct_clock_event_device {
ee98d27d 86 struct clock_event_device evt;
a1ba7a7a 87 unsigned long base;
c8987470 88 char name[10];
30d8bead
CY
89};
90
a1ba7a7a 91static void exynos4_mct_write(unsigned int value, unsigned long offset)
30d8bead 92{
a1ba7a7a 93 unsigned long stat_addr;
30d8bead
CY
94 u32 mask;
95 u32 i;
96
fdb06f66 97 writel_relaxed(value, reg_base + offset);
30d8bead 98
a1ba7a7a 99 if (likely(offset >= EXYNOS4_MCT_L_BASE(0))) {
8c38d28b
TJ
100 stat_addr = (offset & EXYNOS4_MCT_L_MASK) + MCT_L_WSTAT_OFFSET;
101 switch (offset & ~EXYNOS4_MCT_L_MASK) {
a1ba7a7a 102 case MCT_L_TCON_OFFSET:
c8987470
CY
103 mask = 1 << 3; /* L_TCON write status */
104 break;
a1ba7a7a 105 case MCT_L_ICNTB_OFFSET:
c8987470
CY
106 mask = 1 << 1; /* L_ICNTB write status */
107 break;
a1ba7a7a 108 case MCT_L_TCNTB_OFFSET:
c8987470
CY
109 mask = 1 << 0; /* L_TCNTB write status */
110 break;
111 default:
112 return;
113 }
114 } else {
a1ba7a7a
TA
115 switch (offset) {
116 case EXYNOS4_MCT_G_TCON:
c8987470
CY
117 stat_addr = EXYNOS4_MCT_G_WSTAT;
118 mask = 1 << 16; /* G_TCON write status */
119 break;
a1ba7a7a 120 case EXYNOS4_MCT_G_COMP0_L:
c8987470
CY
121 stat_addr = EXYNOS4_MCT_G_WSTAT;
122 mask = 1 << 0; /* G_COMP0_L write status */
123 break;
a1ba7a7a 124 case EXYNOS4_MCT_G_COMP0_U:
c8987470
CY
125 stat_addr = EXYNOS4_MCT_G_WSTAT;
126 mask = 1 << 1; /* G_COMP0_U write status */
127 break;
a1ba7a7a 128 case EXYNOS4_MCT_G_COMP0_ADD_INCR:
c8987470
CY
129 stat_addr = EXYNOS4_MCT_G_WSTAT;
130 mask = 1 << 2; /* G_COMP0_ADD_INCR w status */
131 break;
a1ba7a7a 132 case EXYNOS4_MCT_G_CNT_L:
c8987470
CY
133 stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
134 mask = 1 << 0; /* G_CNT_L write status */
135 break;
a1ba7a7a 136 case EXYNOS4_MCT_G_CNT_U:
c8987470
CY
137 stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
138 mask = 1 << 1; /* G_CNT_U write status */
139 break;
140 default:
141 return;
142 }
30d8bead
CY
143 }
144
145 /* Wait maximum 1 ms until written values are applied */
146 for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++)
fdb06f66
DA
147 if (readl_relaxed(reg_base + stat_addr) & mask) {
148 writel_relaxed(mask, reg_base + stat_addr);
30d8bead
CY
149 return;
150 }
151
a1ba7a7a 152 panic("MCT hangs after writing %d (offset:0x%lx)\n", value, offset);
30d8bead
CY
153}
154
155/* Clocksource handling */
1d80415d 156static void exynos4_mct_frc_start(void)
30d8bead
CY
157{
158 u32 reg;
159
fdb06f66 160 reg = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
30d8bead
CY
161 reg |= MCT_G_TCON_START;
162 exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON);
163}
164
3252a646
DA
165/**
166 * exynos4_read_count_64 - Read all 64-bits of the global counter
167 *
168 * This will read all 64-bits of the global counter taking care to make sure
169 * that the upper and lower half match. Note that reading the MCT can be quite
170 * slow (hundreds of nanoseconds) so you should use the 32-bit (lower half
171 * only) version when possible.
172 *
173 * Returns the number of cycles in the global counter.
174 */
175static u64 exynos4_read_count_64(void)
30d8bead
CY
176{
177 unsigned int lo, hi;
fdb06f66 178 u32 hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U);
30d8bead
CY
179
180 do {
181 hi = hi2;
fdb06f66
DA
182 lo = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L);
183 hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U);
30d8bead
CY
184 } while (hi != hi2);
185
186 return ((cycle_t)hi << 32) | lo;
187}
188
3252a646
DA
189/**
190 * exynos4_read_count_32 - Read the lower 32-bits of the global counter
191 *
192 * This will read just the lower 32-bits of the global counter. This is marked
193 * as notrace so it can be used by the scheduler clock.
194 *
195 * Returns the number of cycles in the global counter (lower 32 bits).
196 */
197static u32 notrace exynos4_read_count_32(void)
198{
199 return readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L);
200}
201
89e6a13b
DA
202static cycle_t exynos4_frc_read(struct clocksource *cs)
203{
3252a646 204 return exynos4_read_count_32();
89e6a13b
DA
205}
206
aa421c13
CY
207static void exynos4_frc_resume(struct clocksource *cs)
208{
1d80415d 209 exynos4_mct_frc_start();
aa421c13
CY
210}
211
6c10bf63 212static struct clocksource mct_frc = {
30d8bead
CY
213 .name = "mct-frc",
214 .rating = 400,
215 .read = exynos4_frc_read,
3252a646 216 .mask = CLOCKSOURCE_MASK(32),
30d8bead 217 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
aa421c13 218 .resume = exynos4_frc_resume,
30d8bead
CY
219};
220
93bfb769
VG
221static u64 notrace exynos4_read_sched_clock(void)
222{
3252a646 223 return exynos4_read_count_32();
93bfb769
VG
224}
225
8bf13a43
ADK
226static struct delay_timer exynos4_delay_timer;
227
228static cycles_t exynos4_read_current_timer(void)
229{
3252a646
DA
230 BUILD_BUG_ON_MSG(sizeof(cycles_t) != sizeof(u32),
231 "cycles_t needs to move to 32-bit for ARM64 usage");
232 return exynos4_read_count_32();
8bf13a43
ADK
233}
234
30d8bead
CY
235static void __init exynos4_clocksource_init(void)
236{
1d80415d 237 exynos4_mct_frc_start();
30d8bead 238
8bf13a43
ADK
239 exynos4_delay_timer.read_current_timer = &exynos4_read_current_timer;
240 exynos4_delay_timer.freq = clk_rate;
241 register_current_timer_delay(&exynos4_delay_timer);
242
30d8bead
CY
243 if (clocksource_register_hz(&mct_frc, clk_rate))
244 panic("%s: can't register clocksource\n", mct_frc.name);
93bfb769 245
3252a646 246 sched_clock_register(exynos4_read_sched_clock, 32, clk_rate);
30d8bead
CY
247}
248
249static void exynos4_mct_comp0_stop(void)
250{
251 unsigned int tcon;
252
fdb06f66 253 tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
30d8bead
CY
254 tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC);
255
256 exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON);
257 exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB);
258}
259
260static void exynos4_mct_comp0_start(enum clock_event_mode mode,
261 unsigned long cycles)
262{
263 unsigned int tcon;
264 cycle_t comp_cycle;
265
fdb06f66 266 tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
30d8bead
CY
267
268 if (mode == CLOCK_EVT_MODE_PERIODIC) {
269 tcon |= MCT_G_TCON_COMP0_AUTO_INC;
270 exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR);
271 }
272
3252a646 273 comp_cycle = exynos4_read_count_64() + cycles;
30d8bead
CY
274 exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L);
275 exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U);
276
277 exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB);
278
279 tcon |= MCT_G_TCON_COMP0_ENABLE;
280 exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON);
281}
282
283static int exynos4_comp_set_next_event(unsigned long cycles,
284 struct clock_event_device *evt)
285{
286 exynos4_mct_comp0_start(evt->mode, cycles);
287
288 return 0;
289}
290
291static void exynos4_comp_set_mode(enum clock_event_mode mode,
292 struct clock_event_device *evt)
293{
4d2e4d7f 294 unsigned long cycles_per_jiffy;
30d8bead
CY
295 exynos4_mct_comp0_stop();
296
297 switch (mode) {
298 case CLOCK_EVT_MODE_PERIODIC:
4d2e4d7f
CY
299 cycles_per_jiffy =
300 (((unsigned long long) NSEC_PER_SEC / HZ * evt->mult) >> evt->shift);
301 exynos4_mct_comp0_start(mode, cycles_per_jiffy);
30d8bead
CY
302 break;
303
304 case CLOCK_EVT_MODE_ONESHOT:
305 case CLOCK_EVT_MODE_UNUSED:
306 case CLOCK_EVT_MODE_SHUTDOWN:
307 case CLOCK_EVT_MODE_RESUME:
308 break;
309 }
310}
311
312static struct clock_event_device mct_comp_device = {
313 .name = "mct-comp",
314 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
315 .rating = 250,
316 .set_next_event = exynos4_comp_set_next_event,
317 .set_mode = exynos4_comp_set_mode,
318};
319
320static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id)
321{
322 struct clock_event_device *evt = dev_id;
323
324 exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT);
325
326 evt->event_handler(evt);
327
328 return IRQ_HANDLED;
329}
330
331static struct irqaction mct_comp_event_irq = {
332 .name = "mct_comp_irq",
333 .flags = IRQF_TIMER | IRQF_IRQPOLL,
334 .handler = exynos4_mct_comp_isr,
335 .dev_id = &mct_comp_device,
336};
337
338static void exynos4_clockevent_init(void)
339{
30d8bead 340 mct_comp_device.cpumask = cpumask_of(0);
838a2ae8
SG
341 clockevents_config_and_register(&mct_comp_device, clk_rate,
342 0xf, 0xffffffff);
c371dc60 343 setup_irq(mct_irqs[MCT_G0_IRQ], &mct_comp_event_irq);
30d8bead
CY
344}
345
991a6c7d
KK
346static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick);
347
30d8bead
CY
348/* Clock event handling */
349static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt)
350{
351 unsigned long tmp;
352 unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START;
a1ba7a7a 353 unsigned long offset = mevt->base + MCT_L_TCON_OFFSET;
30d8bead 354
fdb06f66 355 tmp = readl_relaxed(reg_base + offset);
30d8bead
CY
356 if (tmp & mask) {
357 tmp &= ~mask;
a1ba7a7a 358 exynos4_mct_write(tmp, offset);
30d8bead
CY
359 }
360}
361
362static void exynos4_mct_tick_start(unsigned long cycles,
363 struct mct_clock_event_device *mevt)
364{
365 unsigned long tmp;
366
367 exynos4_mct_tick_stop(mevt);
368
369 tmp = (1 << 31) | cycles; /* MCT_L_UPDATE_ICNTB */
370
371 /* update interrupt count buffer */
372 exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET);
373
25985edc 374 /* enable MCT tick interrupt */
30d8bead
CY
375 exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET);
376
fdb06f66 377 tmp = readl_relaxed(reg_base + mevt->base + MCT_L_TCON_OFFSET);
30d8bead
CY
378 tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START |
379 MCT_L_TCON_INTERVAL_MODE;
380 exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET);
381}
382
383static int exynos4_tick_set_next_event(unsigned long cycles,
384 struct clock_event_device *evt)
385{
e700e41d 386 struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
30d8bead
CY
387
388 exynos4_mct_tick_start(cycles, mevt);
389
390 return 0;
391}
392
393static inline void exynos4_tick_set_mode(enum clock_event_mode mode,
394 struct clock_event_device *evt)
395{
e700e41d 396 struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
4d2e4d7f 397 unsigned long cycles_per_jiffy;
30d8bead
CY
398
399 exynos4_mct_tick_stop(mevt);
400
401 switch (mode) {
402 case CLOCK_EVT_MODE_PERIODIC:
4d2e4d7f
CY
403 cycles_per_jiffy =
404 (((unsigned long long) NSEC_PER_SEC / HZ * evt->mult) >> evt->shift);
405 exynos4_mct_tick_start(cycles_per_jiffy, mevt);
30d8bead
CY
406 break;
407
408 case CLOCK_EVT_MODE_ONESHOT:
409 case CLOCK_EVT_MODE_UNUSED:
410 case CLOCK_EVT_MODE_SHUTDOWN:
411 case CLOCK_EVT_MODE_RESUME:
412 break;
413 }
414}
415
37285674 416static void exynos4_mct_tick_clear(struct mct_clock_event_device *mevt)
30d8bead 417{
ee98d27d 418 struct clock_event_device *evt = &mevt->evt;
30d8bead
CY
419
420 /*
421 * This is for supporting oneshot mode.
422 * Mct would generate interrupt periodically
423 * without explicit stopping.
424 */
425 if (evt->mode != CLOCK_EVT_MODE_PERIODIC)
426 exynos4_mct_tick_stop(mevt);
427
428 /* Clear the MCT tick interrupt */
37285674 429 if (readl_relaxed(reg_base + mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1)
3a062281 430 exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
3a062281
CY
431}
432
433static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id)
434{
435 struct mct_clock_event_device *mevt = dev_id;
ee98d27d 436 struct clock_event_device *evt = &mevt->evt;
3a062281
CY
437
438 exynos4_mct_tick_clear(mevt);
30d8bead
CY
439
440 evt->event_handler(evt);
441
442 return IRQ_HANDLED;
443}
444
8c37bb3a 445static int exynos4_local_timer_setup(struct clock_event_device *evt)
30d8bead 446{
e700e41d 447 struct mct_clock_event_device *mevt;
30d8bead
CY
448 unsigned int cpu = smp_processor_id();
449
ee98d27d 450 mevt = container_of(evt, struct mct_clock_event_device, evt);
30d8bead 451
e700e41d 452 mevt->base = EXYNOS4_MCT_L_BASE(cpu);
09e15176 453 snprintf(mevt->name, sizeof(mevt->name), "mct_tick%d", cpu);
30d8bead 454
e700e41d 455 evt->name = mevt->name;
30d8bead
CY
456 evt->cpumask = cpumask_of(cpu);
457 evt->set_next_event = exynos4_tick_set_next_event;
458 evt->set_mode = exynos4_tick_set_mode;
459 evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
460 evt->rating = 450;
30d8bead 461
4d2e4d7f 462 exynos4_mct_write(TICK_BASE_CNT, mevt->base + MCT_L_TCNTB_OFFSET);
30d8bead 463
3a062281 464 if (mct_int_type == MCT_INT_SPI) {
7114cd74
CK
465 evt->irq = mct_irqs[MCT_L0_IRQ + cpu];
466 if (request_irq(evt->irq, exynos4_mct_tick_isr,
467 IRQF_TIMER | IRQF_NOBALANCING,
468 evt->name, mevt)) {
469 pr_err("exynos-mct: cannot register IRQ %d\n",
470 evt->irq);
471 return -EIO;
3a062281 472 }
30ccf03b 473 irq_force_affinity(mct_irqs[MCT_L0_IRQ + cpu], cpumask_of(cpu));
30d8bead 474 } else {
c371dc60 475 enable_percpu_irq(mct_irqs[MCT_L0_IRQ], 0);
30d8bead 476 }
8db6e510
KK
477 clockevents_config_and_register(evt, clk_rate / (TICK_BASE_CNT + 1),
478 0xf, 0x7fffffff);
4d487d7e
KK
479
480 return 0;
30d8bead
CY
481}
482
a8cb6041 483static void exynos4_local_timer_stop(struct clock_event_device *evt)
30d8bead 484{
28af690a 485 evt->set_mode(CLOCK_EVT_MODE_UNUSED, evt);
e700e41d 486 if (mct_int_type == MCT_INT_SPI)
7114cd74 487 free_irq(evt->irq, this_cpu_ptr(&percpu_mct_tick));
e700e41d 488 else
c371dc60 489 disable_percpu_irq(mct_irqs[MCT_L0_IRQ]);
30d8bead 490}
a8cb6041 491
47dcd356 492static int exynos4_mct_cpu_notify(struct notifier_block *self,
ee98d27d
SB
493 unsigned long action, void *hcpu)
494{
495 struct mct_clock_event_device *mevt;
496
497 /*
498 * Grab cpu pointer in each case to avoid spurious
499 * preemptible warnings
500 */
501 switch (action & ~CPU_TASKS_FROZEN) {
502 case CPU_STARTING:
503 mevt = this_cpu_ptr(&percpu_mct_tick);
504 exynos4_local_timer_setup(&mevt->evt);
505 break;
506 case CPU_DYING:
507 mevt = this_cpu_ptr(&percpu_mct_tick);
508 exynos4_local_timer_stop(&mevt->evt);
509 break;
510 }
511
512 return NOTIFY_OK;
513}
514
47dcd356 515static struct notifier_block exynos4_mct_cpu_nb = {
ee98d27d 516 .notifier_call = exynos4_mct_cpu_notify,
a8cb6041 517};
30d8bead 518
19ce4f4a 519static void __init exynos4_timer_resources(struct device_node *np, void __iomem *base)
30d8bead 520{
ee98d27d
SB
521 int err;
522 struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
ca9048ec 523 struct clk *mct_clk, *tick_clk;
30d8bead 524
415ac2e2
TA
525 tick_clk = np ? of_clk_get_by_name(np, "fin_pll") :
526 clk_get(NULL, "fin_pll");
527 if (IS_ERR(tick_clk))
528 panic("%s: unable to determine tick clock rate\n", __func__);
529 clk_rate = clk_get_rate(tick_clk);
e700e41d 530
ca9048ec
TA
531 mct_clk = np ? of_clk_get_by_name(np, "mct") : clk_get(NULL, "mct");
532 if (IS_ERR(mct_clk))
533 panic("%s: unable to retrieve mct clock instance\n", __func__);
534 clk_prepare_enable(mct_clk);
e700e41d 535
228e3023 536 reg_base = base;
36ba5d52
TA
537 if (!reg_base)
538 panic("%s: unable to ioremap mct address space\n", __func__);
a1ba7a7a 539
e700e41d 540 if (mct_int_type == MCT_INT_PPI) {
e700e41d 541
c371dc60 542 err = request_percpu_irq(mct_irqs[MCT_L0_IRQ],
e700e41d
MZ
543 exynos4_mct_tick_isr, "MCT",
544 &percpu_mct_tick);
545 WARN(err, "MCT: can't request IRQ %d (%d)\n",
c371dc60 546 mct_irqs[MCT_L0_IRQ], err);
5df718d8
TF
547 } else {
548 irq_set_affinity(mct_irqs[MCT_L0_IRQ], cpumask_of(0));
e700e41d 549 }
a8cb6041 550
ee98d27d
SB
551 err = register_cpu_notifier(&exynos4_mct_cpu_nb);
552 if (err)
553 goto out_irq;
554
555 /* Immediately configure the timer on the boot CPU */
556 exynos4_local_timer_setup(&mevt->evt);
557 return;
558
559out_irq:
560 free_percpu_irq(mct_irqs[MCT_L0_IRQ], &percpu_mct_tick);
30d8bead
CY
561}
562
034c097c 563void __init mct_init(void __iomem *base, int irq_g0, int irq_l0, int irq_l1)
30d8bead 564{
034c097c
AB
565 mct_irqs[MCT_G0_IRQ] = irq_g0;
566 mct_irqs[MCT_L0_IRQ] = irq_l0;
567 mct_irqs[MCT_L1_IRQ] = irq_l1;
568 mct_int_type = MCT_INT_SPI;
2edb36c4 569
034c097c 570 exynos4_timer_resources(NULL, base);
30d8bead
CY
571 exynos4_clocksource_init();
572 exynos4_clockevent_init();
573}
3a062281 574
228e3023
AB
575static void __init mct_init_dt(struct device_node *np, unsigned int int_type)
576{
577 u32 nr_irqs, i;
578
579 mct_int_type = int_type;
580
581 /* This driver uses only one global timer interrupt */
582 mct_irqs[MCT_G0_IRQ] = irq_of_parse_and_map(np, MCT_G0_IRQ);
583
584 /*
585 * Find out the number of local irqs specified. The local
586 * timer irqs are specified after the four global timer
587 * irqs are specified.
588 */
f4636d0a 589#ifdef CONFIG_OF
228e3023 590 nr_irqs = of_irq_count(np);
f4636d0a
AB
591#else
592 nr_irqs = 0;
593#endif
228e3023
AB
594 for (i = MCT_L0_IRQ; i < nr_irqs; i++)
595 mct_irqs[i] = irq_of_parse_and_map(np, i);
596
19ce4f4a 597 exynos4_timer_resources(np, of_iomap(np, 0));
30d8bead
CY
598 exynos4_clocksource_init();
599 exynos4_clockevent_init();
600}
228e3023
AB
601
602
603static void __init mct_init_spi(struct device_node *np)
604{
605 return mct_init_dt(np, MCT_INT_SPI);
606}
607
608static void __init mct_init_ppi(struct device_node *np)
609{
610 return mct_init_dt(np, MCT_INT_PPI);
611}
612CLOCKSOURCE_OF_DECLARE(exynos4210, "samsung,exynos4210-mct", mct_init_spi);
613CLOCKSOURCE_OF_DECLARE(exynos4412, "samsung,exynos4412-mct", mct_init_ppi);
This page took 0.218408 seconds and 5 git commands to generate.