[CPUFREQ] Fix coding style issues in cpufreq.
[deliverable/linux.git] / drivers / cpufreq / cpufreq_conservative.c
CommitLineData
b9170836
DJ
1/*
2 * drivers/cpufreq/cpufreq_conservative.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
7 * (C) 2004 Alexander Clouter <alex-kernel@digriz.org.uk>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/smp.h>
17#include <linux/init.h>
18#include <linux/interrupt.h>
19#include <linux/ctype.h>
20#include <linux/cpufreq.h>
21#include <linux/sysctl.h>
22#include <linux/types.h>
23#include <linux/fs.h>
24#include <linux/sysfs.h>
138a0128 25#include <linux/cpu.h>
b9170836
DJ
26#include <linux/sched.h>
27#include <linux/kmod.h>
28#include <linux/workqueue.h>
29#include <linux/jiffies.h>
30#include <linux/kernel_stat.h>
31#include <linux/percpu.h>
3fc54d37 32#include <linux/mutex.h>
b9170836
DJ
33/*
34 * dbs is used in this file as a shortform for demandbased switching
35 * It helps to keep variable names smaller, simpler
36 */
37
38#define DEF_FREQUENCY_UP_THRESHOLD (80)
b9170836 39#define DEF_FREQUENCY_DOWN_THRESHOLD (20)
b9170836
DJ
40
41/*
42 * The polling frequency of this governor depends on the capability of
43 * the processor. Default polling frequency is 1000 times the transition
44 * latency of the processor. The governor will work on any processor with
45 * transition latency <= 10mS, using appropriate sampling
46 * rate.
e08f5f5b
GS
47 * For CPUs with transition latency > 10mS (mostly drivers
48 * with CPUFREQ_ETERNAL), this governor will not work.
b9170836
DJ
49 * All times here are in uS.
50 */
51static unsigned int def_sampling_rate;
2c906b31
AC
52#define MIN_SAMPLING_RATE_RATIO (2)
53/* for correct statistics, we need at least 10 ticks between each measure */
e08f5f5b
GS
54#define MIN_STAT_SAMPLING_RATE \
55 (MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
56#define MIN_SAMPLING_RATE \
57 (def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
b9170836 58#define MAX_SAMPLING_RATE (500 * def_sampling_rate)
2c906b31
AC
59#define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER (1000)
60#define DEF_SAMPLING_DOWN_FACTOR (1)
61#define MAX_SAMPLING_DOWN_FACTOR (10)
b9170836
DJ
62#define TRANSITION_LATENCY_LIMIT (10 * 1000)
63
64static void do_dbs_timer(void *data);
65
66struct cpu_dbs_info_s {
67 struct cpufreq_policy *cur_policy;
68 unsigned int prev_cpu_idle_up;
69 unsigned int prev_cpu_idle_down;
70 unsigned int enable;
a159b827
AC
71 unsigned int down_skip;
72 unsigned int requested_freq;
b9170836
DJ
73};
74static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
75
76static unsigned int dbs_enable; /* number of CPUs using this policy */
77
4ec223d0
VP
78/*
79 * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
80 * lock and dbs_mutex. cpu_hotplug lock should always be held before
81 * dbs_mutex. If any function that can potentially take cpu_hotplug lock
82 * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
83 * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
84 * is recursive for the same process. -Venki
85 */
3fc54d37 86static DEFINE_MUTEX (dbs_mutex);
b9170836
DJ
87static DECLARE_WORK (dbs_work, do_dbs_timer, NULL);
88
89struct dbs_tuners {
90 unsigned int sampling_rate;
91 unsigned int sampling_down_factor;
92 unsigned int up_threshold;
93 unsigned int down_threshold;
94 unsigned int ignore_nice;
95 unsigned int freq_step;
96};
97
98static struct dbs_tuners dbs_tuners_ins = {
99 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
100 .down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD,
101 .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
c326e27e
MD
102 .ignore_nice = 0,
103 .freq_step = 5,
b9170836
DJ
104};
105
dac1c1a5
DJ
106static inline unsigned int get_cpu_idle_time(unsigned int cpu)
107{
e08f5f5b
GS
108 unsigned int add_nice = 0, ret;
109
110 if (dbs_tuners_ins.ignore_nice)
111 add_nice = kstat_cpu(cpu).cpustat.nice;
112
113 ret = kstat_cpu(cpu).cpustat.idle +
dac1c1a5 114 kstat_cpu(cpu).cpustat.iowait +
e08f5f5b
GS
115 add_nice;
116
117 return ret;
dac1c1a5
DJ
118}
119
b9170836
DJ
120/************************** sysfs interface ************************/
121static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
122{
123 return sprintf (buf, "%u\n", MAX_SAMPLING_RATE);
124}
125
126static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
127{
128 return sprintf (buf, "%u\n", MIN_SAMPLING_RATE);
129}
130
131#define define_one_ro(_name) \
132static struct freq_attr _name = \
133__ATTR(_name, 0444, show_##_name, NULL)
134
135define_one_ro(sampling_rate_max);
136define_one_ro(sampling_rate_min);
137
138/* cpufreq_conservative Governor Tunables */
139#define show_one(file_name, object) \
140static ssize_t show_##file_name \
141(struct cpufreq_policy *unused, char *buf) \
142{ \
143 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
144}
145show_one(sampling_rate, sampling_rate);
146show_one(sampling_down_factor, sampling_down_factor);
147show_one(up_threshold, up_threshold);
148show_one(down_threshold, down_threshold);
001893cd 149show_one(ignore_nice_load, ignore_nice);
b9170836
DJ
150show_one(freq_step, freq_step);
151
152static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused,
153 const char *buf, size_t count)
154{
155 unsigned int input;
156 int ret;
157 ret = sscanf (buf, "%u", &input);
2c906b31 158 if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
b9170836
DJ
159 return -EINVAL;
160
3fc54d37 161 mutex_lock(&dbs_mutex);
b9170836 162 dbs_tuners_ins.sampling_down_factor = input;
3fc54d37 163 mutex_unlock(&dbs_mutex);
b9170836
DJ
164
165 return count;
166}
167
168static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
169 const char *buf, size_t count)
170{
171 unsigned int input;
172 int ret;
173 ret = sscanf (buf, "%u", &input);
174
3fc54d37 175 mutex_lock(&dbs_mutex);
b9170836 176 if (ret != 1 || input > MAX_SAMPLING_RATE || input < MIN_SAMPLING_RATE) {
3fc54d37 177 mutex_unlock(&dbs_mutex);
b9170836
DJ
178 return -EINVAL;
179 }
180
181 dbs_tuners_ins.sampling_rate = input;
3fc54d37 182 mutex_unlock(&dbs_mutex);
b9170836
DJ
183
184 return count;
185}
186
187static ssize_t store_up_threshold(struct cpufreq_policy *unused,
188 const char *buf, size_t count)
189{
190 unsigned int input;
191 int ret;
192 ret = sscanf (buf, "%u", &input);
193
3fc54d37 194 mutex_lock(&dbs_mutex);
b82fbe6c 195 if (ret != 1 || input > 100 || input <= dbs_tuners_ins.down_threshold) {
3fc54d37 196 mutex_unlock(&dbs_mutex);
b9170836
DJ
197 return -EINVAL;
198 }
199
200 dbs_tuners_ins.up_threshold = input;
3fc54d37 201 mutex_unlock(&dbs_mutex);
b9170836
DJ
202
203 return count;
204}
205
206static ssize_t store_down_threshold(struct cpufreq_policy *unused,
207 const char *buf, size_t count)
208{
209 unsigned int input;
210 int ret;
211 ret = sscanf (buf, "%u", &input);
212
3fc54d37 213 mutex_lock(&dbs_mutex);
b82fbe6c 214 if (ret != 1 || input > 100 || input >= dbs_tuners_ins.up_threshold) {
3fc54d37 215 mutex_unlock(&dbs_mutex);
b9170836
DJ
216 return -EINVAL;
217 }
218
219 dbs_tuners_ins.down_threshold = input;
3fc54d37 220 mutex_unlock(&dbs_mutex);
b9170836
DJ
221
222 return count;
223}
224
001893cd 225static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
b9170836
DJ
226 const char *buf, size_t count)
227{
228 unsigned int input;
229 int ret;
230
231 unsigned int j;
232
233 ret = sscanf (buf, "%u", &input);
234 if ( ret != 1 )
235 return -EINVAL;
236
237 if ( input > 1 )
238 input = 1;
239
3fc54d37 240 mutex_lock(&dbs_mutex);
b9170836 241 if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */
3fc54d37 242 mutex_unlock(&dbs_mutex);
b9170836
DJ
243 return count;
244 }
245 dbs_tuners_ins.ignore_nice = input;
246
247 /* we need to re-evaluate prev_cpu_idle_up and prev_cpu_idle_down */
dac1c1a5 248 for_each_online_cpu(j) {
b9170836
DJ
249 struct cpu_dbs_info_s *j_dbs_info;
250 j_dbs_info = &per_cpu(cpu_dbs_info, j);
dac1c1a5 251 j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j);
b9170836
DJ
252 j_dbs_info->prev_cpu_idle_down = j_dbs_info->prev_cpu_idle_up;
253 }
3fc54d37 254 mutex_unlock(&dbs_mutex);
b9170836
DJ
255
256 return count;
257}
258
259static ssize_t store_freq_step(struct cpufreq_policy *policy,
260 const char *buf, size_t count)
261{
262 unsigned int input;
263 int ret;
264
265 ret = sscanf (buf, "%u", &input);
266
267 if ( ret != 1 )
268 return -EINVAL;
269
270 if ( input > 100 )
271 input = 100;
272
273 /* no need to test here if freq_step is zero as the user might actually
274 * want this, they would be crazy though :) */
3fc54d37 275 mutex_lock(&dbs_mutex);
b9170836 276 dbs_tuners_ins.freq_step = input;
3fc54d37 277 mutex_unlock(&dbs_mutex);
b9170836
DJ
278
279 return count;
280}
281
282#define define_one_rw(_name) \
283static struct freq_attr _name = \
284__ATTR(_name, 0644, show_##_name, store_##_name)
285
286define_one_rw(sampling_rate);
287define_one_rw(sampling_down_factor);
288define_one_rw(up_threshold);
289define_one_rw(down_threshold);
001893cd 290define_one_rw(ignore_nice_load);
b9170836
DJ
291define_one_rw(freq_step);
292
293static struct attribute * dbs_attributes[] = {
294 &sampling_rate_max.attr,
295 &sampling_rate_min.attr,
296 &sampling_rate.attr,
297 &sampling_down_factor.attr,
298 &up_threshold.attr,
299 &down_threshold.attr,
001893cd 300 &ignore_nice_load.attr,
b9170836
DJ
301 &freq_step.attr,
302 NULL
303};
304
305static struct attribute_group dbs_attr_group = {
306 .attrs = dbs_attributes,
307 .name = "conservative",
308};
309
310/************************** sysfs end ************************/
311
312static void dbs_check_cpu(int cpu)
313{
314 unsigned int idle_ticks, up_idle_ticks, down_idle_ticks;
08a28e2e 315 unsigned int tmp_idle_ticks, total_idle_ticks;
b9170836
DJ
316 unsigned int freq_step;
317 unsigned int freq_down_sampling_rate;
08a28e2e 318 struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
b9170836 319 struct cpufreq_policy *policy;
b9170836 320
b9170836
DJ
321 if (!this_dbs_info->enable)
322 return;
323
08a28e2e
AC
324 policy = this_dbs_info->cur_policy;
325
b9170836
DJ
326 /*
327 * The default safe range is 20% to 80%
328 * Every sampling_rate, we check
329 * - If current idle time is less than 20%, then we try to
330 * increase frequency
331 * Every sampling_rate*sampling_down_factor, we check
332 * - If current idle time is more than 80%, then we try to
333 * decrease frequency
334 *
335 * Any frequency increase takes it to the maximum frequency.
336 * Frequency reduction happens at minimum steps of
337 * 5% (default) of max_frequency
338 */
339
340 /* Check for frequency increase */
9c7d269b 341 idle_ticks = UINT_MAX;
b9170836 342
08a28e2e
AC
343 /* Check for frequency increase */
344 total_idle_ticks = get_cpu_idle_time(cpu);
345 tmp_idle_ticks = total_idle_ticks -
346 this_dbs_info->prev_cpu_idle_up;
347 this_dbs_info->prev_cpu_idle_up = total_idle_ticks;
348
349 if (tmp_idle_ticks < idle_ticks)
350 idle_ticks = tmp_idle_ticks;
b9170836
DJ
351
352 /* Scale idle ticks by 100 and compare with up and down ticks */
353 idle_ticks *= 100;
354 up_idle_ticks = (100 - dbs_tuners_ins.up_threshold) *
2c906b31 355 usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
b9170836
DJ
356
357 if (idle_ticks < up_idle_ticks) {
a159b827 358 this_dbs_info->down_skip = 0;
08a28e2e
AC
359 this_dbs_info->prev_cpu_idle_down =
360 this_dbs_info->prev_cpu_idle_up;
790d76fa 361
b9170836 362 /* if we are already at full speed then break out early */
a159b827 363 if (this_dbs_info->requested_freq == policy->max)
b9170836
DJ
364 return;
365
366 freq_step = (dbs_tuners_ins.freq_step * policy->max) / 100;
367
368 /* max freq cannot be less than 100. But who knows.... */
369 if (unlikely(freq_step == 0))
370 freq_step = 5;
371
a159b827
AC
372 this_dbs_info->requested_freq += freq_step;
373 if (this_dbs_info->requested_freq > policy->max)
374 this_dbs_info->requested_freq = policy->max;
b9170836 375
a159b827 376 __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
b9170836 377 CPUFREQ_RELATION_H);
b9170836
DJ
378 return;
379 }
380
381 /* Check for frequency decrease */
a159b827
AC
382 this_dbs_info->down_skip++;
383 if (this_dbs_info->down_skip < dbs_tuners_ins.sampling_down_factor)
b9170836
DJ
384 return;
385
08a28e2e
AC
386 /* Check for frequency decrease */
387 total_idle_ticks = this_dbs_info->prev_cpu_idle_up;
388 tmp_idle_ticks = total_idle_ticks -
389 this_dbs_info->prev_cpu_idle_down;
390 this_dbs_info->prev_cpu_idle_down = total_idle_ticks;
b9170836 391
08a28e2e
AC
392 if (tmp_idle_ticks < idle_ticks)
393 idle_ticks = tmp_idle_ticks;
b9170836
DJ
394
395 /* Scale idle ticks by 100 and compare with up and down ticks */
396 idle_ticks *= 100;
a159b827 397 this_dbs_info->down_skip = 0;
b9170836
DJ
398
399 freq_down_sampling_rate = dbs_tuners_ins.sampling_rate *
400 dbs_tuners_ins.sampling_down_factor;
401 down_idle_ticks = (100 - dbs_tuners_ins.down_threshold) *
2c906b31 402 usecs_to_jiffies(freq_down_sampling_rate);
b9170836 403
9c7d269b 404 if (idle_ticks > down_idle_ticks) {
2c906b31
AC
405 /*
406 * if we are already at the lowest speed then break out early
b9170836 407 * or if we 'cannot' reduce the speed as the user might want
2c906b31
AC
408 * freq_step to be zero
409 */
a159b827 410 if (this_dbs_info->requested_freq == policy->min
b9170836
DJ
411 || dbs_tuners_ins.freq_step == 0)
412 return;
413
414 freq_step = (dbs_tuners_ins.freq_step * policy->max) / 100;
415
416 /* max freq cannot be less than 100. But who knows.... */
417 if (unlikely(freq_step == 0))
418 freq_step = 5;
419
a159b827
AC
420 this_dbs_info->requested_freq -= freq_step;
421 if (this_dbs_info->requested_freq < policy->min)
422 this_dbs_info->requested_freq = policy->min;
b9170836 423
a159b827 424 __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
2c906b31 425 CPUFREQ_RELATION_H);
b9170836
DJ
426 return;
427 }
428}
429
430static void do_dbs_timer(void *data)
431{
432 int i;
4ec223d0 433 lock_cpu_hotplug();
3fc54d37 434 mutex_lock(&dbs_mutex);
b9170836
DJ
435 for_each_online_cpu(i)
436 dbs_check_cpu(i);
437 schedule_delayed_work(&dbs_work,
438 usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
3fc54d37 439 mutex_unlock(&dbs_mutex);
4ec223d0 440 unlock_cpu_hotplug();
b9170836
DJ
441}
442
443static inline void dbs_timer_init(void)
444{
445 INIT_WORK(&dbs_work, do_dbs_timer, NULL);
446 schedule_delayed_work(&dbs_work,
447 usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
448 return;
449}
450
451static inline void dbs_timer_exit(void)
452{
453 cancel_delayed_work(&dbs_work);
454 return;
455}
456
457static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
458 unsigned int event)
459{
460 unsigned int cpu = policy->cpu;
461 struct cpu_dbs_info_s *this_dbs_info;
462 unsigned int j;
914f7c31 463 int rc;
b9170836
DJ
464
465 this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
466
467 switch (event) {
468 case CPUFREQ_GOV_START:
469 if ((!cpu_online(cpu)) ||
470 (!policy->cur))
471 return -EINVAL;
472
473 if (policy->cpuinfo.transition_latency >
474 (TRANSITION_LATENCY_LIMIT * 1000))
475 return -EINVAL;
476 if (this_dbs_info->enable) /* Already enabled */
477 break;
478
3fc54d37 479 mutex_lock(&dbs_mutex);
914f7c31
JG
480
481 rc = sysfs_create_group(&policy->kobj, &dbs_attr_group);
482 if (rc) {
483 mutex_unlock(&dbs_mutex);
484 return rc;
485 }
486
b9170836
DJ
487 for_each_cpu_mask(j, policy->cpus) {
488 struct cpu_dbs_info_s *j_dbs_info;
489 j_dbs_info = &per_cpu(cpu_dbs_info, j);
490 j_dbs_info->cur_policy = policy;
491
08a28e2e 492 j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(cpu);
b9170836
DJ
493 j_dbs_info->prev_cpu_idle_down
494 = j_dbs_info->prev_cpu_idle_up;
495 }
496 this_dbs_info->enable = 1;
a159b827
AC
497 this_dbs_info->down_skip = 0;
498 this_dbs_info->requested_freq = policy->cur;
914f7c31 499
b9170836
DJ
500 dbs_enable++;
501 /*
502 * Start the timerschedule work, when this governor
503 * is used for first time
504 */
505 if (dbs_enable == 1) {
506 unsigned int latency;
507 /* policy latency is in nS. Convert it to uS first */
2c906b31
AC
508 latency = policy->cpuinfo.transition_latency / 1000;
509 if (latency == 0)
510 latency = 1;
b9170836 511
e8a02572 512 def_sampling_rate = 10 * latency *
b9170836 513 DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
2c906b31
AC
514
515 if (def_sampling_rate < MIN_STAT_SAMPLING_RATE)
516 def_sampling_rate = MIN_STAT_SAMPLING_RATE;
517
b9170836 518 dbs_tuners_ins.sampling_rate = def_sampling_rate;
b9170836
DJ
519
520 dbs_timer_init();
521 }
522
3fc54d37 523 mutex_unlock(&dbs_mutex);
b9170836
DJ
524 break;
525
526 case CPUFREQ_GOV_STOP:
3fc54d37 527 mutex_lock(&dbs_mutex);
b9170836
DJ
528 this_dbs_info->enable = 0;
529 sysfs_remove_group(&policy->kobj, &dbs_attr_group);
530 dbs_enable--;
531 /*
532 * Stop the timerschedule work, when this governor
533 * is used for first time
534 */
535 if (dbs_enable == 0)
536 dbs_timer_exit();
537
3fc54d37 538 mutex_unlock(&dbs_mutex);
b9170836
DJ
539
540 break;
541
542 case CPUFREQ_GOV_LIMITS:
3fc54d37 543 mutex_lock(&dbs_mutex);
b9170836
DJ
544 if (policy->max < this_dbs_info->cur_policy->cur)
545 __cpufreq_driver_target(
546 this_dbs_info->cur_policy,
547 policy->max, CPUFREQ_RELATION_H);
548 else if (policy->min > this_dbs_info->cur_policy->cur)
549 __cpufreq_driver_target(
550 this_dbs_info->cur_policy,
551 policy->min, CPUFREQ_RELATION_L);
3fc54d37 552 mutex_unlock(&dbs_mutex);
b9170836
DJ
553 break;
554 }
555 return 0;
556}
557
558static struct cpufreq_governor cpufreq_gov_dbs = {
559 .name = "conservative",
560 .governor = cpufreq_governor_dbs,
561 .owner = THIS_MODULE,
562};
563
564static int __init cpufreq_gov_dbs_init(void)
565{
566 return cpufreq_register_governor(&cpufreq_gov_dbs);
567}
568
569static void __exit cpufreq_gov_dbs_exit(void)
570{
571 /* Make sure that the scheduled work is indeed not running */
572 flush_scheduled_work();
573
574 cpufreq_unregister_governor(&cpufreq_gov_dbs);
575}
576
577
578MODULE_AUTHOR ("Alexander Clouter <alex-kernel@digriz.org.uk>");
579MODULE_DESCRIPTION ("'cpufreq_conservative' - A dynamic cpufreq governor for "
580 "Low Latency Frequency Transition capable processors "
581 "optimised for use in a battery environment");
582MODULE_LICENSE ("GPL");
583
584module_init(cpufreq_gov_dbs_init);
585module_exit(cpufreq_gov_dbs_exit);
This page took 0.192457 seconds and 5 git commands to generate.