Merge branch 'linus' into x86/core
[deliverable/linux.git] / drivers / cpufreq / cpufreq_ondemand.c
CommitLineData
1da177e4
LT
1/*
2 * drivers/cpufreq/cpufreq_ondemand.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#include <linux/kernel.h>
14#include <linux/module.h>
1da177e4 15#include <linux/init.h>
1da177e4 16#include <linux/cpufreq.h>
138a0128 17#include <linux/cpu.h>
1da177e4
LT
18#include <linux/jiffies.h>
19#include <linux/kernel_stat.h>
3fc54d37 20#include <linux/mutex.h>
80800913 21#include <linux/hrtimer.h>
22#include <linux/tick.h>
23#include <linux/ktime.h>
9411b4ef 24#include <linux/sched.h>
1da177e4
LT
25
26/*
27 * dbs is used in this file as a shortform for demandbased switching
28 * It helps to keep variable names smaller, simpler
29 */
30
e9d95bf7 31#define DEF_FREQUENCY_DOWN_DIFFERENTIAL (10)
1da177e4 32#define DEF_FREQUENCY_UP_THRESHOLD (80)
80800913 33#define MICRO_FREQUENCY_DOWN_DIFFERENTIAL (3)
34#define MICRO_FREQUENCY_UP_THRESHOLD (95)
c29f1403 35#define MIN_FREQUENCY_UP_THRESHOLD (11)
1da177e4
LT
36#define MAX_FREQUENCY_UP_THRESHOLD (100)
37
32ee8c3e
DJ
38/*
39 * The polling frequency of this governor depends on the capability of
1da177e4 40 * the processor. Default polling frequency is 1000 times the transition
32ee8c3e
DJ
41 * latency of the processor. The governor will work on any processor with
42 * transition latency <= 10mS, using appropriate sampling
1da177e4
LT
43 * rate.
44 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
45 * this governor will not work.
46 * All times here are in uS.
47 */
32ee8c3e 48static unsigned int def_sampling_rate;
df8b59be
DJ
49#define MIN_SAMPLING_RATE_RATIO (2)
50/* for correct statistics, we need at least 10 ticks between each measure */
e08f5f5b
GS
51#define MIN_STAT_SAMPLING_RATE \
52 (MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
53#define MIN_SAMPLING_RATE \
54 (def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
112124ab
TR
55/* Above MIN_SAMPLING_RATE will vanish with its sysfs file soon
56 * Define the minimal settable sampling rate to the greater of:
57 * - "HW transition latency" * 100 (same as default sampling / 10)
58 * - MIN_STAT_SAMPLING_RATE
59 * To avoid that userspace shoots itself.
60*/
61static unsigned int minimum_sampling_rate(void)
62{
63 return max(def_sampling_rate / 10, MIN_STAT_SAMPLING_RATE);
64}
65
66/* This will also vanish soon with removing sampling_rate_max */
1da177e4 67#define MAX_SAMPLING_RATE (500 * def_sampling_rate)
112124ab 68#define LATENCY_MULTIPLIER (1000)
1c256245 69#define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
1da177e4 70
c4028958
DH
71static void do_dbs_timer(struct work_struct *work);
72
73/* Sampling types */
529af7a1 74enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
1da177e4
LT
75
76struct cpu_dbs_info_s {
ccb2fe20
VP
77 cputime64_t prev_cpu_idle;
78 cputime64_t prev_cpu_wall;
80800913 79 cputime64_t prev_cpu_nice;
32ee8c3e 80 struct cpufreq_policy *cur_policy;
2b03f891 81 struct delayed_work work;
05ca0350
AS
82 struct cpufreq_frequency_table *freq_table;
83 unsigned int freq_lo;
84 unsigned int freq_lo_jiffies;
85 unsigned int freq_hi_jiffies;
529af7a1
VP
86 int cpu;
87 unsigned int enable:1,
2b03f891 88 sample_type:1;
1da177e4
LT
89};
90static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
91
92static unsigned int dbs_enable; /* number of CPUs using this policy */
93
4ec223d0
VP
94/*
95 * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
96 * lock and dbs_mutex. cpu_hotplug lock should always be held before
97 * dbs_mutex. If any function that can potentially take cpu_hotplug lock
98 * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
99 * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
100 * is recursive for the same process. -Venki
101 */
ffac80e9 102static DEFINE_MUTEX(dbs_mutex);
1da177e4 103
2f8a835c 104static struct workqueue_struct *kondemand_wq;
6810b548 105
05ca0350 106static struct dbs_tuners {
32ee8c3e 107 unsigned int sampling_rate;
32ee8c3e 108 unsigned int up_threshold;
e9d95bf7 109 unsigned int down_differential;
32ee8c3e 110 unsigned int ignore_nice;
05ca0350
AS
111 unsigned int powersave_bias;
112} dbs_tuners_ins = {
32ee8c3e 113 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
e9d95bf7 114 .down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL,
9cbad61b 115 .ignore_nice = 0,
05ca0350 116 .powersave_bias = 0,
1da177e4
LT
117};
118
80800913 119static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
120 cputime64_t *wall)
dac1c1a5 121{
ea487615 122 cputime64_t idle_time;
3430502d 123 cputime64_t cur_wall_time;
ea487615 124 cputime64_t busy_time;
ccb2fe20 125
3430502d 126 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
ea487615
VP
127 busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
128 kstat_cpu(cpu).cpustat.system);
ccb2fe20 129
ea487615
VP
130 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
131 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
132 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
1ca3abdb 133 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
ea487615 134
3430502d 135 idle_time = cputime64_sub(cur_wall_time, busy_time);
136 if (wall)
137 *wall = cur_wall_time;
138
ea487615 139 return idle_time;
dac1c1a5
DJ
140}
141
80800913 142static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
143{
144 u64 idle_time = get_cpu_idle_time_us(cpu, wall);
145
146 if (idle_time == -1ULL)
147 return get_cpu_idle_time_jiffy(cpu, wall);
148
80800913 149 return idle_time;
150}
151
05ca0350
AS
152/*
153 * Find right freq to be set now with powersave_bias on.
154 * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
155 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
156 */
b5ecf60f
AB
157static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
158 unsigned int freq_next,
159 unsigned int relation)
05ca0350
AS
160{
161 unsigned int freq_req, freq_reduc, freq_avg;
162 unsigned int freq_hi, freq_lo;
163 unsigned int index = 0;
164 unsigned int jiffies_total, jiffies_hi, jiffies_lo;
165 struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, policy->cpu);
166
167 if (!dbs_info->freq_table) {
168 dbs_info->freq_lo = 0;
169 dbs_info->freq_lo_jiffies = 0;
170 return freq_next;
171 }
172
173 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
174 relation, &index);
175 freq_req = dbs_info->freq_table[index].frequency;
176 freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
177 freq_avg = freq_req - freq_reduc;
178
179 /* Find freq bounds for freq_avg in freq_table */
180 index = 0;
181 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
182 CPUFREQ_RELATION_H, &index);
183 freq_lo = dbs_info->freq_table[index].frequency;
184 index = 0;
185 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
186 CPUFREQ_RELATION_L, &index);
187 freq_hi = dbs_info->freq_table[index].frequency;
188
189 /* Find out how long we have to be in hi and lo freqs */
190 if (freq_hi == freq_lo) {
191 dbs_info->freq_lo = 0;
192 dbs_info->freq_lo_jiffies = 0;
193 return freq_lo;
194 }
195 jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
196 jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
197 jiffies_hi += ((freq_hi - freq_lo) / 2);
198 jiffies_hi /= (freq_hi - freq_lo);
199 jiffies_lo = jiffies_total - jiffies_hi;
200 dbs_info->freq_lo = freq_lo;
201 dbs_info->freq_lo_jiffies = jiffies_lo;
202 dbs_info->freq_hi_jiffies = jiffies_hi;
203 return freq_hi;
204}
205
206static void ondemand_powersave_bias_init(void)
207{
208 int i;
209 for_each_online_cpu(i) {
210 struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, i);
211 dbs_info->freq_table = cpufreq_frequency_get_table(i);
212 dbs_info->freq_lo = 0;
213 }
214}
215
1da177e4
LT
216/************************** sysfs interface ************************/
217static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
218{
9411b4ef
TR
219 static int print_once;
220
221 if (!print_once) {
222 printk(KERN_INFO "CPUFREQ: ondemand sampling_rate_max "
223 "sysfs file is deprecated - used by: %s\n",
224 current->comm);
225 print_once = 1;
226 }
2b03f891 227 return sprintf(buf, "%u\n", MAX_SAMPLING_RATE);
1da177e4
LT
228}
229
230static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
231{
9411b4ef
TR
232 static int print_once;
233
234 if (!print_once) {
235 printk(KERN_INFO "CPUFREQ: ondemand sampling_rate_min "
236 "sysfs file is deprecated - used by: %s\n",
237 current->comm);
238 print_once = 1;
239 }
2b03f891 240 return sprintf(buf, "%u\n", MIN_SAMPLING_RATE);
1da177e4
LT
241}
242
32ee8c3e
DJ
243#define define_one_ro(_name) \
244static struct freq_attr _name = \
1da177e4
LT
245__ATTR(_name, 0444, show_##_name, NULL)
246
247define_one_ro(sampling_rate_max);
248define_one_ro(sampling_rate_min);
249
250/* cpufreq_ondemand Governor Tunables */
251#define show_one(file_name, object) \
252static ssize_t show_##file_name \
253(struct cpufreq_policy *unused, char *buf) \
254{ \
255 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
256}
257show_one(sampling_rate, sampling_rate);
1da177e4 258show_one(up_threshold, up_threshold);
001893cd 259show_one(ignore_nice_load, ignore_nice);
05ca0350 260show_one(powersave_bias, powersave_bias);
1da177e4 261
32ee8c3e 262static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
1da177e4
LT
263 const char *buf, size_t count)
264{
265 unsigned int input;
266 int ret;
ffac80e9 267 ret = sscanf(buf, "%u", &input);
1da177e4 268
3fc54d37 269 mutex_lock(&dbs_mutex);
112124ab 270 if (ret != 1) {
3fc54d37 271 mutex_unlock(&dbs_mutex);
1da177e4
LT
272 return -EINVAL;
273 }
112124ab 274 dbs_tuners_ins.sampling_rate = max(input, minimum_sampling_rate());
3fc54d37 275 mutex_unlock(&dbs_mutex);
1da177e4
LT
276
277 return count;
278}
279
32ee8c3e 280static ssize_t store_up_threshold(struct cpufreq_policy *unused,
1da177e4
LT
281 const char *buf, size_t count)
282{
283 unsigned int input;
284 int ret;
ffac80e9 285 ret = sscanf(buf, "%u", &input);
1da177e4 286
3fc54d37 287 mutex_lock(&dbs_mutex);
32ee8c3e 288 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
c29f1403 289 input < MIN_FREQUENCY_UP_THRESHOLD) {
3fc54d37 290 mutex_unlock(&dbs_mutex);
1da177e4
LT
291 return -EINVAL;
292 }
293
294 dbs_tuners_ins.up_threshold = input;
3fc54d37 295 mutex_unlock(&dbs_mutex);
1da177e4
LT
296
297 return count;
298}
299
001893cd 300static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
3d5ee9e5
DJ
301 const char *buf, size_t count)
302{
303 unsigned int input;
304 int ret;
305
306 unsigned int j;
32ee8c3e 307
ffac80e9 308 ret = sscanf(buf, "%u", &input);
2b03f891 309 if (ret != 1)
3d5ee9e5
DJ
310 return -EINVAL;
311
2b03f891 312 if (input > 1)
3d5ee9e5 313 input = 1;
32ee8c3e 314
3fc54d37 315 mutex_lock(&dbs_mutex);
2b03f891 316 if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
3fc54d37 317 mutex_unlock(&dbs_mutex);
3d5ee9e5
DJ
318 return count;
319 }
320 dbs_tuners_ins.ignore_nice = input;
321
ccb2fe20 322 /* we need to re-evaluate prev_cpu_idle */
dac1c1a5 323 for_each_online_cpu(j) {
ccb2fe20
VP
324 struct cpu_dbs_info_s *dbs_info;
325 dbs_info = &per_cpu(cpu_dbs_info, j);
3430502d 326 dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
327 &dbs_info->prev_cpu_wall);
1ca3abdb
VP
328 if (dbs_tuners_ins.ignore_nice)
329 dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
330
3d5ee9e5 331 }
3fc54d37 332 mutex_unlock(&dbs_mutex);
3d5ee9e5
DJ
333
334 return count;
335}
336
05ca0350
AS
337static ssize_t store_powersave_bias(struct cpufreq_policy *unused,
338 const char *buf, size_t count)
339{
340 unsigned int input;
341 int ret;
342 ret = sscanf(buf, "%u", &input);
343
344 if (ret != 1)
345 return -EINVAL;
346
347 if (input > 1000)
348 input = 1000;
349
350 mutex_lock(&dbs_mutex);
351 dbs_tuners_ins.powersave_bias = input;
352 ondemand_powersave_bias_init();
353 mutex_unlock(&dbs_mutex);
354
355 return count;
356}
357
1da177e4
LT
358#define define_one_rw(_name) \
359static struct freq_attr _name = \
360__ATTR(_name, 0644, show_##_name, store_##_name)
361
362define_one_rw(sampling_rate);
1da177e4 363define_one_rw(up_threshold);
001893cd 364define_one_rw(ignore_nice_load);
05ca0350 365define_one_rw(powersave_bias);
1da177e4 366
2b03f891 367static struct attribute *dbs_attributes[] = {
1da177e4
LT
368 &sampling_rate_max.attr,
369 &sampling_rate_min.attr,
370 &sampling_rate.attr,
1da177e4 371 &up_threshold.attr,
001893cd 372 &ignore_nice_load.attr,
05ca0350 373 &powersave_bias.attr,
1da177e4
LT
374 NULL
375};
376
377static struct attribute_group dbs_attr_group = {
378 .attrs = dbs_attributes,
379 .name = "ondemand",
380};
381
382/************************** sysfs end ************************/
383
2f8a835c 384static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
1da177e4 385{
c43aa3bd 386 unsigned int max_load_freq;
1da177e4
LT
387
388 struct cpufreq_policy *policy;
389 unsigned int j;
390
1da177e4
LT
391 if (!this_dbs_info->enable)
392 return;
393
05ca0350 394 this_dbs_info->freq_lo = 0;
1da177e4 395 policy = this_dbs_info->cur_policy;
ea487615 396
32ee8c3e 397 /*
c29f1403
DJ
398 * Every sampling_rate, we check, if current idle time is less
399 * than 20% (default), then we try to increase frequency
ccb2fe20 400 * Every sampling_rate, we look for a the lowest
c29f1403
DJ
401 * frequency which can sustain the load while keeping idle time over
402 * 30%. If such a frequency exist, we try to decrease to this frequency.
1da177e4 403 *
32ee8c3e
DJ
404 * Any frequency increase takes it to the maximum frequency.
405 * Frequency reduction happens at minimum steps of
406 * 5% (default) of current frequency
1da177e4
LT
407 */
408
c43aa3bd 409 /* Get Absolute Load - in terms of freq */
410 max_load_freq = 0;
411
835481d9 412 for_each_cpu(j, policy->cpus) {
1da177e4 413 struct cpu_dbs_info_s *j_dbs_info;
c43aa3bd 414 cputime64_t cur_wall_time, cur_idle_time;
415 unsigned int idle_time, wall_time;
416 unsigned int load, load_freq;
417 int freq_avg;
1da177e4 418
1da177e4 419 j_dbs_info = &per_cpu(cpu_dbs_info, j);
3430502d 420
421 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
422
c43aa3bd 423 wall_time = (unsigned int) cputime64_sub(cur_wall_time,
424 j_dbs_info->prev_cpu_wall);
425 j_dbs_info->prev_cpu_wall = cur_wall_time;
426
c43aa3bd 427 idle_time = (unsigned int) cputime64_sub(cur_idle_time,
ccb2fe20 428 j_dbs_info->prev_cpu_idle);
c43aa3bd 429 j_dbs_info->prev_cpu_idle = cur_idle_time;
1da177e4 430
1ca3abdb
VP
431 if (dbs_tuners_ins.ignore_nice) {
432 cputime64_t cur_nice;
433 unsigned long cur_nice_jiffies;
434
435 cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
436 j_dbs_info->prev_cpu_nice);
437 /*
438 * Assumption: nice time between sampling periods will
439 * be less than 2^32 jiffies for 32 bit sys
440 */
441 cur_nice_jiffies = (unsigned long)
442 cputime64_to_jiffies64(cur_nice);
443
444 j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
445 idle_time += jiffies_to_usecs(cur_nice_jiffies);
446 }
447
3430502d 448 if (unlikely(!wall_time || wall_time < idle_time))
c43aa3bd 449 continue;
c43aa3bd 450
451 load = 100 * (wall_time - idle_time) / wall_time;
452
453 freq_avg = __cpufreq_driver_getavg(policy, j);
454 if (freq_avg <= 0)
455 freq_avg = policy->cur;
456
457 load_freq = load * freq_avg;
458 if (load_freq > max_load_freq)
459 max_load_freq = load_freq;
1da177e4
LT
460 }
461
ccb2fe20 462 /* Check for frequency increase */
c43aa3bd 463 if (max_load_freq > dbs_tuners_ins.up_threshold * policy->cur) {
c11420a6 464 /* if we are already at full speed then break out early */
05ca0350
AS
465 if (!dbs_tuners_ins.powersave_bias) {
466 if (policy->cur == policy->max)
467 return;
468
469 __cpufreq_driver_target(policy, policy->max,
470 CPUFREQ_RELATION_H);
471 } else {
472 int freq = powersave_bias_target(policy, policy->max,
473 CPUFREQ_RELATION_H);
474 __cpufreq_driver_target(policy, freq,
475 CPUFREQ_RELATION_L);
476 }
1da177e4
LT
477 return;
478 }
479
480 /* Check for frequency decrease */
c29f1403
DJ
481 /* if we cannot reduce the frequency anymore, break out early */
482 if (policy->cur == policy->min)
483 return;
1da177e4 484
c29f1403
DJ
485 /*
486 * The optimal frequency is the frequency that is the lowest that
487 * can support the current CPU usage without triggering the up
488 * policy. To be safe, we focus 10 points under the threshold.
489 */
e9d95bf7 490 if (max_load_freq <
491 (dbs_tuners_ins.up_threshold - dbs_tuners_ins.down_differential) *
492 policy->cur) {
c43aa3bd 493 unsigned int freq_next;
e9d95bf7 494 freq_next = max_load_freq /
495 (dbs_tuners_ins.up_threshold -
496 dbs_tuners_ins.down_differential);
dfde5d62 497
05ca0350
AS
498 if (!dbs_tuners_ins.powersave_bias) {
499 __cpufreq_driver_target(policy, freq_next,
500 CPUFREQ_RELATION_L);
501 } else {
502 int freq = powersave_bias_target(policy, freq_next,
503 CPUFREQ_RELATION_L);
504 __cpufreq_driver_target(policy, freq,
505 CPUFREQ_RELATION_L);
506 }
ccb2fe20 507 }
1da177e4
LT
508}
509
c4028958 510static void do_dbs_timer(struct work_struct *work)
32ee8c3e 511{
529af7a1
VP
512 struct cpu_dbs_info_s *dbs_info =
513 container_of(work, struct cpu_dbs_info_s, work.work);
514 unsigned int cpu = dbs_info->cpu;
515 int sample_type = dbs_info->sample_type;
516
1ce28d6b
AS
517 /* We want all CPUs to do sampling nearly on same jiffy */
518 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
c4028958 519
1ce28d6b 520 delay -= jiffies % delay;
2f8a835c 521
56463b78 522 if (lock_policy_rwsem_write(cpu) < 0)
2cd7cbdf 523 return;
56463b78
VP
524
525 if (!dbs_info->enable) {
526 unlock_policy_rwsem_write(cpu);
527 return;
528 }
529
05ca0350 530 /* Common NORMAL_SAMPLE setup */
c4028958 531 dbs_info->sample_type = DBS_NORMAL_SAMPLE;
05ca0350 532 if (!dbs_tuners_ins.powersave_bias ||
c4028958 533 sample_type == DBS_NORMAL_SAMPLE) {
05ca0350 534 dbs_check_cpu(dbs_info);
05ca0350
AS
535 if (dbs_info->freq_lo) {
536 /* Setup timer for SUB_SAMPLE */
c4028958 537 dbs_info->sample_type = DBS_SUB_SAMPLE;
05ca0350
AS
538 delay = dbs_info->freq_hi_jiffies;
539 }
540 } else {
541 __cpufreq_driver_target(dbs_info->cur_policy,
2b03f891 542 dbs_info->freq_lo, CPUFREQ_RELATION_H);
05ca0350 543 }
1ce28d6b 544 queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay);
56463b78 545 unlock_policy_rwsem_write(cpu);
32ee8c3e 546}
1da177e4 547
529af7a1 548static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
1da177e4 549{
1ce28d6b
AS
550 /* We want all CPUs to do sampling nearly on same jiffy */
551 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
552 delay -= jiffies % delay;
2f8a835c 553
c18a1483 554 dbs_info->enable = 1;
05ca0350 555 ondemand_powersave_bias_init();
c4028958 556 dbs_info->sample_type = DBS_NORMAL_SAMPLE;
28287033 557 INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
529af7a1 558 queue_delayed_work_on(dbs_info->cpu, kondemand_wq, &dbs_info->work,
2b03f891 559 delay);
1da177e4
LT
560}
561
2cd7cbdf 562static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
1da177e4 563{
2cd7cbdf
LT
564 dbs_info->enable = 0;
565 cancel_delayed_work(&dbs_info->work);
1da177e4
LT
566}
567
568static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
569 unsigned int event)
570{
571 unsigned int cpu = policy->cpu;
572 struct cpu_dbs_info_s *this_dbs_info;
573 unsigned int j;
914f7c31 574 int rc;
1da177e4
LT
575
576 this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
577
578 switch (event) {
579 case CPUFREQ_GOV_START:
ffac80e9 580 if ((!cpu_online(cpu)) || (!policy->cur))
1da177e4
LT
581 return -EINVAL;
582
1da177e4
LT
583 if (this_dbs_info->enable) /* Already enabled */
584 break;
32ee8c3e 585
3fc54d37 586 mutex_lock(&dbs_mutex);
2f8a835c 587 dbs_enable++;
914f7c31
JG
588
589 rc = sysfs_create_group(&policy->kobj, &dbs_attr_group);
590 if (rc) {
914f7c31
JG
591 dbs_enable--;
592 mutex_unlock(&dbs_mutex);
593 return rc;
594 }
595
835481d9 596 for_each_cpu(j, policy->cpus) {
1da177e4
LT
597 struct cpu_dbs_info_s *j_dbs_info;
598 j_dbs_info = &per_cpu(cpu_dbs_info, j);
599 j_dbs_info->cur_policy = policy;
32ee8c3e 600
3430502d 601 j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
602 &j_dbs_info->prev_cpu_wall);
1ca3abdb
VP
603 if (dbs_tuners_ins.ignore_nice) {
604 j_dbs_info->prev_cpu_nice =
605 kstat_cpu(j).cpustat.nice;
606 }
1da177e4 607 }
529af7a1 608 this_dbs_info->cpu = cpu;
1da177e4
LT
609 /*
610 * Start the timerschedule work, when this governor
611 * is used for first time
612 */
613 if (dbs_enable == 1) {
614 unsigned int latency;
615 /* policy latency is in nS. Convert it to uS first */
df8b59be
DJ
616 latency = policy->cpuinfo.transition_latency / 1000;
617 if (latency == 0)
618 latency = 1;
1da177e4 619
112124ab
TR
620 def_sampling_rate =
621 max(latency * LATENCY_MULTIPLIER,
622 MIN_STAT_SAMPLING_RATE);
df8b59be 623
1da177e4 624 dbs_tuners_ins.sampling_rate = def_sampling_rate;
1da177e4 625 }
529af7a1 626 dbs_timer_init(this_dbs_info);
32ee8c3e 627
3fc54d37 628 mutex_unlock(&dbs_mutex);
1da177e4
LT
629 break;
630
631 case CPUFREQ_GOV_STOP:
3fc54d37 632 mutex_lock(&dbs_mutex);
2cd7cbdf 633 dbs_timer_exit(this_dbs_info);
1da177e4
LT
634 sysfs_remove_group(&policy->kobj, &dbs_attr_group);
635 dbs_enable--;
3fc54d37 636 mutex_unlock(&dbs_mutex);
1da177e4
LT
637
638 break;
639
640 case CPUFREQ_GOV_LIMITS:
3fc54d37 641 mutex_lock(&dbs_mutex);
1da177e4 642 if (policy->max < this_dbs_info->cur_policy->cur)
ffac80e9 643 __cpufreq_driver_target(this_dbs_info->cur_policy,
2b03f891 644 policy->max, CPUFREQ_RELATION_H);
1da177e4 645 else if (policy->min > this_dbs_info->cur_policy->cur)
ffac80e9 646 __cpufreq_driver_target(this_dbs_info->cur_policy,
2b03f891 647 policy->min, CPUFREQ_RELATION_L);
3fc54d37 648 mutex_unlock(&dbs_mutex);
1da177e4
LT
649 break;
650 }
651 return 0;
652}
653
c4d14bc0
SW
654#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
655static
656#endif
1c256245
TR
657struct cpufreq_governor cpufreq_gov_ondemand = {
658 .name = "ondemand",
659 .governor = cpufreq_governor_dbs,
660 .max_transition_latency = TRANSITION_LATENCY_LIMIT,
661 .owner = THIS_MODULE,
1da177e4 662};
1da177e4
LT
663
664static int __init cpufreq_gov_dbs_init(void)
665{
888a794c 666 int err;
80800913 667 cputime64_t wall;
4f6e6b9f
AR
668 u64 idle_time;
669 int cpu = get_cpu();
80800913 670
4f6e6b9f
AR
671 idle_time = get_cpu_idle_time_us(cpu, &wall);
672 put_cpu();
80800913 673 if (idle_time != -1ULL) {
674 /* Idle micro accounting is supported. Use finer thresholds */
675 dbs_tuners_ins.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
676 dbs_tuners_ins.down_differential =
677 MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
678 }
888a794c 679
56463b78
VP
680 kondemand_wq = create_workqueue("kondemand");
681 if (!kondemand_wq) {
682 printk(KERN_ERR "Creation of kondemand failed\n");
683 return -EFAULT;
684 }
888a794c
AM
685 err = cpufreq_register_governor(&cpufreq_gov_ondemand);
686 if (err)
687 destroy_workqueue(kondemand_wq);
688
689 return err;
1da177e4
LT
690}
691
692static void __exit cpufreq_gov_dbs_exit(void)
693{
1c256245 694 cpufreq_unregister_governor(&cpufreq_gov_ondemand);
56463b78 695 destroy_workqueue(kondemand_wq);
1da177e4
LT
696}
697
698
ffac80e9
VP
699MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
700MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
701MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
2b03f891 702 "Low Latency Frequency Transition capable processors");
ffac80e9 703MODULE_LICENSE("GPL");
1da177e4 704
6915719b
JW
705#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
706fs_initcall(cpufreq_gov_dbs_init);
707#else
1da177e4 708module_init(cpufreq_gov_dbs_init);
6915719b 709#endif
1da177e4 710module_exit(cpufreq_gov_dbs_exit);
This page took 0.427616 seconds and 5 git commands to generate.