Merge tag 'mmc-merge-for-3.7-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / drivers / cpufreq / cpufreq_ondemand.c
CommitLineData
1da177e4
LT
1/*
2 * drivers/cpufreq/cpufreq_ondemand.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#include <linux/kernel.h>
14#include <linux/module.h>
1da177e4 15#include <linux/init.h>
1da177e4 16#include <linux/cpufreq.h>
138a0128 17#include <linux/cpu.h>
1da177e4
LT
18#include <linux/jiffies.h>
19#include <linux/kernel_stat.h>
3fc54d37 20#include <linux/mutex.h>
80800913 21#include <linux/hrtimer.h>
22#include <linux/tick.h>
23#include <linux/ktime.h>
9411b4ef 24#include <linux/sched.h>
1da177e4
LT
25
26/*
27 * dbs is used in this file as a shortform for demandbased switching
28 * It helps to keep variable names smaller, simpler
29 */
30
e9d95bf7 31#define DEF_FREQUENCY_DOWN_DIFFERENTIAL (10)
1da177e4 32#define DEF_FREQUENCY_UP_THRESHOLD (80)
3f78a9f7
DN
33#define DEF_SAMPLING_DOWN_FACTOR (1)
34#define MAX_SAMPLING_DOWN_FACTOR (100000)
80800913 35#define MICRO_FREQUENCY_DOWN_DIFFERENTIAL (3)
36#define MICRO_FREQUENCY_UP_THRESHOLD (95)
cef9615a 37#define MICRO_FREQUENCY_MIN_SAMPLE_RATE (10000)
c29f1403 38#define MIN_FREQUENCY_UP_THRESHOLD (11)
1da177e4
LT
39#define MAX_FREQUENCY_UP_THRESHOLD (100)
40
32ee8c3e
DJ
41/*
42 * The polling frequency of this governor depends on the capability of
1da177e4 43 * the processor. Default polling frequency is 1000 times the transition
32ee8c3e
DJ
44 * latency of the processor. The governor will work on any processor with
45 * transition latency <= 10mS, using appropriate sampling
1da177e4
LT
46 * rate.
47 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
48 * this governor will not work.
49 * All times here are in uS.
50 */
df8b59be 51#define MIN_SAMPLING_RATE_RATIO (2)
112124ab 52
cef9615a
TR
53static unsigned int min_sampling_rate;
54
112124ab 55#define LATENCY_MULTIPLIER (1000)
cef9615a 56#define MIN_LATENCY_MULTIPLIER (100)
1c256245 57#define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
1da177e4 58
c4028958 59static void do_dbs_timer(struct work_struct *work);
0e625ac1
TR
60static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
61 unsigned int event);
62
63#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
64static
65#endif
66struct cpufreq_governor cpufreq_gov_ondemand = {
67 .name = "ondemand",
68 .governor = cpufreq_governor_dbs,
69 .max_transition_latency = TRANSITION_LATENCY_LIMIT,
70 .owner = THIS_MODULE,
71};
c4028958
DH
72
73/* Sampling types */
529af7a1 74enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
1da177e4
LT
75
76struct cpu_dbs_info_s {
ccb2fe20 77 cputime64_t prev_cpu_idle;
6b8fcd90 78 cputime64_t prev_cpu_iowait;
ccb2fe20 79 cputime64_t prev_cpu_wall;
80800913 80 cputime64_t prev_cpu_nice;
32ee8c3e 81 struct cpufreq_policy *cur_policy;
2b03f891 82 struct delayed_work work;
05ca0350
AS
83 struct cpufreq_frequency_table *freq_table;
84 unsigned int freq_lo;
85 unsigned int freq_lo_jiffies;
86 unsigned int freq_hi_jiffies;
3f78a9f7 87 unsigned int rate_mult;
529af7a1 88 int cpu;
5a75c828 89 unsigned int sample_type:1;
90 /*
91 * percpu mutex that serializes governor limit change with
92 * do_dbs_timer invocation. We do not want do_dbs_timer to run
93 * when user is changing the governor or limits.
94 */
95 struct mutex timer_mutex;
1da177e4 96};
245b2e70 97static DEFINE_PER_CPU(struct cpu_dbs_info_s, od_cpu_dbs_info);
1da177e4
LT
98
99static unsigned int dbs_enable; /* number of CPUs using this policy */
100
4ec223d0 101/*
326c86de 102 * dbs_mutex protects dbs_enable in governor start/stop.
4ec223d0 103 */
ffac80e9 104static DEFINE_MUTEX(dbs_mutex);
1da177e4 105
05ca0350 106static struct dbs_tuners {
32ee8c3e 107 unsigned int sampling_rate;
32ee8c3e 108 unsigned int up_threshold;
e9d95bf7 109 unsigned int down_differential;
32ee8c3e 110 unsigned int ignore_nice;
3f78a9f7 111 unsigned int sampling_down_factor;
05ca0350 112 unsigned int powersave_bias;
19379b11 113 unsigned int io_is_busy;
05ca0350 114} dbs_tuners_ins = {
32ee8c3e 115 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
3f78a9f7 116 .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
e9d95bf7 117 .down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL,
9cbad61b 118 .ignore_nice = 0,
05ca0350 119 .powersave_bias = 0,
1da177e4
LT
120};
121
3292beb3 122static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
dac1c1a5 123{
3292beb3 124 u64 idle_time;
612ef28a 125 u64 cur_wall_time;
3292beb3 126 u64 busy_time;
ccb2fe20 127
3430502d 128 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
ccb2fe20 129
612ef28a
MS
130 busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
131 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
3292beb3
GC
132 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
133 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
134 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
135 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
64861634
MS
136
137 idle_time = cur_wall_time - busy_time;
3430502d 138 if (wall)
3292beb3 139 *wall = jiffies_to_usecs(cur_wall_time);
3430502d 140
3292beb3 141 return jiffies_to_usecs(idle_time);
dac1c1a5
DJ
142}
143
80800913 144static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
145{
6beea0cd 146 u64 idle_time = get_cpu_idle_time_us(cpu, NULL);
80800913 147
148 if (idle_time == -1ULL)
149 return get_cpu_idle_time_jiffy(cpu, wall);
6beea0cd
MH
150 else
151 idle_time += get_cpu_iowait_time_us(cpu, wall);
80800913 152
80800913 153 return idle_time;
154}
155
6b8fcd90
AV
156static inline cputime64_t get_cpu_iowait_time(unsigned int cpu, cputime64_t *wall)
157{
158 u64 iowait_time = get_cpu_iowait_time_us(cpu, wall);
159
160 if (iowait_time == -1ULL)
161 return 0;
162
163 return iowait_time;
164}
165
05ca0350
AS
166/*
167 * Find right freq to be set now with powersave_bias on.
168 * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
169 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
170 */
b5ecf60f
AB
171static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
172 unsigned int freq_next,
173 unsigned int relation)
05ca0350
AS
174{
175 unsigned int freq_req, freq_reduc, freq_avg;
176 unsigned int freq_hi, freq_lo;
177 unsigned int index = 0;
178 unsigned int jiffies_total, jiffies_hi, jiffies_lo;
245b2e70
TH
179 struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
180 policy->cpu);
05ca0350
AS
181
182 if (!dbs_info->freq_table) {
183 dbs_info->freq_lo = 0;
184 dbs_info->freq_lo_jiffies = 0;
185 return freq_next;
186 }
187
188 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
189 relation, &index);
190 freq_req = dbs_info->freq_table[index].frequency;
191 freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
192 freq_avg = freq_req - freq_reduc;
193
194 /* Find freq bounds for freq_avg in freq_table */
195 index = 0;
196 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
197 CPUFREQ_RELATION_H, &index);
198 freq_lo = dbs_info->freq_table[index].frequency;
199 index = 0;
200 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
201 CPUFREQ_RELATION_L, &index);
202 freq_hi = dbs_info->freq_table[index].frequency;
203
204 /* Find out how long we have to be in hi and lo freqs */
205 if (freq_hi == freq_lo) {
206 dbs_info->freq_lo = 0;
207 dbs_info->freq_lo_jiffies = 0;
208 return freq_lo;
209 }
210 jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
211 jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
212 jiffies_hi += ((freq_hi - freq_lo) / 2);
213 jiffies_hi /= (freq_hi - freq_lo);
214 jiffies_lo = jiffies_total - jiffies_hi;
215 dbs_info->freq_lo = freq_lo;
216 dbs_info->freq_lo_jiffies = jiffies_lo;
217 dbs_info->freq_hi_jiffies = jiffies_hi;
218 return freq_hi;
219}
220
5a75c828 221static void ondemand_powersave_bias_init_cpu(int cpu)
222{
384be2b1 223 struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
5a75c828 224 dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
225 dbs_info->freq_lo = 0;
226}
227
05ca0350
AS
228static void ondemand_powersave_bias_init(void)
229{
230 int i;
231 for_each_online_cpu(i) {
5a75c828 232 ondemand_powersave_bias_init_cpu(i);
05ca0350
AS
233 }
234}
235
1da177e4 236/************************** sysfs interface ************************/
0e625ac1 237
0e625ac1
TR
238static ssize_t show_sampling_rate_min(struct kobject *kobj,
239 struct attribute *attr, char *buf)
1da177e4 240{
cef9615a 241 return sprintf(buf, "%u\n", min_sampling_rate);
1da177e4
LT
242}
243
6dad2a29 244define_one_global_ro(sampling_rate_min);
1da177e4
LT
245
246/* cpufreq_ondemand Governor Tunables */
247#define show_one(file_name, object) \
248static ssize_t show_##file_name \
0e625ac1 249(struct kobject *kobj, struct attribute *attr, char *buf) \
1da177e4
LT
250{ \
251 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
252}
253show_one(sampling_rate, sampling_rate);
19379b11 254show_one(io_is_busy, io_is_busy);
1da177e4 255show_one(up_threshold, up_threshold);
3f78a9f7 256show_one(sampling_down_factor, sampling_down_factor);
001893cd 257show_one(ignore_nice_load, ignore_nice);
05ca0350 258show_one(powersave_bias, powersave_bias);
1da177e4 259
fd0ef7a0
MH
260/**
261 * update_sampling_rate - update sampling rate effective immediately if needed.
262 * @new_rate: new sampling rate
263 *
264 * If new rate is smaller than the old, simply updaing
265 * dbs_tuners_int.sampling_rate might not be appropriate. For example,
266 * if the original sampling_rate was 1 second and the requested new sampling
267 * rate is 10 ms because the user needs immediate reaction from ondemand
268 * governor, but not sure if higher frequency will be required or not,
269 * then, the governor may change the sampling rate too late; up to 1 second
270 * later. Thus, if we are reducing the sampling rate, we need to make the
271 * new value effective immediately.
272 */
273static void update_sampling_rate(unsigned int new_rate)
274{
275 int cpu;
276
277 dbs_tuners_ins.sampling_rate = new_rate
278 = max(new_rate, min_sampling_rate);
279
280 for_each_online_cpu(cpu) {
281 struct cpufreq_policy *policy;
282 struct cpu_dbs_info_s *dbs_info;
283 unsigned long next_sampling, appointed_at;
284
285 policy = cpufreq_cpu_get(cpu);
286 if (!policy)
287 continue;
288 dbs_info = &per_cpu(od_cpu_dbs_info, policy->cpu);
289 cpufreq_cpu_put(policy);
290
291 mutex_lock(&dbs_info->timer_mutex);
292
293 if (!delayed_work_pending(&dbs_info->work)) {
294 mutex_unlock(&dbs_info->timer_mutex);
295 continue;
296 }
297
298 next_sampling = jiffies + usecs_to_jiffies(new_rate);
299 appointed_at = dbs_info->work.timer.expires;
300
301
302 if (time_before(next_sampling, appointed_at)) {
303
304 mutex_unlock(&dbs_info->timer_mutex);
305 cancel_delayed_work_sync(&dbs_info->work);
306 mutex_lock(&dbs_info->timer_mutex);
307
308 schedule_delayed_work_on(dbs_info->cpu, &dbs_info->work,
309 usecs_to_jiffies(new_rate));
310
311 }
312 mutex_unlock(&dbs_info->timer_mutex);
313 }
314}
315
0e625ac1
TR
316static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
317 const char *buf, size_t count)
1da177e4
LT
318{
319 unsigned int input;
320 int ret;
ffac80e9 321 ret = sscanf(buf, "%u", &input);
5a75c828 322 if (ret != 1)
323 return -EINVAL;
fd0ef7a0 324 update_sampling_rate(input);
1da177e4
LT
325 return count;
326}
327
19379b11
AV
328static ssize_t store_io_is_busy(struct kobject *a, struct attribute *b,
329 const char *buf, size_t count)
330{
331 unsigned int input;
332 int ret;
333
334 ret = sscanf(buf, "%u", &input);
335 if (ret != 1)
336 return -EINVAL;
19379b11 337 dbs_tuners_ins.io_is_busy = !!input;
19379b11
AV
338 return count;
339}
340
0e625ac1
TR
341static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
342 const char *buf, size_t count)
1da177e4
LT
343{
344 unsigned int input;
345 int ret;
ffac80e9 346 ret = sscanf(buf, "%u", &input);
1da177e4 347
32ee8c3e 348 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
c29f1403 349 input < MIN_FREQUENCY_UP_THRESHOLD) {
1da177e4
LT
350 return -EINVAL;
351 }
1da177e4 352 dbs_tuners_ins.up_threshold = input;
1da177e4
LT
353 return count;
354}
355
3f78a9f7
DN
356static ssize_t store_sampling_down_factor(struct kobject *a,
357 struct attribute *b, const char *buf, size_t count)
358{
359 unsigned int input, j;
360 int ret;
361 ret = sscanf(buf, "%u", &input);
362
363 if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
364 return -EINVAL;
3f78a9f7
DN
365 dbs_tuners_ins.sampling_down_factor = input;
366
367 /* Reset down sampling multiplier in case it was active */
368 for_each_online_cpu(j) {
369 struct cpu_dbs_info_s *dbs_info;
370 dbs_info = &per_cpu(od_cpu_dbs_info, j);
371 dbs_info->rate_mult = 1;
372 }
3f78a9f7
DN
373 return count;
374}
375
0e625ac1
TR
376static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
377 const char *buf, size_t count)
3d5ee9e5
DJ
378{
379 unsigned int input;
380 int ret;
381
382 unsigned int j;
32ee8c3e 383
ffac80e9 384 ret = sscanf(buf, "%u", &input);
2b03f891 385 if (ret != 1)
3d5ee9e5
DJ
386 return -EINVAL;
387
2b03f891 388 if (input > 1)
3d5ee9e5 389 input = 1;
32ee8c3e 390
2b03f891 391 if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
3d5ee9e5
DJ
392 return count;
393 }
394 dbs_tuners_ins.ignore_nice = input;
395
ccb2fe20 396 /* we need to re-evaluate prev_cpu_idle */
dac1c1a5 397 for_each_online_cpu(j) {
ccb2fe20 398 struct cpu_dbs_info_s *dbs_info;
245b2e70 399 dbs_info = &per_cpu(od_cpu_dbs_info, j);
3430502d 400 dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
401 &dbs_info->prev_cpu_wall);
1ca3abdb 402 if (dbs_tuners_ins.ignore_nice)
3292beb3 403 dbs_info->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
1ca3abdb 404
3d5ee9e5 405 }
3d5ee9e5
DJ
406 return count;
407}
408
0e625ac1
TR
409static ssize_t store_powersave_bias(struct kobject *a, struct attribute *b,
410 const char *buf, size_t count)
05ca0350
AS
411{
412 unsigned int input;
413 int ret;
414 ret = sscanf(buf, "%u", &input);
415
416 if (ret != 1)
417 return -EINVAL;
418
419 if (input > 1000)
420 input = 1000;
421
05ca0350
AS
422 dbs_tuners_ins.powersave_bias = input;
423 ondemand_powersave_bias_init();
05ca0350
AS
424 return count;
425}
426
6dad2a29 427define_one_global_rw(sampling_rate);
07d77759 428define_one_global_rw(io_is_busy);
6dad2a29 429define_one_global_rw(up_threshold);
3f78a9f7 430define_one_global_rw(sampling_down_factor);
6dad2a29
BP
431define_one_global_rw(ignore_nice_load);
432define_one_global_rw(powersave_bias);
1da177e4 433
2b03f891 434static struct attribute *dbs_attributes[] = {
1da177e4
LT
435 &sampling_rate_min.attr,
436 &sampling_rate.attr,
1da177e4 437 &up_threshold.attr,
3f78a9f7 438 &sampling_down_factor.attr,
001893cd 439 &ignore_nice_load.attr,
05ca0350 440 &powersave_bias.attr,
19379b11 441 &io_is_busy.attr,
1da177e4
LT
442 NULL
443};
444
445static struct attribute_group dbs_attr_group = {
446 .attrs = dbs_attributes,
447 .name = "ondemand",
448};
449
450/************************** sysfs end ************************/
451
00e299ff
MC
452static void dbs_freq_increase(struct cpufreq_policy *p, unsigned int freq)
453{
454 if (dbs_tuners_ins.powersave_bias)
455 freq = powersave_bias_target(p, freq, CPUFREQ_RELATION_H);
456 else if (p->cur == p->max)
457 return;
458
459 __cpufreq_driver_target(p, freq, dbs_tuners_ins.powersave_bias ?
460 CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
461}
462
2f8a835c 463static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
1da177e4 464{
c43aa3bd 465 unsigned int max_load_freq;
1da177e4
LT
466
467 struct cpufreq_policy *policy;
468 unsigned int j;
469
05ca0350 470 this_dbs_info->freq_lo = 0;
1da177e4 471 policy = this_dbs_info->cur_policy;
ea487615 472
32ee8c3e 473 /*
c29f1403
DJ
474 * Every sampling_rate, we check, if current idle time is less
475 * than 20% (default), then we try to increase frequency
ccb2fe20 476 * Every sampling_rate, we look for a the lowest
c29f1403
DJ
477 * frequency which can sustain the load while keeping idle time over
478 * 30%. If such a frequency exist, we try to decrease to this frequency.
1da177e4 479 *
32ee8c3e
DJ
480 * Any frequency increase takes it to the maximum frequency.
481 * Frequency reduction happens at minimum steps of
482 * 5% (default) of current frequency
1da177e4
LT
483 */
484
c43aa3bd 485 /* Get Absolute Load - in terms of freq */
486 max_load_freq = 0;
487
835481d9 488 for_each_cpu(j, policy->cpus) {
1da177e4 489 struct cpu_dbs_info_s *j_dbs_info;
6b8fcd90
AV
490 cputime64_t cur_wall_time, cur_idle_time, cur_iowait_time;
491 unsigned int idle_time, wall_time, iowait_time;
c43aa3bd 492 unsigned int load, load_freq;
493 int freq_avg;
1da177e4 494
245b2e70 495 j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
3430502d 496
497 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
6b8fcd90 498 cur_iowait_time = get_cpu_iowait_time(j, &cur_wall_time);
3430502d 499
64861634
MS
500 wall_time = (unsigned int)
501 (cur_wall_time - j_dbs_info->prev_cpu_wall);
c43aa3bd 502 j_dbs_info->prev_cpu_wall = cur_wall_time;
503
64861634
MS
504 idle_time = (unsigned int)
505 (cur_idle_time - j_dbs_info->prev_cpu_idle);
c43aa3bd 506 j_dbs_info->prev_cpu_idle = cur_idle_time;
1da177e4 507
64861634
MS
508 iowait_time = (unsigned int)
509 (cur_iowait_time - j_dbs_info->prev_cpu_iowait);
6b8fcd90
AV
510 j_dbs_info->prev_cpu_iowait = cur_iowait_time;
511
1ca3abdb 512 if (dbs_tuners_ins.ignore_nice) {
3292beb3 513 u64 cur_nice;
1ca3abdb
VP
514 unsigned long cur_nice_jiffies;
515
3292beb3
GC
516 cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE] -
517 j_dbs_info->prev_cpu_nice;
1ca3abdb
VP
518 /*
519 * Assumption: nice time between sampling periods will
520 * be less than 2^32 jiffies for 32 bit sys
521 */
522 cur_nice_jiffies = (unsigned long)
523 cputime64_to_jiffies64(cur_nice);
524
3292beb3 525 j_dbs_info->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
1ca3abdb
VP
526 idle_time += jiffies_to_usecs(cur_nice_jiffies);
527 }
528
6b8fcd90
AV
529 /*
530 * For the purpose of ondemand, waiting for disk IO is an
531 * indication that you're performance critical, and not that
532 * the system is actually idle. So subtract the iowait time
533 * from the cpu idle time.
534 */
535
19379b11 536 if (dbs_tuners_ins.io_is_busy && idle_time >= iowait_time)
6b8fcd90
AV
537 idle_time -= iowait_time;
538
3430502d 539 if (unlikely(!wall_time || wall_time < idle_time))
c43aa3bd 540 continue;
c43aa3bd 541
542 load = 100 * (wall_time - idle_time) / wall_time;
543
544 freq_avg = __cpufreq_driver_getavg(policy, j);
545 if (freq_avg <= 0)
546 freq_avg = policy->cur;
547
548 load_freq = load * freq_avg;
549 if (load_freq > max_load_freq)
550 max_load_freq = load_freq;
1da177e4
LT
551 }
552
ccb2fe20 553 /* Check for frequency increase */
c43aa3bd 554 if (max_load_freq > dbs_tuners_ins.up_threshold * policy->cur) {
3f78a9f7
DN
555 /* If switching to max speed, apply sampling_down_factor */
556 if (policy->cur < policy->max)
557 this_dbs_info->rate_mult =
558 dbs_tuners_ins.sampling_down_factor;
00e299ff 559 dbs_freq_increase(policy, policy->max);
1da177e4
LT
560 return;
561 }
562
563 /* Check for frequency decrease */
c29f1403
DJ
564 /* if we cannot reduce the frequency anymore, break out early */
565 if (policy->cur == policy->min)
566 return;
1da177e4 567
c29f1403
DJ
568 /*
569 * The optimal frequency is the frequency that is the lowest that
570 * can support the current CPU usage without triggering the up
571 * policy. To be safe, we focus 10 points under the threshold.
572 */
e9d95bf7 573 if (max_load_freq <
574 (dbs_tuners_ins.up_threshold - dbs_tuners_ins.down_differential) *
575 policy->cur) {
c43aa3bd 576 unsigned int freq_next;
e9d95bf7 577 freq_next = max_load_freq /
578 (dbs_tuners_ins.up_threshold -
579 dbs_tuners_ins.down_differential);
dfde5d62 580
3f78a9f7
DN
581 /* No longer fully busy, reset rate_mult */
582 this_dbs_info->rate_mult = 1;
583
1dbf5888
NC
584 if (freq_next < policy->min)
585 freq_next = policy->min;
586
05ca0350
AS
587 if (!dbs_tuners_ins.powersave_bias) {
588 __cpufreq_driver_target(policy, freq_next,
589 CPUFREQ_RELATION_L);
590 } else {
591 int freq = powersave_bias_target(policy, freq_next,
592 CPUFREQ_RELATION_L);
593 __cpufreq_driver_target(policy, freq,
594 CPUFREQ_RELATION_L);
595 }
ccb2fe20 596 }
1da177e4
LT
597}
598
c4028958 599static void do_dbs_timer(struct work_struct *work)
32ee8c3e 600{
529af7a1
VP
601 struct cpu_dbs_info_s *dbs_info =
602 container_of(work, struct cpu_dbs_info_s, work.work);
603 unsigned int cpu = dbs_info->cpu;
604 int sample_type = dbs_info->sample_type;
605
5cb2c3bd 606 int delay;
a665df9d 607
5a75c828 608 mutex_lock(&dbs_info->timer_mutex);
56463b78 609
05ca0350 610 /* Common NORMAL_SAMPLE setup */
c4028958 611 dbs_info->sample_type = DBS_NORMAL_SAMPLE;
05ca0350 612 if (!dbs_tuners_ins.powersave_bias ||
c4028958 613 sample_type == DBS_NORMAL_SAMPLE) {
05ca0350 614 dbs_check_cpu(dbs_info);
05ca0350
AS
615 if (dbs_info->freq_lo) {
616 /* Setup timer for SUB_SAMPLE */
c4028958 617 dbs_info->sample_type = DBS_SUB_SAMPLE;
05ca0350 618 delay = dbs_info->freq_hi_jiffies;
5cb2c3bd
VG
619 } else {
620 /* We want all CPUs to do sampling nearly on
621 * same jiffy
622 */
623 delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate
624 * dbs_info->rate_mult);
625
626 if (num_online_cpus() > 1)
627 delay -= jiffies % delay;
05ca0350
AS
628 }
629 } else {
630 __cpufreq_driver_target(dbs_info->cur_policy,
2b03f891 631 dbs_info->freq_lo, CPUFREQ_RELATION_H);
5cb2c3bd 632 delay = dbs_info->freq_lo_jiffies;
05ca0350 633 }
57df5573 634 schedule_delayed_work_on(cpu, &dbs_info->work, delay);
5a75c828 635 mutex_unlock(&dbs_info->timer_mutex);
32ee8c3e 636}
1da177e4 637
529af7a1 638static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
1da177e4 639{
1ce28d6b
AS
640 /* We want all CPUs to do sampling nearly on same jiffy */
641 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
a665df9d
JF
642
643 if (num_online_cpus() > 1)
644 delay -= jiffies % delay;
2f8a835c 645
c4028958 646 dbs_info->sample_type = DBS_NORMAL_SAMPLE;
203b42f7 647 INIT_DEFERRABLE_WORK(&dbs_info->work, do_dbs_timer);
57df5573 648 schedule_delayed_work_on(dbs_info->cpu, &dbs_info->work, delay);
1da177e4
LT
649}
650
2cd7cbdf 651static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
1da177e4 652{
b14893a6 653 cancel_delayed_work_sync(&dbs_info->work);
1da177e4
LT
654}
655
19379b11
AV
656/*
657 * Not all CPUs want IO time to be accounted as busy; this dependson how
658 * efficient idling at a higher frequency/voltage is.
659 * Pavel Machek says this is not so for various generations of AMD and old
660 * Intel systems.
661 * Mike Chan (androidlcom) calis this is also not true for ARM.
662 * Because of this, whitelist specific known (series) of CPUs by default, and
663 * leave all others up to the user.
664 */
665static int should_io_be_busy(void)
666{
667#if defined(CONFIG_X86)
668 /*
669 * For Intel, Core 2 (model 15) andl later have an efficient idle.
670 */
671 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
672 boot_cpu_data.x86 == 6 &&
673 boot_cpu_data.x86_model >= 15)
674 return 1;
675#endif
676 return 0;
677}
678
1da177e4
LT
679static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
680 unsigned int event)
681{
682 unsigned int cpu = policy->cpu;
683 struct cpu_dbs_info_s *this_dbs_info;
684 unsigned int j;
914f7c31 685 int rc;
1da177e4 686
245b2e70 687 this_dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
1da177e4
LT
688
689 switch (event) {
690 case CPUFREQ_GOV_START:
ffac80e9 691 if ((!cpu_online(cpu)) || (!policy->cur))
1da177e4
LT
692 return -EINVAL;
693
3fc54d37 694 mutex_lock(&dbs_mutex);
914f7c31 695
5a75c828 696 dbs_enable++;
835481d9 697 for_each_cpu(j, policy->cpus) {
1da177e4 698 struct cpu_dbs_info_s *j_dbs_info;
245b2e70 699 j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
1da177e4 700 j_dbs_info->cur_policy = policy;
32ee8c3e 701
3430502d 702 j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
703 &j_dbs_info->prev_cpu_wall);
3292beb3 704 if (dbs_tuners_ins.ignore_nice)
1ca3abdb 705 j_dbs_info->prev_cpu_nice =
3292beb3 706 kcpustat_cpu(j).cpustat[CPUTIME_NICE];
1da177e4 707 }
529af7a1 708 this_dbs_info->cpu = cpu;
3f78a9f7 709 this_dbs_info->rate_mult = 1;
5a75c828 710 ondemand_powersave_bias_init_cpu(cpu);
1da177e4
LT
711 /*
712 * Start the timerschedule work, when this governor
713 * is used for first time
714 */
715 if (dbs_enable == 1) {
716 unsigned int latency;
0e625ac1
TR
717
718 rc = sysfs_create_group(cpufreq_global_kobject,
719 &dbs_attr_group);
720 if (rc) {
721 mutex_unlock(&dbs_mutex);
722 return rc;
723 }
724
1da177e4 725 /* policy latency is in nS. Convert it to uS first */
df8b59be
DJ
726 latency = policy->cpuinfo.transition_latency / 1000;
727 if (latency == 0)
728 latency = 1;
cef9615a
TR
729 /* Bring kernel and HW constraints together */
730 min_sampling_rate = max(min_sampling_rate,
731 MIN_LATENCY_MULTIPLIER * latency);
732 dbs_tuners_ins.sampling_rate =
733 max(min_sampling_rate,
734 latency * LATENCY_MULTIPLIER);
19379b11 735 dbs_tuners_ins.io_is_busy = should_io_be_busy();
1da177e4 736 }
3fc54d37 737 mutex_unlock(&dbs_mutex);
7d26e2d5 738
0e625ac1 739 mutex_init(&this_dbs_info->timer_mutex);
7d26e2d5 740 dbs_timer_init(this_dbs_info);
1da177e4
LT
741 break;
742
743 case CPUFREQ_GOV_STOP:
2cd7cbdf 744 dbs_timer_exit(this_dbs_info);
7d26e2d5 745
746 mutex_lock(&dbs_mutex);
5a75c828 747 mutex_destroy(&this_dbs_info->timer_mutex);
1da177e4 748 dbs_enable--;
3fc54d37 749 mutex_unlock(&dbs_mutex);
0e625ac1
TR
750 if (!dbs_enable)
751 sysfs_remove_group(cpufreq_global_kobject,
752 &dbs_attr_group);
1da177e4
LT
753
754 break;
755
756 case CPUFREQ_GOV_LIMITS:
5a75c828 757 mutex_lock(&this_dbs_info->timer_mutex);
1da177e4 758 if (policy->max < this_dbs_info->cur_policy->cur)
ffac80e9 759 __cpufreq_driver_target(this_dbs_info->cur_policy,
2b03f891 760 policy->max, CPUFREQ_RELATION_H);
1da177e4 761 else if (policy->min > this_dbs_info->cur_policy->cur)
ffac80e9 762 __cpufreq_driver_target(this_dbs_info->cur_policy,
2b03f891 763 policy->min, CPUFREQ_RELATION_L);
f2636517 764 dbs_check_cpu(this_dbs_info);
5a75c828 765 mutex_unlock(&this_dbs_info->timer_mutex);
1da177e4
LT
766 break;
767 }
768 return 0;
769}
770
1da177e4
LT
771static int __init cpufreq_gov_dbs_init(void)
772{
4f6e6b9f
AR
773 u64 idle_time;
774 int cpu = get_cpu();
80800913 775
21f2e3c8 776 idle_time = get_cpu_idle_time_us(cpu, NULL);
4f6e6b9f 777 put_cpu();
80800913 778 if (idle_time != -1ULL) {
779 /* Idle micro accounting is supported. Use finer thresholds */
780 dbs_tuners_ins.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
781 dbs_tuners_ins.down_differential =
782 MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
cef9615a 783 /*
bd74b32b 784 * In nohz/micro accounting case we set the minimum frequency
cef9615a
TR
785 * not depending on HZ, but fixed (very low). The deferred
786 * timer might skip some samples if idle/sleeping as needed.
787 */
788 min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
789 } else {
790 /* For correct statistics, we need 10 ticks for each measure */
791 min_sampling_rate =
792 MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
80800913 793 }
888a794c 794
57df5573 795 return cpufreq_register_governor(&cpufreq_gov_ondemand);
1da177e4
LT
796}
797
798static void __exit cpufreq_gov_dbs_exit(void)
799{
1c256245 800 cpufreq_unregister_governor(&cpufreq_gov_ondemand);
1da177e4
LT
801}
802
803
ffac80e9
VP
804MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
805MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
806MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
2b03f891 807 "Low Latency Frequency Transition capable processors");
ffac80e9 808MODULE_LICENSE("GPL");
1da177e4 809
6915719b
JW
810#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
811fs_initcall(cpufreq_gov_dbs_init);
812#else
1da177e4 813module_init(cpufreq_gov_dbs_init);
6915719b 814#endif
1da177e4 815module_exit(cpufreq_gov_dbs_exit);
This page took 0.552464 seconds and 5 git commands to generate.