Merge master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[deliverable/linux.git] / drivers / cpufreq / cpufreq_ondemand.c
CommitLineData
1da177e4
LT
1/*
2 * drivers/cpufreq/cpufreq_ondemand.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#include <linux/kernel.h>
14#include <linux/module.h>
1da177e4 15#include <linux/init.h>
1da177e4 16#include <linux/cpufreq.h>
138a0128 17#include <linux/cpu.h>
1da177e4
LT
18#include <linux/jiffies.h>
19#include <linux/kernel_stat.h>
3fc54d37 20#include <linux/mutex.h>
1da177e4
LT
21
22/*
23 * dbs is used in this file as a shortform for demandbased switching
24 * It helps to keep variable names smaller, simpler
25 */
26
27#define DEF_FREQUENCY_UP_THRESHOLD (80)
c29f1403 28#define MIN_FREQUENCY_UP_THRESHOLD (11)
1da177e4
LT
29#define MAX_FREQUENCY_UP_THRESHOLD (100)
30
32ee8c3e
DJ
31/*
32 * The polling frequency of this governor depends on the capability of
1da177e4 33 * the processor. Default polling frequency is 1000 times the transition
32ee8c3e
DJ
34 * latency of the processor. The governor will work on any processor with
35 * transition latency <= 10mS, using appropriate sampling
1da177e4
LT
36 * rate.
37 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
38 * this governor will not work.
39 * All times here are in uS.
40 */
32ee8c3e 41static unsigned int def_sampling_rate;
df8b59be
DJ
42#define MIN_SAMPLING_RATE_RATIO (2)
43/* for correct statistics, we need at least 10 ticks between each measure */
44#define MIN_STAT_SAMPLING_RATE (MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
45#define MIN_SAMPLING_RATE (def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
1da177e4
LT
46#define MAX_SAMPLING_RATE (500 * def_sampling_rate)
47#define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER (1000)
1da177e4 48#define TRANSITION_LATENCY_LIMIT (10 * 1000)
1da177e4
LT
49
50static void do_dbs_timer(void *data);
51
52struct cpu_dbs_info_s {
ccb2fe20
VP
53 cputime64_t prev_cpu_idle;
54 cputime64_t prev_cpu_wall;
32ee8c3e 55 struct cpufreq_policy *cur_policy;
2f8a835c 56 struct work_struct work;
32ee8c3e 57 unsigned int enable;
1da177e4
LT
58};
59static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
60
61static unsigned int dbs_enable; /* number of CPUs using this policy */
62
4ec223d0
VP
63/*
64 * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
65 * lock and dbs_mutex. cpu_hotplug lock should always be held before
66 * dbs_mutex. If any function that can potentially take cpu_hotplug lock
67 * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
68 * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
69 * is recursive for the same process. -Venki
70 */
ffac80e9 71static DEFINE_MUTEX(dbs_mutex);
1da177e4 72
2f8a835c 73static struct workqueue_struct *kondemand_wq;
6810b548 74
1da177e4 75struct dbs_tuners {
32ee8c3e 76 unsigned int sampling_rate;
32ee8c3e
DJ
77 unsigned int up_threshold;
78 unsigned int ignore_nice;
1da177e4
LT
79};
80
81static struct dbs_tuners dbs_tuners_ins = {
32ee8c3e 82 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
9cbad61b 83 .ignore_nice = 0,
1da177e4
LT
84};
85
ccb2fe20 86static inline cputime64_t get_cpu_idle_time(unsigned int cpu)
dac1c1a5 87{
ccb2fe20
VP
88 cputime64_t retval;
89
90 retval = cputime64_add(kstat_cpu(cpu).cpustat.idle,
91 kstat_cpu(cpu).cpustat.iowait);
92
93 if (dbs_tuners_ins.ignore_nice)
94 retval = cputime64_add(retval, kstat_cpu(cpu).cpustat.nice);
95
96 return retval;
dac1c1a5
DJ
97}
98
1da177e4
LT
99/************************** sysfs interface ************************/
100static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
101{
102 return sprintf (buf, "%u\n", MAX_SAMPLING_RATE);
103}
104
105static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
106{
107 return sprintf (buf, "%u\n", MIN_SAMPLING_RATE);
108}
109
32ee8c3e
DJ
110#define define_one_ro(_name) \
111static struct freq_attr _name = \
1da177e4
LT
112__ATTR(_name, 0444, show_##_name, NULL)
113
114define_one_ro(sampling_rate_max);
115define_one_ro(sampling_rate_min);
116
117/* cpufreq_ondemand Governor Tunables */
118#define show_one(file_name, object) \
119static ssize_t show_##file_name \
120(struct cpufreq_policy *unused, char *buf) \
121{ \
122 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
123}
124show_one(sampling_rate, sampling_rate);
1da177e4 125show_one(up_threshold, up_threshold);
001893cd 126show_one(ignore_nice_load, ignore_nice);
1da177e4 127
32ee8c3e 128static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
1da177e4
LT
129 const char *buf, size_t count)
130{
131 unsigned int input;
132 int ret;
ffac80e9 133 ret = sscanf(buf, "%u", &input);
1da177e4 134
3fc54d37 135 mutex_lock(&dbs_mutex);
1da177e4 136 if (ret != 1 || input > MAX_SAMPLING_RATE || input < MIN_SAMPLING_RATE) {
3fc54d37 137 mutex_unlock(&dbs_mutex);
1da177e4
LT
138 return -EINVAL;
139 }
140
141 dbs_tuners_ins.sampling_rate = input;
3fc54d37 142 mutex_unlock(&dbs_mutex);
1da177e4
LT
143
144 return count;
145}
146
32ee8c3e 147static ssize_t store_up_threshold(struct cpufreq_policy *unused,
1da177e4
LT
148 const char *buf, size_t count)
149{
150 unsigned int input;
151 int ret;
ffac80e9 152 ret = sscanf(buf, "%u", &input);
1da177e4 153
3fc54d37 154 mutex_lock(&dbs_mutex);
32ee8c3e 155 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
c29f1403 156 input < MIN_FREQUENCY_UP_THRESHOLD) {
3fc54d37 157 mutex_unlock(&dbs_mutex);
1da177e4
LT
158 return -EINVAL;
159 }
160
161 dbs_tuners_ins.up_threshold = input;
3fc54d37 162 mutex_unlock(&dbs_mutex);
1da177e4
LT
163
164 return count;
165}
166
001893cd 167static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
3d5ee9e5
DJ
168 const char *buf, size_t count)
169{
170 unsigned int input;
171 int ret;
172
173 unsigned int j;
32ee8c3e 174
ffac80e9 175 ret = sscanf(buf, "%u", &input);
3d5ee9e5
DJ
176 if ( ret != 1 )
177 return -EINVAL;
178
179 if ( input > 1 )
180 input = 1;
32ee8c3e 181
3fc54d37 182 mutex_lock(&dbs_mutex);
3d5ee9e5 183 if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */
3fc54d37 184 mutex_unlock(&dbs_mutex);
3d5ee9e5
DJ
185 return count;
186 }
187 dbs_tuners_ins.ignore_nice = input;
188
ccb2fe20 189 /* we need to re-evaluate prev_cpu_idle */
dac1c1a5 190 for_each_online_cpu(j) {
ccb2fe20
VP
191 struct cpu_dbs_info_s *dbs_info;
192 dbs_info = &per_cpu(cpu_dbs_info, j);
193 dbs_info->prev_cpu_idle = get_cpu_idle_time(j);
194 dbs_info->prev_cpu_wall = get_jiffies_64();
3d5ee9e5 195 }
3fc54d37 196 mutex_unlock(&dbs_mutex);
3d5ee9e5
DJ
197
198 return count;
199}
200
1da177e4
LT
201#define define_one_rw(_name) \
202static struct freq_attr _name = \
203__ATTR(_name, 0644, show_##_name, store_##_name)
204
205define_one_rw(sampling_rate);
1da177e4 206define_one_rw(up_threshold);
001893cd 207define_one_rw(ignore_nice_load);
1da177e4
LT
208
209static struct attribute * dbs_attributes[] = {
210 &sampling_rate_max.attr,
211 &sampling_rate_min.attr,
212 &sampling_rate.attr,
1da177e4 213 &up_threshold.attr,
001893cd 214 &ignore_nice_load.attr,
1da177e4
LT
215 NULL
216};
217
218static struct attribute_group dbs_attr_group = {
219 .attrs = dbs_attributes,
220 .name = "ondemand",
221};
222
223/************************** sysfs end ************************/
224
2f8a835c 225static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
1da177e4 226{
ccb2fe20
VP
227 unsigned int idle_ticks, total_ticks;
228 unsigned int load;
ccb2fe20 229 cputime64_t cur_jiffies;
1da177e4
LT
230
231 struct cpufreq_policy *policy;
232 unsigned int j;
233
1da177e4
LT
234 if (!this_dbs_info->enable)
235 return;
236
237 policy = this_dbs_info->cur_policy;
ccb2fe20
VP
238 cur_jiffies = jiffies64_to_cputime64(get_jiffies_64());
239 total_ticks = (unsigned int) cputime64_sub(cur_jiffies,
240 this_dbs_info->prev_cpu_wall);
241 this_dbs_info->prev_cpu_wall = cur_jiffies;
32ee8c3e 242 /*
c29f1403
DJ
243 * Every sampling_rate, we check, if current idle time is less
244 * than 20% (default), then we try to increase frequency
ccb2fe20 245 * Every sampling_rate, we look for a the lowest
c29f1403
DJ
246 * frequency which can sustain the load while keeping idle time over
247 * 30%. If such a frequency exist, we try to decrease to this frequency.
1da177e4 248 *
32ee8c3e
DJ
249 * Any frequency increase takes it to the maximum frequency.
250 * Frequency reduction happens at minimum steps of
251 * 5% (default) of current frequency
1da177e4
LT
252 */
253
ccb2fe20 254 /* Get Idle Time */
9c7d269b 255 idle_ticks = UINT_MAX;
1da177e4 256 for_each_cpu_mask(j, policy->cpus) {
ccb2fe20
VP
257 cputime64_t total_idle_ticks;
258 unsigned int tmp_idle_ticks;
1da177e4
LT
259 struct cpu_dbs_info_s *j_dbs_info;
260
1da177e4 261 j_dbs_info = &per_cpu(cpu_dbs_info, j);
dac1c1a5 262 total_idle_ticks = get_cpu_idle_time(j);
ccb2fe20
VP
263 tmp_idle_ticks = (unsigned int) cputime64_sub(total_idle_ticks,
264 j_dbs_info->prev_cpu_idle);
265 j_dbs_info->prev_cpu_idle = total_idle_ticks;
1da177e4
LT
266
267 if (tmp_idle_ticks < idle_ticks)
268 idle_ticks = tmp_idle_ticks;
269 }
ccb2fe20 270 load = (100 * (total_ticks - idle_ticks)) / total_ticks;
1da177e4 271
ccb2fe20
VP
272 /* Check for frequency increase */
273 if (load > dbs_tuners_ins.up_threshold) {
c11420a6
DJ
274 /* if we are already at full speed then break out early */
275 if (policy->cur == policy->max)
276 return;
32ee8c3e
DJ
277
278 __cpufreq_driver_target(policy, policy->max,
1da177e4 279 CPUFREQ_RELATION_H);
1da177e4
LT
280 return;
281 }
282
283 /* Check for frequency decrease */
c29f1403
DJ
284 /* if we cannot reduce the frequency anymore, break out early */
285 if (policy->cur == policy->min)
286 return;
1da177e4 287
c29f1403
DJ
288 /*
289 * The optimal frequency is the frequency that is the lowest that
290 * can support the current CPU usage without triggering the up
291 * policy. To be safe, we focus 10 points under the threshold.
292 */
ccb2fe20
VP
293 if (load < (dbs_tuners_ins.up_threshold - 10)) {
294 unsigned int freq_next;
295 freq_next = (policy->cur * load) /
c29f1403 296 (dbs_tuners_ins.up_threshold - 10);
1da177e4 297
c29f1403 298 __cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_L);
ccb2fe20 299 }
1da177e4
LT
300}
301
302static void do_dbs_timer(void *data)
32ee8c3e 303{
2f8a835c
VP
304 unsigned int cpu = smp_processor_id();
305 struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, cpu);
306
307 dbs_check_cpu(dbs_info);
308 queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work,
309 usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
32ee8c3e 310}
1da177e4 311
2f8a835c 312static inline void dbs_timer_init(unsigned int cpu)
1da177e4 313{
2f8a835c
VP
314 struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, cpu);
315
316 INIT_WORK(&dbs_info->work, do_dbs_timer, 0);
317 queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work,
318 usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
1da177e4
LT
319 return;
320}
321
2f8a835c 322static inline void dbs_timer_exit(unsigned int cpu)
1da177e4 323{
2f8a835c
VP
324 struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, cpu);
325
326 cancel_rearming_delayed_workqueue(kondemand_wq, &dbs_info->work);
1da177e4
LT
327}
328
329static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
330 unsigned int event)
331{
332 unsigned int cpu = policy->cpu;
333 struct cpu_dbs_info_s *this_dbs_info;
334 unsigned int j;
335
336 this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
337
338 switch (event) {
339 case CPUFREQ_GOV_START:
ffac80e9 340 if ((!cpu_online(cpu)) || (!policy->cur))
1da177e4
LT
341 return -EINVAL;
342
343 if (policy->cpuinfo.transition_latency >
ff8c288d
EP
344 (TRANSITION_LATENCY_LIMIT * 1000)) {
345 printk(KERN_WARNING "ondemand governor failed to load "
346 "due to too long transition latency\n");
1da177e4 347 return -EINVAL;
ff8c288d 348 }
1da177e4
LT
349 if (this_dbs_info->enable) /* Already enabled */
350 break;
32ee8c3e 351
3fc54d37 352 mutex_lock(&dbs_mutex);
2f8a835c
VP
353 dbs_enable++;
354 if (dbs_enable == 1) {
355 kondemand_wq = create_workqueue("kondemand");
356 if (!kondemand_wq) {
357 printk(KERN_ERR "Creation of kondemand failed\n");
358 dbs_enable--;
359 mutex_unlock(&dbs_mutex);
360 return -ENOSPC;
361 }
362 }
1da177e4
LT
363 for_each_cpu_mask(j, policy->cpus) {
364 struct cpu_dbs_info_s *j_dbs_info;
365 j_dbs_info = &per_cpu(cpu_dbs_info, j);
366 j_dbs_info->cur_policy = policy;
32ee8c3e 367
ccb2fe20
VP
368 j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j);
369 j_dbs_info->prev_cpu_wall = get_jiffies_64();
1da177e4
LT
370 }
371 this_dbs_info->enable = 1;
372 sysfs_create_group(&policy->kobj, &dbs_attr_group);
1da177e4
LT
373 /*
374 * Start the timerschedule work, when this governor
375 * is used for first time
376 */
377 if (dbs_enable == 1) {
378 unsigned int latency;
379 /* policy latency is in nS. Convert it to uS first */
df8b59be
DJ
380 latency = policy->cpuinfo.transition_latency / 1000;
381 if (latency == 0)
382 latency = 1;
1da177e4 383
df8b59be 384 def_sampling_rate = latency *
1da177e4 385 DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
df8b59be
DJ
386
387 if (def_sampling_rate < MIN_STAT_SAMPLING_RATE)
388 def_sampling_rate = MIN_STAT_SAMPLING_RATE;
389
1da177e4 390 dbs_tuners_ins.sampling_rate = def_sampling_rate;
1da177e4 391 }
2f8a835c 392 dbs_timer_init(policy->cpu);
32ee8c3e 393
3fc54d37 394 mutex_unlock(&dbs_mutex);
1da177e4
LT
395 break;
396
397 case CPUFREQ_GOV_STOP:
3fc54d37 398 mutex_lock(&dbs_mutex);
2f8a835c 399 dbs_timer_exit(policy->cpu);
1da177e4
LT
400 this_dbs_info->enable = 0;
401 sysfs_remove_group(&policy->kobj, &dbs_attr_group);
402 dbs_enable--;
32ee8c3e 403 if (dbs_enable == 0)
2f8a835c 404 destroy_workqueue(kondemand_wq);
32ee8c3e 405
3fc54d37 406 mutex_unlock(&dbs_mutex);
1da177e4
LT
407
408 break;
409
410 case CPUFREQ_GOV_LIMITS:
4ec223d0 411 lock_cpu_hotplug();
3fc54d37 412 mutex_lock(&dbs_mutex);
1da177e4 413 if (policy->max < this_dbs_info->cur_policy->cur)
ffac80e9
VP
414 __cpufreq_driver_target(this_dbs_info->cur_policy,
415 policy->max,
416 CPUFREQ_RELATION_H);
1da177e4 417 else if (policy->min > this_dbs_info->cur_policy->cur)
ffac80e9
VP
418 __cpufreq_driver_target(this_dbs_info->cur_policy,
419 policy->min,
420 CPUFREQ_RELATION_L);
3fc54d37 421 mutex_unlock(&dbs_mutex);
4ec223d0 422 unlock_cpu_hotplug();
1da177e4
LT
423 break;
424 }
425 return 0;
426}
427
7f335d4e 428static struct cpufreq_governor cpufreq_gov_dbs = {
ffac80e9
VP
429 .name = "ondemand",
430 .governor = cpufreq_governor_dbs,
431 .owner = THIS_MODULE,
1da177e4 432};
1da177e4
LT
433
434static int __init cpufreq_gov_dbs_init(void)
435{
436 return cpufreq_register_governor(&cpufreq_gov_dbs);
437}
438
439static void __exit cpufreq_gov_dbs_exit(void)
440{
1da177e4
LT
441 cpufreq_unregister_governor(&cpufreq_gov_dbs);
442}
443
444
ffac80e9
VP
445MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
446MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
447MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
448 "Low Latency Frequency Transition capable processors");
449MODULE_LICENSE("GPL");
1da177e4
LT
450
451module_init(cpufreq_gov_dbs_init);
452module_exit(cpufreq_gov_dbs_exit);
This page took 0.157292 seconds and 5 git commands to generate.