cpufreq: conservative: call dbs_check_cpu only when necessary
[deliverable/linux.git] / drivers / cpufreq / cpufreq_ondemand.c
CommitLineData
1da177e4
LT
1/*
2 * drivers/cpufreq/cpufreq_ondemand.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
4471a34f
VK
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
1da177e4 15#include <linux/cpufreq.h>
4471a34f
VK
16#include <linux/init.h>
17#include <linux/kernel.h>
1da177e4 18#include <linux/kernel_stat.h>
4471a34f
VK
19#include <linux/kobject.h>
20#include <linux/module.h>
3fc54d37 21#include <linux/mutex.h>
4471a34f
VK
22#include <linux/percpu-defs.h>
23#include <linux/sysfs.h>
80800913 24#include <linux/tick.h>
4471a34f 25#include <linux/types.h>
1da177e4 26
4471a34f 27#include "cpufreq_governor.h"
1da177e4 28
4471a34f 29/* On-demand governor macors */
e9d95bf7 30#define DEF_FREQUENCY_DOWN_DIFFERENTIAL (10)
1da177e4 31#define DEF_FREQUENCY_UP_THRESHOLD (80)
3f78a9f7
DN
32#define DEF_SAMPLING_DOWN_FACTOR (1)
33#define MAX_SAMPLING_DOWN_FACTOR (100000)
80800913 34#define MICRO_FREQUENCY_DOWN_DIFFERENTIAL (3)
35#define MICRO_FREQUENCY_UP_THRESHOLD (95)
cef9615a 36#define MICRO_FREQUENCY_MIN_SAMPLE_RATE (10000)
c29f1403 37#define MIN_FREQUENCY_UP_THRESHOLD (11)
1da177e4
LT
38#define MAX_FREQUENCY_UP_THRESHOLD (100)
39
4471a34f
VK
40static struct dbs_data od_dbs_data;
41static DEFINE_PER_CPU(struct od_cpu_dbs_info_s, od_cpu_dbs_info);
1da177e4 42
3e33ee9e
FB
43#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
44static struct cpufreq_governor cpufreq_gov_ondemand;
45#endif
46
4471a34f 47static struct od_dbs_tuners od_tuners = {
32ee8c3e 48 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
3f78a9f7 49 .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
e9d95bf7 50 .down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL,
9cbad61b 51 .ignore_nice = 0,
05ca0350 52 .powersave_bias = 0,
1da177e4
LT
53};
54
4471a34f 55static void ondemand_powersave_bias_init_cpu(int cpu)
6b8fcd90 56{
4471a34f 57 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
6b8fcd90 58
4471a34f
VK
59 dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
60 dbs_info->freq_lo = 0;
61}
6b8fcd90 62
4471a34f
VK
63/*
64 * Not all CPUs want IO time to be accounted as busy; this depends on how
65 * efficient idling at a higher frequency/voltage is.
66 * Pavel Machek says this is not so for various generations of AMD and old
67 * Intel systems.
68 * Mike Chan (androidlcom) calis this is also not true for ARM.
69 * Because of this, whitelist specific known (series) of CPUs by default, and
70 * leave all others up to the user.
71 */
72static int should_io_be_busy(void)
73{
74#if defined(CONFIG_X86)
75 /*
76 * For Intel, Core 2 (model 15) andl later have an efficient idle.
77 */
78 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
79 boot_cpu_data.x86 == 6 &&
80 boot_cpu_data.x86_model >= 15)
81 return 1;
82#endif
83 return 0;
6b8fcd90
AV
84}
85
05ca0350
AS
86/*
87 * Find right freq to be set now with powersave_bias on.
88 * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
89 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
90 */
b5ecf60f 91static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
4471a34f 92 unsigned int freq_next, unsigned int relation)
05ca0350
AS
93{
94 unsigned int freq_req, freq_reduc, freq_avg;
95 unsigned int freq_hi, freq_lo;
96 unsigned int index = 0;
97 unsigned int jiffies_total, jiffies_hi, jiffies_lo;
4471a34f 98 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
245b2e70 99 policy->cpu);
05ca0350
AS
100
101 if (!dbs_info->freq_table) {
102 dbs_info->freq_lo = 0;
103 dbs_info->freq_lo_jiffies = 0;
104 return freq_next;
105 }
106
107 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
108 relation, &index);
109 freq_req = dbs_info->freq_table[index].frequency;
4471a34f 110 freq_reduc = freq_req * od_tuners.powersave_bias / 1000;
05ca0350
AS
111 freq_avg = freq_req - freq_reduc;
112
113 /* Find freq bounds for freq_avg in freq_table */
114 index = 0;
115 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
116 CPUFREQ_RELATION_H, &index);
117 freq_lo = dbs_info->freq_table[index].frequency;
118 index = 0;
119 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
120 CPUFREQ_RELATION_L, &index);
121 freq_hi = dbs_info->freq_table[index].frequency;
122
123 /* Find out how long we have to be in hi and lo freqs */
124 if (freq_hi == freq_lo) {
125 dbs_info->freq_lo = 0;
126 dbs_info->freq_lo_jiffies = 0;
127 return freq_lo;
128 }
4471a34f 129 jiffies_total = usecs_to_jiffies(od_tuners.sampling_rate);
05ca0350
AS
130 jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
131 jiffies_hi += ((freq_hi - freq_lo) / 2);
132 jiffies_hi /= (freq_hi - freq_lo);
133 jiffies_lo = jiffies_total - jiffies_hi;
134 dbs_info->freq_lo = freq_lo;
135 dbs_info->freq_lo_jiffies = jiffies_lo;
136 dbs_info->freq_hi_jiffies = jiffies_hi;
137 return freq_hi;
138}
139
140static void ondemand_powersave_bias_init(void)
141{
142 int i;
143 for_each_online_cpu(i) {
5a75c828 144 ondemand_powersave_bias_init_cpu(i);
05ca0350
AS
145 }
146}
147
4471a34f
VK
148static void dbs_freq_increase(struct cpufreq_policy *p, unsigned int freq)
149{
150 if (od_tuners.powersave_bias)
151 freq = powersave_bias_target(p, freq, CPUFREQ_RELATION_H);
152 else if (p->cur == p->max)
153 return;
0e625ac1 154
4471a34f
VK
155 __cpufreq_driver_target(p, freq, od_tuners.powersave_bias ?
156 CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
157}
158
159/*
160 * Every sampling_rate, we check, if current idle time is less than 20%
161 * (default), then we try to increase frequency Every sampling_rate, we look for
162 * a the lowest frequency which can sustain the load while keeping idle time
163 * over 30%. If such a frequency exist, we try to decrease to this frequency.
164 *
165 * Any frequency increase takes it to the maximum frequency. Frequency reduction
166 * happens at minimum steps of 5% (default) of current frequency
167 */
168static void od_check_cpu(int cpu, unsigned int load_freq)
1da177e4 169{
4471a34f
VK
170 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
171 struct cpufreq_policy *policy = dbs_info->cdbs.cur_policy;
172
173 dbs_info->freq_lo = 0;
174
175 /* Check for frequency increase */
176 if (load_freq > od_tuners.up_threshold * policy->cur) {
177 /* If switching to max speed, apply sampling_down_factor */
178 if (policy->cur < policy->max)
179 dbs_info->rate_mult =
180 od_tuners.sampling_down_factor;
181 dbs_freq_increase(policy, policy->max);
182 return;
183 }
184
185 /* Check for frequency decrease */
186 /* if we cannot reduce the frequency anymore, break out early */
187 if (policy->cur == policy->min)
188 return;
189
190 /*
191 * The optimal frequency is the frequency that is the lowest that can
192 * support the current CPU usage without triggering the up policy. To be
193 * safe, we focus 10 points under the threshold.
194 */
195 if (load_freq < (od_tuners.up_threshold - od_tuners.down_differential) *
196 policy->cur) {
197 unsigned int freq_next;
198 freq_next = load_freq / (od_tuners.up_threshold -
199 od_tuners.down_differential);
200
201 /* No longer fully busy, reset rate_mult */
202 dbs_info->rate_mult = 1;
203
204 if (freq_next < policy->min)
205 freq_next = policy->min;
206
207 if (!od_tuners.powersave_bias) {
208 __cpufreq_driver_target(policy, freq_next,
209 CPUFREQ_RELATION_L);
210 } else {
211 int freq = powersave_bias_target(policy, freq_next,
212 CPUFREQ_RELATION_L);
213 __cpufreq_driver_target(policy, freq,
214 CPUFREQ_RELATION_L);
215 }
216 }
1da177e4
LT
217}
218
da53d61e
FB
219static void od_timer_update(struct od_cpu_dbs_info_s *dbs_info, bool sample,
220 struct delayed_work *dw)
4471a34f 221{
4471a34f
VK
222 unsigned int cpu = dbs_info->cdbs.cpu;
223 int delay, sample_type = dbs_info->sample_type;
1da177e4 224
4471a34f
VK
225 /* Common NORMAL_SAMPLE setup */
226 dbs_info->sample_type = OD_NORMAL_SAMPLE;
227 if (sample_type == OD_SUB_SAMPLE) {
228 delay = dbs_info->freq_lo_jiffies;
da53d61e
FB
229 if (sample)
230 __cpufreq_driver_target(dbs_info->cdbs.cur_policy,
231 dbs_info->freq_lo,
232 CPUFREQ_RELATION_H);
4471a34f 233 } else {
da53d61e
FB
234 if (sample)
235 dbs_check_cpu(&od_dbs_data, cpu);
4471a34f
VK
236 if (dbs_info->freq_lo) {
237 /* Setup timer for SUB_SAMPLE */
238 dbs_info->sample_type = OD_SUB_SAMPLE;
239 delay = dbs_info->freq_hi_jiffies;
240 } else {
d3c31a77
FB
241 delay = delay_for_sampling_rate(od_tuners.sampling_rate
242 * dbs_info->rate_mult);
4471a34f
VK
243 }
244 }
245
da53d61e
FB
246 schedule_delayed_work_on(smp_processor_id(), dw, delay);
247}
248
249static void od_timer_coordinated(struct od_cpu_dbs_info_s *dbs_info_local,
250 struct delayed_work *dw)
251{
252 struct od_cpu_dbs_info_s *dbs_info;
253 ktime_t time_now;
254 s64 delta_us;
255 bool sample = true;
256
257 /* use leader CPU's dbs_info */
258 dbs_info = &per_cpu(od_cpu_dbs_info, dbs_info_local->cdbs.cpu);
259 mutex_lock(&dbs_info->cdbs.timer_mutex);
260
261 time_now = ktime_get();
262 delta_us = ktime_us_delta(time_now, dbs_info->cdbs.time_stamp);
263
264 /* Do nothing if we recently have sampled */
265 if (delta_us < (s64)(od_tuners.sampling_rate / 2))
266 sample = false;
267 else
268 dbs_info->cdbs.time_stamp = time_now;
269
270 od_timer_update(dbs_info, sample, dw);
4471a34f
VK
271 mutex_unlock(&dbs_info->cdbs.timer_mutex);
272}
273
da53d61e
FB
274static void od_dbs_timer(struct work_struct *work)
275{
276 struct delayed_work *dw = to_delayed_work(work);
277 struct od_cpu_dbs_info_s *dbs_info =
278 container_of(work, struct od_cpu_dbs_info_s, cdbs.work.work);
279
280 if (dbs_sw_coordinated_cpus(&dbs_info->cdbs)) {
281 od_timer_coordinated(dbs_info, dw);
282 } else {
283 mutex_lock(&dbs_info->cdbs.timer_mutex);
284 od_timer_update(dbs_info, true, dw);
285 mutex_unlock(&dbs_info->cdbs.timer_mutex);
286 }
287}
288
4471a34f
VK
289/************************** sysfs interface ************************/
290
291static ssize_t show_sampling_rate_min(struct kobject *kobj,
292 struct attribute *attr, char *buf)
293{
294 return sprintf(buf, "%u\n", od_dbs_data.min_sampling_rate);
1da177e4 295}
1da177e4 296
fd0ef7a0
MH
297/**
298 * update_sampling_rate - update sampling rate effective immediately if needed.
299 * @new_rate: new sampling rate
300 *
301 * If new rate is smaller than the old, simply updaing
4471a34f
VK
302 * dbs_tuners_int.sampling_rate might not be appropriate. For example, if the
303 * original sampling_rate was 1 second and the requested new sampling rate is 10
304 * ms because the user needs immediate reaction from ondemand governor, but not
305 * sure if higher frequency will be required or not, then, the governor may
306 * change the sampling rate too late; up to 1 second later. Thus, if we are
307 * reducing the sampling rate, we need to make the new value effective
308 * immediately.
fd0ef7a0
MH
309 */
310static void update_sampling_rate(unsigned int new_rate)
311{
312 int cpu;
313
4471a34f
VK
314 od_tuners.sampling_rate = new_rate = max(new_rate,
315 od_dbs_data.min_sampling_rate);
fd0ef7a0
MH
316
317 for_each_online_cpu(cpu) {
318 struct cpufreq_policy *policy;
4471a34f 319 struct od_cpu_dbs_info_s *dbs_info;
fd0ef7a0
MH
320 unsigned long next_sampling, appointed_at;
321
322 policy = cpufreq_cpu_get(cpu);
323 if (!policy)
324 continue;
3e33ee9e
FB
325 if (policy->governor != &cpufreq_gov_ondemand) {
326 cpufreq_cpu_put(policy);
327 continue;
328 }
fd0ef7a0
MH
329 dbs_info = &per_cpu(od_cpu_dbs_info, policy->cpu);
330 cpufreq_cpu_put(policy);
331
4471a34f 332 mutex_lock(&dbs_info->cdbs.timer_mutex);
fd0ef7a0 333
4471a34f
VK
334 if (!delayed_work_pending(&dbs_info->cdbs.work)) {
335 mutex_unlock(&dbs_info->cdbs.timer_mutex);
fd0ef7a0
MH
336 continue;
337 }
338
4471a34f
VK
339 next_sampling = jiffies + usecs_to_jiffies(new_rate);
340 appointed_at = dbs_info->cdbs.work.timer.expires;
fd0ef7a0
MH
341
342 if (time_before(next_sampling, appointed_at)) {
343
4471a34f
VK
344 mutex_unlock(&dbs_info->cdbs.timer_mutex);
345 cancel_delayed_work_sync(&dbs_info->cdbs.work);
346 mutex_lock(&dbs_info->cdbs.timer_mutex);
fd0ef7a0 347
4471a34f
VK
348 schedule_delayed_work_on(dbs_info->cdbs.cpu,
349 &dbs_info->cdbs.work,
350 usecs_to_jiffies(new_rate));
fd0ef7a0
MH
351
352 }
4471a34f 353 mutex_unlock(&dbs_info->cdbs.timer_mutex);
fd0ef7a0
MH
354 }
355}
356
0e625ac1
TR
357static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
358 const char *buf, size_t count)
1da177e4
LT
359{
360 unsigned int input;
361 int ret;
ffac80e9 362 ret = sscanf(buf, "%u", &input);
5a75c828 363 if (ret != 1)
364 return -EINVAL;
fd0ef7a0 365 update_sampling_rate(input);
1da177e4
LT
366 return count;
367}
368
19379b11
AV
369static ssize_t store_io_is_busy(struct kobject *a, struct attribute *b,
370 const char *buf, size_t count)
371{
372 unsigned int input;
373 int ret;
374
375 ret = sscanf(buf, "%u", &input);
376 if (ret != 1)
377 return -EINVAL;
4471a34f 378 od_tuners.io_is_busy = !!input;
19379b11
AV
379 return count;
380}
381
0e625ac1
TR
382static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
383 const char *buf, size_t count)
1da177e4
LT
384{
385 unsigned int input;
386 int ret;
ffac80e9 387 ret = sscanf(buf, "%u", &input);
1da177e4 388
32ee8c3e 389 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
c29f1403 390 input < MIN_FREQUENCY_UP_THRESHOLD) {
1da177e4
LT
391 return -EINVAL;
392 }
4471a34f 393 od_tuners.up_threshold = input;
1da177e4
LT
394 return count;
395}
396
3f78a9f7
DN
397static ssize_t store_sampling_down_factor(struct kobject *a,
398 struct attribute *b, const char *buf, size_t count)
399{
400 unsigned int input, j;
401 int ret;
402 ret = sscanf(buf, "%u", &input);
403
404 if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
405 return -EINVAL;
4471a34f 406 od_tuners.sampling_down_factor = input;
3f78a9f7
DN
407
408 /* Reset down sampling multiplier in case it was active */
409 for_each_online_cpu(j) {
4471a34f
VK
410 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
411 j);
3f78a9f7
DN
412 dbs_info->rate_mult = 1;
413 }
3f78a9f7
DN
414 return count;
415}
416
0e625ac1
TR
417static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
418 const char *buf, size_t count)
3d5ee9e5
DJ
419{
420 unsigned int input;
421 int ret;
422
423 unsigned int j;
32ee8c3e 424
ffac80e9 425 ret = sscanf(buf, "%u", &input);
2b03f891 426 if (ret != 1)
3d5ee9e5
DJ
427 return -EINVAL;
428
2b03f891 429 if (input > 1)
3d5ee9e5 430 input = 1;
32ee8c3e 431
4471a34f 432 if (input == od_tuners.ignore_nice) { /* nothing to do */
3d5ee9e5
DJ
433 return count;
434 }
4471a34f 435 od_tuners.ignore_nice = input;
3d5ee9e5 436
ccb2fe20 437 /* we need to re-evaluate prev_cpu_idle */
dac1c1a5 438 for_each_online_cpu(j) {
4471a34f 439 struct od_cpu_dbs_info_s *dbs_info;
245b2e70 440 dbs_info = &per_cpu(od_cpu_dbs_info, j);
4471a34f
VK
441 dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
442 &dbs_info->cdbs.prev_cpu_wall);
443 if (od_tuners.ignore_nice)
444 dbs_info->cdbs.prev_cpu_nice =
445 kcpustat_cpu(j).cpustat[CPUTIME_NICE];
1ca3abdb 446
3d5ee9e5 447 }
3d5ee9e5
DJ
448 return count;
449}
450
0e625ac1
TR
451static ssize_t store_powersave_bias(struct kobject *a, struct attribute *b,
452 const char *buf, size_t count)
05ca0350
AS
453{
454 unsigned int input;
455 int ret;
456 ret = sscanf(buf, "%u", &input);
457
458 if (ret != 1)
459 return -EINVAL;
460
461 if (input > 1000)
462 input = 1000;
463
4471a34f 464 od_tuners.powersave_bias = input;
05ca0350 465 ondemand_powersave_bias_init();
05ca0350
AS
466 return count;
467}
468
4471a34f
VK
469show_one(od, sampling_rate, sampling_rate);
470show_one(od, io_is_busy, io_is_busy);
471show_one(od, up_threshold, up_threshold);
472show_one(od, sampling_down_factor, sampling_down_factor);
473show_one(od, ignore_nice_load, ignore_nice);
474show_one(od, powersave_bias, powersave_bias);
475
6dad2a29 476define_one_global_rw(sampling_rate);
07d77759 477define_one_global_rw(io_is_busy);
6dad2a29 478define_one_global_rw(up_threshold);
3f78a9f7 479define_one_global_rw(sampling_down_factor);
6dad2a29
BP
480define_one_global_rw(ignore_nice_load);
481define_one_global_rw(powersave_bias);
4471a34f 482define_one_global_ro(sampling_rate_min);
1da177e4 483
2b03f891 484static struct attribute *dbs_attributes[] = {
1da177e4
LT
485 &sampling_rate_min.attr,
486 &sampling_rate.attr,
1da177e4 487 &up_threshold.attr,
3f78a9f7 488 &sampling_down_factor.attr,
001893cd 489 &ignore_nice_load.attr,
05ca0350 490 &powersave_bias.attr,
19379b11 491 &io_is_busy.attr,
1da177e4
LT
492 NULL
493};
494
4471a34f 495static struct attribute_group od_attr_group = {
1da177e4
LT
496 .attrs = dbs_attributes,
497 .name = "ondemand",
498};
499
500/************************** sysfs end ************************/
501
4471a34f 502define_get_cpu_dbs_routines(od_cpu_dbs_info);
6b8fcd90 503
4471a34f
VK
504static struct od_ops od_ops = {
505 .io_busy = should_io_be_busy,
506 .powersave_bias_init_cpu = ondemand_powersave_bias_init_cpu,
507 .powersave_bias_target = powersave_bias_target,
508 .freq_increase = dbs_freq_increase,
509};
2f8a835c 510
4471a34f
VK
511static struct dbs_data od_dbs_data = {
512 .governor = GOV_ONDEMAND,
513 .attr_group = &od_attr_group,
514 .tuners = &od_tuners,
515 .get_cpu_cdbs = get_cpu_cdbs,
516 .get_cpu_dbs_info_s = get_cpu_dbs_info_s,
517 .gov_dbs_timer = od_dbs_timer,
518 .gov_check_cpu = od_check_cpu,
519 .gov_ops = &od_ops,
520};
1da177e4 521
4471a34f
VK
522static int od_cpufreq_governor_dbs(struct cpufreq_policy *policy,
523 unsigned int event)
1da177e4 524{
4471a34f 525 return cpufreq_governor_dbs(&od_dbs_data, policy, event);
1da177e4
LT
526}
527
4471a34f
VK
528#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
529static
19379b11 530#endif
4471a34f
VK
531struct cpufreq_governor cpufreq_gov_ondemand = {
532 .name = "ondemand",
533 .governor = od_cpufreq_governor_dbs,
534 .max_transition_latency = TRANSITION_LATENCY_LIMIT,
535 .owner = THIS_MODULE,
536};
1da177e4 537
1da177e4
LT
538static int __init cpufreq_gov_dbs_init(void)
539{
4f6e6b9f
AR
540 u64 idle_time;
541 int cpu = get_cpu();
80800913 542
4471a34f 543 mutex_init(&od_dbs_data.mutex);
21f2e3c8 544 idle_time = get_cpu_idle_time_us(cpu, NULL);
4f6e6b9f 545 put_cpu();
80800913 546 if (idle_time != -1ULL) {
547 /* Idle micro accounting is supported. Use finer thresholds */
4471a34f
VK
548 od_tuners.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
549 od_tuners.down_differential = MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
cef9615a 550 /*
bd74b32b 551 * In nohz/micro accounting case we set the minimum frequency
cef9615a
TR
552 * not depending on HZ, but fixed (very low). The deferred
553 * timer might skip some samples if idle/sleeping as needed.
554 */
4471a34f 555 od_dbs_data.min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
cef9615a
TR
556 } else {
557 /* For correct statistics, we need 10 ticks for each measure */
4471a34f
VK
558 od_dbs_data.min_sampling_rate = MIN_SAMPLING_RATE_RATIO *
559 jiffies_to_usecs(10);
80800913 560 }
888a794c 561
57df5573 562 return cpufreq_register_governor(&cpufreq_gov_ondemand);
1da177e4
LT
563}
564
565static void __exit cpufreq_gov_dbs_exit(void)
566{
1c256245 567 cpufreq_unregister_governor(&cpufreq_gov_ondemand);
1da177e4
LT
568}
569
ffac80e9
VP
570MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
571MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
572MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
2b03f891 573 "Low Latency Frequency Transition capable processors");
ffac80e9 574MODULE_LICENSE("GPL");
1da177e4 575
6915719b
JW
576#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
577fs_initcall(cpufreq_gov_dbs_init);
578#else
1da177e4 579module_init(cpufreq_gov_dbs_init);
6915719b 580#endif
1da177e4 581module_exit(cpufreq_gov_dbs_exit);
This page took 0.851157 seconds and 5 git commands to generate.