Add support for deferrable timers
[deliverable/linux.git] / drivers / cpufreq / cpufreq_ondemand.c
CommitLineData
1da177e4
LT
1/*
2 * drivers/cpufreq/cpufreq_ondemand.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#include <linux/kernel.h>
14#include <linux/module.h>
1da177e4 15#include <linux/init.h>
1da177e4 16#include <linux/cpufreq.h>
138a0128 17#include <linux/cpu.h>
1da177e4
LT
18#include <linux/jiffies.h>
19#include <linux/kernel_stat.h>
3fc54d37 20#include <linux/mutex.h>
1da177e4
LT
21
22/*
23 * dbs is used in this file as a shortform for demandbased switching
24 * It helps to keep variable names smaller, simpler
25 */
26
27#define DEF_FREQUENCY_UP_THRESHOLD (80)
c29f1403 28#define MIN_FREQUENCY_UP_THRESHOLD (11)
1da177e4
LT
29#define MAX_FREQUENCY_UP_THRESHOLD (100)
30
32ee8c3e
DJ
31/*
32 * The polling frequency of this governor depends on the capability of
1da177e4 33 * the processor. Default polling frequency is 1000 times the transition
32ee8c3e
DJ
34 * latency of the processor. The governor will work on any processor with
35 * transition latency <= 10mS, using appropriate sampling
1da177e4
LT
36 * rate.
37 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
38 * this governor will not work.
39 * All times here are in uS.
40 */
32ee8c3e 41static unsigned int def_sampling_rate;
df8b59be
DJ
42#define MIN_SAMPLING_RATE_RATIO (2)
43/* for correct statistics, we need at least 10 ticks between each measure */
e08f5f5b
GS
44#define MIN_STAT_SAMPLING_RATE \
45 (MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
46#define MIN_SAMPLING_RATE \
47 (def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
1da177e4
LT
48#define MAX_SAMPLING_RATE (500 * def_sampling_rate)
49#define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER (1000)
1da177e4 50#define TRANSITION_LATENCY_LIMIT (10 * 1000)
1da177e4 51
c4028958
DH
52static void do_dbs_timer(struct work_struct *work);
53
54/* Sampling types */
529af7a1 55enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
1da177e4
LT
56
57struct cpu_dbs_info_s {
ccb2fe20
VP
58 cputime64_t prev_cpu_idle;
59 cputime64_t prev_cpu_wall;
32ee8c3e 60 struct cpufreq_policy *cur_policy;
c4028958 61 struct delayed_work work;
05ca0350
AS
62 struct cpufreq_frequency_table *freq_table;
63 unsigned int freq_lo;
64 unsigned int freq_lo_jiffies;
65 unsigned int freq_hi_jiffies;
529af7a1
VP
66 int cpu;
67 unsigned int enable:1,
68 sample_type:1;
1da177e4
LT
69};
70static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
71
72static unsigned int dbs_enable; /* number of CPUs using this policy */
73
4ec223d0
VP
74/*
75 * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
76 * lock and dbs_mutex. cpu_hotplug lock should always be held before
77 * dbs_mutex. If any function that can potentially take cpu_hotplug lock
78 * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
79 * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
80 * is recursive for the same process. -Venki
81 */
ffac80e9 82static DEFINE_MUTEX(dbs_mutex);
1da177e4 83
2f8a835c 84static struct workqueue_struct *kondemand_wq;
6810b548 85
05ca0350 86static struct dbs_tuners {
32ee8c3e 87 unsigned int sampling_rate;
32ee8c3e
DJ
88 unsigned int up_threshold;
89 unsigned int ignore_nice;
05ca0350
AS
90 unsigned int powersave_bias;
91} dbs_tuners_ins = {
32ee8c3e 92 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
9cbad61b 93 .ignore_nice = 0,
05ca0350 94 .powersave_bias = 0,
1da177e4
LT
95};
96
ccb2fe20 97static inline cputime64_t get_cpu_idle_time(unsigned int cpu)
dac1c1a5 98{
ccb2fe20
VP
99 cputime64_t retval;
100
101 retval = cputime64_add(kstat_cpu(cpu).cpustat.idle,
102 kstat_cpu(cpu).cpustat.iowait);
103
104 if (dbs_tuners_ins.ignore_nice)
105 retval = cputime64_add(retval, kstat_cpu(cpu).cpustat.nice);
106
107 return retval;
dac1c1a5
DJ
108}
109
05ca0350
AS
110/*
111 * Find right freq to be set now with powersave_bias on.
112 * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
113 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
114 */
b5ecf60f
AB
115static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
116 unsigned int freq_next,
117 unsigned int relation)
05ca0350
AS
118{
119 unsigned int freq_req, freq_reduc, freq_avg;
120 unsigned int freq_hi, freq_lo;
121 unsigned int index = 0;
122 unsigned int jiffies_total, jiffies_hi, jiffies_lo;
123 struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, policy->cpu);
124
125 if (!dbs_info->freq_table) {
126 dbs_info->freq_lo = 0;
127 dbs_info->freq_lo_jiffies = 0;
128 return freq_next;
129 }
130
131 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
132 relation, &index);
133 freq_req = dbs_info->freq_table[index].frequency;
134 freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
135 freq_avg = freq_req - freq_reduc;
136
137 /* Find freq bounds for freq_avg in freq_table */
138 index = 0;
139 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
140 CPUFREQ_RELATION_H, &index);
141 freq_lo = dbs_info->freq_table[index].frequency;
142 index = 0;
143 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
144 CPUFREQ_RELATION_L, &index);
145 freq_hi = dbs_info->freq_table[index].frequency;
146
147 /* Find out how long we have to be in hi and lo freqs */
148 if (freq_hi == freq_lo) {
149 dbs_info->freq_lo = 0;
150 dbs_info->freq_lo_jiffies = 0;
151 return freq_lo;
152 }
153 jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
154 jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
155 jiffies_hi += ((freq_hi - freq_lo) / 2);
156 jiffies_hi /= (freq_hi - freq_lo);
157 jiffies_lo = jiffies_total - jiffies_hi;
158 dbs_info->freq_lo = freq_lo;
159 dbs_info->freq_lo_jiffies = jiffies_lo;
160 dbs_info->freq_hi_jiffies = jiffies_hi;
161 return freq_hi;
162}
163
164static void ondemand_powersave_bias_init(void)
165{
166 int i;
167 for_each_online_cpu(i) {
168 struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, i);
169 dbs_info->freq_table = cpufreq_frequency_get_table(i);
170 dbs_info->freq_lo = 0;
171 }
172}
173
1da177e4
LT
174/************************** sysfs interface ************************/
175static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
176{
177 return sprintf (buf, "%u\n", MAX_SAMPLING_RATE);
178}
179
180static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
181{
182 return sprintf (buf, "%u\n", MIN_SAMPLING_RATE);
183}
184
32ee8c3e
DJ
185#define define_one_ro(_name) \
186static struct freq_attr _name = \
1da177e4
LT
187__ATTR(_name, 0444, show_##_name, NULL)
188
189define_one_ro(sampling_rate_max);
190define_one_ro(sampling_rate_min);
191
192/* cpufreq_ondemand Governor Tunables */
193#define show_one(file_name, object) \
194static ssize_t show_##file_name \
195(struct cpufreq_policy *unused, char *buf) \
196{ \
197 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
198}
199show_one(sampling_rate, sampling_rate);
1da177e4 200show_one(up_threshold, up_threshold);
001893cd 201show_one(ignore_nice_load, ignore_nice);
05ca0350 202show_one(powersave_bias, powersave_bias);
1da177e4 203
32ee8c3e 204static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
1da177e4
LT
205 const char *buf, size_t count)
206{
207 unsigned int input;
208 int ret;
ffac80e9 209 ret = sscanf(buf, "%u", &input);
1da177e4 210
3fc54d37 211 mutex_lock(&dbs_mutex);
e08f5f5b
GS
212 if (ret != 1 || input > MAX_SAMPLING_RATE
213 || input < MIN_SAMPLING_RATE) {
3fc54d37 214 mutex_unlock(&dbs_mutex);
1da177e4
LT
215 return -EINVAL;
216 }
217
218 dbs_tuners_ins.sampling_rate = input;
3fc54d37 219 mutex_unlock(&dbs_mutex);
1da177e4
LT
220
221 return count;
222}
223
32ee8c3e 224static ssize_t store_up_threshold(struct cpufreq_policy *unused,
1da177e4
LT
225 const char *buf, size_t count)
226{
227 unsigned int input;
228 int ret;
ffac80e9 229 ret = sscanf(buf, "%u", &input);
1da177e4 230
3fc54d37 231 mutex_lock(&dbs_mutex);
32ee8c3e 232 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
c29f1403 233 input < MIN_FREQUENCY_UP_THRESHOLD) {
3fc54d37 234 mutex_unlock(&dbs_mutex);
1da177e4
LT
235 return -EINVAL;
236 }
237
238 dbs_tuners_ins.up_threshold = input;
3fc54d37 239 mutex_unlock(&dbs_mutex);
1da177e4
LT
240
241 return count;
242}
243
001893cd 244static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
3d5ee9e5
DJ
245 const char *buf, size_t count)
246{
247 unsigned int input;
248 int ret;
249
250 unsigned int j;
32ee8c3e 251
ffac80e9 252 ret = sscanf(buf, "%u", &input);
3d5ee9e5
DJ
253 if ( ret != 1 )
254 return -EINVAL;
255
256 if ( input > 1 )
257 input = 1;
32ee8c3e 258
3fc54d37 259 mutex_lock(&dbs_mutex);
3d5ee9e5 260 if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */
3fc54d37 261 mutex_unlock(&dbs_mutex);
3d5ee9e5
DJ
262 return count;
263 }
264 dbs_tuners_ins.ignore_nice = input;
265
ccb2fe20 266 /* we need to re-evaluate prev_cpu_idle */
dac1c1a5 267 for_each_online_cpu(j) {
ccb2fe20
VP
268 struct cpu_dbs_info_s *dbs_info;
269 dbs_info = &per_cpu(cpu_dbs_info, j);
270 dbs_info->prev_cpu_idle = get_cpu_idle_time(j);
271 dbs_info->prev_cpu_wall = get_jiffies_64();
3d5ee9e5 272 }
3fc54d37 273 mutex_unlock(&dbs_mutex);
3d5ee9e5
DJ
274
275 return count;
276}
277
05ca0350
AS
278static ssize_t store_powersave_bias(struct cpufreq_policy *unused,
279 const char *buf, size_t count)
280{
281 unsigned int input;
282 int ret;
283 ret = sscanf(buf, "%u", &input);
284
285 if (ret != 1)
286 return -EINVAL;
287
288 if (input > 1000)
289 input = 1000;
290
291 mutex_lock(&dbs_mutex);
292 dbs_tuners_ins.powersave_bias = input;
293 ondemand_powersave_bias_init();
294 mutex_unlock(&dbs_mutex);
295
296 return count;
297}
298
1da177e4
LT
299#define define_one_rw(_name) \
300static struct freq_attr _name = \
301__ATTR(_name, 0644, show_##_name, store_##_name)
302
303define_one_rw(sampling_rate);
1da177e4 304define_one_rw(up_threshold);
001893cd 305define_one_rw(ignore_nice_load);
05ca0350 306define_one_rw(powersave_bias);
1da177e4
LT
307
308static struct attribute * dbs_attributes[] = {
309 &sampling_rate_max.attr,
310 &sampling_rate_min.attr,
311 &sampling_rate.attr,
1da177e4 312 &up_threshold.attr,
001893cd 313 &ignore_nice_load.attr,
05ca0350 314 &powersave_bias.attr,
1da177e4
LT
315 NULL
316};
317
318static struct attribute_group dbs_attr_group = {
319 .attrs = dbs_attributes,
320 .name = "ondemand",
321};
322
323/************************** sysfs end ************************/
324
2f8a835c 325static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
1da177e4 326{
ccb2fe20
VP
327 unsigned int idle_ticks, total_ticks;
328 unsigned int load;
ccb2fe20 329 cputime64_t cur_jiffies;
1da177e4
LT
330
331 struct cpufreq_policy *policy;
332 unsigned int j;
333
1da177e4
LT
334 if (!this_dbs_info->enable)
335 return;
336
05ca0350 337 this_dbs_info->freq_lo = 0;
1da177e4 338 policy = this_dbs_info->cur_policy;
ccb2fe20
VP
339 cur_jiffies = jiffies64_to_cputime64(get_jiffies_64());
340 total_ticks = (unsigned int) cputime64_sub(cur_jiffies,
341 this_dbs_info->prev_cpu_wall);
342 this_dbs_info->prev_cpu_wall = cur_jiffies;
2cd7cbdf
LT
343 if (!total_ticks)
344 return;
32ee8c3e 345 /*
c29f1403
DJ
346 * Every sampling_rate, we check, if current idle time is less
347 * than 20% (default), then we try to increase frequency
ccb2fe20 348 * Every sampling_rate, we look for a the lowest
c29f1403
DJ
349 * frequency which can sustain the load while keeping idle time over
350 * 30%. If such a frequency exist, we try to decrease to this frequency.
1da177e4 351 *
32ee8c3e
DJ
352 * Any frequency increase takes it to the maximum frequency.
353 * Frequency reduction happens at minimum steps of
354 * 5% (default) of current frequency
1da177e4
LT
355 */
356
ccb2fe20 357 /* Get Idle Time */
9c7d269b 358 idle_ticks = UINT_MAX;
1da177e4 359 for_each_cpu_mask(j, policy->cpus) {
ccb2fe20
VP
360 cputime64_t total_idle_ticks;
361 unsigned int tmp_idle_ticks;
1da177e4
LT
362 struct cpu_dbs_info_s *j_dbs_info;
363
1da177e4 364 j_dbs_info = &per_cpu(cpu_dbs_info, j);
dac1c1a5 365 total_idle_ticks = get_cpu_idle_time(j);
ccb2fe20
VP
366 tmp_idle_ticks = (unsigned int) cputime64_sub(total_idle_ticks,
367 j_dbs_info->prev_cpu_idle);
368 j_dbs_info->prev_cpu_idle = total_idle_ticks;
1da177e4
LT
369
370 if (tmp_idle_ticks < idle_ticks)
371 idle_ticks = tmp_idle_ticks;
372 }
ccb2fe20 373 load = (100 * (total_ticks - idle_ticks)) / total_ticks;
1da177e4 374
ccb2fe20
VP
375 /* Check for frequency increase */
376 if (load > dbs_tuners_ins.up_threshold) {
c11420a6 377 /* if we are already at full speed then break out early */
05ca0350
AS
378 if (!dbs_tuners_ins.powersave_bias) {
379 if (policy->cur == policy->max)
380 return;
381
382 __cpufreq_driver_target(policy, policy->max,
383 CPUFREQ_RELATION_H);
384 } else {
385 int freq = powersave_bias_target(policy, policy->max,
386 CPUFREQ_RELATION_H);
387 __cpufreq_driver_target(policy, freq,
388 CPUFREQ_RELATION_L);
389 }
1da177e4
LT
390 return;
391 }
392
393 /* Check for frequency decrease */
c29f1403
DJ
394 /* if we cannot reduce the frequency anymore, break out early */
395 if (policy->cur == policy->min)
396 return;
1da177e4 397
c29f1403
DJ
398 /*
399 * The optimal frequency is the frequency that is the lowest that
400 * can support the current CPU usage without triggering the up
401 * policy. To be safe, we focus 10 points under the threshold.
402 */
ccb2fe20 403 if (load < (dbs_tuners_ins.up_threshold - 10)) {
dfde5d62
VP
404 unsigned int freq_next, freq_cur;
405
529af7a1 406 freq_cur = __cpufreq_driver_getavg(policy);
dfde5d62
VP
407 if (!freq_cur)
408 freq_cur = policy->cur;
409
410 freq_next = (freq_cur * load) /
c29f1403 411 (dbs_tuners_ins.up_threshold - 10);
dfde5d62 412
05ca0350
AS
413 if (!dbs_tuners_ins.powersave_bias) {
414 __cpufreq_driver_target(policy, freq_next,
415 CPUFREQ_RELATION_L);
416 } else {
417 int freq = powersave_bias_target(policy, freq_next,
418 CPUFREQ_RELATION_L);
419 __cpufreq_driver_target(policy, freq,
420 CPUFREQ_RELATION_L);
421 }
ccb2fe20 422 }
1da177e4
LT
423}
424
c4028958 425static void do_dbs_timer(struct work_struct *work)
32ee8c3e 426{
529af7a1
VP
427 struct cpu_dbs_info_s *dbs_info =
428 container_of(work, struct cpu_dbs_info_s, work.work);
429 unsigned int cpu = dbs_info->cpu;
430 int sample_type = dbs_info->sample_type;
431
1ce28d6b
AS
432 /* We want all CPUs to do sampling nearly on same jiffy */
433 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
c4028958 434
1ce28d6b 435 delay -= jiffies % delay;
2f8a835c 436
56463b78 437 if (lock_policy_rwsem_write(cpu) < 0)
2cd7cbdf 438 return;
56463b78
VP
439
440 if (!dbs_info->enable) {
441 unlock_policy_rwsem_write(cpu);
442 return;
443 }
444
05ca0350 445 /* Common NORMAL_SAMPLE setup */
c4028958 446 dbs_info->sample_type = DBS_NORMAL_SAMPLE;
05ca0350 447 if (!dbs_tuners_ins.powersave_bias ||
c4028958 448 sample_type == DBS_NORMAL_SAMPLE) {
05ca0350 449 dbs_check_cpu(dbs_info);
05ca0350
AS
450 if (dbs_info->freq_lo) {
451 /* Setup timer for SUB_SAMPLE */
c4028958 452 dbs_info->sample_type = DBS_SUB_SAMPLE;
05ca0350
AS
453 delay = dbs_info->freq_hi_jiffies;
454 }
455 } else {
456 __cpufreq_driver_target(dbs_info->cur_policy,
457 dbs_info->freq_lo,
458 CPUFREQ_RELATION_H);
459 }
1ce28d6b 460 queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay);
56463b78 461 unlock_policy_rwsem_write(cpu);
32ee8c3e 462}
1da177e4 463
529af7a1 464static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
1da177e4 465{
1ce28d6b
AS
466 /* We want all CPUs to do sampling nearly on same jiffy */
467 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
468 delay -= jiffies % delay;
2f8a835c 469
c18a1483 470 dbs_info->enable = 1;
05ca0350 471 ondemand_powersave_bias_init();
c4028958 472 dbs_info->sample_type = DBS_NORMAL_SAMPLE;
48ac3271 473 INIT_DELAYED_WORK(&dbs_info->work, do_dbs_timer);
529af7a1
VP
474 queue_delayed_work_on(dbs_info->cpu, kondemand_wq, &dbs_info->work,
475 delay);
1da177e4
LT
476}
477
2cd7cbdf 478static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
1da177e4 479{
2cd7cbdf
LT
480 dbs_info->enable = 0;
481 cancel_delayed_work(&dbs_info->work);
1da177e4
LT
482}
483
484static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
485 unsigned int event)
486{
487 unsigned int cpu = policy->cpu;
488 struct cpu_dbs_info_s *this_dbs_info;
489 unsigned int j;
914f7c31 490 int rc;
1da177e4
LT
491
492 this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
493
494 switch (event) {
495 case CPUFREQ_GOV_START:
ffac80e9 496 if ((!cpu_online(cpu)) || (!policy->cur))
1da177e4
LT
497 return -EINVAL;
498
499 if (policy->cpuinfo.transition_latency >
ff8c288d
EP
500 (TRANSITION_LATENCY_LIMIT * 1000)) {
501 printk(KERN_WARNING "ondemand governor failed to load "
502 "due to too long transition latency\n");
1da177e4 503 return -EINVAL;
ff8c288d 504 }
1da177e4
LT
505 if (this_dbs_info->enable) /* Already enabled */
506 break;
32ee8c3e 507
3fc54d37 508 mutex_lock(&dbs_mutex);
2f8a835c 509 dbs_enable++;
914f7c31
JG
510
511 rc = sysfs_create_group(&policy->kobj, &dbs_attr_group);
512 if (rc) {
914f7c31
JG
513 dbs_enable--;
514 mutex_unlock(&dbs_mutex);
515 return rc;
516 }
517
1da177e4
LT
518 for_each_cpu_mask(j, policy->cpus) {
519 struct cpu_dbs_info_s *j_dbs_info;
520 j_dbs_info = &per_cpu(cpu_dbs_info, j);
521 j_dbs_info->cur_policy = policy;
32ee8c3e 522
ccb2fe20
VP
523 j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j);
524 j_dbs_info->prev_cpu_wall = get_jiffies_64();
1da177e4 525 }
529af7a1 526 this_dbs_info->cpu = cpu;
1da177e4
LT
527 /*
528 * Start the timerschedule work, when this governor
529 * is used for first time
530 */
531 if (dbs_enable == 1) {
532 unsigned int latency;
533 /* policy latency is in nS. Convert it to uS first */
df8b59be
DJ
534 latency = policy->cpuinfo.transition_latency / 1000;
535 if (latency == 0)
536 latency = 1;
1da177e4 537
df8b59be 538 def_sampling_rate = latency *
1da177e4 539 DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
df8b59be
DJ
540
541 if (def_sampling_rate < MIN_STAT_SAMPLING_RATE)
542 def_sampling_rate = MIN_STAT_SAMPLING_RATE;
543
1da177e4 544 dbs_tuners_ins.sampling_rate = def_sampling_rate;
1da177e4 545 }
529af7a1 546 dbs_timer_init(this_dbs_info);
32ee8c3e 547
3fc54d37 548 mutex_unlock(&dbs_mutex);
1da177e4
LT
549 break;
550
551 case CPUFREQ_GOV_STOP:
3fc54d37 552 mutex_lock(&dbs_mutex);
2cd7cbdf 553 dbs_timer_exit(this_dbs_info);
1da177e4
LT
554 sysfs_remove_group(&policy->kobj, &dbs_attr_group);
555 dbs_enable--;
3fc54d37 556 mutex_unlock(&dbs_mutex);
1da177e4
LT
557
558 break;
559
560 case CPUFREQ_GOV_LIMITS:
3fc54d37 561 mutex_lock(&dbs_mutex);
1da177e4 562 if (policy->max < this_dbs_info->cur_policy->cur)
ffac80e9
VP
563 __cpufreq_driver_target(this_dbs_info->cur_policy,
564 policy->max,
565 CPUFREQ_RELATION_H);
1da177e4 566 else if (policy->min > this_dbs_info->cur_policy->cur)
ffac80e9
VP
567 __cpufreq_driver_target(this_dbs_info->cur_policy,
568 policy->min,
569 CPUFREQ_RELATION_L);
3fc54d37 570 mutex_unlock(&dbs_mutex);
1da177e4
LT
571 break;
572 }
573 return 0;
574}
575
7f335d4e 576static struct cpufreq_governor cpufreq_gov_dbs = {
ffac80e9
VP
577 .name = "ondemand",
578 .governor = cpufreq_governor_dbs,
579 .owner = THIS_MODULE,
1da177e4 580};
1da177e4
LT
581
582static int __init cpufreq_gov_dbs_init(void)
583{
56463b78
VP
584 kondemand_wq = create_workqueue("kondemand");
585 if (!kondemand_wq) {
586 printk(KERN_ERR "Creation of kondemand failed\n");
587 return -EFAULT;
588 }
1da177e4
LT
589 return cpufreq_register_governor(&cpufreq_gov_dbs);
590}
591
592static void __exit cpufreq_gov_dbs_exit(void)
593{
1da177e4 594 cpufreq_unregister_governor(&cpufreq_gov_dbs);
56463b78 595 destroy_workqueue(kondemand_wq);
1da177e4
LT
596}
597
598
ffac80e9
VP
599MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
600MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
601MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
602 "Low Latency Frequency Transition capable processors");
603MODULE_LICENSE("GPL");
1da177e4
LT
604
605module_init(cpufreq_gov_dbs_init);
606module_exit(cpufreq_gov_dbs_exit);
56463b78 607
This page took 0.340494 seconds and 5 git commands to generate.