[CPUFREQ] ondemand/conservative: deprecate sampling_rate{min,max}
[deliverable/linux.git] / drivers / cpufreq / cpufreq_ondemand.c
CommitLineData
1da177e4
LT
1/*
2 * drivers/cpufreq/cpufreq_ondemand.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#include <linux/kernel.h>
14#include <linux/module.h>
1da177e4 15#include <linux/init.h>
1da177e4 16#include <linux/cpufreq.h>
138a0128 17#include <linux/cpu.h>
1da177e4
LT
18#include <linux/jiffies.h>
19#include <linux/kernel_stat.h>
3fc54d37 20#include <linux/mutex.h>
80800913 21#include <linux/hrtimer.h>
22#include <linux/tick.h>
23#include <linux/ktime.h>
9411b4ef 24#include <linux/sched.h>
1da177e4
LT
25
26/*
27 * dbs is used in this file as a shortform for demandbased switching
28 * It helps to keep variable names smaller, simpler
29 */
30
e9d95bf7 31#define DEF_FREQUENCY_DOWN_DIFFERENTIAL (10)
1da177e4 32#define DEF_FREQUENCY_UP_THRESHOLD (80)
80800913 33#define MICRO_FREQUENCY_DOWN_DIFFERENTIAL (3)
34#define MICRO_FREQUENCY_UP_THRESHOLD (95)
c29f1403 35#define MIN_FREQUENCY_UP_THRESHOLD (11)
1da177e4
LT
36#define MAX_FREQUENCY_UP_THRESHOLD (100)
37
32ee8c3e
DJ
38/*
39 * The polling frequency of this governor depends on the capability of
1da177e4 40 * the processor. Default polling frequency is 1000 times the transition
32ee8c3e
DJ
41 * latency of the processor. The governor will work on any processor with
42 * transition latency <= 10mS, using appropriate sampling
1da177e4
LT
43 * rate.
44 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
45 * this governor will not work.
46 * All times here are in uS.
47 */
32ee8c3e 48static unsigned int def_sampling_rate;
df8b59be
DJ
49#define MIN_SAMPLING_RATE_RATIO (2)
50/* for correct statistics, we need at least 10 ticks between each measure */
e08f5f5b
GS
51#define MIN_STAT_SAMPLING_RATE \
52 (MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
53#define MIN_SAMPLING_RATE \
54 (def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
1da177e4
LT
55#define MAX_SAMPLING_RATE (500 * def_sampling_rate)
56#define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER (1000)
1c256245 57#define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
1da177e4 58
c4028958
DH
59static void do_dbs_timer(struct work_struct *work);
60
61/* Sampling types */
529af7a1 62enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
1da177e4
LT
63
64struct cpu_dbs_info_s {
ccb2fe20
VP
65 cputime64_t prev_cpu_idle;
66 cputime64_t prev_cpu_wall;
80800913 67 cputime64_t prev_cpu_nice;
32ee8c3e 68 struct cpufreq_policy *cur_policy;
2b03f891 69 struct delayed_work work;
05ca0350
AS
70 struct cpufreq_frequency_table *freq_table;
71 unsigned int freq_lo;
72 unsigned int freq_lo_jiffies;
73 unsigned int freq_hi_jiffies;
529af7a1
VP
74 int cpu;
75 unsigned int enable:1,
2b03f891 76 sample_type:1;
1da177e4
LT
77};
78static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
79
80static unsigned int dbs_enable; /* number of CPUs using this policy */
81
4ec223d0
VP
82/*
83 * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
84 * lock and dbs_mutex. cpu_hotplug lock should always be held before
85 * dbs_mutex. If any function that can potentially take cpu_hotplug lock
86 * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
87 * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
88 * is recursive for the same process. -Venki
89 */
ffac80e9 90static DEFINE_MUTEX(dbs_mutex);
1da177e4 91
2f8a835c 92static struct workqueue_struct *kondemand_wq;
6810b548 93
05ca0350 94static struct dbs_tuners {
32ee8c3e 95 unsigned int sampling_rate;
32ee8c3e 96 unsigned int up_threshold;
e9d95bf7 97 unsigned int down_differential;
32ee8c3e 98 unsigned int ignore_nice;
05ca0350
AS
99 unsigned int powersave_bias;
100} dbs_tuners_ins = {
32ee8c3e 101 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
e9d95bf7 102 .down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL,
9cbad61b 103 .ignore_nice = 0,
05ca0350 104 .powersave_bias = 0,
1da177e4
LT
105};
106
80800913 107static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
108 cputime64_t *wall)
dac1c1a5 109{
ea487615 110 cputime64_t idle_time;
3430502d 111 cputime64_t cur_wall_time;
ea487615 112 cputime64_t busy_time;
ccb2fe20 113
3430502d 114 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
ea487615
VP
115 busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
116 kstat_cpu(cpu).cpustat.system);
ccb2fe20 117
ea487615
VP
118 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
119 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
120 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
1ca3abdb 121 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
ea487615 122
3430502d 123 idle_time = cputime64_sub(cur_wall_time, busy_time);
124 if (wall)
125 *wall = cur_wall_time;
126
ea487615 127 return idle_time;
dac1c1a5
DJ
128}
129
80800913 130static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
131{
132 u64 idle_time = get_cpu_idle_time_us(cpu, wall);
133
134 if (idle_time == -1ULL)
135 return get_cpu_idle_time_jiffy(cpu, wall);
136
80800913 137 return idle_time;
138}
139
05ca0350
AS
140/*
141 * Find right freq to be set now with powersave_bias on.
142 * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
143 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
144 */
b5ecf60f
AB
145static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
146 unsigned int freq_next,
147 unsigned int relation)
05ca0350
AS
148{
149 unsigned int freq_req, freq_reduc, freq_avg;
150 unsigned int freq_hi, freq_lo;
151 unsigned int index = 0;
152 unsigned int jiffies_total, jiffies_hi, jiffies_lo;
153 struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, policy->cpu);
154
155 if (!dbs_info->freq_table) {
156 dbs_info->freq_lo = 0;
157 dbs_info->freq_lo_jiffies = 0;
158 return freq_next;
159 }
160
161 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
162 relation, &index);
163 freq_req = dbs_info->freq_table[index].frequency;
164 freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
165 freq_avg = freq_req - freq_reduc;
166
167 /* Find freq bounds for freq_avg in freq_table */
168 index = 0;
169 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
170 CPUFREQ_RELATION_H, &index);
171 freq_lo = dbs_info->freq_table[index].frequency;
172 index = 0;
173 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
174 CPUFREQ_RELATION_L, &index);
175 freq_hi = dbs_info->freq_table[index].frequency;
176
177 /* Find out how long we have to be in hi and lo freqs */
178 if (freq_hi == freq_lo) {
179 dbs_info->freq_lo = 0;
180 dbs_info->freq_lo_jiffies = 0;
181 return freq_lo;
182 }
183 jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
184 jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
185 jiffies_hi += ((freq_hi - freq_lo) / 2);
186 jiffies_hi /= (freq_hi - freq_lo);
187 jiffies_lo = jiffies_total - jiffies_hi;
188 dbs_info->freq_lo = freq_lo;
189 dbs_info->freq_lo_jiffies = jiffies_lo;
190 dbs_info->freq_hi_jiffies = jiffies_hi;
191 return freq_hi;
192}
193
194static void ondemand_powersave_bias_init(void)
195{
196 int i;
197 for_each_online_cpu(i) {
198 struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, i);
199 dbs_info->freq_table = cpufreq_frequency_get_table(i);
200 dbs_info->freq_lo = 0;
201 }
202}
203
1da177e4
LT
204/************************** sysfs interface ************************/
205static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
206{
9411b4ef
TR
207 static int print_once;
208
209 if (!print_once) {
210 printk(KERN_INFO "CPUFREQ: ondemand sampling_rate_max "
211 "sysfs file is deprecated - used by: %s\n",
212 current->comm);
213 print_once = 1;
214 }
2b03f891 215 return sprintf(buf, "%u\n", MAX_SAMPLING_RATE);
1da177e4
LT
216}
217
218static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
219{
9411b4ef
TR
220 static int print_once;
221
222 if (!print_once) {
223 printk(KERN_INFO "CPUFREQ: ondemand sampling_rate_min "
224 "sysfs file is deprecated - used by: %s\n",
225 current->comm);
226 print_once = 1;
227 }
2b03f891 228 return sprintf(buf, "%u\n", MIN_SAMPLING_RATE);
1da177e4
LT
229}
230
32ee8c3e
DJ
231#define define_one_ro(_name) \
232static struct freq_attr _name = \
1da177e4
LT
233__ATTR(_name, 0444, show_##_name, NULL)
234
235define_one_ro(sampling_rate_max);
236define_one_ro(sampling_rate_min);
237
238/* cpufreq_ondemand Governor Tunables */
239#define show_one(file_name, object) \
240static ssize_t show_##file_name \
241(struct cpufreq_policy *unused, char *buf) \
242{ \
243 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
244}
245show_one(sampling_rate, sampling_rate);
1da177e4 246show_one(up_threshold, up_threshold);
001893cd 247show_one(ignore_nice_load, ignore_nice);
05ca0350 248show_one(powersave_bias, powersave_bias);
1da177e4 249
32ee8c3e 250static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
1da177e4
LT
251 const char *buf, size_t count)
252{
253 unsigned int input;
254 int ret;
ffac80e9 255 ret = sscanf(buf, "%u", &input);
1da177e4 256
3fc54d37 257 mutex_lock(&dbs_mutex);
e08f5f5b
GS
258 if (ret != 1 || input > MAX_SAMPLING_RATE
259 || input < MIN_SAMPLING_RATE) {
3fc54d37 260 mutex_unlock(&dbs_mutex);
1da177e4
LT
261 return -EINVAL;
262 }
263
264 dbs_tuners_ins.sampling_rate = input;
3fc54d37 265 mutex_unlock(&dbs_mutex);
1da177e4
LT
266
267 return count;
268}
269
32ee8c3e 270static ssize_t store_up_threshold(struct cpufreq_policy *unused,
1da177e4
LT
271 const char *buf, size_t count)
272{
273 unsigned int input;
274 int ret;
ffac80e9 275 ret = sscanf(buf, "%u", &input);
1da177e4 276
3fc54d37 277 mutex_lock(&dbs_mutex);
32ee8c3e 278 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
c29f1403 279 input < MIN_FREQUENCY_UP_THRESHOLD) {
3fc54d37 280 mutex_unlock(&dbs_mutex);
1da177e4
LT
281 return -EINVAL;
282 }
283
284 dbs_tuners_ins.up_threshold = input;
3fc54d37 285 mutex_unlock(&dbs_mutex);
1da177e4
LT
286
287 return count;
288}
289
001893cd 290static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
3d5ee9e5
DJ
291 const char *buf, size_t count)
292{
293 unsigned int input;
294 int ret;
295
296 unsigned int j;
32ee8c3e 297
ffac80e9 298 ret = sscanf(buf, "%u", &input);
2b03f891 299 if (ret != 1)
3d5ee9e5
DJ
300 return -EINVAL;
301
2b03f891 302 if (input > 1)
3d5ee9e5 303 input = 1;
32ee8c3e 304
3fc54d37 305 mutex_lock(&dbs_mutex);
2b03f891 306 if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
3fc54d37 307 mutex_unlock(&dbs_mutex);
3d5ee9e5
DJ
308 return count;
309 }
310 dbs_tuners_ins.ignore_nice = input;
311
ccb2fe20 312 /* we need to re-evaluate prev_cpu_idle */
dac1c1a5 313 for_each_online_cpu(j) {
ccb2fe20
VP
314 struct cpu_dbs_info_s *dbs_info;
315 dbs_info = &per_cpu(cpu_dbs_info, j);
3430502d 316 dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
317 &dbs_info->prev_cpu_wall);
1ca3abdb
VP
318 if (dbs_tuners_ins.ignore_nice)
319 dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
320
3d5ee9e5 321 }
3fc54d37 322 mutex_unlock(&dbs_mutex);
3d5ee9e5
DJ
323
324 return count;
325}
326
05ca0350
AS
327static ssize_t store_powersave_bias(struct cpufreq_policy *unused,
328 const char *buf, size_t count)
329{
330 unsigned int input;
331 int ret;
332 ret = sscanf(buf, "%u", &input);
333
334 if (ret != 1)
335 return -EINVAL;
336
337 if (input > 1000)
338 input = 1000;
339
340 mutex_lock(&dbs_mutex);
341 dbs_tuners_ins.powersave_bias = input;
342 ondemand_powersave_bias_init();
343 mutex_unlock(&dbs_mutex);
344
345 return count;
346}
347
1da177e4
LT
348#define define_one_rw(_name) \
349static struct freq_attr _name = \
350__ATTR(_name, 0644, show_##_name, store_##_name)
351
352define_one_rw(sampling_rate);
1da177e4 353define_one_rw(up_threshold);
001893cd 354define_one_rw(ignore_nice_load);
05ca0350 355define_one_rw(powersave_bias);
1da177e4 356
2b03f891 357static struct attribute *dbs_attributes[] = {
1da177e4
LT
358 &sampling_rate_max.attr,
359 &sampling_rate_min.attr,
360 &sampling_rate.attr,
1da177e4 361 &up_threshold.attr,
001893cd 362 &ignore_nice_load.attr,
05ca0350 363 &powersave_bias.attr,
1da177e4
LT
364 NULL
365};
366
367static struct attribute_group dbs_attr_group = {
368 .attrs = dbs_attributes,
369 .name = "ondemand",
370};
371
372/************************** sysfs end ************************/
373
2f8a835c 374static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
1da177e4 375{
c43aa3bd 376 unsigned int max_load_freq;
1da177e4
LT
377
378 struct cpufreq_policy *policy;
379 unsigned int j;
380
1da177e4
LT
381 if (!this_dbs_info->enable)
382 return;
383
05ca0350 384 this_dbs_info->freq_lo = 0;
1da177e4 385 policy = this_dbs_info->cur_policy;
ea487615 386
32ee8c3e 387 /*
c29f1403
DJ
388 * Every sampling_rate, we check, if current idle time is less
389 * than 20% (default), then we try to increase frequency
ccb2fe20 390 * Every sampling_rate, we look for a the lowest
c29f1403
DJ
391 * frequency which can sustain the load while keeping idle time over
392 * 30%. If such a frequency exist, we try to decrease to this frequency.
1da177e4 393 *
32ee8c3e
DJ
394 * Any frequency increase takes it to the maximum frequency.
395 * Frequency reduction happens at minimum steps of
396 * 5% (default) of current frequency
1da177e4
LT
397 */
398
c43aa3bd 399 /* Get Absolute Load - in terms of freq */
400 max_load_freq = 0;
401
835481d9 402 for_each_cpu(j, policy->cpus) {
1da177e4 403 struct cpu_dbs_info_s *j_dbs_info;
c43aa3bd 404 cputime64_t cur_wall_time, cur_idle_time;
405 unsigned int idle_time, wall_time;
406 unsigned int load, load_freq;
407 int freq_avg;
1da177e4 408
1da177e4 409 j_dbs_info = &per_cpu(cpu_dbs_info, j);
3430502d 410
411 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
412
c43aa3bd 413 wall_time = (unsigned int) cputime64_sub(cur_wall_time,
414 j_dbs_info->prev_cpu_wall);
415 j_dbs_info->prev_cpu_wall = cur_wall_time;
416
c43aa3bd 417 idle_time = (unsigned int) cputime64_sub(cur_idle_time,
ccb2fe20 418 j_dbs_info->prev_cpu_idle);
c43aa3bd 419 j_dbs_info->prev_cpu_idle = cur_idle_time;
1da177e4 420
1ca3abdb
VP
421 if (dbs_tuners_ins.ignore_nice) {
422 cputime64_t cur_nice;
423 unsigned long cur_nice_jiffies;
424
425 cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
426 j_dbs_info->prev_cpu_nice);
427 /*
428 * Assumption: nice time between sampling periods will
429 * be less than 2^32 jiffies for 32 bit sys
430 */
431 cur_nice_jiffies = (unsigned long)
432 cputime64_to_jiffies64(cur_nice);
433
434 j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
435 idle_time += jiffies_to_usecs(cur_nice_jiffies);
436 }
437
3430502d 438 if (unlikely(!wall_time || wall_time < idle_time))
c43aa3bd 439 continue;
c43aa3bd 440
441 load = 100 * (wall_time - idle_time) / wall_time;
442
443 freq_avg = __cpufreq_driver_getavg(policy, j);
444 if (freq_avg <= 0)
445 freq_avg = policy->cur;
446
447 load_freq = load * freq_avg;
448 if (load_freq > max_load_freq)
449 max_load_freq = load_freq;
1da177e4
LT
450 }
451
ccb2fe20 452 /* Check for frequency increase */
c43aa3bd 453 if (max_load_freq > dbs_tuners_ins.up_threshold * policy->cur) {
c11420a6 454 /* if we are already at full speed then break out early */
05ca0350
AS
455 if (!dbs_tuners_ins.powersave_bias) {
456 if (policy->cur == policy->max)
457 return;
458
459 __cpufreq_driver_target(policy, policy->max,
460 CPUFREQ_RELATION_H);
461 } else {
462 int freq = powersave_bias_target(policy, policy->max,
463 CPUFREQ_RELATION_H);
464 __cpufreq_driver_target(policy, freq,
465 CPUFREQ_RELATION_L);
466 }
1da177e4
LT
467 return;
468 }
469
470 /* Check for frequency decrease */
c29f1403
DJ
471 /* if we cannot reduce the frequency anymore, break out early */
472 if (policy->cur == policy->min)
473 return;
1da177e4 474
c29f1403
DJ
475 /*
476 * The optimal frequency is the frequency that is the lowest that
477 * can support the current CPU usage without triggering the up
478 * policy. To be safe, we focus 10 points under the threshold.
479 */
e9d95bf7 480 if (max_load_freq <
481 (dbs_tuners_ins.up_threshold - dbs_tuners_ins.down_differential) *
482 policy->cur) {
c43aa3bd 483 unsigned int freq_next;
e9d95bf7 484 freq_next = max_load_freq /
485 (dbs_tuners_ins.up_threshold -
486 dbs_tuners_ins.down_differential);
dfde5d62 487
05ca0350
AS
488 if (!dbs_tuners_ins.powersave_bias) {
489 __cpufreq_driver_target(policy, freq_next,
490 CPUFREQ_RELATION_L);
491 } else {
492 int freq = powersave_bias_target(policy, freq_next,
493 CPUFREQ_RELATION_L);
494 __cpufreq_driver_target(policy, freq,
495 CPUFREQ_RELATION_L);
496 }
ccb2fe20 497 }
1da177e4
LT
498}
499
c4028958 500static void do_dbs_timer(struct work_struct *work)
32ee8c3e 501{
529af7a1
VP
502 struct cpu_dbs_info_s *dbs_info =
503 container_of(work, struct cpu_dbs_info_s, work.work);
504 unsigned int cpu = dbs_info->cpu;
505 int sample_type = dbs_info->sample_type;
506
1ce28d6b
AS
507 /* We want all CPUs to do sampling nearly on same jiffy */
508 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
c4028958 509
1ce28d6b 510 delay -= jiffies % delay;
2f8a835c 511
56463b78 512 if (lock_policy_rwsem_write(cpu) < 0)
2cd7cbdf 513 return;
56463b78
VP
514
515 if (!dbs_info->enable) {
516 unlock_policy_rwsem_write(cpu);
517 return;
518 }
519
05ca0350 520 /* Common NORMAL_SAMPLE setup */
c4028958 521 dbs_info->sample_type = DBS_NORMAL_SAMPLE;
05ca0350 522 if (!dbs_tuners_ins.powersave_bias ||
c4028958 523 sample_type == DBS_NORMAL_SAMPLE) {
05ca0350 524 dbs_check_cpu(dbs_info);
05ca0350
AS
525 if (dbs_info->freq_lo) {
526 /* Setup timer for SUB_SAMPLE */
c4028958 527 dbs_info->sample_type = DBS_SUB_SAMPLE;
05ca0350
AS
528 delay = dbs_info->freq_hi_jiffies;
529 }
530 } else {
531 __cpufreq_driver_target(dbs_info->cur_policy,
2b03f891 532 dbs_info->freq_lo, CPUFREQ_RELATION_H);
05ca0350 533 }
1ce28d6b 534 queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay);
56463b78 535 unlock_policy_rwsem_write(cpu);
32ee8c3e 536}
1da177e4 537
529af7a1 538static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
1da177e4 539{
1ce28d6b
AS
540 /* We want all CPUs to do sampling nearly on same jiffy */
541 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
542 delay -= jiffies % delay;
2f8a835c 543
c18a1483 544 dbs_info->enable = 1;
05ca0350 545 ondemand_powersave_bias_init();
c4028958 546 dbs_info->sample_type = DBS_NORMAL_SAMPLE;
28287033 547 INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
529af7a1 548 queue_delayed_work_on(dbs_info->cpu, kondemand_wq, &dbs_info->work,
2b03f891 549 delay);
1da177e4
LT
550}
551
2cd7cbdf 552static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
1da177e4 553{
2cd7cbdf
LT
554 dbs_info->enable = 0;
555 cancel_delayed_work(&dbs_info->work);
1da177e4
LT
556}
557
558static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
559 unsigned int event)
560{
561 unsigned int cpu = policy->cpu;
562 struct cpu_dbs_info_s *this_dbs_info;
563 unsigned int j;
914f7c31 564 int rc;
1da177e4
LT
565
566 this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
567
568 switch (event) {
569 case CPUFREQ_GOV_START:
ffac80e9 570 if ((!cpu_online(cpu)) || (!policy->cur))
1da177e4
LT
571 return -EINVAL;
572
1da177e4
LT
573 if (this_dbs_info->enable) /* Already enabled */
574 break;
32ee8c3e 575
3fc54d37 576 mutex_lock(&dbs_mutex);
2f8a835c 577 dbs_enable++;
914f7c31
JG
578
579 rc = sysfs_create_group(&policy->kobj, &dbs_attr_group);
580 if (rc) {
914f7c31
JG
581 dbs_enable--;
582 mutex_unlock(&dbs_mutex);
583 return rc;
584 }
585
835481d9 586 for_each_cpu(j, policy->cpus) {
1da177e4
LT
587 struct cpu_dbs_info_s *j_dbs_info;
588 j_dbs_info = &per_cpu(cpu_dbs_info, j);
589 j_dbs_info->cur_policy = policy;
32ee8c3e 590
3430502d 591 j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
592 &j_dbs_info->prev_cpu_wall);
1ca3abdb
VP
593 if (dbs_tuners_ins.ignore_nice) {
594 j_dbs_info->prev_cpu_nice =
595 kstat_cpu(j).cpustat.nice;
596 }
1da177e4 597 }
529af7a1 598 this_dbs_info->cpu = cpu;
1da177e4
LT
599 /*
600 * Start the timerschedule work, when this governor
601 * is used for first time
602 */
603 if (dbs_enable == 1) {
604 unsigned int latency;
605 /* policy latency is in nS. Convert it to uS first */
df8b59be
DJ
606 latency = policy->cpuinfo.transition_latency / 1000;
607 if (latency == 0)
608 latency = 1;
1da177e4 609
df8b59be 610 def_sampling_rate = latency *
1da177e4 611 DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
df8b59be
DJ
612
613 if (def_sampling_rate < MIN_STAT_SAMPLING_RATE)
614 def_sampling_rate = MIN_STAT_SAMPLING_RATE;
615
1da177e4 616 dbs_tuners_ins.sampling_rate = def_sampling_rate;
1da177e4 617 }
529af7a1 618 dbs_timer_init(this_dbs_info);
32ee8c3e 619
3fc54d37 620 mutex_unlock(&dbs_mutex);
1da177e4
LT
621 break;
622
623 case CPUFREQ_GOV_STOP:
3fc54d37 624 mutex_lock(&dbs_mutex);
2cd7cbdf 625 dbs_timer_exit(this_dbs_info);
1da177e4
LT
626 sysfs_remove_group(&policy->kobj, &dbs_attr_group);
627 dbs_enable--;
3fc54d37 628 mutex_unlock(&dbs_mutex);
1da177e4
LT
629
630 break;
631
632 case CPUFREQ_GOV_LIMITS:
3fc54d37 633 mutex_lock(&dbs_mutex);
1da177e4 634 if (policy->max < this_dbs_info->cur_policy->cur)
ffac80e9 635 __cpufreq_driver_target(this_dbs_info->cur_policy,
2b03f891 636 policy->max, CPUFREQ_RELATION_H);
1da177e4 637 else if (policy->min > this_dbs_info->cur_policy->cur)
ffac80e9 638 __cpufreq_driver_target(this_dbs_info->cur_policy,
2b03f891 639 policy->min, CPUFREQ_RELATION_L);
3fc54d37 640 mutex_unlock(&dbs_mutex);
1da177e4
LT
641 break;
642 }
643 return 0;
644}
645
c4d14bc0
SW
646#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
647static
648#endif
1c256245
TR
649struct cpufreq_governor cpufreq_gov_ondemand = {
650 .name = "ondemand",
651 .governor = cpufreq_governor_dbs,
652 .max_transition_latency = TRANSITION_LATENCY_LIMIT,
653 .owner = THIS_MODULE,
1da177e4 654};
1da177e4
LT
655
656static int __init cpufreq_gov_dbs_init(void)
657{
888a794c 658 int err;
80800913 659 cputime64_t wall;
4f6e6b9f
AR
660 u64 idle_time;
661 int cpu = get_cpu();
80800913 662
4f6e6b9f
AR
663 idle_time = get_cpu_idle_time_us(cpu, &wall);
664 put_cpu();
80800913 665 if (idle_time != -1ULL) {
666 /* Idle micro accounting is supported. Use finer thresholds */
667 dbs_tuners_ins.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
668 dbs_tuners_ins.down_differential =
669 MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
670 }
888a794c 671
56463b78
VP
672 kondemand_wq = create_workqueue("kondemand");
673 if (!kondemand_wq) {
674 printk(KERN_ERR "Creation of kondemand failed\n");
675 return -EFAULT;
676 }
888a794c
AM
677 err = cpufreq_register_governor(&cpufreq_gov_ondemand);
678 if (err)
679 destroy_workqueue(kondemand_wq);
680
681 return err;
1da177e4
LT
682}
683
684static void __exit cpufreq_gov_dbs_exit(void)
685{
1c256245 686 cpufreq_unregister_governor(&cpufreq_gov_ondemand);
56463b78 687 destroy_workqueue(kondemand_wq);
1da177e4
LT
688}
689
690
ffac80e9
VP
691MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
692MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
693MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
2b03f891 694 "Low Latency Frequency Transition capable processors");
ffac80e9 695MODULE_LICENSE("GPL");
1da177e4 696
6915719b
JW
697#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
698fs_initcall(cpufreq_gov_dbs_init);
699#else
1da177e4 700module_init(cpufreq_gov_dbs_init);
6915719b 701#endif
1da177e4 702module_exit(cpufreq_gov_dbs_exit);
This page took 0.379304 seconds and 5 git commands to generate.