cpufreq: governor: Put governor structure into common_dbs_data
[deliverable/linux.git] / drivers / cpufreq / cpufreq_ondemand.c
CommitLineData
1da177e4
LT
1/*
2 * drivers/cpufreq/cpufreq_ondemand.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
4471a34f
VK
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
5ff0a268 15#include <linux/cpu.h>
4471a34f 16#include <linux/percpu-defs.h>
4d5dcc42 17#include <linux/slab.h>
80800913 18#include <linux/tick.h>
4471a34f 19#include "cpufreq_governor.h"
1da177e4 20
06eb09d1 21/* On-demand governor macros */
1da177e4 22#define DEF_FREQUENCY_UP_THRESHOLD (80)
3f78a9f7
DN
23#define DEF_SAMPLING_DOWN_FACTOR (1)
24#define MAX_SAMPLING_DOWN_FACTOR (100000)
80800913 25#define MICRO_FREQUENCY_UP_THRESHOLD (95)
cef9615a 26#define MICRO_FREQUENCY_MIN_SAMPLE_RATE (10000)
c29f1403 27#define MIN_FREQUENCY_UP_THRESHOLD (11)
1da177e4
LT
28#define MAX_FREQUENCY_UP_THRESHOLD (100)
29
4471a34f 30static DEFINE_PER_CPU(struct od_cpu_dbs_info_s, od_cpu_dbs_info);
1da177e4 31
fb30809e
JS
32static struct od_ops od_ops;
33
c2837558
JS
34static unsigned int default_powersave_bias;
35
4471a34f 36static void ondemand_powersave_bias_init_cpu(int cpu)
6b8fcd90 37{
4471a34f 38 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
6b8fcd90 39
4471a34f
VK
40 dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
41 dbs_info->freq_lo = 0;
42}
6b8fcd90 43
4471a34f
VK
44/*
45 * Not all CPUs want IO time to be accounted as busy; this depends on how
46 * efficient idling at a higher frequency/voltage is.
47 * Pavel Machek says this is not so for various generations of AMD and old
48 * Intel systems.
06eb09d1 49 * Mike Chan (android.com) claims this is also not true for ARM.
4471a34f
VK
50 * Because of this, whitelist specific known (series) of CPUs by default, and
51 * leave all others up to the user.
52 */
53static int should_io_be_busy(void)
54{
55#if defined(CONFIG_X86)
56 /*
06eb09d1 57 * For Intel, Core 2 (model 15) and later have an efficient idle.
4471a34f
VK
58 */
59 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
60 boot_cpu_data.x86 == 6 &&
61 boot_cpu_data.x86_model >= 15)
62 return 1;
63#endif
64 return 0;
6b8fcd90
AV
65}
66
05ca0350
AS
67/*
68 * Find right freq to be set now with powersave_bias on.
69 * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
70 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
71 */
fb30809e 72static unsigned int generic_powersave_bias_target(struct cpufreq_policy *policy,
4471a34f 73 unsigned int freq_next, unsigned int relation)
05ca0350
AS
74{
75 unsigned int freq_req, freq_reduc, freq_avg;
76 unsigned int freq_hi, freq_lo;
77 unsigned int index = 0;
78 unsigned int jiffies_total, jiffies_hi, jiffies_lo;
4471a34f 79 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
245b2e70 80 policy->cpu);
4d5dcc42
VK
81 struct dbs_data *dbs_data = policy->governor_data;
82 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
05ca0350
AS
83
84 if (!dbs_info->freq_table) {
85 dbs_info->freq_lo = 0;
86 dbs_info->freq_lo_jiffies = 0;
87 return freq_next;
88 }
89
90 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
91 relation, &index);
92 freq_req = dbs_info->freq_table[index].frequency;
4d5dcc42 93 freq_reduc = freq_req * od_tuners->powersave_bias / 1000;
05ca0350
AS
94 freq_avg = freq_req - freq_reduc;
95
96 /* Find freq bounds for freq_avg in freq_table */
97 index = 0;
98 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
99 CPUFREQ_RELATION_H, &index);
100 freq_lo = dbs_info->freq_table[index].frequency;
101 index = 0;
102 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
103 CPUFREQ_RELATION_L, &index);
104 freq_hi = dbs_info->freq_table[index].frequency;
105
106 /* Find out how long we have to be in hi and lo freqs */
107 if (freq_hi == freq_lo) {
108 dbs_info->freq_lo = 0;
109 dbs_info->freq_lo_jiffies = 0;
110 return freq_lo;
111 }
4d5dcc42 112 jiffies_total = usecs_to_jiffies(od_tuners->sampling_rate);
05ca0350
AS
113 jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
114 jiffies_hi += ((freq_hi - freq_lo) / 2);
115 jiffies_hi /= (freq_hi - freq_lo);
116 jiffies_lo = jiffies_total - jiffies_hi;
117 dbs_info->freq_lo = freq_lo;
118 dbs_info->freq_lo_jiffies = jiffies_lo;
119 dbs_info->freq_hi_jiffies = jiffies_hi;
120 return freq_hi;
121}
122
123static void ondemand_powersave_bias_init(void)
124{
125 int i;
126 for_each_online_cpu(i) {
5a75c828 127 ondemand_powersave_bias_init_cpu(i);
05ca0350
AS
128 }
129}
130
3a3e9e06 131static void dbs_freq_increase(struct cpufreq_policy *policy, unsigned int freq)
4471a34f 132{
3a3e9e06 133 struct dbs_data *dbs_data = policy->governor_data;
4d5dcc42
VK
134 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
135
136 if (od_tuners->powersave_bias)
3a3e9e06 137 freq = od_ops.powersave_bias_target(policy, freq,
fb30809e 138 CPUFREQ_RELATION_H);
3a3e9e06 139 else if (policy->cur == policy->max)
4471a34f 140 return;
0e625ac1 141
3a3e9e06 142 __cpufreq_driver_target(policy, freq, od_tuners->powersave_bias ?
4471a34f
VK
143 CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
144}
145
146/*
147 * Every sampling_rate, we check, if current idle time is less than 20%
dfa5bb62
SK
148 * (default), then we try to increase frequency. Else, we adjust the frequency
149 * proportional to load.
4471a34f 150 */
dfa5bb62 151static void od_check_cpu(int cpu, unsigned int load)
1da177e4 152{
4471a34f 153 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
44152cb8 154 struct cpufreq_policy *policy = dbs_info->cdbs.shared->policy;
4d5dcc42
VK
155 struct dbs_data *dbs_data = policy->governor_data;
156 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
4471a34f
VK
157
158 dbs_info->freq_lo = 0;
159
160 /* Check for frequency increase */
dfa5bb62 161 if (load > od_tuners->up_threshold) {
4471a34f
VK
162 /* If switching to max speed, apply sampling_down_factor */
163 if (policy->cur < policy->max)
164 dbs_info->rate_mult =
4d5dcc42 165 od_tuners->sampling_down_factor;
4471a34f 166 dbs_freq_increase(policy, policy->max);
dfa5bb62
SK
167 } else {
168 /* Calculate the next frequency proportional to load */
6393d6a1
SK
169 unsigned int freq_next, min_f, max_f;
170
171 min_f = policy->cpuinfo.min_freq;
172 max_f = policy->cpuinfo.max_freq;
173 freq_next = min_f + load * (max_f - min_f) / 100;
4471a34f
VK
174
175 /* No longer fully busy, reset rate_mult */
176 dbs_info->rate_mult = 1;
177
4d5dcc42 178 if (!od_tuners->powersave_bias) {
4471a34f 179 __cpufreq_driver_target(policy, freq_next,
6393d6a1 180 CPUFREQ_RELATION_C);
fb30809e 181 return;
4471a34f 182 }
fb30809e
JS
183
184 freq_next = od_ops.powersave_bias_target(policy, freq_next,
185 CPUFREQ_RELATION_L);
6393d6a1 186 __cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_C);
4471a34f 187 }
1da177e4
LT
188}
189
9be4fd2c 190static unsigned int od_dbs_timer(struct cpufreq_policy *policy)
4471a34f 191{
affde5d0 192 struct dbs_data *dbs_data = policy->governor_data;
44152cb8 193 unsigned int cpu = policy->cpu;
43e0ee36 194 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
4447266b 195 cpu);
4d5dcc42 196 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
43e0ee36 197 int delay = 0, sample_type = dbs_info->sample_type;
4447266b 198
4471a34f 199 /* Common NORMAL_SAMPLE setup */
43e0ee36 200 dbs_info->sample_type = OD_NORMAL_SAMPLE;
4471a34f 201 if (sample_type == OD_SUB_SAMPLE) {
43e0ee36
VK
202 delay = dbs_info->freq_lo_jiffies;
203 __cpufreq_driver_target(policy, dbs_info->freq_lo,
42994af6 204 CPUFREQ_RELATION_H);
4471a34f 205 } else {
9d445920 206 dbs_check_cpu(dbs_data, cpu);
43e0ee36 207 if (dbs_info->freq_lo) {
4471a34f 208 /* Setup timer for SUB_SAMPLE */
43e0ee36
VK
209 dbs_info->sample_type = OD_SUB_SAMPLE;
210 delay = dbs_info->freq_hi_jiffies;
4471a34f
VK
211 }
212 }
213
9d445920
VK
214 if (!delay)
215 delay = delay_for_sampling_rate(od_tuners->sampling_rate
43e0ee36 216 * dbs_info->rate_mult);
9d445920 217
43e0ee36 218 return delay;
da53d61e
FB
219}
220
4471a34f 221/************************** sysfs interface ************************/
4d5dcc42 222static struct common_dbs_data od_dbs_cdata;
1da177e4 223
fd0ef7a0
MH
224/**
225 * update_sampling_rate - update sampling rate effective immediately if needed.
226 * @new_rate: new sampling rate
227 *
06eb09d1 228 * If new rate is smaller than the old, simply updating
4471a34f
VK
229 * dbs_tuners_int.sampling_rate might not be appropriate. For example, if the
230 * original sampling_rate was 1 second and the requested new sampling rate is 10
231 * ms because the user needs immediate reaction from ondemand governor, but not
232 * sure if higher frequency will be required or not, then, the governor may
233 * change the sampling rate too late; up to 1 second later. Thus, if we are
234 * reducing the sampling rate, we need to make the new value effective
235 * immediately.
fd0ef7a0 236 */
4d5dcc42
VK
237static void update_sampling_rate(struct dbs_data *dbs_data,
238 unsigned int new_rate)
fd0ef7a0 239{
4d5dcc42 240 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
f08f638b 241 struct cpumask cpumask;
fd0ef7a0
MH
242 int cpu;
243
4d5dcc42
VK
244 od_tuners->sampling_rate = new_rate = max(new_rate,
245 dbs_data->min_sampling_rate);
fd0ef7a0 246
e128c864
VK
247 /*
248 * Lock governor so that governor start/stop can't execute in parallel.
249 */
2bb8d94f 250 mutex_lock(&dbs_data_mutex);
e128c864 251
f08f638b
VK
252 cpumask_copy(&cpumask, cpu_online_mask);
253
254 for_each_cpu(cpu, &cpumask) {
fd0ef7a0 255 struct cpufreq_policy *policy;
4471a34f 256 struct od_cpu_dbs_info_s *dbs_info;
e128c864
VK
257 struct cpu_dbs_info *cdbs;
258 struct cpu_common_dbs_info *shared;
fd0ef7a0 259
e128c864
VK
260 dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
261 cdbs = &dbs_info->cdbs;
262 shared = cdbs->shared;
263
264 /*
265 * A valid shared and shared->policy means governor hasn't
266 * stopped or exited yet.
267 */
268 if (!shared || !shared->policy)
fd0ef7a0 269 continue;
e128c864
VK
270
271 policy = shared->policy;
272
f08f638b
VK
273 /* clear all CPUs of this policy */
274 cpumask_andnot(&cpumask, &cpumask, policy->cpus);
275
e128c864
VK
276 /*
277 * Update sampling rate for CPUs whose policy is governed by
278 * dbs_data. In case of governor_per_policy, only a single
279 * policy will be governed by dbs_data, otherwise there can be
280 * multiple policies that are governed by the same dbs_data.
281 */
9be4fd2c
RW
282 if (dbs_data == policy->governor_data) {
283 mutex_lock(&shared->timer_mutex);
284 /*
285 * On 32-bit architectures this may race with the
286 * sample_delay_ns read in dbs_update_util_handler(),
287 * but that really doesn't matter. If the read returns
288 * a value that's too big, the sample will be skipped,
289 * but the next invocation of dbs_update_util_handler()
290 * (when the update has been completed) will take a
291 * sample. If the returned value is too small, the
292 * sample will be taken immediately, but that isn't a
293 * problem, as we want the new rate to take effect
294 * immediately anyway.
295 *
296 * If this runs in parallel with dbs_work_handler(), we
297 * may end up overwriting the sample_delay_ns value that
298 * it has just written, but the difference should not be
299 * too big and it will be corrected next time a sample
300 * is taken, so it shouldn't be significant.
301 */
302 gov_update_sample_delay(shared, new_rate);
303 mutex_unlock(&shared->timer_mutex);
fd0ef7a0 304 }
fd0ef7a0 305 }
e128c864 306
2bb8d94f 307 mutex_unlock(&dbs_data_mutex);
fd0ef7a0
MH
308}
309
4d5dcc42
VK
310static ssize_t store_sampling_rate(struct dbs_data *dbs_data, const char *buf,
311 size_t count)
1da177e4
LT
312{
313 unsigned int input;
314 int ret;
ffac80e9 315 ret = sscanf(buf, "%u", &input);
5a75c828 316 if (ret != 1)
317 return -EINVAL;
4d5dcc42
VK
318
319 update_sampling_rate(dbs_data, input);
1da177e4
LT
320 return count;
321}
322
4d5dcc42
VK
323static ssize_t store_io_is_busy(struct dbs_data *dbs_data, const char *buf,
324 size_t count)
19379b11 325{
4d5dcc42 326 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
19379b11
AV
327 unsigned int input;
328 int ret;
9366d840 329 unsigned int j;
19379b11
AV
330
331 ret = sscanf(buf, "%u", &input);
332 if (ret != 1)
333 return -EINVAL;
4d5dcc42 334 od_tuners->io_is_busy = !!input;
9366d840
SK
335
336 /* we need to re-evaluate prev_cpu_idle */
337 for_each_online_cpu(j) {
338 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
339 j);
340 dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
341 &dbs_info->cdbs.prev_cpu_wall, od_tuners->io_is_busy);
342 }
19379b11
AV
343 return count;
344}
345
4d5dcc42
VK
346static ssize_t store_up_threshold(struct dbs_data *dbs_data, const char *buf,
347 size_t count)
1da177e4 348{
4d5dcc42 349 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
1da177e4
LT
350 unsigned int input;
351 int ret;
ffac80e9 352 ret = sscanf(buf, "%u", &input);
1da177e4 353
32ee8c3e 354 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
c29f1403 355 input < MIN_FREQUENCY_UP_THRESHOLD) {
1da177e4
LT
356 return -EINVAL;
357 }
4bd4e428 358
4d5dcc42 359 od_tuners->up_threshold = input;
1da177e4
LT
360 return count;
361}
362
4d5dcc42
VK
363static ssize_t store_sampling_down_factor(struct dbs_data *dbs_data,
364 const char *buf, size_t count)
3f78a9f7 365{
4d5dcc42 366 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
3f78a9f7
DN
367 unsigned int input, j;
368 int ret;
369 ret = sscanf(buf, "%u", &input);
370
371 if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
372 return -EINVAL;
4d5dcc42 373 od_tuners->sampling_down_factor = input;
3f78a9f7
DN
374
375 /* Reset down sampling multiplier in case it was active */
376 for_each_online_cpu(j) {
4471a34f
VK
377 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
378 j);
3f78a9f7
DN
379 dbs_info->rate_mult = 1;
380 }
3f78a9f7
DN
381 return count;
382}
383
6c4640c3
VK
384static ssize_t store_ignore_nice_load(struct dbs_data *dbs_data,
385 const char *buf, size_t count)
3d5ee9e5 386{
4d5dcc42 387 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
3d5ee9e5
DJ
388 unsigned int input;
389 int ret;
390
391 unsigned int j;
32ee8c3e 392
ffac80e9 393 ret = sscanf(buf, "%u", &input);
2b03f891 394 if (ret != 1)
3d5ee9e5
DJ
395 return -EINVAL;
396
2b03f891 397 if (input > 1)
3d5ee9e5 398 input = 1;
32ee8c3e 399
6c4640c3 400 if (input == od_tuners->ignore_nice_load) { /* nothing to do */
3d5ee9e5
DJ
401 return count;
402 }
6c4640c3 403 od_tuners->ignore_nice_load = input;
3d5ee9e5 404
ccb2fe20 405 /* we need to re-evaluate prev_cpu_idle */
dac1c1a5 406 for_each_online_cpu(j) {
4471a34f 407 struct od_cpu_dbs_info_s *dbs_info;
245b2e70 408 dbs_info = &per_cpu(od_cpu_dbs_info, j);
4471a34f 409 dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
9366d840 410 &dbs_info->cdbs.prev_cpu_wall, od_tuners->io_is_busy);
6c4640c3 411 if (od_tuners->ignore_nice_load)
4471a34f
VK
412 dbs_info->cdbs.prev_cpu_nice =
413 kcpustat_cpu(j).cpustat[CPUTIME_NICE];
1ca3abdb 414
3d5ee9e5 415 }
3d5ee9e5
DJ
416 return count;
417}
418
4d5dcc42
VK
419static ssize_t store_powersave_bias(struct dbs_data *dbs_data, const char *buf,
420 size_t count)
05ca0350 421{
4d5dcc42 422 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
05ca0350
AS
423 unsigned int input;
424 int ret;
425 ret = sscanf(buf, "%u", &input);
426
427 if (ret != 1)
428 return -EINVAL;
429
430 if (input > 1000)
431 input = 1000;
432
4d5dcc42 433 od_tuners->powersave_bias = input;
05ca0350 434 ondemand_powersave_bias_init();
05ca0350
AS
435 return count;
436}
437
4d5dcc42
VK
438show_store_one(od, sampling_rate);
439show_store_one(od, io_is_busy);
440show_store_one(od, up_threshold);
441show_store_one(od, sampling_down_factor);
6c4640c3 442show_store_one(od, ignore_nice_load);
4d5dcc42
VK
443show_store_one(od, powersave_bias);
444declare_show_sampling_rate_min(od);
445
446gov_sys_pol_attr_rw(sampling_rate);
447gov_sys_pol_attr_rw(io_is_busy);
448gov_sys_pol_attr_rw(up_threshold);
449gov_sys_pol_attr_rw(sampling_down_factor);
6c4640c3 450gov_sys_pol_attr_rw(ignore_nice_load);
4d5dcc42
VK
451gov_sys_pol_attr_rw(powersave_bias);
452gov_sys_pol_attr_ro(sampling_rate_min);
453
454static struct attribute *dbs_attributes_gov_sys[] = {
455 &sampling_rate_min_gov_sys.attr,
456 &sampling_rate_gov_sys.attr,
457 &up_threshold_gov_sys.attr,
458 &sampling_down_factor_gov_sys.attr,
6c4640c3 459 &ignore_nice_load_gov_sys.attr,
4d5dcc42
VK
460 &powersave_bias_gov_sys.attr,
461 &io_is_busy_gov_sys.attr,
1da177e4
LT
462 NULL
463};
464
4d5dcc42
VK
465static struct attribute_group od_attr_group_gov_sys = {
466 .attrs = dbs_attributes_gov_sys,
467 .name = "ondemand",
468};
469
470static struct attribute *dbs_attributes_gov_pol[] = {
471 &sampling_rate_min_gov_pol.attr,
472 &sampling_rate_gov_pol.attr,
473 &up_threshold_gov_pol.attr,
474 &sampling_down_factor_gov_pol.attr,
6c4640c3 475 &ignore_nice_load_gov_pol.attr,
4d5dcc42
VK
476 &powersave_bias_gov_pol.attr,
477 &io_is_busy_gov_pol.attr,
478 NULL
479};
480
481static struct attribute_group od_attr_group_gov_pol = {
482 .attrs = dbs_attributes_gov_pol,
1da177e4
LT
483 .name = "ondemand",
484};
485
486/************************** sysfs end ************************/
487
8e0484d2 488static int od_init(struct dbs_data *dbs_data, bool notify)
4d5dcc42
VK
489{
490 struct od_dbs_tuners *tuners;
491 u64 idle_time;
492 int cpu;
493
d5b73cd8 494 tuners = kzalloc(sizeof(*tuners), GFP_KERNEL);
4d5dcc42
VK
495 if (!tuners) {
496 pr_err("%s: kzalloc failed\n", __func__);
497 return -ENOMEM;
498 }
499
500 cpu = get_cpu();
501 idle_time = get_cpu_idle_time_us(cpu, NULL);
502 put_cpu();
503 if (idle_time != -1ULL) {
504 /* Idle micro accounting is supported. Use finer thresholds */
505 tuners->up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
4d5dcc42
VK
506 /*
507 * In nohz/micro accounting case we set the minimum frequency
508 * not depending on HZ, but fixed (very low). The deferred
509 * timer might skip some samples if idle/sleeping as needed.
510 */
511 dbs_data->min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
512 } else {
513 tuners->up_threshold = DEF_FREQUENCY_UP_THRESHOLD;
4d5dcc42
VK
514
515 /* For correct statistics, we need 10 ticks for each measure */
516 dbs_data->min_sampling_rate = MIN_SAMPLING_RATE_RATIO *
517 jiffies_to_usecs(10);
518 }
519
520 tuners->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR;
6c4640c3 521 tuners->ignore_nice_load = 0;
c2837558 522 tuners->powersave_bias = default_powersave_bias;
4d5dcc42
VK
523 tuners->io_is_busy = should_io_be_busy();
524
525 dbs_data->tuners = tuners;
4d5dcc42
VK
526 return 0;
527}
528
8e0484d2 529static void od_exit(struct dbs_data *dbs_data, bool notify)
4d5dcc42
VK
530{
531 kfree(dbs_data->tuners);
532}
533
4471a34f 534define_get_cpu_dbs_routines(od_cpu_dbs_info);
6b8fcd90 535
4471a34f 536static struct od_ops od_ops = {
4471a34f 537 .powersave_bias_init_cpu = ondemand_powersave_bias_init_cpu,
fb30809e 538 .powersave_bias_target = generic_powersave_bias_target,
4471a34f
VK
539 .freq_increase = dbs_freq_increase,
540};
2f8a835c 541
af926185
RW
542static int od_cpufreq_governor_dbs(struct cpufreq_policy *policy,
543 unsigned int event);
544
4d5dcc42 545static struct common_dbs_data od_dbs_cdata = {
af926185
RW
546 .gov = {
547 .name = "ondemand",
548 .governor = od_cpufreq_governor_dbs,
549 .max_transition_latency = TRANSITION_LATENCY_LIMIT,
550 .owner = THIS_MODULE,
551 },
4471a34f 552 .governor = GOV_ONDEMAND,
4d5dcc42
VK
553 .attr_group_gov_sys = &od_attr_group_gov_sys,
554 .attr_group_gov_pol = &od_attr_group_gov_pol,
4471a34f
VK
555 .get_cpu_cdbs = get_cpu_cdbs,
556 .get_cpu_dbs_info_s = get_cpu_dbs_info_s,
557 .gov_dbs_timer = od_dbs_timer,
558 .gov_check_cpu = od_check_cpu,
559 .gov_ops = &od_ops,
4d5dcc42
VK
560 .init = od_init,
561 .exit = od_exit,
4471a34f 562};
1da177e4 563
af926185
RW
564#define CPU_FREQ_GOV_ONDEMAND (&od_dbs_cdata.gov)
565
de1df26b
RW
566static int od_cpufreq_governor_dbs(struct cpufreq_policy *policy,
567 unsigned int event)
568{
569 return cpufreq_governor_dbs(policy, &od_dbs_cdata, event);
570}
571
fb30809e
JS
572static void od_set_powersave_bias(unsigned int powersave_bias)
573{
574 struct cpufreq_policy *policy;
575 struct dbs_data *dbs_data;
576 struct od_dbs_tuners *od_tuners;
577 unsigned int cpu;
578 cpumask_t done;
579
c2837558 580 default_powersave_bias = powersave_bias;
fb30809e
JS
581 cpumask_clear(&done);
582
583 get_online_cpus();
584 for_each_online_cpu(cpu) {
44152cb8
VK
585 struct cpu_common_dbs_info *shared;
586
fb30809e
JS
587 if (cpumask_test_cpu(cpu, &done))
588 continue;
589
44152cb8
VK
590 shared = per_cpu(od_cpu_dbs_info, cpu).cdbs.shared;
591 if (!shared)
c2837558 592 continue;
fb30809e 593
44152cb8 594 policy = shared->policy;
fb30809e 595 cpumask_or(&done, &done, policy->cpus);
c2837558 596
af926185 597 if (policy->governor != CPU_FREQ_GOV_ONDEMAND)
c2837558
JS
598 continue;
599
600 dbs_data = policy->governor_data;
601 od_tuners = dbs_data->tuners;
602 od_tuners->powersave_bias = default_powersave_bias;
fb30809e
JS
603 }
604 put_online_cpus();
605}
606
607void od_register_powersave_bias_handler(unsigned int (*f)
608 (struct cpufreq_policy *, unsigned int, unsigned int),
609 unsigned int powersave_bias)
610{
611 od_ops.powersave_bias_target = f;
612 od_set_powersave_bias(powersave_bias);
613}
614EXPORT_SYMBOL_GPL(od_register_powersave_bias_handler);
615
616void od_unregister_powersave_bias_handler(void)
617{
618 od_ops.powersave_bias_target = generic_powersave_bias_target;
619 od_set_powersave_bias(0);
620}
621EXPORT_SYMBOL_GPL(od_unregister_powersave_bias_handler);
622
1da177e4
LT
623static int __init cpufreq_gov_dbs_init(void)
624{
af926185 625 return cpufreq_register_governor(CPU_FREQ_GOV_ONDEMAND);
1da177e4
LT
626}
627
628static void __exit cpufreq_gov_dbs_exit(void)
629{
af926185 630 cpufreq_unregister_governor(CPU_FREQ_GOV_ONDEMAND);
1da177e4
LT
631}
632
ffac80e9
VP
633MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
634MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
635MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
2b03f891 636 "Low Latency Frequency Transition capable processors");
ffac80e9 637MODULE_LICENSE("GPL");
1da177e4 638
6915719b 639#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
de1df26b
RW
640struct cpufreq_governor *cpufreq_default_governor(void)
641{
af926185 642 return CPU_FREQ_GOV_ONDEMAND;
de1df26b
RW
643}
644
6915719b
JW
645fs_initcall(cpufreq_gov_dbs_init);
646#else
1da177e4 647module_init(cpufreq_gov_dbs_init);
6915719b 648#endif
1da177e4 649module_exit(cpufreq_gov_dbs_exit);
This page took 1.088118 seconds and 5 git commands to generate.