Documentation/ABI/: update version number references from 2.6.x to 3.x
[deliverable/linux.git] / drivers / cpufreq / cpufreq_ondemand.c
CommitLineData
1da177e4
LT
1/*
2 * drivers/cpufreq/cpufreq_ondemand.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#include <linux/kernel.h>
14#include <linux/module.h>
1da177e4 15#include <linux/init.h>
1da177e4 16#include <linux/cpufreq.h>
138a0128 17#include <linux/cpu.h>
1da177e4
LT
18#include <linux/jiffies.h>
19#include <linux/kernel_stat.h>
3fc54d37 20#include <linux/mutex.h>
80800913 21#include <linux/hrtimer.h>
22#include <linux/tick.h>
23#include <linux/ktime.h>
9411b4ef 24#include <linux/sched.h>
1da177e4
LT
25
26/*
27 * dbs is used in this file as a shortform for demandbased switching
28 * It helps to keep variable names smaller, simpler
29 */
30
e9d95bf7 31#define DEF_FREQUENCY_DOWN_DIFFERENTIAL (10)
1da177e4 32#define DEF_FREQUENCY_UP_THRESHOLD (80)
3f78a9f7
DN
33#define DEF_SAMPLING_DOWN_FACTOR (1)
34#define MAX_SAMPLING_DOWN_FACTOR (100000)
80800913 35#define MICRO_FREQUENCY_DOWN_DIFFERENTIAL (3)
36#define MICRO_FREQUENCY_UP_THRESHOLD (95)
cef9615a 37#define MICRO_FREQUENCY_MIN_SAMPLE_RATE (10000)
c29f1403 38#define MIN_FREQUENCY_UP_THRESHOLD (11)
1da177e4
LT
39#define MAX_FREQUENCY_UP_THRESHOLD (100)
40
32ee8c3e
DJ
41/*
42 * The polling frequency of this governor depends on the capability of
1da177e4 43 * the processor. Default polling frequency is 1000 times the transition
32ee8c3e
DJ
44 * latency of the processor. The governor will work on any processor with
45 * transition latency <= 10mS, using appropriate sampling
1da177e4
LT
46 * rate.
47 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
48 * this governor will not work.
49 * All times here are in uS.
50 */
df8b59be 51#define MIN_SAMPLING_RATE_RATIO (2)
112124ab 52
cef9615a
TR
53static unsigned int min_sampling_rate;
54
112124ab 55#define LATENCY_MULTIPLIER (1000)
cef9615a 56#define MIN_LATENCY_MULTIPLIER (100)
1c256245 57#define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
1da177e4 58
c4028958 59static void do_dbs_timer(struct work_struct *work);
0e625ac1
TR
60static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
61 unsigned int event);
62
63#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
64static
65#endif
66struct cpufreq_governor cpufreq_gov_ondemand = {
67 .name = "ondemand",
68 .governor = cpufreq_governor_dbs,
69 .max_transition_latency = TRANSITION_LATENCY_LIMIT,
70 .owner = THIS_MODULE,
71};
c4028958
DH
72
73/* Sampling types */
529af7a1 74enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
1da177e4
LT
75
76struct cpu_dbs_info_s {
ccb2fe20 77 cputime64_t prev_cpu_idle;
6b8fcd90 78 cputime64_t prev_cpu_iowait;
ccb2fe20 79 cputime64_t prev_cpu_wall;
80800913 80 cputime64_t prev_cpu_nice;
32ee8c3e 81 struct cpufreq_policy *cur_policy;
2b03f891 82 struct delayed_work work;
05ca0350
AS
83 struct cpufreq_frequency_table *freq_table;
84 unsigned int freq_lo;
85 unsigned int freq_lo_jiffies;
86 unsigned int freq_hi_jiffies;
3f78a9f7 87 unsigned int rate_mult;
529af7a1 88 int cpu;
5a75c828 89 unsigned int sample_type:1;
90 /*
91 * percpu mutex that serializes governor limit change with
92 * do_dbs_timer invocation. We do not want do_dbs_timer to run
93 * when user is changing the governor or limits.
94 */
95 struct mutex timer_mutex;
1da177e4 96};
245b2e70 97static DEFINE_PER_CPU(struct cpu_dbs_info_s, od_cpu_dbs_info);
1da177e4
LT
98
99static unsigned int dbs_enable; /* number of CPUs using this policy */
100
4ec223d0 101/*
326c86de 102 * dbs_mutex protects dbs_enable in governor start/stop.
4ec223d0 103 */
ffac80e9 104static DEFINE_MUTEX(dbs_mutex);
1da177e4 105
05ca0350 106static struct dbs_tuners {
32ee8c3e 107 unsigned int sampling_rate;
32ee8c3e 108 unsigned int up_threshold;
e9d95bf7 109 unsigned int down_differential;
32ee8c3e 110 unsigned int ignore_nice;
3f78a9f7 111 unsigned int sampling_down_factor;
05ca0350 112 unsigned int powersave_bias;
19379b11 113 unsigned int io_is_busy;
05ca0350 114} dbs_tuners_ins = {
32ee8c3e 115 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
3f78a9f7 116 .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
e9d95bf7 117 .down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL,
9cbad61b 118 .ignore_nice = 0,
05ca0350 119 .powersave_bias = 0,
1da177e4
LT
120};
121
80800913 122static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
123 cputime64_t *wall)
dac1c1a5 124{
ea487615 125 cputime64_t idle_time;
3430502d 126 cputime64_t cur_wall_time;
ea487615 127 cputime64_t busy_time;
ccb2fe20 128
3430502d 129 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
ea487615
VP
130 busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
131 kstat_cpu(cpu).cpustat.system);
ccb2fe20 132
ea487615
VP
133 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
134 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
135 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
1ca3abdb 136 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
ea487615 137
3430502d 138 idle_time = cputime64_sub(cur_wall_time, busy_time);
139 if (wall)
54c9a35d 140 *wall = (cputime64_t)jiffies_to_usecs(cur_wall_time);
3430502d 141
54c9a35d 142 return (cputime64_t)jiffies_to_usecs(idle_time);
dac1c1a5
DJ
143}
144
80800913 145static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
146{
147 u64 idle_time = get_cpu_idle_time_us(cpu, wall);
148
149 if (idle_time == -1ULL)
150 return get_cpu_idle_time_jiffy(cpu, wall);
151
80800913 152 return idle_time;
153}
154
6b8fcd90
AV
155static inline cputime64_t get_cpu_iowait_time(unsigned int cpu, cputime64_t *wall)
156{
157 u64 iowait_time = get_cpu_iowait_time_us(cpu, wall);
158
159 if (iowait_time == -1ULL)
160 return 0;
161
162 return iowait_time;
163}
164
05ca0350
AS
165/*
166 * Find right freq to be set now with powersave_bias on.
167 * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
168 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
169 */
b5ecf60f
AB
170static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
171 unsigned int freq_next,
172 unsigned int relation)
05ca0350
AS
173{
174 unsigned int freq_req, freq_reduc, freq_avg;
175 unsigned int freq_hi, freq_lo;
176 unsigned int index = 0;
177 unsigned int jiffies_total, jiffies_hi, jiffies_lo;
245b2e70
TH
178 struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
179 policy->cpu);
05ca0350
AS
180
181 if (!dbs_info->freq_table) {
182 dbs_info->freq_lo = 0;
183 dbs_info->freq_lo_jiffies = 0;
184 return freq_next;
185 }
186
187 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
188 relation, &index);
189 freq_req = dbs_info->freq_table[index].frequency;
190 freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
191 freq_avg = freq_req - freq_reduc;
192
193 /* Find freq bounds for freq_avg in freq_table */
194 index = 0;
195 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
196 CPUFREQ_RELATION_H, &index);
197 freq_lo = dbs_info->freq_table[index].frequency;
198 index = 0;
199 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
200 CPUFREQ_RELATION_L, &index);
201 freq_hi = dbs_info->freq_table[index].frequency;
202
203 /* Find out how long we have to be in hi and lo freqs */
204 if (freq_hi == freq_lo) {
205 dbs_info->freq_lo = 0;
206 dbs_info->freq_lo_jiffies = 0;
207 return freq_lo;
208 }
209 jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
210 jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
211 jiffies_hi += ((freq_hi - freq_lo) / 2);
212 jiffies_hi /= (freq_hi - freq_lo);
213 jiffies_lo = jiffies_total - jiffies_hi;
214 dbs_info->freq_lo = freq_lo;
215 dbs_info->freq_lo_jiffies = jiffies_lo;
216 dbs_info->freq_hi_jiffies = jiffies_hi;
217 return freq_hi;
218}
219
5a75c828 220static void ondemand_powersave_bias_init_cpu(int cpu)
221{
384be2b1 222 struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
5a75c828 223 dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
224 dbs_info->freq_lo = 0;
225}
226
05ca0350
AS
227static void ondemand_powersave_bias_init(void)
228{
229 int i;
230 for_each_online_cpu(i) {
5a75c828 231 ondemand_powersave_bias_init_cpu(i);
05ca0350
AS
232 }
233}
234
1da177e4 235/************************** sysfs interface ************************/
0e625ac1 236
0e625ac1
TR
237static ssize_t show_sampling_rate_min(struct kobject *kobj,
238 struct attribute *attr, char *buf)
1da177e4 239{
cef9615a 240 return sprintf(buf, "%u\n", min_sampling_rate);
1da177e4
LT
241}
242
6dad2a29 243define_one_global_ro(sampling_rate_min);
1da177e4
LT
244
245/* cpufreq_ondemand Governor Tunables */
246#define show_one(file_name, object) \
247static ssize_t show_##file_name \
0e625ac1 248(struct kobject *kobj, struct attribute *attr, char *buf) \
1da177e4
LT
249{ \
250 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
251}
252show_one(sampling_rate, sampling_rate);
19379b11 253show_one(io_is_busy, io_is_busy);
1da177e4 254show_one(up_threshold, up_threshold);
3f78a9f7 255show_one(sampling_down_factor, sampling_down_factor);
001893cd 256show_one(ignore_nice_load, ignore_nice);
05ca0350 257show_one(powersave_bias, powersave_bias);
1da177e4 258
0e625ac1
TR
259static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
260 const char *buf, size_t count)
1da177e4
LT
261{
262 unsigned int input;
263 int ret;
ffac80e9 264 ret = sscanf(buf, "%u", &input);
5a75c828 265 if (ret != 1)
266 return -EINVAL;
cef9615a 267 dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
1da177e4
LT
268 return count;
269}
270
19379b11
AV
271static ssize_t store_io_is_busy(struct kobject *a, struct attribute *b,
272 const char *buf, size_t count)
273{
274 unsigned int input;
275 int ret;
276
277 ret = sscanf(buf, "%u", &input);
278 if (ret != 1)
279 return -EINVAL;
19379b11 280 dbs_tuners_ins.io_is_busy = !!input;
19379b11
AV
281 return count;
282}
283
0e625ac1
TR
284static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
285 const char *buf, size_t count)
1da177e4
LT
286{
287 unsigned int input;
288 int ret;
ffac80e9 289 ret = sscanf(buf, "%u", &input);
1da177e4 290
32ee8c3e 291 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
c29f1403 292 input < MIN_FREQUENCY_UP_THRESHOLD) {
1da177e4
LT
293 return -EINVAL;
294 }
1da177e4 295 dbs_tuners_ins.up_threshold = input;
1da177e4
LT
296 return count;
297}
298
3f78a9f7
DN
299static ssize_t store_sampling_down_factor(struct kobject *a,
300 struct attribute *b, const char *buf, size_t count)
301{
302 unsigned int input, j;
303 int ret;
304 ret = sscanf(buf, "%u", &input);
305
306 if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
307 return -EINVAL;
3f78a9f7
DN
308 dbs_tuners_ins.sampling_down_factor = input;
309
310 /* Reset down sampling multiplier in case it was active */
311 for_each_online_cpu(j) {
312 struct cpu_dbs_info_s *dbs_info;
313 dbs_info = &per_cpu(od_cpu_dbs_info, j);
314 dbs_info->rate_mult = 1;
315 }
3f78a9f7
DN
316 return count;
317}
318
0e625ac1
TR
319static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
320 const char *buf, size_t count)
3d5ee9e5
DJ
321{
322 unsigned int input;
323 int ret;
324
325 unsigned int j;
32ee8c3e 326
ffac80e9 327 ret = sscanf(buf, "%u", &input);
2b03f891 328 if (ret != 1)
3d5ee9e5
DJ
329 return -EINVAL;
330
2b03f891 331 if (input > 1)
3d5ee9e5 332 input = 1;
32ee8c3e 333
2b03f891 334 if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
3d5ee9e5
DJ
335 return count;
336 }
337 dbs_tuners_ins.ignore_nice = input;
338
ccb2fe20 339 /* we need to re-evaluate prev_cpu_idle */
dac1c1a5 340 for_each_online_cpu(j) {
ccb2fe20 341 struct cpu_dbs_info_s *dbs_info;
245b2e70 342 dbs_info = &per_cpu(od_cpu_dbs_info, j);
3430502d 343 dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
344 &dbs_info->prev_cpu_wall);
1ca3abdb
VP
345 if (dbs_tuners_ins.ignore_nice)
346 dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
347
3d5ee9e5 348 }
3d5ee9e5
DJ
349 return count;
350}
351
0e625ac1
TR
352static ssize_t store_powersave_bias(struct kobject *a, struct attribute *b,
353 const char *buf, size_t count)
05ca0350
AS
354{
355 unsigned int input;
356 int ret;
357 ret = sscanf(buf, "%u", &input);
358
359 if (ret != 1)
360 return -EINVAL;
361
362 if (input > 1000)
363 input = 1000;
364
05ca0350
AS
365 dbs_tuners_ins.powersave_bias = input;
366 ondemand_powersave_bias_init();
05ca0350
AS
367 return count;
368}
369
6dad2a29 370define_one_global_rw(sampling_rate);
07d77759 371define_one_global_rw(io_is_busy);
6dad2a29 372define_one_global_rw(up_threshold);
3f78a9f7 373define_one_global_rw(sampling_down_factor);
6dad2a29
BP
374define_one_global_rw(ignore_nice_load);
375define_one_global_rw(powersave_bias);
1da177e4 376
2b03f891 377static struct attribute *dbs_attributes[] = {
1da177e4
LT
378 &sampling_rate_min.attr,
379 &sampling_rate.attr,
1da177e4 380 &up_threshold.attr,
3f78a9f7 381 &sampling_down_factor.attr,
001893cd 382 &ignore_nice_load.attr,
05ca0350 383 &powersave_bias.attr,
19379b11 384 &io_is_busy.attr,
1da177e4
LT
385 NULL
386};
387
388static struct attribute_group dbs_attr_group = {
389 .attrs = dbs_attributes,
390 .name = "ondemand",
391};
392
393/************************** sysfs end ************************/
394
00e299ff
MC
395static void dbs_freq_increase(struct cpufreq_policy *p, unsigned int freq)
396{
397 if (dbs_tuners_ins.powersave_bias)
398 freq = powersave_bias_target(p, freq, CPUFREQ_RELATION_H);
399 else if (p->cur == p->max)
400 return;
401
402 __cpufreq_driver_target(p, freq, dbs_tuners_ins.powersave_bias ?
403 CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
404}
405
2f8a835c 406static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
1da177e4 407{
c43aa3bd 408 unsigned int max_load_freq;
1da177e4
LT
409
410 struct cpufreq_policy *policy;
411 unsigned int j;
412
05ca0350 413 this_dbs_info->freq_lo = 0;
1da177e4 414 policy = this_dbs_info->cur_policy;
ea487615 415
32ee8c3e 416 /*
c29f1403
DJ
417 * Every sampling_rate, we check, if current idle time is less
418 * than 20% (default), then we try to increase frequency
ccb2fe20 419 * Every sampling_rate, we look for a the lowest
c29f1403
DJ
420 * frequency which can sustain the load while keeping idle time over
421 * 30%. If such a frequency exist, we try to decrease to this frequency.
1da177e4 422 *
32ee8c3e
DJ
423 * Any frequency increase takes it to the maximum frequency.
424 * Frequency reduction happens at minimum steps of
425 * 5% (default) of current frequency
1da177e4
LT
426 */
427
c43aa3bd 428 /* Get Absolute Load - in terms of freq */
429 max_load_freq = 0;
430
835481d9 431 for_each_cpu(j, policy->cpus) {
1da177e4 432 struct cpu_dbs_info_s *j_dbs_info;
6b8fcd90
AV
433 cputime64_t cur_wall_time, cur_idle_time, cur_iowait_time;
434 unsigned int idle_time, wall_time, iowait_time;
c43aa3bd 435 unsigned int load, load_freq;
436 int freq_avg;
1da177e4 437
245b2e70 438 j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
3430502d 439
440 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
6b8fcd90 441 cur_iowait_time = get_cpu_iowait_time(j, &cur_wall_time);
3430502d 442
c43aa3bd 443 wall_time = (unsigned int) cputime64_sub(cur_wall_time,
444 j_dbs_info->prev_cpu_wall);
445 j_dbs_info->prev_cpu_wall = cur_wall_time;
446
c43aa3bd 447 idle_time = (unsigned int) cputime64_sub(cur_idle_time,
ccb2fe20 448 j_dbs_info->prev_cpu_idle);
c43aa3bd 449 j_dbs_info->prev_cpu_idle = cur_idle_time;
1da177e4 450
6b8fcd90
AV
451 iowait_time = (unsigned int) cputime64_sub(cur_iowait_time,
452 j_dbs_info->prev_cpu_iowait);
453 j_dbs_info->prev_cpu_iowait = cur_iowait_time;
454
1ca3abdb
VP
455 if (dbs_tuners_ins.ignore_nice) {
456 cputime64_t cur_nice;
457 unsigned long cur_nice_jiffies;
458
459 cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
460 j_dbs_info->prev_cpu_nice);
461 /*
462 * Assumption: nice time between sampling periods will
463 * be less than 2^32 jiffies for 32 bit sys
464 */
465 cur_nice_jiffies = (unsigned long)
466 cputime64_to_jiffies64(cur_nice);
467
468 j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
469 idle_time += jiffies_to_usecs(cur_nice_jiffies);
470 }
471
6b8fcd90
AV
472 /*
473 * For the purpose of ondemand, waiting for disk IO is an
474 * indication that you're performance critical, and not that
475 * the system is actually idle. So subtract the iowait time
476 * from the cpu idle time.
477 */
478
19379b11 479 if (dbs_tuners_ins.io_is_busy && idle_time >= iowait_time)
6b8fcd90
AV
480 idle_time -= iowait_time;
481
3430502d 482 if (unlikely(!wall_time || wall_time < idle_time))
c43aa3bd 483 continue;
c43aa3bd 484
485 load = 100 * (wall_time - idle_time) / wall_time;
486
487 freq_avg = __cpufreq_driver_getavg(policy, j);
488 if (freq_avg <= 0)
489 freq_avg = policy->cur;
490
491 load_freq = load * freq_avg;
492 if (load_freq > max_load_freq)
493 max_load_freq = load_freq;
1da177e4
LT
494 }
495
ccb2fe20 496 /* Check for frequency increase */
c43aa3bd 497 if (max_load_freq > dbs_tuners_ins.up_threshold * policy->cur) {
3f78a9f7
DN
498 /* If switching to max speed, apply sampling_down_factor */
499 if (policy->cur < policy->max)
500 this_dbs_info->rate_mult =
501 dbs_tuners_ins.sampling_down_factor;
00e299ff 502 dbs_freq_increase(policy, policy->max);
1da177e4
LT
503 return;
504 }
505
506 /* Check for frequency decrease */
c29f1403
DJ
507 /* if we cannot reduce the frequency anymore, break out early */
508 if (policy->cur == policy->min)
509 return;
1da177e4 510
c29f1403
DJ
511 /*
512 * The optimal frequency is the frequency that is the lowest that
513 * can support the current CPU usage without triggering the up
514 * policy. To be safe, we focus 10 points under the threshold.
515 */
e9d95bf7 516 if (max_load_freq <
517 (dbs_tuners_ins.up_threshold - dbs_tuners_ins.down_differential) *
518 policy->cur) {
c43aa3bd 519 unsigned int freq_next;
e9d95bf7 520 freq_next = max_load_freq /
521 (dbs_tuners_ins.up_threshold -
522 dbs_tuners_ins.down_differential);
dfde5d62 523
3f78a9f7
DN
524 /* No longer fully busy, reset rate_mult */
525 this_dbs_info->rate_mult = 1;
526
1dbf5888
NC
527 if (freq_next < policy->min)
528 freq_next = policy->min;
529
05ca0350
AS
530 if (!dbs_tuners_ins.powersave_bias) {
531 __cpufreq_driver_target(policy, freq_next,
532 CPUFREQ_RELATION_L);
533 } else {
534 int freq = powersave_bias_target(policy, freq_next,
535 CPUFREQ_RELATION_L);
536 __cpufreq_driver_target(policy, freq,
537 CPUFREQ_RELATION_L);
538 }
ccb2fe20 539 }
1da177e4
LT
540}
541
c4028958 542static void do_dbs_timer(struct work_struct *work)
32ee8c3e 543{
529af7a1
VP
544 struct cpu_dbs_info_s *dbs_info =
545 container_of(work, struct cpu_dbs_info_s, work.work);
546 unsigned int cpu = dbs_info->cpu;
547 int sample_type = dbs_info->sample_type;
548
5cb2c3bd 549 int delay;
a665df9d 550
5a75c828 551 mutex_lock(&dbs_info->timer_mutex);
56463b78 552
05ca0350 553 /* Common NORMAL_SAMPLE setup */
c4028958 554 dbs_info->sample_type = DBS_NORMAL_SAMPLE;
05ca0350 555 if (!dbs_tuners_ins.powersave_bias ||
c4028958 556 sample_type == DBS_NORMAL_SAMPLE) {
05ca0350 557 dbs_check_cpu(dbs_info);
05ca0350
AS
558 if (dbs_info->freq_lo) {
559 /* Setup timer for SUB_SAMPLE */
c4028958 560 dbs_info->sample_type = DBS_SUB_SAMPLE;
05ca0350 561 delay = dbs_info->freq_hi_jiffies;
5cb2c3bd
VG
562 } else {
563 /* We want all CPUs to do sampling nearly on
564 * same jiffy
565 */
566 delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate
567 * dbs_info->rate_mult);
568
569 if (num_online_cpus() > 1)
570 delay -= jiffies % delay;
05ca0350
AS
571 }
572 } else {
573 __cpufreq_driver_target(dbs_info->cur_policy,
2b03f891 574 dbs_info->freq_lo, CPUFREQ_RELATION_H);
5cb2c3bd 575 delay = dbs_info->freq_lo_jiffies;
05ca0350 576 }
57df5573 577 schedule_delayed_work_on(cpu, &dbs_info->work, delay);
5a75c828 578 mutex_unlock(&dbs_info->timer_mutex);
32ee8c3e 579}
1da177e4 580
529af7a1 581static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
1da177e4 582{
1ce28d6b
AS
583 /* We want all CPUs to do sampling nearly on same jiffy */
584 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
a665df9d
JF
585
586 if (num_online_cpus() > 1)
587 delay -= jiffies % delay;
2f8a835c 588
c4028958 589 dbs_info->sample_type = DBS_NORMAL_SAMPLE;
28287033 590 INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
57df5573 591 schedule_delayed_work_on(dbs_info->cpu, &dbs_info->work, delay);
1da177e4
LT
592}
593
2cd7cbdf 594static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
1da177e4 595{
b14893a6 596 cancel_delayed_work_sync(&dbs_info->work);
1da177e4
LT
597}
598
19379b11
AV
599/*
600 * Not all CPUs want IO time to be accounted as busy; this dependson how
601 * efficient idling at a higher frequency/voltage is.
602 * Pavel Machek says this is not so for various generations of AMD and old
603 * Intel systems.
604 * Mike Chan (androidlcom) calis this is also not true for ARM.
605 * Because of this, whitelist specific known (series) of CPUs by default, and
606 * leave all others up to the user.
607 */
608static int should_io_be_busy(void)
609{
610#if defined(CONFIG_X86)
611 /*
612 * For Intel, Core 2 (model 15) andl later have an efficient idle.
613 */
614 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
615 boot_cpu_data.x86 == 6 &&
616 boot_cpu_data.x86_model >= 15)
617 return 1;
618#endif
619 return 0;
620}
621
1da177e4
LT
622static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
623 unsigned int event)
624{
625 unsigned int cpu = policy->cpu;
626 struct cpu_dbs_info_s *this_dbs_info;
627 unsigned int j;
914f7c31 628 int rc;
1da177e4 629
245b2e70 630 this_dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
1da177e4
LT
631
632 switch (event) {
633 case CPUFREQ_GOV_START:
ffac80e9 634 if ((!cpu_online(cpu)) || (!policy->cur))
1da177e4
LT
635 return -EINVAL;
636
3fc54d37 637 mutex_lock(&dbs_mutex);
914f7c31 638
5a75c828 639 dbs_enable++;
835481d9 640 for_each_cpu(j, policy->cpus) {
1da177e4 641 struct cpu_dbs_info_s *j_dbs_info;
245b2e70 642 j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
1da177e4 643 j_dbs_info->cur_policy = policy;
32ee8c3e 644
3430502d 645 j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
646 &j_dbs_info->prev_cpu_wall);
1ca3abdb
VP
647 if (dbs_tuners_ins.ignore_nice) {
648 j_dbs_info->prev_cpu_nice =
649 kstat_cpu(j).cpustat.nice;
650 }
1da177e4 651 }
529af7a1 652 this_dbs_info->cpu = cpu;
3f78a9f7 653 this_dbs_info->rate_mult = 1;
5a75c828 654 ondemand_powersave_bias_init_cpu(cpu);
1da177e4
LT
655 /*
656 * Start the timerschedule work, when this governor
657 * is used for first time
658 */
659 if (dbs_enable == 1) {
660 unsigned int latency;
0e625ac1
TR
661
662 rc = sysfs_create_group(cpufreq_global_kobject,
663 &dbs_attr_group);
664 if (rc) {
665 mutex_unlock(&dbs_mutex);
666 return rc;
667 }
668
1da177e4 669 /* policy latency is in nS. Convert it to uS first */
df8b59be
DJ
670 latency = policy->cpuinfo.transition_latency / 1000;
671 if (latency == 0)
672 latency = 1;
cef9615a
TR
673 /* Bring kernel and HW constraints together */
674 min_sampling_rate = max(min_sampling_rate,
675 MIN_LATENCY_MULTIPLIER * latency);
676 dbs_tuners_ins.sampling_rate =
677 max(min_sampling_rate,
678 latency * LATENCY_MULTIPLIER);
19379b11 679 dbs_tuners_ins.io_is_busy = should_io_be_busy();
1da177e4 680 }
3fc54d37 681 mutex_unlock(&dbs_mutex);
7d26e2d5 682
0e625ac1 683 mutex_init(&this_dbs_info->timer_mutex);
7d26e2d5 684 dbs_timer_init(this_dbs_info);
1da177e4
LT
685 break;
686
687 case CPUFREQ_GOV_STOP:
2cd7cbdf 688 dbs_timer_exit(this_dbs_info);
7d26e2d5 689
690 mutex_lock(&dbs_mutex);
5a75c828 691 mutex_destroy(&this_dbs_info->timer_mutex);
1da177e4 692 dbs_enable--;
3fc54d37 693 mutex_unlock(&dbs_mutex);
0e625ac1
TR
694 if (!dbs_enable)
695 sysfs_remove_group(cpufreq_global_kobject,
696 &dbs_attr_group);
1da177e4
LT
697
698 break;
699
700 case CPUFREQ_GOV_LIMITS:
5a75c828 701 mutex_lock(&this_dbs_info->timer_mutex);
1da177e4 702 if (policy->max < this_dbs_info->cur_policy->cur)
ffac80e9 703 __cpufreq_driver_target(this_dbs_info->cur_policy,
2b03f891 704 policy->max, CPUFREQ_RELATION_H);
1da177e4 705 else if (policy->min > this_dbs_info->cur_policy->cur)
ffac80e9 706 __cpufreq_driver_target(this_dbs_info->cur_policy,
2b03f891 707 policy->min, CPUFREQ_RELATION_L);
5a75c828 708 mutex_unlock(&this_dbs_info->timer_mutex);
1da177e4
LT
709 break;
710 }
711 return 0;
712}
713
1da177e4
LT
714static int __init cpufreq_gov_dbs_init(void)
715{
80800913 716 cputime64_t wall;
4f6e6b9f
AR
717 u64 idle_time;
718 int cpu = get_cpu();
80800913 719
4f6e6b9f
AR
720 idle_time = get_cpu_idle_time_us(cpu, &wall);
721 put_cpu();
80800913 722 if (idle_time != -1ULL) {
723 /* Idle micro accounting is supported. Use finer thresholds */
724 dbs_tuners_ins.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
725 dbs_tuners_ins.down_differential =
726 MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
cef9615a
TR
727 /*
728 * In no_hz/micro accounting case we set the minimum frequency
729 * not depending on HZ, but fixed (very low). The deferred
730 * timer might skip some samples if idle/sleeping as needed.
731 */
732 min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
733 } else {
734 /* For correct statistics, we need 10 ticks for each measure */
735 min_sampling_rate =
736 MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
80800913 737 }
888a794c 738
57df5573 739 return cpufreq_register_governor(&cpufreq_gov_ondemand);
1da177e4
LT
740}
741
742static void __exit cpufreq_gov_dbs_exit(void)
743{
1c256245 744 cpufreq_unregister_governor(&cpufreq_gov_ondemand);
1da177e4
LT
745}
746
747
ffac80e9
VP
748MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
749MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
750MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
2b03f891 751 "Low Latency Frequency Transition capable processors");
ffac80e9 752MODULE_LICENSE("GPL");
1da177e4 753
6915719b
JW
754#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
755fs_initcall(cpufreq_gov_dbs_init);
756#else
1da177e4 757module_init(cpufreq_gov_dbs_init);
6915719b 758#endif
1da177e4 759module_exit(cpufreq_gov_dbs_exit);
This page took 0.526448 seconds and 5 git commands to generate.