Merge branch 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[deliverable/linux.git] / drivers / cpufreq / exynos4210-cpufreq.c
CommitLineData
f7d77079 1/*
7d30e8b3 2 * Copyright (c) 2010-2011 Samsung Electronics Co., Ltd.
f40f91fe
SK
3 * http://www.samsung.com
4 *
7d30e8b3 5 * EXYNOS4 - CPU frequency scaling support
f40f91fe
SK
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10*/
11
12#include <linux/types.h>
13#include <linux/kernel.h>
14#include <linux/err.h>
15#include <linux/clk.h>
16#include <linux/io.h>
17#include <linux/slab.h>
18#include <linux/regulator/consumer.h>
19#include <linux/cpufreq.h>
0073f538
MH
20#include <linux/notifier.h>
21#include <linux/suspend.h>
f40f91fe
SK
22
23#include <mach/map.h>
24#include <mach/regs-clock.h>
25#include <mach/regs-mem.h>
26
27#include <plat/clock.h>
bf5ce054 28#include <plat/pm.h>
f40f91fe
SK
29
30static struct clk *cpu_clk;
31static struct clk *moutcore;
32static struct clk *mout_mpll;
33static struct clk *mout_apll;
34
f40f91fe
SK
35static struct regulator *arm_regulator;
36static struct regulator *int_regulator;
f40f91fe
SK
37
38static struct cpufreq_freqs freqs;
f40f91fe
SK
39static unsigned int memtype;
40
0073f538
MH
41static unsigned int locking_frequency;
42static bool frequency_locked;
43static DEFINE_MUTEX(cpufreq_lock);
44
7d30e8b3 45enum exynos4_memory_type {
f40f91fe
SK
46 DDR2 = 4,
47 LPDDR2,
48 DDR3,
49};
50
51enum cpufreq_level_index {
bf5ce054 52 L0, L1, L2, L3, CPUFREQ_LEVEL_END,
f40f91fe
SK
53};
54
7d30e8b3 55static struct cpufreq_frequency_table exynos4_freq_table[] = {
f40f91fe
SK
56 {L0, 1000*1000},
57 {L1, 800*1000},
58 {L2, 400*1000},
bf5ce054 59 {L3, 100*1000},
f40f91fe
SK
60 {0, CPUFREQ_TABLE_END},
61};
62
bf5ce054 63static unsigned int clkdiv_cpu0[CPUFREQ_LEVEL_END][7] = {
f40f91fe
SK
64 /*
65 * Clock divider value for following
66 * { DIVCORE, DIVCOREM0, DIVCOREM1, DIVPERIPH,
67 * DIVATB, DIVPCLK_DBG, DIVAPLL }
68 */
69
70 /* ARM L0: 1000MHz */
bf5ce054 71 { 0, 3, 7, 3, 3, 0, 1 },
f40f91fe
SK
72
73 /* ARM L1: 800MHz */
bf5ce054 74 { 0, 3, 7, 3, 3, 0, 1 },
f40f91fe
SK
75
76 /* ARM L2: 400MHz */
bf5ce054 77 { 0, 1, 3, 1, 3, 0, 1 },
f40f91fe 78
bf5ce054
SJ
79 /* ARM L3: 100MHz */
80 { 0, 0, 1, 0, 3, 1, 1 },
81};
f40f91fe 82
bf5ce054
SJ
83static unsigned int clkdiv_cpu1[CPUFREQ_LEVEL_END][2] = {
84 /*
85 * Clock divider value for following
86 * { DIVCOPY, DIVHPM }
87 */
88
89 /* ARM L0: 1000MHz */
90 { 3, 0 },
91
92 /* ARM L1: 800MHz */
93 { 3, 0 },
f40f91fe 94
bf5ce054
SJ
95 /* ARM L2: 400MHz */
96 { 3, 0 },
97
98 /* ARM L3: 100MHz */
99 { 3, 0 },
f40f91fe
SK
100};
101
bf5ce054 102static unsigned int clkdiv_dmc0[CPUFREQ_LEVEL_END][8] = {
f40f91fe
SK
103 /*
104 * Clock divider value for following
105 * { DIVACP, DIVACP_PCLK, DIVDPHY, DIVDMC, DIVDMCD
106 * DIVDMCP, DIVCOPY2, DIVCORE_TIMERS }
107 */
108
109 /* DMC L0: 400MHz */
110 { 3, 1, 1, 1, 1, 1, 3, 1 },
111
112 /* DMC L1: 400MHz */
113 { 3, 1, 1, 1, 1, 1, 3, 1 },
114
bf5ce054
SJ
115 /* DMC L2: 266.7MHz */
116 { 7, 1, 1, 2, 1, 1, 3, 1 },
f40f91fe 117
bf5ce054 118 /* DMC L3: 200MHz */
f40f91fe
SK
119 { 7, 1, 1, 3, 1, 1, 3, 1 },
120};
121
bf5ce054 122static unsigned int clkdiv_top[CPUFREQ_LEVEL_END][5] = {
f40f91fe
SK
123 /*
124 * Clock divider value for following
125 * { DIVACLK200, DIVACLK100, DIVACLK160, DIVACLK133, DIVONENAND }
126 */
127
128 /* ACLK200 L0: 200MHz */
129 { 3, 7, 4, 5, 1 },
130
131 /* ACLK200 L1: 200MHz */
132 { 3, 7, 4, 5, 1 },
133
bf5ce054
SJ
134 /* ACLK200 L2: 160MHz */
135 { 4, 7, 5, 7, 1 },
f40f91fe 136
bf5ce054
SJ
137 /* ACLK200 L3: 133.3MHz */
138 { 5, 7, 7, 7, 1 },
f40f91fe
SK
139};
140
bf5ce054 141static unsigned int clkdiv_lr_bus[CPUFREQ_LEVEL_END][2] = {
f40f91fe
SK
142 /*
143 * Clock divider value for following
144 * { DIVGDL/R, DIVGPL/R }
145 */
146
147 /* ACLK_GDL/R L0: 200MHz */
148 { 3, 1 },
149
150 /* ACLK_GDL/R L1: 200MHz */
151 { 3, 1 },
152
bf5ce054
SJ
153 /* ACLK_GDL/R L2: 160MHz */
154 { 4, 1 },
f40f91fe 155
bf5ce054
SJ
156 /* ACLK_GDL/R L3: 133.3MHz */
157 { 5, 1 },
f40f91fe
SK
158};
159
160struct cpufreq_voltage_table {
161 unsigned int index; /* any */
162 unsigned int arm_volt; /* uV */
163 unsigned int int_volt;
164};
165
7d30e8b3 166static struct cpufreq_voltage_table exynos4_volt_table[CPUFREQ_LEVEL_END] = {
f40f91fe
SK
167 {
168 .index = L0,
169 .arm_volt = 1200000,
170 .int_volt = 1100000,
171 }, {
172 .index = L1,
173 .arm_volt = 1100000,
174 .int_volt = 1100000,
175 }, {
176 .index = L2,
bf5ce054
SJ
177 .arm_volt = 1000000,
178 .int_volt = 1000000,
f40f91fe
SK
179 }, {
180 .index = L3,
bf5ce054 181 .arm_volt = 900000,
f40f91fe
SK
182 .int_volt = 1000000,
183 },
184};
185
7d30e8b3 186static unsigned int exynos4_apll_pms_table[CPUFREQ_LEVEL_END] = {
bf5ce054
SJ
187 /* APLL FOUT L0: 1000MHz */
188 ((250 << 16) | (6 << 8) | 1),
189
190 /* APLL FOUT L1: 800MHz */
191 ((200 << 16) | (6 << 8) | 1),
192
193 /* APLL FOUT L2 : 400MHz */
194 ((200 << 16) | (6 << 8) | 2),
195
196 /* APLL FOUT L3: 100MHz */
197 ((200 << 16) | (6 << 8) | 4),
198};
199
2f0d6f20 200static int exynos4_verify_speed(struct cpufreq_policy *policy)
f40f91fe 201{
7d30e8b3 202 return cpufreq_frequency_table_verify(policy, exynos4_freq_table);
f40f91fe
SK
203}
204
2f0d6f20 205static unsigned int exynos4_getspeed(unsigned int cpu)
f40f91fe
SK
206{
207 return clk_get_rate(cpu_clk) / 1000;
208}
209
2f0d6f20 210static void exynos4_set_clkdiv(unsigned int div_index)
f40f91fe
SK
211{
212 unsigned int tmp;
213
214 /* Change Divider - CPU0 */
215
216 tmp = __raw_readl(S5P_CLKDIV_CPU);
217
218 tmp &= ~(S5P_CLKDIV_CPU0_CORE_MASK | S5P_CLKDIV_CPU0_COREM0_MASK |
219 S5P_CLKDIV_CPU0_COREM1_MASK | S5P_CLKDIV_CPU0_PERIPH_MASK |
220 S5P_CLKDIV_CPU0_ATB_MASK | S5P_CLKDIV_CPU0_PCLKDBG_MASK |
221 S5P_CLKDIV_CPU0_APLL_MASK);
222
223 tmp |= ((clkdiv_cpu0[div_index][0] << S5P_CLKDIV_CPU0_CORE_SHIFT) |
224 (clkdiv_cpu0[div_index][1] << S5P_CLKDIV_CPU0_COREM0_SHIFT) |
225 (clkdiv_cpu0[div_index][2] << S5P_CLKDIV_CPU0_COREM1_SHIFT) |
226 (clkdiv_cpu0[div_index][3] << S5P_CLKDIV_CPU0_PERIPH_SHIFT) |
227 (clkdiv_cpu0[div_index][4] << S5P_CLKDIV_CPU0_ATB_SHIFT) |
228 (clkdiv_cpu0[div_index][5] << S5P_CLKDIV_CPU0_PCLKDBG_SHIFT) |
229 (clkdiv_cpu0[div_index][6] << S5P_CLKDIV_CPU0_APLL_SHIFT));
230
231 __raw_writel(tmp, S5P_CLKDIV_CPU);
232
233 do {
234 tmp = __raw_readl(S5P_CLKDIV_STATCPU);
235 } while (tmp & 0x1111111);
236
bf5ce054
SJ
237 /* Change Divider - CPU1 */
238
239 tmp = __raw_readl(S5P_CLKDIV_CPU1);
240
241 tmp &= ~((0x7 << 4) | 0x7);
242
243 tmp |= ((clkdiv_cpu1[div_index][0] << 4) |
244 (clkdiv_cpu1[div_index][1] << 0));
245
246 __raw_writel(tmp, S5P_CLKDIV_CPU1);
247
248 do {
249 tmp = __raw_readl(S5P_CLKDIV_STATCPU1);
250 } while (tmp & 0x11);
251
f40f91fe
SK
252 /* Change Divider - DMC0 */
253
254 tmp = __raw_readl(S5P_CLKDIV_DMC0);
255
256 tmp &= ~(S5P_CLKDIV_DMC0_ACP_MASK | S5P_CLKDIV_DMC0_ACPPCLK_MASK |
257 S5P_CLKDIV_DMC0_DPHY_MASK | S5P_CLKDIV_DMC0_DMC_MASK |
258 S5P_CLKDIV_DMC0_DMCD_MASK | S5P_CLKDIV_DMC0_DMCP_MASK |
259 S5P_CLKDIV_DMC0_COPY2_MASK | S5P_CLKDIV_DMC0_CORETI_MASK);
260
261 tmp |= ((clkdiv_dmc0[div_index][0] << S5P_CLKDIV_DMC0_ACP_SHIFT) |
262 (clkdiv_dmc0[div_index][1] << S5P_CLKDIV_DMC0_ACPPCLK_SHIFT) |
263 (clkdiv_dmc0[div_index][2] << S5P_CLKDIV_DMC0_DPHY_SHIFT) |
264 (clkdiv_dmc0[div_index][3] << S5P_CLKDIV_DMC0_DMC_SHIFT) |
265 (clkdiv_dmc0[div_index][4] << S5P_CLKDIV_DMC0_DMCD_SHIFT) |
266 (clkdiv_dmc0[div_index][5] << S5P_CLKDIV_DMC0_DMCP_SHIFT) |
267 (clkdiv_dmc0[div_index][6] << S5P_CLKDIV_DMC0_COPY2_SHIFT) |
268 (clkdiv_dmc0[div_index][7] << S5P_CLKDIV_DMC0_CORETI_SHIFT));
269
270 __raw_writel(tmp, S5P_CLKDIV_DMC0);
271
272 do {
273 tmp = __raw_readl(S5P_CLKDIV_STAT_DMC0);
274 } while (tmp & 0x11111111);
275
276 /* Change Divider - TOP */
277
278 tmp = __raw_readl(S5P_CLKDIV_TOP);
279
280 tmp &= ~(S5P_CLKDIV_TOP_ACLK200_MASK | S5P_CLKDIV_TOP_ACLK100_MASK |
281 S5P_CLKDIV_TOP_ACLK160_MASK | S5P_CLKDIV_TOP_ACLK133_MASK |
282 S5P_CLKDIV_TOP_ONENAND_MASK);
283
284 tmp |= ((clkdiv_top[div_index][0] << S5P_CLKDIV_TOP_ACLK200_SHIFT) |
285 (clkdiv_top[div_index][1] << S5P_CLKDIV_TOP_ACLK100_SHIFT) |
286 (clkdiv_top[div_index][2] << S5P_CLKDIV_TOP_ACLK160_SHIFT) |
287 (clkdiv_top[div_index][3] << S5P_CLKDIV_TOP_ACLK133_SHIFT) |
288 (clkdiv_top[div_index][4] << S5P_CLKDIV_TOP_ONENAND_SHIFT));
289
290 __raw_writel(tmp, S5P_CLKDIV_TOP);
291
292 do {
293 tmp = __raw_readl(S5P_CLKDIV_STAT_TOP);
294 } while (tmp & 0x11111);
295
296 /* Change Divider - LEFTBUS */
297
298 tmp = __raw_readl(S5P_CLKDIV_LEFTBUS);
299
300 tmp &= ~(S5P_CLKDIV_BUS_GDLR_MASK | S5P_CLKDIV_BUS_GPLR_MASK);
301
302 tmp |= ((clkdiv_lr_bus[div_index][0] << S5P_CLKDIV_BUS_GDLR_SHIFT) |
303 (clkdiv_lr_bus[div_index][1] << S5P_CLKDIV_BUS_GPLR_SHIFT));
304
305 __raw_writel(tmp, S5P_CLKDIV_LEFTBUS);
306
307 do {
308 tmp = __raw_readl(S5P_CLKDIV_STAT_LEFTBUS);
309 } while (tmp & 0x11);
310
311 /* Change Divider - RIGHTBUS */
312
313 tmp = __raw_readl(S5P_CLKDIV_RIGHTBUS);
314
315 tmp &= ~(S5P_CLKDIV_BUS_GDLR_MASK | S5P_CLKDIV_BUS_GPLR_MASK);
316
317 tmp |= ((clkdiv_lr_bus[div_index][0] << S5P_CLKDIV_BUS_GDLR_SHIFT) |
318 (clkdiv_lr_bus[div_index][1] << S5P_CLKDIV_BUS_GPLR_SHIFT));
319
320 __raw_writel(tmp, S5P_CLKDIV_RIGHTBUS);
321
322 do {
323 tmp = __raw_readl(S5P_CLKDIV_STAT_RIGHTBUS);
324 } while (tmp & 0x11);
325}
326
7d30e8b3 327static void exynos4_set_apll(unsigned int index)
bf5ce054
SJ
328{
329 unsigned int tmp;
330
331 /* 1. MUX_CORE_SEL = MPLL, ARMCLK uses MPLL for lock time */
332 clk_set_parent(moutcore, mout_mpll);
333
334 do {
335 tmp = (__raw_readl(S5P_CLKMUX_STATCPU)
336 >> S5P_CLKSRC_CPU_MUXCORE_SHIFT);
337 tmp &= 0x7;
338 } while (tmp != 0x2);
339
340 /* 2. Set APLL Lock time */
341 __raw_writel(S5P_APLL_LOCKTIME, S5P_APLL_LOCK);
342
343 /* 3. Change PLL PMS values */
344 tmp = __raw_readl(S5P_APLL_CON0);
345 tmp &= ~((0x3ff << 16) | (0x3f << 8) | (0x7 << 0));
7d30e8b3 346 tmp |= exynos4_apll_pms_table[index];
bf5ce054
SJ
347 __raw_writel(tmp, S5P_APLL_CON0);
348
349 /* 4. wait_lock_time */
350 do {
351 tmp = __raw_readl(S5P_APLL_CON0);
352 } while (!(tmp & (0x1 << S5P_APLLCON0_LOCKED_SHIFT)));
353
354 /* 5. MUX_CORE_SEL = APLL */
355 clk_set_parent(moutcore, mout_apll);
356
357 do {
358 tmp = __raw_readl(S5P_CLKMUX_STATCPU);
359 tmp &= S5P_CLKMUX_STATCPU_MUXCORE_MASK;
360 } while (tmp != (0x1 << S5P_CLKSRC_CPU_MUXCORE_SHIFT));
361}
362
7d30e8b3 363static void exynos4_set_frequency(unsigned int old_index, unsigned int new_index)
bf5ce054
SJ
364{
365 unsigned int tmp;
366
367 if (old_index > new_index) {
368 /* The frequency changing to L0 needs to change apll */
7d30e8b3 369 if (freqs.new == exynos4_freq_table[L0].frequency) {
bf5ce054 370 /* 1. Change the system clock divider values */
7d30e8b3 371 exynos4_set_clkdiv(new_index);
bf5ce054
SJ
372
373 /* 2. Change the apll m,p,s value */
7d30e8b3 374 exynos4_set_apll(new_index);
bf5ce054
SJ
375 } else {
376 /* 1. Change the system clock divider values */
7d30e8b3 377 exynos4_set_clkdiv(new_index);
bf5ce054
SJ
378
379 /* 2. Change just s value in apll m,p,s value */
380 tmp = __raw_readl(S5P_APLL_CON0);
381 tmp &= ~(0x7 << 0);
7d30e8b3 382 tmp |= (exynos4_apll_pms_table[new_index] & 0x7);
bf5ce054
SJ
383 __raw_writel(tmp, S5P_APLL_CON0);
384 }
385 }
386
387 else if (old_index < new_index) {
388 /* The frequency changing from L0 needs to change apll */
7d30e8b3 389 if (freqs.old == exynos4_freq_table[L0].frequency) {
bf5ce054 390 /* 1. Change the apll m,p,s value */
7d30e8b3 391 exynos4_set_apll(new_index);
bf5ce054
SJ
392
393 /* 2. Change the system clock divider values */
7d30e8b3 394 exynos4_set_clkdiv(new_index);
bf5ce054
SJ
395 } else {
396 /* 1. Change just s value in apll m,p,s value */
397 tmp = __raw_readl(S5P_APLL_CON0);
398 tmp &= ~(0x7 << 0);
7d30e8b3 399 tmp |= (exynos4_apll_pms_table[new_index] & 0x7);
bf5ce054
SJ
400 __raw_writel(tmp, S5P_APLL_CON0);
401
402 /* 2. Change the system clock divider values */
7d30e8b3 403 exynos4_set_clkdiv(new_index);
bf5ce054
SJ
404 }
405 }
406}
407
7d30e8b3 408static int exynos4_target(struct cpufreq_policy *policy,
f40f91fe
SK
409 unsigned int target_freq,
410 unsigned int relation)
411{
bf5ce054 412 unsigned int index, old_index;
f40f91fe 413 unsigned int arm_volt, int_volt;
0073f538 414 int err = -EINVAL;
f40f91fe 415
7d30e8b3 416 freqs.old = exynos4_getspeed(policy->cpu);
f40f91fe 417
0073f538
MH
418 mutex_lock(&cpufreq_lock);
419
420 if (frequency_locked && target_freq != locking_frequency) {
421 err = -EAGAIN;
422 goto out;
423 }
424
7d30e8b3 425 if (cpufreq_frequency_table_target(policy, exynos4_freq_table,
bf5ce054 426 freqs.old, relation, &old_index))
0073f538 427 goto out;
bf5ce054 428
7d30e8b3 429 if (cpufreq_frequency_table_target(policy, exynos4_freq_table,
f40f91fe 430 target_freq, relation, &index))
0073f538
MH
431 goto out;
432
433 err = 0;
f40f91fe 434
7d30e8b3 435 freqs.new = exynos4_freq_table[index].frequency;
f40f91fe
SK
436 freqs.cpu = policy->cpu;
437
438 if (freqs.new == freqs.old)
0073f538 439 goto out;
f40f91fe 440
f40f91fe 441 /* get the voltage value */
7d30e8b3
KK
442 arm_volt = exynos4_volt_table[index].arm_volt;
443 int_volt = exynos4_volt_table[index].int_volt;
f40f91fe
SK
444
445 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
446
447 /* control regulator */
448 if (freqs.new > freqs.old) {
449 /* Voltage up */
f40f91fe
SK
450 regulator_set_voltage(arm_regulator, arm_volt, arm_volt);
451 regulator_set_voltage(int_regulator, int_volt, int_volt);
f40f91fe
SK
452 }
453
454 /* Clock Configuration Procedure */
7d30e8b3 455 exynos4_set_frequency(old_index, index);
f40f91fe
SK
456
457 /* control regulator */
458 if (freqs.new < freqs.old) {
459 /* Voltage down */
f40f91fe
SK
460 regulator_set_voltage(arm_regulator, arm_volt, arm_volt);
461 regulator_set_voltage(int_regulator, int_volt, int_volt);
f40f91fe
SK
462 }
463
464 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
465
0073f538
MH
466out:
467 mutex_unlock(&cpufreq_lock);
468 return err;
f40f91fe
SK
469}
470
471#ifdef CONFIG_PM
0073f538
MH
472/*
473 * These suspend/resume are used as syscore_ops, it is already too
474 * late to set regulator voltages at this stage.
475 */
411f5c7a 476static int exynos4_cpufreq_suspend(struct cpufreq_policy *policy)
f40f91fe
SK
477{
478 return 0;
479}
480
7d30e8b3 481static int exynos4_cpufreq_resume(struct cpufreq_policy *policy)
f40f91fe
SK
482{
483 return 0;
484}
485#endif
486
0073f538
MH
487/**
488 * exynos4_cpufreq_pm_notifier - block CPUFREQ's activities in suspend-resume
489 * context
490 * @notifier
491 * @pm_event
492 * @v
493 *
494 * While frequency_locked == true, target() ignores every frequency but
495 * locking_frequency. The locking_frequency value is the initial frequency,
496 * which is set by the bootloader. In order to eliminate possible
497 * inconsistency in clock values, we save and restore frequencies during
498 * suspend and resume and block CPUFREQ activities. Note that the standard
499 * suspend/resume cannot be used as they are too deep (syscore_ops) for
500 * regulator actions.
501 */
502static int exynos4_cpufreq_pm_notifier(struct notifier_block *notifier,
503 unsigned long pm_event, void *v)
504{
505 struct cpufreq_policy *policy = cpufreq_cpu_get(0); /* boot CPU */
506 static unsigned int saved_frequency;
507 unsigned int temp;
508
509 mutex_lock(&cpufreq_lock);
510 switch (pm_event) {
511 case PM_SUSPEND_PREPARE:
512 if (frequency_locked)
513 goto out;
514 frequency_locked = true;
515
516 if (locking_frequency) {
517 saved_frequency = exynos4_getspeed(0);
518
519 mutex_unlock(&cpufreq_lock);
520 exynos4_target(policy, locking_frequency,
521 CPUFREQ_RELATION_H);
522 mutex_lock(&cpufreq_lock);
523 }
524
525 break;
526 case PM_POST_SUSPEND:
527
528 if (saved_frequency) {
529 /*
530 * While frequency_locked, only locking_frequency
531 * is valid for target(). In order to use
532 * saved_frequency while keeping frequency_locked,
533 * we temporarly overwrite locking_frequency.
534 */
535 temp = locking_frequency;
536 locking_frequency = saved_frequency;
537
538 mutex_unlock(&cpufreq_lock);
539 exynos4_target(policy, locking_frequency,
540 CPUFREQ_RELATION_H);
541 mutex_lock(&cpufreq_lock);
542
543 locking_frequency = temp;
544 }
545
546 frequency_locked = false;
547 break;
548 }
549out:
550 mutex_unlock(&cpufreq_lock);
551
552 return NOTIFY_OK;
553}
554
555static struct notifier_block exynos4_cpufreq_nb = {
556 .notifier_call = exynos4_cpufreq_pm_notifier,
557};
558
7d30e8b3 559static int exynos4_cpufreq_cpu_init(struct cpufreq_policy *policy)
f40f91fe 560{
5beae3b9
DK
561 int ret;
562
7d30e8b3 563 policy->cur = policy->min = policy->max = exynos4_getspeed(policy->cpu);
f40f91fe 564
7d30e8b3 565 cpufreq_frequency_table_get_attr(exynos4_freq_table, policy->cpu);
f40f91fe
SK
566
567 /* set the transition latency value */
568 policy->cpuinfo.transition_latency = 100000;
569
570 /*
7d30e8b3 571 * EXYNOS4 multi-core processors has 2 cores
f40f91fe
SK
572 * that the frequency cannot be set independently.
573 * Each cpu is bound to the same speed.
574 * So the affected cpu is all of the cpus.
575 */
576 cpumask_setall(policy->cpus);
577
5beae3b9
DK
578 ret = cpufreq_frequency_table_cpuinfo(policy, exynos4_freq_table);
579 if (ret)
580 return ret;
581
582 cpufreq_frequency_table_get_attr(exynos4_freq_table, policy->cpu);
583
584 return 0;
f40f91fe
SK
585}
586
5beae3b9
DK
587static int exynos4_cpufreq_cpu_exit(struct cpufreq_policy *policy)
588{
589 cpufreq_frequency_table_put_attr(policy->cpu);
590 return 0;
591}
592
593static struct freq_attr *exynos4_cpufreq_attr[] = {
594 &cpufreq_freq_attr_scaling_available_freqs,
595 NULL,
596};
597
7d30e8b3 598static struct cpufreq_driver exynos4_driver = {
f40f91fe 599 .flags = CPUFREQ_STICKY,
7d30e8b3
KK
600 .verify = exynos4_verify_speed,
601 .target = exynos4_target,
602 .get = exynos4_getspeed,
603 .init = exynos4_cpufreq_cpu_init,
5beae3b9 604 .exit = exynos4_cpufreq_cpu_exit,
7d30e8b3 605 .name = "exynos4_cpufreq",
5beae3b9 606 .attr = exynos4_cpufreq_attr,
f40f91fe 607#ifdef CONFIG_PM
7d30e8b3
KK
608 .suspend = exynos4_cpufreq_suspend,
609 .resume = exynos4_cpufreq_resume,
f40f91fe
SK
610#endif
611};
612
7d30e8b3 613static int __init exynos4_cpufreq_init(void)
f40f91fe 614{
f40f91fe
SK
615 cpu_clk = clk_get(NULL, "armclk");
616 if (IS_ERR(cpu_clk))
617 return PTR_ERR(cpu_clk);
618
0073f538
MH
619 locking_frequency = exynos4_getspeed(0);
620
f40f91fe
SK
621 moutcore = clk_get(NULL, "moutcore");
622 if (IS_ERR(moutcore))
623 goto out;
624
625 mout_mpll = clk_get(NULL, "mout_mpll");
626 if (IS_ERR(mout_mpll))
627 goto out;
628
629 mout_apll = clk_get(NULL, "mout_apll");
630 if (IS_ERR(mout_apll))
631 goto out;
632
f40f91fe
SK
633 arm_regulator = regulator_get(NULL, "vdd_arm");
634 if (IS_ERR(arm_regulator)) {
635 printk(KERN_ERR "failed to get resource %s\n", "vdd_arm");
636 goto out;
637 }
638
639 int_regulator = regulator_get(NULL, "vdd_int");
640 if (IS_ERR(int_regulator)) {
641 printk(KERN_ERR "failed to get resource %s\n", "vdd_int");
642 goto out;
643 }
f40f91fe 644
f40f91fe
SK
645 /*
646 * Check DRAM type.
647 * Because DVFS level is different according to DRAM type.
648 */
649 memtype = __raw_readl(S5P_VA_DMC0 + S5P_DMC0_MEMCON_OFFSET);
650 memtype = (memtype >> S5P_DMC0_MEMTYPE_SHIFT);
651 memtype &= S5P_DMC0_MEMTYPE_MASK;
652
653 if ((memtype < DDR2) && (memtype > DDR3)) {
654 printk(KERN_ERR "%s: wrong memtype= 0x%x\n", __func__, memtype);
655 goto out;
656 } else {
657 printk(KERN_DEBUG "%s: memtype= 0x%x\n", __func__, memtype);
658 }
659
0073f538
MH
660 register_pm_notifier(&exynos4_cpufreq_nb);
661
7d30e8b3 662 return cpufreq_register_driver(&exynos4_driver);
f40f91fe
SK
663
664out:
665 if (!IS_ERR(cpu_clk))
666 clk_put(cpu_clk);
667
668 if (!IS_ERR(moutcore))
669 clk_put(moutcore);
670
671 if (!IS_ERR(mout_mpll))
672 clk_put(mout_mpll);
673
674 if (!IS_ERR(mout_apll))
675 clk_put(mout_apll);
676
f40f91fe
SK
677 if (!IS_ERR(arm_regulator))
678 regulator_put(arm_regulator);
679
680 if (!IS_ERR(int_regulator))
681 regulator_put(int_regulator);
f40f91fe
SK
682
683 printk(KERN_ERR "%s: failed initialization\n", __func__);
684
685 return -EINVAL;
686}
7d30e8b3 687late_initcall(exynos4_cpufreq_init);
This page took 0.113345 seconds and 5 git commands to generate.