amd64_edac: Cleanup chipselect handling
[deliverable/linux.git] / drivers / edac / amd64_edac.c
CommitLineData
2bc65418 1#include "amd64_edac.h"
23ac4ae8 2#include <asm/amd_nb.h>
2bc65418
DT
3
4static struct edac_pci_ctl_info *amd64_ctl_pci;
5
6static int report_gart_errors;
7module_param(report_gart_errors, int, 0644);
8
9/*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
12 */
13static int ecc_enable_override;
14module_param(ecc_enable_override, int, 0644);
15
a29d8b8e 16static struct msr __percpu *msrs;
50542251 17
360b7f3c
BP
18/*
19 * count successfully initialized driver instances for setup_pci_device()
20 */
21static atomic_t drv_instances = ATOMIC_INIT(0);
22
cc4d8860
BP
23/* Per-node driver instances */
24static struct mem_ctl_info **mcis;
ae7bb7c6 25static struct ecc_settings **ecc_stngs;
2bc65418 26
b70ef010 27/*
1433eb99
BP
28 * Address to DRAM bank mapping: see F2x80 for K8 and F2x[1,0]80 for Fam10 and
29 * later.
b70ef010 30 */
1433eb99
BP
31static int ddr2_dbam_revCG[] = {
32 [0] = 32,
33 [1] = 64,
34 [2] = 128,
35 [3] = 256,
36 [4] = 512,
37 [5] = 1024,
38 [6] = 2048,
39};
40
41static int ddr2_dbam_revD[] = {
42 [0] = 32,
43 [1] = 64,
44 [2 ... 3] = 128,
45 [4] = 256,
46 [5] = 512,
47 [6] = 256,
48 [7] = 512,
49 [8 ... 9] = 1024,
50 [10] = 2048,
51};
52
53static int ddr2_dbam[] = { [0] = 128,
54 [1] = 256,
55 [2 ... 4] = 512,
56 [5 ... 6] = 1024,
57 [7 ... 8] = 2048,
58 [9 ... 10] = 4096,
59 [11] = 8192,
60};
61
62static int ddr3_dbam[] = { [0] = -1,
63 [1] = 256,
64 [2] = 512,
65 [3 ... 4] = -1,
66 [5 ... 6] = 1024,
67 [7 ... 8] = 2048,
68 [9 ... 10] = 4096,
24f9a7fe 69 [11] = 8192,
b70ef010
BP
70};
71
72/*
73 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
74 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
75 * or higher value'.
76 *
77 *FIXME: Produce a better mapping/linearisation.
78 */
79
39094443
BP
80
81struct scrubrate {
82 u32 scrubval; /* bit pattern for scrub rate */
83 u32 bandwidth; /* bandwidth consumed (bytes/sec) */
84} scrubrates[] = {
b70ef010
BP
85 { 0x01, 1600000000UL},
86 { 0x02, 800000000UL},
87 { 0x03, 400000000UL},
88 { 0x04, 200000000UL},
89 { 0x05, 100000000UL},
90 { 0x06, 50000000UL},
91 { 0x07, 25000000UL},
92 { 0x08, 12284069UL},
93 { 0x09, 6274509UL},
94 { 0x0A, 3121951UL},
95 { 0x0B, 1560975UL},
96 { 0x0C, 781440UL},
97 { 0x0D, 390720UL},
98 { 0x0E, 195300UL},
99 { 0x0F, 97650UL},
100 { 0x10, 48854UL},
101 { 0x11, 24427UL},
102 { 0x12, 12213UL},
103 { 0x13, 6101UL},
104 { 0x14, 3051UL},
105 { 0x15, 1523UL},
106 { 0x16, 761UL},
107 { 0x00, 0UL}, /* scrubbing off */
108};
109
b2b0c605
BP
110static int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
111 u32 *val, const char *func)
112{
113 int err = 0;
114
115 err = pci_read_config_dword(pdev, offset, val);
116 if (err)
117 amd64_warn("%s: error reading F%dx%03x.\n",
118 func, PCI_FUNC(pdev->devfn), offset);
119
120 return err;
121}
122
123int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
124 u32 val, const char *func)
125{
126 int err = 0;
127
128 err = pci_write_config_dword(pdev, offset, val);
129 if (err)
130 amd64_warn("%s: error writing to F%dx%03x.\n",
131 func, PCI_FUNC(pdev->devfn), offset);
132
133 return err;
134}
135
136/*
137 *
138 * Depending on the family, F2 DCT reads need special handling:
139 *
140 * K8: has a single DCT only
141 *
142 * F10h: each DCT has its own set of regs
143 * DCT0 -> F2x040..
144 * DCT1 -> F2x140..
145 *
146 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
147 *
148 */
149static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
150 const char *func)
151{
152 if (addr >= 0x100)
153 return -EINVAL;
154
155 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
156}
157
158static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
159 const char *func)
160{
161 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
162}
163
164static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
165 const char *func)
166{
167 u32 reg = 0;
168 u8 dct = 0;
169
170 if (addr >= 0x140 && addr <= 0x1a0) {
171 dct = 1;
172 addr -= 0x100;
173 }
174
175 amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
176 reg &= 0xfffffffe;
177 reg |= dct;
178 amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
179
180 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
181}
182
2bc65418
DT
183/*
184 * Memory scrubber control interface. For K8, memory scrubbing is handled by
185 * hardware and can involve L2 cache, dcache as well as the main memory. With
186 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
187 * functionality.
188 *
189 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
190 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
191 * bytes/sec for the setting.
192 *
193 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
194 * other archs, we might not have access to the caches directly.
195 */
196
197/*
198 * scan the scrub rate mapping table for a close or matching bandwidth value to
199 * issue. If requested is too big, then use last maximum value found.
200 */
395ae783 201static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
2bc65418
DT
202{
203 u32 scrubval;
204 int i;
205
206 /*
207 * map the configured rate (new_bw) to a value specific to the AMD64
208 * memory controller and apply to register. Search for the first
209 * bandwidth entry that is greater or equal than the setting requested
210 * and program that. If at last entry, turn off DRAM scrubbing.
211 */
212 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
213 /*
214 * skip scrub rates which aren't recommended
215 * (see F10 BKDG, F3x58)
216 */
395ae783 217 if (scrubrates[i].scrubval < min_rate)
2bc65418
DT
218 continue;
219
220 if (scrubrates[i].bandwidth <= new_bw)
221 break;
222
223 /*
224 * if no suitable bandwidth found, turn off DRAM scrubbing
225 * entirely by falling back to the last element in the
226 * scrubrates array.
227 */
228 }
229
230 scrubval = scrubrates[i].scrubval;
2bc65418
DT
231
232 pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F);
233
39094443
BP
234 if (scrubval)
235 return scrubrates[i].bandwidth;
236
2bc65418
DT
237 return 0;
238}
239
395ae783 240static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
2bc65418
DT
241{
242 struct amd64_pvt *pvt = mci->pvt_info;
2bc65418 243
8d5b5d9c 244 return __amd64_set_scrub_rate(pvt->F3, bw, pvt->min_scrubrate);
2bc65418
DT
245}
246
39094443 247static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
2bc65418
DT
248{
249 struct amd64_pvt *pvt = mci->pvt_info;
250 u32 scrubval = 0;
39094443 251 int i, retval = -EINVAL;
2bc65418 252
8d5b5d9c 253 amd64_read_pci_cfg(pvt->F3, K8_SCRCTRL, &scrubval);
2bc65418
DT
254
255 scrubval = scrubval & 0x001F;
256
24f9a7fe 257 amd64_debug("pci-read, sdram scrub control value: %d\n", scrubval);
2bc65418 258
926311fd 259 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
2bc65418 260 if (scrubrates[i].scrubval == scrubval) {
39094443 261 retval = scrubrates[i].bandwidth;
2bc65418
DT
262 break;
263 }
264 }
39094443 265 return retval;
2bc65418
DT
266}
267
6775763a 268/*
7f19bf75
BP
269 * returns true if the SysAddr given by sys_addr matches the
270 * DRAM base/limit associated with node_id
6775763a 271 */
7f19bf75 272static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, int nid)
6775763a 273{
7f19bf75 274 u64 addr;
6775763a
DT
275
276 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
277 * all ones if the most significant implemented address bit is 1.
278 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
279 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
280 * Application Programming.
281 */
282 addr = sys_addr & 0x000000ffffffffffull;
283
7f19bf75
BP
284 return ((addr >= get_dram_base(pvt, nid)) &&
285 (addr <= get_dram_limit(pvt, nid)));
6775763a
DT
286}
287
288/*
289 * Attempt to map a SysAddr to a node. On success, return a pointer to the
290 * mem_ctl_info structure for the node that the SysAddr maps to.
291 *
292 * On failure, return NULL.
293 */
294static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
295 u64 sys_addr)
296{
297 struct amd64_pvt *pvt;
298 int node_id;
299 u32 intlv_en, bits;
300
301 /*
302 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
303 * 3.4.4.2) registers to map the SysAddr to a node ID.
304 */
305 pvt = mci->pvt_info;
306
307 /*
308 * The value of this field should be the same for all DRAM Base
309 * registers. Therefore we arbitrarily choose to read it from the
310 * register for node 0.
311 */
7f19bf75 312 intlv_en = dram_intlv_en(pvt, 0);
6775763a
DT
313
314 if (intlv_en == 0) {
7f19bf75 315 for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
6775763a 316 if (amd64_base_limit_match(pvt, sys_addr, node_id))
8edc5445 317 goto found;
6775763a 318 }
8edc5445 319 goto err_no_match;
6775763a
DT
320 }
321
72f158fe
BP
322 if (unlikely((intlv_en != 0x01) &&
323 (intlv_en != 0x03) &&
324 (intlv_en != 0x07))) {
24f9a7fe 325 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
6775763a
DT
326 return NULL;
327 }
328
329 bits = (((u32) sys_addr) >> 12) & intlv_en;
330
331 for (node_id = 0; ; ) {
7f19bf75 332 if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
6775763a
DT
333 break; /* intlv_sel field matches */
334
7f19bf75 335 if (++node_id >= DRAM_RANGES)
6775763a
DT
336 goto err_no_match;
337 }
338
339 /* sanity test for sys_addr */
340 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
24f9a7fe
BP
341 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
342 "range for node %d with node interleaving enabled.\n",
343 __func__, sys_addr, node_id);
6775763a
DT
344 return NULL;
345 }
346
347found:
348 return edac_mc_find(node_id);
349
350err_no_match:
351 debugf2("sys_addr 0x%lx doesn't match any node\n",
352 (unsigned long)sys_addr);
353
354 return NULL;
355}
e2ce7255
DT
356
357/*
11c75ead
BP
358 * compute the CS base address of the @csrow on the DRAM controller @dct.
359 * For details see F2x[5C:40] in the processor's BKDG
e2ce7255 360 */
11c75ead
BP
361static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
362 u64 *base, u64 *mask)
e2ce7255 363{
11c75ead
BP
364 u64 csbase, csmask, base_bits, mask_bits;
365 u8 addr_shift;
e2ce7255 366
11c75ead
BP
367 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
368 csbase = pvt->csels[dct].csbases[csrow];
369 csmask = pvt->csels[dct].csmasks[csrow];
370 base_bits = GENMASK(21, 31) | GENMASK(9, 15);
371 mask_bits = GENMASK(21, 29) | GENMASK(9, 15);
372 addr_shift = 4;
373 } else {
374 csbase = pvt->csels[dct].csbases[csrow];
375 csmask = pvt->csels[dct].csmasks[csrow >> 1];
376 addr_shift = 8;
e2ce7255 377
11c75ead
BP
378 if (boot_cpu_data.x86 == 0x15)
379 base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13);
380 else
381 base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13);
382 }
e2ce7255 383
11c75ead 384 *base = (csbase & base_bits) << addr_shift;
e2ce7255 385
11c75ead
BP
386 *mask = ~0ULL;
387 /* poke holes for the csmask */
388 *mask &= ~(mask_bits << addr_shift);
389 /* OR them in */
390 *mask |= (csmask & mask_bits) << addr_shift;
e2ce7255
DT
391}
392
11c75ead
BP
393#define for_each_chip_select(i, dct, pvt) \
394 for (i = 0; i < pvt->csels[dct].b_cnt; i++)
395
396#define for_each_chip_select_mask(i, dct, pvt) \
397 for (i = 0; i < pvt->csels[dct].m_cnt; i++)
398
e2ce7255
DT
399/*
400 * @input_addr is an InputAddr associated with the node given by mci. Return the
401 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
402 */
403static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
404{
405 struct amd64_pvt *pvt;
406 int csrow;
407 u64 base, mask;
408
409 pvt = mci->pvt_info;
410
11c75ead
BP
411 for_each_chip_select(csrow, 0, pvt) {
412 if (!csrow_enabled(csrow, 0, pvt))
e2ce7255
DT
413 continue;
414
11c75ead
BP
415 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
416
417 mask = ~mask;
e2ce7255
DT
418
419 if ((input_addr & mask) == (base & mask)) {
420 debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
421 (unsigned long)input_addr, csrow,
422 pvt->mc_node_id);
423
424 return csrow;
425 }
426 }
e2ce7255
DT
427 debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
428 (unsigned long)input_addr, pvt->mc_node_id);
429
430 return -1;
431}
432
e2ce7255
DT
433/*
434 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
435 * for the node represented by mci. Info is passed back in *hole_base,
436 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
437 * info is invalid. Info may be invalid for either of the following reasons:
438 *
439 * - The revision of the node is not E or greater. In this case, the DRAM Hole
440 * Address Register does not exist.
441 *
442 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
443 * indicating that its contents are not valid.
444 *
445 * The values passed back in *hole_base, *hole_offset, and *hole_size are
446 * complete 32-bit values despite the fact that the bitfields in the DHAR
447 * only represent bits 31-24 of the base and offset values.
448 */
449int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
450 u64 *hole_offset, u64 *hole_size)
451{
452 struct amd64_pvt *pvt = mci->pvt_info;
453 u64 base;
454
455 /* only revE and later have the DRAM Hole Address Register */
1433eb99 456 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
e2ce7255
DT
457 debugf1(" revision %d for node %d does not support DHAR\n",
458 pvt->ext_model, pvt->mc_node_id);
459 return 1;
460 }
461
bc21fa57
BP
462 /* valid for Fam10h and above */
463 if (boot_cpu_data.x86 >= 0x10 &&
464 (pvt->dhar & DRAM_MEM_HOIST_VALID) == 0) {
e2ce7255
DT
465 debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
466 return 1;
467 }
468
469 if ((pvt->dhar & DHAR_VALID) == 0) {
470 debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
471 pvt->mc_node_id);
472 return 1;
473 }
474
475 /* This node has Memory Hoisting */
476
477 /* +------------------+--------------------+--------------------+-----
478 * | memory | DRAM hole | relocated |
479 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
480 * | | | DRAM hole |
481 * | | | [0x100000000, |
482 * | | | (0x100000000+ |
483 * | | | (0xffffffff-x))] |
484 * +------------------+--------------------+--------------------+-----
485 *
486 * Above is a diagram of physical memory showing the DRAM hole and the
487 * relocated addresses from the DRAM hole. As shown, the DRAM hole
488 * starts at address x (the base address) and extends through address
489 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
490 * addresses in the hole so that they start at 0x100000000.
491 */
492
bc21fa57 493 base = dhar_base(pvt);
e2ce7255
DT
494
495 *hole_base = base;
496 *hole_size = (0x1ull << 32) - base;
497
498 if (boot_cpu_data.x86 > 0xf)
bc21fa57 499 *hole_offset = f10_dhar_offset(pvt);
e2ce7255 500 else
bc21fa57 501 *hole_offset = k8_dhar_offset(pvt);
e2ce7255
DT
502
503 debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
504 pvt->mc_node_id, (unsigned long)*hole_base,
505 (unsigned long)*hole_offset, (unsigned long)*hole_size);
506
507 return 0;
508}
509EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
510
93c2df58
DT
511/*
512 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
513 * assumed that sys_addr maps to the node given by mci.
514 *
515 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
516 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
517 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
518 * then it is also involved in translating a SysAddr to a DramAddr. Sections
519 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
520 * These parts of the documentation are unclear. I interpret them as follows:
521 *
522 * When node n receives a SysAddr, it processes the SysAddr as follows:
523 *
524 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
525 * Limit registers for node n. If the SysAddr is not within the range
526 * specified by the base and limit values, then node n ignores the Sysaddr
527 * (since it does not map to node n). Otherwise continue to step 2 below.
528 *
529 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
530 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
531 * the range of relocated addresses (starting at 0x100000000) from the DRAM
532 * hole. If not, skip to step 3 below. Else get the value of the
533 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
534 * offset defined by this value from the SysAddr.
535 *
536 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
537 * Base register for node n. To obtain the DramAddr, subtract the base
538 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
539 */
540static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
541{
7f19bf75 542 struct amd64_pvt *pvt = mci->pvt_info;
93c2df58
DT
543 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
544 int ret = 0;
545
7f19bf75 546 dram_base = get_dram_base(pvt, pvt->mc_node_id);
93c2df58
DT
547
548 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
549 &hole_size);
550 if (!ret) {
551 if ((sys_addr >= (1ull << 32)) &&
552 (sys_addr < ((1ull << 32) + hole_size))) {
553 /* use DHAR to translate SysAddr to DramAddr */
554 dram_addr = sys_addr - hole_offset;
555
556 debugf2("using DHAR to translate SysAddr 0x%lx to "
557 "DramAddr 0x%lx\n",
558 (unsigned long)sys_addr,
559 (unsigned long)dram_addr);
560
561 return dram_addr;
562 }
563 }
564
565 /*
566 * Translate the SysAddr to a DramAddr as shown near the start of
567 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
568 * only deals with 40-bit values. Therefore we discard bits 63-40 of
569 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
570 * discard are all 1s. Otherwise the bits we discard are all 0s. See
571 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
572 * Programmer's Manual Volume 1 Application Programming.
573 */
574 dram_addr = (sys_addr & 0xffffffffffull) - dram_base;
575
576 debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
577 "DramAddr 0x%lx\n", (unsigned long)sys_addr,
578 (unsigned long)dram_addr);
579 return dram_addr;
580}
581
582/*
583 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
584 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
585 * for node interleaving.
586 */
587static int num_node_interleave_bits(unsigned intlv_en)
588{
589 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
590 int n;
591
592 BUG_ON(intlv_en > 7);
593 n = intlv_shift_table[intlv_en];
594 return n;
595}
596
597/* Translate the DramAddr given by @dram_addr to an InputAddr. */
598static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
599{
600 struct amd64_pvt *pvt;
601 int intlv_shift;
602 u64 input_addr;
603
604 pvt = mci->pvt_info;
605
606 /*
607 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
608 * concerning translating a DramAddr to an InputAddr.
609 */
7f19bf75 610 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
93c2df58
DT
611 input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) +
612 (dram_addr & 0xfff);
613
614 debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
615 intlv_shift, (unsigned long)dram_addr,
616 (unsigned long)input_addr);
617
618 return input_addr;
619}
620
621/*
622 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
623 * assumed that @sys_addr maps to the node given by mci.
624 */
625static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
626{
627 u64 input_addr;
628
629 input_addr =
630 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
631
632 debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
633 (unsigned long)sys_addr, (unsigned long)input_addr);
634
635 return input_addr;
636}
637
638
639/*
640 * @input_addr is an InputAddr associated with the node represented by mci.
641 * Translate @input_addr to a DramAddr and return the result.
642 */
643static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
644{
645 struct amd64_pvt *pvt;
646 int node_id, intlv_shift;
647 u64 bits, dram_addr;
648 u32 intlv_sel;
649
650 /*
651 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
652 * shows how to translate a DramAddr to an InputAddr. Here we reverse
653 * this procedure. When translating from a DramAddr to an InputAddr, the
654 * bits used for node interleaving are discarded. Here we recover these
655 * bits from the IntlvSel field of the DRAM Limit register (section
656 * 3.4.4.2) for the node that input_addr is associated with.
657 */
658 pvt = mci->pvt_info;
659 node_id = pvt->mc_node_id;
660 BUG_ON((node_id < 0) || (node_id > 7));
661
7f19bf75 662 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
93c2df58
DT
663
664 if (intlv_shift == 0) {
665 debugf1(" InputAddr 0x%lx translates to DramAddr of "
666 "same value\n", (unsigned long)input_addr);
667
668 return input_addr;
669 }
670
671 bits = ((input_addr & 0xffffff000ull) << intlv_shift) +
672 (input_addr & 0xfff);
673
7f19bf75 674 intlv_sel = dram_intlv_sel(pvt, node_id) & ((1 << intlv_shift) - 1);
93c2df58
DT
675 dram_addr = bits + (intlv_sel << 12);
676
677 debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
678 "(%d node interleave bits)\n", (unsigned long)input_addr,
679 (unsigned long)dram_addr, intlv_shift);
680
681 return dram_addr;
682}
683
684/*
685 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
686 * @dram_addr to a SysAddr.
687 */
688static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
689{
690 struct amd64_pvt *pvt = mci->pvt_info;
7f19bf75 691 u64 hole_base, hole_offset, hole_size, base, sys_addr;
93c2df58
DT
692 int ret = 0;
693
694 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
695 &hole_size);
696 if (!ret) {
697 if ((dram_addr >= hole_base) &&
698 (dram_addr < (hole_base + hole_size))) {
699 sys_addr = dram_addr + hole_offset;
700
701 debugf1("using DHAR to translate DramAddr 0x%lx to "
702 "SysAddr 0x%lx\n", (unsigned long)dram_addr,
703 (unsigned long)sys_addr);
704
705 return sys_addr;
706 }
707 }
708
7f19bf75 709 base = get_dram_base(pvt, pvt->mc_node_id);
93c2df58
DT
710 sys_addr = dram_addr + base;
711
712 /*
713 * The sys_addr we have computed up to this point is a 40-bit value
714 * because the k8 deals with 40-bit values. However, the value we are
715 * supposed to return is a full 64-bit physical address. The AMD
716 * x86-64 architecture specifies that the most significant implemented
717 * address bit through bit 63 of a physical address must be either all
718 * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
719 * 64-bit value below. See section 3.4.2 of AMD publication 24592:
720 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
721 * Programming.
722 */
723 sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
724
725 debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
726 pvt->mc_node_id, (unsigned long)dram_addr,
727 (unsigned long)sys_addr);
728
729 return sys_addr;
730}
731
732/*
733 * @input_addr is an InputAddr associated with the node given by mci. Translate
734 * @input_addr to a SysAddr.
735 */
736static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
737 u64 input_addr)
738{
739 return dram_addr_to_sys_addr(mci,
740 input_addr_to_dram_addr(mci, input_addr));
741}
742
743/*
744 * Find the minimum and maximum InputAddr values that map to the given @csrow.
745 * Pass back these values in *input_addr_min and *input_addr_max.
746 */
747static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
748 u64 *input_addr_min, u64 *input_addr_max)
749{
750 struct amd64_pvt *pvt;
751 u64 base, mask;
752
753 pvt = mci->pvt_info;
11c75ead 754 BUG_ON((csrow < 0) || (csrow >= pvt->csels[0].b_cnt));
93c2df58 755
11c75ead 756 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
93c2df58
DT
757
758 *input_addr_min = base & ~mask;
11c75ead 759 *input_addr_max = base | mask;
93c2df58
DT
760}
761
93c2df58
DT
762/* Map the Error address to a PAGE and PAGE OFFSET. */
763static inline void error_address_to_page_and_offset(u64 error_address,
764 u32 *page, u32 *offset)
765{
766 *page = (u32) (error_address >> PAGE_SHIFT);
767 *offset = ((u32) error_address) & ~PAGE_MASK;
768}
769
770/*
771 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
772 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
773 * of a node that detected an ECC memory error. mci represents the node that
774 * the error address maps to (possibly different from the node that detected
775 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
776 * error.
777 */
778static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
779{
780 int csrow;
781
782 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
783
784 if (csrow == -1)
24f9a7fe
BP
785 amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
786 "address 0x%lx\n", (unsigned long)sys_addr);
93c2df58
DT
787 return csrow;
788}
e2ce7255 789
bfc04aec 790static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
2da11654 791
ad6a32e9
BP
792static u16 extract_syndrome(struct err_regs *err)
793{
794 return ((err->nbsh >> 15) & 0xff) | ((err->nbsl >> 16) & 0xff00);
795}
796
2da11654
DT
797/*
798 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
799 * are ECC capable.
800 */
801static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
802{
803 int bit;
584fcff4 804 enum dev_type edac_cap = EDAC_FLAG_NONE;
2da11654 805
1433eb99 806 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
2da11654
DT
807 ? 19
808 : 17;
809
584fcff4 810 if (pvt->dclr0 & BIT(bit))
2da11654
DT
811 edac_cap = EDAC_FLAG_SECDED;
812
813 return edac_cap;
814}
815
816
8566c4df 817static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt);
2da11654 818
68798e17
BP
819static void amd64_dump_dramcfg_low(u32 dclr, int chan)
820{
821 debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
822
823 debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
824 (dclr & BIT(16)) ? "un" : "",
825 (dclr & BIT(19)) ? "yes" : "no");
826
827 debugf1(" PAR/ERR parity: %s\n",
828 (dclr & BIT(8)) ? "enabled" : "disabled");
829
830 debugf1(" DCT 128bit mode width: %s\n",
831 (dclr & BIT(11)) ? "128b" : "64b");
832
833 debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
834 (dclr & BIT(12)) ? "yes" : "no",
835 (dclr & BIT(13)) ? "yes" : "no",
836 (dclr & BIT(14)) ? "yes" : "no",
837 (dclr & BIT(15)) ? "yes" : "no");
838}
839
2da11654 840/* Display and decode various NB registers for debug purposes. */
b2b0c605 841static void dump_misc_regs(struct amd64_pvt *pvt)
2da11654 842{
68798e17
BP
843 debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
844
845 debugf1(" NB two channel DRAM capable: %s\n",
846 (pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "yes" : "no");
2da11654 847
68798e17
BP
848 debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n",
849 (pvt->nbcap & K8_NBCAP_SECDED) ? "yes" : "no",
850 (pvt->nbcap & K8_NBCAP_CHIPKILL) ? "yes" : "no");
851
852 amd64_dump_dramcfg_low(pvt->dclr0, 0);
2da11654 853
8de1d91e 854 debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
2da11654 855
8de1d91e
BP
856 debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
857 "offset: 0x%08x\n",
bc21fa57
BP
858 pvt->dhar, dhar_base(pvt),
859 (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt)
860 : f10_dhar_offset(pvt));
2da11654 861
8de1d91e
BP
862 debugf1(" DramHoleValid: %s\n",
863 (pvt->dhar & DHAR_VALID) ? "yes" : "no");
2da11654 864
4d796364
BP
865 amd64_debug_display_dimm_sizes(0, pvt);
866
8de1d91e 867 /* everything below this point is Fam10h and above */
4d796364 868 if (boot_cpu_data.x86 == 0xf)
2da11654 869 return;
4d796364
BP
870
871 amd64_debug_display_dimm_sizes(1, pvt);
2da11654 872
24f9a7fe 873 amd64_info("using %s syndromes.\n", ((pvt->syn_type == 8) ? "x8" : "x4"));
ad6a32e9 874
8de1d91e 875 /* Only if NOT ganged does dclr1 have valid info */
68798e17
BP
876 if (!dct_ganging_enabled(pvt))
877 amd64_dump_dramcfg_low(pvt->dclr1, 1);
2da11654
DT
878}
879
2da11654
DT
880static void amd64_read_dbam_reg(struct amd64_pvt *pvt)
881{
b2b0c605
BP
882 amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
883 amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
2da11654
DT
884}
885
94be4bff 886/*
11c75ead 887 * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
94be4bff 888 */
11c75ead 889static void prep_chip_selects(struct amd64_pvt *pvt)
94be4bff 890{
1433eb99 891 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
11c75ead
BP
892 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
893 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
9d858bb1 894 } else {
11c75ead
BP
895 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
896 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
94be4bff
DT
897 }
898}
899
900/*
11c75ead 901 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
94be4bff 902 */
b2b0c605 903static void read_dct_base_mask(struct amd64_pvt *pvt)
94be4bff 904{
11c75ead 905 int cs;
94be4bff 906
11c75ead 907 prep_chip_selects(pvt);
94be4bff 908
11c75ead
BP
909 for_each_chip_select(cs, 0, pvt) {
910 u32 reg0 = DCSB0 + (cs * 4);
911 u32 reg1 = DCSB1 + (cs * 4);
912 u32 *base0 = &pvt->csels[0].csbases[cs];
913 u32 *base1 = &pvt->csels[1].csbases[cs];
b2b0c605 914
11c75ead 915 if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
94be4bff 916 debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
11c75ead 917 cs, *base0, reg0);
94be4bff 918
11c75ead
BP
919 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
920 continue;
b2b0c605 921
11c75ead
BP
922 if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
923 debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
924 cs, *base1, reg1);
94be4bff
DT
925 }
926
11c75ead
BP
927 for_each_chip_select_mask(cs, 0, pvt) {
928 u32 reg0 = DCSM0 + (cs * 4);
929 u32 reg1 = DCSM1 + (cs * 4);
930 u32 *mask0 = &pvt->csels[0].csmasks[cs];
931 u32 *mask1 = &pvt->csels[1].csmasks[cs];
b2b0c605 932
11c75ead 933 if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
94be4bff 934 debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
11c75ead 935 cs, *mask0, reg0);
94be4bff 936
11c75ead
BP
937 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
938 continue;
b2b0c605 939
11c75ead
BP
940 if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
941 debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
942 cs, *mask1, reg1);
94be4bff
DT
943 }
944}
945
24f9a7fe 946static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
94be4bff
DT
947{
948 enum mem_type type;
949
1433eb99 950 if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= K8_REV_F) {
6b4c0bde
BP
951 if (pvt->dchr0 & DDR3_MODE)
952 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
953 else
954 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
94be4bff 955 } else {
94be4bff
DT
956 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
957 }
958
24f9a7fe 959 amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
94be4bff
DT
960
961 return type;
962}
963
ddff876d
DT
964/*
965 * Read the DRAM Configuration Low register. It differs between CG, D & E revs
966 * and the later RevF memory controllers (DDR vs DDR2)
967 *
968 * Return:
969 * number of memory channels in operation
970 * Pass back:
971 * contents of the DCL0_LOW register
972 */
973static int k8_early_channel_count(struct amd64_pvt *pvt)
974{
975 int flag, err = 0;
976
b2b0c605 977 err = amd64_read_dct_pci_cfg(pvt, F10_DCLR_0, &pvt->dclr0);
ddff876d
DT
978 if (err)
979 return err;
980
9f56da0e 981 if (pvt->ext_model >= K8_REV_F)
ddff876d
DT
982 /* RevF (NPT) and later */
983 flag = pvt->dclr0 & F10_WIDTH_128;
9f56da0e 984 else
ddff876d
DT
985 /* RevE and earlier */
986 flag = pvt->dclr0 & REVE_WIDTH_128;
ddff876d
DT
987
988 /* not used */
989 pvt->dclr1 = 0;
990
991 return (flag) ? 2 : 1;
992}
993
994/* extract the ERROR ADDRESS for the K8 CPUs */
995static u64 k8_get_error_address(struct mem_ctl_info *mci,
ef44cc4c 996 struct err_regs *info)
ddff876d
DT
997{
998 return (((u64) (info->nbeah & 0xff)) << 32) +
999 (info->nbeal & ~0x03);
1000}
1001
7f19bf75 1002static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
ddff876d 1003{
7f19bf75 1004 u32 off = range << 3;
ddff876d 1005
7f19bf75
BP
1006 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
1007 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
ddff876d 1008
7f19bf75
BP
1009 if (boot_cpu_data.x86 == 0xf)
1010 return;
ddff876d 1011
7f19bf75
BP
1012 if (!dram_rw(pvt, range))
1013 return;
ddff876d 1014
7f19bf75
BP
1015 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
1016 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
ddff876d
DT
1017}
1018
1019static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
ad6a32e9 1020 struct err_regs *err_info, u64 sys_addr)
ddff876d
DT
1021{
1022 struct mem_ctl_info *src_mci;
ddff876d
DT
1023 int channel, csrow;
1024 u32 page, offset;
ad6a32e9 1025 u16 syndrome;
ddff876d 1026
ad6a32e9 1027 syndrome = extract_syndrome(err_info);
ddff876d
DT
1028
1029 /* CHIPKILL enabled */
ad6a32e9 1030 if (err_info->nbcfg & K8_NBCFG_CHIPKILL) {
bfc04aec 1031 channel = get_channel_from_ecc_syndrome(mci, syndrome);
ddff876d
DT
1032 if (channel < 0) {
1033 /*
1034 * Syndrome didn't map, so we don't know which of the
1035 * 2 DIMMs is in error. So we need to ID 'both' of them
1036 * as suspect.
1037 */
24f9a7fe
BP
1038 amd64_mc_warn(mci, "unknown syndrome 0x%04x - possible "
1039 "error reporting race\n", syndrome);
ddff876d
DT
1040 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1041 return;
1042 }
1043 } else {
1044 /*
1045 * non-chipkill ecc mode
1046 *
1047 * The k8 documentation is unclear about how to determine the
1048 * channel number when using non-chipkill memory. This method
1049 * was obtained from email communication with someone at AMD.
1050 * (Wish the email was placed in this comment - norsk)
1051 */
44e9e2ee 1052 channel = ((sys_addr & BIT(3)) != 0);
ddff876d
DT
1053 }
1054
1055 /*
1056 * Find out which node the error address belongs to. This may be
1057 * different from the node that detected the error.
1058 */
44e9e2ee 1059 src_mci = find_mc_by_sys_addr(mci, sys_addr);
2cff18c2 1060 if (!src_mci) {
24f9a7fe 1061 amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
44e9e2ee 1062 (unsigned long)sys_addr);
ddff876d
DT
1063 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1064 return;
1065 }
1066
44e9e2ee
BP
1067 /* Now map the sys_addr to a CSROW */
1068 csrow = sys_addr_to_csrow(src_mci, sys_addr);
ddff876d
DT
1069 if (csrow < 0) {
1070 edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
1071 } else {
44e9e2ee 1072 error_address_to_page_and_offset(sys_addr, &page, &offset);
ddff876d
DT
1073
1074 edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
1075 channel, EDAC_MOD_STR);
1076 }
1077}
1078
1433eb99 1079static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
ddff876d 1080{
1433eb99 1081 int *dbam_map;
ddff876d 1082
1433eb99
BP
1083 if (pvt->ext_model >= K8_REV_F)
1084 dbam_map = ddr2_dbam;
1085 else if (pvt->ext_model >= K8_REV_D)
1086 dbam_map = ddr2_dbam_revD;
1087 else
1088 dbam_map = ddr2_dbam_revCG;
ddff876d 1089
1433eb99 1090 return dbam_map[cs_mode];
ddff876d
DT
1091}
1092
1afd3c98
DT
1093/*
1094 * Get the number of DCT channels in use.
1095 *
1096 * Return:
1097 * number of Memory Channels in operation
1098 * Pass back:
1099 * contents of the DCL0_LOW register
1100 */
1101static int f10_early_channel_count(struct amd64_pvt *pvt)
1102{
57a30854 1103 int dbams[] = { DBAM0, DBAM1 };
6ba5dcdc 1104 int i, j, channels = 0;
1afd3c98
DT
1105 u32 dbam;
1106
1afd3c98
DT
1107 /* If we are in 128 bit mode, then we are using 2 channels */
1108 if (pvt->dclr0 & F10_WIDTH_128) {
1afd3c98
DT
1109 channels = 2;
1110 return channels;
1111 }
1112
1113 /*
d16149e8
BP
1114 * Need to check if in unganged mode: In such, there are 2 channels,
1115 * but they are not in 128 bit mode and thus the above 'dclr0' status
1116 * bit will be OFF.
1afd3c98
DT
1117 *
1118 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1119 * their CSEnable bit on. If so, then SINGLE DIMM case.
1120 */
d16149e8 1121 debugf0("Data width is not 128 bits - need more decoding\n");
ddff876d 1122
1afd3c98
DT
1123 /*
1124 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1125 * is more than just one DIMM present in unganged mode. Need to check
1126 * both controllers since DIMMs can be placed in either one.
1127 */
57a30854 1128 for (i = 0; i < ARRAY_SIZE(dbams); i++) {
b2b0c605 1129 if (amd64_read_dct_pci_cfg(pvt, dbams[i], &dbam))
1afd3c98
DT
1130 goto err_reg;
1131
57a30854
WW
1132 for (j = 0; j < 4; j++) {
1133 if (DBAM_DIMM(j, dbam) > 0) {
1134 channels++;
1135 break;
1136 }
1137 }
1afd3c98
DT
1138 }
1139
d16149e8
BP
1140 if (channels > 2)
1141 channels = 2;
1142
24f9a7fe 1143 amd64_info("MCT channel count: %d\n", channels);
1afd3c98
DT
1144
1145 return channels;
1146
1147err_reg:
1148 return -1;
1149
1150}
1151
1433eb99 1152static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
1afd3c98 1153{
1433eb99
BP
1154 int *dbam_map;
1155
1156 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1157 dbam_map = ddr3_dbam;
1158 else
1159 dbam_map = ddr2_dbam;
1160
1161 return dbam_map[cs_mode];
1afd3c98
DT
1162}
1163
1afd3c98 1164static u64 f10_get_error_address(struct mem_ctl_info *mci,
ef44cc4c 1165 struct err_regs *info)
1afd3c98
DT
1166{
1167 return (((u64) (info->nbeah & 0xffff)) << 32) +
1168 (info->nbeal & ~0x01);
1169}
1170
6163b5d4
DT
1171static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
1172{
6163b5d4 1173
b2b0c605
BP
1174 if (!amd64_read_dct_pci_cfg(pvt, F10_DCTL_SEL_LOW, &pvt->dct_sel_low)) {
1175 debugf0("F2x110 (DCTL Sel. Low): 0x%08x, High range addrs at: 0x%x\n",
1176 pvt->dct_sel_low, dct_sel_baseaddr(pvt));
72381bd5
BP
1177
1178 debugf0(" DCT mode: %s, All DCTs on: %s\n",
1179 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"),
1180 (dct_dram_enabled(pvt) ? "yes" : "no"));
1181
1182 if (!dct_ganging_enabled(pvt))
1183 debugf0(" Address range split per DCT: %s\n",
1184 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1185
1186 debugf0(" DCT data interleave for ECC: %s, "
1187 "DRAM cleared since last warm reset: %s\n",
1188 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1189 (dct_memory_cleared(pvt) ? "yes" : "no"));
1190
1191 debugf0(" DCT channel interleave: %s, "
1192 "DCT interleave bits selector: 0x%x\n",
1193 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
6163b5d4
DT
1194 dct_sel_interleave_addr(pvt));
1195 }
1196
b2b0c605 1197 amd64_read_dct_pci_cfg(pvt, F10_DCTL_SEL_HIGH, &pvt->dct_sel_hi);
6163b5d4
DT
1198}
1199
f71d0a05
DT
1200/*
1201 * determine channel based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1202 * Interleaving Modes.
1203 */
11c75ead 1204static u8 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
6163b5d4
DT
1205 int hi_range_sel, u32 intlv_en)
1206{
11c75ead
BP
1207 u32 temp, dct_sel_high = (pvt->dct_sel_low >> 1) & 1;
1208 u8 cs;
6163b5d4
DT
1209
1210 if (dct_ganging_enabled(pvt))
1211 cs = 0;
1212 else if (hi_range_sel)
1213 cs = dct_sel_high;
1214 else if (dct_interleave_enabled(pvt)) {
f71d0a05
DT
1215 /*
1216 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1217 */
6163b5d4
DT
1218 if (dct_sel_interleave_addr(pvt) == 0)
1219 cs = sys_addr >> 6 & 1;
1220 else if ((dct_sel_interleave_addr(pvt) >> 1) & 1) {
1221 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1222
1223 if (dct_sel_interleave_addr(pvt) & 1)
1224 cs = (sys_addr >> 9 & 1) ^ temp;
1225 else
1226 cs = (sys_addr >> 6 & 1) ^ temp;
1227 } else if (intlv_en & 4)
1228 cs = sys_addr >> 15 & 1;
1229 else if (intlv_en & 2)
1230 cs = sys_addr >> 14 & 1;
1231 else if (intlv_en & 1)
1232 cs = sys_addr >> 13 & 1;
1233 else
1234 cs = sys_addr >> 12 & 1;
1235 } else if (dct_high_range_enabled(pvt) && !dct_ganging_enabled(pvt))
1236 cs = ~dct_sel_high & 1;
1237 else
1238 cs = 0;
1239
1240 return cs;
1241}
1242
1243static inline u32 f10_map_intlv_en_to_shift(u32 intlv_en)
1244{
1245 if (intlv_en == 1)
1246 return 1;
1247 else if (intlv_en == 3)
1248 return 2;
1249 else if (intlv_en == 7)
1250 return 3;
1251
1252 return 0;
1253}
1254
f71d0a05
DT
1255/* See F10h BKDG, 2.8.10.2 DctSelBaseOffset Programming */
1256static inline u64 f10_get_base_addr_offset(u64 sys_addr, int hi_range_sel,
6163b5d4
DT
1257 u32 dct_sel_base_addr,
1258 u64 dct_sel_base_off,
bc21fa57 1259 u32 hole_valid, u64 hole_off,
6163b5d4
DT
1260 u64 dram_base)
1261{
1262 u64 chan_off;
1263
1264 if (hi_range_sel) {
9975a5f2 1265 if (!(dct_sel_base_addr & 0xFFFF0000) &&
f71d0a05 1266 hole_valid && (sys_addr >= 0x100000000ULL))
bc21fa57 1267 chan_off = hole_off;
6163b5d4
DT
1268 else
1269 chan_off = dct_sel_base_off;
1270 } else {
f71d0a05 1271 if (hole_valid && (sys_addr >= 0x100000000ULL))
bc21fa57 1272 chan_off = hole_off;
6163b5d4
DT
1273 else
1274 chan_off = dram_base & 0xFFFFF8000000ULL;
1275 }
1276
1277 return (sys_addr & 0x0000FFFFFFFFFFC0ULL) -
1278 (chan_off & 0x0000FFFFFF800000ULL);
1279}
1280
1281/* Hack for the time being - Can we get this from BIOS?? */
1282#define CH0SPARE_RANK 0
1283#define CH1SPARE_RANK 1
1284
1285/*
1286 * checks if the csrow passed in is marked as SPARED, if so returns the new
1287 * spare row
1288 */
11c75ead 1289static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
6163b5d4
DT
1290{
1291 u32 swap_done;
1292 u32 bad_dram_cs;
1293
1294 /* Depending on channel, isolate respective SPARING info */
11c75ead 1295 if (dct) {
6163b5d4
DT
1296 swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare);
1297 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare);
1298 if (swap_done && (csrow == bad_dram_cs))
1299 csrow = CH1SPARE_RANK;
1300 } else {
1301 swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare);
1302 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare);
1303 if (swap_done && (csrow == bad_dram_cs))
1304 csrow = CH0SPARE_RANK;
1305 }
1306 return csrow;
1307}
1308
1309/*
1310 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1311 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1312 *
1313 * Return:
1314 * -EINVAL: NOT FOUND
1315 * 0..csrow = Chip-Select Row
1316 */
11c75ead 1317static int f10_lookup_addr_in_dct(u64 in_addr, u32 nid, u8 dct)
6163b5d4
DT
1318{
1319 struct mem_ctl_info *mci;
1320 struct amd64_pvt *pvt;
11c75ead 1321 u64 cs_base, cs_mask;
6163b5d4
DT
1322 int cs_found = -EINVAL;
1323 int csrow;
1324
cc4d8860 1325 mci = mcis[nid];
6163b5d4
DT
1326 if (!mci)
1327 return cs_found;
1328
1329 pvt = mci->pvt_info;
1330
11c75ead 1331 debugf1("input addr: 0x%llx, DCT: %d\n", in_addr, dct);
6163b5d4 1332
11c75ead
BP
1333 for_each_chip_select(csrow, dct, pvt) {
1334 if (!csrow_enabled(csrow, dct, pvt))
6163b5d4
DT
1335 continue;
1336
11c75ead 1337 get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
6163b5d4 1338
11c75ead
BP
1339 debugf1(" CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
1340 csrow, cs_base, cs_mask);
6163b5d4 1341
11c75ead 1342 cs_mask = ~cs_mask;
6163b5d4 1343
11c75ead
BP
1344 debugf1(" (InputAddr & ~CSMask)=0x%llx "
1345 "(CSBase & ~CSMask)=0x%llx\n",
1346 (in_addr & cs_mask), (cs_base & cs_mask));
6163b5d4 1347
11c75ead
BP
1348 if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
1349 cs_found = f10_process_possible_spare(pvt, dct, csrow);
6163b5d4
DT
1350
1351 debugf1(" MATCH csrow=%d\n", cs_found);
1352 break;
1353 }
1354 }
1355 return cs_found;
1356}
1357
f71d0a05 1358/* For a given @dram_range, check if @sys_addr falls within it. */
7f19bf75 1359static int f10_match_to_this_node(struct amd64_pvt *pvt, int range,
f71d0a05
DT
1360 u64 sys_addr, int *nid, int *chan_sel)
1361{
7f19bf75 1362 int cs_found = -EINVAL, high_range = 0;
7f19bf75 1363 u64 chan_addr, dct_sel_base_off;
11c75ead
BP
1364 u64 hole_off;
1365 u32 hole_valid, tmp, dct_sel_base;
1366 u32 intlv_shift;
1367 u8 channel;
f71d0a05 1368
7f19bf75
BP
1369 u8 node_id = dram_dst_node(pvt, range);
1370 u32 intlv_en = dram_intlv_en(pvt, range);
1371 u32 intlv_sel = dram_intlv_sel(pvt, range);
1372 u64 dram_base = get_dram_base(pvt, range);
f71d0a05 1373
7f19bf75
BP
1374 debugf1("(range %d) Base=0x%llx SystemAddr= 0x%llx Limit=0x%llx\n",
1375 range, dram_base, sys_addr, get_dram_limit(pvt, range));
f71d0a05
DT
1376
1377 /*
1378 * This assumes that one node's DHAR is the same as all the other
1379 * nodes' DHAR.
1380 */
bc21fa57
BP
1381 hole_off = f10_dhar_offset(pvt);
1382 hole_valid = (pvt->dhar & DHAR_VALID);
b2b0c605 1383 dct_sel_base_off = (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
f71d0a05 1384
bc21fa57 1385 debugf1(" HoleOffset=0x%016llx HoleValid=%d IntlvSel=0x%x\n",
f71d0a05
DT
1386 hole_off, hole_valid, intlv_sel);
1387
e726f3c3 1388 if (intlv_en &&
f71d0a05
DT
1389 (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1390 return -EINVAL;
1391
1392 dct_sel_base = dct_sel_baseaddr(pvt);
1393
1394 /*
1395 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1396 * select between DCT0 and DCT1.
1397 */
1398 if (dct_high_range_enabled(pvt) &&
1399 !dct_ganging_enabled(pvt) &&
1400 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1401 high_range = 1;
1402
1403 channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);
1404
1405 chan_addr = f10_get_base_addr_offset(sys_addr, high_range, dct_sel_base,
1406 dct_sel_base_off, hole_valid,
1407 hole_off, dram_base);
1408
1409 intlv_shift = f10_map_intlv_en_to_shift(intlv_en);
1410
1411 /* remove Node ID (in case of memory interleaving) */
1412 tmp = chan_addr & 0xFC0;
1413
1414 chan_addr = ((chan_addr >> intlv_shift) & 0xFFFFFFFFF000ULL) | tmp;
1415
1416 /* remove channel interleave and hash */
1417 if (dct_interleave_enabled(pvt) &&
1418 !dct_high_range_enabled(pvt) &&
1419 !dct_ganging_enabled(pvt)) {
1420 if (dct_sel_interleave_addr(pvt) != 1)
1421 chan_addr = (chan_addr >> 1) & 0xFFFFFFFFFFFFFFC0ULL;
1422 else {
1423 tmp = chan_addr & 0xFC0;
1424 chan_addr = ((chan_addr & 0xFFFFFFFFFFFFC000ULL) >> 1)
1425 | tmp;
1426 }
1427 }
1428
11c75ead 1429 debugf1(" (ChannelAddrLong=0x%llx)\n", chan_addr);
f71d0a05 1430
11c75ead 1431 cs_found = f10_lookup_addr_in_dct(chan_addr, node_id, channel);
f71d0a05
DT
1432
1433 if (cs_found >= 0) {
1434 *nid = node_id;
1435 *chan_sel = channel;
1436 }
1437 return cs_found;
1438}
1439
1440static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
1441 int *node, int *chan_sel)
1442{
7f19bf75 1443 int range, cs_found = -EINVAL;
f71d0a05 1444
7f19bf75 1445 for (range = 0; range < DRAM_RANGES; range++) {
f71d0a05 1446
7f19bf75 1447 if (!dram_rw(pvt, range))
f71d0a05
DT
1448 continue;
1449
7f19bf75
BP
1450 if ((get_dram_base(pvt, range) <= sys_addr) &&
1451 (get_dram_limit(pvt, range) >= sys_addr)) {
f71d0a05 1452
7f19bf75 1453 cs_found = f10_match_to_this_node(pvt, range,
f71d0a05
DT
1454 sys_addr, node,
1455 chan_sel);
1456 if (cs_found >= 0)
1457 break;
1458 }
1459 }
1460 return cs_found;
1461}
1462
1463/*
bdc30a0c
BP
1464 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1465 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
f71d0a05 1466 *
bdc30a0c
BP
1467 * The @sys_addr is usually an error address received from the hardware
1468 * (MCX_ADDR).
f71d0a05
DT
1469 */
1470static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
ad6a32e9 1471 struct err_regs *err_info,
f71d0a05
DT
1472 u64 sys_addr)
1473{
1474 struct amd64_pvt *pvt = mci->pvt_info;
1475 u32 page, offset;
f71d0a05 1476 int nid, csrow, chan = 0;
ad6a32e9 1477 u16 syndrome;
f71d0a05
DT
1478
1479 csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
1480
bdc30a0c
BP
1481 if (csrow < 0) {
1482 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1483 return;
1484 }
1485
1486 error_address_to_page_and_offset(sys_addr, &page, &offset);
f71d0a05 1487
ad6a32e9 1488 syndrome = extract_syndrome(err_info);
bdc30a0c
BP
1489
1490 /*
1491 * We need the syndromes for channel detection only when we're
1492 * ganged. Otherwise @chan should already contain the channel at
1493 * this point.
1494 */
962b70a1 1495 if (dct_ganging_enabled(pvt) && (pvt->nbcfg & K8_NBCFG_CHIPKILL))
bdc30a0c 1496 chan = get_channel_from_ecc_syndrome(mci, syndrome);
f71d0a05 1497
bdc30a0c
BP
1498 if (chan >= 0)
1499 edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
1500 EDAC_MOD_STR);
1501 else
f71d0a05 1502 /*
bdc30a0c 1503 * Channel unknown, report all channels on this CSROW as failed.
f71d0a05 1504 */
bdc30a0c 1505 for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
f71d0a05 1506 edac_mc_handle_ce(mci, page, offset, syndrome,
bdc30a0c 1507 csrow, chan, EDAC_MOD_STR);
f71d0a05
DT
1508}
1509
f71d0a05 1510/*
8566c4df 1511 * debug routine to display the memory sizes of all logical DIMMs and its
f71d0a05
DT
1512 * CSROWs as well
1513 */
8566c4df 1514static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt)
f71d0a05 1515{
603adaf6 1516 int dimm, size0, size1, factor = 0;
f71d0a05
DT
1517 u32 dbam;
1518 u32 *dcsb;
1519
8566c4df 1520 if (boot_cpu_data.x86 == 0xf) {
603adaf6
BP
1521 if (pvt->dclr0 & F10_WIDTH_128)
1522 factor = 1;
1523
8566c4df 1524 /* K8 families < revF not supported yet */
1433eb99 1525 if (pvt->ext_model < K8_REV_F)
8566c4df
BP
1526 return;
1527 else
1528 WARN_ON(ctrl != 0);
1529 }
1530
4d796364 1531 dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
11c75ead
BP
1532 dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
1533 : pvt->csels[0].csbases;
f71d0a05 1534
4d796364 1535 debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", ctrl, dbam);
f71d0a05 1536
8566c4df
BP
1537 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1538
f71d0a05
DT
1539 /* Dump memory sizes for DIMM and its CSROWs */
1540 for (dimm = 0; dimm < 4; dimm++) {
1541
1542 size0 = 0;
11c75ead 1543 if (dcsb[dimm*2] & DCSB_CS_ENABLE)
1433eb99 1544 size0 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
f71d0a05
DT
1545
1546 size1 = 0;
11c75ead 1547 if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
1433eb99 1548 size1 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
f71d0a05 1549
24f9a7fe
BP
1550 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
1551 dimm * 2, size0 << factor,
1552 dimm * 2 + 1, size1 << factor);
f71d0a05
DT
1553 }
1554}
1555
4d37607a
DT
1556static struct amd64_family_type amd64_family_types[] = {
1557 [K8_CPUS] = {
0092b20d 1558 .ctl_name = "K8",
8d5b5d9c
BP
1559 .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1560 .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
4d37607a 1561 .ops = {
1433eb99
BP
1562 .early_channel_count = k8_early_channel_count,
1563 .get_error_address = k8_get_error_address,
1433eb99
BP
1564 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1565 .dbam_to_cs = k8_dbam_to_chip_select,
b2b0c605 1566 .read_dct_pci_cfg = k8_read_dct_pci_cfg,
4d37607a
DT
1567 }
1568 },
1569 [F10_CPUS] = {
0092b20d 1570 .ctl_name = "F10h",
8d5b5d9c
BP
1571 .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1572 .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
4d37607a 1573 .ops = {
1433eb99
BP
1574 .early_channel_count = f10_early_channel_count,
1575 .get_error_address = f10_get_error_address,
1433eb99
BP
1576 .read_dram_ctl_register = f10_read_dram_ctl_register,
1577 .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
1578 .dbam_to_cs = f10_dbam_to_chip_select,
b2b0c605
BP
1579 .read_dct_pci_cfg = f10_read_dct_pci_cfg,
1580 }
1581 },
1582 [F15_CPUS] = {
1583 .ctl_name = "F15h",
1584 .ops = {
1585 .read_dct_pci_cfg = f15_read_dct_pci_cfg,
4d37607a
DT
1586 }
1587 },
4d37607a
DT
1588};
1589
1590static struct pci_dev *pci_get_related_function(unsigned int vendor,
1591 unsigned int device,
1592 struct pci_dev *related)
1593{
1594 struct pci_dev *dev = NULL;
1595
1596 dev = pci_get_device(vendor, device, dev);
1597 while (dev) {
1598 if ((dev->bus->number == related->bus->number) &&
1599 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1600 break;
1601 dev = pci_get_device(vendor, device, dev);
1602 }
1603
1604 return dev;
1605}
1606
b1289d6f 1607/*
bfc04aec
BP
1608 * These are tables of eigenvectors (one per line) which can be used for the
1609 * construction of the syndrome tables. The modified syndrome search algorithm
1610 * uses those to find the symbol in error and thus the DIMM.
b1289d6f 1611 *
bfc04aec 1612 * Algorithm courtesy of Ross LaFetra from AMD.
b1289d6f 1613 */
bfc04aec
BP
1614static u16 x4_vectors[] = {
1615 0x2f57, 0x1afe, 0x66cc, 0xdd88,
1616 0x11eb, 0x3396, 0x7f4c, 0xeac8,
1617 0x0001, 0x0002, 0x0004, 0x0008,
1618 0x1013, 0x3032, 0x4044, 0x8088,
1619 0x106b, 0x30d6, 0x70fc, 0xe0a8,
1620 0x4857, 0xc4fe, 0x13cc, 0x3288,
1621 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1622 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1623 0x15c1, 0x2a42, 0x89ac, 0x4758,
1624 0x2b03, 0x1602, 0x4f0c, 0xca08,
1625 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1626 0x8ba7, 0x465e, 0x244c, 0x1cc8,
1627 0x2b87, 0x164e, 0x642c, 0xdc18,
1628 0x40b9, 0x80de, 0x1094, 0x20e8,
1629 0x27db, 0x1eb6, 0x9dac, 0x7b58,
1630 0x11c1, 0x2242, 0x84ac, 0x4c58,
1631 0x1be5, 0x2d7a, 0x5e34, 0xa718,
1632 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1633 0x4c97, 0xc87e, 0x11fc, 0x33a8,
1634 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1635 0x16b3, 0x3d62, 0x4f34, 0x8518,
1636 0x1e2f, 0x391a, 0x5cac, 0xf858,
1637 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1638 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1639 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1640 0x4397, 0xc27e, 0x17fc, 0x3ea8,
1641 0x1617, 0x3d3e, 0x6464, 0xb8b8,
1642 0x23ff, 0x12aa, 0xab6c, 0x56d8,
1643 0x2dfb, 0x1ba6, 0x913c, 0x7328,
1644 0x185d, 0x2ca6, 0x7914, 0x9e28,
1645 0x171b, 0x3e36, 0x7d7c, 0xebe8,
1646 0x4199, 0x82ee, 0x19f4, 0x2e58,
1647 0x4807, 0xc40e, 0x130c, 0x3208,
1648 0x1905, 0x2e0a, 0x5804, 0xac08,
1649 0x213f, 0x132a, 0xadfc, 0x5ba8,
1650 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
b1289d6f
DT
1651};
1652
bfc04aec
BP
1653static u16 x8_vectors[] = {
1654 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1655 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1656 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1657 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1658 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1659 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1660 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1661 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1662 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1663 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1664 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1665 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1666 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1667 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1668 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1669 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1670 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1671 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1672 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1673};
1674
1675static int decode_syndrome(u16 syndrome, u16 *vectors, int num_vecs,
ad6a32e9 1676 int v_dim)
b1289d6f 1677{
bfc04aec
BP
1678 unsigned int i, err_sym;
1679
1680 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1681 u16 s = syndrome;
1682 int v_idx = err_sym * v_dim;
1683 int v_end = (err_sym + 1) * v_dim;
1684
1685 /* walk over all 16 bits of the syndrome */
1686 for (i = 1; i < (1U << 16); i <<= 1) {
1687
1688 /* if bit is set in that eigenvector... */
1689 if (v_idx < v_end && vectors[v_idx] & i) {
1690 u16 ev_comp = vectors[v_idx++];
1691
1692 /* ... and bit set in the modified syndrome, */
1693 if (s & i) {
1694 /* remove it. */
1695 s ^= ev_comp;
4d37607a 1696
bfc04aec
BP
1697 if (!s)
1698 return err_sym;
1699 }
b1289d6f 1700
bfc04aec
BP
1701 } else if (s & i)
1702 /* can't get to zero, move to next symbol */
1703 break;
1704 }
b1289d6f
DT
1705 }
1706
1707 debugf0("syndrome(%x) not found\n", syndrome);
1708 return -1;
1709}
d27bf6fa 1710
bfc04aec
BP
1711static int map_err_sym_to_channel(int err_sym, int sym_size)
1712{
1713 if (sym_size == 4)
1714 switch (err_sym) {
1715 case 0x20:
1716 case 0x21:
1717 return 0;
1718 break;
1719 case 0x22:
1720 case 0x23:
1721 return 1;
1722 break;
1723 default:
1724 return err_sym >> 4;
1725 break;
1726 }
1727 /* x8 symbols */
1728 else
1729 switch (err_sym) {
1730 /* imaginary bits not in a DIMM */
1731 case 0x10:
1732 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1733 err_sym);
1734 return -1;
1735 break;
1736
1737 case 0x11:
1738 return 0;
1739 break;
1740 case 0x12:
1741 return 1;
1742 break;
1743 default:
1744 return err_sym >> 3;
1745 break;
1746 }
1747 return -1;
1748}
1749
1750static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1751{
1752 struct amd64_pvt *pvt = mci->pvt_info;
ad6a32e9
BP
1753 int err_sym = -1;
1754
1755 if (pvt->syn_type == 8)
1756 err_sym = decode_syndrome(syndrome, x8_vectors,
1757 ARRAY_SIZE(x8_vectors),
1758 pvt->syn_type);
1759 else if (pvt->syn_type == 4)
1760 err_sym = decode_syndrome(syndrome, x4_vectors,
1761 ARRAY_SIZE(x4_vectors),
1762 pvt->syn_type);
1763 else {
24f9a7fe 1764 amd64_warn("Illegal syndrome type: %u\n", pvt->syn_type);
ad6a32e9 1765 return err_sym;
bfc04aec 1766 }
ad6a32e9
BP
1767
1768 return map_err_sym_to_channel(err_sym, pvt->syn_type);
bfc04aec
BP
1769}
1770
d27bf6fa
DT
1771/*
1772 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
1773 * ADDRESS and process.
1774 */
1775static void amd64_handle_ce(struct mem_ctl_info *mci,
ef44cc4c 1776 struct err_regs *info)
d27bf6fa
DT
1777{
1778 struct amd64_pvt *pvt = mci->pvt_info;
44e9e2ee 1779 u64 sys_addr;
d27bf6fa
DT
1780
1781 /* Ensure that the Error Address is VALID */
24f9a7fe
BP
1782 if (!(info->nbsh & K8_NBSH_VALID_ERROR_ADDR)) {
1783 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
d27bf6fa
DT
1784 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1785 return;
1786 }
1787
1f6bcee7 1788 sys_addr = pvt->ops->get_error_address(mci, info);
d27bf6fa 1789
24f9a7fe 1790 amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
d27bf6fa 1791
44e9e2ee 1792 pvt->ops->map_sysaddr_to_csrow(mci, info, sys_addr);
d27bf6fa
DT
1793}
1794
1795/* Handle any Un-correctable Errors (UEs) */
1796static void amd64_handle_ue(struct mem_ctl_info *mci,
ef44cc4c 1797 struct err_regs *info)
d27bf6fa 1798{
1f6bcee7
BP
1799 struct amd64_pvt *pvt = mci->pvt_info;
1800 struct mem_ctl_info *log_mci, *src_mci = NULL;
d27bf6fa 1801 int csrow;
44e9e2ee 1802 u64 sys_addr;
d27bf6fa 1803 u32 page, offset;
d27bf6fa
DT
1804
1805 log_mci = mci;
1806
24f9a7fe
BP
1807 if (!(info->nbsh & K8_NBSH_VALID_ERROR_ADDR)) {
1808 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
d27bf6fa
DT
1809 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1810 return;
1811 }
1812
1f6bcee7 1813 sys_addr = pvt->ops->get_error_address(mci, info);
d27bf6fa
DT
1814
1815 /*
1816 * Find out which node the error address belongs to. This may be
1817 * different from the node that detected the error.
1818 */
44e9e2ee 1819 src_mci = find_mc_by_sys_addr(mci, sys_addr);
d27bf6fa 1820 if (!src_mci) {
24f9a7fe
BP
1821 amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n",
1822 (unsigned long)sys_addr);
d27bf6fa
DT
1823 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1824 return;
1825 }
1826
1827 log_mci = src_mci;
1828
44e9e2ee 1829 csrow = sys_addr_to_csrow(log_mci, sys_addr);
d27bf6fa 1830 if (csrow < 0) {
24f9a7fe
BP
1831 amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n",
1832 (unsigned long)sys_addr);
d27bf6fa
DT
1833 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1834 } else {
44e9e2ee 1835 error_address_to_page_and_offset(sys_addr, &page, &offset);
d27bf6fa
DT
1836 edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
1837 }
1838}
1839
549d042d 1840static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
b69b29de 1841 struct err_regs *info)
d27bf6fa 1842{
62452882
BP
1843 u16 ec = EC(info->nbsl);
1844 u8 xec = XEC(info->nbsl, 0x1f);
17adea01 1845 int ecc_type = (info->nbsh >> 13) & 0x3;
d27bf6fa 1846
b70ef010
BP
1847 /* Bail early out if this was an 'observed' error */
1848 if (PP(ec) == K8_NBSL_PP_OBS)
1849 return;
d27bf6fa 1850
ecaf5606
BP
1851 /* Do only ECC errors */
1852 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
d27bf6fa 1853 return;
d27bf6fa 1854
ecaf5606 1855 if (ecc_type == 2)
d27bf6fa 1856 amd64_handle_ce(mci, info);
ecaf5606 1857 else if (ecc_type == 1)
d27bf6fa 1858 amd64_handle_ue(mci, info);
d27bf6fa
DT
1859}
1860
7cfd4a87 1861void amd64_decode_bus_error(int node_id, struct mce *m, u32 nbcfg)
d27bf6fa 1862{
cc4d8860 1863 struct mem_ctl_info *mci = mcis[node_id];
7cfd4a87 1864 struct err_regs regs;
d27bf6fa 1865
7cfd4a87
BP
1866 regs.nbsl = (u32) m->status;
1867 regs.nbsh = (u32)(m->status >> 32);
1868 regs.nbeal = (u32) m->addr;
1869 regs.nbeah = (u32)(m->addr >> 32);
1870 regs.nbcfg = nbcfg;
1871
1872 __amd64_decode_bus_error(mci, &regs);
d27bf6fa 1873
d27bf6fa
DT
1874 /*
1875 * Check the UE bit of the NB status high register, if set generate some
1876 * logs. If NOT a GART error, then process the event as a NO-INFO event.
1877 * If it was a GART error, skip that process.
549d042d
BP
1878 *
1879 * FIXME: this should go somewhere else, if at all.
d27bf6fa 1880 */
7cfd4a87 1881 if (regs.nbsh & K8_NBSH_UC_ERR && !report_gart_errors)
5110dbde 1882 edac_mc_handle_ue_no_info(mci, "UE bit is set");
549d042d 1883
d27bf6fa 1884}
d27bf6fa 1885
0ec449ee 1886/*
8d5b5d9c 1887 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
bbd0c1f6 1888 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
0ec449ee 1889 */
360b7f3c 1890static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
0ec449ee 1891{
0ec449ee 1892 /* Reserve the ADDRESS MAP Device */
8d5b5d9c
BP
1893 pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
1894 if (!pvt->F1) {
24f9a7fe
BP
1895 amd64_err("error address map device not found: "
1896 "vendor %x device 0x%x (broken BIOS?)\n",
1897 PCI_VENDOR_ID_AMD, f1_id);
bbd0c1f6 1898 return -ENODEV;
0ec449ee
DT
1899 }
1900
1901 /* Reserve the MISC Device */
8d5b5d9c
BP
1902 pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
1903 if (!pvt->F3) {
1904 pci_dev_put(pvt->F1);
1905 pvt->F1 = NULL;
0ec449ee 1906
24f9a7fe
BP
1907 amd64_err("error F3 device not found: "
1908 "vendor %x device 0x%x (broken BIOS?)\n",
1909 PCI_VENDOR_ID_AMD, f3_id);
0ec449ee 1910
bbd0c1f6 1911 return -ENODEV;
0ec449ee 1912 }
8d5b5d9c
BP
1913 debugf1("F1: %s\n", pci_name(pvt->F1));
1914 debugf1("F2: %s\n", pci_name(pvt->F2));
1915 debugf1("F3: %s\n", pci_name(pvt->F3));
0ec449ee
DT
1916
1917 return 0;
1918}
1919
360b7f3c 1920static void free_mc_sibling_devs(struct amd64_pvt *pvt)
0ec449ee 1921{
8d5b5d9c
BP
1922 pci_dev_put(pvt->F1);
1923 pci_dev_put(pvt->F3);
0ec449ee
DT
1924}
1925
1926/*
1927 * Retrieve the hardware registers of the memory controller (this includes the
1928 * 'Address Map' and 'Misc' device regs)
1929 */
360b7f3c 1930static void read_mc_regs(struct amd64_pvt *pvt)
0ec449ee
DT
1931{
1932 u64 msr_val;
ad6a32e9 1933 u32 tmp;
7f19bf75 1934 int range;
0ec449ee
DT
1935
1936 /*
1937 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
1938 * those are Read-As-Zero
1939 */
e97f8bb8
BP
1940 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
1941 debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem);
0ec449ee
DT
1942
1943 /* check first whether TOP_MEM2 is enabled */
1944 rdmsrl(MSR_K8_SYSCFG, msr_val);
1945 if (msr_val & (1U << 21)) {
e97f8bb8
BP
1946 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
1947 debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
0ec449ee
DT
1948 } else
1949 debugf0(" TOP_MEM2 disabled.\n");
1950
8d5b5d9c 1951 amd64_read_pci_cfg(pvt->F3, K8_NBCAP, &pvt->nbcap);
0ec449ee
DT
1952
1953 if (pvt->ops->read_dram_ctl_register)
1954 pvt->ops->read_dram_ctl_register(pvt);
1955
7f19bf75
BP
1956 for (range = 0; range < DRAM_RANGES; range++) {
1957 u8 rw;
0ec449ee 1958
7f19bf75
BP
1959 /* read settings for this DRAM range */
1960 read_dram_base_limit_regs(pvt, range);
1961
1962 rw = dram_rw(pvt, range);
1963 if (!rw)
1964 continue;
1965
1966 debugf1(" DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
1967 range,
1968 get_dram_base(pvt, range),
1969 get_dram_limit(pvt, range));
1970
1971 debugf1(" IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
1972 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
1973 (rw & 0x1) ? "R" : "-",
1974 (rw & 0x2) ? "W" : "-",
1975 dram_intlv_sel(pvt, range),
1976 dram_dst_node(pvt, range));
0ec449ee
DT
1977 }
1978
b2b0c605 1979 read_dct_base_mask(pvt);
0ec449ee 1980
bc21fa57 1981 amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
0ec449ee
DT
1982 amd64_read_dbam_reg(pvt);
1983
8d5b5d9c 1984 amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
0ec449ee 1985
b2b0c605
BP
1986 amd64_read_dct_pci_cfg(pvt, F10_DCLR_0, &pvt->dclr0);
1987 amd64_read_dct_pci_cfg(pvt, F10_DCHR_0, &pvt->dchr0);
0ec449ee 1988
b2b0c605
BP
1989 if (!dct_ganging_enabled(pvt)) {
1990 amd64_read_dct_pci_cfg(pvt, F10_DCLR_1, &pvt->dclr1);
1991 amd64_read_dct_pci_cfg(pvt, F10_DCHR_1, &pvt->dchr1);
0ec449ee 1992 }
ad6a32e9 1993
b2b0c605
BP
1994 if (boot_cpu_data.x86 >= 0x10)
1995 amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
1996
ad6a32e9
BP
1997 if (boot_cpu_data.x86 == 0x10 &&
1998 boot_cpu_data.x86_model > 7 &&
1999 /* F3x180[EccSymbolSize]=1 => x8 symbols */
2000 tmp & BIT(25))
2001 pvt->syn_type = 8;
2002 else
2003 pvt->syn_type = 4;
2004
b2b0c605 2005 dump_misc_regs(pvt);
0ec449ee
DT
2006}
2007
2008/*
2009 * NOTE: CPU Revision Dependent code
2010 *
2011 * Input:
11c75ead 2012 * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
0ec449ee
DT
2013 * k8 private pointer to -->
2014 * DRAM Bank Address mapping register
2015 * node_id
2016 * DCL register where dual_channel_active is
2017 *
2018 * The DBAM register consists of 4 sets of 4 bits each definitions:
2019 *
2020 * Bits: CSROWs
2021 * 0-3 CSROWs 0 and 1
2022 * 4-7 CSROWs 2 and 3
2023 * 8-11 CSROWs 4 and 5
2024 * 12-15 CSROWs 6 and 7
2025 *
2026 * Values range from: 0 to 15
2027 * The meaning of the values depends on CPU revision and dual-channel state,
2028 * see relevant BKDG more info.
2029 *
2030 * The memory controller provides for total of only 8 CSROWs in its current
2031 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2032 * single channel or two (2) DIMMs in dual channel mode.
2033 *
2034 * The following code logic collapses the various tables for CSROW based on CPU
2035 * revision.
2036 *
2037 * Returns:
2038 * The number of PAGE_SIZE pages on the specified CSROW number it
2039 * encompasses
2040 *
2041 */
2042static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
2043{
1433eb99 2044 u32 cs_mode, nr_pages;
0ec449ee
DT
2045
2046 /*
2047 * The math on this doesn't look right on the surface because x/2*4 can
2048 * be simplified to x*2 but this expression makes use of the fact that
2049 * it is integral math where 1/2=0. This intermediate value becomes the
2050 * number of bits to shift the DBAM register to extract the proper CSROW
2051 * field.
2052 */
1433eb99 2053 cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
0ec449ee 2054
1433eb99 2055 nr_pages = pvt->ops->dbam_to_cs(pvt, cs_mode) << (20 - PAGE_SHIFT);
0ec449ee
DT
2056
2057 /*
2058 * If dual channel then double the memory size of single channel.
2059 * Channel count is 1 or 2
2060 */
2061 nr_pages <<= (pvt->channel_count - 1);
2062
1433eb99 2063 debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
0ec449ee
DT
2064 debugf0(" nr_pages= %u channel-count = %d\n",
2065 nr_pages, pvt->channel_count);
2066
2067 return nr_pages;
2068}
2069
2070/*
2071 * Initialize the array of csrow attribute instances, based on the values
2072 * from pci config hardware registers.
2073 */
360b7f3c 2074static int init_csrows(struct mem_ctl_info *mci)
0ec449ee
DT
2075{
2076 struct csrow_info *csrow;
2299ef71 2077 struct amd64_pvt *pvt = mci->pvt_info;
11c75ead 2078 u64 input_addr_min, input_addr_max, sys_addr, base, mask;
2299ef71 2079 u32 val;
6ba5dcdc 2080 int i, empty = 1;
0ec449ee 2081
2299ef71 2082 amd64_read_pci_cfg(pvt->F3, K8_NBCFG, &val);
0ec449ee 2083
2299ef71
BP
2084 pvt->nbcfg = val;
2085 pvt->ctl_error_info.nbcfg = val;
0ec449ee 2086
2299ef71
BP
2087 debugf0("node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2088 pvt->mc_node_id, val,
2089 !!(val & K8_NBCFG_CHIPKILL), !!(val & K8_NBCFG_ECC_ENABLE));
0ec449ee 2090
11c75ead 2091 for_each_chip_select(i, 0, pvt) {
0ec449ee
DT
2092 csrow = &mci->csrows[i];
2093
11c75ead 2094 if (!csrow_enabled(i, 0, pvt)) {
0ec449ee
DT
2095 debugf1("----CSROW %d EMPTY for node %d\n", i,
2096 pvt->mc_node_id);
2097 continue;
2098 }
2099
2100 debugf1("----CSROW %d VALID for MC node %d\n",
2101 i, pvt->mc_node_id);
2102
2103 empty = 0;
2104 csrow->nr_pages = amd64_csrow_nr_pages(i, pvt);
2105 find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
2106 sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
2107 csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
2108 sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
2109 csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
11c75ead
BP
2110
2111 get_cs_base_and_mask(pvt, i, 0, &base, &mask);
2112 csrow->page_mask = ~mask;
0ec449ee
DT
2113 /* 8 bytes of resolution */
2114
24f9a7fe 2115 csrow->mtype = amd64_determine_memory_type(pvt, i);
0ec449ee
DT
2116
2117 debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
2118 debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
2119 (unsigned long)input_addr_min,
2120 (unsigned long)input_addr_max);
2121 debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
2122 (unsigned long)sys_addr, csrow->page_mask);
2123 debugf1(" nr_pages: %u first_page: 0x%lx "
2124 "last_page: 0x%lx\n",
2125 (unsigned)csrow->nr_pages,
2126 csrow->first_page, csrow->last_page);
2127
2128 /*
2129 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2130 */
2131 if (pvt->nbcfg & K8_NBCFG_ECC_ENABLE)
2132 csrow->edac_mode =
2133 (pvt->nbcfg & K8_NBCFG_CHIPKILL) ?
2134 EDAC_S4ECD4ED : EDAC_SECDED;
2135 else
2136 csrow->edac_mode = EDAC_NONE;
2137 }
2138
2139 return empty;
2140}
d27bf6fa 2141
f6d6ae96
BP
2142/* get all cores on this DCT */
2143static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, int nid)
2144{
2145 int cpu;
2146
2147 for_each_online_cpu(cpu)
2148 if (amd_get_nb_id(cpu) == nid)
2149 cpumask_set_cpu(cpu, mask);
2150}
2151
2152/* check MCG_CTL on all the cpus on this node */
2153static bool amd64_nb_mce_bank_enabled_on_node(int nid)
2154{
2155 cpumask_var_t mask;
50542251 2156 int cpu, nbe;
f6d6ae96
BP
2157 bool ret = false;
2158
2159 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
24f9a7fe 2160 amd64_warn("%s: Error allocating mask\n", __func__);
f6d6ae96
BP
2161 return false;
2162 }
2163
2164 get_cpus_on_this_dct_cpumask(mask, nid);
2165
f6d6ae96
BP
2166 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2167
2168 for_each_cpu(cpu, mask) {
50542251
BP
2169 struct msr *reg = per_cpu_ptr(msrs, cpu);
2170 nbe = reg->l & K8_MSR_MCGCTL_NBE;
f6d6ae96
BP
2171
2172 debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
50542251 2173 cpu, reg->q,
f6d6ae96
BP
2174 (nbe ? "enabled" : "disabled"));
2175
2176 if (!nbe)
2177 goto out;
f6d6ae96
BP
2178 }
2179 ret = true;
2180
2181out:
f6d6ae96
BP
2182 free_cpumask_var(mask);
2183 return ret;
2184}
2185
2299ef71 2186static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on)
f6d6ae96
BP
2187{
2188 cpumask_var_t cmask;
50542251 2189 int cpu;
f6d6ae96
BP
2190
2191 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
24f9a7fe 2192 amd64_warn("%s: error allocating mask\n", __func__);
f6d6ae96
BP
2193 return false;
2194 }
2195
ae7bb7c6 2196 get_cpus_on_this_dct_cpumask(cmask, nid);
f6d6ae96 2197
f6d6ae96
BP
2198 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2199
2200 for_each_cpu(cpu, cmask) {
2201
50542251
BP
2202 struct msr *reg = per_cpu_ptr(msrs, cpu);
2203
f6d6ae96 2204 if (on) {
50542251 2205 if (reg->l & K8_MSR_MCGCTL_NBE)
ae7bb7c6 2206 s->flags.nb_mce_enable = 1;
f6d6ae96 2207
50542251 2208 reg->l |= K8_MSR_MCGCTL_NBE;
f6d6ae96
BP
2209 } else {
2210 /*
d95cf4de 2211 * Turn off NB MCE reporting only when it was off before
f6d6ae96 2212 */
ae7bb7c6 2213 if (!s->flags.nb_mce_enable)
50542251 2214 reg->l &= ~K8_MSR_MCGCTL_NBE;
f6d6ae96 2215 }
f6d6ae96
BP
2216 }
2217 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2218
f6d6ae96
BP
2219 free_cpumask_var(cmask);
2220
2221 return 0;
2222}
2223
2299ef71
BP
2224static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2225 struct pci_dev *F3)
f9431992 2226{
2299ef71 2227 bool ret = true;
f6d6ae96 2228 u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
f9431992 2229
2299ef71
BP
2230 if (toggle_ecc_err_reporting(s, nid, ON)) {
2231 amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2232 return false;
2233 }
2234
2235 amd64_read_pci_cfg(F3, K8_NBCTL, &value);
f9431992 2236
ae7bb7c6
BP
2237 /* turn on UECCEn and CECCEn bits */
2238 s->old_nbctl = value & mask;
2239 s->nbctl_valid = true;
f9431992
DT
2240
2241 value |= mask;
b2b0c605 2242 amd64_write_pci_cfg(F3, K8_NBCTL, value);
f9431992 2243
2299ef71 2244 amd64_read_pci_cfg(F3, K8_NBCFG, &value);
f9431992 2245
2299ef71
BP
2246 debugf0("1: node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2247 nid, value,
2248 !!(value & K8_NBCFG_CHIPKILL), !!(value & K8_NBCFG_ECC_ENABLE));
f9431992
DT
2249
2250 if (!(value & K8_NBCFG_ECC_ENABLE)) {
24f9a7fe 2251 amd64_warn("DRAM ECC disabled on this node, enabling...\n");
f9431992 2252
ae7bb7c6 2253 s->flags.nb_ecc_prev = 0;
d95cf4de 2254
f9431992
DT
2255 /* Attempt to turn on DRAM ECC Enable */
2256 value |= K8_NBCFG_ECC_ENABLE;
b2b0c605 2257 amd64_write_pci_cfg(F3, K8_NBCFG, value);
f9431992 2258
2299ef71 2259 amd64_read_pci_cfg(F3, K8_NBCFG, &value);
f9431992
DT
2260
2261 if (!(value & K8_NBCFG_ECC_ENABLE)) {
24f9a7fe
BP
2262 amd64_warn("Hardware rejected DRAM ECC enable,"
2263 "check memory DIMM configuration.\n");
2299ef71 2264 ret = false;
f9431992 2265 } else {
24f9a7fe 2266 amd64_info("Hardware accepted DRAM ECC Enable\n");
f9431992 2267 }
d95cf4de 2268 } else {
ae7bb7c6 2269 s->flags.nb_ecc_prev = 1;
f9431992 2270 }
d95cf4de 2271
2299ef71
BP
2272 debugf0("2: node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2273 nid, value,
2274 !!(value & K8_NBCFG_CHIPKILL), !!(value & K8_NBCFG_ECC_ENABLE));
f9431992 2275
2299ef71 2276 return ret;
f9431992
DT
2277}
2278
360b7f3c
BP
2279static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2280 struct pci_dev *F3)
f9431992 2281{
f6d6ae96 2282 u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
f9431992 2283
ae7bb7c6 2284 if (!s->nbctl_valid)
f9431992
DT
2285 return;
2286
360b7f3c 2287 amd64_read_pci_cfg(F3, K8_NBCTL, &value);
f9431992 2288 value &= ~mask;
ae7bb7c6 2289 value |= s->old_nbctl;
f9431992 2290
b2b0c605 2291 amd64_write_pci_cfg(F3, K8_NBCTL, value);
f9431992 2292
ae7bb7c6
BP
2293 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
2294 if (!s->flags.nb_ecc_prev) {
360b7f3c 2295 amd64_read_pci_cfg(F3, K8_NBCFG, &value);
d95cf4de 2296 value &= ~K8_NBCFG_ECC_ENABLE;
b2b0c605 2297 amd64_write_pci_cfg(F3, K8_NBCFG, value);
d95cf4de
BP
2298 }
2299
2300 /* restore the NB Enable MCGCTL bit */
2299ef71 2301 if (toggle_ecc_err_reporting(s, nid, OFF))
24f9a7fe 2302 amd64_warn("Error restoring NB MCGCTL settings!\n");
f9431992
DT
2303}
2304
2305/*
2299ef71
BP
2306 * EDAC requires that the BIOS have ECC enabled before
2307 * taking over the processing of ECC errors. A command line
2308 * option allows to force-enable hardware ECC later in
2309 * enable_ecc_error_reporting().
f9431992 2310 */
cab4d277
BP
2311static const char *ecc_msg =
2312 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2313 " Either enable ECC checking or force module loading by setting "
2314 "'ecc_enable_override'.\n"
2315 " (Note that use of the override may cause unknown side effects.)\n";
be3468e8 2316
2299ef71 2317static bool ecc_enabled(struct pci_dev *F3, u8 nid)
f9431992
DT
2318{
2319 u32 value;
2299ef71 2320 u8 ecc_en = 0;
06724535 2321 bool nb_mce_en = false;
f9431992 2322
2299ef71 2323 amd64_read_pci_cfg(F3, K8_NBCFG, &value);
f9431992 2324
2299ef71
BP
2325 ecc_en = !!(value & K8_NBCFG_ECC_ENABLE);
2326 amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
f9431992 2327
2299ef71 2328 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
06724535 2329 if (!nb_mce_en)
2299ef71
BP
2330 amd64_notice("NB MCE bank disabled, set MSR "
2331 "0x%08x[4] on node %d to enable.\n",
2332 MSR_IA32_MCG_CTL, nid);
f9431992 2333
2299ef71
BP
2334 if (!ecc_en || !nb_mce_en) {
2335 amd64_notice("%s", ecc_msg);
2336 return false;
2337 }
2338 return true;
f9431992
DT
2339}
2340
7d6034d3
DT
2341struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
2342 ARRAY_SIZE(amd64_inj_attrs) +
2343 1];
2344
2345struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
2346
360b7f3c 2347static void set_mc_sysfs_attrs(struct mem_ctl_info *mci)
7d6034d3
DT
2348{
2349 unsigned int i = 0, j = 0;
2350
2351 for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
2352 sysfs_attrs[i] = amd64_dbg_attrs[i];
2353
a135cef7
BP
2354 if (boot_cpu_data.x86 >= 0x10)
2355 for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
2356 sysfs_attrs[i] = amd64_inj_attrs[j];
7d6034d3
DT
2357
2358 sysfs_attrs[i] = terminator;
2359
2360 mci->mc_driver_sysfs_attributes = sysfs_attrs;
2361}
2362
360b7f3c 2363static void setup_mci_misc_attrs(struct mem_ctl_info *mci)
7d6034d3
DT
2364{
2365 struct amd64_pvt *pvt = mci->pvt_info;
2366
2367 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2368 mci->edac_ctl_cap = EDAC_FLAG_NONE;
7d6034d3
DT
2369
2370 if (pvt->nbcap & K8_NBCAP_SECDED)
2371 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2372
2373 if (pvt->nbcap & K8_NBCAP_CHIPKILL)
2374 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2375
2376 mci->edac_cap = amd64_determine_edac_cap(pvt);
2377 mci->mod_name = EDAC_MOD_STR;
2378 mci->mod_ver = EDAC_AMD64_VERSION;
0092b20d 2379 mci->ctl_name = pvt->ctl_name;
8d5b5d9c 2380 mci->dev_name = pci_name(pvt->F2);
7d6034d3
DT
2381 mci->ctl_page_to_phys = NULL;
2382
7d6034d3
DT
2383 /* memory scrubber interface */
2384 mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2385 mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2386}
2387
0092b20d
BP
2388/*
2389 * returns a pointer to the family descriptor on success, NULL otherwise.
2390 */
2391static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
395ae783 2392{
0092b20d
BP
2393 u8 fam = boot_cpu_data.x86;
2394 struct amd64_family_type *fam_type = NULL;
2395
2396 switch (fam) {
395ae783 2397 case 0xf:
0092b20d 2398 fam_type = &amd64_family_types[K8_CPUS];
b8cfa02f 2399 pvt->ops = &amd64_family_types[K8_CPUS].ops;
0092b20d
BP
2400 pvt->ctl_name = fam_type->ctl_name;
2401 pvt->min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
395ae783
BP
2402 break;
2403 case 0x10:
0092b20d 2404 fam_type = &amd64_family_types[F10_CPUS];
b8cfa02f 2405 pvt->ops = &amd64_family_types[F10_CPUS].ops;
0092b20d
BP
2406 pvt->ctl_name = fam_type->ctl_name;
2407 pvt->min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
395ae783
BP
2408 break;
2409
2410 default:
24f9a7fe 2411 amd64_err("Unsupported family!\n");
0092b20d 2412 return NULL;
395ae783 2413 }
0092b20d 2414
b8cfa02f
BP
2415 pvt->ext_model = boot_cpu_data.x86_model >> 4;
2416
24f9a7fe 2417 amd64_info("%s %sdetected (node %d).\n", pvt->ctl_name,
0092b20d 2418 (fam == 0xf ?
24f9a7fe
BP
2419 (pvt->ext_model >= K8_REV_F ? "revF or later "
2420 : "revE or earlier ")
2421 : ""), pvt->mc_node_id);
0092b20d 2422 return fam_type;
395ae783
BP
2423}
2424
2299ef71 2425static int amd64_init_one_instance(struct pci_dev *F2)
7d6034d3
DT
2426{
2427 struct amd64_pvt *pvt = NULL;
0092b20d 2428 struct amd64_family_type *fam_type = NULL;
360b7f3c 2429 struct mem_ctl_info *mci = NULL;
7d6034d3 2430 int err = 0, ret;
360b7f3c 2431 u8 nid = get_node_id(F2);
7d6034d3
DT
2432
2433 ret = -ENOMEM;
2434 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2435 if (!pvt)
360b7f3c 2436 goto err_ret;
7d6034d3 2437
360b7f3c 2438 pvt->mc_node_id = nid;
8d5b5d9c 2439 pvt->F2 = F2;
7d6034d3 2440
395ae783 2441 ret = -EINVAL;
0092b20d
BP
2442 fam_type = amd64_per_family_init(pvt);
2443 if (!fam_type)
395ae783
BP
2444 goto err_free;
2445
7d6034d3 2446 ret = -ENODEV;
360b7f3c 2447 err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
7d6034d3
DT
2448 if (err)
2449 goto err_free;
2450
360b7f3c 2451 read_mc_regs(pvt);
7d6034d3 2452
7d6034d3
DT
2453 /*
2454 * We need to determine how many memory channels there are. Then use
2455 * that information for calculating the size of the dynamic instance
360b7f3c 2456 * tables in the 'mci' structure.
7d6034d3 2457 */
360b7f3c 2458 ret = -EINVAL;
7d6034d3
DT
2459 pvt->channel_count = pvt->ops->early_channel_count(pvt);
2460 if (pvt->channel_count < 0)
360b7f3c 2461 goto err_siblings;
7d6034d3
DT
2462
2463 ret = -ENOMEM;
11c75ead 2464 mci = edac_mc_alloc(0, pvt->csels[0].b_cnt, pvt->channel_count, nid);
7d6034d3 2465 if (!mci)
360b7f3c 2466 goto err_siblings;
7d6034d3
DT
2467
2468 mci->pvt_info = pvt;
8d5b5d9c 2469 mci->dev = &pvt->F2->dev;
7d6034d3 2470
360b7f3c
BP
2471 setup_mci_misc_attrs(mci);
2472
2473 if (init_csrows(mci))
7d6034d3
DT
2474 mci->edac_cap = EDAC_FLAG_NONE;
2475
360b7f3c 2476 set_mc_sysfs_attrs(mci);
7d6034d3
DT
2477
2478 ret = -ENODEV;
2479 if (edac_mc_add_mc(mci)) {
2480 debugf1("failed edac_mc_add_mc()\n");
2481 goto err_add_mc;
2482 }
2483
549d042d
BP
2484 /* register stuff with EDAC MCE */
2485 if (report_gart_errors)
2486 amd_report_gart_errors(true);
2487
2488 amd_register_ecc_decoder(amd64_decode_bus_error);
2489
360b7f3c
BP
2490 mcis[nid] = mci;
2491
2492 atomic_inc(&drv_instances);
2493
7d6034d3
DT
2494 return 0;
2495
2496err_add_mc:
2497 edac_mc_free(mci);
2498
360b7f3c
BP
2499err_siblings:
2500 free_mc_sibling_devs(pvt);
7d6034d3 2501
360b7f3c
BP
2502err_free:
2503 kfree(pvt);
7d6034d3 2504
360b7f3c 2505err_ret:
7d6034d3
DT
2506 return ret;
2507}
2508
2299ef71 2509static int __devinit amd64_probe_one_instance(struct pci_dev *pdev,
b8cfa02f 2510 const struct pci_device_id *mc_type)
7d6034d3 2511{
ae7bb7c6 2512 u8 nid = get_node_id(pdev);
2299ef71 2513 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
ae7bb7c6 2514 struct ecc_settings *s;
2299ef71 2515 int ret = 0;
7d6034d3 2516
7d6034d3 2517 ret = pci_enable_device(pdev);
b8cfa02f
BP
2518 if (ret < 0) {
2519 debugf0("ret=%d\n", ret);
2520 return -EIO;
2521 }
7d6034d3 2522
ae7bb7c6
BP
2523 ret = -ENOMEM;
2524 s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
2525 if (!s)
2299ef71 2526 goto err_out;
ae7bb7c6
BP
2527
2528 ecc_stngs[nid] = s;
2529
2299ef71
BP
2530 if (!ecc_enabled(F3, nid)) {
2531 ret = -ENODEV;
2532
2533 if (!ecc_enable_override)
2534 goto err_enable;
2535
2536 amd64_warn("Forcing ECC on!\n");
2537
2538 if (!enable_ecc_error_reporting(s, nid, F3))
2539 goto err_enable;
2540 }
2541
2542 ret = amd64_init_one_instance(pdev);
360b7f3c 2543 if (ret < 0) {
ae7bb7c6 2544 amd64_err("Error probing instance: %d\n", nid);
360b7f3c
BP
2545 restore_ecc_error_reporting(s, nid, F3);
2546 }
7d6034d3
DT
2547
2548 return ret;
2299ef71
BP
2549
2550err_enable:
2551 kfree(s);
2552 ecc_stngs[nid] = NULL;
2553
2554err_out:
2555 return ret;
7d6034d3
DT
2556}
2557
2558static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
2559{
2560 struct mem_ctl_info *mci;
2561 struct amd64_pvt *pvt;
360b7f3c
BP
2562 u8 nid = get_node_id(pdev);
2563 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2564 struct ecc_settings *s = ecc_stngs[nid];
7d6034d3
DT
2565
2566 /* Remove from EDAC CORE tracking list */
2567 mci = edac_mc_del_mc(&pdev->dev);
2568 if (!mci)
2569 return;
2570
2571 pvt = mci->pvt_info;
2572
360b7f3c 2573 restore_ecc_error_reporting(s, nid, F3);
7d6034d3 2574
360b7f3c 2575 free_mc_sibling_devs(pvt);
7d6034d3 2576
549d042d
BP
2577 /* unregister from EDAC MCE */
2578 amd_report_gart_errors(false);
2579 amd_unregister_ecc_decoder(amd64_decode_bus_error);
2580
360b7f3c
BP
2581 kfree(ecc_stngs[nid]);
2582 ecc_stngs[nid] = NULL;
ae7bb7c6 2583
7d6034d3 2584 /* Free the EDAC CORE resources */
8f68ed97 2585 mci->pvt_info = NULL;
360b7f3c 2586 mcis[nid] = NULL;
8f68ed97
BP
2587
2588 kfree(pvt);
7d6034d3
DT
2589 edac_mc_free(mci);
2590}
2591
2592/*
2593 * This table is part of the interface for loading drivers for PCI devices. The
2594 * PCI core identifies what devices are on a system during boot, and then
2595 * inquiry this table to see if this driver is for a given device found.
2596 */
2597static const struct pci_device_id amd64_pci_table[] __devinitdata = {
2598 {
2599 .vendor = PCI_VENDOR_ID_AMD,
2600 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2601 .subvendor = PCI_ANY_ID,
2602 .subdevice = PCI_ANY_ID,
2603 .class = 0,
2604 .class_mask = 0,
7d6034d3
DT
2605 },
2606 {
2607 .vendor = PCI_VENDOR_ID_AMD,
2608 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2609 .subvendor = PCI_ANY_ID,
2610 .subdevice = PCI_ANY_ID,
2611 .class = 0,
2612 .class_mask = 0,
7d6034d3 2613 },
7d6034d3
DT
2614 {0, }
2615};
2616MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2617
2618static struct pci_driver amd64_pci_driver = {
2619 .name = EDAC_MOD_STR,
2299ef71 2620 .probe = amd64_probe_one_instance,
7d6034d3
DT
2621 .remove = __devexit_p(amd64_remove_one_instance),
2622 .id_table = amd64_pci_table,
2623};
2624
360b7f3c 2625static void setup_pci_device(void)
7d6034d3
DT
2626{
2627 struct mem_ctl_info *mci;
2628 struct amd64_pvt *pvt;
2629
2630 if (amd64_ctl_pci)
2631 return;
2632
cc4d8860 2633 mci = mcis[0];
7d6034d3
DT
2634 if (mci) {
2635
2636 pvt = mci->pvt_info;
2637 amd64_ctl_pci =
8d5b5d9c 2638 edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
7d6034d3
DT
2639
2640 if (!amd64_ctl_pci) {
2641 pr_warning("%s(): Unable to create PCI control\n",
2642 __func__);
2643
2644 pr_warning("%s(): PCI error report via EDAC not set\n",
2645 __func__);
2646 }
2647 }
2648}
2649
2650static int __init amd64_edac_init(void)
2651{
360b7f3c 2652 int err = -ENODEV;
7d6034d3
DT
2653
2654 edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");
2655
2656 opstate_init();
2657
9653a5c7 2658 if (amd_cache_northbridges() < 0)
56b34b91 2659 goto err_ret;
7d6034d3 2660
cc4d8860 2661 err = -ENOMEM;
ae7bb7c6
BP
2662 mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
2663 ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
360b7f3c 2664 if (!(mcis && ecc_stngs))
cc4d8860
BP
2665 goto err_ret;
2666
50542251 2667 msrs = msrs_alloc();
56b34b91 2668 if (!msrs)
360b7f3c 2669 goto err_free;
50542251 2670
7d6034d3
DT
2671 err = pci_register_driver(&amd64_pci_driver);
2672 if (err)
56b34b91 2673 goto err_pci;
7d6034d3 2674
56b34b91 2675 err = -ENODEV;
360b7f3c
BP
2676 if (!atomic_read(&drv_instances))
2677 goto err_no_instances;
7d6034d3 2678
360b7f3c
BP
2679 setup_pci_device();
2680 return 0;
7d6034d3 2681
360b7f3c 2682err_no_instances:
7d6034d3 2683 pci_unregister_driver(&amd64_pci_driver);
cc4d8860 2684
56b34b91
BP
2685err_pci:
2686 msrs_free(msrs);
2687 msrs = NULL;
cc4d8860 2688
360b7f3c
BP
2689err_free:
2690 kfree(mcis);
2691 mcis = NULL;
2692
2693 kfree(ecc_stngs);
2694 ecc_stngs = NULL;
2695
56b34b91 2696err_ret:
7d6034d3
DT
2697 return err;
2698}
2699
2700static void __exit amd64_edac_exit(void)
2701{
2702 if (amd64_ctl_pci)
2703 edac_pci_release_generic_ctl(amd64_ctl_pci);
2704
2705 pci_unregister_driver(&amd64_pci_driver);
50542251 2706
ae7bb7c6
BP
2707 kfree(ecc_stngs);
2708 ecc_stngs = NULL;
2709
cc4d8860
BP
2710 kfree(mcis);
2711 mcis = NULL;
2712
50542251
BP
2713 msrs_free(msrs);
2714 msrs = NULL;
7d6034d3
DT
2715}
2716
2717module_init(amd64_edac_init);
2718module_exit(amd64_edac_exit);
2719
2720MODULE_LICENSE("GPL");
2721MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
2722 "Dave Peterson, Thayne Harbaugh");
2723MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
2724 EDAC_AMD64_VERSION);
2725
2726module_param(edac_op_state, int, 0444);
2727MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
This page took 0.296146 seconds and 5 git commands to generate.