edac: edac_mc_handle_error(): add an error_count parameter
[deliverable/linux.git] / drivers / edac / amd64_edac.c
CommitLineData
2bc65418 1#include "amd64_edac.h"
23ac4ae8 2#include <asm/amd_nb.h>
2bc65418
DT
3
4static struct edac_pci_ctl_info *amd64_ctl_pci;
5
6static int report_gart_errors;
7module_param(report_gart_errors, int, 0644);
8
9/*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
12 */
13static int ecc_enable_override;
14module_param(ecc_enable_override, int, 0644);
15
a29d8b8e 16static struct msr __percpu *msrs;
50542251 17
360b7f3c
BP
18/*
19 * count successfully initialized driver instances for setup_pci_device()
20 */
21static atomic_t drv_instances = ATOMIC_INIT(0);
22
cc4d8860
BP
23/* Per-node driver instances */
24static struct mem_ctl_info **mcis;
ae7bb7c6 25static struct ecc_settings **ecc_stngs;
2bc65418 26
b70ef010
BP
27/*
28 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
29 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
30 * or higher value'.
31 *
32 *FIXME: Produce a better mapping/linearisation.
33 */
39094443
BP
34struct scrubrate {
35 u32 scrubval; /* bit pattern for scrub rate */
36 u32 bandwidth; /* bandwidth consumed (bytes/sec) */
37} scrubrates[] = {
b70ef010
BP
38 { 0x01, 1600000000UL},
39 { 0x02, 800000000UL},
40 { 0x03, 400000000UL},
41 { 0x04, 200000000UL},
42 { 0x05, 100000000UL},
43 { 0x06, 50000000UL},
44 { 0x07, 25000000UL},
45 { 0x08, 12284069UL},
46 { 0x09, 6274509UL},
47 { 0x0A, 3121951UL},
48 { 0x0B, 1560975UL},
49 { 0x0C, 781440UL},
50 { 0x0D, 390720UL},
51 { 0x0E, 195300UL},
52 { 0x0F, 97650UL},
53 { 0x10, 48854UL},
54 { 0x11, 24427UL},
55 { 0x12, 12213UL},
56 { 0x13, 6101UL},
57 { 0x14, 3051UL},
58 { 0x15, 1523UL},
59 { 0x16, 761UL},
60 { 0x00, 0UL}, /* scrubbing off */
61};
62
b2b0c605
BP
63static int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
64 u32 *val, const char *func)
65{
66 int err = 0;
67
68 err = pci_read_config_dword(pdev, offset, val);
69 if (err)
70 amd64_warn("%s: error reading F%dx%03x.\n",
71 func, PCI_FUNC(pdev->devfn), offset);
72
73 return err;
74}
75
76int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
77 u32 val, const char *func)
78{
79 int err = 0;
80
81 err = pci_write_config_dword(pdev, offset, val);
82 if (err)
83 amd64_warn("%s: error writing to F%dx%03x.\n",
84 func, PCI_FUNC(pdev->devfn), offset);
85
86 return err;
87}
88
89/*
90 *
91 * Depending on the family, F2 DCT reads need special handling:
92 *
93 * K8: has a single DCT only
94 *
95 * F10h: each DCT has its own set of regs
96 * DCT0 -> F2x040..
97 * DCT1 -> F2x140..
98 *
99 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
100 *
101 */
102static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
103 const char *func)
104{
105 if (addr >= 0x100)
106 return -EINVAL;
107
108 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
109}
110
111static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
112 const char *func)
113{
114 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
115}
116
73ba8593
BP
117/*
118 * Select DCT to which PCI cfg accesses are routed
119 */
120static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
121{
122 u32 reg = 0;
123
124 amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
125 reg &= 0xfffffffe;
126 reg |= dct;
127 amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
128}
129
b2b0c605
BP
130static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
131 const char *func)
132{
b2b0c605
BP
133 u8 dct = 0;
134
135 if (addr >= 0x140 && addr <= 0x1a0) {
136 dct = 1;
137 addr -= 0x100;
138 }
139
73ba8593 140 f15h_select_dct(pvt, dct);
b2b0c605
BP
141
142 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
143}
144
2bc65418
DT
145/*
146 * Memory scrubber control interface. For K8, memory scrubbing is handled by
147 * hardware and can involve L2 cache, dcache as well as the main memory. With
148 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
149 * functionality.
150 *
151 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
152 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
153 * bytes/sec for the setting.
154 *
155 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
156 * other archs, we might not have access to the caches directly.
157 */
158
159/*
160 * scan the scrub rate mapping table for a close or matching bandwidth value to
161 * issue. If requested is too big, then use last maximum value found.
162 */
395ae783 163static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
2bc65418
DT
164{
165 u32 scrubval;
166 int i;
167
168 /*
169 * map the configured rate (new_bw) to a value specific to the AMD64
170 * memory controller and apply to register. Search for the first
171 * bandwidth entry that is greater or equal than the setting requested
172 * and program that. If at last entry, turn off DRAM scrubbing.
173 */
174 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
175 /*
176 * skip scrub rates which aren't recommended
177 * (see F10 BKDG, F3x58)
178 */
395ae783 179 if (scrubrates[i].scrubval < min_rate)
2bc65418
DT
180 continue;
181
182 if (scrubrates[i].bandwidth <= new_bw)
183 break;
184
185 /*
186 * if no suitable bandwidth found, turn off DRAM scrubbing
187 * entirely by falling back to the last element in the
188 * scrubrates array.
189 */
190 }
191
192 scrubval = scrubrates[i].scrubval;
2bc65418 193
5980bb9c 194 pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
2bc65418 195
39094443
BP
196 if (scrubval)
197 return scrubrates[i].bandwidth;
198
2bc65418
DT
199 return 0;
200}
201
395ae783 202static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
2bc65418
DT
203{
204 struct amd64_pvt *pvt = mci->pvt_info;
87b3e0e6 205 u32 min_scrubrate = 0x5;
2bc65418 206
87b3e0e6
BP
207 if (boot_cpu_data.x86 == 0xf)
208 min_scrubrate = 0x0;
209
73ba8593
BP
210 /* F15h Erratum #505 */
211 if (boot_cpu_data.x86 == 0x15)
212 f15h_select_dct(pvt, 0);
213
87b3e0e6 214 return __amd64_set_scrub_rate(pvt->F3, bw, min_scrubrate);
2bc65418
DT
215}
216
39094443 217static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
2bc65418
DT
218{
219 struct amd64_pvt *pvt = mci->pvt_info;
220 u32 scrubval = 0;
39094443 221 int i, retval = -EINVAL;
2bc65418 222
73ba8593
BP
223 /* F15h Erratum #505 */
224 if (boot_cpu_data.x86 == 0x15)
225 f15h_select_dct(pvt, 0);
226
5980bb9c 227 amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
2bc65418
DT
228
229 scrubval = scrubval & 0x001F;
230
926311fd 231 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
2bc65418 232 if (scrubrates[i].scrubval == scrubval) {
39094443 233 retval = scrubrates[i].bandwidth;
2bc65418
DT
234 break;
235 }
236 }
39094443 237 return retval;
2bc65418
DT
238}
239
6775763a 240/*
7f19bf75
BP
241 * returns true if the SysAddr given by sys_addr matches the
242 * DRAM base/limit associated with node_id
6775763a 243 */
b487c33e
BP
244static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr,
245 unsigned nid)
6775763a 246{
7f19bf75 247 u64 addr;
6775763a
DT
248
249 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
250 * all ones if the most significant implemented address bit is 1.
251 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
252 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
253 * Application Programming.
254 */
255 addr = sys_addr & 0x000000ffffffffffull;
256
7f19bf75
BP
257 return ((addr >= get_dram_base(pvt, nid)) &&
258 (addr <= get_dram_limit(pvt, nid)));
6775763a
DT
259}
260
261/*
262 * Attempt to map a SysAddr to a node. On success, return a pointer to the
263 * mem_ctl_info structure for the node that the SysAddr maps to.
264 *
265 * On failure, return NULL.
266 */
267static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
268 u64 sys_addr)
269{
270 struct amd64_pvt *pvt;
b487c33e 271 unsigned node_id;
6775763a
DT
272 u32 intlv_en, bits;
273
274 /*
275 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
276 * 3.4.4.2) registers to map the SysAddr to a node ID.
277 */
278 pvt = mci->pvt_info;
279
280 /*
281 * The value of this field should be the same for all DRAM Base
282 * registers. Therefore we arbitrarily choose to read it from the
283 * register for node 0.
284 */
7f19bf75 285 intlv_en = dram_intlv_en(pvt, 0);
6775763a
DT
286
287 if (intlv_en == 0) {
7f19bf75 288 for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
6775763a 289 if (amd64_base_limit_match(pvt, sys_addr, node_id))
8edc5445 290 goto found;
6775763a 291 }
8edc5445 292 goto err_no_match;
6775763a
DT
293 }
294
72f158fe
BP
295 if (unlikely((intlv_en != 0x01) &&
296 (intlv_en != 0x03) &&
297 (intlv_en != 0x07))) {
24f9a7fe 298 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
6775763a
DT
299 return NULL;
300 }
301
302 bits = (((u32) sys_addr) >> 12) & intlv_en;
303
304 for (node_id = 0; ; ) {
7f19bf75 305 if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
6775763a
DT
306 break; /* intlv_sel field matches */
307
7f19bf75 308 if (++node_id >= DRAM_RANGES)
6775763a
DT
309 goto err_no_match;
310 }
311
312 /* sanity test for sys_addr */
313 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
24f9a7fe
BP
314 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
315 "range for node %d with node interleaving enabled.\n",
316 __func__, sys_addr, node_id);
6775763a
DT
317 return NULL;
318 }
319
320found:
b487c33e 321 return edac_mc_find((int)node_id);
6775763a
DT
322
323err_no_match:
956b9ba1
JP
324 edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
325 (unsigned long)sys_addr);
6775763a
DT
326
327 return NULL;
328}
e2ce7255
DT
329
330/*
11c75ead
BP
331 * compute the CS base address of the @csrow on the DRAM controller @dct.
332 * For details see F2x[5C:40] in the processor's BKDG
e2ce7255 333 */
11c75ead
BP
334static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
335 u64 *base, u64 *mask)
e2ce7255 336{
11c75ead
BP
337 u64 csbase, csmask, base_bits, mask_bits;
338 u8 addr_shift;
e2ce7255 339
11c75ead
BP
340 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
341 csbase = pvt->csels[dct].csbases[csrow];
342 csmask = pvt->csels[dct].csmasks[csrow];
343 base_bits = GENMASK(21, 31) | GENMASK(9, 15);
344 mask_bits = GENMASK(21, 29) | GENMASK(9, 15);
345 addr_shift = 4;
346 } else {
347 csbase = pvt->csels[dct].csbases[csrow];
348 csmask = pvt->csels[dct].csmasks[csrow >> 1];
349 addr_shift = 8;
e2ce7255 350
11c75ead
BP
351 if (boot_cpu_data.x86 == 0x15)
352 base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13);
353 else
354 base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13);
355 }
e2ce7255 356
11c75ead 357 *base = (csbase & base_bits) << addr_shift;
e2ce7255 358
11c75ead
BP
359 *mask = ~0ULL;
360 /* poke holes for the csmask */
361 *mask &= ~(mask_bits << addr_shift);
362 /* OR them in */
363 *mask |= (csmask & mask_bits) << addr_shift;
e2ce7255
DT
364}
365
11c75ead
BP
366#define for_each_chip_select(i, dct, pvt) \
367 for (i = 0; i < pvt->csels[dct].b_cnt; i++)
368
614ec9d8
BP
369#define chip_select_base(i, dct, pvt) \
370 pvt->csels[dct].csbases[i]
371
11c75ead
BP
372#define for_each_chip_select_mask(i, dct, pvt) \
373 for (i = 0; i < pvt->csels[dct].m_cnt; i++)
374
e2ce7255
DT
375/*
376 * @input_addr is an InputAddr associated with the node given by mci. Return the
377 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
378 */
379static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
380{
381 struct amd64_pvt *pvt;
382 int csrow;
383 u64 base, mask;
384
385 pvt = mci->pvt_info;
386
11c75ead
BP
387 for_each_chip_select(csrow, 0, pvt) {
388 if (!csrow_enabled(csrow, 0, pvt))
e2ce7255
DT
389 continue;
390
11c75ead
BP
391 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
392
393 mask = ~mask;
e2ce7255
DT
394
395 if ((input_addr & mask) == (base & mask)) {
956b9ba1
JP
396 edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
397 (unsigned long)input_addr, csrow,
398 pvt->mc_node_id);
e2ce7255
DT
399
400 return csrow;
401 }
402 }
956b9ba1
JP
403 edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
404 (unsigned long)input_addr, pvt->mc_node_id);
e2ce7255
DT
405
406 return -1;
407}
408
e2ce7255
DT
409/*
410 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
411 * for the node represented by mci. Info is passed back in *hole_base,
412 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
413 * info is invalid. Info may be invalid for either of the following reasons:
414 *
415 * - The revision of the node is not E or greater. In this case, the DRAM Hole
416 * Address Register does not exist.
417 *
418 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
419 * indicating that its contents are not valid.
420 *
421 * The values passed back in *hole_base, *hole_offset, and *hole_size are
422 * complete 32-bit values despite the fact that the bitfields in the DHAR
423 * only represent bits 31-24 of the base and offset values.
424 */
425int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
426 u64 *hole_offset, u64 *hole_size)
427{
428 struct amd64_pvt *pvt = mci->pvt_info;
429 u64 base;
430
431 /* only revE and later have the DRAM Hole Address Register */
1433eb99 432 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
956b9ba1
JP
433 edac_dbg(1, " revision %d for node %d does not support DHAR\n",
434 pvt->ext_model, pvt->mc_node_id);
e2ce7255
DT
435 return 1;
436 }
437
bc21fa57 438 /* valid for Fam10h and above */
c8e518d5 439 if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
956b9ba1 440 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this system\n");
e2ce7255
DT
441 return 1;
442 }
443
c8e518d5 444 if (!dhar_valid(pvt)) {
956b9ba1
JP
445 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this node %d\n",
446 pvt->mc_node_id);
e2ce7255
DT
447 return 1;
448 }
449
450 /* This node has Memory Hoisting */
451
452 /* +------------------+--------------------+--------------------+-----
453 * | memory | DRAM hole | relocated |
454 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
455 * | | | DRAM hole |
456 * | | | [0x100000000, |
457 * | | | (0x100000000+ |
458 * | | | (0xffffffff-x))] |
459 * +------------------+--------------------+--------------------+-----
460 *
461 * Above is a diagram of physical memory showing the DRAM hole and the
462 * relocated addresses from the DRAM hole. As shown, the DRAM hole
463 * starts at address x (the base address) and extends through address
464 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
465 * addresses in the hole so that they start at 0x100000000.
466 */
467
bc21fa57 468 base = dhar_base(pvt);
e2ce7255
DT
469
470 *hole_base = base;
471 *hole_size = (0x1ull << 32) - base;
472
473 if (boot_cpu_data.x86 > 0xf)
bc21fa57 474 *hole_offset = f10_dhar_offset(pvt);
e2ce7255 475 else
bc21fa57 476 *hole_offset = k8_dhar_offset(pvt);
e2ce7255 477
956b9ba1
JP
478 edac_dbg(1, " DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
479 pvt->mc_node_id, (unsigned long)*hole_base,
480 (unsigned long)*hole_offset, (unsigned long)*hole_size);
e2ce7255
DT
481
482 return 0;
483}
484EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
485
93c2df58
DT
486/*
487 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
488 * assumed that sys_addr maps to the node given by mci.
489 *
490 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
491 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
492 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
493 * then it is also involved in translating a SysAddr to a DramAddr. Sections
494 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
495 * These parts of the documentation are unclear. I interpret them as follows:
496 *
497 * When node n receives a SysAddr, it processes the SysAddr as follows:
498 *
499 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
500 * Limit registers for node n. If the SysAddr is not within the range
501 * specified by the base and limit values, then node n ignores the Sysaddr
502 * (since it does not map to node n). Otherwise continue to step 2 below.
503 *
504 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
505 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
506 * the range of relocated addresses (starting at 0x100000000) from the DRAM
507 * hole. If not, skip to step 3 below. Else get the value of the
508 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
509 * offset defined by this value from the SysAddr.
510 *
511 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
512 * Base register for node n. To obtain the DramAddr, subtract the base
513 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
514 */
515static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
516{
7f19bf75 517 struct amd64_pvt *pvt = mci->pvt_info;
93c2df58
DT
518 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
519 int ret = 0;
520
7f19bf75 521 dram_base = get_dram_base(pvt, pvt->mc_node_id);
93c2df58
DT
522
523 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
524 &hole_size);
525 if (!ret) {
526 if ((sys_addr >= (1ull << 32)) &&
527 (sys_addr < ((1ull << 32) + hole_size))) {
528 /* use DHAR to translate SysAddr to DramAddr */
529 dram_addr = sys_addr - hole_offset;
530
956b9ba1
JP
531 edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
532 (unsigned long)sys_addr,
533 (unsigned long)dram_addr);
93c2df58
DT
534
535 return dram_addr;
536 }
537 }
538
539 /*
540 * Translate the SysAddr to a DramAddr as shown near the start of
541 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
542 * only deals with 40-bit values. Therefore we discard bits 63-40 of
543 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
544 * discard are all 1s. Otherwise the bits we discard are all 0s. See
545 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
546 * Programmer's Manual Volume 1 Application Programming.
547 */
f678b8cc 548 dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base;
93c2df58 549
956b9ba1
JP
550 edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
551 (unsigned long)sys_addr, (unsigned long)dram_addr);
93c2df58
DT
552 return dram_addr;
553}
554
555/*
556 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
557 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
558 * for node interleaving.
559 */
560static int num_node_interleave_bits(unsigned intlv_en)
561{
562 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
563 int n;
564
565 BUG_ON(intlv_en > 7);
566 n = intlv_shift_table[intlv_en];
567 return n;
568}
569
570/* Translate the DramAddr given by @dram_addr to an InputAddr. */
571static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
572{
573 struct amd64_pvt *pvt;
574 int intlv_shift;
575 u64 input_addr;
576
577 pvt = mci->pvt_info;
578
579 /*
580 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
581 * concerning translating a DramAddr to an InputAddr.
582 */
7f19bf75 583 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
f678b8cc
BP
584 input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) +
585 (dram_addr & 0xfff);
93c2df58 586
956b9ba1
JP
587 edac_dbg(2, " Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
588 intlv_shift, (unsigned long)dram_addr,
589 (unsigned long)input_addr);
93c2df58
DT
590
591 return input_addr;
592}
593
594/*
595 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
596 * assumed that @sys_addr maps to the node given by mci.
597 */
598static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
599{
600 u64 input_addr;
601
602 input_addr =
603 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
604
956b9ba1
JP
605 edac_dbg(2, "SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
606 (unsigned long)sys_addr, (unsigned long)input_addr);
93c2df58
DT
607
608 return input_addr;
609}
610
611
612/*
613 * @input_addr is an InputAddr associated with the node represented by mci.
614 * Translate @input_addr to a DramAddr and return the result.
615 */
616static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
617{
618 struct amd64_pvt *pvt;
b487c33e 619 unsigned node_id, intlv_shift;
93c2df58
DT
620 u64 bits, dram_addr;
621 u32 intlv_sel;
622
623 /*
624 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
625 * shows how to translate a DramAddr to an InputAddr. Here we reverse
626 * this procedure. When translating from a DramAddr to an InputAddr, the
627 * bits used for node interleaving are discarded. Here we recover these
628 * bits from the IntlvSel field of the DRAM Limit register (section
629 * 3.4.4.2) for the node that input_addr is associated with.
630 */
631 pvt = mci->pvt_info;
632 node_id = pvt->mc_node_id;
b487c33e
BP
633
634 BUG_ON(node_id > 7);
93c2df58 635
7f19bf75 636 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
93c2df58 637 if (intlv_shift == 0) {
956b9ba1
JP
638 edac_dbg(1, " InputAddr 0x%lx translates to DramAddr of same value\n",
639 (unsigned long)input_addr);
93c2df58
DT
640
641 return input_addr;
642 }
643
f678b8cc
BP
644 bits = ((input_addr & GENMASK(12, 35)) << intlv_shift) +
645 (input_addr & 0xfff);
93c2df58 646
7f19bf75 647 intlv_sel = dram_intlv_sel(pvt, node_id) & ((1 << intlv_shift) - 1);
93c2df58
DT
648 dram_addr = bits + (intlv_sel << 12);
649
956b9ba1
JP
650 edac_dbg(1, "InputAddr 0x%lx translates to DramAddr 0x%lx (%d node interleave bits)\n",
651 (unsigned long)input_addr,
652 (unsigned long)dram_addr, intlv_shift);
93c2df58
DT
653
654 return dram_addr;
655}
656
657/*
658 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
659 * @dram_addr to a SysAddr.
660 */
661static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
662{
663 struct amd64_pvt *pvt = mci->pvt_info;
7f19bf75 664 u64 hole_base, hole_offset, hole_size, base, sys_addr;
93c2df58
DT
665 int ret = 0;
666
667 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
668 &hole_size);
669 if (!ret) {
670 if ((dram_addr >= hole_base) &&
671 (dram_addr < (hole_base + hole_size))) {
672 sys_addr = dram_addr + hole_offset;
673
956b9ba1
JP
674 edac_dbg(1, "using DHAR to translate DramAddr 0x%lx to SysAddr 0x%lx\n",
675 (unsigned long)dram_addr,
676 (unsigned long)sys_addr);
93c2df58
DT
677
678 return sys_addr;
679 }
680 }
681
7f19bf75 682 base = get_dram_base(pvt, pvt->mc_node_id);
93c2df58
DT
683 sys_addr = dram_addr + base;
684
685 /*
686 * The sys_addr we have computed up to this point is a 40-bit value
687 * because the k8 deals with 40-bit values. However, the value we are
688 * supposed to return is a full 64-bit physical address. The AMD
689 * x86-64 architecture specifies that the most significant implemented
690 * address bit through bit 63 of a physical address must be either all
691 * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
692 * 64-bit value below. See section 3.4.2 of AMD publication 24592:
693 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
694 * Programming.
695 */
696 sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
697
956b9ba1
JP
698 edac_dbg(1, " Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
699 pvt->mc_node_id, (unsigned long)dram_addr,
700 (unsigned long)sys_addr);
93c2df58
DT
701
702 return sys_addr;
703}
704
705/*
706 * @input_addr is an InputAddr associated with the node given by mci. Translate
707 * @input_addr to a SysAddr.
708 */
709static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
710 u64 input_addr)
711{
712 return dram_addr_to_sys_addr(mci,
713 input_addr_to_dram_addr(mci, input_addr));
714}
715
93c2df58
DT
716/* Map the Error address to a PAGE and PAGE OFFSET. */
717static inline void error_address_to_page_and_offset(u64 error_address,
718 u32 *page, u32 *offset)
719{
720 *page = (u32) (error_address >> PAGE_SHIFT);
721 *offset = ((u32) error_address) & ~PAGE_MASK;
722}
723
724/*
725 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
726 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
727 * of a node that detected an ECC memory error. mci represents the node that
728 * the error address maps to (possibly different from the node that detected
729 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
730 * error.
731 */
732static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
733{
734 int csrow;
735
736 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
737
738 if (csrow == -1)
24f9a7fe
BP
739 amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
740 "address 0x%lx\n", (unsigned long)sys_addr);
93c2df58
DT
741 return csrow;
742}
e2ce7255 743
bfc04aec 744static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
2da11654 745
2da11654
DT
746/*
747 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
748 * are ECC capable.
749 */
1f6189ed 750static unsigned long amd64_determine_edac_cap(struct amd64_pvt *pvt)
2da11654 751{
cb328507 752 u8 bit;
1f6189ed 753 unsigned long edac_cap = EDAC_FLAG_NONE;
2da11654 754
1433eb99 755 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
2da11654
DT
756 ? 19
757 : 17;
758
584fcff4 759 if (pvt->dclr0 & BIT(bit))
2da11654
DT
760 edac_cap = EDAC_FLAG_SECDED;
761
762 return edac_cap;
763}
764
8c671751 765static void amd64_debug_display_dimm_sizes(struct amd64_pvt *, u8);
2da11654 766
68798e17
BP
767static void amd64_dump_dramcfg_low(u32 dclr, int chan)
768{
956b9ba1 769 edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
68798e17 770
956b9ba1
JP
771 edac_dbg(1, " DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
772 (dclr & BIT(16)) ? "un" : "",
773 (dclr & BIT(19)) ? "yes" : "no");
68798e17 774
956b9ba1
JP
775 edac_dbg(1, " PAR/ERR parity: %s\n",
776 (dclr & BIT(8)) ? "enabled" : "disabled");
68798e17 777
cb328507 778 if (boot_cpu_data.x86 == 0x10)
956b9ba1
JP
779 edac_dbg(1, " DCT 128bit mode width: %s\n",
780 (dclr & BIT(11)) ? "128b" : "64b");
68798e17 781
956b9ba1
JP
782 edac_dbg(1, " x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
783 (dclr & BIT(12)) ? "yes" : "no",
784 (dclr & BIT(13)) ? "yes" : "no",
785 (dclr & BIT(14)) ? "yes" : "no",
786 (dclr & BIT(15)) ? "yes" : "no");
68798e17
BP
787}
788
2da11654 789/* Display and decode various NB registers for debug purposes. */
b2b0c605 790static void dump_misc_regs(struct amd64_pvt *pvt)
2da11654 791{
956b9ba1 792 edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
68798e17 793
956b9ba1
JP
794 edac_dbg(1, " NB two channel DRAM capable: %s\n",
795 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
2da11654 796
956b9ba1
JP
797 edac_dbg(1, " ECC capable: %s, ChipKill ECC capable: %s\n",
798 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
799 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
68798e17
BP
800
801 amd64_dump_dramcfg_low(pvt->dclr0, 0);
2da11654 802
956b9ba1 803 edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
2da11654 804
956b9ba1
JP
805 edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
806 pvt->dhar, dhar_base(pvt),
807 (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt)
808 : f10_dhar_offset(pvt));
2da11654 809
956b9ba1 810 edac_dbg(1, " DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
2da11654 811
8c671751 812 amd64_debug_display_dimm_sizes(pvt, 0);
4d796364 813
8de1d91e 814 /* everything below this point is Fam10h and above */
4d796364 815 if (boot_cpu_data.x86 == 0xf)
2da11654 816 return;
4d796364 817
8c671751 818 amd64_debug_display_dimm_sizes(pvt, 1);
2da11654 819
a3b7db09 820 amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
ad6a32e9 821
8de1d91e 822 /* Only if NOT ganged does dclr1 have valid info */
68798e17
BP
823 if (!dct_ganging_enabled(pvt))
824 amd64_dump_dramcfg_low(pvt->dclr1, 1);
2da11654
DT
825}
826
94be4bff 827/*
11c75ead 828 * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
94be4bff 829 */
11c75ead 830static void prep_chip_selects(struct amd64_pvt *pvt)
94be4bff 831{
1433eb99 832 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
11c75ead
BP
833 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
834 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
9d858bb1 835 } else {
11c75ead
BP
836 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
837 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
94be4bff
DT
838 }
839}
840
841/*
11c75ead 842 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
94be4bff 843 */
b2b0c605 844static void read_dct_base_mask(struct amd64_pvt *pvt)
94be4bff 845{
11c75ead 846 int cs;
94be4bff 847
11c75ead 848 prep_chip_selects(pvt);
94be4bff 849
11c75ead 850 for_each_chip_select(cs, 0, pvt) {
71d2a32e
BP
851 int reg0 = DCSB0 + (cs * 4);
852 int reg1 = DCSB1 + (cs * 4);
11c75ead
BP
853 u32 *base0 = &pvt->csels[0].csbases[cs];
854 u32 *base1 = &pvt->csels[1].csbases[cs];
b2b0c605 855
11c75ead 856 if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
956b9ba1
JP
857 edac_dbg(0, " DCSB0[%d]=0x%08x reg: F2x%x\n",
858 cs, *base0, reg0);
94be4bff 859
11c75ead
BP
860 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
861 continue;
b2b0c605 862
11c75ead 863 if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
956b9ba1
JP
864 edac_dbg(0, " DCSB1[%d]=0x%08x reg: F2x%x\n",
865 cs, *base1, reg1);
94be4bff
DT
866 }
867
11c75ead 868 for_each_chip_select_mask(cs, 0, pvt) {
71d2a32e
BP
869 int reg0 = DCSM0 + (cs * 4);
870 int reg1 = DCSM1 + (cs * 4);
11c75ead
BP
871 u32 *mask0 = &pvt->csels[0].csmasks[cs];
872 u32 *mask1 = &pvt->csels[1].csmasks[cs];
b2b0c605 873
11c75ead 874 if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
956b9ba1
JP
875 edac_dbg(0, " DCSM0[%d]=0x%08x reg: F2x%x\n",
876 cs, *mask0, reg0);
94be4bff 877
11c75ead
BP
878 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
879 continue;
b2b0c605 880
11c75ead 881 if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
956b9ba1
JP
882 edac_dbg(0, " DCSM1[%d]=0x%08x reg: F2x%x\n",
883 cs, *mask1, reg1);
94be4bff
DT
884 }
885}
886
24f9a7fe 887static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
94be4bff
DT
888{
889 enum mem_type type;
890
cb328507
BP
891 /* F15h supports only DDR3 */
892 if (boot_cpu_data.x86 >= 0x15)
893 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
894 else if (boot_cpu_data.x86 == 0x10 || pvt->ext_model >= K8_REV_F) {
6b4c0bde
BP
895 if (pvt->dchr0 & DDR3_MODE)
896 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
897 else
898 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
94be4bff 899 } else {
94be4bff
DT
900 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
901 }
902
24f9a7fe 903 amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
94be4bff
DT
904
905 return type;
906}
907
cb328507 908/* Get the number of DCT channels the memory controller is using. */
ddff876d
DT
909static int k8_early_channel_count(struct amd64_pvt *pvt)
910{
cb328507 911 int flag;
ddff876d 912
9f56da0e 913 if (pvt->ext_model >= K8_REV_F)
ddff876d 914 /* RevF (NPT) and later */
41d8bfab 915 flag = pvt->dclr0 & WIDTH_128;
9f56da0e 916 else
ddff876d
DT
917 /* RevE and earlier */
918 flag = pvt->dclr0 & REVE_WIDTH_128;
ddff876d
DT
919
920 /* not used */
921 pvt->dclr1 = 0;
922
923 return (flag) ? 2 : 1;
924}
925
70046624
BP
926/* On F10h and later ErrAddr is MC4_ADDR[47:1] */
927static u64 get_error_address(struct mce *m)
ddff876d 928{
c1ae6830
BP
929 struct cpuinfo_x86 *c = &boot_cpu_data;
930 u64 addr;
70046624
BP
931 u8 start_bit = 1;
932 u8 end_bit = 47;
933
c1ae6830 934 if (c->x86 == 0xf) {
70046624
BP
935 start_bit = 3;
936 end_bit = 39;
937 }
938
c1ae6830
BP
939 addr = m->addr & GENMASK(start_bit, end_bit);
940
941 /*
942 * Erratum 637 workaround
943 */
944 if (c->x86 == 0x15) {
945 struct amd64_pvt *pvt;
946 u64 cc6_base, tmp_addr;
947 u32 tmp;
948 u8 mce_nid, intlv_en;
949
950 if ((addr & GENMASK(24, 47)) >> 24 != 0x00fdf7)
951 return addr;
952
953 mce_nid = amd_get_nb_id(m->extcpu);
954 pvt = mcis[mce_nid]->pvt_info;
955
956 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
957 intlv_en = tmp >> 21 & 0x7;
958
959 /* add [47:27] + 3 trailing bits */
960 cc6_base = (tmp & GENMASK(0, 20)) << 3;
961
962 /* reverse and add DramIntlvEn */
963 cc6_base |= intlv_en ^ 0x7;
964
965 /* pin at [47:24] */
966 cc6_base <<= 24;
967
968 if (!intlv_en)
969 return cc6_base | (addr & GENMASK(0, 23));
970
971 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);
972
973 /* faster log2 */
974 tmp_addr = (addr & GENMASK(12, 23)) << __fls(intlv_en + 1);
975
976 /* OR DramIntlvSel into bits [14:12] */
977 tmp_addr |= (tmp & GENMASK(21, 23)) >> 9;
978
979 /* add remaining [11:0] bits from original MC4_ADDR */
980 tmp_addr |= addr & GENMASK(0, 11);
981
982 return cc6_base | tmp_addr;
983 }
984
985 return addr;
ddff876d
DT
986}
987
7f19bf75 988static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
ddff876d 989{
f08e457c 990 struct cpuinfo_x86 *c = &boot_cpu_data;
71d2a32e 991 int off = range << 3;
ddff876d 992
7f19bf75
BP
993 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
994 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
ddff876d 995
f08e457c 996 if (c->x86 == 0xf)
7f19bf75 997 return;
ddff876d 998
7f19bf75
BP
999 if (!dram_rw(pvt, range))
1000 return;
ddff876d 1001
7f19bf75
BP
1002 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
1003 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
f08e457c
BP
1004
1005 /* Factor in CC6 save area by reading dst node's limit reg */
1006 if (c->x86 == 0x15) {
1007 struct pci_dev *f1 = NULL;
1008 u8 nid = dram_dst_node(pvt, range);
1009 u32 llim;
1010
1011 f1 = pci_get_domain_bus_and_slot(0, 0, PCI_DEVFN(0x18 + nid, 1));
1012 if (WARN_ON(!f1))
1013 return;
1014
1015 amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
1016
1017 pvt->ranges[range].lim.lo &= GENMASK(0, 15);
1018
1019 /* {[39:27],111b} */
1020 pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
1021
1022 pvt->ranges[range].lim.hi &= GENMASK(0, 7);
1023
1024 /* [47:40] */
1025 pvt->ranges[range].lim.hi |= llim >> 13;
1026
1027 pci_dev_put(f1);
1028 }
ddff876d
DT
1029}
1030
f192c7b1
BP
1031static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1032 u16 syndrome)
ddff876d
DT
1033{
1034 struct mem_ctl_info *src_mci;
f192c7b1 1035 struct amd64_pvt *pvt = mci->pvt_info;
ddff876d
DT
1036 int channel, csrow;
1037 u32 page, offset;
ddff876d 1038
ab5a503c
MCC
1039 error_address_to_page_and_offset(sys_addr, &page, &offset);
1040
1041 /*
1042 * Find out which node the error address belongs to. This may be
1043 * different from the node that detected the error.
1044 */
1045 src_mci = find_mc_by_sys_addr(mci, sys_addr);
1046 if (!src_mci) {
1047 amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
1048 (unsigned long)sys_addr);
9eb07a7f 1049 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1,
ab5a503c
MCC
1050 page, offset, syndrome,
1051 -1, -1, -1,
ab5a503c 1052 "failed to map error addr to a node",
03f7eae8 1053 "");
ab5a503c
MCC
1054 return;
1055 }
1056
1057 /* Now map the sys_addr to a CSROW */
1058 csrow = sys_addr_to_csrow(src_mci, sys_addr);
1059 if (csrow < 0) {
9eb07a7f 1060 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1,
ab5a503c
MCC
1061 page, offset, syndrome,
1062 -1, -1, -1,
ab5a503c 1063 "failed to map error addr to a csrow",
03f7eae8 1064 "");
ab5a503c
MCC
1065 return;
1066 }
1067
ddff876d 1068 /* CHIPKILL enabled */
f192c7b1 1069 if (pvt->nbcfg & NBCFG_CHIPKILL) {
bfc04aec 1070 channel = get_channel_from_ecc_syndrome(mci, syndrome);
ddff876d
DT
1071 if (channel < 0) {
1072 /*
1073 * Syndrome didn't map, so we don't know which of the
1074 * 2 DIMMs is in error. So we need to ID 'both' of them
1075 * as suspect.
1076 */
ab5a503c
MCC
1077 amd64_mc_warn(src_mci, "unknown syndrome 0x%04x - "
1078 "possible error reporting race\n",
1079 syndrome);
9eb07a7f 1080 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1,
ab5a503c
MCC
1081 page, offset, syndrome,
1082 csrow, -1, -1,
ab5a503c 1083 "unknown syndrome - possible error reporting race",
03f7eae8 1084 "");
ddff876d
DT
1085 return;
1086 }
1087 } else {
1088 /*
1089 * non-chipkill ecc mode
1090 *
1091 * The k8 documentation is unclear about how to determine the
1092 * channel number when using non-chipkill memory. This method
1093 * was obtained from email communication with someone at AMD.
1094 * (Wish the email was placed in this comment - norsk)
1095 */
44e9e2ee 1096 channel = ((sys_addr & BIT(3)) != 0);
ddff876d
DT
1097 }
1098
9eb07a7f 1099 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, src_mci, 1,
ab5a503c
MCC
1100 page, offset, syndrome,
1101 csrow, channel, -1,
03f7eae8 1102 "", "");
ddff876d
DT
1103}
1104
41d8bfab 1105static int ddr2_cs_size(unsigned i, bool dct_width)
ddff876d 1106{
41d8bfab 1107 unsigned shift = 0;
ddff876d 1108
41d8bfab
BP
1109 if (i <= 2)
1110 shift = i;
1111 else if (!(i & 0x1))
1112 shift = i >> 1;
1433eb99 1113 else
41d8bfab 1114 shift = (i + 1) >> 1;
ddff876d 1115
41d8bfab
BP
1116 return 128 << (shift + !!dct_width);
1117}
1118
1119static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1120 unsigned cs_mode)
1121{
1122 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1123
1124 if (pvt->ext_model >= K8_REV_F) {
1125 WARN_ON(cs_mode > 11);
1126 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1127 }
1128 else if (pvt->ext_model >= K8_REV_D) {
11b0a314 1129 unsigned diff;
41d8bfab
BP
1130 WARN_ON(cs_mode > 10);
1131
11b0a314
BP
1132 /*
1133 * the below calculation, besides trying to win an obfuscated C
1134 * contest, maps cs_mode values to DIMM chip select sizes. The
1135 * mappings are:
1136 *
1137 * cs_mode CS size (mb)
1138 * ======= ============
1139 * 0 32
1140 * 1 64
1141 * 2 128
1142 * 3 128
1143 * 4 256
1144 * 5 512
1145 * 6 256
1146 * 7 512
1147 * 8 1024
1148 * 9 1024
1149 * 10 2048
1150 *
1151 * Basically, it calculates a value with which to shift the
1152 * smallest CS size of 32MB.
1153 *
1154 * ddr[23]_cs_size have a similar purpose.
1155 */
1156 diff = cs_mode/3 + (unsigned)(cs_mode > 5);
1157
1158 return 32 << (cs_mode - diff);
41d8bfab
BP
1159 }
1160 else {
1161 WARN_ON(cs_mode > 6);
1162 return 32 << cs_mode;
1163 }
ddff876d
DT
1164}
1165
1afd3c98
DT
1166/*
1167 * Get the number of DCT channels in use.
1168 *
1169 * Return:
1170 * number of Memory Channels in operation
1171 * Pass back:
1172 * contents of the DCL0_LOW register
1173 */
7d20d14d 1174static int f1x_early_channel_count(struct amd64_pvt *pvt)
1afd3c98 1175{
6ba5dcdc 1176 int i, j, channels = 0;
1afd3c98 1177
7d20d14d 1178 /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
41d8bfab 1179 if (boot_cpu_data.x86 == 0x10 && (pvt->dclr0 & WIDTH_128))
7d20d14d 1180 return 2;
1afd3c98
DT
1181
1182 /*
d16149e8
BP
1183 * Need to check if in unganged mode: In such, there are 2 channels,
1184 * but they are not in 128 bit mode and thus the above 'dclr0' status
1185 * bit will be OFF.
1afd3c98
DT
1186 *
1187 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1188 * their CSEnable bit on. If so, then SINGLE DIMM case.
1189 */
956b9ba1 1190 edac_dbg(0, "Data width is not 128 bits - need more decoding\n");
ddff876d 1191
1afd3c98
DT
1192 /*
1193 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1194 * is more than just one DIMM present in unganged mode. Need to check
1195 * both controllers since DIMMs can be placed in either one.
1196 */
525a1b20
BP
1197 for (i = 0; i < 2; i++) {
1198 u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1afd3c98 1199
57a30854
WW
1200 for (j = 0; j < 4; j++) {
1201 if (DBAM_DIMM(j, dbam) > 0) {
1202 channels++;
1203 break;
1204 }
1205 }
1afd3c98
DT
1206 }
1207
d16149e8
BP
1208 if (channels > 2)
1209 channels = 2;
1210
24f9a7fe 1211 amd64_info("MCT channel count: %d\n", channels);
1afd3c98
DT
1212
1213 return channels;
1afd3c98
DT
1214}
1215
41d8bfab 1216static int ddr3_cs_size(unsigned i, bool dct_width)
1afd3c98 1217{
41d8bfab
BP
1218 unsigned shift = 0;
1219 int cs_size = 0;
1220
1221 if (i == 0 || i == 3 || i == 4)
1222 cs_size = -1;
1223 else if (i <= 2)
1224 shift = i;
1225 else if (i == 12)
1226 shift = 7;
1227 else if (!(i & 0x1))
1228 shift = i >> 1;
1229 else
1230 shift = (i + 1) >> 1;
1231
1232 if (cs_size != -1)
1233 cs_size = (128 * (1 << !!dct_width)) << shift;
1234
1235 return cs_size;
1236}
1237
1238static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1239 unsigned cs_mode)
1240{
1241 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1242
1243 WARN_ON(cs_mode > 11);
1433eb99
BP
1244
1245 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
41d8bfab 1246 return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1433eb99 1247 else
41d8bfab
BP
1248 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1249}
1250
1251/*
1252 * F15h supports only 64bit DCT interfaces
1253 */
1254static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1255 unsigned cs_mode)
1256{
1257 WARN_ON(cs_mode > 12);
1433eb99 1258
41d8bfab 1259 return ddr3_cs_size(cs_mode, false);
1afd3c98
DT
1260}
1261
5a5d2371 1262static void read_dram_ctl_register(struct amd64_pvt *pvt)
6163b5d4 1263{
6163b5d4 1264
5a5d2371
BP
1265 if (boot_cpu_data.x86 == 0xf)
1266 return;
1267
78da121e 1268 if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
956b9ba1
JP
1269 edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
1270 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
72381bd5 1271
956b9ba1
JP
1272 edac_dbg(0, " DCTs operate in %s mode\n",
1273 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
72381bd5
BP
1274
1275 if (!dct_ganging_enabled(pvt))
956b9ba1
JP
1276 edac_dbg(0, " Address range split per DCT: %s\n",
1277 (dct_high_range_enabled(pvt) ? "yes" : "no"));
72381bd5 1278
956b9ba1
JP
1279 edac_dbg(0, " data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n",
1280 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1281 (dct_memory_cleared(pvt) ? "yes" : "no"));
72381bd5 1282
956b9ba1
JP
1283 edac_dbg(0, " channel interleave: %s, "
1284 "interleave bits selector: 0x%x\n",
1285 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
1286 dct_sel_interleave_addr(pvt));
6163b5d4
DT
1287 }
1288
78da121e 1289 amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
6163b5d4
DT
1290}
1291
f71d0a05 1292/*
229a7a11 1293 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
f71d0a05
DT
1294 * Interleaving Modes.
1295 */
b15f0fca 1296static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
229a7a11 1297 bool hi_range_sel, u8 intlv_en)
6163b5d4 1298{
151fa71c 1299 u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
6163b5d4
DT
1300
1301 if (dct_ganging_enabled(pvt))
229a7a11 1302 return 0;
6163b5d4 1303
229a7a11
BP
1304 if (hi_range_sel)
1305 return dct_sel_high;
6163b5d4 1306
229a7a11
BP
1307 /*
1308 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1309 */
1310 if (dct_interleave_enabled(pvt)) {
1311 u8 intlv_addr = dct_sel_interleave_addr(pvt);
1312
1313 /* return DCT select function: 0=DCT0, 1=DCT1 */
1314 if (!intlv_addr)
1315 return sys_addr >> 6 & 1;
1316
1317 if (intlv_addr & 0x2) {
1318 u8 shift = intlv_addr & 0x1 ? 9 : 6;
1319 u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1320
1321 return ((sys_addr >> shift) & 1) ^ temp;
1322 }
1323
1324 return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
1325 }
1326
1327 if (dct_high_range_enabled(pvt))
1328 return ~dct_sel_high & 1;
6163b5d4
DT
1329
1330 return 0;
1331}
1332
c8e518d5 1333/* Convert the sys_addr to the normalized DCT address */
e761359a 1334static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, unsigned range,
c8e518d5
BP
1335 u64 sys_addr, bool hi_rng,
1336 u32 dct_sel_base_addr)
6163b5d4
DT
1337{
1338 u64 chan_off;
c8e518d5
BP
1339 u64 dram_base = get_dram_base(pvt, range);
1340 u64 hole_off = f10_dhar_offset(pvt);
c8e518d5 1341 u64 dct_sel_base_off = (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
6163b5d4 1342
c8e518d5
BP
1343 if (hi_rng) {
1344 /*
1345 * if
1346 * base address of high range is below 4Gb
1347 * (bits [47:27] at [31:11])
1348 * DRAM address space on this DCT is hoisted above 4Gb &&
1349 * sys_addr > 4Gb
1350 *
1351 * remove hole offset from sys_addr
1352 * else
1353 * remove high range offset from sys_addr
1354 */
1355 if ((!(dct_sel_base_addr >> 16) ||
1356 dct_sel_base_addr < dhar_base(pvt)) &&
972ea17a 1357 dhar_valid(pvt) &&
c8e518d5 1358 (sys_addr >= BIT_64(32)))
bc21fa57 1359 chan_off = hole_off;
6163b5d4
DT
1360 else
1361 chan_off = dct_sel_base_off;
1362 } else {
c8e518d5
BP
1363 /*
1364 * if
1365 * we have a valid hole &&
1366 * sys_addr > 4Gb
1367 *
1368 * remove hole
1369 * else
1370 * remove dram base to normalize to DCT address
1371 */
972ea17a 1372 if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
bc21fa57 1373 chan_off = hole_off;
6163b5d4 1374 else
c8e518d5 1375 chan_off = dram_base;
6163b5d4
DT
1376 }
1377
c8e518d5 1378 return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47));
6163b5d4
DT
1379}
1380
6163b5d4
DT
1381/*
1382 * checks if the csrow passed in is marked as SPARED, if so returns the new
1383 * spare row
1384 */
11c75ead 1385static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
6163b5d4 1386{
614ec9d8
BP
1387 int tmp_cs;
1388
1389 if (online_spare_swap_done(pvt, dct) &&
1390 csrow == online_spare_bad_dramcs(pvt, dct)) {
1391
1392 for_each_chip_select(tmp_cs, dct, pvt) {
1393 if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
1394 csrow = tmp_cs;
1395 break;
1396 }
1397 }
6163b5d4
DT
1398 }
1399 return csrow;
1400}
1401
1402/*
1403 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1404 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1405 *
1406 * Return:
1407 * -EINVAL: NOT FOUND
1408 * 0..csrow = Chip-Select Row
1409 */
b15f0fca 1410static int f1x_lookup_addr_in_dct(u64 in_addr, u32 nid, u8 dct)
6163b5d4
DT
1411{
1412 struct mem_ctl_info *mci;
1413 struct amd64_pvt *pvt;
11c75ead 1414 u64 cs_base, cs_mask;
6163b5d4
DT
1415 int cs_found = -EINVAL;
1416 int csrow;
1417
cc4d8860 1418 mci = mcis[nid];
6163b5d4
DT
1419 if (!mci)
1420 return cs_found;
1421
1422 pvt = mci->pvt_info;
1423
956b9ba1 1424 edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct);
6163b5d4 1425
11c75ead
BP
1426 for_each_chip_select(csrow, dct, pvt) {
1427 if (!csrow_enabled(csrow, dct, pvt))
6163b5d4
DT
1428 continue;
1429
11c75ead 1430 get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
6163b5d4 1431
956b9ba1
JP
1432 edac_dbg(1, " CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
1433 csrow, cs_base, cs_mask);
6163b5d4 1434
11c75ead 1435 cs_mask = ~cs_mask;
6163b5d4 1436
956b9ba1
JP
1437 edac_dbg(1, " (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n",
1438 (in_addr & cs_mask), (cs_base & cs_mask));
6163b5d4 1439
11c75ead
BP
1440 if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
1441 cs_found = f10_process_possible_spare(pvt, dct, csrow);
6163b5d4 1442
956b9ba1 1443 edac_dbg(1, " MATCH csrow=%d\n", cs_found);
6163b5d4
DT
1444 break;
1445 }
1446 }
1447 return cs_found;
1448}
1449
95b0ef55
BP
1450/*
1451 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
1452 * swapped with a region located at the bottom of memory so that the GPU can use
1453 * the interleaved region and thus two channels.
1454 */
b15f0fca 1455static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
95b0ef55
BP
1456{
1457 u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
1458
1459 if (boot_cpu_data.x86 == 0x10) {
1460 /* only revC3 and revE have that feature */
1461 if (boot_cpu_data.x86_model < 4 ||
1462 (boot_cpu_data.x86_model < 0xa &&
1463 boot_cpu_data.x86_mask < 3))
1464 return sys_addr;
1465 }
1466
1467 amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg);
1468
1469 if (!(swap_reg & 0x1))
1470 return sys_addr;
1471
1472 swap_base = (swap_reg >> 3) & 0x7f;
1473 swap_limit = (swap_reg >> 11) & 0x7f;
1474 rgn_size = (swap_reg >> 20) & 0x7f;
1475 tmp_addr = sys_addr >> 27;
1476
1477 if (!(sys_addr >> 34) &&
1478 (((tmp_addr >= swap_base) &&
1479 (tmp_addr <= swap_limit)) ||
1480 (tmp_addr < rgn_size)))
1481 return sys_addr ^ (u64)swap_base << 27;
1482
1483 return sys_addr;
1484}
1485
f71d0a05 1486/* For a given @dram_range, check if @sys_addr falls within it. */
e761359a 1487static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
f71d0a05
DT
1488 u64 sys_addr, int *nid, int *chan_sel)
1489{
229a7a11 1490 int cs_found = -EINVAL;
c8e518d5 1491 u64 chan_addr;
5d4b58e8 1492 u32 dct_sel_base;
11c75ead 1493 u8 channel;
229a7a11 1494 bool high_range = false;
f71d0a05 1495
7f19bf75 1496 u8 node_id = dram_dst_node(pvt, range);
229a7a11 1497 u8 intlv_en = dram_intlv_en(pvt, range);
7f19bf75 1498 u32 intlv_sel = dram_intlv_sel(pvt, range);
f71d0a05 1499
956b9ba1
JP
1500 edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1501 range, sys_addr, get_dram_limit(pvt, range));
f71d0a05 1502
355fba60
BP
1503 if (dhar_valid(pvt) &&
1504 dhar_base(pvt) <= sys_addr &&
1505 sys_addr < BIT_64(32)) {
1506 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1507 sys_addr);
1508 return -EINVAL;
1509 }
1510
f030ddfb 1511 if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
f71d0a05
DT
1512 return -EINVAL;
1513
b15f0fca 1514 sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
95b0ef55 1515
f71d0a05
DT
1516 dct_sel_base = dct_sel_baseaddr(pvt);
1517
1518 /*
1519 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1520 * select between DCT0 and DCT1.
1521 */
1522 if (dct_high_range_enabled(pvt) &&
1523 !dct_ganging_enabled(pvt) &&
1524 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
229a7a11 1525 high_range = true;
f71d0a05 1526
b15f0fca 1527 channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
f71d0a05 1528
b15f0fca 1529 chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
c8e518d5 1530 high_range, dct_sel_base);
f71d0a05 1531
e2f79dbd
BP
1532 /* Remove node interleaving, see F1x120 */
1533 if (intlv_en)
1534 chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
1535 (chan_addr & 0xfff);
f71d0a05 1536
5d4b58e8 1537 /* remove channel interleave */
f71d0a05
DT
1538 if (dct_interleave_enabled(pvt) &&
1539 !dct_high_range_enabled(pvt) &&
1540 !dct_ganging_enabled(pvt)) {
5d4b58e8
BP
1541
1542 if (dct_sel_interleave_addr(pvt) != 1) {
1543 if (dct_sel_interleave_addr(pvt) == 0x3)
1544 /* hash 9 */
1545 chan_addr = ((chan_addr >> 10) << 9) |
1546 (chan_addr & 0x1ff);
1547 else
1548 /* A[6] or hash 6 */
1549 chan_addr = ((chan_addr >> 7) << 6) |
1550 (chan_addr & 0x3f);
1551 } else
1552 /* A[12] */
1553 chan_addr = ((chan_addr >> 13) << 12) |
1554 (chan_addr & 0xfff);
f71d0a05
DT
1555 }
1556
956b9ba1 1557 edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr);
f71d0a05 1558
b15f0fca 1559 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
f71d0a05
DT
1560
1561 if (cs_found >= 0) {
1562 *nid = node_id;
1563 *chan_sel = channel;
1564 }
1565 return cs_found;
1566}
1567
b15f0fca 1568static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
f71d0a05
DT
1569 int *node, int *chan_sel)
1570{
e761359a
BP
1571 int cs_found = -EINVAL;
1572 unsigned range;
f71d0a05 1573
7f19bf75 1574 for (range = 0; range < DRAM_RANGES; range++) {
f71d0a05 1575
7f19bf75 1576 if (!dram_rw(pvt, range))
f71d0a05
DT
1577 continue;
1578
7f19bf75
BP
1579 if ((get_dram_base(pvt, range) <= sys_addr) &&
1580 (get_dram_limit(pvt, range) >= sys_addr)) {
f71d0a05 1581
b15f0fca 1582 cs_found = f1x_match_to_this_node(pvt, range,
f71d0a05
DT
1583 sys_addr, node,
1584 chan_sel);
1585 if (cs_found >= 0)
1586 break;
1587 }
1588 }
1589 return cs_found;
1590}
1591
1592/*
bdc30a0c
BP
1593 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1594 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
f71d0a05 1595 *
bdc30a0c
BP
1596 * The @sys_addr is usually an error address received from the hardware
1597 * (MCX_ADDR).
f71d0a05 1598 */
b15f0fca 1599static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
f192c7b1 1600 u16 syndrome)
f71d0a05
DT
1601{
1602 struct amd64_pvt *pvt = mci->pvt_info;
1603 u32 page, offset;
f71d0a05
DT
1604 int nid, csrow, chan = 0;
1605
ab5a503c
MCC
1606 error_address_to_page_and_offset(sys_addr, &page, &offset);
1607
b15f0fca 1608 csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
f71d0a05 1609
bdc30a0c 1610 if (csrow < 0) {
9eb07a7f 1611 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1,
ab5a503c
MCC
1612 page, offset, syndrome,
1613 -1, -1, -1,
ab5a503c 1614 "failed to map error addr to a csrow",
03f7eae8 1615 "");
bdc30a0c
BP
1616 return;
1617 }
1618
bdc30a0c
BP
1619 /*
1620 * We need the syndromes for channel detection only when we're
1621 * ganged. Otherwise @chan should already contain the channel at
1622 * this point.
1623 */
a97fa68e 1624 if (dct_ganging_enabled(pvt))
bdc30a0c 1625 chan = get_channel_from_ecc_syndrome(mci, syndrome);
f71d0a05 1626
9eb07a7f 1627 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1,
ab5a503c
MCC
1628 page, offset, syndrome,
1629 csrow, chan, -1,
03f7eae8 1630 "", "");
f71d0a05
DT
1631}
1632
f71d0a05 1633/*
8566c4df 1634 * debug routine to display the memory sizes of all logical DIMMs and its
cb328507 1635 * CSROWs
f71d0a05 1636 */
8c671751 1637static void amd64_debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
f71d0a05 1638{
603adaf6 1639 int dimm, size0, size1, factor = 0;
525a1b20
BP
1640 u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
1641 u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
f71d0a05 1642
8566c4df 1643 if (boot_cpu_data.x86 == 0xf) {
41d8bfab 1644 if (pvt->dclr0 & WIDTH_128)
603adaf6
BP
1645 factor = 1;
1646
8566c4df 1647 /* K8 families < revF not supported yet */
1433eb99 1648 if (pvt->ext_model < K8_REV_F)
8566c4df
BP
1649 return;
1650 else
1651 WARN_ON(ctrl != 0);
1652 }
1653
4d796364 1654 dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
11c75ead
BP
1655 dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
1656 : pvt->csels[0].csbases;
f71d0a05 1657
956b9ba1
JP
1658 edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
1659 ctrl, dbam);
f71d0a05 1660
8566c4df
BP
1661 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1662
f71d0a05
DT
1663 /* Dump memory sizes for DIMM and its CSROWs */
1664 for (dimm = 0; dimm < 4; dimm++) {
1665
1666 size0 = 0;
11c75ead 1667 if (dcsb[dimm*2] & DCSB_CS_ENABLE)
41d8bfab
BP
1668 size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
1669 DBAM_DIMM(dimm, dbam));
f71d0a05
DT
1670
1671 size1 = 0;
11c75ead 1672 if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
41d8bfab
BP
1673 size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
1674 DBAM_DIMM(dimm, dbam));
f71d0a05 1675
24f9a7fe
BP
1676 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
1677 dimm * 2, size0 << factor,
1678 dimm * 2 + 1, size1 << factor);
f71d0a05
DT
1679 }
1680}
1681
4d37607a
DT
1682static struct amd64_family_type amd64_family_types[] = {
1683 [K8_CPUS] = {
0092b20d 1684 .ctl_name = "K8",
8d5b5d9c
BP
1685 .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1686 .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
4d37607a 1687 .ops = {
1433eb99 1688 .early_channel_count = k8_early_channel_count,
1433eb99
BP
1689 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1690 .dbam_to_cs = k8_dbam_to_chip_select,
b2b0c605 1691 .read_dct_pci_cfg = k8_read_dct_pci_cfg,
4d37607a
DT
1692 }
1693 },
1694 [F10_CPUS] = {
0092b20d 1695 .ctl_name = "F10h",
8d5b5d9c
BP
1696 .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1697 .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
4d37607a 1698 .ops = {
7d20d14d 1699 .early_channel_count = f1x_early_channel_count,
b15f0fca 1700 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1433eb99 1701 .dbam_to_cs = f10_dbam_to_chip_select,
b2b0c605
BP
1702 .read_dct_pci_cfg = f10_read_dct_pci_cfg,
1703 }
1704 },
1705 [F15_CPUS] = {
1706 .ctl_name = "F15h",
df71a053
BP
1707 .f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
1708 .f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3,
b2b0c605 1709 .ops = {
7d20d14d 1710 .early_channel_count = f1x_early_channel_count,
b15f0fca 1711 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
41d8bfab 1712 .dbam_to_cs = f15_dbam_to_chip_select,
b2b0c605 1713 .read_dct_pci_cfg = f15_read_dct_pci_cfg,
4d37607a
DT
1714 }
1715 },
4d37607a
DT
1716};
1717
1718static struct pci_dev *pci_get_related_function(unsigned int vendor,
1719 unsigned int device,
1720 struct pci_dev *related)
1721{
1722 struct pci_dev *dev = NULL;
1723
1724 dev = pci_get_device(vendor, device, dev);
1725 while (dev) {
1726 if ((dev->bus->number == related->bus->number) &&
1727 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1728 break;
1729 dev = pci_get_device(vendor, device, dev);
1730 }
1731
1732 return dev;
1733}
1734
b1289d6f 1735/*
bfc04aec
BP
1736 * These are tables of eigenvectors (one per line) which can be used for the
1737 * construction of the syndrome tables. The modified syndrome search algorithm
1738 * uses those to find the symbol in error and thus the DIMM.
b1289d6f 1739 *
bfc04aec 1740 * Algorithm courtesy of Ross LaFetra from AMD.
b1289d6f 1741 */
bfc04aec
BP
1742static u16 x4_vectors[] = {
1743 0x2f57, 0x1afe, 0x66cc, 0xdd88,
1744 0x11eb, 0x3396, 0x7f4c, 0xeac8,
1745 0x0001, 0x0002, 0x0004, 0x0008,
1746 0x1013, 0x3032, 0x4044, 0x8088,
1747 0x106b, 0x30d6, 0x70fc, 0xe0a8,
1748 0x4857, 0xc4fe, 0x13cc, 0x3288,
1749 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1750 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1751 0x15c1, 0x2a42, 0x89ac, 0x4758,
1752 0x2b03, 0x1602, 0x4f0c, 0xca08,
1753 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1754 0x8ba7, 0x465e, 0x244c, 0x1cc8,
1755 0x2b87, 0x164e, 0x642c, 0xdc18,
1756 0x40b9, 0x80de, 0x1094, 0x20e8,
1757 0x27db, 0x1eb6, 0x9dac, 0x7b58,
1758 0x11c1, 0x2242, 0x84ac, 0x4c58,
1759 0x1be5, 0x2d7a, 0x5e34, 0xa718,
1760 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1761 0x4c97, 0xc87e, 0x11fc, 0x33a8,
1762 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1763 0x16b3, 0x3d62, 0x4f34, 0x8518,
1764 0x1e2f, 0x391a, 0x5cac, 0xf858,
1765 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1766 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1767 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1768 0x4397, 0xc27e, 0x17fc, 0x3ea8,
1769 0x1617, 0x3d3e, 0x6464, 0xb8b8,
1770 0x23ff, 0x12aa, 0xab6c, 0x56d8,
1771 0x2dfb, 0x1ba6, 0x913c, 0x7328,
1772 0x185d, 0x2ca6, 0x7914, 0x9e28,
1773 0x171b, 0x3e36, 0x7d7c, 0xebe8,
1774 0x4199, 0x82ee, 0x19f4, 0x2e58,
1775 0x4807, 0xc40e, 0x130c, 0x3208,
1776 0x1905, 0x2e0a, 0x5804, 0xac08,
1777 0x213f, 0x132a, 0xadfc, 0x5ba8,
1778 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
b1289d6f
DT
1779};
1780
bfc04aec
BP
1781static u16 x8_vectors[] = {
1782 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1783 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1784 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1785 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1786 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1787 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1788 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1789 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1790 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1791 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1792 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1793 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1794 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1795 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1796 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1797 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1798 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1799 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1800 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1801};
1802
d34a6ecd
BP
1803static int decode_syndrome(u16 syndrome, u16 *vectors, unsigned num_vecs,
1804 unsigned v_dim)
b1289d6f 1805{
bfc04aec
BP
1806 unsigned int i, err_sym;
1807
1808 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1809 u16 s = syndrome;
d34a6ecd
BP
1810 unsigned v_idx = err_sym * v_dim;
1811 unsigned v_end = (err_sym + 1) * v_dim;
bfc04aec
BP
1812
1813 /* walk over all 16 bits of the syndrome */
1814 for (i = 1; i < (1U << 16); i <<= 1) {
1815
1816 /* if bit is set in that eigenvector... */
1817 if (v_idx < v_end && vectors[v_idx] & i) {
1818 u16 ev_comp = vectors[v_idx++];
1819
1820 /* ... and bit set in the modified syndrome, */
1821 if (s & i) {
1822 /* remove it. */
1823 s ^= ev_comp;
4d37607a 1824
bfc04aec
BP
1825 if (!s)
1826 return err_sym;
1827 }
b1289d6f 1828
bfc04aec
BP
1829 } else if (s & i)
1830 /* can't get to zero, move to next symbol */
1831 break;
1832 }
b1289d6f
DT
1833 }
1834
956b9ba1 1835 edac_dbg(0, "syndrome(%x) not found\n", syndrome);
b1289d6f
DT
1836 return -1;
1837}
d27bf6fa 1838
bfc04aec
BP
1839static int map_err_sym_to_channel(int err_sym, int sym_size)
1840{
1841 if (sym_size == 4)
1842 switch (err_sym) {
1843 case 0x20:
1844 case 0x21:
1845 return 0;
1846 break;
1847 case 0x22:
1848 case 0x23:
1849 return 1;
1850 break;
1851 default:
1852 return err_sym >> 4;
1853 break;
1854 }
1855 /* x8 symbols */
1856 else
1857 switch (err_sym) {
1858 /* imaginary bits not in a DIMM */
1859 case 0x10:
1860 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1861 err_sym);
1862 return -1;
1863 break;
1864
1865 case 0x11:
1866 return 0;
1867 break;
1868 case 0x12:
1869 return 1;
1870 break;
1871 default:
1872 return err_sym >> 3;
1873 break;
1874 }
1875 return -1;
1876}
1877
1878static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1879{
1880 struct amd64_pvt *pvt = mci->pvt_info;
ad6a32e9
BP
1881 int err_sym = -1;
1882
a3b7db09 1883 if (pvt->ecc_sym_sz == 8)
ad6a32e9
BP
1884 err_sym = decode_syndrome(syndrome, x8_vectors,
1885 ARRAY_SIZE(x8_vectors),
a3b7db09
BP
1886 pvt->ecc_sym_sz);
1887 else if (pvt->ecc_sym_sz == 4)
ad6a32e9
BP
1888 err_sym = decode_syndrome(syndrome, x4_vectors,
1889 ARRAY_SIZE(x4_vectors),
a3b7db09 1890 pvt->ecc_sym_sz);
ad6a32e9 1891 else {
a3b7db09 1892 amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
ad6a32e9 1893 return err_sym;
bfc04aec 1894 }
ad6a32e9 1895
a3b7db09 1896 return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
bfc04aec
BP
1897}
1898
d27bf6fa
DT
1899/*
1900 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
1901 * ADDRESS and process.
1902 */
f192c7b1 1903static void amd64_handle_ce(struct mem_ctl_info *mci, struct mce *m)
d27bf6fa
DT
1904{
1905 struct amd64_pvt *pvt = mci->pvt_info;
44e9e2ee 1906 u64 sys_addr;
f192c7b1 1907 u16 syndrome;
d27bf6fa
DT
1908
1909 /* Ensure that the Error Address is VALID */
f192c7b1 1910 if (!(m->status & MCI_STATUS_ADDRV)) {
24f9a7fe 1911 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
9eb07a7f 1912 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1,
ab5a503c
MCC
1913 0, 0, 0,
1914 -1, -1, -1,
ab5a503c 1915 "HW has no ERROR_ADDRESS available",
03f7eae8 1916 "");
d27bf6fa
DT
1917 return;
1918 }
1919
70046624 1920 sys_addr = get_error_address(m);
f192c7b1 1921 syndrome = extract_syndrome(m->status);
d27bf6fa 1922
24f9a7fe 1923 amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
d27bf6fa 1924
f192c7b1 1925 pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, syndrome);
d27bf6fa
DT
1926}
1927
1928/* Handle any Un-correctable Errors (UEs) */
f192c7b1 1929static void amd64_handle_ue(struct mem_ctl_info *mci, struct mce *m)
d27bf6fa 1930{
1f6bcee7 1931 struct mem_ctl_info *log_mci, *src_mci = NULL;
d27bf6fa 1932 int csrow;
44e9e2ee 1933 u64 sys_addr;
d27bf6fa 1934 u32 page, offset;
d27bf6fa
DT
1935
1936 log_mci = mci;
1937
f192c7b1 1938 if (!(m->status & MCI_STATUS_ADDRV)) {
24f9a7fe 1939 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
9eb07a7f 1940 edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1,
ab5a503c
MCC
1941 0, 0, 0,
1942 -1, -1, -1,
ab5a503c 1943 "HW has no ERROR_ADDRESS available",
03f7eae8 1944 "");
d27bf6fa
DT
1945 return;
1946 }
1947
70046624 1948 sys_addr = get_error_address(m);
ab5a503c 1949 error_address_to_page_and_offset(sys_addr, &page, &offset);
d27bf6fa
DT
1950
1951 /*
1952 * Find out which node the error address belongs to. This may be
1953 * different from the node that detected the error.
1954 */
44e9e2ee 1955 src_mci = find_mc_by_sys_addr(mci, sys_addr);
d27bf6fa 1956 if (!src_mci) {
24f9a7fe
BP
1957 amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n",
1958 (unsigned long)sys_addr);
9eb07a7f 1959 edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1,
ab5a503c
MCC
1960 page, offset, 0,
1961 -1, -1, -1,
075f3090 1962 "ERROR ADDRESS NOT mapped to a MC",
03f7eae8 1963 "");
d27bf6fa
DT
1964 return;
1965 }
1966
1967 log_mci = src_mci;
1968
44e9e2ee 1969 csrow = sys_addr_to_csrow(log_mci, sys_addr);
d27bf6fa 1970 if (csrow < 0) {
24f9a7fe
BP
1971 amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n",
1972 (unsigned long)sys_addr);
9eb07a7f 1973 edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1,
ab5a503c
MCC
1974 page, offset, 0,
1975 -1, -1, -1,
ab5a503c 1976 "ERROR ADDRESS NOT mapped to CS",
03f7eae8 1977 "");
d27bf6fa 1978 } else {
9eb07a7f 1979 edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1,
ab5a503c
MCC
1980 page, offset, 0,
1981 csrow, -1, -1,
03f7eae8 1982 "", "");
d27bf6fa
DT
1983 }
1984}
1985
549d042d 1986static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
f192c7b1 1987 struct mce *m)
d27bf6fa 1988{
f192c7b1
BP
1989 u16 ec = EC(m->status);
1990 u8 xec = XEC(m->status, 0x1f);
1991 u8 ecc_type = (m->status >> 45) & 0x3;
d27bf6fa 1992
b70ef010 1993 /* Bail early out if this was an 'observed' error */
5980bb9c 1994 if (PP(ec) == NBSL_PP_OBS)
b70ef010 1995 return;
d27bf6fa 1996
ecaf5606
BP
1997 /* Do only ECC errors */
1998 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
d27bf6fa 1999 return;
d27bf6fa 2000
ecaf5606 2001 if (ecc_type == 2)
f192c7b1 2002 amd64_handle_ce(mci, m);
ecaf5606 2003 else if (ecc_type == 1)
f192c7b1 2004 amd64_handle_ue(mci, m);
d27bf6fa
DT
2005}
2006
b0b07a2b 2007void amd64_decode_bus_error(int node_id, struct mce *m)
d27bf6fa 2008{
b0b07a2b 2009 __amd64_decode_bus_error(mcis[node_id], m);
d27bf6fa 2010}
d27bf6fa 2011
0ec449ee 2012/*
8d5b5d9c 2013 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
bbd0c1f6 2014 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
0ec449ee 2015 */
360b7f3c 2016static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
0ec449ee 2017{
0ec449ee 2018 /* Reserve the ADDRESS MAP Device */
8d5b5d9c
BP
2019 pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
2020 if (!pvt->F1) {
24f9a7fe
BP
2021 amd64_err("error address map device not found: "
2022 "vendor %x device 0x%x (broken BIOS?)\n",
2023 PCI_VENDOR_ID_AMD, f1_id);
bbd0c1f6 2024 return -ENODEV;
0ec449ee
DT
2025 }
2026
2027 /* Reserve the MISC Device */
8d5b5d9c
BP
2028 pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
2029 if (!pvt->F3) {
2030 pci_dev_put(pvt->F1);
2031 pvt->F1 = NULL;
0ec449ee 2032
24f9a7fe
BP
2033 amd64_err("error F3 device not found: "
2034 "vendor %x device 0x%x (broken BIOS?)\n",
2035 PCI_VENDOR_ID_AMD, f3_id);
0ec449ee 2036
bbd0c1f6 2037 return -ENODEV;
0ec449ee 2038 }
956b9ba1
JP
2039 edac_dbg(1, "F1: %s\n", pci_name(pvt->F1));
2040 edac_dbg(1, "F2: %s\n", pci_name(pvt->F2));
2041 edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
0ec449ee
DT
2042
2043 return 0;
2044}
2045
360b7f3c 2046static void free_mc_sibling_devs(struct amd64_pvt *pvt)
0ec449ee 2047{
8d5b5d9c
BP
2048 pci_dev_put(pvt->F1);
2049 pci_dev_put(pvt->F3);
0ec449ee
DT
2050}
2051
2052/*
2053 * Retrieve the hardware registers of the memory controller (this includes the
2054 * 'Address Map' and 'Misc' device regs)
2055 */
360b7f3c 2056static void read_mc_regs(struct amd64_pvt *pvt)
0ec449ee 2057{
a3b7db09 2058 struct cpuinfo_x86 *c = &boot_cpu_data;
0ec449ee 2059 u64 msr_val;
ad6a32e9 2060 u32 tmp;
e761359a 2061 unsigned range;
0ec449ee
DT
2062
2063 /*
2064 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2065 * those are Read-As-Zero
2066 */
e97f8bb8 2067 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
956b9ba1 2068 edac_dbg(0, " TOP_MEM: 0x%016llx\n", pvt->top_mem);
0ec449ee
DT
2069
2070 /* check first whether TOP_MEM2 is enabled */
2071 rdmsrl(MSR_K8_SYSCFG, msr_val);
2072 if (msr_val & (1U << 21)) {
e97f8bb8 2073 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
956b9ba1 2074 edac_dbg(0, " TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
0ec449ee 2075 } else
956b9ba1 2076 edac_dbg(0, " TOP_MEM2 disabled\n");
0ec449ee 2077
5980bb9c 2078 amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
0ec449ee 2079
5a5d2371 2080 read_dram_ctl_register(pvt);
0ec449ee 2081
7f19bf75
BP
2082 for (range = 0; range < DRAM_RANGES; range++) {
2083 u8 rw;
0ec449ee 2084
7f19bf75
BP
2085 /* read settings for this DRAM range */
2086 read_dram_base_limit_regs(pvt, range);
2087
2088 rw = dram_rw(pvt, range);
2089 if (!rw)
2090 continue;
2091
956b9ba1
JP
2092 edac_dbg(1, " DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
2093 range,
2094 get_dram_base(pvt, range),
2095 get_dram_limit(pvt, range));
7f19bf75 2096
956b9ba1
JP
2097 edac_dbg(1, " IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
2098 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
2099 (rw & 0x1) ? "R" : "-",
2100 (rw & 0x2) ? "W" : "-",
2101 dram_intlv_sel(pvt, range),
2102 dram_dst_node(pvt, range));
0ec449ee
DT
2103 }
2104
b2b0c605 2105 read_dct_base_mask(pvt);
0ec449ee 2106
bc21fa57 2107 amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
525a1b20 2108 amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
0ec449ee 2109
8d5b5d9c 2110 amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
0ec449ee 2111
cb328507
BP
2112 amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
2113 amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
0ec449ee 2114
78da121e 2115 if (!dct_ganging_enabled(pvt)) {
cb328507
BP
2116 amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
2117 amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
0ec449ee 2118 }
ad6a32e9 2119
a3b7db09
BP
2120 pvt->ecc_sym_sz = 4;
2121
2122 if (c->x86 >= 0x10) {
b2b0c605 2123 amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
525a1b20 2124 amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
ad6a32e9 2125
a3b7db09
BP
2126 /* F10h, revD and later can do x8 ECC too */
2127 if ((c->x86 > 0x10 || c->x86_model > 7) && tmp & BIT(25))
2128 pvt->ecc_sym_sz = 8;
2129 }
b2b0c605 2130 dump_misc_regs(pvt);
0ec449ee
DT
2131}
2132
2133/*
2134 * NOTE: CPU Revision Dependent code
2135 *
2136 * Input:
11c75ead 2137 * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
0ec449ee
DT
2138 * k8 private pointer to -->
2139 * DRAM Bank Address mapping register
2140 * node_id
2141 * DCL register where dual_channel_active is
2142 *
2143 * The DBAM register consists of 4 sets of 4 bits each definitions:
2144 *
2145 * Bits: CSROWs
2146 * 0-3 CSROWs 0 and 1
2147 * 4-7 CSROWs 2 and 3
2148 * 8-11 CSROWs 4 and 5
2149 * 12-15 CSROWs 6 and 7
2150 *
2151 * Values range from: 0 to 15
2152 * The meaning of the values depends on CPU revision and dual-channel state,
2153 * see relevant BKDG more info.
2154 *
2155 * The memory controller provides for total of only 8 CSROWs in its current
2156 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2157 * single channel or two (2) DIMMs in dual channel mode.
2158 *
2159 * The following code logic collapses the various tables for CSROW based on CPU
2160 * revision.
2161 *
2162 * Returns:
2163 * The number of PAGE_SIZE pages on the specified CSROW number it
2164 * encompasses
2165 *
2166 */
41d8bfab 2167static u32 amd64_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
0ec449ee 2168{
1433eb99 2169 u32 cs_mode, nr_pages;
f92cae45 2170 u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
0ec449ee
DT
2171
2172 /*
2173 * The math on this doesn't look right on the surface because x/2*4 can
2174 * be simplified to x*2 but this expression makes use of the fact that
2175 * it is integral math where 1/2=0. This intermediate value becomes the
2176 * number of bits to shift the DBAM register to extract the proper CSROW
2177 * field.
2178 */
f92cae45 2179 cs_mode = (dbam >> ((csrow_nr / 2) * 4)) & 0xF;
0ec449ee 2180
41d8bfab 2181 nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT);
0ec449ee 2182
956b9ba1
JP
2183 edac_dbg(0, " (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
2184 edac_dbg(0, " nr_pages/channel= %u channel-count = %d\n",
2185 nr_pages, pvt->channel_count);
0ec449ee
DT
2186
2187 return nr_pages;
2188}
2189
2190/*
2191 * Initialize the array of csrow attribute instances, based on the values
2192 * from pci config hardware registers.
2193 */
360b7f3c 2194static int init_csrows(struct mem_ctl_info *mci)
0ec449ee
DT
2195{
2196 struct csrow_info *csrow;
de3910eb 2197 struct dimm_info *dimm;
2299ef71 2198 struct amd64_pvt *pvt = mci->pvt_info;
5e2af0c0 2199 u64 base, mask;
2299ef71 2200 u32 val;
084a4fcc
MCC
2201 int i, j, empty = 1;
2202 enum mem_type mtype;
2203 enum edac_type edac_mode;
a895bf8b 2204 int nr_pages = 0;
0ec449ee 2205
a97fa68e 2206 amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
0ec449ee 2207
2299ef71 2208 pvt->nbcfg = val;
0ec449ee 2209
956b9ba1
JP
2210 edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2211 pvt->mc_node_id, val,
2212 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
0ec449ee 2213
11c75ead 2214 for_each_chip_select(i, 0, pvt) {
de3910eb 2215 csrow = mci->csrows[i];
0ec449ee 2216
f92cae45 2217 if (!csrow_enabled(i, 0, pvt) && !csrow_enabled(i, 1, pvt)) {
956b9ba1
JP
2218 edac_dbg(1, "----CSROW %d VALID for MC node %d\n",
2219 i, pvt->mc_node_id);
0ec449ee
DT
2220 continue;
2221 }
2222
0ec449ee 2223 empty = 0;
f92cae45 2224 if (csrow_enabled(i, 0, pvt))
a895bf8b 2225 nr_pages = amd64_csrow_nr_pages(pvt, 0, i);
f92cae45 2226 if (csrow_enabled(i, 1, pvt))
a895bf8b 2227 nr_pages += amd64_csrow_nr_pages(pvt, 1, i);
11c75ead
BP
2228
2229 get_cs_base_and_mask(pvt, i, 0, &base, &mask);
0ec449ee
DT
2230 /* 8 bytes of resolution */
2231
084a4fcc 2232 mtype = amd64_determine_memory_type(pvt, i);
0ec449ee 2233
956b9ba1
JP
2234 edac_dbg(1, " for MC node %d csrow %d:\n", pvt->mc_node_id, i);
2235 edac_dbg(1, " nr_pages: %u\n",
2236 nr_pages * pvt->channel_count);
0ec449ee
DT
2237
2238 /*
2239 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2240 */
a97fa68e 2241 if (pvt->nbcfg & NBCFG_ECC_ENABLE)
084a4fcc
MCC
2242 edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL) ?
2243 EDAC_S4ECD4ED : EDAC_SECDED;
0ec449ee 2244 else
084a4fcc
MCC
2245 edac_mode = EDAC_NONE;
2246
2247 for (j = 0; j < pvt->channel_count; j++) {
de3910eb
MCC
2248 dimm = csrow->channels[j]->dimm;
2249 dimm->mtype = mtype;
2250 dimm->edac_mode = edac_mode;
2251 dimm->nr_pages = nr_pages;
084a4fcc 2252 }
0ec449ee
DT
2253 }
2254
2255 return empty;
2256}
d27bf6fa 2257
f6d6ae96 2258/* get all cores on this DCT */
b487c33e 2259static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, unsigned nid)
f6d6ae96
BP
2260{
2261 int cpu;
2262
2263 for_each_online_cpu(cpu)
2264 if (amd_get_nb_id(cpu) == nid)
2265 cpumask_set_cpu(cpu, mask);
2266}
2267
2268/* check MCG_CTL on all the cpus on this node */
b487c33e 2269static bool amd64_nb_mce_bank_enabled_on_node(unsigned nid)
f6d6ae96
BP
2270{
2271 cpumask_var_t mask;
50542251 2272 int cpu, nbe;
f6d6ae96
BP
2273 bool ret = false;
2274
2275 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
24f9a7fe 2276 amd64_warn("%s: Error allocating mask\n", __func__);
f6d6ae96
BP
2277 return false;
2278 }
2279
2280 get_cpus_on_this_dct_cpumask(mask, nid);
2281
f6d6ae96
BP
2282 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2283
2284 for_each_cpu(cpu, mask) {
50542251 2285 struct msr *reg = per_cpu_ptr(msrs, cpu);
5980bb9c 2286 nbe = reg->l & MSR_MCGCTL_NBE;
f6d6ae96 2287
956b9ba1
JP
2288 edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2289 cpu, reg->q,
2290 (nbe ? "enabled" : "disabled"));
f6d6ae96
BP
2291
2292 if (!nbe)
2293 goto out;
f6d6ae96
BP
2294 }
2295 ret = true;
2296
2297out:
f6d6ae96
BP
2298 free_cpumask_var(mask);
2299 return ret;
2300}
2301
2299ef71 2302static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on)
f6d6ae96
BP
2303{
2304 cpumask_var_t cmask;
50542251 2305 int cpu;
f6d6ae96
BP
2306
2307 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
24f9a7fe 2308 amd64_warn("%s: error allocating mask\n", __func__);
f6d6ae96
BP
2309 return false;
2310 }
2311
ae7bb7c6 2312 get_cpus_on_this_dct_cpumask(cmask, nid);
f6d6ae96 2313
f6d6ae96
BP
2314 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2315
2316 for_each_cpu(cpu, cmask) {
2317
50542251
BP
2318 struct msr *reg = per_cpu_ptr(msrs, cpu);
2319
f6d6ae96 2320 if (on) {
5980bb9c 2321 if (reg->l & MSR_MCGCTL_NBE)
ae7bb7c6 2322 s->flags.nb_mce_enable = 1;
f6d6ae96 2323
5980bb9c 2324 reg->l |= MSR_MCGCTL_NBE;
f6d6ae96
BP
2325 } else {
2326 /*
d95cf4de 2327 * Turn off NB MCE reporting only when it was off before
f6d6ae96 2328 */
ae7bb7c6 2329 if (!s->flags.nb_mce_enable)
5980bb9c 2330 reg->l &= ~MSR_MCGCTL_NBE;
f6d6ae96 2331 }
f6d6ae96
BP
2332 }
2333 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2334
f6d6ae96
BP
2335 free_cpumask_var(cmask);
2336
2337 return 0;
2338}
2339
2299ef71
BP
2340static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2341 struct pci_dev *F3)
f9431992 2342{
2299ef71 2343 bool ret = true;
c9f4f26e 2344 u32 value, mask = 0x3; /* UECC/CECC enable */
f9431992 2345
2299ef71
BP
2346 if (toggle_ecc_err_reporting(s, nid, ON)) {
2347 amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2348 return false;
2349 }
2350
c9f4f26e 2351 amd64_read_pci_cfg(F3, NBCTL, &value);
f9431992 2352
ae7bb7c6
BP
2353 s->old_nbctl = value & mask;
2354 s->nbctl_valid = true;
f9431992
DT
2355
2356 value |= mask;
c9f4f26e 2357 amd64_write_pci_cfg(F3, NBCTL, value);
f9431992 2358
a97fa68e 2359 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2360
956b9ba1
JP
2361 edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2362 nid, value, !!(value & NBCFG_ECC_ENABLE));
f9431992 2363
a97fa68e 2364 if (!(value & NBCFG_ECC_ENABLE)) {
24f9a7fe 2365 amd64_warn("DRAM ECC disabled on this node, enabling...\n");
f9431992 2366
ae7bb7c6 2367 s->flags.nb_ecc_prev = 0;
d95cf4de 2368
f9431992 2369 /* Attempt to turn on DRAM ECC Enable */
a97fa68e
BP
2370 value |= NBCFG_ECC_ENABLE;
2371 amd64_write_pci_cfg(F3, NBCFG, value);
f9431992 2372
a97fa68e 2373 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2374
a97fa68e 2375 if (!(value & NBCFG_ECC_ENABLE)) {
24f9a7fe
BP
2376 amd64_warn("Hardware rejected DRAM ECC enable,"
2377 "check memory DIMM configuration.\n");
2299ef71 2378 ret = false;
f9431992 2379 } else {
24f9a7fe 2380 amd64_info("Hardware accepted DRAM ECC Enable\n");
f9431992 2381 }
d95cf4de 2382 } else {
ae7bb7c6 2383 s->flags.nb_ecc_prev = 1;
f9431992 2384 }
d95cf4de 2385
956b9ba1
JP
2386 edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2387 nid, value, !!(value & NBCFG_ECC_ENABLE));
f9431992 2388
2299ef71 2389 return ret;
f9431992
DT
2390}
2391
360b7f3c
BP
2392static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2393 struct pci_dev *F3)
f9431992 2394{
c9f4f26e
BP
2395 u32 value, mask = 0x3; /* UECC/CECC enable */
2396
f9431992 2397
ae7bb7c6 2398 if (!s->nbctl_valid)
f9431992
DT
2399 return;
2400
c9f4f26e 2401 amd64_read_pci_cfg(F3, NBCTL, &value);
f9431992 2402 value &= ~mask;
ae7bb7c6 2403 value |= s->old_nbctl;
f9431992 2404
c9f4f26e 2405 amd64_write_pci_cfg(F3, NBCTL, value);
f9431992 2406
ae7bb7c6
BP
2407 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
2408 if (!s->flags.nb_ecc_prev) {
a97fa68e
BP
2409 amd64_read_pci_cfg(F3, NBCFG, &value);
2410 value &= ~NBCFG_ECC_ENABLE;
2411 amd64_write_pci_cfg(F3, NBCFG, value);
d95cf4de
BP
2412 }
2413
2414 /* restore the NB Enable MCGCTL bit */
2299ef71 2415 if (toggle_ecc_err_reporting(s, nid, OFF))
24f9a7fe 2416 amd64_warn("Error restoring NB MCGCTL settings!\n");
f9431992
DT
2417}
2418
2419/*
2299ef71
BP
2420 * EDAC requires that the BIOS have ECC enabled before
2421 * taking over the processing of ECC errors. A command line
2422 * option allows to force-enable hardware ECC later in
2423 * enable_ecc_error_reporting().
f9431992 2424 */
cab4d277
BP
2425static const char *ecc_msg =
2426 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2427 " Either enable ECC checking or force module loading by setting "
2428 "'ecc_enable_override'.\n"
2429 " (Note that use of the override may cause unknown side effects.)\n";
be3468e8 2430
2299ef71 2431static bool ecc_enabled(struct pci_dev *F3, u8 nid)
f9431992
DT
2432{
2433 u32 value;
2299ef71 2434 u8 ecc_en = 0;
06724535 2435 bool nb_mce_en = false;
f9431992 2436
a97fa68e 2437 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2438
a97fa68e 2439 ecc_en = !!(value & NBCFG_ECC_ENABLE);
2299ef71 2440 amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
f9431992 2441
2299ef71 2442 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
06724535 2443 if (!nb_mce_en)
2299ef71
BP
2444 amd64_notice("NB MCE bank disabled, set MSR "
2445 "0x%08x[4] on node %d to enable.\n",
2446 MSR_IA32_MCG_CTL, nid);
f9431992 2447
2299ef71
BP
2448 if (!ecc_en || !nb_mce_en) {
2449 amd64_notice("%s", ecc_msg);
2450 return false;
2451 }
2452 return true;
f9431992
DT
2453}
2454
c5608759 2455static int set_mc_sysfs_attrs(struct mem_ctl_info *mci)
7d6034d3 2456{
c5608759 2457 int rc;
7d6034d3 2458
c5608759
MCC
2459 rc = amd64_create_sysfs_dbg_files(mci);
2460 if (rc < 0)
2461 return rc;
7d6034d3 2462
c5608759
MCC
2463 if (boot_cpu_data.x86 >= 0x10) {
2464 rc = amd64_create_sysfs_inject_files(mci);
2465 if (rc < 0)
2466 return rc;
2467 }
2468
2469 return 0;
2470}
7d6034d3 2471
c5608759
MCC
2472static void del_mc_sysfs_attrs(struct mem_ctl_info *mci)
2473{
2474 amd64_remove_sysfs_dbg_files(mci);
7d6034d3 2475
c5608759
MCC
2476 if (boot_cpu_data.x86 >= 0x10)
2477 amd64_remove_sysfs_inject_files(mci);
7d6034d3
DT
2478}
2479
df71a053
BP
2480static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
2481 struct amd64_family_type *fam)
7d6034d3
DT
2482{
2483 struct amd64_pvt *pvt = mci->pvt_info;
2484
2485 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2486 mci->edac_ctl_cap = EDAC_FLAG_NONE;
7d6034d3 2487
5980bb9c 2488 if (pvt->nbcap & NBCAP_SECDED)
7d6034d3
DT
2489 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2490
5980bb9c 2491 if (pvt->nbcap & NBCAP_CHIPKILL)
7d6034d3
DT
2492 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2493
2494 mci->edac_cap = amd64_determine_edac_cap(pvt);
2495 mci->mod_name = EDAC_MOD_STR;
2496 mci->mod_ver = EDAC_AMD64_VERSION;
df71a053 2497 mci->ctl_name = fam->ctl_name;
8d5b5d9c 2498 mci->dev_name = pci_name(pvt->F2);
7d6034d3
DT
2499 mci->ctl_page_to_phys = NULL;
2500
7d6034d3
DT
2501 /* memory scrubber interface */
2502 mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2503 mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2504}
2505
0092b20d
BP
2506/*
2507 * returns a pointer to the family descriptor on success, NULL otherwise.
2508 */
2509static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
395ae783 2510{
0092b20d
BP
2511 u8 fam = boot_cpu_data.x86;
2512 struct amd64_family_type *fam_type = NULL;
2513
2514 switch (fam) {
395ae783 2515 case 0xf:
0092b20d 2516 fam_type = &amd64_family_types[K8_CPUS];
b8cfa02f 2517 pvt->ops = &amd64_family_types[K8_CPUS].ops;
395ae783 2518 break;
df71a053 2519
395ae783 2520 case 0x10:
0092b20d 2521 fam_type = &amd64_family_types[F10_CPUS];
b8cfa02f 2522 pvt->ops = &amd64_family_types[F10_CPUS].ops;
df71a053
BP
2523 break;
2524
2525 case 0x15:
2526 fam_type = &amd64_family_types[F15_CPUS];
2527 pvt->ops = &amd64_family_types[F15_CPUS].ops;
395ae783
BP
2528 break;
2529
2530 default:
24f9a7fe 2531 amd64_err("Unsupported family!\n");
0092b20d 2532 return NULL;
395ae783 2533 }
0092b20d 2534
b8cfa02f
BP
2535 pvt->ext_model = boot_cpu_data.x86_model >> 4;
2536
df71a053 2537 amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
0092b20d 2538 (fam == 0xf ?
24f9a7fe
BP
2539 (pvt->ext_model >= K8_REV_F ? "revF or later "
2540 : "revE or earlier ")
2541 : ""), pvt->mc_node_id);
0092b20d 2542 return fam_type;
395ae783
BP
2543}
2544
2299ef71 2545static int amd64_init_one_instance(struct pci_dev *F2)
7d6034d3
DT
2546{
2547 struct amd64_pvt *pvt = NULL;
0092b20d 2548 struct amd64_family_type *fam_type = NULL;
360b7f3c 2549 struct mem_ctl_info *mci = NULL;
ab5a503c 2550 struct edac_mc_layer layers[2];
7d6034d3 2551 int err = 0, ret;
360b7f3c 2552 u8 nid = get_node_id(F2);
7d6034d3
DT
2553
2554 ret = -ENOMEM;
2555 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2556 if (!pvt)
360b7f3c 2557 goto err_ret;
7d6034d3 2558
360b7f3c 2559 pvt->mc_node_id = nid;
8d5b5d9c 2560 pvt->F2 = F2;
7d6034d3 2561
395ae783 2562 ret = -EINVAL;
0092b20d
BP
2563 fam_type = amd64_per_family_init(pvt);
2564 if (!fam_type)
395ae783
BP
2565 goto err_free;
2566
7d6034d3 2567 ret = -ENODEV;
360b7f3c 2568 err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
7d6034d3
DT
2569 if (err)
2570 goto err_free;
2571
360b7f3c 2572 read_mc_regs(pvt);
7d6034d3 2573
7d6034d3
DT
2574 /*
2575 * We need to determine how many memory channels there are. Then use
2576 * that information for calculating the size of the dynamic instance
360b7f3c 2577 * tables in the 'mci' structure.
7d6034d3 2578 */
360b7f3c 2579 ret = -EINVAL;
7d6034d3
DT
2580 pvt->channel_count = pvt->ops->early_channel_count(pvt);
2581 if (pvt->channel_count < 0)
360b7f3c 2582 goto err_siblings;
7d6034d3
DT
2583
2584 ret = -ENOMEM;
ab5a503c
MCC
2585 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
2586 layers[0].size = pvt->csels[0].b_cnt;
2587 layers[0].is_virt_csrow = true;
2588 layers[1].type = EDAC_MC_LAYER_CHANNEL;
2589 layers[1].size = pvt->channel_count;
2590 layers[1].is_virt_csrow = false;
ca0907b9 2591 mci = edac_mc_alloc(nid, ARRAY_SIZE(layers), layers, 0);
7d6034d3 2592 if (!mci)
360b7f3c 2593 goto err_siblings;
7d6034d3
DT
2594
2595 mci->pvt_info = pvt;
fd687502 2596 mci->pdev = &pvt->F2->dev;
7d6034d3 2597
df71a053 2598 setup_mci_misc_attrs(mci, fam_type);
360b7f3c
BP
2599
2600 if (init_csrows(mci))
7d6034d3
DT
2601 mci->edac_cap = EDAC_FLAG_NONE;
2602
7d6034d3
DT
2603 ret = -ENODEV;
2604 if (edac_mc_add_mc(mci)) {
956b9ba1 2605 edac_dbg(1, "failed edac_mc_add_mc()\n");
7d6034d3
DT
2606 goto err_add_mc;
2607 }
c5608759 2608 if (set_mc_sysfs_attrs(mci)) {
956b9ba1 2609 edac_dbg(1, "failed edac_mc_add_mc()\n");
c5608759
MCC
2610 goto err_add_sysfs;
2611 }
7d6034d3 2612
549d042d
BP
2613 /* register stuff with EDAC MCE */
2614 if (report_gart_errors)
2615 amd_report_gart_errors(true);
2616
2617 amd_register_ecc_decoder(amd64_decode_bus_error);
2618
360b7f3c
BP
2619 mcis[nid] = mci;
2620
2621 atomic_inc(&drv_instances);
2622
7d6034d3
DT
2623 return 0;
2624
c5608759
MCC
2625err_add_sysfs:
2626 edac_mc_del_mc(mci->pdev);
7d6034d3
DT
2627err_add_mc:
2628 edac_mc_free(mci);
2629
360b7f3c
BP
2630err_siblings:
2631 free_mc_sibling_devs(pvt);
7d6034d3 2632
360b7f3c
BP
2633err_free:
2634 kfree(pvt);
7d6034d3 2635
360b7f3c 2636err_ret:
7d6034d3
DT
2637 return ret;
2638}
2639
2299ef71 2640static int __devinit amd64_probe_one_instance(struct pci_dev *pdev,
b8cfa02f 2641 const struct pci_device_id *mc_type)
7d6034d3 2642{
ae7bb7c6 2643 u8 nid = get_node_id(pdev);
2299ef71 2644 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
ae7bb7c6 2645 struct ecc_settings *s;
2299ef71 2646 int ret = 0;
7d6034d3 2647
7d6034d3 2648 ret = pci_enable_device(pdev);
b8cfa02f 2649 if (ret < 0) {
956b9ba1 2650 edac_dbg(0, "ret=%d\n", ret);
b8cfa02f
BP
2651 return -EIO;
2652 }
7d6034d3 2653
ae7bb7c6
BP
2654 ret = -ENOMEM;
2655 s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
2656 if (!s)
2299ef71 2657 goto err_out;
ae7bb7c6
BP
2658
2659 ecc_stngs[nid] = s;
2660
2299ef71
BP
2661 if (!ecc_enabled(F3, nid)) {
2662 ret = -ENODEV;
2663
2664 if (!ecc_enable_override)
2665 goto err_enable;
2666
2667 amd64_warn("Forcing ECC on!\n");
2668
2669 if (!enable_ecc_error_reporting(s, nid, F3))
2670 goto err_enable;
2671 }
2672
2673 ret = amd64_init_one_instance(pdev);
360b7f3c 2674 if (ret < 0) {
ae7bb7c6 2675 amd64_err("Error probing instance: %d\n", nid);
360b7f3c
BP
2676 restore_ecc_error_reporting(s, nid, F3);
2677 }
7d6034d3
DT
2678
2679 return ret;
2299ef71
BP
2680
2681err_enable:
2682 kfree(s);
2683 ecc_stngs[nid] = NULL;
2684
2685err_out:
2686 return ret;
7d6034d3
DT
2687}
2688
2689static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
2690{
2691 struct mem_ctl_info *mci;
2692 struct amd64_pvt *pvt;
360b7f3c
BP
2693 u8 nid = get_node_id(pdev);
2694 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2695 struct ecc_settings *s = ecc_stngs[nid];
7d6034d3 2696
c5608759
MCC
2697 mci = find_mci_by_dev(&pdev->dev);
2698 del_mc_sysfs_attrs(mci);
7d6034d3
DT
2699 /* Remove from EDAC CORE tracking list */
2700 mci = edac_mc_del_mc(&pdev->dev);
2701 if (!mci)
2702 return;
2703
2704 pvt = mci->pvt_info;
2705
360b7f3c 2706 restore_ecc_error_reporting(s, nid, F3);
7d6034d3 2707
360b7f3c 2708 free_mc_sibling_devs(pvt);
7d6034d3 2709
549d042d
BP
2710 /* unregister from EDAC MCE */
2711 amd_report_gart_errors(false);
2712 amd_unregister_ecc_decoder(amd64_decode_bus_error);
2713
360b7f3c
BP
2714 kfree(ecc_stngs[nid]);
2715 ecc_stngs[nid] = NULL;
ae7bb7c6 2716
7d6034d3 2717 /* Free the EDAC CORE resources */
8f68ed97 2718 mci->pvt_info = NULL;
360b7f3c 2719 mcis[nid] = NULL;
8f68ed97
BP
2720
2721 kfree(pvt);
7d6034d3
DT
2722 edac_mc_free(mci);
2723}
2724
2725/*
2726 * This table is part of the interface for loading drivers for PCI devices. The
2727 * PCI core identifies what devices are on a system during boot, and then
2728 * inquiry this table to see if this driver is for a given device found.
2729 */
36c46f31 2730static DEFINE_PCI_DEVICE_TABLE(amd64_pci_table) = {
7d6034d3
DT
2731 {
2732 .vendor = PCI_VENDOR_ID_AMD,
2733 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2734 .subvendor = PCI_ANY_ID,
2735 .subdevice = PCI_ANY_ID,
2736 .class = 0,
2737 .class_mask = 0,
7d6034d3
DT
2738 },
2739 {
2740 .vendor = PCI_VENDOR_ID_AMD,
2741 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2742 .subvendor = PCI_ANY_ID,
2743 .subdevice = PCI_ANY_ID,
2744 .class = 0,
2745 .class_mask = 0,
7d6034d3 2746 },
df71a053
BP
2747 {
2748 .vendor = PCI_VENDOR_ID_AMD,
2749 .device = PCI_DEVICE_ID_AMD_15H_NB_F2,
2750 .subvendor = PCI_ANY_ID,
2751 .subdevice = PCI_ANY_ID,
2752 .class = 0,
2753 .class_mask = 0,
2754 },
2755
7d6034d3
DT
2756 {0, }
2757};
2758MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2759
2760static struct pci_driver amd64_pci_driver = {
2761 .name = EDAC_MOD_STR,
2299ef71 2762 .probe = amd64_probe_one_instance,
7d6034d3
DT
2763 .remove = __devexit_p(amd64_remove_one_instance),
2764 .id_table = amd64_pci_table,
2765};
2766
360b7f3c 2767static void setup_pci_device(void)
7d6034d3
DT
2768{
2769 struct mem_ctl_info *mci;
2770 struct amd64_pvt *pvt;
2771
2772 if (amd64_ctl_pci)
2773 return;
2774
cc4d8860 2775 mci = mcis[0];
7d6034d3
DT
2776 if (mci) {
2777
2778 pvt = mci->pvt_info;
2779 amd64_ctl_pci =
8d5b5d9c 2780 edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
7d6034d3
DT
2781
2782 if (!amd64_ctl_pci) {
2783 pr_warning("%s(): Unable to create PCI control\n",
2784 __func__);
2785
2786 pr_warning("%s(): PCI error report via EDAC not set\n",
2787 __func__);
2788 }
2789 }
2790}
2791
2792static int __init amd64_edac_init(void)
2793{
360b7f3c 2794 int err = -ENODEV;
7d6034d3 2795
df71a053 2796 printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
7d6034d3
DT
2797
2798 opstate_init();
2799
9653a5c7 2800 if (amd_cache_northbridges() < 0)
56b34b91 2801 goto err_ret;
7d6034d3 2802
cc4d8860 2803 err = -ENOMEM;
ae7bb7c6
BP
2804 mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
2805 ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
360b7f3c 2806 if (!(mcis && ecc_stngs))
a9f0fbe2 2807 goto err_free;
cc4d8860 2808
50542251 2809 msrs = msrs_alloc();
56b34b91 2810 if (!msrs)
360b7f3c 2811 goto err_free;
50542251 2812
7d6034d3
DT
2813 err = pci_register_driver(&amd64_pci_driver);
2814 if (err)
56b34b91 2815 goto err_pci;
7d6034d3 2816
56b34b91 2817 err = -ENODEV;
360b7f3c
BP
2818 if (!atomic_read(&drv_instances))
2819 goto err_no_instances;
7d6034d3 2820
360b7f3c
BP
2821 setup_pci_device();
2822 return 0;
7d6034d3 2823
360b7f3c 2824err_no_instances:
7d6034d3 2825 pci_unregister_driver(&amd64_pci_driver);
cc4d8860 2826
56b34b91
BP
2827err_pci:
2828 msrs_free(msrs);
2829 msrs = NULL;
cc4d8860 2830
360b7f3c
BP
2831err_free:
2832 kfree(mcis);
2833 mcis = NULL;
2834
2835 kfree(ecc_stngs);
2836 ecc_stngs = NULL;
2837
56b34b91 2838err_ret:
7d6034d3
DT
2839 return err;
2840}
2841
2842static void __exit amd64_edac_exit(void)
2843{
2844 if (amd64_ctl_pci)
2845 edac_pci_release_generic_ctl(amd64_ctl_pci);
2846
2847 pci_unregister_driver(&amd64_pci_driver);
50542251 2848
ae7bb7c6
BP
2849 kfree(ecc_stngs);
2850 ecc_stngs = NULL;
2851
cc4d8860
BP
2852 kfree(mcis);
2853 mcis = NULL;
2854
50542251
BP
2855 msrs_free(msrs);
2856 msrs = NULL;
7d6034d3
DT
2857}
2858
2859module_init(amd64_edac_init);
2860module_exit(amd64_edac_exit);
2861
2862MODULE_LICENSE("GPL");
2863MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
2864 "Dave Peterson, Thayne Harbaugh");
2865MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
2866 EDAC_AMD64_VERSION);
2867
2868module_param(edac_op_state, int, 0444);
2869MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
This page took 0.409091 seconds and 5 git commands to generate.