EDAC, MCE, AMD: Simplify NB MCE decoder interface
[deliverable/linux.git] / drivers / edac / amd64_edac.c
CommitLineData
2bc65418 1#include "amd64_edac.h"
23ac4ae8 2#include <asm/amd_nb.h>
2bc65418
DT
3
4static struct edac_pci_ctl_info *amd64_ctl_pci;
5
6static int report_gart_errors;
7module_param(report_gart_errors, int, 0644);
8
9/*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
12 */
13static int ecc_enable_override;
14module_param(ecc_enable_override, int, 0644);
15
a29d8b8e 16static struct msr __percpu *msrs;
50542251 17
360b7f3c
BP
18/*
19 * count successfully initialized driver instances for setup_pci_device()
20 */
21static atomic_t drv_instances = ATOMIC_INIT(0);
22
cc4d8860
BP
23/* Per-node driver instances */
24static struct mem_ctl_info **mcis;
ae7bb7c6 25static struct ecc_settings **ecc_stngs;
2bc65418 26
b70ef010
BP
27/*
28 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
29 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
30 * or higher value'.
31 *
32 *FIXME: Produce a better mapping/linearisation.
33 */
39094443
BP
34struct scrubrate {
35 u32 scrubval; /* bit pattern for scrub rate */
36 u32 bandwidth; /* bandwidth consumed (bytes/sec) */
37} scrubrates[] = {
b70ef010
BP
38 { 0x01, 1600000000UL},
39 { 0x02, 800000000UL},
40 { 0x03, 400000000UL},
41 { 0x04, 200000000UL},
42 { 0x05, 100000000UL},
43 { 0x06, 50000000UL},
44 { 0x07, 25000000UL},
45 { 0x08, 12284069UL},
46 { 0x09, 6274509UL},
47 { 0x0A, 3121951UL},
48 { 0x0B, 1560975UL},
49 { 0x0C, 781440UL},
50 { 0x0D, 390720UL},
51 { 0x0E, 195300UL},
52 { 0x0F, 97650UL},
53 { 0x10, 48854UL},
54 { 0x11, 24427UL},
55 { 0x12, 12213UL},
56 { 0x13, 6101UL},
57 { 0x14, 3051UL},
58 { 0x15, 1523UL},
59 { 0x16, 761UL},
60 { 0x00, 0UL}, /* scrubbing off */
61};
62
b2b0c605
BP
63static int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
64 u32 *val, const char *func)
65{
66 int err = 0;
67
68 err = pci_read_config_dword(pdev, offset, val);
69 if (err)
70 amd64_warn("%s: error reading F%dx%03x.\n",
71 func, PCI_FUNC(pdev->devfn), offset);
72
73 return err;
74}
75
76int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
77 u32 val, const char *func)
78{
79 int err = 0;
80
81 err = pci_write_config_dword(pdev, offset, val);
82 if (err)
83 amd64_warn("%s: error writing to F%dx%03x.\n",
84 func, PCI_FUNC(pdev->devfn), offset);
85
86 return err;
87}
88
89/*
90 *
91 * Depending on the family, F2 DCT reads need special handling:
92 *
93 * K8: has a single DCT only
94 *
95 * F10h: each DCT has its own set of regs
96 * DCT0 -> F2x040..
97 * DCT1 -> F2x140..
98 *
99 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
100 *
101 */
102static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
103 const char *func)
104{
105 if (addr >= 0x100)
106 return -EINVAL;
107
108 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
109}
110
111static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
112 const char *func)
113{
114 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
115}
116
117static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
118 const char *func)
119{
120 u32 reg = 0;
121 u8 dct = 0;
122
123 if (addr >= 0x140 && addr <= 0x1a0) {
124 dct = 1;
125 addr -= 0x100;
126 }
127
128 amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
129 reg &= 0xfffffffe;
130 reg |= dct;
131 amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
132
133 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
134}
135
2bc65418
DT
136/*
137 * Memory scrubber control interface. For K8, memory scrubbing is handled by
138 * hardware and can involve L2 cache, dcache as well as the main memory. With
139 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
140 * functionality.
141 *
142 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
143 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
144 * bytes/sec for the setting.
145 *
146 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
147 * other archs, we might not have access to the caches directly.
148 */
149
150/*
151 * scan the scrub rate mapping table for a close or matching bandwidth value to
152 * issue. If requested is too big, then use last maximum value found.
153 */
395ae783 154static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
2bc65418
DT
155{
156 u32 scrubval;
157 int i;
158
159 /*
160 * map the configured rate (new_bw) to a value specific to the AMD64
161 * memory controller and apply to register. Search for the first
162 * bandwidth entry that is greater or equal than the setting requested
163 * and program that. If at last entry, turn off DRAM scrubbing.
164 */
165 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
166 /*
167 * skip scrub rates which aren't recommended
168 * (see F10 BKDG, F3x58)
169 */
395ae783 170 if (scrubrates[i].scrubval < min_rate)
2bc65418
DT
171 continue;
172
173 if (scrubrates[i].bandwidth <= new_bw)
174 break;
175
176 /*
177 * if no suitable bandwidth found, turn off DRAM scrubbing
178 * entirely by falling back to the last element in the
179 * scrubrates array.
180 */
181 }
182
183 scrubval = scrubrates[i].scrubval;
2bc65418 184
5980bb9c 185 pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
2bc65418 186
39094443
BP
187 if (scrubval)
188 return scrubrates[i].bandwidth;
189
2bc65418
DT
190 return 0;
191}
192
395ae783 193static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
2bc65418
DT
194{
195 struct amd64_pvt *pvt = mci->pvt_info;
87b3e0e6 196 u32 min_scrubrate = 0x5;
2bc65418 197
87b3e0e6
BP
198 if (boot_cpu_data.x86 == 0xf)
199 min_scrubrate = 0x0;
200
201 return __amd64_set_scrub_rate(pvt->F3, bw, min_scrubrate);
2bc65418
DT
202}
203
39094443 204static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
2bc65418
DT
205{
206 struct amd64_pvt *pvt = mci->pvt_info;
207 u32 scrubval = 0;
39094443 208 int i, retval = -EINVAL;
2bc65418 209
5980bb9c 210 amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
2bc65418
DT
211
212 scrubval = scrubval & 0x001F;
213
926311fd 214 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
2bc65418 215 if (scrubrates[i].scrubval == scrubval) {
39094443 216 retval = scrubrates[i].bandwidth;
2bc65418
DT
217 break;
218 }
219 }
39094443 220 return retval;
2bc65418
DT
221}
222
6775763a 223/*
7f19bf75
BP
224 * returns true if the SysAddr given by sys_addr matches the
225 * DRAM base/limit associated with node_id
6775763a 226 */
b487c33e
BP
227static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr,
228 unsigned nid)
6775763a 229{
7f19bf75 230 u64 addr;
6775763a
DT
231
232 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
233 * all ones if the most significant implemented address bit is 1.
234 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
235 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
236 * Application Programming.
237 */
238 addr = sys_addr & 0x000000ffffffffffull;
239
7f19bf75
BP
240 return ((addr >= get_dram_base(pvt, nid)) &&
241 (addr <= get_dram_limit(pvt, nid)));
6775763a
DT
242}
243
244/*
245 * Attempt to map a SysAddr to a node. On success, return a pointer to the
246 * mem_ctl_info structure for the node that the SysAddr maps to.
247 *
248 * On failure, return NULL.
249 */
250static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
251 u64 sys_addr)
252{
253 struct amd64_pvt *pvt;
b487c33e 254 unsigned node_id;
6775763a
DT
255 u32 intlv_en, bits;
256
257 /*
258 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
259 * 3.4.4.2) registers to map the SysAddr to a node ID.
260 */
261 pvt = mci->pvt_info;
262
263 /*
264 * The value of this field should be the same for all DRAM Base
265 * registers. Therefore we arbitrarily choose to read it from the
266 * register for node 0.
267 */
7f19bf75 268 intlv_en = dram_intlv_en(pvt, 0);
6775763a
DT
269
270 if (intlv_en == 0) {
7f19bf75 271 for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
6775763a 272 if (amd64_base_limit_match(pvt, sys_addr, node_id))
8edc5445 273 goto found;
6775763a 274 }
8edc5445 275 goto err_no_match;
6775763a
DT
276 }
277
72f158fe
BP
278 if (unlikely((intlv_en != 0x01) &&
279 (intlv_en != 0x03) &&
280 (intlv_en != 0x07))) {
24f9a7fe 281 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
6775763a
DT
282 return NULL;
283 }
284
285 bits = (((u32) sys_addr) >> 12) & intlv_en;
286
287 for (node_id = 0; ; ) {
7f19bf75 288 if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
6775763a
DT
289 break; /* intlv_sel field matches */
290
7f19bf75 291 if (++node_id >= DRAM_RANGES)
6775763a
DT
292 goto err_no_match;
293 }
294
295 /* sanity test for sys_addr */
296 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
24f9a7fe
BP
297 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
298 "range for node %d with node interleaving enabled.\n",
299 __func__, sys_addr, node_id);
6775763a
DT
300 return NULL;
301 }
302
303found:
b487c33e 304 return edac_mc_find((int)node_id);
6775763a
DT
305
306err_no_match:
307 debugf2("sys_addr 0x%lx doesn't match any node\n",
308 (unsigned long)sys_addr);
309
310 return NULL;
311}
e2ce7255
DT
312
313/*
11c75ead
BP
314 * compute the CS base address of the @csrow on the DRAM controller @dct.
315 * For details see F2x[5C:40] in the processor's BKDG
e2ce7255 316 */
11c75ead
BP
317static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
318 u64 *base, u64 *mask)
e2ce7255 319{
11c75ead
BP
320 u64 csbase, csmask, base_bits, mask_bits;
321 u8 addr_shift;
e2ce7255 322
11c75ead
BP
323 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
324 csbase = pvt->csels[dct].csbases[csrow];
325 csmask = pvt->csels[dct].csmasks[csrow];
326 base_bits = GENMASK(21, 31) | GENMASK(9, 15);
327 mask_bits = GENMASK(21, 29) | GENMASK(9, 15);
328 addr_shift = 4;
329 } else {
330 csbase = pvt->csels[dct].csbases[csrow];
331 csmask = pvt->csels[dct].csmasks[csrow >> 1];
332 addr_shift = 8;
e2ce7255 333
11c75ead
BP
334 if (boot_cpu_data.x86 == 0x15)
335 base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13);
336 else
337 base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13);
338 }
e2ce7255 339
11c75ead 340 *base = (csbase & base_bits) << addr_shift;
e2ce7255 341
11c75ead
BP
342 *mask = ~0ULL;
343 /* poke holes for the csmask */
344 *mask &= ~(mask_bits << addr_shift);
345 /* OR them in */
346 *mask |= (csmask & mask_bits) << addr_shift;
e2ce7255
DT
347}
348
11c75ead
BP
349#define for_each_chip_select(i, dct, pvt) \
350 for (i = 0; i < pvt->csels[dct].b_cnt; i++)
351
614ec9d8
BP
352#define chip_select_base(i, dct, pvt) \
353 pvt->csels[dct].csbases[i]
354
11c75ead
BP
355#define for_each_chip_select_mask(i, dct, pvt) \
356 for (i = 0; i < pvt->csels[dct].m_cnt; i++)
357
e2ce7255
DT
358/*
359 * @input_addr is an InputAddr associated with the node given by mci. Return the
360 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
361 */
362static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
363{
364 struct amd64_pvt *pvt;
365 int csrow;
366 u64 base, mask;
367
368 pvt = mci->pvt_info;
369
11c75ead
BP
370 for_each_chip_select(csrow, 0, pvt) {
371 if (!csrow_enabled(csrow, 0, pvt))
e2ce7255
DT
372 continue;
373
11c75ead
BP
374 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
375
376 mask = ~mask;
e2ce7255
DT
377
378 if ((input_addr & mask) == (base & mask)) {
379 debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
380 (unsigned long)input_addr, csrow,
381 pvt->mc_node_id);
382
383 return csrow;
384 }
385 }
e2ce7255
DT
386 debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
387 (unsigned long)input_addr, pvt->mc_node_id);
388
389 return -1;
390}
391
e2ce7255
DT
392/*
393 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
394 * for the node represented by mci. Info is passed back in *hole_base,
395 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
396 * info is invalid. Info may be invalid for either of the following reasons:
397 *
398 * - The revision of the node is not E or greater. In this case, the DRAM Hole
399 * Address Register does not exist.
400 *
401 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
402 * indicating that its contents are not valid.
403 *
404 * The values passed back in *hole_base, *hole_offset, and *hole_size are
405 * complete 32-bit values despite the fact that the bitfields in the DHAR
406 * only represent bits 31-24 of the base and offset values.
407 */
408int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
409 u64 *hole_offset, u64 *hole_size)
410{
411 struct amd64_pvt *pvt = mci->pvt_info;
412 u64 base;
413
414 /* only revE and later have the DRAM Hole Address Register */
1433eb99 415 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
e2ce7255
DT
416 debugf1(" revision %d for node %d does not support DHAR\n",
417 pvt->ext_model, pvt->mc_node_id);
418 return 1;
419 }
420
bc21fa57 421 /* valid for Fam10h and above */
c8e518d5 422 if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
e2ce7255
DT
423 debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
424 return 1;
425 }
426
c8e518d5 427 if (!dhar_valid(pvt)) {
e2ce7255
DT
428 debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
429 pvt->mc_node_id);
430 return 1;
431 }
432
433 /* This node has Memory Hoisting */
434
435 /* +------------------+--------------------+--------------------+-----
436 * | memory | DRAM hole | relocated |
437 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
438 * | | | DRAM hole |
439 * | | | [0x100000000, |
440 * | | | (0x100000000+ |
441 * | | | (0xffffffff-x))] |
442 * +------------------+--------------------+--------------------+-----
443 *
444 * Above is a diagram of physical memory showing the DRAM hole and the
445 * relocated addresses from the DRAM hole. As shown, the DRAM hole
446 * starts at address x (the base address) and extends through address
447 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
448 * addresses in the hole so that they start at 0x100000000.
449 */
450
bc21fa57 451 base = dhar_base(pvt);
e2ce7255
DT
452
453 *hole_base = base;
454 *hole_size = (0x1ull << 32) - base;
455
456 if (boot_cpu_data.x86 > 0xf)
bc21fa57 457 *hole_offset = f10_dhar_offset(pvt);
e2ce7255 458 else
bc21fa57 459 *hole_offset = k8_dhar_offset(pvt);
e2ce7255
DT
460
461 debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
462 pvt->mc_node_id, (unsigned long)*hole_base,
463 (unsigned long)*hole_offset, (unsigned long)*hole_size);
464
465 return 0;
466}
467EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
468
93c2df58
DT
469/*
470 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
471 * assumed that sys_addr maps to the node given by mci.
472 *
473 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
474 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
475 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
476 * then it is also involved in translating a SysAddr to a DramAddr. Sections
477 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
478 * These parts of the documentation are unclear. I interpret them as follows:
479 *
480 * When node n receives a SysAddr, it processes the SysAddr as follows:
481 *
482 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
483 * Limit registers for node n. If the SysAddr is not within the range
484 * specified by the base and limit values, then node n ignores the Sysaddr
485 * (since it does not map to node n). Otherwise continue to step 2 below.
486 *
487 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
488 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
489 * the range of relocated addresses (starting at 0x100000000) from the DRAM
490 * hole. If not, skip to step 3 below. Else get the value of the
491 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
492 * offset defined by this value from the SysAddr.
493 *
494 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
495 * Base register for node n. To obtain the DramAddr, subtract the base
496 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
497 */
498static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
499{
7f19bf75 500 struct amd64_pvt *pvt = mci->pvt_info;
93c2df58
DT
501 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
502 int ret = 0;
503
7f19bf75 504 dram_base = get_dram_base(pvt, pvt->mc_node_id);
93c2df58
DT
505
506 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
507 &hole_size);
508 if (!ret) {
509 if ((sys_addr >= (1ull << 32)) &&
510 (sys_addr < ((1ull << 32) + hole_size))) {
511 /* use DHAR to translate SysAddr to DramAddr */
512 dram_addr = sys_addr - hole_offset;
513
514 debugf2("using DHAR to translate SysAddr 0x%lx to "
515 "DramAddr 0x%lx\n",
516 (unsigned long)sys_addr,
517 (unsigned long)dram_addr);
518
519 return dram_addr;
520 }
521 }
522
523 /*
524 * Translate the SysAddr to a DramAddr as shown near the start of
525 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
526 * only deals with 40-bit values. Therefore we discard bits 63-40 of
527 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
528 * discard are all 1s. Otherwise the bits we discard are all 0s. See
529 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
530 * Programmer's Manual Volume 1 Application Programming.
531 */
f678b8cc 532 dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base;
93c2df58
DT
533
534 debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
535 "DramAddr 0x%lx\n", (unsigned long)sys_addr,
536 (unsigned long)dram_addr);
537 return dram_addr;
538}
539
540/*
541 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
542 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
543 * for node interleaving.
544 */
545static int num_node_interleave_bits(unsigned intlv_en)
546{
547 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
548 int n;
549
550 BUG_ON(intlv_en > 7);
551 n = intlv_shift_table[intlv_en];
552 return n;
553}
554
555/* Translate the DramAddr given by @dram_addr to an InputAddr. */
556static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
557{
558 struct amd64_pvt *pvt;
559 int intlv_shift;
560 u64 input_addr;
561
562 pvt = mci->pvt_info;
563
564 /*
565 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
566 * concerning translating a DramAddr to an InputAddr.
567 */
7f19bf75 568 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
f678b8cc
BP
569 input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) +
570 (dram_addr & 0xfff);
93c2df58
DT
571
572 debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
573 intlv_shift, (unsigned long)dram_addr,
574 (unsigned long)input_addr);
575
576 return input_addr;
577}
578
579/*
580 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
581 * assumed that @sys_addr maps to the node given by mci.
582 */
583static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
584{
585 u64 input_addr;
586
587 input_addr =
588 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
589
590 debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
591 (unsigned long)sys_addr, (unsigned long)input_addr);
592
593 return input_addr;
594}
595
596
597/*
598 * @input_addr is an InputAddr associated with the node represented by mci.
599 * Translate @input_addr to a DramAddr and return the result.
600 */
601static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
602{
603 struct amd64_pvt *pvt;
b487c33e 604 unsigned node_id, intlv_shift;
93c2df58
DT
605 u64 bits, dram_addr;
606 u32 intlv_sel;
607
608 /*
609 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
610 * shows how to translate a DramAddr to an InputAddr. Here we reverse
611 * this procedure. When translating from a DramAddr to an InputAddr, the
612 * bits used for node interleaving are discarded. Here we recover these
613 * bits from the IntlvSel field of the DRAM Limit register (section
614 * 3.4.4.2) for the node that input_addr is associated with.
615 */
616 pvt = mci->pvt_info;
617 node_id = pvt->mc_node_id;
b487c33e
BP
618
619 BUG_ON(node_id > 7);
93c2df58 620
7f19bf75 621 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
93c2df58
DT
622 if (intlv_shift == 0) {
623 debugf1(" InputAddr 0x%lx translates to DramAddr of "
624 "same value\n", (unsigned long)input_addr);
625
626 return input_addr;
627 }
628
f678b8cc
BP
629 bits = ((input_addr & GENMASK(12, 35)) << intlv_shift) +
630 (input_addr & 0xfff);
93c2df58 631
7f19bf75 632 intlv_sel = dram_intlv_sel(pvt, node_id) & ((1 << intlv_shift) - 1);
93c2df58
DT
633 dram_addr = bits + (intlv_sel << 12);
634
635 debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
636 "(%d node interleave bits)\n", (unsigned long)input_addr,
637 (unsigned long)dram_addr, intlv_shift);
638
639 return dram_addr;
640}
641
642/*
643 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
644 * @dram_addr to a SysAddr.
645 */
646static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
647{
648 struct amd64_pvt *pvt = mci->pvt_info;
7f19bf75 649 u64 hole_base, hole_offset, hole_size, base, sys_addr;
93c2df58
DT
650 int ret = 0;
651
652 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
653 &hole_size);
654 if (!ret) {
655 if ((dram_addr >= hole_base) &&
656 (dram_addr < (hole_base + hole_size))) {
657 sys_addr = dram_addr + hole_offset;
658
659 debugf1("using DHAR to translate DramAddr 0x%lx to "
660 "SysAddr 0x%lx\n", (unsigned long)dram_addr,
661 (unsigned long)sys_addr);
662
663 return sys_addr;
664 }
665 }
666
7f19bf75 667 base = get_dram_base(pvt, pvt->mc_node_id);
93c2df58
DT
668 sys_addr = dram_addr + base;
669
670 /*
671 * The sys_addr we have computed up to this point is a 40-bit value
672 * because the k8 deals with 40-bit values. However, the value we are
673 * supposed to return is a full 64-bit physical address. The AMD
674 * x86-64 architecture specifies that the most significant implemented
675 * address bit through bit 63 of a physical address must be either all
676 * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
677 * 64-bit value below. See section 3.4.2 of AMD publication 24592:
678 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
679 * Programming.
680 */
681 sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
682
683 debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
684 pvt->mc_node_id, (unsigned long)dram_addr,
685 (unsigned long)sys_addr);
686
687 return sys_addr;
688}
689
690/*
691 * @input_addr is an InputAddr associated with the node given by mci. Translate
692 * @input_addr to a SysAddr.
693 */
694static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
695 u64 input_addr)
696{
697 return dram_addr_to_sys_addr(mci,
698 input_addr_to_dram_addr(mci, input_addr));
699}
700
701/*
702 * Find the minimum and maximum InputAddr values that map to the given @csrow.
703 * Pass back these values in *input_addr_min and *input_addr_max.
704 */
705static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
706 u64 *input_addr_min, u64 *input_addr_max)
707{
708 struct amd64_pvt *pvt;
709 u64 base, mask;
710
711 pvt = mci->pvt_info;
11c75ead 712 BUG_ON((csrow < 0) || (csrow >= pvt->csels[0].b_cnt));
93c2df58 713
11c75ead 714 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
93c2df58
DT
715
716 *input_addr_min = base & ~mask;
11c75ead 717 *input_addr_max = base | mask;
93c2df58
DT
718}
719
93c2df58
DT
720/* Map the Error address to a PAGE and PAGE OFFSET. */
721static inline void error_address_to_page_and_offset(u64 error_address,
722 u32 *page, u32 *offset)
723{
724 *page = (u32) (error_address >> PAGE_SHIFT);
725 *offset = ((u32) error_address) & ~PAGE_MASK;
726}
727
728/*
729 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
730 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
731 * of a node that detected an ECC memory error. mci represents the node that
732 * the error address maps to (possibly different from the node that detected
733 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
734 * error.
735 */
736static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
737{
738 int csrow;
739
740 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
741
742 if (csrow == -1)
24f9a7fe
BP
743 amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
744 "address 0x%lx\n", (unsigned long)sys_addr);
93c2df58
DT
745 return csrow;
746}
e2ce7255 747
bfc04aec 748static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
2da11654 749
2da11654
DT
750/*
751 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
752 * are ECC capable.
753 */
754static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
755{
cb328507 756 u8 bit;
584fcff4 757 enum dev_type edac_cap = EDAC_FLAG_NONE;
2da11654 758
1433eb99 759 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
2da11654
DT
760 ? 19
761 : 17;
762
584fcff4 763 if (pvt->dclr0 & BIT(bit))
2da11654
DT
764 edac_cap = EDAC_FLAG_SECDED;
765
766 return edac_cap;
767}
768
8c671751 769static void amd64_debug_display_dimm_sizes(struct amd64_pvt *, u8);
2da11654 770
68798e17
BP
771static void amd64_dump_dramcfg_low(u32 dclr, int chan)
772{
773 debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
774
775 debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
776 (dclr & BIT(16)) ? "un" : "",
777 (dclr & BIT(19)) ? "yes" : "no");
778
779 debugf1(" PAR/ERR parity: %s\n",
780 (dclr & BIT(8)) ? "enabled" : "disabled");
781
cb328507
BP
782 if (boot_cpu_data.x86 == 0x10)
783 debugf1(" DCT 128bit mode width: %s\n",
784 (dclr & BIT(11)) ? "128b" : "64b");
68798e17
BP
785
786 debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
787 (dclr & BIT(12)) ? "yes" : "no",
788 (dclr & BIT(13)) ? "yes" : "no",
789 (dclr & BIT(14)) ? "yes" : "no",
790 (dclr & BIT(15)) ? "yes" : "no");
791}
792
2da11654 793/* Display and decode various NB registers for debug purposes. */
b2b0c605 794static void dump_misc_regs(struct amd64_pvt *pvt)
2da11654 795{
68798e17
BP
796 debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
797
798 debugf1(" NB two channel DRAM capable: %s\n",
5980bb9c 799 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
2da11654 800
68798e17 801 debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n",
5980bb9c
BP
802 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
803 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
68798e17
BP
804
805 amd64_dump_dramcfg_low(pvt->dclr0, 0);
2da11654 806
8de1d91e 807 debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
2da11654 808
8de1d91e
BP
809 debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
810 "offset: 0x%08x\n",
bc21fa57
BP
811 pvt->dhar, dhar_base(pvt),
812 (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt)
813 : f10_dhar_offset(pvt));
2da11654 814
c8e518d5 815 debugf1(" DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
2da11654 816
8c671751 817 amd64_debug_display_dimm_sizes(pvt, 0);
4d796364 818
8de1d91e 819 /* everything below this point is Fam10h and above */
4d796364 820 if (boot_cpu_data.x86 == 0xf)
2da11654 821 return;
4d796364 822
8c671751 823 amd64_debug_display_dimm_sizes(pvt, 1);
2da11654 824
a3b7db09 825 amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
ad6a32e9 826
8de1d91e 827 /* Only if NOT ganged does dclr1 have valid info */
68798e17
BP
828 if (!dct_ganging_enabled(pvt))
829 amd64_dump_dramcfg_low(pvt->dclr1, 1);
2da11654
DT
830}
831
94be4bff 832/*
11c75ead 833 * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
94be4bff 834 */
11c75ead 835static void prep_chip_selects(struct amd64_pvt *pvt)
94be4bff 836{
1433eb99 837 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
11c75ead
BP
838 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
839 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
9d858bb1 840 } else {
11c75ead
BP
841 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
842 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
94be4bff
DT
843 }
844}
845
846/*
11c75ead 847 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
94be4bff 848 */
b2b0c605 849static void read_dct_base_mask(struct amd64_pvt *pvt)
94be4bff 850{
11c75ead 851 int cs;
94be4bff 852
11c75ead 853 prep_chip_selects(pvt);
94be4bff 854
11c75ead 855 for_each_chip_select(cs, 0, pvt) {
71d2a32e
BP
856 int reg0 = DCSB0 + (cs * 4);
857 int reg1 = DCSB1 + (cs * 4);
11c75ead
BP
858 u32 *base0 = &pvt->csels[0].csbases[cs];
859 u32 *base1 = &pvt->csels[1].csbases[cs];
b2b0c605 860
11c75ead 861 if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
94be4bff 862 debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
11c75ead 863 cs, *base0, reg0);
94be4bff 864
11c75ead
BP
865 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
866 continue;
b2b0c605 867
11c75ead
BP
868 if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
869 debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
870 cs, *base1, reg1);
94be4bff
DT
871 }
872
11c75ead 873 for_each_chip_select_mask(cs, 0, pvt) {
71d2a32e
BP
874 int reg0 = DCSM0 + (cs * 4);
875 int reg1 = DCSM1 + (cs * 4);
11c75ead
BP
876 u32 *mask0 = &pvt->csels[0].csmasks[cs];
877 u32 *mask1 = &pvt->csels[1].csmasks[cs];
b2b0c605 878
11c75ead 879 if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
94be4bff 880 debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
11c75ead 881 cs, *mask0, reg0);
94be4bff 882
11c75ead
BP
883 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
884 continue;
b2b0c605 885
11c75ead
BP
886 if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
887 debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
888 cs, *mask1, reg1);
94be4bff
DT
889 }
890}
891
24f9a7fe 892static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
94be4bff
DT
893{
894 enum mem_type type;
895
cb328507
BP
896 /* F15h supports only DDR3 */
897 if (boot_cpu_data.x86 >= 0x15)
898 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
899 else if (boot_cpu_data.x86 == 0x10 || pvt->ext_model >= K8_REV_F) {
6b4c0bde
BP
900 if (pvt->dchr0 & DDR3_MODE)
901 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
902 else
903 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
94be4bff 904 } else {
94be4bff
DT
905 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
906 }
907
24f9a7fe 908 amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
94be4bff
DT
909
910 return type;
911}
912
cb328507 913/* Get the number of DCT channels the memory controller is using. */
ddff876d
DT
914static int k8_early_channel_count(struct amd64_pvt *pvt)
915{
cb328507 916 int flag;
ddff876d 917
9f56da0e 918 if (pvt->ext_model >= K8_REV_F)
ddff876d 919 /* RevF (NPT) and later */
41d8bfab 920 flag = pvt->dclr0 & WIDTH_128;
9f56da0e 921 else
ddff876d
DT
922 /* RevE and earlier */
923 flag = pvt->dclr0 & REVE_WIDTH_128;
ddff876d
DT
924
925 /* not used */
926 pvt->dclr1 = 0;
927
928 return (flag) ? 2 : 1;
929}
930
70046624
BP
931/* On F10h and later ErrAddr is MC4_ADDR[47:1] */
932static u64 get_error_address(struct mce *m)
ddff876d 933{
c1ae6830
BP
934 struct cpuinfo_x86 *c = &boot_cpu_data;
935 u64 addr;
70046624
BP
936 u8 start_bit = 1;
937 u8 end_bit = 47;
938
c1ae6830 939 if (c->x86 == 0xf) {
70046624
BP
940 start_bit = 3;
941 end_bit = 39;
942 }
943
c1ae6830
BP
944 addr = m->addr & GENMASK(start_bit, end_bit);
945
946 /*
947 * Erratum 637 workaround
948 */
949 if (c->x86 == 0x15) {
950 struct amd64_pvt *pvt;
951 u64 cc6_base, tmp_addr;
952 u32 tmp;
953 u8 mce_nid, intlv_en;
954
955 if ((addr & GENMASK(24, 47)) >> 24 != 0x00fdf7)
956 return addr;
957
958 mce_nid = amd_get_nb_id(m->extcpu);
959 pvt = mcis[mce_nid]->pvt_info;
960
961 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
962 intlv_en = tmp >> 21 & 0x7;
963
964 /* add [47:27] + 3 trailing bits */
965 cc6_base = (tmp & GENMASK(0, 20)) << 3;
966
967 /* reverse and add DramIntlvEn */
968 cc6_base |= intlv_en ^ 0x7;
969
970 /* pin at [47:24] */
971 cc6_base <<= 24;
972
973 if (!intlv_en)
974 return cc6_base | (addr & GENMASK(0, 23));
975
976 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);
977
978 /* faster log2 */
979 tmp_addr = (addr & GENMASK(12, 23)) << __fls(intlv_en + 1);
980
981 /* OR DramIntlvSel into bits [14:12] */
982 tmp_addr |= (tmp & GENMASK(21, 23)) >> 9;
983
984 /* add remaining [11:0] bits from original MC4_ADDR */
985 tmp_addr |= addr & GENMASK(0, 11);
986
987 return cc6_base | tmp_addr;
988 }
989
990 return addr;
ddff876d
DT
991}
992
7f19bf75 993static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
ddff876d 994{
f08e457c 995 struct cpuinfo_x86 *c = &boot_cpu_data;
71d2a32e 996 int off = range << 3;
ddff876d 997
7f19bf75
BP
998 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
999 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
ddff876d 1000
f08e457c 1001 if (c->x86 == 0xf)
7f19bf75 1002 return;
ddff876d 1003
7f19bf75
BP
1004 if (!dram_rw(pvt, range))
1005 return;
ddff876d 1006
7f19bf75
BP
1007 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
1008 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
f08e457c
BP
1009
1010 /* Factor in CC6 save area by reading dst node's limit reg */
1011 if (c->x86 == 0x15) {
1012 struct pci_dev *f1 = NULL;
1013 u8 nid = dram_dst_node(pvt, range);
1014 u32 llim;
1015
1016 f1 = pci_get_domain_bus_and_slot(0, 0, PCI_DEVFN(0x18 + nid, 1));
1017 if (WARN_ON(!f1))
1018 return;
1019
1020 amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
1021
1022 pvt->ranges[range].lim.lo &= GENMASK(0, 15);
1023
1024 /* {[39:27],111b} */
1025 pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
1026
1027 pvt->ranges[range].lim.hi &= GENMASK(0, 7);
1028
1029 /* [47:40] */
1030 pvt->ranges[range].lim.hi |= llim >> 13;
1031
1032 pci_dev_put(f1);
1033 }
ddff876d
DT
1034}
1035
f192c7b1
BP
1036static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1037 u16 syndrome)
ddff876d
DT
1038{
1039 struct mem_ctl_info *src_mci;
f192c7b1 1040 struct amd64_pvt *pvt = mci->pvt_info;
ddff876d
DT
1041 int channel, csrow;
1042 u32 page, offset;
ddff876d
DT
1043
1044 /* CHIPKILL enabled */
f192c7b1 1045 if (pvt->nbcfg & NBCFG_CHIPKILL) {
bfc04aec 1046 channel = get_channel_from_ecc_syndrome(mci, syndrome);
ddff876d
DT
1047 if (channel < 0) {
1048 /*
1049 * Syndrome didn't map, so we don't know which of the
1050 * 2 DIMMs is in error. So we need to ID 'both' of them
1051 * as suspect.
1052 */
24f9a7fe
BP
1053 amd64_mc_warn(mci, "unknown syndrome 0x%04x - possible "
1054 "error reporting race\n", syndrome);
ddff876d
DT
1055 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1056 return;
1057 }
1058 } else {
1059 /*
1060 * non-chipkill ecc mode
1061 *
1062 * The k8 documentation is unclear about how to determine the
1063 * channel number when using non-chipkill memory. This method
1064 * was obtained from email communication with someone at AMD.
1065 * (Wish the email was placed in this comment - norsk)
1066 */
44e9e2ee 1067 channel = ((sys_addr & BIT(3)) != 0);
ddff876d
DT
1068 }
1069
1070 /*
1071 * Find out which node the error address belongs to. This may be
1072 * different from the node that detected the error.
1073 */
44e9e2ee 1074 src_mci = find_mc_by_sys_addr(mci, sys_addr);
2cff18c2 1075 if (!src_mci) {
24f9a7fe 1076 amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
44e9e2ee 1077 (unsigned long)sys_addr);
ddff876d
DT
1078 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1079 return;
1080 }
1081
44e9e2ee
BP
1082 /* Now map the sys_addr to a CSROW */
1083 csrow = sys_addr_to_csrow(src_mci, sys_addr);
ddff876d
DT
1084 if (csrow < 0) {
1085 edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
1086 } else {
44e9e2ee 1087 error_address_to_page_and_offset(sys_addr, &page, &offset);
ddff876d
DT
1088
1089 edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
1090 channel, EDAC_MOD_STR);
1091 }
1092}
1093
41d8bfab 1094static int ddr2_cs_size(unsigned i, bool dct_width)
ddff876d 1095{
41d8bfab 1096 unsigned shift = 0;
ddff876d 1097
41d8bfab
BP
1098 if (i <= 2)
1099 shift = i;
1100 else if (!(i & 0x1))
1101 shift = i >> 1;
1433eb99 1102 else
41d8bfab 1103 shift = (i + 1) >> 1;
ddff876d 1104
41d8bfab
BP
1105 return 128 << (shift + !!dct_width);
1106}
1107
1108static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1109 unsigned cs_mode)
1110{
1111 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1112
1113 if (pvt->ext_model >= K8_REV_F) {
1114 WARN_ON(cs_mode > 11);
1115 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1116 }
1117 else if (pvt->ext_model >= K8_REV_D) {
1118 WARN_ON(cs_mode > 10);
1119
1120 if (cs_mode == 3 || cs_mode == 8)
1121 return 32 << (cs_mode - 1);
1122 else
1123 return 32 << cs_mode;
1124 }
1125 else {
1126 WARN_ON(cs_mode > 6);
1127 return 32 << cs_mode;
1128 }
ddff876d
DT
1129}
1130
1afd3c98
DT
1131/*
1132 * Get the number of DCT channels in use.
1133 *
1134 * Return:
1135 * number of Memory Channels in operation
1136 * Pass back:
1137 * contents of the DCL0_LOW register
1138 */
7d20d14d 1139static int f1x_early_channel_count(struct amd64_pvt *pvt)
1afd3c98 1140{
6ba5dcdc 1141 int i, j, channels = 0;
1afd3c98 1142
7d20d14d 1143 /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
41d8bfab 1144 if (boot_cpu_data.x86 == 0x10 && (pvt->dclr0 & WIDTH_128))
7d20d14d 1145 return 2;
1afd3c98
DT
1146
1147 /*
d16149e8
BP
1148 * Need to check if in unganged mode: In such, there are 2 channels,
1149 * but they are not in 128 bit mode and thus the above 'dclr0' status
1150 * bit will be OFF.
1afd3c98
DT
1151 *
1152 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1153 * their CSEnable bit on. If so, then SINGLE DIMM case.
1154 */
d16149e8 1155 debugf0("Data width is not 128 bits - need more decoding\n");
ddff876d 1156
1afd3c98
DT
1157 /*
1158 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1159 * is more than just one DIMM present in unganged mode. Need to check
1160 * both controllers since DIMMs can be placed in either one.
1161 */
525a1b20
BP
1162 for (i = 0; i < 2; i++) {
1163 u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1afd3c98 1164
57a30854
WW
1165 for (j = 0; j < 4; j++) {
1166 if (DBAM_DIMM(j, dbam) > 0) {
1167 channels++;
1168 break;
1169 }
1170 }
1afd3c98
DT
1171 }
1172
d16149e8
BP
1173 if (channels > 2)
1174 channels = 2;
1175
24f9a7fe 1176 amd64_info("MCT channel count: %d\n", channels);
1afd3c98
DT
1177
1178 return channels;
1afd3c98
DT
1179}
1180
41d8bfab 1181static int ddr3_cs_size(unsigned i, bool dct_width)
1afd3c98 1182{
41d8bfab
BP
1183 unsigned shift = 0;
1184 int cs_size = 0;
1185
1186 if (i == 0 || i == 3 || i == 4)
1187 cs_size = -1;
1188 else if (i <= 2)
1189 shift = i;
1190 else if (i == 12)
1191 shift = 7;
1192 else if (!(i & 0x1))
1193 shift = i >> 1;
1194 else
1195 shift = (i + 1) >> 1;
1196
1197 if (cs_size != -1)
1198 cs_size = (128 * (1 << !!dct_width)) << shift;
1199
1200 return cs_size;
1201}
1202
1203static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1204 unsigned cs_mode)
1205{
1206 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1207
1208 WARN_ON(cs_mode > 11);
1433eb99
BP
1209
1210 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
41d8bfab 1211 return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1433eb99 1212 else
41d8bfab
BP
1213 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1214}
1215
1216/*
1217 * F15h supports only 64bit DCT interfaces
1218 */
1219static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1220 unsigned cs_mode)
1221{
1222 WARN_ON(cs_mode > 12);
1433eb99 1223
41d8bfab 1224 return ddr3_cs_size(cs_mode, false);
1afd3c98
DT
1225}
1226
5a5d2371 1227static void read_dram_ctl_register(struct amd64_pvt *pvt)
6163b5d4 1228{
6163b5d4 1229
5a5d2371
BP
1230 if (boot_cpu_data.x86 == 0xf)
1231 return;
1232
78da121e
BP
1233 if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
1234 debugf0("F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
1235 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
72381bd5 1236
5a5d2371
BP
1237 debugf0(" DCTs operate in %s mode.\n",
1238 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
72381bd5
BP
1239
1240 if (!dct_ganging_enabled(pvt))
1241 debugf0(" Address range split per DCT: %s\n",
1242 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1243
78da121e 1244 debugf0(" data interleave for ECC: %s, "
72381bd5
BP
1245 "DRAM cleared since last warm reset: %s\n",
1246 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1247 (dct_memory_cleared(pvt) ? "yes" : "no"));
1248
78da121e
BP
1249 debugf0(" channel interleave: %s, "
1250 "interleave bits selector: 0x%x\n",
72381bd5 1251 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
6163b5d4
DT
1252 dct_sel_interleave_addr(pvt));
1253 }
1254
78da121e 1255 amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
6163b5d4
DT
1256}
1257
f71d0a05 1258/*
229a7a11 1259 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
f71d0a05
DT
1260 * Interleaving Modes.
1261 */
b15f0fca 1262static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
229a7a11 1263 bool hi_range_sel, u8 intlv_en)
6163b5d4 1264{
151fa71c 1265 u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
6163b5d4
DT
1266
1267 if (dct_ganging_enabled(pvt))
229a7a11 1268 return 0;
6163b5d4 1269
229a7a11
BP
1270 if (hi_range_sel)
1271 return dct_sel_high;
6163b5d4 1272
229a7a11
BP
1273 /*
1274 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1275 */
1276 if (dct_interleave_enabled(pvt)) {
1277 u8 intlv_addr = dct_sel_interleave_addr(pvt);
1278
1279 /* return DCT select function: 0=DCT0, 1=DCT1 */
1280 if (!intlv_addr)
1281 return sys_addr >> 6 & 1;
1282
1283 if (intlv_addr & 0x2) {
1284 u8 shift = intlv_addr & 0x1 ? 9 : 6;
1285 u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1286
1287 return ((sys_addr >> shift) & 1) ^ temp;
1288 }
1289
1290 return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
1291 }
1292
1293 if (dct_high_range_enabled(pvt))
1294 return ~dct_sel_high & 1;
6163b5d4
DT
1295
1296 return 0;
1297}
1298
c8e518d5 1299/* Convert the sys_addr to the normalized DCT address */
e761359a 1300static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, unsigned range,
c8e518d5
BP
1301 u64 sys_addr, bool hi_rng,
1302 u32 dct_sel_base_addr)
6163b5d4
DT
1303{
1304 u64 chan_off;
c8e518d5
BP
1305 u64 dram_base = get_dram_base(pvt, range);
1306 u64 hole_off = f10_dhar_offset(pvt);
c8e518d5 1307 u64 dct_sel_base_off = (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
6163b5d4 1308
c8e518d5
BP
1309 if (hi_rng) {
1310 /*
1311 * if
1312 * base address of high range is below 4Gb
1313 * (bits [47:27] at [31:11])
1314 * DRAM address space on this DCT is hoisted above 4Gb &&
1315 * sys_addr > 4Gb
1316 *
1317 * remove hole offset from sys_addr
1318 * else
1319 * remove high range offset from sys_addr
1320 */
1321 if ((!(dct_sel_base_addr >> 16) ||
1322 dct_sel_base_addr < dhar_base(pvt)) &&
972ea17a 1323 dhar_valid(pvt) &&
c8e518d5 1324 (sys_addr >= BIT_64(32)))
bc21fa57 1325 chan_off = hole_off;
6163b5d4
DT
1326 else
1327 chan_off = dct_sel_base_off;
1328 } else {
c8e518d5
BP
1329 /*
1330 * if
1331 * we have a valid hole &&
1332 * sys_addr > 4Gb
1333 *
1334 * remove hole
1335 * else
1336 * remove dram base to normalize to DCT address
1337 */
972ea17a 1338 if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
bc21fa57 1339 chan_off = hole_off;
6163b5d4 1340 else
c8e518d5 1341 chan_off = dram_base;
6163b5d4
DT
1342 }
1343
c8e518d5 1344 return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47));
6163b5d4
DT
1345}
1346
6163b5d4
DT
1347/*
1348 * checks if the csrow passed in is marked as SPARED, if so returns the new
1349 * spare row
1350 */
11c75ead 1351static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
6163b5d4 1352{
614ec9d8
BP
1353 int tmp_cs;
1354
1355 if (online_spare_swap_done(pvt, dct) &&
1356 csrow == online_spare_bad_dramcs(pvt, dct)) {
1357
1358 for_each_chip_select(tmp_cs, dct, pvt) {
1359 if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
1360 csrow = tmp_cs;
1361 break;
1362 }
1363 }
6163b5d4
DT
1364 }
1365 return csrow;
1366}
1367
1368/*
1369 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1370 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1371 *
1372 * Return:
1373 * -EINVAL: NOT FOUND
1374 * 0..csrow = Chip-Select Row
1375 */
b15f0fca 1376static int f1x_lookup_addr_in_dct(u64 in_addr, u32 nid, u8 dct)
6163b5d4
DT
1377{
1378 struct mem_ctl_info *mci;
1379 struct amd64_pvt *pvt;
11c75ead 1380 u64 cs_base, cs_mask;
6163b5d4
DT
1381 int cs_found = -EINVAL;
1382 int csrow;
1383
cc4d8860 1384 mci = mcis[nid];
6163b5d4
DT
1385 if (!mci)
1386 return cs_found;
1387
1388 pvt = mci->pvt_info;
1389
11c75ead 1390 debugf1("input addr: 0x%llx, DCT: %d\n", in_addr, dct);
6163b5d4 1391
11c75ead
BP
1392 for_each_chip_select(csrow, dct, pvt) {
1393 if (!csrow_enabled(csrow, dct, pvt))
6163b5d4
DT
1394 continue;
1395
11c75ead 1396 get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
6163b5d4 1397
11c75ead
BP
1398 debugf1(" CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
1399 csrow, cs_base, cs_mask);
6163b5d4 1400
11c75ead 1401 cs_mask = ~cs_mask;
6163b5d4 1402
11c75ead
BP
1403 debugf1(" (InputAddr & ~CSMask)=0x%llx "
1404 "(CSBase & ~CSMask)=0x%llx\n",
1405 (in_addr & cs_mask), (cs_base & cs_mask));
6163b5d4 1406
11c75ead
BP
1407 if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
1408 cs_found = f10_process_possible_spare(pvt, dct, csrow);
6163b5d4
DT
1409
1410 debugf1(" MATCH csrow=%d\n", cs_found);
1411 break;
1412 }
1413 }
1414 return cs_found;
1415}
1416
95b0ef55
BP
1417/*
1418 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
1419 * swapped with a region located at the bottom of memory so that the GPU can use
1420 * the interleaved region and thus two channels.
1421 */
b15f0fca 1422static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
95b0ef55
BP
1423{
1424 u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
1425
1426 if (boot_cpu_data.x86 == 0x10) {
1427 /* only revC3 and revE have that feature */
1428 if (boot_cpu_data.x86_model < 4 ||
1429 (boot_cpu_data.x86_model < 0xa &&
1430 boot_cpu_data.x86_mask < 3))
1431 return sys_addr;
1432 }
1433
1434 amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg);
1435
1436 if (!(swap_reg & 0x1))
1437 return sys_addr;
1438
1439 swap_base = (swap_reg >> 3) & 0x7f;
1440 swap_limit = (swap_reg >> 11) & 0x7f;
1441 rgn_size = (swap_reg >> 20) & 0x7f;
1442 tmp_addr = sys_addr >> 27;
1443
1444 if (!(sys_addr >> 34) &&
1445 (((tmp_addr >= swap_base) &&
1446 (tmp_addr <= swap_limit)) ||
1447 (tmp_addr < rgn_size)))
1448 return sys_addr ^ (u64)swap_base << 27;
1449
1450 return sys_addr;
1451}
1452
f71d0a05 1453/* For a given @dram_range, check if @sys_addr falls within it. */
e761359a 1454static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
f71d0a05
DT
1455 u64 sys_addr, int *nid, int *chan_sel)
1456{
229a7a11 1457 int cs_found = -EINVAL;
c8e518d5 1458 u64 chan_addr;
5d4b58e8 1459 u32 dct_sel_base;
11c75ead 1460 u8 channel;
229a7a11 1461 bool high_range = false;
f71d0a05 1462
7f19bf75 1463 u8 node_id = dram_dst_node(pvt, range);
229a7a11 1464 u8 intlv_en = dram_intlv_en(pvt, range);
7f19bf75 1465 u32 intlv_sel = dram_intlv_sel(pvt, range);
f71d0a05 1466
c8e518d5
BP
1467 debugf1("(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1468 range, sys_addr, get_dram_limit(pvt, range));
f71d0a05 1469
355fba60
BP
1470 if (dhar_valid(pvt) &&
1471 dhar_base(pvt) <= sys_addr &&
1472 sys_addr < BIT_64(32)) {
1473 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1474 sys_addr);
1475 return -EINVAL;
1476 }
1477
f030ddfb 1478 if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
f71d0a05
DT
1479 return -EINVAL;
1480
b15f0fca 1481 sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
95b0ef55 1482
f71d0a05
DT
1483 dct_sel_base = dct_sel_baseaddr(pvt);
1484
1485 /*
1486 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1487 * select between DCT0 and DCT1.
1488 */
1489 if (dct_high_range_enabled(pvt) &&
1490 !dct_ganging_enabled(pvt) &&
1491 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
229a7a11 1492 high_range = true;
f71d0a05 1493
b15f0fca 1494 channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
f71d0a05 1495
b15f0fca 1496 chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
c8e518d5 1497 high_range, dct_sel_base);
f71d0a05 1498
e2f79dbd
BP
1499 /* Remove node interleaving, see F1x120 */
1500 if (intlv_en)
1501 chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
1502 (chan_addr & 0xfff);
f71d0a05 1503
5d4b58e8 1504 /* remove channel interleave */
f71d0a05
DT
1505 if (dct_interleave_enabled(pvt) &&
1506 !dct_high_range_enabled(pvt) &&
1507 !dct_ganging_enabled(pvt)) {
5d4b58e8
BP
1508
1509 if (dct_sel_interleave_addr(pvt) != 1) {
1510 if (dct_sel_interleave_addr(pvt) == 0x3)
1511 /* hash 9 */
1512 chan_addr = ((chan_addr >> 10) << 9) |
1513 (chan_addr & 0x1ff);
1514 else
1515 /* A[6] or hash 6 */
1516 chan_addr = ((chan_addr >> 7) << 6) |
1517 (chan_addr & 0x3f);
1518 } else
1519 /* A[12] */
1520 chan_addr = ((chan_addr >> 13) << 12) |
1521 (chan_addr & 0xfff);
f71d0a05
DT
1522 }
1523
5d4b58e8 1524 debugf1(" Normalized DCT addr: 0x%llx\n", chan_addr);
f71d0a05 1525
b15f0fca 1526 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
f71d0a05
DT
1527
1528 if (cs_found >= 0) {
1529 *nid = node_id;
1530 *chan_sel = channel;
1531 }
1532 return cs_found;
1533}
1534
b15f0fca 1535static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
f71d0a05
DT
1536 int *node, int *chan_sel)
1537{
e761359a
BP
1538 int cs_found = -EINVAL;
1539 unsigned range;
f71d0a05 1540
7f19bf75 1541 for (range = 0; range < DRAM_RANGES; range++) {
f71d0a05 1542
7f19bf75 1543 if (!dram_rw(pvt, range))
f71d0a05
DT
1544 continue;
1545
7f19bf75
BP
1546 if ((get_dram_base(pvt, range) <= sys_addr) &&
1547 (get_dram_limit(pvt, range) >= sys_addr)) {
f71d0a05 1548
b15f0fca 1549 cs_found = f1x_match_to_this_node(pvt, range,
f71d0a05
DT
1550 sys_addr, node,
1551 chan_sel);
1552 if (cs_found >= 0)
1553 break;
1554 }
1555 }
1556 return cs_found;
1557}
1558
1559/*
bdc30a0c
BP
1560 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1561 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
f71d0a05 1562 *
bdc30a0c
BP
1563 * The @sys_addr is usually an error address received from the hardware
1564 * (MCX_ADDR).
f71d0a05 1565 */
b15f0fca 1566static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
f192c7b1 1567 u16 syndrome)
f71d0a05
DT
1568{
1569 struct amd64_pvt *pvt = mci->pvt_info;
1570 u32 page, offset;
f71d0a05
DT
1571 int nid, csrow, chan = 0;
1572
b15f0fca 1573 csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
f71d0a05 1574
bdc30a0c
BP
1575 if (csrow < 0) {
1576 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1577 return;
1578 }
1579
1580 error_address_to_page_and_offset(sys_addr, &page, &offset);
f71d0a05 1581
bdc30a0c
BP
1582 /*
1583 * We need the syndromes for channel detection only when we're
1584 * ganged. Otherwise @chan should already contain the channel at
1585 * this point.
1586 */
a97fa68e 1587 if (dct_ganging_enabled(pvt))
bdc30a0c 1588 chan = get_channel_from_ecc_syndrome(mci, syndrome);
f71d0a05 1589
bdc30a0c
BP
1590 if (chan >= 0)
1591 edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
1592 EDAC_MOD_STR);
1593 else
f71d0a05 1594 /*
bdc30a0c 1595 * Channel unknown, report all channels on this CSROW as failed.
f71d0a05 1596 */
bdc30a0c 1597 for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
f71d0a05 1598 edac_mc_handle_ce(mci, page, offset, syndrome,
bdc30a0c 1599 csrow, chan, EDAC_MOD_STR);
f71d0a05
DT
1600}
1601
f71d0a05 1602/*
8566c4df 1603 * debug routine to display the memory sizes of all logical DIMMs and its
cb328507 1604 * CSROWs
f71d0a05 1605 */
8c671751 1606static void amd64_debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
f71d0a05 1607{
603adaf6 1608 int dimm, size0, size1, factor = 0;
525a1b20
BP
1609 u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
1610 u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
f71d0a05 1611
8566c4df 1612 if (boot_cpu_data.x86 == 0xf) {
41d8bfab 1613 if (pvt->dclr0 & WIDTH_128)
603adaf6
BP
1614 factor = 1;
1615
8566c4df 1616 /* K8 families < revF not supported yet */
1433eb99 1617 if (pvt->ext_model < K8_REV_F)
8566c4df
BP
1618 return;
1619 else
1620 WARN_ON(ctrl != 0);
1621 }
1622
4d796364 1623 dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
11c75ead
BP
1624 dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
1625 : pvt->csels[0].csbases;
f71d0a05 1626
4d796364 1627 debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", ctrl, dbam);
f71d0a05 1628
8566c4df
BP
1629 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1630
f71d0a05
DT
1631 /* Dump memory sizes for DIMM and its CSROWs */
1632 for (dimm = 0; dimm < 4; dimm++) {
1633
1634 size0 = 0;
11c75ead 1635 if (dcsb[dimm*2] & DCSB_CS_ENABLE)
41d8bfab
BP
1636 size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
1637 DBAM_DIMM(dimm, dbam));
f71d0a05
DT
1638
1639 size1 = 0;
11c75ead 1640 if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
41d8bfab
BP
1641 size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
1642 DBAM_DIMM(dimm, dbam));
f71d0a05 1643
24f9a7fe
BP
1644 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
1645 dimm * 2, size0 << factor,
1646 dimm * 2 + 1, size1 << factor);
f71d0a05
DT
1647 }
1648}
1649
4d37607a
DT
1650static struct amd64_family_type amd64_family_types[] = {
1651 [K8_CPUS] = {
0092b20d 1652 .ctl_name = "K8",
8d5b5d9c
BP
1653 .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1654 .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
4d37607a 1655 .ops = {
1433eb99 1656 .early_channel_count = k8_early_channel_count,
1433eb99
BP
1657 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1658 .dbam_to_cs = k8_dbam_to_chip_select,
b2b0c605 1659 .read_dct_pci_cfg = k8_read_dct_pci_cfg,
4d37607a
DT
1660 }
1661 },
1662 [F10_CPUS] = {
0092b20d 1663 .ctl_name = "F10h",
8d5b5d9c
BP
1664 .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1665 .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
4d37607a 1666 .ops = {
7d20d14d 1667 .early_channel_count = f1x_early_channel_count,
b15f0fca 1668 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1433eb99 1669 .dbam_to_cs = f10_dbam_to_chip_select,
b2b0c605
BP
1670 .read_dct_pci_cfg = f10_read_dct_pci_cfg,
1671 }
1672 },
1673 [F15_CPUS] = {
1674 .ctl_name = "F15h",
df71a053
BP
1675 .f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
1676 .f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3,
b2b0c605 1677 .ops = {
7d20d14d 1678 .early_channel_count = f1x_early_channel_count,
b15f0fca 1679 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
41d8bfab 1680 .dbam_to_cs = f15_dbam_to_chip_select,
b2b0c605 1681 .read_dct_pci_cfg = f15_read_dct_pci_cfg,
4d37607a
DT
1682 }
1683 },
4d37607a
DT
1684};
1685
1686static struct pci_dev *pci_get_related_function(unsigned int vendor,
1687 unsigned int device,
1688 struct pci_dev *related)
1689{
1690 struct pci_dev *dev = NULL;
1691
1692 dev = pci_get_device(vendor, device, dev);
1693 while (dev) {
1694 if ((dev->bus->number == related->bus->number) &&
1695 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1696 break;
1697 dev = pci_get_device(vendor, device, dev);
1698 }
1699
1700 return dev;
1701}
1702
b1289d6f 1703/*
bfc04aec
BP
1704 * These are tables of eigenvectors (one per line) which can be used for the
1705 * construction of the syndrome tables. The modified syndrome search algorithm
1706 * uses those to find the symbol in error and thus the DIMM.
b1289d6f 1707 *
bfc04aec 1708 * Algorithm courtesy of Ross LaFetra from AMD.
b1289d6f 1709 */
bfc04aec
BP
1710static u16 x4_vectors[] = {
1711 0x2f57, 0x1afe, 0x66cc, 0xdd88,
1712 0x11eb, 0x3396, 0x7f4c, 0xeac8,
1713 0x0001, 0x0002, 0x0004, 0x0008,
1714 0x1013, 0x3032, 0x4044, 0x8088,
1715 0x106b, 0x30d6, 0x70fc, 0xe0a8,
1716 0x4857, 0xc4fe, 0x13cc, 0x3288,
1717 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1718 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1719 0x15c1, 0x2a42, 0x89ac, 0x4758,
1720 0x2b03, 0x1602, 0x4f0c, 0xca08,
1721 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1722 0x8ba7, 0x465e, 0x244c, 0x1cc8,
1723 0x2b87, 0x164e, 0x642c, 0xdc18,
1724 0x40b9, 0x80de, 0x1094, 0x20e8,
1725 0x27db, 0x1eb6, 0x9dac, 0x7b58,
1726 0x11c1, 0x2242, 0x84ac, 0x4c58,
1727 0x1be5, 0x2d7a, 0x5e34, 0xa718,
1728 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1729 0x4c97, 0xc87e, 0x11fc, 0x33a8,
1730 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1731 0x16b3, 0x3d62, 0x4f34, 0x8518,
1732 0x1e2f, 0x391a, 0x5cac, 0xf858,
1733 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1734 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1735 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1736 0x4397, 0xc27e, 0x17fc, 0x3ea8,
1737 0x1617, 0x3d3e, 0x6464, 0xb8b8,
1738 0x23ff, 0x12aa, 0xab6c, 0x56d8,
1739 0x2dfb, 0x1ba6, 0x913c, 0x7328,
1740 0x185d, 0x2ca6, 0x7914, 0x9e28,
1741 0x171b, 0x3e36, 0x7d7c, 0xebe8,
1742 0x4199, 0x82ee, 0x19f4, 0x2e58,
1743 0x4807, 0xc40e, 0x130c, 0x3208,
1744 0x1905, 0x2e0a, 0x5804, 0xac08,
1745 0x213f, 0x132a, 0xadfc, 0x5ba8,
1746 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
b1289d6f
DT
1747};
1748
bfc04aec
BP
1749static u16 x8_vectors[] = {
1750 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1751 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1752 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1753 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1754 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1755 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1756 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1757 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1758 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1759 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1760 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1761 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1762 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1763 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1764 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1765 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1766 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1767 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1768 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1769};
1770
d34a6ecd
BP
1771static int decode_syndrome(u16 syndrome, u16 *vectors, unsigned num_vecs,
1772 unsigned v_dim)
b1289d6f 1773{
bfc04aec
BP
1774 unsigned int i, err_sym;
1775
1776 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1777 u16 s = syndrome;
d34a6ecd
BP
1778 unsigned v_idx = err_sym * v_dim;
1779 unsigned v_end = (err_sym + 1) * v_dim;
bfc04aec
BP
1780
1781 /* walk over all 16 bits of the syndrome */
1782 for (i = 1; i < (1U << 16); i <<= 1) {
1783
1784 /* if bit is set in that eigenvector... */
1785 if (v_idx < v_end && vectors[v_idx] & i) {
1786 u16 ev_comp = vectors[v_idx++];
1787
1788 /* ... and bit set in the modified syndrome, */
1789 if (s & i) {
1790 /* remove it. */
1791 s ^= ev_comp;
4d37607a 1792
bfc04aec
BP
1793 if (!s)
1794 return err_sym;
1795 }
b1289d6f 1796
bfc04aec
BP
1797 } else if (s & i)
1798 /* can't get to zero, move to next symbol */
1799 break;
1800 }
b1289d6f
DT
1801 }
1802
1803 debugf0("syndrome(%x) not found\n", syndrome);
1804 return -1;
1805}
d27bf6fa 1806
bfc04aec
BP
1807static int map_err_sym_to_channel(int err_sym, int sym_size)
1808{
1809 if (sym_size == 4)
1810 switch (err_sym) {
1811 case 0x20:
1812 case 0x21:
1813 return 0;
1814 break;
1815 case 0x22:
1816 case 0x23:
1817 return 1;
1818 break;
1819 default:
1820 return err_sym >> 4;
1821 break;
1822 }
1823 /* x8 symbols */
1824 else
1825 switch (err_sym) {
1826 /* imaginary bits not in a DIMM */
1827 case 0x10:
1828 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1829 err_sym);
1830 return -1;
1831 break;
1832
1833 case 0x11:
1834 return 0;
1835 break;
1836 case 0x12:
1837 return 1;
1838 break;
1839 default:
1840 return err_sym >> 3;
1841 break;
1842 }
1843 return -1;
1844}
1845
1846static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1847{
1848 struct amd64_pvt *pvt = mci->pvt_info;
ad6a32e9
BP
1849 int err_sym = -1;
1850
a3b7db09 1851 if (pvt->ecc_sym_sz == 8)
ad6a32e9
BP
1852 err_sym = decode_syndrome(syndrome, x8_vectors,
1853 ARRAY_SIZE(x8_vectors),
a3b7db09
BP
1854 pvt->ecc_sym_sz);
1855 else if (pvt->ecc_sym_sz == 4)
ad6a32e9
BP
1856 err_sym = decode_syndrome(syndrome, x4_vectors,
1857 ARRAY_SIZE(x4_vectors),
a3b7db09 1858 pvt->ecc_sym_sz);
ad6a32e9 1859 else {
a3b7db09 1860 amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
ad6a32e9 1861 return err_sym;
bfc04aec 1862 }
ad6a32e9 1863
a3b7db09 1864 return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
bfc04aec
BP
1865}
1866
d27bf6fa
DT
1867/*
1868 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
1869 * ADDRESS and process.
1870 */
f192c7b1 1871static void amd64_handle_ce(struct mem_ctl_info *mci, struct mce *m)
d27bf6fa
DT
1872{
1873 struct amd64_pvt *pvt = mci->pvt_info;
44e9e2ee 1874 u64 sys_addr;
f192c7b1 1875 u16 syndrome;
d27bf6fa
DT
1876
1877 /* Ensure that the Error Address is VALID */
f192c7b1 1878 if (!(m->status & MCI_STATUS_ADDRV)) {
24f9a7fe 1879 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
d27bf6fa
DT
1880 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1881 return;
1882 }
1883
70046624 1884 sys_addr = get_error_address(m);
f192c7b1 1885 syndrome = extract_syndrome(m->status);
d27bf6fa 1886
24f9a7fe 1887 amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
d27bf6fa 1888
f192c7b1 1889 pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, syndrome);
d27bf6fa
DT
1890}
1891
1892/* Handle any Un-correctable Errors (UEs) */
f192c7b1 1893static void amd64_handle_ue(struct mem_ctl_info *mci, struct mce *m)
d27bf6fa 1894{
1f6bcee7 1895 struct mem_ctl_info *log_mci, *src_mci = NULL;
d27bf6fa 1896 int csrow;
44e9e2ee 1897 u64 sys_addr;
d27bf6fa 1898 u32 page, offset;
d27bf6fa
DT
1899
1900 log_mci = mci;
1901
f192c7b1 1902 if (!(m->status & MCI_STATUS_ADDRV)) {
24f9a7fe 1903 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
d27bf6fa
DT
1904 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1905 return;
1906 }
1907
70046624 1908 sys_addr = get_error_address(m);
d27bf6fa
DT
1909
1910 /*
1911 * Find out which node the error address belongs to. This may be
1912 * different from the node that detected the error.
1913 */
44e9e2ee 1914 src_mci = find_mc_by_sys_addr(mci, sys_addr);
d27bf6fa 1915 if (!src_mci) {
24f9a7fe
BP
1916 amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n",
1917 (unsigned long)sys_addr);
d27bf6fa
DT
1918 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1919 return;
1920 }
1921
1922 log_mci = src_mci;
1923
44e9e2ee 1924 csrow = sys_addr_to_csrow(log_mci, sys_addr);
d27bf6fa 1925 if (csrow < 0) {
24f9a7fe
BP
1926 amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n",
1927 (unsigned long)sys_addr);
d27bf6fa
DT
1928 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1929 } else {
44e9e2ee 1930 error_address_to_page_and_offset(sys_addr, &page, &offset);
d27bf6fa
DT
1931 edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
1932 }
1933}
1934
549d042d 1935static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
f192c7b1 1936 struct mce *m)
d27bf6fa 1937{
f192c7b1
BP
1938 u16 ec = EC(m->status);
1939 u8 xec = XEC(m->status, 0x1f);
1940 u8 ecc_type = (m->status >> 45) & 0x3;
d27bf6fa 1941
b70ef010 1942 /* Bail early out if this was an 'observed' error */
5980bb9c 1943 if (PP(ec) == NBSL_PP_OBS)
b70ef010 1944 return;
d27bf6fa 1945
ecaf5606
BP
1946 /* Do only ECC errors */
1947 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
d27bf6fa 1948 return;
d27bf6fa 1949
ecaf5606 1950 if (ecc_type == 2)
f192c7b1 1951 amd64_handle_ce(mci, m);
ecaf5606 1952 else if (ecc_type == 1)
f192c7b1 1953 amd64_handle_ue(mci, m);
d27bf6fa
DT
1954}
1955
b0b07a2b 1956void amd64_decode_bus_error(int node_id, struct mce *m)
d27bf6fa 1957{
b0b07a2b 1958 __amd64_decode_bus_error(mcis[node_id], m);
d27bf6fa 1959}
d27bf6fa 1960
0ec449ee 1961/*
8d5b5d9c 1962 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
bbd0c1f6 1963 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
0ec449ee 1964 */
360b7f3c 1965static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
0ec449ee 1966{
0ec449ee 1967 /* Reserve the ADDRESS MAP Device */
8d5b5d9c
BP
1968 pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
1969 if (!pvt->F1) {
24f9a7fe
BP
1970 amd64_err("error address map device not found: "
1971 "vendor %x device 0x%x (broken BIOS?)\n",
1972 PCI_VENDOR_ID_AMD, f1_id);
bbd0c1f6 1973 return -ENODEV;
0ec449ee
DT
1974 }
1975
1976 /* Reserve the MISC Device */
8d5b5d9c
BP
1977 pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
1978 if (!pvt->F3) {
1979 pci_dev_put(pvt->F1);
1980 pvt->F1 = NULL;
0ec449ee 1981
24f9a7fe
BP
1982 amd64_err("error F3 device not found: "
1983 "vendor %x device 0x%x (broken BIOS?)\n",
1984 PCI_VENDOR_ID_AMD, f3_id);
0ec449ee 1985
bbd0c1f6 1986 return -ENODEV;
0ec449ee 1987 }
8d5b5d9c
BP
1988 debugf1("F1: %s\n", pci_name(pvt->F1));
1989 debugf1("F2: %s\n", pci_name(pvt->F2));
1990 debugf1("F3: %s\n", pci_name(pvt->F3));
0ec449ee
DT
1991
1992 return 0;
1993}
1994
360b7f3c 1995static void free_mc_sibling_devs(struct amd64_pvt *pvt)
0ec449ee 1996{
8d5b5d9c
BP
1997 pci_dev_put(pvt->F1);
1998 pci_dev_put(pvt->F3);
0ec449ee
DT
1999}
2000
2001/*
2002 * Retrieve the hardware registers of the memory controller (this includes the
2003 * 'Address Map' and 'Misc' device regs)
2004 */
360b7f3c 2005static void read_mc_regs(struct amd64_pvt *pvt)
0ec449ee 2006{
a3b7db09 2007 struct cpuinfo_x86 *c = &boot_cpu_data;
0ec449ee 2008 u64 msr_val;
ad6a32e9 2009 u32 tmp;
e761359a 2010 unsigned range;
0ec449ee
DT
2011
2012 /*
2013 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2014 * those are Read-As-Zero
2015 */
e97f8bb8
BP
2016 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
2017 debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem);
0ec449ee
DT
2018
2019 /* check first whether TOP_MEM2 is enabled */
2020 rdmsrl(MSR_K8_SYSCFG, msr_val);
2021 if (msr_val & (1U << 21)) {
e97f8bb8
BP
2022 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
2023 debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
0ec449ee
DT
2024 } else
2025 debugf0(" TOP_MEM2 disabled.\n");
2026
5980bb9c 2027 amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
0ec449ee 2028
5a5d2371 2029 read_dram_ctl_register(pvt);
0ec449ee 2030
7f19bf75
BP
2031 for (range = 0; range < DRAM_RANGES; range++) {
2032 u8 rw;
0ec449ee 2033
7f19bf75
BP
2034 /* read settings for this DRAM range */
2035 read_dram_base_limit_regs(pvt, range);
2036
2037 rw = dram_rw(pvt, range);
2038 if (!rw)
2039 continue;
2040
2041 debugf1(" DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
2042 range,
2043 get_dram_base(pvt, range),
2044 get_dram_limit(pvt, range));
2045
2046 debugf1(" IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
2047 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
2048 (rw & 0x1) ? "R" : "-",
2049 (rw & 0x2) ? "W" : "-",
2050 dram_intlv_sel(pvt, range),
2051 dram_dst_node(pvt, range));
0ec449ee
DT
2052 }
2053
b2b0c605 2054 read_dct_base_mask(pvt);
0ec449ee 2055
bc21fa57 2056 amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
525a1b20 2057 amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
0ec449ee 2058
8d5b5d9c 2059 amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
0ec449ee 2060
cb328507
BP
2061 amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
2062 amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
0ec449ee 2063
78da121e 2064 if (!dct_ganging_enabled(pvt)) {
cb328507
BP
2065 amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
2066 amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
0ec449ee 2067 }
ad6a32e9 2068
a3b7db09
BP
2069 pvt->ecc_sym_sz = 4;
2070
2071 if (c->x86 >= 0x10) {
b2b0c605 2072 amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
525a1b20 2073 amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
ad6a32e9 2074
a3b7db09
BP
2075 /* F10h, revD and later can do x8 ECC too */
2076 if ((c->x86 > 0x10 || c->x86_model > 7) && tmp & BIT(25))
2077 pvt->ecc_sym_sz = 8;
2078 }
b2b0c605 2079 dump_misc_regs(pvt);
0ec449ee
DT
2080}
2081
2082/*
2083 * NOTE: CPU Revision Dependent code
2084 *
2085 * Input:
11c75ead 2086 * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
0ec449ee
DT
2087 * k8 private pointer to -->
2088 * DRAM Bank Address mapping register
2089 * node_id
2090 * DCL register where dual_channel_active is
2091 *
2092 * The DBAM register consists of 4 sets of 4 bits each definitions:
2093 *
2094 * Bits: CSROWs
2095 * 0-3 CSROWs 0 and 1
2096 * 4-7 CSROWs 2 and 3
2097 * 8-11 CSROWs 4 and 5
2098 * 12-15 CSROWs 6 and 7
2099 *
2100 * Values range from: 0 to 15
2101 * The meaning of the values depends on CPU revision and dual-channel state,
2102 * see relevant BKDG more info.
2103 *
2104 * The memory controller provides for total of only 8 CSROWs in its current
2105 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2106 * single channel or two (2) DIMMs in dual channel mode.
2107 *
2108 * The following code logic collapses the various tables for CSROW based on CPU
2109 * revision.
2110 *
2111 * Returns:
2112 * The number of PAGE_SIZE pages on the specified CSROW number it
2113 * encompasses
2114 *
2115 */
41d8bfab 2116static u32 amd64_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
0ec449ee 2117{
1433eb99 2118 u32 cs_mode, nr_pages;
0ec449ee
DT
2119
2120 /*
2121 * The math on this doesn't look right on the surface because x/2*4 can
2122 * be simplified to x*2 but this expression makes use of the fact that
2123 * it is integral math where 1/2=0. This intermediate value becomes the
2124 * number of bits to shift the DBAM register to extract the proper CSROW
2125 * field.
2126 */
1433eb99 2127 cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
0ec449ee 2128
41d8bfab 2129 nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT);
0ec449ee
DT
2130
2131 /*
2132 * If dual channel then double the memory size of single channel.
2133 * Channel count is 1 or 2
2134 */
2135 nr_pages <<= (pvt->channel_count - 1);
2136
1433eb99 2137 debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
0ec449ee
DT
2138 debugf0(" nr_pages= %u channel-count = %d\n",
2139 nr_pages, pvt->channel_count);
2140
2141 return nr_pages;
2142}
2143
2144/*
2145 * Initialize the array of csrow attribute instances, based on the values
2146 * from pci config hardware registers.
2147 */
360b7f3c 2148static int init_csrows(struct mem_ctl_info *mci)
0ec449ee
DT
2149{
2150 struct csrow_info *csrow;
2299ef71 2151 struct amd64_pvt *pvt = mci->pvt_info;
11c75ead 2152 u64 input_addr_min, input_addr_max, sys_addr, base, mask;
2299ef71 2153 u32 val;
6ba5dcdc 2154 int i, empty = 1;
0ec449ee 2155
a97fa68e 2156 amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
0ec449ee 2157
2299ef71 2158 pvt->nbcfg = val;
0ec449ee 2159
2299ef71
BP
2160 debugf0("node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2161 pvt->mc_node_id, val,
a97fa68e 2162 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
0ec449ee 2163
11c75ead 2164 for_each_chip_select(i, 0, pvt) {
0ec449ee
DT
2165 csrow = &mci->csrows[i];
2166
11c75ead 2167 if (!csrow_enabled(i, 0, pvt)) {
0ec449ee
DT
2168 debugf1("----CSROW %d EMPTY for node %d\n", i,
2169 pvt->mc_node_id);
2170 continue;
2171 }
2172
2173 debugf1("----CSROW %d VALID for MC node %d\n",
2174 i, pvt->mc_node_id);
2175
2176 empty = 0;
41d8bfab 2177 csrow->nr_pages = amd64_csrow_nr_pages(pvt, 0, i);
0ec449ee
DT
2178 find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
2179 sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
2180 csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
2181 sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
2182 csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
11c75ead
BP
2183
2184 get_cs_base_and_mask(pvt, i, 0, &base, &mask);
2185 csrow->page_mask = ~mask;
0ec449ee
DT
2186 /* 8 bytes of resolution */
2187
24f9a7fe 2188 csrow->mtype = amd64_determine_memory_type(pvt, i);
0ec449ee
DT
2189
2190 debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
2191 debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
2192 (unsigned long)input_addr_min,
2193 (unsigned long)input_addr_max);
2194 debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
2195 (unsigned long)sys_addr, csrow->page_mask);
2196 debugf1(" nr_pages: %u first_page: 0x%lx "
2197 "last_page: 0x%lx\n",
2198 (unsigned)csrow->nr_pages,
2199 csrow->first_page, csrow->last_page);
2200
2201 /*
2202 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2203 */
a97fa68e 2204 if (pvt->nbcfg & NBCFG_ECC_ENABLE)
0ec449ee 2205 csrow->edac_mode =
a97fa68e 2206 (pvt->nbcfg & NBCFG_CHIPKILL) ?
0ec449ee
DT
2207 EDAC_S4ECD4ED : EDAC_SECDED;
2208 else
2209 csrow->edac_mode = EDAC_NONE;
2210 }
2211
2212 return empty;
2213}
d27bf6fa 2214
f6d6ae96 2215/* get all cores on this DCT */
b487c33e 2216static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, unsigned nid)
f6d6ae96
BP
2217{
2218 int cpu;
2219
2220 for_each_online_cpu(cpu)
2221 if (amd_get_nb_id(cpu) == nid)
2222 cpumask_set_cpu(cpu, mask);
2223}
2224
2225/* check MCG_CTL on all the cpus on this node */
b487c33e 2226static bool amd64_nb_mce_bank_enabled_on_node(unsigned nid)
f6d6ae96
BP
2227{
2228 cpumask_var_t mask;
50542251 2229 int cpu, nbe;
f6d6ae96
BP
2230 bool ret = false;
2231
2232 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
24f9a7fe 2233 amd64_warn("%s: Error allocating mask\n", __func__);
f6d6ae96
BP
2234 return false;
2235 }
2236
2237 get_cpus_on_this_dct_cpumask(mask, nid);
2238
f6d6ae96
BP
2239 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2240
2241 for_each_cpu(cpu, mask) {
50542251 2242 struct msr *reg = per_cpu_ptr(msrs, cpu);
5980bb9c 2243 nbe = reg->l & MSR_MCGCTL_NBE;
f6d6ae96
BP
2244
2245 debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
50542251 2246 cpu, reg->q,
f6d6ae96
BP
2247 (nbe ? "enabled" : "disabled"));
2248
2249 if (!nbe)
2250 goto out;
f6d6ae96
BP
2251 }
2252 ret = true;
2253
2254out:
f6d6ae96
BP
2255 free_cpumask_var(mask);
2256 return ret;
2257}
2258
2299ef71 2259static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on)
f6d6ae96
BP
2260{
2261 cpumask_var_t cmask;
50542251 2262 int cpu;
f6d6ae96
BP
2263
2264 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
24f9a7fe 2265 amd64_warn("%s: error allocating mask\n", __func__);
f6d6ae96
BP
2266 return false;
2267 }
2268
ae7bb7c6 2269 get_cpus_on_this_dct_cpumask(cmask, nid);
f6d6ae96 2270
f6d6ae96
BP
2271 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2272
2273 for_each_cpu(cpu, cmask) {
2274
50542251
BP
2275 struct msr *reg = per_cpu_ptr(msrs, cpu);
2276
f6d6ae96 2277 if (on) {
5980bb9c 2278 if (reg->l & MSR_MCGCTL_NBE)
ae7bb7c6 2279 s->flags.nb_mce_enable = 1;
f6d6ae96 2280
5980bb9c 2281 reg->l |= MSR_MCGCTL_NBE;
f6d6ae96
BP
2282 } else {
2283 /*
d95cf4de 2284 * Turn off NB MCE reporting only when it was off before
f6d6ae96 2285 */
ae7bb7c6 2286 if (!s->flags.nb_mce_enable)
5980bb9c 2287 reg->l &= ~MSR_MCGCTL_NBE;
f6d6ae96 2288 }
f6d6ae96
BP
2289 }
2290 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2291
f6d6ae96
BP
2292 free_cpumask_var(cmask);
2293
2294 return 0;
2295}
2296
2299ef71
BP
2297static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2298 struct pci_dev *F3)
f9431992 2299{
2299ef71 2300 bool ret = true;
c9f4f26e 2301 u32 value, mask = 0x3; /* UECC/CECC enable */
f9431992 2302
2299ef71
BP
2303 if (toggle_ecc_err_reporting(s, nid, ON)) {
2304 amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2305 return false;
2306 }
2307
c9f4f26e 2308 amd64_read_pci_cfg(F3, NBCTL, &value);
f9431992 2309
ae7bb7c6
BP
2310 s->old_nbctl = value & mask;
2311 s->nbctl_valid = true;
f9431992
DT
2312
2313 value |= mask;
c9f4f26e 2314 amd64_write_pci_cfg(F3, NBCTL, value);
f9431992 2315
a97fa68e 2316 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2317
a97fa68e
BP
2318 debugf0("1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2319 nid, value, !!(value & NBCFG_ECC_ENABLE));
f9431992 2320
a97fa68e 2321 if (!(value & NBCFG_ECC_ENABLE)) {
24f9a7fe 2322 amd64_warn("DRAM ECC disabled on this node, enabling...\n");
f9431992 2323
ae7bb7c6 2324 s->flags.nb_ecc_prev = 0;
d95cf4de 2325
f9431992 2326 /* Attempt to turn on DRAM ECC Enable */
a97fa68e
BP
2327 value |= NBCFG_ECC_ENABLE;
2328 amd64_write_pci_cfg(F3, NBCFG, value);
f9431992 2329
a97fa68e 2330 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2331
a97fa68e 2332 if (!(value & NBCFG_ECC_ENABLE)) {
24f9a7fe
BP
2333 amd64_warn("Hardware rejected DRAM ECC enable,"
2334 "check memory DIMM configuration.\n");
2299ef71 2335 ret = false;
f9431992 2336 } else {
24f9a7fe 2337 amd64_info("Hardware accepted DRAM ECC Enable\n");
f9431992 2338 }
d95cf4de 2339 } else {
ae7bb7c6 2340 s->flags.nb_ecc_prev = 1;
f9431992 2341 }
d95cf4de 2342
a97fa68e
BP
2343 debugf0("2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2344 nid, value, !!(value & NBCFG_ECC_ENABLE));
f9431992 2345
2299ef71 2346 return ret;
f9431992
DT
2347}
2348
360b7f3c
BP
2349static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2350 struct pci_dev *F3)
f9431992 2351{
c9f4f26e
BP
2352 u32 value, mask = 0x3; /* UECC/CECC enable */
2353
f9431992 2354
ae7bb7c6 2355 if (!s->nbctl_valid)
f9431992
DT
2356 return;
2357
c9f4f26e 2358 amd64_read_pci_cfg(F3, NBCTL, &value);
f9431992 2359 value &= ~mask;
ae7bb7c6 2360 value |= s->old_nbctl;
f9431992 2361
c9f4f26e 2362 amd64_write_pci_cfg(F3, NBCTL, value);
f9431992 2363
ae7bb7c6
BP
2364 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
2365 if (!s->flags.nb_ecc_prev) {
a97fa68e
BP
2366 amd64_read_pci_cfg(F3, NBCFG, &value);
2367 value &= ~NBCFG_ECC_ENABLE;
2368 amd64_write_pci_cfg(F3, NBCFG, value);
d95cf4de
BP
2369 }
2370
2371 /* restore the NB Enable MCGCTL bit */
2299ef71 2372 if (toggle_ecc_err_reporting(s, nid, OFF))
24f9a7fe 2373 amd64_warn("Error restoring NB MCGCTL settings!\n");
f9431992
DT
2374}
2375
2376/*
2299ef71
BP
2377 * EDAC requires that the BIOS have ECC enabled before
2378 * taking over the processing of ECC errors. A command line
2379 * option allows to force-enable hardware ECC later in
2380 * enable_ecc_error_reporting().
f9431992 2381 */
cab4d277
BP
2382static const char *ecc_msg =
2383 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2384 " Either enable ECC checking or force module loading by setting "
2385 "'ecc_enable_override'.\n"
2386 " (Note that use of the override may cause unknown side effects.)\n";
be3468e8 2387
2299ef71 2388static bool ecc_enabled(struct pci_dev *F3, u8 nid)
f9431992
DT
2389{
2390 u32 value;
2299ef71 2391 u8 ecc_en = 0;
06724535 2392 bool nb_mce_en = false;
f9431992 2393
a97fa68e 2394 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2395
a97fa68e 2396 ecc_en = !!(value & NBCFG_ECC_ENABLE);
2299ef71 2397 amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
f9431992 2398
2299ef71 2399 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
06724535 2400 if (!nb_mce_en)
2299ef71
BP
2401 amd64_notice("NB MCE bank disabled, set MSR "
2402 "0x%08x[4] on node %d to enable.\n",
2403 MSR_IA32_MCG_CTL, nid);
f9431992 2404
2299ef71
BP
2405 if (!ecc_en || !nb_mce_en) {
2406 amd64_notice("%s", ecc_msg);
2407 return false;
2408 }
2409 return true;
f9431992
DT
2410}
2411
7d6034d3
DT
2412struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
2413 ARRAY_SIZE(amd64_inj_attrs) +
2414 1];
2415
2416struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
2417
360b7f3c 2418static void set_mc_sysfs_attrs(struct mem_ctl_info *mci)
7d6034d3
DT
2419{
2420 unsigned int i = 0, j = 0;
2421
2422 for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
2423 sysfs_attrs[i] = amd64_dbg_attrs[i];
2424
a135cef7
BP
2425 if (boot_cpu_data.x86 >= 0x10)
2426 for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
2427 sysfs_attrs[i] = amd64_inj_attrs[j];
7d6034d3
DT
2428
2429 sysfs_attrs[i] = terminator;
2430
2431 mci->mc_driver_sysfs_attributes = sysfs_attrs;
2432}
2433
df71a053
BP
2434static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
2435 struct amd64_family_type *fam)
7d6034d3
DT
2436{
2437 struct amd64_pvt *pvt = mci->pvt_info;
2438
2439 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2440 mci->edac_ctl_cap = EDAC_FLAG_NONE;
7d6034d3 2441
5980bb9c 2442 if (pvt->nbcap & NBCAP_SECDED)
7d6034d3
DT
2443 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2444
5980bb9c 2445 if (pvt->nbcap & NBCAP_CHIPKILL)
7d6034d3
DT
2446 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2447
2448 mci->edac_cap = amd64_determine_edac_cap(pvt);
2449 mci->mod_name = EDAC_MOD_STR;
2450 mci->mod_ver = EDAC_AMD64_VERSION;
df71a053 2451 mci->ctl_name = fam->ctl_name;
8d5b5d9c 2452 mci->dev_name = pci_name(pvt->F2);
7d6034d3
DT
2453 mci->ctl_page_to_phys = NULL;
2454
7d6034d3
DT
2455 /* memory scrubber interface */
2456 mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2457 mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2458}
2459
0092b20d
BP
2460/*
2461 * returns a pointer to the family descriptor on success, NULL otherwise.
2462 */
2463static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
395ae783 2464{
0092b20d
BP
2465 u8 fam = boot_cpu_data.x86;
2466 struct amd64_family_type *fam_type = NULL;
2467
2468 switch (fam) {
395ae783 2469 case 0xf:
0092b20d 2470 fam_type = &amd64_family_types[K8_CPUS];
b8cfa02f 2471 pvt->ops = &amd64_family_types[K8_CPUS].ops;
395ae783 2472 break;
df71a053 2473
395ae783 2474 case 0x10:
0092b20d 2475 fam_type = &amd64_family_types[F10_CPUS];
b8cfa02f 2476 pvt->ops = &amd64_family_types[F10_CPUS].ops;
df71a053
BP
2477 break;
2478
2479 case 0x15:
2480 fam_type = &amd64_family_types[F15_CPUS];
2481 pvt->ops = &amd64_family_types[F15_CPUS].ops;
395ae783
BP
2482 break;
2483
2484 default:
24f9a7fe 2485 amd64_err("Unsupported family!\n");
0092b20d 2486 return NULL;
395ae783 2487 }
0092b20d 2488
b8cfa02f
BP
2489 pvt->ext_model = boot_cpu_data.x86_model >> 4;
2490
df71a053 2491 amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
0092b20d 2492 (fam == 0xf ?
24f9a7fe
BP
2493 (pvt->ext_model >= K8_REV_F ? "revF or later "
2494 : "revE or earlier ")
2495 : ""), pvt->mc_node_id);
0092b20d 2496 return fam_type;
395ae783
BP
2497}
2498
2299ef71 2499static int amd64_init_one_instance(struct pci_dev *F2)
7d6034d3
DT
2500{
2501 struct amd64_pvt *pvt = NULL;
0092b20d 2502 struct amd64_family_type *fam_type = NULL;
360b7f3c 2503 struct mem_ctl_info *mci = NULL;
7d6034d3 2504 int err = 0, ret;
360b7f3c 2505 u8 nid = get_node_id(F2);
7d6034d3
DT
2506
2507 ret = -ENOMEM;
2508 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2509 if (!pvt)
360b7f3c 2510 goto err_ret;
7d6034d3 2511
360b7f3c 2512 pvt->mc_node_id = nid;
8d5b5d9c 2513 pvt->F2 = F2;
7d6034d3 2514
395ae783 2515 ret = -EINVAL;
0092b20d
BP
2516 fam_type = amd64_per_family_init(pvt);
2517 if (!fam_type)
395ae783
BP
2518 goto err_free;
2519
7d6034d3 2520 ret = -ENODEV;
360b7f3c 2521 err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
7d6034d3
DT
2522 if (err)
2523 goto err_free;
2524
360b7f3c 2525 read_mc_regs(pvt);
7d6034d3 2526
7d6034d3
DT
2527 /*
2528 * We need to determine how many memory channels there are. Then use
2529 * that information for calculating the size of the dynamic instance
360b7f3c 2530 * tables in the 'mci' structure.
7d6034d3 2531 */
360b7f3c 2532 ret = -EINVAL;
7d6034d3
DT
2533 pvt->channel_count = pvt->ops->early_channel_count(pvt);
2534 if (pvt->channel_count < 0)
360b7f3c 2535 goto err_siblings;
7d6034d3
DT
2536
2537 ret = -ENOMEM;
11c75ead 2538 mci = edac_mc_alloc(0, pvt->csels[0].b_cnt, pvt->channel_count, nid);
7d6034d3 2539 if (!mci)
360b7f3c 2540 goto err_siblings;
7d6034d3
DT
2541
2542 mci->pvt_info = pvt;
8d5b5d9c 2543 mci->dev = &pvt->F2->dev;
7d6034d3 2544
df71a053 2545 setup_mci_misc_attrs(mci, fam_type);
360b7f3c
BP
2546
2547 if (init_csrows(mci))
7d6034d3
DT
2548 mci->edac_cap = EDAC_FLAG_NONE;
2549
360b7f3c 2550 set_mc_sysfs_attrs(mci);
7d6034d3
DT
2551
2552 ret = -ENODEV;
2553 if (edac_mc_add_mc(mci)) {
2554 debugf1("failed edac_mc_add_mc()\n");
2555 goto err_add_mc;
2556 }
2557
549d042d
BP
2558 /* register stuff with EDAC MCE */
2559 if (report_gart_errors)
2560 amd_report_gart_errors(true);
2561
2562 amd_register_ecc_decoder(amd64_decode_bus_error);
2563
360b7f3c
BP
2564 mcis[nid] = mci;
2565
2566 atomic_inc(&drv_instances);
2567
7d6034d3
DT
2568 return 0;
2569
2570err_add_mc:
2571 edac_mc_free(mci);
2572
360b7f3c
BP
2573err_siblings:
2574 free_mc_sibling_devs(pvt);
7d6034d3 2575
360b7f3c
BP
2576err_free:
2577 kfree(pvt);
7d6034d3 2578
360b7f3c 2579err_ret:
7d6034d3
DT
2580 return ret;
2581}
2582
2299ef71 2583static int __devinit amd64_probe_one_instance(struct pci_dev *pdev,
b8cfa02f 2584 const struct pci_device_id *mc_type)
7d6034d3 2585{
ae7bb7c6 2586 u8 nid = get_node_id(pdev);
2299ef71 2587 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
ae7bb7c6 2588 struct ecc_settings *s;
2299ef71 2589 int ret = 0;
7d6034d3 2590
7d6034d3 2591 ret = pci_enable_device(pdev);
b8cfa02f
BP
2592 if (ret < 0) {
2593 debugf0("ret=%d\n", ret);
2594 return -EIO;
2595 }
7d6034d3 2596
ae7bb7c6
BP
2597 ret = -ENOMEM;
2598 s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
2599 if (!s)
2299ef71 2600 goto err_out;
ae7bb7c6
BP
2601
2602 ecc_stngs[nid] = s;
2603
2299ef71
BP
2604 if (!ecc_enabled(F3, nid)) {
2605 ret = -ENODEV;
2606
2607 if (!ecc_enable_override)
2608 goto err_enable;
2609
2610 amd64_warn("Forcing ECC on!\n");
2611
2612 if (!enable_ecc_error_reporting(s, nid, F3))
2613 goto err_enable;
2614 }
2615
2616 ret = amd64_init_one_instance(pdev);
360b7f3c 2617 if (ret < 0) {
ae7bb7c6 2618 amd64_err("Error probing instance: %d\n", nid);
360b7f3c
BP
2619 restore_ecc_error_reporting(s, nid, F3);
2620 }
7d6034d3
DT
2621
2622 return ret;
2299ef71
BP
2623
2624err_enable:
2625 kfree(s);
2626 ecc_stngs[nid] = NULL;
2627
2628err_out:
2629 return ret;
7d6034d3
DT
2630}
2631
2632static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
2633{
2634 struct mem_ctl_info *mci;
2635 struct amd64_pvt *pvt;
360b7f3c
BP
2636 u8 nid = get_node_id(pdev);
2637 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2638 struct ecc_settings *s = ecc_stngs[nid];
7d6034d3
DT
2639
2640 /* Remove from EDAC CORE tracking list */
2641 mci = edac_mc_del_mc(&pdev->dev);
2642 if (!mci)
2643 return;
2644
2645 pvt = mci->pvt_info;
2646
360b7f3c 2647 restore_ecc_error_reporting(s, nid, F3);
7d6034d3 2648
360b7f3c 2649 free_mc_sibling_devs(pvt);
7d6034d3 2650
549d042d
BP
2651 /* unregister from EDAC MCE */
2652 amd_report_gart_errors(false);
2653 amd_unregister_ecc_decoder(amd64_decode_bus_error);
2654
360b7f3c
BP
2655 kfree(ecc_stngs[nid]);
2656 ecc_stngs[nid] = NULL;
ae7bb7c6 2657
7d6034d3 2658 /* Free the EDAC CORE resources */
8f68ed97 2659 mci->pvt_info = NULL;
360b7f3c 2660 mcis[nid] = NULL;
8f68ed97
BP
2661
2662 kfree(pvt);
7d6034d3
DT
2663 edac_mc_free(mci);
2664}
2665
2666/*
2667 * This table is part of the interface for loading drivers for PCI devices. The
2668 * PCI core identifies what devices are on a system during boot, and then
2669 * inquiry this table to see if this driver is for a given device found.
2670 */
2671static const struct pci_device_id amd64_pci_table[] __devinitdata = {
2672 {
2673 .vendor = PCI_VENDOR_ID_AMD,
2674 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2675 .subvendor = PCI_ANY_ID,
2676 .subdevice = PCI_ANY_ID,
2677 .class = 0,
2678 .class_mask = 0,
7d6034d3
DT
2679 },
2680 {
2681 .vendor = PCI_VENDOR_ID_AMD,
2682 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2683 .subvendor = PCI_ANY_ID,
2684 .subdevice = PCI_ANY_ID,
2685 .class = 0,
2686 .class_mask = 0,
7d6034d3 2687 },
df71a053
BP
2688 {
2689 .vendor = PCI_VENDOR_ID_AMD,
2690 .device = PCI_DEVICE_ID_AMD_15H_NB_F2,
2691 .subvendor = PCI_ANY_ID,
2692 .subdevice = PCI_ANY_ID,
2693 .class = 0,
2694 .class_mask = 0,
2695 },
2696
7d6034d3
DT
2697 {0, }
2698};
2699MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2700
2701static struct pci_driver amd64_pci_driver = {
2702 .name = EDAC_MOD_STR,
2299ef71 2703 .probe = amd64_probe_one_instance,
7d6034d3
DT
2704 .remove = __devexit_p(amd64_remove_one_instance),
2705 .id_table = amd64_pci_table,
2706};
2707
360b7f3c 2708static void setup_pci_device(void)
7d6034d3
DT
2709{
2710 struct mem_ctl_info *mci;
2711 struct amd64_pvt *pvt;
2712
2713 if (amd64_ctl_pci)
2714 return;
2715
cc4d8860 2716 mci = mcis[0];
7d6034d3
DT
2717 if (mci) {
2718
2719 pvt = mci->pvt_info;
2720 amd64_ctl_pci =
8d5b5d9c 2721 edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
7d6034d3
DT
2722
2723 if (!amd64_ctl_pci) {
2724 pr_warning("%s(): Unable to create PCI control\n",
2725 __func__);
2726
2727 pr_warning("%s(): PCI error report via EDAC not set\n",
2728 __func__);
2729 }
2730 }
2731}
2732
2733static int __init amd64_edac_init(void)
2734{
360b7f3c 2735 int err = -ENODEV;
7d6034d3 2736
df71a053 2737 printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
7d6034d3
DT
2738
2739 opstate_init();
2740
9653a5c7 2741 if (amd_cache_northbridges() < 0)
56b34b91 2742 goto err_ret;
7d6034d3 2743
cc4d8860 2744 err = -ENOMEM;
ae7bb7c6
BP
2745 mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
2746 ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
360b7f3c 2747 if (!(mcis && ecc_stngs))
a9f0fbe2 2748 goto err_free;
cc4d8860 2749
50542251 2750 msrs = msrs_alloc();
56b34b91 2751 if (!msrs)
360b7f3c 2752 goto err_free;
50542251 2753
7d6034d3
DT
2754 err = pci_register_driver(&amd64_pci_driver);
2755 if (err)
56b34b91 2756 goto err_pci;
7d6034d3 2757
56b34b91 2758 err = -ENODEV;
360b7f3c
BP
2759 if (!atomic_read(&drv_instances))
2760 goto err_no_instances;
7d6034d3 2761
360b7f3c
BP
2762 setup_pci_device();
2763 return 0;
7d6034d3 2764
360b7f3c 2765err_no_instances:
7d6034d3 2766 pci_unregister_driver(&amd64_pci_driver);
cc4d8860 2767
56b34b91
BP
2768err_pci:
2769 msrs_free(msrs);
2770 msrs = NULL;
cc4d8860 2771
360b7f3c
BP
2772err_free:
2773 kfree(mcis);
2774 mcis = NULL;
2775
2776 kfree(ecc_stngs);
2777 ecc_stngs = NULL;
2778
56b34b91 2779err_ret:
7d6034d3
DT
2780 return err;
2781}
2782
2783static void __exit amd64_edac_exit(void)
2784{
2785 if (amd64_ctl_pci)
2786 edac_pci_release_generic_ctl(amd64_ctl_pci);
2787
2788 pci_unregister_driver(&amd64_pci_driver);
50542251 2789
ae7bb7c6
BP
2790 kfree(ecc_stngs);
2791 ecc_stngs = NULL;
2792
cc4d8860
BP
2793 kfree(mcis);
2794 mcis = NULL;
2795
50542251
BP
2796 msrs_free(msrs);
2797 msrs = NULL;
7d6034d3
DT
2798}
2799
2800module_init(amd64_edac_init);
2801module_exit(amd64_edac_exit);
2802
2803MODULE_LICENSE("GPL");
2804MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
2805 "Dave Peterson, Thayne Harbaugh");
2806MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
2807 EDAC_AMD64_VERSION);
2808
2809module_param(edac_op_state, int, 0444);
2810MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
This page took 0.349698 seconds and 5 git commands to generate.