amd64_edac: Adjust sys_addr to chip select conversion routine to F15h
[deliverable/linux.git] / drivers / edac / amd64_edac.c
CommitLineData
2bc65418 1#include "amd64_edac.h"
23ac4ae8 2#include <asm/amd_nb.h>
2bc65418
DT
3
4static struct edac_pci_ctl_info *amd64_ctl_pci;
5
6static int report_gart_errors;
7module_param(report_gart_errors, int, 0644);
8
9/*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
12 */
13static int ecc_enable_override;
14module_param(ecc_enable_override, int, 0644);
15
a29d8b8e 16static struct msr __percpu *msrs;
50542251 17
360b7f3c
BP
18/*
19 * count successfully initialized driver instances for setup_pci_device()
20 */
21static atomic_t drv_instances = ATOMIC_INIT(0);
22
cc4d8860
BP
23/* Per-node driver instances */
24static struct mem_ctl_info **mcis;
ae7bb7c6 25static struct ecc_settings **ecc_stngs;
2bc65418 26
b70ef010 27/*
1433eb99
BP
28 * Address to DRAM bank mapping: see F2x80 for K8 and F2x[1,0]80 for Fam10 and
29 * later.
b70ef010 30 */
1433eb99
BP
31static int ddr2_dbam_revCG[] = {
32 [0] = 32,
33 [1] = 64,
34 [2] = 128,
35 [3] = 256,
36 [4] = 512,
37 [5] = 1024,
38 [6] = 2048,
39};
40
41static int ddr2_dbam_revD[] = {
42 [0] = 32,
43 [1] = 64,
44 [2 ... 3] = 128,
45 [4] = 256,
46 [5] = 512,
47 [6] = 256,
48 [7] = 512,
49 [8 ... 9] = 1024,
50 [10] = 2048,
51};
52
53static int ddr2_dbam[] = { [0] = 128,
54 [1] = 256,
55 [2 ... 4] = 512,
56 [5 ... 6] = 1024,
57 [7 ... 8] = 2048,
58 [9 ... 10] = 4096,
59 [11] = 8192,
60};
61
62static int ddr3_dbam[] = { [0] = -1,
63 [1] = 256,
64 [2] = 512,
65 [3 ... 4] = -1,
66 [5 ... 6] = 1024,
67 [7 ... 8] = 2048,
68 [9 ... 10] = 4096,
24f9a7fe 69 [11] = 8192,
b70ef010
BP
70};
71
72/*
73 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
74 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
75 * or higher value'.
76 *
77 *FIXME: Produce a better mapping/linearisation.
78 */
79
39094443
BP
80
81struct scrubrate {
82 u32 scrubval; /* bit pattern for scrub rate */
83 u32 bandwidth; /* bandwidth consumed (bytes/sec) */
84} scrubrates[] = {
b70ef010
BP
85 { 0x01, 1600000000UL},
86 { 0x02, 800000000UL},
87 { 0x03, 400000000UL},
88 { 0x04, 200000000UL},
89 { 0x05, 100000000UL},
90 { 0x06, 50000000UL},
91 { 0x07, 25000000UL},
92 { 0x08, 12284069UL},
93 { 0x09, 6274509UL},
94 { 0x0A, 3121951UL},
95 { 0x0B, 1560975UL},
96 { 0x0C, 781440UL},
97 { 0x0D, 390720UL},
98 { 0x0E, 195300UL},
99 { 0x0F, 97650UL},
100 { 0x10, 48854UL},
101 { 0x11, 24427UL},
102 { 0x12, 12213UL},
103 { 0x13, 6101UL},
104 { 0x14, 3051UL},
105 { 0x15, 1523UL},
106 { 0x16, 761UL},
107 { 0x00, 0UL}, /* scrubbing off */
108};
109
b2b0c605
BP
110static int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
111 u32 *val, const char *func)
112{
113 int err = 0;
114
115 err = pci_read_config_dword(pdev, offset, val);
116 if (err)
117 amd64_warn("%s: error reading F%dx%03x.\n",
118 func, PCI_FUNC(pdev->devfn), offset);
119
120 return err;
121}
122
123int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
124 u32 val, const char *func)
125{
126 int err = 0;
127
128 err = pci_write_config_dword(pdev, offset, val);
129 if (err)
130 amd64_warn("%s: error writing to F%dx%03x.\n",
131 func, PCI_FUNC(pdev->devfn), offset);
132
133 return err;
134}
135
136/*
137 *
138 * Depending on the family, F2 DCT reads need special handling:
139 *
140 * K8: has a single DCT only
141 *
142 * F10h: each DCT has its own set of regs
143 * DCT0 -> F2x040..
144 * DCT1 -> F2x140..
145 *
146 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
147 *
148 */
149static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
150 const char *func)
151{
152 if (addr >= 0x100)
153 return -EINVAL;
154
155 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
156}
157
158static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
159 const char *func)
160{
161 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
162}
163
164static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
165 const char *func)
166{
167 u32 reg = 0;
168 u8 dct = 0;
169
170 if (addr >= 0x140 && addr <= 0x1a0) {
171 dct = 1;
172 addr -= 0x100;
173 }
174
175 amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
176 reg &= 0xfffffffe;
177 reg |= dct;
178 amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
179
180 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
181}
182
2bc65418
DT
183/*
184 * Memory scrubber control interface. For K8, memory scrubbing is handled by
185 * hardware and can involve L2 cache, dcache as well as the main memory. With
186 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
187 * functionality.
188 *
189 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
190 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
191 * bytes/sec for the setting.
192 *
193 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
194 * other archs, we might not have access to the caches directly.
195 */
196
197/*
198 * scan the scrub rate mapping table for a close or matching bandwidth value to
199 * issue. If requested is too big, then use last maximum value found.
200 */
395ae783 201static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
2bc65418
DT
202{
203 u32 scrubval;
204 int i;
205
206 /*
207 * map the configured rate (new_bw) to a value specific to the AMD64
208 * memory controller and apply to register. Search for the first
209 * bandwidth entry that is greater or equal than the setting requested
210 * and program that. If at last entry, turn off DRAM scrubbing.
211 */
212 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
213 /*
214 * skip scrub rates which aren't recommended
215 * (see F10 BKDG, F3x58)
216 */
395ae783 217 if (scrubrates[i].scrubval < min_rate)
2bc65418
DT
218 continue;
219
220 if (scrubrates[i].bandwidth <= new_bw)
221 break;
222
223 /*
224 * if no suitable bandwidth found, turn off DRAM scrubbing
225 * entirely by falling back to the last element in the
226 * scrubrates array.
227 */
228 }
229
230 scrubval = scrubrates[i].scrubval;
2bc65418 231
5980bb9c 232 pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
2bc65418 233
39094443
BP
234 if (scrubval)
235 return scrubrates[i].bandwidth;
236
2bc65418
DT
237 return 0;
238}
239
395ae783 240static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
2bc65418
DT
241{
242 struct amd64_pvt *pvt = mci->pvt_info;
2bc65418 243
8d5b5d9c 244 return __amd64_set_scrub_rate(pvt->F3, bw, pvt->min_scrubrate);
2bc65418
DT
245}
246
39094443 247static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
2bc65418
DT
248{
249 struct amd64_pvt *pvt = mci->pvt_info;
250 u32 scrubval = 0;
39094443 251 int i, retval = -EINVAL;
2bc65418 252
5980bb9c 253 amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
2bc65418
DT
254
255 scrubval = scrubval & 0x001F;
256
24f9a7fe 257 amd64_debug("pci-read, sdram scrub control value: %d\n", scrubval);
2bc65418 258
926311fd 259 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
2bc65418 260 if (scrubrates[i].scrubval == scrubval) {
39094443 261 retval = scrubrates[i].bandwidth;
2bc65418
DT
262 break;
263 }
264 }
39094443 265 return retval;
2bc65418
DT
266}
267
6775763a 268/*
7f19bf75
BP
269 * returns true if the SysAddr given by sys_addr matches the
270 * DRAM base/limit associated with node_id
6775763a 271 */
7f19bf75 272static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, int nid)
6775763a 273{
7f19bf75 274 u64 addr;
6775763a
DT
275
276 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
277 * all ones if the most significant implemented address bit is 1.
278 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
279 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
280 * Application Programming.
281 */
282 addr = sys_addr & 0x000000ffffffffffull;
283
7f19bf75
BP
284 return ((addr >= get_dram_base(pvt, nid)) &&
285 (addr <= get_dram_limit(pvt, nid)));
6775763a
DT
286}
287
288/*
289 * Attempt to map a SysAddr to a node. On success, return a pointer to the
290 * mem_ctl_info structure for the node that the SysAddr maps to.
291 *
292 * On failure, return NULL.
293 */
294static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
295 u64 sys_addr)
296{
297 struct amd64_pvt *pvt;
298 int node_id;
299 u32 intlv_en, bits;
300
301 /*
302 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
303 * 3.4.4.2) registers to map the SysAddr to a node ID.
304 */
305 pvt = mci->pvt_info;
306
307 /*
308 * The value of this field should be the same for all DRAM Base
309 * registers. Therefore we arbitrarily choose to read it from the
310 * register for node 0.
311 */
7f19bf75 312 intlv_en = dram_intlv_en(pvt, 0);
6775763a
DT
313
314 if (intlv_en == 0) {
7f19bf75 315 for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
6775763a 316 if (amd64_base_limit_match(pvt, sys_addr, node_id))
8edc5445 317 goto found;
6775763a 318 }
8edc5445 319 goto err_no_match;
6775763a
DT
320 }
321
72f158fe
BP
322 if (unlikely((intlv_en != 0x01) &&
323 (intlv_en != 0x03) &&
324 (intlv_en != 0x07))) {
24f9a7fe 325 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
6775763a
DT
326 return NULL;
327 }
328
329 bits = (((u32) sys_addr) >> 12) & intlv_en;
330
331 for (node_id = 0; ; ) {
7f19bf75 332 if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
6775763a
DT
333 break; /* intlv_sel field matches */
334
7f19bf75 335 if (++node_id >= DRAM_RANGES)
6775763a
DT
336 goto err_no_match;
337 }
338
339 /* sanity test for sys_addr */
340 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
24f9a7fe
BP
341 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
342 "range for node %d with node interleaving enabled.\n",
343 __func__, sys_addr, node_id);
6775763a
DT
344 return NULL;
345 }
346
347found:
348 return edac_mc_find(node_id);
349
350err_no_match:
351 debugf2("sys_addr 0x%lx doesn't match any node\n",
352 (unsigned long)sys_addr);
353
354 return NULL;
355}
e2ce7255
DT
356
357/*
11c75ead
BP
358 * compute the CS base address of the @csrow on the DRAM controller @dct.
359 * For details see F2x[5C:40] in the processor's BKDG
e2ce7255 360 */
11c75ead
BP
361static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
362 u64 *base, u64 *mask)
e2ce7255 363{
11c75ead
BP
364 u64 csbase, csmask, base_bits, mask_bits;
365 u8 addr_shift;
e2ce7255 366
11c75ead
BP
367 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
368 csbase = pvt->csels[dct].csbases[csrow];
369 csmask = pvt->csels[dct].csmasks[csrow];
370 base_bits = GENMASK(21, 31) | GENMASK(9, 15);
371 mask_bits = GENMASK(21, 29) | GENMASK(9, 15);
372 addr_shift = 4;
373 } else {
374 csbase = pvt->csels[dct].csbases[csrow];
375 csmask = pvt->csels[dct].csmasks[csrow >> 1];
376 addr_shift = 8;
e2ce7255 377
11c75ead
BP
378 if (boot_cpu_data.x86 == 0x15)
379 base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13);
380 else
381 base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13);
382 }
e2ce7255 383
11c75ead 384 *base = (csbase & base_bits) << addr_shift;
e2ce7255 385
11c75ead
BP
386 *mask = ~0ULL;
387 /* poke holes for the csmask */
388 *mask &= ~(mask_bits << addr_shift);
389 /* OR them in */
390 *mask |= (csmask & mask_bits) << addr_shift;
e2ce7255
DT
391}
392
11c75ead
BP
393#define for_each_chip_select(i, dct, pvt) \
394 for (i = 0; i < pvt->csels[dct].b_cnt; i++)
395
614ec9d8
BP
396#define chip_select_base(i, dct, pvt) \
397 pvt->csels[dct].csbases[i]
398
11c75ead
BP
399#define for_each_chip_select_mask(i, dct, pvt) \
400 for (i = 0; i < pvt->csels[dct].m_cnt; i++)
401
e2ce7255
DT
402/*
403 * @input_addr is an InputAddr associated with the node given by mci. Return the
404 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
405 */
406static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
407{
408 struct amd64_pvt *pvt;
409 int csrow;
410 u64 base, mask;
411
412 pvt = mci->pvt_info;
413
11c75ead
BP
414 for_each_chip_select(csrow, 0, pvt) {
415 if (!csrow_enabled(csrow, 0, pvt))
e2ce7255
DT
416 continue;
417
11c75ead
BP
418 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
419
420 mask = ~mask;
e2ce7255
DT
421
422 if ((input_addr & mask) == (base & mask)) {
423 debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
424 (unsigned long)input_addr, csrow,
425 pvt->mc_node_id);
426
427 return csrow;
428 }
429 }
e2ce7255
DT
430 debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
431 (unsigned long)input_addr, pvt->mc_node_id);
432
433 return -1;
434}
435
e2ce7255
DT
436/*
437 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
438 * for the node represented by mci. Info is passed back in *hole_base,
439 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
440 * info is invalid. Info may be invalid for either of the following reasons:
441 *
442 * - The revision of the node is not E or greater. In this case, the DRAM Hole
443 * Address Register does not exist.
444 *
445 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
446 * indicating that its contents are not valid.
447 *
448 * The values passed back in *hole_base, *hole_offset, and *hole_size are
449 * complete 32-bit values despite the fact that the bitfields in the DHAR
450 * only represent bits 31-24 of the base and offset values.
451 */
452int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
453 u64 *hole_offset, u64 *hole_size)
454{
455 struct amd64_pvt *pvt = mci->pvt_info;
456 u64 base;
457
458 /* only revE and later have the DRAM Hole Address Register */
1433eb99 459 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
e2ce7255
DT
460 debugf1(" revision %d for node %d does not support DHAR\n",
461 pvt->ext_model, pvt->mc_node_id);
462 return 1;
463 }
464
bc21fa57 465 /* valid for Fam10h and above */
c8e518d5 466 if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
e2ce7255
DT
467 debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
468 return 1;
469 }
470
c8e518d5 471 if (!dhar_valid(pvt)) {
e2ce7255
DT
472 debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
473 pvt->mc_node_id);
474 return 1;
475 }
476
477 /* This node has Memory Hoisting */
478
479 /* +------------------+--------------------+--------------------+-----
480 * | memory | DRAM hole | relocated |
481 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
482 * | | | DRAM hole |
483 * | | | [0x100000000, |
484 * | | | (0x100000000+ |
485 * | | | (0xffffffff-x))] |
486 * +------------------+--------------------+--------------------+-----
487 *
488 * Above is a diagram of physical memory showing the DRAM hole and the
489 * relocated addresses from the DRAM hole. As shown, the DRAM hole
490 * starts at address x (the base address) and extends through address
491 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
492 * addresses in the hole so that they start at 0x100000000.
493 */
494
bc21fa57 495 base = dhar_base(pvt);
e2ce7255
DT
496
497 *hole_base = base;
498 *hole_size = (0x1ull << 32) - base;
499
500 if (boot_cpu_data.x86 > 0xf)
bc21fa57 501 *hole_offset = f10_dhar_offset(pvt);
e2ce7255 502 else
bc21fa57 503 *hole_offset = k8_dhar_offset(pvt);
e2ce7255
DT
504
505 debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
506 pvt->mc_node_id, (unsigned long)*hole_base,
507 (unsigned long)*hole_offset, (unsigned long)*hole_size);
508
509 return 0;
510}
511EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
512
93c2df58
DT
513/*
514 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
515 * assumed that sys_addr maps to the node given by mci.
516 *
517 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
518 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
519 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
520 * then it is also involved in translating a SysAddr to a DramAddr. Sections
521 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
522 * These parts of the documentation are unclear. I interpret them as follows:
523 *
524 * When node n receives a SysAddr, it processes the SysAddr as follows:
525 *
526 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
527 * Limit registers for node n. If the SysAddr is not within the range
528 * specified by the base and limit values, then node n ignores the Sysaddr
529 * (since it does not map to node n). Otherwise continue to step 2 below.
530 *
531 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
532 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
533 * the range of relocated addresses (starting at 0x100000000) from the DRAM
534 * hole. If not, skip to step 3 below. Else get the value of the
535 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
536 * offset defined by this value from the SysAddr.
537 *
538 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
539 * Base register for node n. To obtain the DramAddr, subtract the base
540 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
541 */
542static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
543{
7f19bf75 544 struct amd64_pvt *pvt = mci->pvt_info;
93c2df58
DT
545 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
546 int ret = 0;
547
7f19bf75 548 dram_base = get_dram_base(pvt, pvt->mc_node_id);
93c2df58
DT
549
550 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
551 &hole_size);
552 if (!ret) {
553 if ((sys_addr >= (1ull << 32)) &&
554 (sys_addr < ((1ull << 32) + hole_size))) {
555 /* use DHAR to translate SysAddr to DramAddr */
556 dram_addr = sys_addr - hole_offset;
557
558 debugf2("using DHAR to translate SysAddr 0x%lx to "
559 "DramAddr 0x%lx\n",
560 (unsigned long)sys_addr,
561 (unsigned long)dram_addr);
562
563 return dram_addr;
564 }
565 }
566
567 /*
568 * Translate the SysAddr to a DramAddr as shown near the start of
569 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
570 * only deals with 40-bit values. Therefore we discard bits 63-40 of
571 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
572 * discard are all 1s. Otherwise the bits we discard are all 0s. See
573 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
574 * Programmer's Manual Volume 1 Application Programming.
575 */
f678b8cc 576 dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base;
93c2df58
DT
577
578 debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
579 "DramAddr 0x%lx\n", (unsigned long)sys_addr,
580 (unsigned long)dram_addr);
581 return dram_addr;
582}
583
584/*
585 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
586 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
587 * for node interleaving.
588 */
589static int num_node_interleave_bits(unsigned intlv_en)
590{
591 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
592 int n;
593
594 BUG_ON(intlv_en > 7);
595 n = intlv_shift_table[intlv_en];
596 return n;
597}
598
599/* Translate the DramAddr given by @dram_addr to an InputAddr. */
600static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
601{
602 struct amd64_pvt *pvt;
603 int intlv_shift;
604 u64 input_addr;
605
606 pvt = mci->pvt_info;
607
608 /*
609 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
610 * concerning translating a DramAddr to an InputAddr.
611 */
7f19bf75 612 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
f678b8cc
BP
613 input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) +
614 (dram_addr & 0xfff);
93c2df58
DT
615
616 debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
617 intlv_shift, (unsigned long)dram_addr,
618 (unsigned long)input_addr);
619
620 return input_addr;
621}
622
623/*
624 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
625 * assumed that @sys_addr maps to the node given by mci.
626 */
627static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
628{
629 u64 input_addr;
630
631 input_addr =
632 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
633
634 debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
635 (unsigned long)sys_addr, (unsigned long)input_addr);
636
637 return input_addr;
638}
639
640
641/*
642 * @input_addr is an InputAddr associated with the node represented by mci.
643 * Translate @input_addr to a DramAddr and return the result.
644 */
645static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
646{
647 struct amd64_pvt *pvt;
648 int node_id, intlv_shift;
649 u64 bits, dram_addr;
650 u32 intlv_sel;
651
652 /*
653 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
654 * shows how to translate a DramAddr to an InputAddr. Here we reverse
655 * this procedure. When translating from a DramAddr to an InputAddr, the
656 * bits used for node interleaving are discarded. Here we recover these
657 * bits from the IntlvSel field of the DRAM Limit register (section
658 * 3.4.4.2) for the node that input_addr is associated with.
659 */
660 pvt = mci->pvt_info;
661 node_id = pvt->mc_node_id;
662 BUG_ON((node_id < 0) || (node_id > 7));
663
7f19bf75 664 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
93c2df58
DT
665
666 if (intlv_shift == 0) {
667 debugf1(" InputAddr 0x%lx translates to DramAddr of "
668 "same value\n", (unsigned long)input_addr);
669
670 return input_addr;
671 }
672
f678b8cc
BP
673 bits = ((input_addr & GENMASK(12, 35)) << intlv_shift) +
674 (input_addr & 0xfff);
93c2df58 675
7f19bf75 676 intlv_sel = dram_intlv_sel(pvt, node_id) & ((1 << intlv_shift) - 1);
93c2df58
DT
677 dram_addr = bits + (intlv_sel << 12);
678
679 debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
680 "(%d node interleave bits)\n", (unsigned long)input_addr,
681 (unsigned long)dram_addr, intlv_shift);
682
683 return dram_addr;
684}
685
686/*
687 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
688 * @dram_addr to a SysAddr.
689 */
690static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
691{
692 struct amd64_pvt *pvt = mci->pvt_info;
7f19bf75 693 u64 hole_base, hole_offset, hole_size, base, sys_addr;
93c2df58
DT
694 int ret = 0;
695
696 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
697 &hole_size);
698 if (!ret) {
699 if ((dram_addr >= hole_base) &&
700 (dram_addr < (hole_base + hole_size))) {
701 sys_addr = dram_addr + hole_offset;
702
703 debugf1("using DHAR to translate DramAddr 0x%lx to "
704 "SysAddr 0x%lx\n", (unsigned long)dram_addr,
705 (unsigned long)sys_addr);
706
707 return sys_addr;
708 }
709 }
710
7f19bf75 711 base = get_dram_base(pvt, pvt->mc_node_id);
93c2df58
DT
712 sys_addr = dram_addr + base;
713
714 /*
715 * The sys_addr we have computed up to this point is a 40-bit value
716 * because the k8 deals with 40-bit values. However, the value we are
717 * supposed to return is a full 64-bit physical address. The AMD
718 * x86-64 architecture specifies that the most significant implemented
719 * address bit through bit 63 of a physical address must be either all
720 * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
721 * 64-bit value below. See section 3.4.2 of AMD publication 24592:
722 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
723 * Programming.
724 */
725 sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
726
727 debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
728 pvt->mc_node_id, (unsigned long)dram_addr,
729 (unsigned long)sys_addr);
730
731 return sys_addr;
732}
733
734/*
735 * @input_addr is an InputAddr associated with the node given by mci. Translate
736 * @input_addr to a SysAddr.
737 */
738static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
739 u64 input_addr)
740{
741 return dram_addr_to_sys_addr(mci,
742 input_addr_to_dram_addr(mci, input_addr));
743}
744
745/*
746 * Find the minimum and maximum InputAddr values that map to the given @csrow.
747 * Pass back these values in *input_addr_min and *input_addr_max.
748 */
749static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
750 u64 *input_addr_min, u64 *input_addr_max)
751{
752 struct amd64_pvt *pvt;
753 u64 base, mask;
754
755 pvt = mci->pvt_info;
11c75ead 756 BUG_ON((csrow < 0) || (csrow >= pvt->csels[0].b_cnt));
93c2df58 757
11c75ead 758 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
93c2df58
DT
759
760 *input_addr_min = base & ~mask;
11c75ead 761 *input_addr_max = base | mask;
93c2df58
DT
762}
763
93c2df58
DT
764/* Map the Error address to a PAGE and PAGE OFFSET. */
765static inline void error_address_to_page_and_offset(u64 error_address,
766 u32 *page, u32 *offset)
767{
768 *page = (u32) (error_address >> PAGE_SHIFT);
769 *offset = ((u32) error_address) & ~PAGE_MASK;
770}
771
772/*
773 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
774 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
775 * of a node that detected an ECC memory error. mci represents the node that
776 * the error address maps to (possibly different from the node that detected
777 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
778 * error.
779 */
780static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
781{
782 int csrow;
783
784 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
785
786 if (csrow == -1)
24f9a7fe
BP
787 amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
788 "address 0x%lx\n", (unsigned long)sys_addr);
93c2df58
DT
789 return csrow;
790}
e2ce7255 791
bfc04aec 792static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
2da11654 793
2da11654
DT
794/*
795 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
796 * are ECC capable.
797 */
798static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
799{
cb328507 800 u8 bit;
584fcff4 801 enum dev_type edac_cap = EDAC_FLAG_NONE;
2da11654 802
1433eb99 803 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
2da11654
DT
804 ? 19
805 : 17;
806
584fcff4 807 if (pvt->dclr0 & BIT(bit))
2da11654
DT
808 edac_cap = EDAC_FLAG_SECDED;
809
810 return edac_cap;
811}
812
813
8566c4df 814static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt);
2da11654 815
68798e17
BP
816static void amd64_dump_dramcfg_low(u32 dclr, int chan)
817{
818 debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
819
820 debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
821 (dclr & BIT(16)) ? "un" : "",
822 (dclr & BIT(19)) ? "yes" : "no");
823
824 debugf1(" PAR/ERR parity: %s\n",
825 (dclr & BIT(8)) ? "enabled" : "disabled");
826
cb328507
BP
827 if (boot_cpu_data.x86 == 0x10)
828 debugf1(" DCT 128bit mode width: %s\n",
829 (dclr & BIT(11)) ? "128b" : "64b");
68798e17
BP
830
831 debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
832 (dclr & BIT(12)) ? "yes" : "no",
833 (dclr & BIT(13)) ? "yes" : "no",
834 (dclr & BIT(14)) ? "yes" : "no",
835 (dclr & BIT(15)) ? "yes" : "no");
836}
837
2da11654 838/* Display and decode various NB registers for debug purposes. */
b2b0c605 839static void dump_misc_regs(struct amd64_pvt *pvt)
2da11654 840{
68798e17
BP
841 debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
842
843 debugf1(" NB two channel DRAM capable: %s\n",
5980bb9c 844 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
2da11654 845
68798e17 846 debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n",
5980bb9c
BP
847 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
848 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
68798e17
BP
849
850 amd64_dump_dramcfg_low(pvt->dclr0, 0);
2da11654 851
8de1d91e 852 debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
2da11654 853
8de1d91e
BP
854 debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
855 "offset: 0x%08x\n",
bc21fa57
BP
856 pvt->dhar, dhar_base(pvt),
857 (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt)
858 : f10_dhar_offset(pvt));
2da11654 859
c8e518d5 860 debugf1(" DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
2da11654 861
4d796364
BP
862 amd64_debug_display_dimm_sizes(0, pvt);
863
8de1d91e 864 /* everything below this point is Fam10h and above */
4d796364 865 if (boot_cpu_data.x86 == 0xf)
2da11654 866 return;
4d796364
BP
867
868 amd64_debug_display_dimm_sizes(1, pvt);
2da11654 869
24f9a7fe 870 amd64_info("using %s syndromes.\n", ((pvt->syn_type == 8) ? "x8" : "x4"));
ad6a32e9 871
8de1d91e 872 /* Only if NOT ganged does dclr1 have valid info */
68798e17
BP
873 if (!dct_ganging_enabled(pvt))
874 amd64_dump_dramcfg_low(pvt->dclr1, 1);
2da11654
DT
875}
876
94be4bff 877/*
11c75ead 878 * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
94be4bff 879 */
11c75ead 880static void prep_chip_selects(struct amd64_pvt *pvt)
94be4bff 881{
1433eb99 882 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
11c75ead
BP
883 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
884 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
9d858bb1 885 } else {
11c75ead
BP
886 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
887 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
94be4bff
DT
888 }
889}
890
891/*
11c75ead 892 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
94be4bff 893 */
b2b0c605 894static void read_dct_base_mask(struct amd64_pvt *pvt)
94be4bff 895{
11c75ead 896 int cs;
94be4bff 897
11c75ead 898 prep_chip_selects(pvt);
94be4bff 899
11c75ead
BP
900 for_each_chip_select(cs, 0, pvt) {
901 u32 reg0 = DCSB0 + (cs * 4);
902 u32 reg1 = DCSB1 + (cs * 4);
903 u32 *base0 = &pvt->csels[0].csbases[cs];
904 u32 *base1 = &pvt->csels[1].csbases[cs];
b2b0c605 905
11c75ead 906 if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
94be4bff 907 debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
11c75ead 908 cs, *base0, reg0);
94be4bff 909
11c75ead
BP
910 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
911 continue;
b2b0c605 912
11c75ead
BP
913 if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
914 debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
915 cs, *base1, reg1);
94be4bff
DT
916 }
917
11c75ead
BP
918 for_each_chip_select_mask(cs, 0, pvt) {
919 u32 reg0 = DCSM0 + (cs * 4);
920 u32 reg1 = DCSM1 + (cs * 4);
921 u32 *mask0 = &pvt->csels[0].csmasks[cs];
922 u32 *mask1 = &pvt->csels[1].csmasks[cs];
b2b0c605 923
11c75ead 924 if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
94be4bff 925 debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
11c75ead 926 cs, *mask0, reg0);
94be4bff 927
11c75ead
BP
928 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
929 continue;
b2b0c605 930
11c75ead
BP
931 if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
932 debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
933 cs, *mask1, reg1);
94be4bff
DT
934 }
935}
936
24f9a7fe 937static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
94be4bff
DT
938{
939 enum mem_type type;
940
cb328507
BP
941 /* F15h supports only DDR3 */
942 if (boot_cpu_data.x86 >= 0x15)
943 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
944 else if (boot_cpu_data.x86 == 0x10 || pvt->ext_model >= K8_REV_F) {
6b4c0bde
BP
945 if (pvt->dchr0 & DDR3_MODE)
946 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
947 else
948 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
94be4bff 949 } else {
94be4bff
DT
950 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
951 }
952
24f9a7fe 953 amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
94be4bff
DT
954
955 return type;
956}
957
cb328507 958/* Get the number of DCT channels the memory controller is using. */
ddff876d
DT
959static int k8_early_channel_count(struct amd64_pvt *pvt)
960{
cb328507 961 int flag;
ddff876d 962
9f56da0e 963 if (pvt->ext_model >= K8_REV_F)
ddff876d
DT
964 /* RevF (NPT) and later */
965 flag = pvt->dclr0 & F10_WIDTH_128;
9f56da0e 966 else
ddff876d
DT
967 /* RevE and earlier */
968 flag = pvt->dclr0 & REVE_WIDTH_128;
ddff876d
DT
969
970 /* not used */
971 pvt->dclr1 = 0;
972
973 return (flag) ? 2 : 1;
974}
975
70046624
BP
976/* On F10h and later ErrAddr is MC4_ADDR[47:1] */
977static u64 get_error_address(struct mce *m)
ddff876d 978{
70046624
BP
979 u8 start_bit = 1;
980 u8 end_bit = 47;
981
982 if (boot_cpu_data.x86 == 0xf) {
983 start_bit = 3;
984 end_bit = 39;
985 }
986
987 return m->addr & GENMASK(start_bit, end_bit);
ddff876d
DT
988}
989
7f19bf75 990static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
ddff876d 991{
7f19bf75 992 u32 off = range << 3;
ddff876d 993
7f19bf75
BP
994 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
995 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
ddff876d 996
7f19bf75
BP
997 if (boot_cpu_data.x86 == 0xf)
998 return;
ddff876d 999
7f19bf75
BP
1000 if (!dram_rw(pvt, range))
1001 return;
ddff876d 1002
7f19bf75
BP
1003 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
1004 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
ddff876d
DT
1005}
1006
f192c7b1
BP
1007static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1008 u16 syndrome)
ddff876d
DT
1009{
1010 struct mem_ctl_info *src_mci;
f192c7b1 1011 struct amd64_pvt *pvt = mci->pvt_info;
ddff876d
DT
1012 int channel, csrow;
1013 u32 page, offset;
ddff876d
DT
1014
1015 /* CHIPKILL enabled */
f192c7b1 1016 if (pvt->nbcfg & NBCFG_CHIPKILL) {
bfc04aec 1017 channel = get_channel_from_ecc_syndrome(mci, syndrome);
ddff876d
DT
1018 if (channel < 0) {
1019 /*
1020 * Syndrome didn't map, so we don't know which of the
1021 * 2 DIMMs is in error. So we need to ID 'both' of them
1022 * as suspect.
1023 */
24f9a7fe
BP
1024 amd64_mc_warn(mci, "unknown syndrome 0x%04x - possible "
1025 "error reporting race\n", syndrome);
ddff876d
DT
1026 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1027 return;
1028 }
1029 } else {
1030 /*
1031 * non-chipkill ecc mode
1032 *
1033 * The k8 documentation is unclear about how to determine the
1034 * channel number when using non-chipkill memory. This method
1035 * was obtained from email communication with someone at AMD.
1036 * (Wish the email was placed in this comment - norsk)
1037 */
44e9e2ee 1038 channel = ((sys_addr & BIT(3)) != 0);
ddff876d
DT
1039 }
1040
1041 /*
1042 * Find out which node the error address belongs to. This may be
1043 * different from the node that detected the error.
1044 */
44e9e2ee 1045 src_mci = find_mc_by_sys_addr(mci, sys_addr);
2cff18c2 1046 if (!src_mci) {
24f9a7fe 1047 amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
44e9e2ee 1048 (unsigned long)sys_addr);
ddff876d
DT
1049 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1050 return;
1051 }
1052
44e9e2ee
BP
1053 /* Now map the sys_addr to a CSROW */
1054 csrow = sys_addr_to_csrow(src_mci, sys_addr);
ddff876d
DT
1055 if (csrow < 0) {
1056 edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
1057 } else {
44e9e2ee 1058 error_address_to_page_and_offset(sys_addr, &page, &offset);
ddff876d
DT
1059
1060 edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
1061 channel, EDAC_MOD_STR);
1062 }
1063}
1064
1433eb99 1065static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
ddff876d 1066{
1433eb99 1067 int *dbam_map;
ddff876d 1068
1433eb99
BP
1069 if (pvt->ext_model >= K8_REV_F)
1070 dbam_map = ddr2_dbam;
1071 else if (pvt->ext_model >= K8_REV_D)
1072 dbam_map = ddr2_dbam_revD;
1073 else
1074 dbam_map = ddr2_dbam_revCG;
ddff876d 1075
1433eb99 1076 return dbam_map[cs_mode];
ddff876d
DT
1077}
1078
1afd3c98
DT
1079/*
1080 * Get the number of DCT channels in use.
1081 *
1082 * Return:
1083 * number of Memory Channels in operation
1084 * Pass back:
1085 * contents of the DCL0_LOW register
1086 */
7d20d14d 1087static int f1x_early_channel_count(struct amd64_pvt *pvt)
1afd3c98 1088{
6ba5dcdc 1089 int i, j, channels = 0;
1afd3c98 1090
7d20d14d
BP
1091 /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
1092 if (boot_cpu_data.x86 == 0x10 && (pvt->dclr0 & F10_WIDTH_128))
1093 return 2;
1afd3c98
DT
1094
1095 /*
d16149e8
BP
1096 * Need to check if in unganged mode: In such, there are 2 channels,
1097 * but they are not in 128 bit mode and thus the above 'dclr0' status
1098 * bit will be OFF.
1afd3c98
DT
1099 *
1100 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1101 * their CSEnable bit on. If so, then SINGLE DIMM case.
1102 */
d16149e8 1103 debugf0("Data width is not 128 bits - need more decoding\n");
ddff876d 1104
1afd3c98
DT
1105 /*
1106 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1107 * is more than just one DIMM present in unganged mode. Need to check
1108 * both controllers since DIMMs can be placed in either one.
1109 */
525a1b20
BP
1110 for (i = 0; i < 2; i++) {
1111 u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1afd3c98 1112
57a30854
WW
1113 for (j = 0; j < 4; j++) {
1114 if (DBAM_DIMM(j, dbam) > 0) {
1115 channels++;
1116 break;
1117 }
1118 }
1afd3c98
DT
1119 }
1120
d16149e8
BP
1121 if (channels > 2)
1122 channels = 2;
1123
24f9a7fe 1124 amd64_info("MCT channel count: %d\n", channels);
1afd3c98
DT
1125
1126 return channels;
1afd3c98
DT
1127}
1128
1433eb99 1129static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
1afd3c98 1130{
1433eb99
BP
1131 int *dbam_map;
1132
1133 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1134 dbam_map = ddr3_dbam;
1135 else
1136 dbam_map = ddr2_dbam;
1137
1138 return dbam_map[cs_mode];
1afd3c98
DT
1139}
1140
6163b5d4
DT
1141static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
1142{
6163b5d4 1143
78da121e
BP
1144 if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
1145 debugf0("F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
1146 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
72381bd5 1147
78da121e 1148 debugf0(" mode: %s, All DCTs on: %s\n",
72381bd5
BP
1149 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"),
1150 (dct_dram_enabled(pvt) ? "yes" : "no"));
1151
1152 if (!dct_ganging_enabled(pvt))
1153 debugf0(" Address range split per DCT: %s\n",
1154 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1155
78da121e 1156 debugf0(" data interleave for ECC: %s, "
72381bd5
BP
1157 "DRAM cleared since last warm reset: %s\n",
1158 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1159 (dct_memory_cleared(pvt) ? "yes" : "no"));
1160
78da121e
BP
1161 debugf0(" channel interleave: %s, "
1162 "interleave bits selector: 0x%x\n",
72381bd5 1163 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
6163b5d4
DT
1164 dct_sel_interleave_addr(pvt));
1165 }
1166
78da121e 1167 amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
6163b5d4
DT
1168}
1169
f71d0a05 1170/*
229a7a11 1171 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
f71d0a05
DT
1172 * Interleaving Modes.
1173 */
b15f0fca 1174static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
229a7a11 1175 bool hi_range_sel, u8 intlv_en)
6163b5d4 1176{
78da121e 1177 u32 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
6163b5d4
DT
1178
1179 if (dct_ganging_enabled(pvt))
229a7a11 1180 return 0;
6163b5d4 1181
229a7a11
BP
1182 if (hi_range_sel)
1183 return dct_sel_high;
6163b5d4 1184
229a7a11
BP
1185 /*
1186 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1187 */
1188 if (dct_interleave_enabled(pvt)) {
1189 u8 intlv_addr = dct_sel_interleave_addr(pvt);
1190
1191 /* return DCT select function: 0=DCT0, 1=DCT1 */
1192 if (!intlv_addr)
1193 return sys_addr >> 6 & 1;
1194
1195 if (intlv_addr & 0x2) {
1196 u8 shift = intlv_addr & 0x1 ? 9 : 6;
1197 u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1198
1199 return ((sys_addr >> shift) & 1) ^ temp;
1200 }
1201
1202 return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
1203 }
1204
1205 if (dct_high_range_enabled(pvt))
1206 return ~dct_sel_high & 1;
6163b5d4
DT
1207
1208 return 0;
1209}
1210
c8e518d5 1211/* Convert the sys_addr to the normalized DCT address */
b15f0fca 1212static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, int range,
c8e518d5
BP
1213 u64 sys_addr, bool hi_rng,
1214 u32 dct_sel_base_addr)
6163b5d4
DT
1215{
1216 u64 chan_off;
c8e518d5
BP
1217 u64 dram_base = get_dram_base(pvt, range);
1218 u64 hole_off = f10_dhar_offset(pvt);
1219 u32 hole_valid = dhar_valid(pvt);
1220 u64 dct_sel_base_off = (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
6163b5d4 1221
c8e518d5
BP
1222 if (hi_rng) {
1223 /*
1224 * if
1225 * base address of high range is below 4Gb
1226 * (bits [47:27] at [31:11])
1227 * DRAM address space on this DCT is hoisted above 4Gb &&
1228 * sys_addr > 4Gb
1229 *
1230 * remove hole offset from sys_addr
1231 * else
1232 * remove high range offset from sys_addr
1233 */
1234 if ((!(dct_sel_base_addr >> 16) ||
1235 dct_sel_base_addr < dhar_base(pvt)) &&
1236 hole_valid &&
1237 (sys_addr >= BIT_64(32)))
bc21fa57 1238 chan_off = hole_off;
6163b5d4
DT
1239 else
1240 chan_off = dct_sel_base_off;
1241 } else {
c8e518d5
BP
1242 /*
1243 * if
1244 * we have a valid hole &&
1245 * sys_addr > 4Gb
1246 *
1247 * remove hole
1248 * else
1249 * remove dram base to normalize to DCT address
1250 */
1251 if (hole_valid && (sys_addr >= BIT_64(32)))
bc21fa57 1252 chan_off = hole_off;
6163b5d4 1253 else
c8e518d5 1254 chan_off = dram_base;
6163b5d4
DT
1255 }
1256
c8e518d5 1257 return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47));
6163b5d4
DT
1258}
1259
6163b5d4
DT
1260/*
1261 * checks if the csrow passed in is marked as SPARED, if so returns the new
1262 * spare row
1263 */
11c75ead 1264static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
6163b5d4 1265{
614ec9d8
BP
1266 int tmp_cs;
1267
1268 if (online_spare_swap_done(pvt, dct) &&
1269 csrow == online_spare_bad_dramcs(pvt, dct)) {
1270
1271 for_each_chip_select(tmp_cs, dct, pvt) {
1272 if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
1273 csrow = tmp_cs;
1274 break;
1275 }
1276 }
6163b5d4
DT
1277 }
1278 return csrow;
1279}
1280
1281/*
1282 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1283 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1284 *
1285 * Return:
1286 * -EINVAL: NOT FOUND
1287 * 0..csrow = Chip-Select Row
1288 */
b15f0fca 1289static int f1x_lookup_addr_in_dct(u64 in_addr, u32 nid, u8 dct)
6163b5d4
DT
1290{
1291 struct mem_ctl_info *mci;
1292 struct amd64_pvt *pvt;
11c75ead 1293 u64 cs_base, cs_mask;
6163b5d4
DT
1294 int cs_found = -EINVAL;
1295 int csrow;
1296
cc4d8860 1297 mci = mcis[nid];
6163b5d4
DT
1298 if (!mci)
1299 return cs_found;
1300
1301 pvt = mci->pvt_info;
1302
11c75ead 1303 debugf1("input addr: 0x%llx, DCT: %d\n", in_addr, dct);
6163b5d4 1304
11c75ead
BP
1305 for_each_chip_select(csrow, dct, pvt) {
1306 if (!csrow_enabled(csrow, dct, pvt))
6163b5d4
DT
1307 continue;
1308
11c75ead 1309 get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
6163b5d4 1310
11c75ead
BP
1311 debugf1(" CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
1312 csrow, cs_base, cs_mask);
6163b5d4 1313
11c75ead 1314 cs_mask = ~cs_mask;
6163b5d4 1315
11c75ead
BP
1316 debugf1(" (InputAddr & ~CSMask)=0x%llx "
1317 "(CSBase & ~CSMask)=0x%llx\n",
1318 (in_addr & cs_mask), (cs_base & cs_mask));
6163b5d4 1319
11c75ead
BP
1320 if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
1321 cs_found = f10_process_possible_spare(pvt, dct, csrow);
6163b5d4
DT
1322
1323 debugf1(" MATCH csrow=%d\n", cs_found);
1324 break;
1325 }
1326 }
1327 return cs_found;
1328}
1329
95b0ef55
BP
1330/*
1331 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
1332 * swapped with a region located at the bottom of memory so that the GPU can use
1333 * the interleaved region and thus two channels.
1334 */
b15f0fca 1335static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
95b0ef55
BP
1336{
1337 u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
1338
1339 if (boot_cpu_data.x86 == 0x10) {
1340 /* only revC3 and revE have that feature */
1341 if (boot_cpu_data.x86_model < 4 ||
1342 (boot_cpu_data.x86_model < 0xa &&
1343 boot_cpu_data.x86_mask < 3))
1344 return sys_addr;
1345 }
1346
1347 amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg);
1348
1349 if (!(swap_reg & 0x1))
1350 return sys_addr;
1351
1352 swap_base = (swap_reg >> 3) & 0x7f;
1353 swap_limit = (swap_reg >> 11) & 0x7f;
1354 rgn_size = (swap_reg >> 20) & 0x7f;
1355 tmp_addr = sys_addr >> 27;
1356
1357 if (!(sys_addr >> 34) &&
1358 (((tmp_addr >= swap_base) &&
1359 (tmp_addr <= swap_limit)) ||
1360 (tmp_addr < rgn_size)))
1361 return sys_addr ^ (u64)swap_base << 27;
1362
1363 return sys_addr;
1364}
1365
f71d0a05 1366/* For a given @dram_range, check if @sys_addr falls within it. */
b15f0fca 1367static int f1x_match_to_this_node(struct amd64_pvt *pvt, int range,
f71d0a05
DT
1368 u64 sys_addr, int *nid, int *chan_sel)
1369{
229a7a11 1370 int cs_found = -EINVAL;
c8e518d5 1371 u64 chan_addr;
5d4b58e8 1372 u32 dct_sel_base;
11c75ead 1373 u8 channel;
229a7a11 1374 bool high_range = false;
f71d0a05 1375
7f19bf75 1376 u8 node_id = dram_dst_node(pvt, range);
229a7a11 1377 u8 intlv_en = dram_intlv_en(pvt, range);
7f19bf75 1378 u32 intlv_sel = dram_intlv_sel(pvt, range);
f71d0a05 1379
c8e518d5
BP
1380 debugf1("(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1381 range, sys_addr, get_dram_limit(pvt, range));
f71d0a05 1382
355fba60
BP
1383 if (dhar_valid(pvt) &&
1384 dhar_base(pvt) <= sys_addr &&
1385 sys_addr < BIT_64(32)) {
1386 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1387 sys_addr);
1388 return -EINVAL;
1389 }
1390
e726f3c3 1391 if (intlv_en &&
355fba60
BP
1392 (intlv_sel != ((sys_addr >> 12) & intlv_en))) {
1393 amd64_warn("Botched intlv bits, en: 0x%x, sel: 0x%x\n",
1394 intlv_en, intlv_sel);
f71d0a05 1395 return -EINVAL;
355fba60 1396 }
f71d0a05 1397
b15f0fca 1398 sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
95b0ef55 1399
f71d0a05
DT
1400 dct_sel_base = dct_sel_baseaddr(pvt);
1401
1402 /*
1403 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1404 * select between DCT0 and DCT1.
1405 */
1406 if (dct_high_range_enabled(pvt) &&
1407 !dct_ganging_enabled(pvt) &&
1408 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
229a7a11 1409 high_range = true;
f71d0a05 1410
b15f0fca 1411 channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
f71d0a05 1412
b15f0fca 1413 chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
c8e518d5 1414 high_range, dct_sel_base);
f71d0a05 1415
e2f79dbd
BP
1416 /* Remove node interleaving, see F1x120 */
1417 if (intlv_en)
1418 chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
1419 (chan_addr & 0xfff);
f71d0a05 1420
5d4b58e8 1421 /* remove channel interleave */
f71d0a05
DT
1422 if (dct_interleave_enabled(pvt) &&
1423 !dct_high_range_enabled(pvt) &&
1424 !dct_ganging_enabled(pvt)) {
5d4b58e8
BP
1425
1426 if (dct_sel_interleave_addr(pvt) != 1) {
1427 if (dct_sel_interleave_addr(pvt) == 0x3)
1428 /* hash 9 */
1429 chan_addr = ((chan_addr >> 10) << 9) |
1430 (chan_addr & 0x1ff);
1431 else
1432 /* A[6] or hash 6 */
1433 chan_addr = ((chan_addr >> 7) << 6) |
1434 (chan_addr & 0x3f);
1435 } else
1436 /* A[12] */
1437 chan_addr = ((chan_addr >> 13) << 12) |
1438 (chan_addr & 0xfff);
f71d0a05
DT
1439 }
1440
5d4b58e8 1441 debugf1(" Normalized DCT addr: 0x%llx\n", chan_addr);
f71d0a05 1442
b15f0fca 1443 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
f71d0a05
DT
1444
1445 if (cs_found >= 0) {
1446 *nid = node_id;
1447 *chan_sel = channel;
1448 }
1449 return cs_found;
1450}
1451
b15f0fca 1452static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
f71d0a05
DT
1453 int *node, int *chan_sel)
1454{
7f19bf75 1455 int range, cs_found = -EINVAL;
f71d0a05 1456
7f19bf75 1457 for (range = 0; range < DRAM_RANGES; range++) {
f71d0a05 1458
7f19bf75 1459 if (!dram_rw(pvt, range))
f71d0a05
DT
1460 continue;
1461
7f19bf75
BP
1462 if ((get_dram_base(pvt, range) <= sys_addr) &&
1463 (get_dram_limit(pvt, range) >= sys_addr)) {
f71d0a05 1464
b15f0fca 1465 cs_found = f1x_match_to_this_node(pvt, range,
f71d0a05
DT
1466 sys_addr, node,
1467 chan_sel);
1468 if (cs_found >= 0)
1469 break;
1470 }
1471 }
1472 return cs_found;
1473}
1474
1475/*
bdc30a0c
BP
1476 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1477 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
f71d0a05 1478 *
bdc30a0c
BP
1479 * The @sys_addr is usually an error address received from the hardware
1480 * (MCX_ADDR).
f71d0a05 1481 */
b15f0fca 1482static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
f192c7b1 1483 u16 syndrome)
f71d0a05
DT
1484{
1485 struct amd64_pvt *pvt = mci->pvt_info;
1486 u32 page, offset;
f71d0a05
DT
1487 int nid, csrow, chan = 0;
1488
b15f0fca 1489 csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
f71d0a05 1490
bdc30a0c
BP
1491 if (csrow < 0) {
1492 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1493 return;
1494 }
1495
1496 error_address_to_page_and_offset(sys_addr, &page, &offset);
f71d0a05 1497
bdc30a0c
BP
1498 /*
1499 * We need the syndromes for channel detection only when we're
1500 * ganged. Otherwise @chan should already contain the channel at
1501 * this point.
1502 */
a97fa68e 1503 if (dct_ganging_enabled(pvt))
bdc30a0c 1504 chan = get_channel_from_ecc_syndrome(mci, syndrome);
f71d0a05 1505
bdc30a0c
BP
1506 if (chan >= 0)
1507 edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
1508 EDAC_MOD_STR);
1509 else
f71d0a05 1510 /*
bdc30a0c 1511 * Channel unknown, report all channels on this CSROW as failed.
f71d0a05 1512 */
bdc30a0c 1513 for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
f71d0a05 1514 edac_mc_handle_ce(mci, page, offset, syndrome,
bdc30a0c 1515 csrow, chan, EDAC_MOD_STR);
f71d0a05
DT
1516}
1517
f71d0a05 1518/*
8566c4df 1519 * debug routine to display the memory sizes of all logical DIMMs and its
cb328507 1520 * CSROWs
f71d0a05 1521 */
8566c4df 1522static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt)
f71d0a05 1523{
603adaf6 1524 int dimm, size0, size1, factor = 0;
525a1b20
BP
1525 u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
1526 u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
f71d0a05 1527
8566c4df 1528 if (boot_cpu_data.x86 == 0xf) {
603adaf6
BP
1529 if (pvt->dclr0 & F10_WIDTH_128)
1530 factor = 1;
1531
8566c4df 1532 /* K8 families < revF not supported yet */
1433eb99 1533 if (pvt->ext_model < K8_REV_F)
8566c4df
BP
1534 return;
1535 else
1536 WARN_ON(ctrl != 0);
1537 }
1538
4d796364 1539 dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
11c75ead
BP
1540 dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
1541 : pvt->csels[0].csbases;
f71d0a05 1542
4d796364 1543 debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", ctrl, dbam);
f71d0a05 1544
8566c4df
BP
1545 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1546
f71d0a05
DT
1547 /* Dump memory sizes for DIMM and its CSROWs */
1548 for (dimm = 0; dimm < 4; dimm++) {
1549
1550 size0 = 0;
11c75ead 1551 if (dcsb[dimm*2] & DCSB_CS_ENABLE)
1433eb99 1552 size0 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
f71d0a05
DT
1553
1554 size1 = 0;
11c75ead 1555 if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
1433eb99 1556 size1 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
f71d0a05 1557
24f9a7fe
BP
1558 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
1559 dimm * 2, size0 << factor,
1560 dimm * 2 + 1, size1 << factor);
f71d0a05
DT
1561 }
1562}
1563
4d37607a
DT
1564static struct amd64_family_type amd64_family_types[] = {
1565 [K8_CPUS] = {
0092b20d 1566 .ctl_name = "K8",
8d5b5d9c
BP
1567 .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1568 .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
4d37607a 1569 .ops = {
1433eb99 1570 .early_channel_count = k8_early_channel_count,
1433eb99
BP
1571 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1572 .dbam_to_cs = k8_dbam_to_chip_select,
b2b0c605 1573 .read_dct_pci_cfg = k8_read_dct_pci_cfg,
4d37607a
DT
1574 }
1575 },
1576 [F10_CPUS] = {
0092b20d 1577 .ctl_name = "F10h",
8d5b5d9c
BP
1578 .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1579 .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
4d37607a 1580 .ops = {
7d20d14d 1581 .early_channel_count = f1x_early_channel_count,
1433eb99 1582 .read_dram_ctl_register = f10_read_dram_ctl_register,
b15f0fca 1583 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1433eb99 1584 .dbam_to_cs = f10_dbam_to_chip_select,
b2b0c605
BP
1585 .read_dct_pci_cfg = f10_read_dct_pci_cfg,
1586 }
1587 },
1588 [F15_CPUS] = {
1589 .ctl_name = "F15h",
1590 .ops = {
7d20d14d 1591 .early_channel_count = f1x_early_channel_count,
b15f0fca 1592 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
b2b0c605 1593 .read_dct_pci_cfg = f15_read_dct_pci_cfg,
4d37607a
DT
1594 }
1595 },
4d37607a
DT
1596};
1597
1598static struct pci_dev *pci_get_related_function(unsigned int vendor,
1599 unsigned int device,
1600 struct pci_dev *related)
1601{
1602 struct pci_dev *dev = NULL;
1603
1604 dev = pci_get_device(vendor, device, dev);
1605 while (dev) {
1606 if ((dev->bus->number == related->bus->number) &&
1607 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1608 break;
1609 dev = pci_get_device(vendor, device, dev);
1610 }
1611
1612 return dev;
1613}
1614
b1289d6f 1615/*
bfc04aec
BP
1616 * These are tables of eigenvectors (one per line) which can be used for the
1617 * construction of the syndrome tables. The modified syndrome search algorithm
1618 * uses those to find the symbol in error and thus the DIMM.
b1289d6f 1619 *
bfc04aec 1620 * Algorithm courtesy of Ross LaFetra from AMD.
b1289d6f 1621 */
bfc04aec
BP
1622static u16 x4_vectors[] = {
1623 0x2f57, 0x1afe, 0x66cc, 0xdd88,
1624 0x11eb, 0x3396, 0x7f4c, 0xeac8,
1625 0x0001, 0x0002, 0x0004, 0x0008,
1626 0x1013, 0x3032, 0x4044, 0x8088,
1627 0x106b, 0x30d6, 0x70fc, 0xe0a8,
1628 0x4857, 0xc4fe, 0x13cc, 0x3288,
1629 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1630 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1631 0x15c1, 0x2a42, 0x89ac, 0x4758,
1632 0x2b03, 0x1602, 0x4f0c, 0xca08,
1633 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1634 0x8ba7, 0x465e, 0x244c, 0x1cc8,
1635 0x2b87, 0x164e, 0x642c, 0xdc18,
1636 0x40b9, 0x80de, 0x1094, 0x20e8,
1637 0x27db, 0x1eb6, 0x9dac, 0x7b58,
1638 0x11c1, 0x2242, 0x84ac, 0x4c58,
1639 0x1be5, 0x2d7a, 0x5e34, 0xa718,
1640 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1641 0x4c97, 0xc87e, 0x11fc, 0x33a8,
1642 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1643 0x16b3, 0x3d62, 0x4f34, 0x8518,
1644 0x1e2f, 0x391a, 0x5cac, 0xf858,
1645 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1646 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1647 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1648 0x4397, 0xc27e, 0x17fc, 0x3ea8,
1649 0x1617, 0x3d3e, 0x6464, 0xb8b8,
1650 0x23ff, 0x12aa, 0xab6c, 0x56d8,
1651 0x2dfb, 0x1ba6, 0x913c, 0x7328,
1652 0x185d, 0x2ca6, 0x7914, 0x9e28,
1653 0x171b, 0x3e36, 0x7d7c, 0xebe8,
1654 0x4199, 0x82ee, 0x19f4, 0x2e58,
1655 0x4807, 0xc40e, 0x130c, 0x3208,
1656 0x1905, 0x2e0a, 0x5804, 0xac08,
1657 0x213f, 0x132a, 0xadfc, 0x5ba8,
1658 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
b1289d6f
DT
1659};
1660
bfc04aec
BP
1661static u16 x8_vectors[] = {
1662 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1663 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1664 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1665 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1666 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1667 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1668 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1669 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1670 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1671 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1672 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1673 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1674 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1675 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1676 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1677 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1678 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1679 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1680 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1681};
1682
1683static int decode_syndrome(u16 syndrome, u16 *vectors, int num_vecs,
ad6a32e9 1684 int v_dim)
b1289d6f 1685{
bfc04aec
BP
1686 unsigned int i, err_sym;
1687
1688 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1689 u16 s = syndrome;
1690 int v_idx = err_sym * v_dim;
1691 int v_end = (err_sym + 1) * v_dim;
1692
1693 /* walk over all 16 bits of the syndrome */
1694 for (i = 1; i < (1U << 16); i <<= 1) {
1695
1696 /* if bit is set in that eigenvector... */
1697 if (v_idx < v_end && vectors[v_idx] & i) {
1698 u16 ev_comp = vectors[v_idx++];
1699
1700 /* ... and bit set in the modified syndrome, */
1701 if (s & i) {
1702 /* remove it. */
1703 s ^= ev_comp;
4d37607a 1704
bfc04aec
BP
1705 if (!s)
1706 return err_sym;
1707 }
b1289d6f 1708
bfc04aec
BP
1709 } else if (s & i)
1710 /* can't get to zero, move to next symbol */
1711 break;
1712 }
b1289d6f
DT
1713 }
1714
1715 debugf0("syndrome(%x) not found\n", syndrome);
1716 return -1;
1717}
d27bf6fa 1718
bfc04aec
BP
1719static int map_err_sym_to_channel(int err_sym, int sym_size)
1720{
1721 if (sym_size == 4)
1722 switch (err_sym) {
1723 case 0x20:
1724 case 0x21:
1725 return 0;
1726 break;
1727 case 0x22:
1728 case 0x23:
1729 return 1;
1730 break;
1731 default:
1732 return err_sym >> 4;
1733 break;
1734 }
1735 /* x8 symbols */
1736 else
1737 switch (err_sym) {
1738 /* imaginary bits not in a DIMM */
1739 case 0x10:
1740 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1741 err_sym);
1742 return -1;
1743 break;
1744
1745 case 0x11:
1746 return 0;
1747 break;
1748 case 0x12:
1749 return 1;
1750 break;
1751 default:
1752 return err_sym >> 3;
1753 break;
1754 }
1755 return -1;
1756}
1757
1758static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1759{
1760 struct amd64_pvt *pvt = mci->pvt_info;
ad6a32e9
BP
1761 int err_sym = -1;
1762
1763 if (pvt->syn_type == 8)
1764 err_sym = decode_syndrome(syndrome, x8_vectors,
1765 ARRAY_SIZE(x8_vectors),
1766 pvt->syn_type);
1767 else if (pvt->syn_type == 4)
1768 err_sym = decode_syndrome(syndrome, x4_vectors,
1769 ARRAY_SIZE(x4_vectors),
1770 pvt->syn_type);
1771 else {
24f9a7fe 1772 amd64_warn("Illegal syndrome type: %u\n", pvt->syn_type);
ad6a32e9 1773 return err_sym;
bfc04aec 1774 }
ad6a32e9
BP
1775
1776 return map_err_sym_to_channel(err_sym, pvt->syn_type);
bfc04aec
BP
1777}
1778
d27bf6fa
DT
1779/*
1780 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
1781 * ADDRESS and process.
1782 */
f192c7b1 1783static void amd64_handle_ce(struct mem_ctl_info *mci, struct mce *m)
d27bf6fa
DT
1784{
1785 struct amd64_pvt *pvt = mci->pvt_info;
44e9e2ee 1786 u64 sys_addr;
f192c7b1 1787 u16 syndrome;
d27bf6fa
DT
1788
1789 /* Ensure that the Error Address is VALID */
f192c7b1 1790 if (!(m->status & MCI_STATUS_ADDRV)) {
24f9a7fe 1791 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
d27bf6fa
DT
1792 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1793 return;
1794 }
1795
70046624 1796 sys_addr = get_error_address(m);
f192c7b1 1797 syndrome = extract_syndrome(m->status);
d27bf6fa 1798
24f9a7fe 1799 amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
d27bf6fa 1800
f192c7b1 1801 pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, syndrome);
d27bf6fa
DT
1802}
1803
1804/* Handle any Un-correctable Errors (UEs) */
f192c7b1 1805static void amd64_handle_ue(struct mem_ctl_info *mci, struct mce *m)
d27bf6fa 1806{
1f6bcee7 1807 struct mem_ctl_info *log_mci, *src_mci = NULL;
d27bf6fa 1808 int csrow;
44e9e2ee 1809 u64 sys_addr;
d27bf6fa 1810 u32 page, offset;
d27bf6fa
DT
1811
1812 log_mci = mci;
1813
f192c7b1 1814 if (!(m->status & MCI_STATUS_ADDRV)) {
24f9a7fe 1815 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
d27bf6fa
DT
1816 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1817 return;
1818 }
1819
70046624 1820 sys_addr = get_error_address(m);
d27bf6fa
DT
1821
1822 /*
1823 * Find out which node the error address belongs to. This may be
1824 * different from the node that detected the error.
1825 */
44e9e2ee 1826 src_mci = find_mc_by_sys_addr(mci, sys_addr);
d27bf6fa 1827 if (!src_mci) {
24f9a7fe
BP
1828 amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n",
1829 (unsigned long)sys_addr);
d27bf6fa
DT
1830 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1831 return;
1832 }
1833
1834 log_mci = src_mci;
1835
44e9e2ee 1836 csrow = sys_addr_to_csrow(log_mci, sys_addr);
d27bf6fa 1837 if (csrow < 0) {
24f9a7fe
BP
1838 amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n",
1839 (unsigned long)sys_addr);
d27bf6fa
DT
1840 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1841 } else {
44e9e2ee 1842 error_address_to_page_and_offset(sys_addr, &page, &offset);
d27bf6fa
DT
1843 edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
1844 }
1845}
1846
549d042d 1847static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
f192c7b1 1848 struct mce *m)
d27bf6fa 1849{
f192c7b1
BP
1850 u16 ec = EC(m->status);
1851 u8 xec = XEC(m->status, 0x1f);
1852 u8 ecc_type = (m->status >> 45) & 0x3;
d27bf6fa 1853
b70ef010 1854 /* Bail early out if this was an 'observed' error */
5980bb9c 1855 if (PP(ec) == NBSL_PP_OBS)
b70ef010 1856 return;
d27bf6fa 1857
ecaf5606
BP
1858 /* Do only ECC errors */
1859 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
d27bf6fa 1860 return;
d27bf6fa 1861
ecaf5606 1862 if (ecc_type == 2)
f192c7b1 1863 amd64_handle_ce(mci, m);
ecaf5606 1864 else if (ecc_type == 1)
f192c7b1 1865 amd64_handle_ue(mci, m);
d27bf6fa
DT
1866}
1867
7cfd4a87 1868void amd64_decode_bus_error(int node_id, struct mce *m, u32 nbcfg)
d27bf6fa 1869{
cc4d8860 1870 struct mem_ctl_info *mci = mcis[node_id];
7cfd4a87 1871
f192c7b1 1872 __amd64_decode_bus_error(mci, m);
d27bf6fa 1873}
d27bf6fa 1874
0ec449ee 1875/*
8d5b5d9c 1876 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
bbd0c1f6 1877 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
0ec449ee 1878 */
360b7f3c 1879static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
0ec449ee 1880{
0ec449ee 1881 /* Reserve the ADDRESS MAP Device */
8d5b5d9c
BP
1882 pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
1883 if (!pvt->F1) {
24f9a7fe
BP
1884 amd64_err("error address map device not found: "
1885 "vendor %x device 0x%x (broken BIOS?)\n",
1886 PCI_VENDOR_ID_AMD, f1_id);
bbd0c1f6 1887 return -ENODEV;
0ec449ee
DT
1888 }
1889
1890 /* Reserve the MISC Device */
8d5b5d9c
BP
1891 pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
1892 if (!pvt->F3) {
1893 pci_dev_put(pvt->F1);
1894 pvt->F1 = NULL;
0ec449ee 1895
24f9a7fe
BP
1896 amd64_err("error F3 device not found: "
1897 "vendor %x device 0x%x (broken BIOS?)\n",
1898 PCI_VENDOR_ID_AMD, f3_id);
0ec449ee 1899
bbd0c1f6 1900 return -ENODEV;
0ec449ee 1901 }
8d5b5d9c
BP
1902 debugf1("F1: %s\n", pci_name(pvt->F1));
1903 debugf1("F2: %s\n", pci_name(pvt->F2));
1904 debugf1("F3: %s\n", pci_name(pvt->F3));
0ec449ee
DT
1905
1906 return 0;
1907}
1908
360b7f3c 1909static void free_mc_sibling_devs(struct amd64_pvt *pvt)
0ec449ee 1910{
8d5b5d9c
BP
1911 pci_dev_put(pvt->F1);
1912 pci_dev_put(pvt->F3);
0ec449ee
DT
1913}
1914
1915/*
1916 * Retrieve the hardware registers of the memory controller (this includes the
1917 * 'Address Map' and 'Misc' device regs)
1918 */
360b7f3c 1919static void read_mc_regs(struct amd64_pvt *pvt)
0ec449ee
DT
1920{
1921 u64 msr_val;
ad6a32e9 1922 u32 tmp;
7f19bf75 1923 int range;
0ec449ee
DT
1924
1925 /*
1926 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
1927 * those are Read-As-Zero
1928 */
e97f8bb8
BP
1929 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
1930 debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem);
0ec449ee
DT
1931
1932 /* check first whether TOP_MEM2 is enabled */
1933 rdmsrl(MSR_K8_SYSCFG, msr_val);
1934 if (msr_val & (1U << 21)) {
e97f8bb8
BP
1935 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
1936 debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
0ec449ee
DT
1937 } else
1938 debugf0(" TOP_MEM2 disabled.\n");
1939
5980bb9c 1940 amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
0ec449ee
DT
1941
1942 if (pvt->ops->read_dram_ctl_register)
1943 pvt->ops->read_dram_ctl_register(pvt);
1944
7f19bf75
BP
1945 for (range = 0; range < DRAM_RANGES; range++) {
1946 u8 rw;
0ec449ee 1947
7f19bf75
BP
1948 /* read settings for this DRAM range */
1949 read_dram_base_limit_regs(pvt, range);
1950
1951 rw = dram_rw(pvt, range);
1952 if (!rw)
1953 continue;
1954
1955 debugf1(" DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
1956 range,
1957 get_dram_base(pvt, range),
1958 get_dram_limit(pvt, range));
1959
1960 debugf1(" IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
1961 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
1962 (rw & 0x1) ? "R" : "-",
1963 (rw & 0x2) ? "W" : "-",
1964 dram_intlv_sel(pvt, range),
1965 dram_dst_node(pvt, range));
0ec449ee
DT
1966 }
1967
b2b0c605 1968 read_dct_base_mask(pvt);
0ec449ee 1969
bc21fa57 1970 amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
525a1b20 1971 amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
0ec449ee 1972
8d5b5d9c 1973 amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
0ec449ee 1974
cb328507
BP
1975 amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
1976 amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
0ec449ee 1977
78da121e 1978 if (!dct_ganging_enabled(pvt)) {
cb328507
BP
1979 amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
1980 amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
0ec449ee 1981 }
ad6a32e9 1982
525a1b20 1983 if (boot_cpu_data.x86 >= 0x10) {
b2b0c605 1984 amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
525a1b20
BP
1985 amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
1986 }
b2b0c605 1987
ad6a32e9
BP
1988 if (boot_cpu_data.x86 == 0x10 &&
1989 boot_cpu_data.x86_model > 7 &&
1990 /* F3x180[EccSymbolSize]=1 => x8 symbols */
1991 tmp & BIT(25))
1992 pvt->syn_type = 8;
1993 else
1994 pvt->syn_type = 4;
1995
b2b0c605 1996 dump_misc_regs(pvt);
0ec449ee
DT
1997}
1998
1999/*
2000 * NOTE: CPU Revision Dependent code
2001 *
2002 * Input:
11c75ead 2003 * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
0ec449ee
DT
2004 * k8 private pointer to -->
2005 * DRAM Bank Address mapping register
2006 * node_id
2007 * DCL register where dual_channel_active is
2008 *
2009 * The DBAM register consists of 4 sets of 4 bits each definitions:
2010 *
2011 * Bits: CSROWs
2012 * 0-3 CSROWs 0 and 1
2013 * 4-7 CSROWs 2 and 3
2014 * 8-11 CSROWs 4 and 5
2015 * 12-15 CSROWs 6 and 7
2016 *
2017 * Values range from: 0 to 15
2018 * The meaning of the values depends on CPU revision and dual-channel state,
2019 * see relevant BKDG more info.
2020 *
2021 * The memory controller provides for total of only 8 CSROWs in its current
2022 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2023 * single channel or two (2) DIMMs in dual channel mode.
2024 *
2025 * The following code logic collapses the various tables for CSROW based on CPU
2026 * revision.
2027 *
2028 * Returns:
2029 * The number of PAGE_SIZE pages on the specified CSROW number it
2030 * encompasses
2031 *
2032 */
2033static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
2034{
1433eb99 2035 u32 cs_mode, nr_pages;
0ec449ee
DT
2036
2037 /*
2038 * The math on this doesn't look right on the surface because x/2*4 can
2039 * be simplified to x*2 but this expression makes use of the fact that
2040 * it is integral math where 1/2=0. This intermediate value becomes the
2041 * number of bits to shift the DBAM register to extract the proper CSROW
2042 * field.
2043 */
1433eb99 2044 cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
0ec449ee 2045
1433eb99 2046 nr_pages = pvt->ops->dbam_to_cs(pvt, cs_mode) << (20 - PAGE_SHIFT);
0ec449ee
DT
2047
2048 /*
2049 * If dual channel then double the memory size of single channel.
2050 * Channel count is 1 or 2
2051 */
2052 nr_pages <<= (pvt->channel_count - 1);
2053
1433eb99 2054 debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
0ec449ee
DT
2055 debugf0(" nr_pages= %u channel-count = %d\n",
2056 nr_pages, pvt->channel_count);
2057
2058 return nr_pages;
2059}
2060
2061/*
2062 * Initialize the array of csrow attribute instances, based on the values
2063 * from pci config hardware registers.
2064 */
360b7f3c 2065static int init_csrows(struct mem_ctl_info *mci)
0ec449ee
DT
2066{
2067 struct csrow_info *csrow;
2299ef71 2068 struct amd64_pvt *pvt = mci->pvt_info;
11c75ead 2069 u64 input_addr_min, input_addr_max, sys_addr, base, mask;
2299ef71 2070 u32 val;
6ba5dcdc 2071 int i, empty = 1;
0ec449ee 2072
a97fa68e 2073 amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
0ec449ee 2074
2299ef71 2075 pvt->nbcfg = val;
0ec449ee 2076
2299ef71
BP
2077 debugf0("node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2078 pvt->mc_node_id, val,
a97fa68e 2079 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
0ec449ee 2080
11c75ead 2081 for_each_chip_select(i, 0, pvt) {
0ec449ee
DT
2082 csrow = &mci->csrows[i];
2083
11c75ead 2084 if (!csrow_enabled(i, 0, pvt)) {
0ec449ee
DT
2085 debugf1("----CSROW %d EMPTY for node %d\n", i,
2086 pvt->mc_node_id);
2087 continue;
2088 }
2089
2090 debugf1("----CSROW %d VALID for MC node %d\n",
2091 i, pvt->mc_node_id);
2092
2093 empty = 0;
2094 csrow->nr_pages = amd64_csrow_nr_pages(i, pvt);
2095 find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
2096 sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
2097 csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
2098 sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
2099 csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
11c75ead
BP
2100
2101 get_cs_base_and_mask(pvt, i, 0, &base, &mask);
2102 csrow->page_mask = ~mask;
0ec449ee
DT
2103 /* 8 bytes of resolution */
2104
24f9a7fe 2105 csrow->mtype = amd64_determine_memory_type(pvt, i);
0ec449ee
DT
2106
2107 debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
2108 debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
2109 (unsigned long)input_addr_min,
2110 (unsigned long)input_addr_max);
2111 debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
2112 (unsigned long)sys_addr, csrow->page_mask);
2113 debugf1(" nr_pages: %u first_page: 0x%lx "
2114 "last_page: 0x%lx\n",
2115 (unsigned)csrow->nr_pages,
2116 csrow->first_page, csrow->last_page);
2117
2118 /*
2119 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2120 */
a97fa68e 2121 if (pvt->nbcfg & NBCFG_ECC_ENABLE)
0ec449ee 2122 csrow->edac_mode =
a97fa68e 2123 (pvt->nbcfg & NBCFG_CHIPKILL) ?
0ec449ee
DT
2124 EDAC_S4ECD4ED : EDAC_SECDED;
2125 else
2126 csrow->edac_mode = EDAC_NONE;
2127 }
2128
2129 return empty;
2130}
d27bf6fa 2131
f6d6ae96
BP
2132/* get all cores on this DCT */
2133static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, int nid)
2134{
2135 int cpu;
2136
2137 for_each_online_cpu(cpu)
2138 if (amd_get_nb_id(cpu) == nid)
2139 cpumask_set_cpu(cpu, mask);
2140}
2141
2142/* check MCG_CTL on all the cpus on this node */
2143static bool amd64_nb_mce_bank_enabled_on_node(int nid)
2144{
2145 cpumask_var_t mask;
50542251 2146 int cpu, nbe;
f6d6ae96
BP
2147 bool ret = false;
2148
2149 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
24f9a7fe 2150 amd64_warn("%s: Error allocating mask\n", __func__);
f6d6ae96
BP
2151 return false;
2152 }
2153
2154 get_cpus_on_this_dct_cpumask(mask, nid);
2155
f6d6ae96
BP
2156 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2157
2158 for_each_cpu(cpu, mask) {
50542251 2159 struct msr *reg = per_cpu_ptr(msrs, cpu);
5980bb9c 2160 nbe = reg->l & MSR_MCGCTL_NBE;
f6d6ae96
BP
2161
2162 debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
50542251 2163 cpu, reg->q,
f6d6ae96
BP
2164 (nbe ? "enabled" : "disabled"));
2165
2166 if (!nbe)
2167 goto out;
f6d6ae96
BP
2168 }
2169 ret = true;
2170
2171out:
f6d6ae96
BP
2172 free_cpumask_var(mask);
2173 return ret;
2174}
2175
2299ef71 2176static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on)
f6d6ae96
BP
2177{
2178 cpumask_var_t cmask;
50542251 2179 int cpu;
f6d6ae96
BP
2180
2181 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
24f9a7fe 2182 amd64_warn("%s: error allocating mask\n", __func__);
f6d6ae96
BP
2183 return false;
2184 }
2185
ae7bb7c6 2186 get_cpus_on_this_dct_cpumask(cmask, nid);
f6d6ae96 2187
f6d6ae96
BP
2188 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2189
2190 for_each_cpu(cpu, cmask) {
2191
50542251
BP
2192 struct msr *reg = per_cpu_ptr(msrs, cpu);
2193
f6d6ae96 2194 if (on) {
5980bb9c 2195 if (reg->l & MSR_MCGCTL_NBE)
ae7bb7c6 2196 s->flags.nb_mce_enable = 1;
f6d6ae96 2197
5980bb9c 2198 reg->l |= MSR_MCGCTL_NBE;
f6d6ae96
BP
2199 } else {
2200 /*
d95cf4de 2201 * Turn off NB MCE reporting only when it was off before
f6d6ae96 2202 */
ae7bb7c6 2203 if (!s->flags.nb_mce_enable)
5980bb9c 2204 reg->l &= ~MSR_MCGCTL_NBE;
f6d6ae96 2205 }
f6d6ae96
BP
2206 }
2207 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2208
f6d6ae96
BP
2209 free_cpumask_var(cmask);
2210
2211 return 0;
2212}
2213
2299ef71
BP
2214static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2215 struct pci_dev *F3)
f9431992 2216{
2299ef71 2217 bool ret = true;
c9f4f26e 2218 u32 value, mask = 0x3; /* UECC/CECC enable */
f9431992 2219
2299ef71
BP
2220 if (toggle_ecc_err_reporting(s, nid, ON)) {
2221 amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2222 return false;
2223 }
2224
c9f4f26e 2225 amd64_read_pci_cfg(F3, NBCTL, &value);
f9431992 2226
ae7bb7c6
BP
2227 s->old_nbctl = value & mask;
2228 s->nbctl_valid = true;
f9431992
DT
2229
2230 value |= mask;
c9f4f26e 2231 amd64_write_pci_cfg(F3, NBCTL, value);
f9431992 2232
a97fa68e 2233 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2234
a97fa68e
BP
2235 debugf0("1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2236 nid, value, !!(value & NBCFG_ECC_ENABLE));
f9431992 2237
a97fa68e 2238 if (!(value & NBCFG_ECC_ENABLE)) {
24f9a7fe 2239 amd64_warn("DRAM ECC disabled on this node, enabling...\n");
f9431992 2240
ae7bb7c6 2241 s->flags.nb_ecc_prev = 0;
d95cf4de 2242
f9431992 2243 /* Attempt to turn on DRAM ECC Enable */
a97fa68e
BP
2244 value |= NBCFG_ECC_ENABLE;
2245 amd64_write_pci_cfg(F3, NBCFG, value);
f9431992 2246
a97fa68e 2247 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2248
a97fa68e 2249 if (!(value & NBCFG_ECC_ENABLE)) {
24f9a7fe
BP
2250 amd64_warn("Hardware rejected DRAM ECC enable,"
2251 "check memory DIMM configuration.\n");
2299ef71 2252 ret = false;
f9431992 2253 } else {
24f9a7fe 2254 amd64_info("Hardware accepted DRAM ECC Enable\n");
f9431992 2255 }
d95cf4de 2256 } else {
ae7bb7c6 2257 s->flags.nb_ecc_prev = 1;
f9431992 2258 }
d95cf4de 2259
a97fa68e
BP
2260 debugf0("2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2261 nid, value, !!(value & NBCFG_ECC_ENABLE));
f9431992 2262
2299ef71 2263 return ret;
f9431992
DT
2264}
2265
360b7f3c
BP
2266static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2267 struct pci_dev *F3)
f9431992 2268{
c9f4f26e
BP
2269 u32 value, mask = 0x3; /* UECC/CECC enable */
2270
f9431992 2271
ae7bb7c6 2272 if (!s->nbctl_valid)
f9431992
DT
2273 return;
2274
c9f4f26e 2275 amd64_read_pci_cfg(F3, NBCTL, &value);
f9431992 2276 value &= ~mask;
ae7bb7c6 2277 value |= s->old_nbctl;
f9431992 2278
c9f4f26e 2279 amd64_write_pci_cfg(F3, NBCTL, value);
f9431992 2280
ae7bb7c6
BP
2281 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
2282 if (!s->flags.nb_ecc_prev) {
a97fa68e
BP
2283 amd64_read_pci_cfg(F3, NBCFG, &value);
2284 value &= ~NBCFG_ECC_ENABLE;
2285 amd64_write_pci_cfg(F3, NBCFG, value);
d95cf4de
BP
2286 }
2287
2288 /* restore the NB Enable MCGCTL bit */
2299ef71 2289 if (toggle_ecc_err_reporting(s, nid, OFF))
24f9a7fe 2290 amd64_warn("Error restoring NB MCGCTL settings!\n");
f9431992
DT
2291}
2292
2293/*
2299ef71
BP
2294 * EDAC requires that the BIOS have ECC enabled before
2295 * taking over the processing of ECC errors. A command line
2296 * option allows to force-enable hardware ECC later in
2297 * enable_ecc_error_reporting().
f9431992 2298 */
cab4d277
BP
2299static const char *ecc_msg =
2300 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2301 " Either enable ECC checking or force module loading by setting "
2302 "'ecc_enable_override'.\n"
2303 " (Note that use of the override may cause unknown side effects.)\n";
be3468e8 2304
2299ef71 2305static bool ecc_enabled(struct pci_dev *F3, u8 nid)
f9431992
DT
2306{
2307 u32 value;
2299ef71 2308 u8 ecc_en = 0;
06724535 2309 bool nb_mce_en = false;
f9431992 2310
a97fa68e 2311 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2312
a97fa68e 2313 ecc_en = !!(value & NBCFG_ECC_ENABLE);
2299ef71 2314 amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
f9431992 2315
2299ef71 2316 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
06724535 2317 if (!nb_mce_en)
2299ef71
BP
2318 amd64_notice("NB MCE bank disabled, set MSR "
2319 "0x%08x[4] on node %d to enable.\n",
2320 MSR_IA32_MCG_CTL, nid);
f9431992 2321
2299ef71
BP
2322 if (!ecc_en || !nb_mce_en) {
2323 amd64_notice("%s", ecc_msg);
2324 return false;
2325 }
2326 return true;
f9431992
DT
2327}
2328
7d6034d3
DT
2329struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
2330 ARRAY_SIZE(amd64_inj_attrs) +
2331 1];
2332
2333struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
2334
360b7f3c 2335static void set_mc_sysfs_attrs(struct mem_ctl_info *mci)
7d6034d3
DT
2336{
2337 unsigned int i = 0, j = 0;
2338
2339 for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
2340 sysfs_attrs[i] = amd64_dbg_attrs[i];
2341
a135cef7
BP
2342 if (boot_cpu_data.x86 >= 0x10)
2343 for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
2344 sysfs_attrs[i] = amd64_inj_attrs[j];
7d6034d3
DT
2345
2346 sysfs_attrs[i] = terminator;
2347
2348 mci->mc_driver_sysfs_attributes = sysfs_attrs;
2349}
2350
360b7f3c 2351static void setup_mci_misc_attrs(struct mem_ctl_info *mci)
7d6034d3
DT
2352{
2353 struct amd64_pvt *pvt = mci->pvt_info;
2354
2355 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2356 mci->edac_ctl_cap = EDAC_FLAG_NONE;
7d6034d3 2357
5980bb9c 2358 if (pvt->nbcap & NBCAP_SECDED)
7d6034d3
DT
2359 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2360
5980bb9c 2361 if (pvt->nbcap & NBCAP_CHIPKILL)
7d6034d3
DT
2362 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2363
2364 mci->edac_cap = amd64_determine_edac_cap(pvt);
2365 mci->mod_name = EDAC_MOD_STR;
2366 mci->mod_ver = EDAC_AMD64_VERSION;
0092b20d 2367 mci->ctl_name = pvt->ctl_name;
8d5b5d9c 2368 mci->dev_name = pci_name(pvt->F2);
7d6034d3
DT
2369 mci->ctl_page_to_phys = NULL;
2370
7d6034d3
DT
2371 /* memory scrubber interface */
2372 mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2373 mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2374}
2375
0092b20d
BP
2376/*
2377 * returns a pointer to the family descriptor on success, NULL otherwise.
2378 */
2379static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
395ae783 2380{
0092b20d
BP
2381 u8 fam = boot_cpu_data.x86;
2382 struct amd64_family_type *fam_type = NULL;
2383
2384 switch (fam) {
395ae783 2385 case 0xf:
0092b20d 2386 fam_type = &amd64_family_types[K8_CPUS];
b8cfa02f 2387 pvt->ops = &amd64_family_types[K8_CPUS].ops;
0092b20d
BP
2388 pvt->ctl_name = fam_type->ctl_name;
2389 pvt->min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
395ae783
BP
2390 break;
2391 case 0x10:
0092b20d 2392 fam_type = &amd64_family_types[F10_CPUS];
b8cfa02f 2393 pvt->ops = &amd64_family_types[F10_CPUS].ops;
0092b20d
BP
2394 pvt->ctl_name = fam_type->ctl_name;
2395 pvt->min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
395ae783
BP
2396 break;
2397
2398 default:
24f9a7fe 2399 amd64_err("Unsupported family!\n");
0092b20d 2400 return NULL;
395ae783 2401 }
0092b20d 2402
b8cfa02f
BP
2403 pvt->ext_model = boot_cpu_data.x86_model >> 4;
2404
24f9a7fe 2405 amd64_info("%s %sdetected (node %d).\n", pvt->ctl_name,
0092b20d 2406 (fam == 0xf ?
24f9a7fe
BP
2407 (pvt->ext_model >= K8_REV_F ? "revF or later "
2408 : "revE or earlier ")
2409 : ""), pvt->mc_node_id);
0092b20d 2410 return fam_type;
395ae783
BP
2411}
2412
2299ef71 2413static int amd64_init_one_instance(struct pci_dev *F2)
7d6034d3
DT
2414{
2415 struct amd64_pvt *pvt = NULL;
0092b20d 2416 struct amd64_family_type *fam_type = NULL;
360b7f3c 2417 struct mem_ctl_info *mci = NULL;
7d6034d3 2418 int err = 0, ret;
360b7f3c 2419 u8 nid = get_node_id(F2);
7d6034d3
DT
2420
2421 ret = -ENOMEM;
2422 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2423 if (!pvt)
360b7f3c 2424 goto err_ret;
7d6034d3 2425
360b7f3c 2426 pvt->mc_node_id = nid;
8d5b5d9c 2427 pvt->F2 = F2;
7d6034d3 2428
395ae783 2429 ret = -EINVAL;
0092b20d
BP
2430 fam_type = amd64_per_family_init(pvt);
2431 if (!fam_type)
395ae783
BP
2432 goto err_free;
2433
7d6034d3 2434 ret = -ENODEV;
360b7f3c 2435 err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
7d6034d3
DT
2436 if (err)
2437 goto err_free;
2438
360b7f3c 2439 read_mc_regs(pvt);
7d6034d3 2440
7d6034d3
DT
2441 /*
2442 * We need to determine how many memory channels there are. Then use
2443 * that information for calculating the size of the dynamic instance
360b7f3c 2444 * tables in the 'mci' structure.
7d6034d3 2445 */
360b7f3c 2446 ret = -EINVAL;
7d6034d3
DT
2447 pvt->channel_count = pvt->ops->early_channel_count(pvt);
2448 if (pvt->channel_count < 0)
360b7f3c 2449 goto err_siblings;
7d6034d3
DT
2450
2451 ret = -ENOMEM;
11c75ead 2452 mci = edac_mc_alloc(0, pvt->csels[0].b_cnt, pvt->channel_count, nid);
7d6034d3 2453 if (!mci)
360b7f3c 2454 goto err_siblings;
7d6034d3
DT
2455
2456 mci->pvt_info = pvt;
8d5b5d9c 2457 mci->dev = &pvt->F2->dev;
7d6034d3 2458
360b7f3c
BP
2459 setup_mci_misc_attrs(mci);
2460
2461 if (init_csrows(mci))
7d6034d3
DT
2462 mci->edac_cap = EDAC_FLAG_NONE;
2463
360b7f3c 2464 set_mc_sysfs_attrs(mci);
7d6034d3
DT
2465
2466 ret = -ENODEV;
2467 if (edac_mc_add_mc(mci)) {
2468 debugf1("failed edac_mc_add_mc()\n");
2469 goto err_add_mc;
2470 }
2471
549d042d
BP
2472 /* register stuff with EDAC MCE */
2473 if (report_gart_errors)
2474 amd_report_gart_errors(true);
2475
2476 amd_register_ecc_decoder(amd64_decode_bus_error);
2477
360b7f3c
BP
2478 mcis[nid] = mci;
2479
2480 atomic_inc(&drv_instances);
2481
7d6034d3
DT
2482 return 0;
2483
2484err_add_mc:
2485 edac_mc_free(mci);
2486
360b7f3c
BP
2487err_siblings:
2488 free_mc_sibling_devs(pvt);
7d6034d3 2489
360b7f3c
BP
2490err_free:
2491 kfree(pvt);
7d6034d3 2492
360b7f3c 2493err_ret:
7d6034d3
DT
2494 return ret;
2495}
2496
2299ef71 2497static int __devinit amd64_probe_one_instance(struct pci_dev *pdev,
b8cfa02f 2498 const struct pci_device_id *mc_type)
7d6034d3 2499{
ae7bb7c6 2500 u8 nid = get_node_id(pdev);
2299ef71 2501 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
ae7bb7c6 2502 struct ecc_settings *s;
2299ef71 2503 int ret = 0;
7d6034d3 2504
7d6034d3 2505 ret = pci_enable_device(pdev);
b8cfa02f
BP
2506 if (ret < 0) {
2507 debugf0("ret=%d\n", ret);
2508 return -EIO;
2509 }
7d6034d3 2510
ae7bb7c6
BP
2511 ret = -ENOMEM;
2512 s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
2513 if (!s)
2299ef71 2514 goto err_out;
ae7bb7c6
BP
2515
2516 ecc_stngs[nid] = s;
2517
2299ef71
BP
2518 if (!ecc_enabled(F3, nid)) {
2519 ret = -ENODEV;
2520
2521 if (!ecc_enable_override)
2522 goto err_enable;
2523
2524 amd64_warn("Forcing ECC on!\n");
2525
2526 if (!enable_ecc_error_reporting(s, nid, F3))
2527 goto err_enable;
2528 }
2529
2530 ret = amd64_init_one_instance(pdev);
360b7f3c 2531 if (ret < 0) {
ae7bb7c6 2532 amd64_err("Error probing instance: %d\n", nid);
360b7f3c
BP
2533 restore_ecc_error_reporting(s, nid, F3);
2534 }
7d6034d3
DT
2535
2536 return ret;
2299ef71
BP
2537
2538err_enable:
2539 kfree(s);
2540 ecc_stngs[nid] = NULL;
2541
2542err_out:
2543 return ret;
7d6034d3
DT
2544}
2545
2546static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
2547{
2548 struct mem_ctl_info *mci;
2549 struct amd64_pvt *pvt;
360b7f3c
BP
2550 u8 nid = get_node_id(pdev);
2551 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2552 struct ecc_settings *s = ecc_stngs[nid];
7d6034d3
DT
2553
2554 /* Remove from EDAC CORE tracking list */
2555 mci = edac_mc_del_mc(&pdev->dev);
2556 if (!mci)
2557 return;
2558
2559 pvt = mci->pvt_info;
2560
360b7f3c 2561 restore_ecc_error_reporting(s, nid, F3);
7d6034d3 2562
360b7f3c 2563 free_mc_sibling_devs(pvt);
7d6034d3 2564
549d042d
BP
2565 /* unregister from EDAC MCE */
2566 amd_report_gart_errors(false);
2567 amd_unregister_ecc_decoder(amd64_decode_bus_error);
2568
360b7f3c
BP
2569 kfree(ecc_stngs[nid]);
2570 ecc_stngs[nid] = NULL;
ae7bb7c6 2571
7d6034d3 2572 /* Free the EDAC CORE resources */
8f68ed97 2573 mci->pvt_info = NULL;
360b7f3c 2574 mcis[nid] = NULL;
8f68ed97
BP
2575
2576 kfree(pvt);
7d6034d3
DT
2577 edac_mc_free(mci);
2578}
2579
2580/*
2581 * This table is part of the interface for loading drivers for PCI devices. The
2582 * PCI core identifies what devices are on a system during boot, and then
2583 * inquiry this table to see if this driver is for a given device found.
2584 */
2585static const struct pci_device_id amd64_pci_table[] __devinitdata = {
2586 {
2587 .vendor = PCI_VENDOR_ID_AMD,
2588 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2589 .subvendor = PCI_ANY_ID,
2590 .subdevice = PCI_ANY_ID,
2591 .class = 0,
2592 .class_mask = 0,
7d6034d3
DT
2593 },
2594 {
2595 .vendor = PCI_VENDOR_ID_AMD,
2596 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2597 .subvendor = PCI_ANY_ID,
2598 .subdevice = PCI_ANY_ID,
2599 .class = 0,
2600 .class_mask = 0,
7d6034d3 2601 },
7d6034d3
DT
2602 {0, }
2603};
2604MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2605
2606static struct pci_driver amd64_pci_driver = {
2607 .name = EDAC_MOD_STR,
2299ef71 2608 .probe = amd64_probe_one_instance,
7d6034d3
DT
2609 .remove = __devexit_p(amd64_remove_one_instance),
2610 .id_table = amd64_pci_table,
2611};
2612
360b7f3c 2613static void setup_pci_device(void)
7d6034d3
DT
2614{
2615 struct mem_ctl_info *mci;
2616 struct amd64_pvt *pvt;
2617
2618 if (amd64_ctl_pci)
2619 return;
2620
cc4d8860 2621 mci = mcis[0];
7d6034d3
DT
2622 if (mci) {
2623
2624 pvt = mci->pvt_info;
2625 amd64_ctl_pci =
8d5b5d9c 2626 edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
7d6034d3
DT
2627
2628 if (!amd64_ctl_pci) {
2629 pr_warning("%s(): Unable to create PCI control\n",
2630 __func__);
2631
2632 pr_warning("%s(): PCI error report via EDAC not set\n",
2633 __func__);
2634 }
2635 }
2636}
2637
2638static int __init amd64_edac_init(void)
2639{
360b7f3c 2640 int err = -ENODEV;
7d6034d3
DT
2641
2642 edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");
2643
2644 opstate_init();
2645
9653a5c7 2646 if (amd_cache_northbridges() < 0)
56b34b91 2647 goto err_ret;
7d6034d3 2648
cc4d8860 2649 err = -ENOMEM;
ae7bb7c6
BP
2650 mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
2651 ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
360b7f3c 2652 if (!(mcis && ecc_stngs))
cc4d8860
BP
2653 goto err_ret;
2654
50542251 2655 msrs = msrs_alloc();
56b34b91 2656 if (!msrs)
360b7f3c 2657 goto err_free;
50542251 2658
7d6034d3
DT
2659 err = pci_register_driver(&amd64_pci_driver);
2660 if (err)
56b34b91 2661 goto err_pci;
7d6034d3 2662
56b34b91 2663 err = -ENODEV;
360b7f3c
BP
2664 if (!atomic_read(&drv_instances))
2665 goto err_no_instances;
7d6034d3 2666
360b7f3c
BP
2667 setup_pci_device();
2668 return 0;
7d6034d3 2669
360b7f3c 2670err_no_instances:
7d6034d3 2671 pci_unregister_driver(&amd64_pci_driver);
cc4d8860 2672
56b34b91
BP
2673err_pci:
2674 msrs_free(msrs);
2675 msrs = NULL;
cc4d8860 2676
360b7f3c
BP
2677err_free:
2678 kfree(mcis);
2679 mcis = NULL;
2680
2681 kfree(ecc_stngs);
2682 ecc_stngs = NULL;
2683
56b34b91 2684err_ret:
7d6034d3
DT
2685 return err;
2686}
2687
2688static void __exit amd64_edac_exit(void)
2689{
2690 if (amd64_ctl_pci)
2691 edac_pci_release_generic_ctl(amd64_ctl_pci);
2692
2693 pci_unregister_driver(&amd64_pci_driver);
50542251 2694
ae7bb7c6
BP
2695 kfree(ecc_stngs);
2696 ecc_stngs = NULL;
2697
cc4d8860
BP
2698 kfree(mcis);
2699 mcis = NULL;
2700
50542251
BP
2701 msrs_free(msrs);
2702 msrs = NULL;
7d6034d3
DT
2703}
2704
2705module_init(amd64_edac_init);
2706module_exit(amd64_edac_exit);
2707
2708MODULE_LICENSE("GPL");
2709MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
2710 "Dave Peterson, Thayne Harbaugh");
2711MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
2712 EDAC_AMD64_VERSION);
2713
2714module_param(edac_op_state, int, 0444);
2715MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
This page took 0.34916 seconds and 5 git commands to generate.