amd64_edac: Concentrate per-family init even more
[deliverable/linux.git] / drivers / edac / amd64_edac.c
CommitLineData
2bc65418 1#include "amd64_edac.h"
23ac4ae8 2#include <asm/amd_nb.h>
2bc65418
DT
3
4static struct edac_pci_ctl_info *amd64_ctl_pci;
5
6static int report_gart_errors;
7module_param(report_gart_errors, int, 0644);
8
9/*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
12 */
13static int ecc_enable_override;
14module_param(ecc_enable_override, int, 0644);
15
a29d8b8e 16static struct msr __percpu *msrs;
50542251 17
2bc65418
DT
18/* Lookup table for all possible MC control instances */
19struct amd64_pvt;
3011b20d
BP
20static struct mem_ctl_info *mci_lookup[EDAC_MAX_NUMNODES];
21static struct amd64_pvt *pvt_lookup[EDAC_MAX_NUMNODES];
2bc65418 22
b70ef010 23/*
1433eb99
BP
24 * Address to DRAM bank mapping: see F2x80 for K8 and F2x[1,0]80 for Fam10 and
25 * later.
b70ef010 26 */
1433eb99
BP
27static int ddr2_dbam_revCG[] = {
28 [0] = 32,
29 [1] = 64,
30 [2] = 128,
31 [3] = 256,
32 [4] = 512,
33 [5] = 1024,
34 [6] = 2048,
35};
36
37static int ddr2_dbam_revD[] = {
38 [0] = 32,
39 [1] = 64,
40 [2 ... 3] = 128,
41 [4] = 256,
42 [5] = 512,
43 [6] = 256,
44 [7] = 512,
45 [8 ... 9] = 1024,
46 [10] = 2048,
47};
48
49static int ddr2_dbam[] = { [0] = 128,
50 [1] = 256,
51 [2 ... 4] = 512,
52 [5 ... 6] = 1024,
53 [7 ... 8] = 2048,
54 [9 ... 10] = 4096,
55 [11] = 8192,
56};
57
58static int ddr3_dbam[] = { [0] = -1,
59 [1] = 256,
60 [2] = 512,
61 [3 ... 4] = -1,
62 [5 ... 6] = 1024,
63 [7 ... 8] = 2048,
64 [9 ... 10] = 4096,
65 [11] = 8192,
b70ef010
BP
66};
67
68/*
69 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
70 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
71 * or higher value'.
72 *
73 *FIXME: Produce a better mapping/linearisation.
74 */
75
76struct scrubrate scrubrates[] = {
77 { 0x01, 1600000000UL},
78 { 0x02, 800000000UL},
79 { 0x03, 400000000UL},
80 { 0x04, 200000000UL},
81 { 0x05, 100000000UL},
82 { 0x06, 50000000UL},
83 { 0x07, 25000000UL},
84 { 0x08, 12284069UL},
85 { 0x09, 6274509UL},
86 { 0x0A, 3121951UL},
87 { 0x0B, 1560975UL},
88 { 0x0C, 781440UL},
89 { 0x0D, 390720UL},
90 { 0x0E, 195300UL},
91 { 0x0F, 97650UL},
92 { 0x10, 48854UL},
93 { 0x11, 24427UL},
94 { 0x12, 12213UL},
95 { 0x13, 6101UL},
96 { 0x14, 3051UL},
97 { 0x15, 1523UL},
98 { 0x16, 761UL},
99 { 0x00, 0UL}, /* scrubbing off */
100};
101
2bc65418
DT
102/*
103 * Memory scrubber control interface. For K8, memory scrubbing is handled by
104 * hardware and can involve L2 cache, dcache as well as the main memory. With
105 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
106 * functionality.
107 *
108 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
109 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
110 * bytes/sec for the setting.
111 *
112 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
113 * other archs, we might not have access to the caches directly.
114 */
115
116/*
117 * scan the scrub rate mapping table for a close or matching bandwidth value to
118 * issue. If requested is too big, then use last maximum value found.
119 */
395ae783 120static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
2bc65418
DT
121{
122 u32 scrubval;
123 int i;
124
125 /*
126 * map the configured rate (new_bw) to a value specific to the AMD64
127 * memory controller and apply to register. Search for the first
128 * bandwidth entry that is greater or equal than the setting requested
129 * and program that. If at last entry, turn off DRAM scrubbing.
130 */
131 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
132 /*
133 * skip scrub rates which aren't recommended
134 * (see F10 BKDG, F3x58)
135 */
395ae783 136 if (scrubrates[i].scrubval < min_rate)
2bc65418
DT
137 continue;
138
139 if (scrubrates[i].bandwidth <= new_bw)
140 break;
141
142 /*
143 * if no suitable bandwidth found, turn off DRAM scrubbing
144 * entirely by falling back to the last element in the
145 * scrubrates array.
146 */
147 }
148
149 scrubval = scrubrates[i].scrubval;
150 if (scrubval)
151 edac_printk(KERN_DEBUG, EDAC_MC,
152 "Setting scrub rate bandwidth: %u\n",
153 scrubrates[i].bandwidth);
154 else
155 edac_printk(KERN_DEBUG, EDAC_MC, "Turning scrubbing off.\n");
156
157 pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F);
158
159 return 0;
160}
161
395ae783 162static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
2bc65418
DT
163{
164 struct amd64_pvt *pvt = mci->pvt_info;
2bc65418 165
395ae783 166 return __amd64_set_scrub_rate(pvt->misc_f3_ctl, bw, pvt->min_scrubrate);
2bc65418
DT
167}
168
169static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw)
170{
171 struct amd64_pvt *pvt = mci->pvt_info;
172 u32 scrubval = 0;
6ba5dcdc 173 int status = -1, i;
2bc65418 174
6ba5dcdc 175 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_SCRCTRL, &scrubval);
2bc65418
DT
176
177 scrubval = scrubval & 0x001F;
178
179 edac_printk(KERN_DEBUG, EDAC_MC,
180 "pci-read, sdram scrub control value: %d \n", scrubval);
181
926311fd 182 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
2bc65418
DT
183 if (scrubrates[i].scrubval == scrubval) {
184 *bw = scrubrates[i].bandwidth;
185 status = 0;
186 break;
187 }
188 }
189
190 return status;
191}
192
6775763a
DT
193/* Map from a CSROW entry to the mask entry that operates on it */
194static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow)
195{
1433eb99 196 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F)
9d858bb1
BP
197 return csrow;
198 else
199 return csrow >> 1;
6775763a
DT
200}
201
202/* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */
203static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow)
204{
205 if (dct == 0)
206 return pvt->dcsb0[csrow];
207 else
208 return pvt->dcsb1[csrow];
209}
210
211/*
212 * Return the 'mask' address the i'th CS entry. This function is needed because
213 * there number of DCSM registers on Rev E and prior vs Rev F and later is
214 * different.
215 */
216static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow)
217{
218 if (dct == 0)
219 return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)];
220 else
221 return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)];
222}
223
224
225/*
226 * In *base and *limit, pass back the full 40-bit base and limit physical
227 * addresses for the node given by node_id. This information is obtained from
228 * DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The
229 * base and limit addresses are of type SysAddr, as defined at the start of
230 * section 3.4.4 (p. 70). They are the lowest and highest physical addresses
231 * in the address range they represent.
232 */
233static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id,
234 u64 *base, u64 *limit)
235{
236 *base = pvt->dram_base[node_id];
237 *limit = pvt->dram_limit[node_id];
238}
239
240/*
241 * Return 1 if the SysAddr given by sys_addr matches the base/limit associated
242 * with node_id
243 */
244static int amd64_base_limit_match(struct amd64_pvt *pvt,
245 u64 sys_addr, int node_id)
246{
247 u64 base, limit, addr;
248
249 amd64_get_base_and_limit(pvt, node_id, &base, &limit);
250
251 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
252 * all ones if the most significant implemented address bit is 1.
253 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
254 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
255 * Application Programming.
256 */
257 addr = sys_addr & 0x000000ffffffffffull;
258
259 return (addr >= base) && (addr <= limit);
260}
261
262/*
263 * Attempt to map a SysAddr to a node. On success, return a pointer to the
264 * mem_ctl_info structure for the node that the SysAddr maps to.
265 *
266 * On failure, return NULL.
267 */
268static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
269 u64 sys_addr)
270{
271 struct amd64_pvt *pvt;
272 int node_id;
273 u32 intlv_en, bits;
274
275 /*
276 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
277 * 3.4.4.2) registers to map the SysAddr to a node ID.
278 */
279 pvt = mci->pvt_info;
280
281 /*
282 * The value of this field should be the same for all DRAM Base
283 * registers. Therefore we arbitrarily choose to read it from the
284 * register for node 0.
285 */
286 intlv_en = pvt->dram_IntlvEn[0];
287
288 if (intlv_en == 0) {
8edc5445 289 for (node_id = 0; node_id < DRAM_REG_COUNT; node_id++) {
6775763a 290 if (amd64_base_limit_match(pvt, sys_addr, node_id))
8edc5445 291 goto found;
6775763a 292 }
8edc5445 293 goto err_no_match;
6775763a
DT
294 }
295
72f158fe
BP
296 if (unlikely((intlv_en != 0x01) &&
297 (intlv_en != 0x03) &&
298 (intlv_en != 0x07))) {
6775763a
DT
299 amd64_printk(KERN_WARNING, "junk value of 0x%x extracted from "
300 "IntlvEn field of DRAM Base Register for node 0: "
72f158fe 301 "this probably indicates a BIOS bug.\n", intlv_en);
6775763a
DT
302 return NULL;
303 }
304
305 bits = (((u32) sys_addr) >> 12) & intlv_en;
306
307 for (node_id = 0; ; ) {
8edc5445 308 if ((pvt->dram_IntlvSel[node_id] & intlv_en) == bits)
6775763a
DT
309 break; /* intlv_sel field matches */
310
311 if (++node_id >= DRAM_REG_COUNT)
312 goto err_no_match;
313 }
314
315 /* sanity test for sys_addr */
316 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
317 amd64_printk(KERN_WARNING,
8edc5445
BP
318 "%s(): sys_addr 0x%llx falls outside base/limit "
319 "address range for node %d with node interleaving "
320 "enabled.\n",
321 __func__, sys_addr, node_id);
6775763a
DT
322 return NULL;
323 }
324
325found:
326 return edac_mc_find(node_id);
327
328err_no_match:
329 debugf2("sys_addr 0x%lx doesn't match any node\n",
330 (unsigned long)sys_addr);
331
332 return NULL;
333}
e2ce7255
DT
334
335/*
336 * Extract the DRAM CS base address from selected csrow register.
337 */
338static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow)
339{
340 return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) <<
341 pvt->dcs_shift;
342}
343
344/*
345 * Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way.
346 */
347static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow)
348{
349 u64 dcsm_bits, other_bits;
350 u64 mask;
351
352 /* Extract bits from DRAM CS Mask. */
353 dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask;
354
355 other_bits = pvt->dcsm_mask;
356 other_bits = ~(other_bits << pvt->dcs_shift);
357
358 /*
359 * The extracted bits from DCSM belong in the spaces represented by
360 * the cleared bits in other_bits.
361 */
362 mask = (dcsm_bits << pvt->dcs_shift) | other_bits;
363
364 return mask;
365}
366
367/*
368 * @input_addr is an InputAddr associated with the node given by mci. Return the
369 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
370 */
371static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
372{
373 struct amd64_pvt *pvt;
374 int csrow;
375 u64 base, mask;
376
377 pvt = mci->pvt_info;
378
379 /*
380 * Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS
381 * base/mask register pair, test the condition shown near the start of
382 * section 3.5.4 (p. 84, BKDG #26094, K8, revA-E).
383 */
9d858bb1 384 for (csrow = 0; csrow < pvt->cs_count; csrow++) {
e2ce7255
DT
385
386 /* This DRAM chip select is disabled on this node */
387 if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0)
388 continue;
389
390 base = base_from_dct_base(pvt, csrow);
391 mask = ~mask_from_dct_mask(pvt, csrow);
392
393 if ((input_addr & mask) == (base & mask)) {
394 debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
395 (unsigned long)input_addr, csrow,
396 pvt->mc_node_id);
397
398 return csrow;
399 }
400 }
401
402 debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
403 (unsigned long)input_addr, pvt->mc_node_id);
404
405 return -1;
406}
407
408/*
409 * Return the base value defined by the DRAM Base register for the node
410 * represented by mci. This function returns the full 40-bit value despite the
411 * fact that the register only stores bits 39-24 of the value. See section
412 * 3.4.4.1 (BKDG #26094, K8, revA-E)
413 */
414static inline u64 get_dram_base(struct mem_ctl_info *mci)
415{
416 struct amd64_pvt *pvt = mci->pvt_info;
417
418 return pvt->dram_base[pvt->mc_node_id];
419}
420
421/*
422 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
423 * for the node represented by mci. Info is passed back in *hole_base,
424 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
425 * info is invalid. Info may be invalid for either of the following reasons:
426 *
427 * - The revision of the node is not E or greater. In this case, the DRAM Hole
428 * Address Register does not exist.
429 *
430 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
431 * indicating that its contents are not valid.
432 *
433 * The values passed back in *hole_base, *hole_offset, and *hole_size are
434 * complete 32-bit values despite the fact that the bitfields in the DHAR
435 * only represent bits 31-24 of the base and offset values.
436 */
437int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
438 u64 *hole_offset, u64 *hole_size)
439{
440 struct amd64_pvt *pvt = mci->pvt_info;
441 u64 base;
442
443 /* only revE and later have the DRAM Hole Address Register */
1433eb99 444 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
e2ce7255
DT
445 debugf1(" revision %d for node %d does not support DHAR\n",
446 pvt->ext_model, pvt->mc_node_id);
447 return 1;
448 }
449
450 /* only valid for Fam10h */
451 if (boot_cpu_data.x86 == 0x10 &&
452 (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) == 0) {
453 debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
454 return 1;
455 }
456
457 if ((pvt->dhar & DHAR_VALID) == 0) {
458 debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
459 pvt->mc_node_id);
460 return 1;
461 }
462
463 /* This node has Memory Hoisting */
464
465 /* +------------------+--------------------+--------------------+-----
466 * | memory | DRAM hole | relocated |
467 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
468 * | | | DRAM hole |
469 * | | | [0x100000000, |
470 * | | | (0x100000000+ |
471 * | | | (0xffffffff-x))] |
472 * +------------------+--------------------+--------------------+-----
473 *
474 * Above is a diagram of physical memory showing the DRAM hole and the
475 * relocated addresses from the DRAM hole. As shown, the DRAM hole
476 * starts at address x (the base address) and extends through address
477 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
478 * addresses in the hole so that they start at 0x100000000.
479 */
480
481 base = dhar_base(pvt->dhar);
482
483 *hole_base = base;
484 *hole_size = (0x1ull << 32) - base;
485
486 if (boot_cpu_data.x86 > 0xf)
487 *hole_offset = f10_dhar_offset(pvt->dhar);
488 else
489 *hole_offset = k8_dhar_offset(pvt->dhar);
490
491 debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
492 pvt->mc_node_id, (unsigned long)*hole_base,
493 (unsigned long)*hole_offset, (unsigned long)*hole_size);
494
495 return 0;
496}
497EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
498
93c2df58
DT
499/*
500 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
501 * assumed that sys_addr maps to the node given by mci.
502 *
503 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
504 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
505 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
506 * then it is also involved in translating a SysAddr to a DramAddr. Sections
507 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
508 * These parts of the documentation are unclear. I interpret them as follows:
509 *
510 * When node n receives a SysAddr, it processes the SysAddr as follows:
511 *
512 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
513 * Limit registers for node n. If the SysAddr is not within the range
514 * specified by the base and limit values, then node n ignores the Sysaddr
515 * (since it does not map to node n). Otherwise continue to step 2 below.
516 *
517 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
518 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
519 * the range of relocated addresses (starting at 0x100000000) from the DRAM
520 * hole. If not, skip to step 3 below. Else get the value of the
521 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
522 * offset defined by this value from the SysAddr.
523 *
524 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
525 * Base register for node n. To obtain the DramAddr, subtract the base
526 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
527 */
528static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
529{
530 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
531 int ret = 0;
532
533 dram_base = get_dram_base(mci);
534
535 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
536 &hole_size);
537 if (!ret) {
538 if ((sys_addr >= (1ull << 32)) &&
539 (sys_addr < ((1ull << 32) + hole_size))) {
540 /* use DHAR to translate SysAddr to DramAddr */
541 dram_addr = sys_addr - hole_offset;
542
543 debugf2("using DHAR to translate SysAddr 0x%lx to "
544 "DramAddr 0x%lx\n",
545 (unsigned long)sys_addr,
546 (unsigned long)dram_addr);
547
548 return dram_addr;
549 }
550 }
551
552 /*
553 * Translate the SysAddr to a DramAddr as shown near the start of
554 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
555 * only deals with 40-bit values. Therefore we discard bits 63-40 of
556 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
557 * discard are all 1s. Otherwise the bits we discard are all 0s. See
558 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
559 * Programmer's Manual Volume 1 Application Programming.
560 */
561 dram_addr = (sys_addr & 0xffffffffffull) - dram_base;
562
563 debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
564 "DramAddr 0x%lx\n", (unsigned long)sys_addr,
565 (unsigned long)dram_addr);
566 return dram_addr;
567}
568
569/*
570 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
571 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
572 * for node interleaving.
573 */
574static int num_node_interleave_bits(unsigned intlv_en)
575{
576 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
577 int n;
578
579 BUG_ON(intlv_en > 7);
580 n = intlv_shift_table[intlv_en];
581 return n;
582}
583
584/* Translate the DramAddr given by @dram_addr to an InputAddr. */
585static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
586{
587 struct amd64_pvt *pvt;
588 int intlv_shift;
589 u64 input_addr;
590
591 pvt = mci->pvt_info;
592
593 /*
594 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
595 * concerning translating a DramAddr to an InputAddr.
596 */
597 intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
598 input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) +
599 (dram_addr & 0xfff);
600
601 debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
602 intlv_shift, (unsigned long)dram_addr,
603 (unsigned long)input_addr);
604
605 return input_addr;
606}
607
608/*
609 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
610 * assumed that @sys_addr maps to the node given by mci.
611 */
612static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
613{
614 u64 input_addr;
615
616 input_addr =
617 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
618
619 debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
620 (unsigned long)sys_addr, (unsigned long)input_addr);
621
622 return input_addr;
623}
624
625
626/*
627 * @input_addr is an InputAddr associated with the node represented by mci.
628 * Translate @input_addr to a DramAddr and return the result.
629 */
630static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
631{
632 struct amd64_pvt *pvt;
633 int node_id, intlv_shift;
634 u64 bits, dram_addr;
635 u32 intlv_sel;
636
637 /*
638 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
639 * shows how to translate a DramAddr to an InputAddr. Here we reverse
640 * this procedure. When translating from a DramAddr to an InputAddr, the
641 * bits used for node interleaving are discarded. Here we recover these
642 * bits from the IntlvSel field of the DRAM Limit register (section
643 * 3.4.4.2) for the node that input_addr is associated with.
644 */
645 pvt = mci->pvt_info;
646 node_id = pvt->mc_node_id;
647 BUG_ON((node_id < 0) || (node_id > 7));
648
649 intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
650
651 if (intlv_shift == 0) {
652 debugf1(" InputAddr 0x%lx translates to DramAddr of "
653 "same value\n", (unsigned long)input_addr);
654
655 return input_addr;
656 }
657
658 bits = ((input_addr & 0xffffff000ull) << intlv_shift) +
659 (input_addr & 0xfff);
660
661 intlv_sel = pvt->dram_IntlvSel[node_id] & ((1 << intlv_shift) - 1);
662 dram_addr = bits + (intlv_sel << 12);
663
664 debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
665 "(%d node interleave bits)\n", (unsigned long)input_addr,
666 (unsigned long)dram_addr, intlv_shift);
667
668 return dram_addr;
669}
670
671/*
672 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
673 * @dram_addr to a SysAddr.
674 */
675static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
676{
677 struct amd64_pvt *pvt = mci->pvt_info;
678 u64 hole_base, hole_offset, hole_size, base, limit, sys_addr;
679 int ret = 0;
680
681 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
682 &hole_size);
683 if (!ret) {
684 if ((dram_addr >= hole_base) &&
685 (dram_addr < (hole_base + hole_size))) {
686 sys_addr = dram_addr + hole_offset;
687
688 debugf1("using DHAR to translate DramAddr 0x%lx to "
689 "SysAddr 0x%lx\n", (unsigned long)dram_addr,
690 (unsigned long)sys_addr);
691
692 return sys_addr;
693 }
694 }
695
696 amd64_get_base_and_limit(pvt, pvt->mc_node_id, &base, &limit);
697 sys_addr = dram_addr + base;
698
699 /*
700 * The sys_addr we have computed up to this point is a 40-bit value
701 * because the k8 deals with 40-bit values. However, the value we are
702 * supposed to return is a full 64-bit physical address. The AMD
703 * x86-64 architecture specifies that the most significant implemented
704 * address bit through bit 63 of a physical address must be either all
705 * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
706 * 64-bit value below. See section 3.4.2 of AMD publication 24592:
707 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
708 * Programming.
709 */
710 sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
711
712 debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
713 pvt->mc_node_id, (unsigned long)dram_addr,
714 (unsigned long)sys_addr);
715
716 return sys_addr;
717}
718
719/*
720 * @input_addr is an InputAddr associated with the node given by mci. Translate
721 * @input_addr to a SysAddr.
722 */
723static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
724 u64 input_addr)
725{
726 return dram_addr_to_sys_addr(mci,
727 input_addr_to_dram_addr(mci, input_addr));
728}
729
730/*
731 * Find the minimum and maximum InputAddr values that map to the given @csrow.
732 * Pass back these values in *input_addr_min and *input_addr_max.
733 */
734static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
735 u64 *input_addr_min, u64 *input_addr_max)
736{
737 struct amd64_pvt *pvt;
738 u64 base, mask;
739
740 pvt = mci->pvt_info;
9d858bb1 741 BUG_ON((csrow < 0) || (csrow >= pvt->cs_count));
93c2df58
DT
742
743 base = base_from_dct_base(pvt, csrow);
744 mask = mask_from_dct_mask(pvt, csrow);
745
746 *input_addr_min = base & ~mask;
747 *input_addr_max = base | mask | pvt->dcs_mask_notused;
748}
749
93c2df58
DT
750/* Map the Error address to a PAGE and PAGE OFFSET. */
751static inline void error_address_to_page_and_offset(u64 error_address,
752 u32 *page, u32 *offset)
753{
754 *page = (u32) (error_address >> PAGE_SHIFT);
755 *offset = ((u32) error_address) & ~PAGE_MASK;
756}
757
758/*
759 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
760 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
761 * of a node that detected an ECC memory error. mci represents the node that
762 * the error address maps to (possibly different from the node that detected
763 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
764 * error.
765 */
766static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
767{
768 int csrow;
769
770 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
771
772 if (csrow == -1)
773 amd64_mc_printk(mci, KERN_ERR,
774 "Failed to translate InputAddr to csrow for "
775 "address 0x%lx\n", (unsigned long)sys_addr);
776 return csrow;
777}
e2ce7255 778
bfc04aec 779static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
2da11654 780
ad6a32e9
BP
781static u16 extract_syndrome(struct err_regs *err)
782{
783 return ((err->nbsh >> 15) & 0xff) | ((err->nbsl >> 16) & 0xff00);
784}
785
2da11654
DT
786/*
787 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
788 * are ECC capable.
789 */
790static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
791{
792 int bit;
584fcff4 793 enum dev_type edac_cap = EDAC_FLAG_NONE;
2da11654 794
1433eb99 795 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
2da11654
DT
796 ? 19
797 : 17;
798
584fcff4 799 if (pvt->dclr0 & BIT(bit))
2da11654
DT
800 edac_cap = EDAC_FLAG_SECDED;
801
802 return edac_cap;
803}
804
805
8566c4df 806static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt);
2da11654 807
68798e17
BP
808static void amd64_dump_dramcfg_low(u32 dclr, int chan)
809{
810 debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
811
812 debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
813 (dclr & BIT(16)) ? "un" : "",
814 (dclr & BIT(19)) ? "yes" : "no");
815
816 debugf1(" PAR/ERR parity: %s\n",
817 (dclr & BIT(8)) ? "enabled" : "disabled");
818
819 debugf1(" DCT 128bit mode width: %s\n",
820 (dclr & BIT(11)) ? "128b" : "64b");
821
822 debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
823 (dclr & BIT(12)) ? "yes" : "no",
824 (dclr & BIT(13)) ? "yes" : "no",
825 (dclr & BIT(14)) ? "yes" : "no",
826 (dclr & BIT(15)) ? "yes" : "no");
827}
828
2da11654
DT
829/* Display and decode various NB registers for debug purposes. */
830static void amd64_dump_misc_regs(struct amd64_pvt *pvt)
831{
832 int ganged;
833
68798e17
BP
834 debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
835
836 debugf1(" NB two channel DRAM capable: %s\n",
837 (pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "yes" : "no");
2da11654 838
68798e17
BP
839 debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n",
840 (pvt->nbcap & K8_NBCAP_SECDED) ? "yes" : "no",
841 (pvt->nbcap & K8_NBCAP_CHIPKILL) ? "yes" : "no");
842
843 amd64_dump_dramcfg_low(pvt->dclr0, 0);
2da11654 844
8de1d91e 845 debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
2da11654 846
8de1d91e
BP
847 debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
848 "offset: 0x%08x\n",
849 pvt->dhar,
850 dhar_base(pvt->dhar),
851 (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt->dhar)
852 : f10_dhar_offset(pvt->dhar));
2da11654 853
8de1d91e
BP
854 debugf1(" DramHoleValid: %s\n",
855 (pvt->dhar & DHAR_VALID) ? "yes" : "no");
2da11654 856
8de1d91e 857 /* everything below this point is Fam10h and above */
8566c4df
BP
858 if (boot_cpu_data.x86 == 0xf) {
859 amd64_debug_display_dimm_sizes(0, pvt);
2da11654 860 return;
8566c4df 861 }
2da11654 862
ad6a32e9
BP
863 amd64_printk(KERN_INFO, "using %s syndromes.\n",
864 ((pvt->syn_type == 8) ? "x8" : "x4"));
865
8de1d91e 866 /* Only if NOT ganged does dclr1 have valid info */
68798e17
BP
867 if (!dct_ganging_enabled(pvt))
868 amd64_dump_dramcfg_low(pvt->dclr1, 1);
2da11654
DT
869
870 /*
871 * Determine if ganged and then dump memory sizes for first controller,
872 * and if NOT ganged dump info for 2nd controller.
873 */
874 ganged = dct_ganging_enabled(pvt);
875
8566c4df 876 amd64_debug_display_dimm_sizes(0, pvt);
2da11654
DT
877
878 if (!ganged)
8566c4df 879 amd64_debug_display_dimm_sizes(1, pvt);
2da11654
DT
880}
881
882/* Read in both of DBAM registers */
883static void amd64_read_dbam_reg(struct amd64_pvt *pvt)
884{
6ba5dcdc 885 amd64_read_pci_cfg(pvt->dram_f2_ctl, DBAM0, &pvt->dbam0);
2da11654 886
6ba5dcdc
BP
887 if (boot_cpu_data.x86 >= 0x10)
888 amd64_read_pci_cfg(pvt->dram_f2_ctl, DBAM1, &pvt->dbam1);
2da11654
DT
889}
890
94be4bff
DT
891/*
892 * NOTE: CPU Revision Dependent code: Rev E and Rev F
893 *
894 * Set the DCSB and DCSM mask values depending on the CPU revision value. Also
895 * set the shift factor for the DCSB and DCSM values.
896 *
897 * ->dcs_mask_notused, RevE:
898 *
899 * To find the max InputAddr for the csrow, start with the base address and set
900 * all bits that are "don't care" bits in the test at the start of section
901 * 3.5.4 (p. 84).
902 *
903 * The "don't care" bits are all set bits in the mask and all bits in the gaps
904 * between bit ranges [35:25] and [19:13]. The value REV_E_DCS_NOTUSED_BITS
905 * represents bits [24:20] and [12:0], which are all bits in the above-mentioned
906 * gaps.
907 *
908 * ->dcs_mask_notused, RevF and later:
909 *
910 * To find the max InputAddr for the csrow, start with the base address and set
911 * all bits that are "don't care" bits in the test at the start of NPT section
912 * 4.5.4 (p. 87).
913 *
914 * The "don't care" bits are all set bits in the mask and all bits in the gaps
915 * between bit ranges [36:27] and [21:13].
916 *
917 * The value REV_F_F1Xh_DCS_NOTUSED_BITS represents bits [26:22] and [12:0],
918 * which are all bits in the above-mentioned gaps.
919 */
920static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt)
921{
9d858bb1 922
1433eb99 923 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
9d858bb1
BP
924 pvt->dcsb_base = REV_E_DCSB_BASE_BITS;
925 pvt->dcsm_mask = REV_E_DCSM_MASK_BITS;
926 pvt->dcs_mask_notused = REV_E_DCS_NOTUSED_BITS;
927 pvt->dcs_shift = REV_E_DCS_SHIFT;
928 pvt->cs_count = 8;
929 pvt->num_dcsm = 8;
930 } else {
94be4bff
DT
931 pvt->dcsb_base = REV_F_F1Xh_DCSB_BASE_BITS;
932 pvt->dcsm_mask = REV_F_F1Xh_DCSM_MASK_BITS;
933 pvt->dcs_mask_notused = REV_F_F1Xh_DCS_NOTUSED_BITS;
934 pvt->dcs_shift = REV_F_F1Xh_DCS_SHIFT;
3ab0e7dc
BP
935 pvt->cs_count = 8;
936 pvt->num_dcsm = 4;
94be4bff
DT
937 }
938}
939
940/*
941 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask hw registers
942 */
943static void amd64_read_dct_base_mask(struct amd64_pvt *pvt)
944{
6ba5dcdc 945 int cs, reg;
94be4bff
DT
946
947 amd64_set_dct_base_and_mask(pvt);
948
9d858bb1 949 for (cs = 0; cs < pvt->cs_count; cs++) {
94be4bff 950 reg = K8_DCSB0 + (cs * 4);
6ba5dcdc 951 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg, &pvt->dcsb0[cs]))
94be4bff
DT
952 debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
953 cs, pvt->dcsb0[cs], reg);
954
955 /* If DCT are NOT ganged, then read in DCT1's base */
956 if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
957 reg = F10_DCSB1 + (cs * 4);
6ba5dcdc
BP
958 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg,
959 &pvt->dcsb1[cs]))
94be4bff
DT
960 debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
961 cs, pvt->dcsb1[cs], reg);
962 } else {
963 pvt->dcsb1[cs] = 0;
964 }
965 }
966
967 for (cs = 0; cs < pvt->num_dcsm; cs++) {
4afcd2dc 968 reg = K8_DCSM0 + (cs * 4);
6ba5dcdc 969 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg, &pvt->dcsm0[cs]))
94be4bff
DT
970 debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
971 cs, pvt->dcsm0[cs], reg);
972
973 /* If DCT are NOT ganged, then read in DCT1's mask */
974 if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
975 reg = F10_DCSM1 + (cs * 4);
6ba5dcdc
BP
976 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg,
977 &pvt->dcsm1[cs]))
94be4bff
DT
978 debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
979 cs, pvt->dcsm1[cs], reg);
6ba5dcdc 980 } else {
94be4bff 981 pvt->dcsm1[cs] = 0;
6ba5dcdc 982 }
94be4bff
DT
983 }
984}
985
986static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt)
987{
988 enum mem_type type;
989
1433eb99 990 if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= K8_REV_F) {
6b4c0bde
BP
991 if (pvt->dchr0 & DDR3_MODE)
992 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
993 else
994 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
94be4bff 995 } else {
94be4bff
DT
996 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
997 }
998
239642fe 999 debugf1(" Memory type is: %s\n", edac_mem_types[type]);
94be4bff
DT
1000
1001 return type;
1002}
1003
ddff876d
DT
1004/*
1005 * Read the DRAM Configuration Low register. It differs between CG, D & E revs
1006 * and the later RevF memory controllers (DDR vs DDR2)
1007 *
1008 * Return:
1009 * number of memory channels in operation
1010 * Pass back:
1011 * contents of the DCL0_LOW register
1012 */
1013static int k8_early_channel_count(struct amd64_pvt *pvt)
1014{
1015 int flag, err = 0;
1016
6ba5dcdc 1017 err = amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
ddff876d
DT
1018 if (err)
1019 return err;
1020
9f56da0e 1021 if (pvt->ext_model >= K8_REV_F)
ddff876d
DT
1022 /* RevF (NPT) and later */
1023 flag = pvt->dclr0 & F10_WIDTH_128;
9f56da0e 1024 else
ddff876d
DT
1025 /* RevE and earlier */
1026 flag = pvt->dclr0 & REVE_WIDTH_128;
ddff876d
DT
1027
1028 /* not used */
1029 pvt->dclr1 = 0;
1030
1031 return (flag) ? 2 : 1;
1032}
1033
1034/* extract the ERROR ADDRESS for the K8 CPUs */
1035static u64 k8_get_error_address(struct mem_ctl_info *mci,
ef44cc4c 1036 struct err_regs *info)
ddff876d
DT
1037{
1038 return (((u64) (info->nbeah & 0xff)) << 32) +
1039 (info->nbeal & ~0x03);
1040}
1041
1042/*
1043 * Read the Base and Limit registers for K8 based Memory controllers; extract
1044 * fields from the 'raw' reg into separate data fields
1045 *
1046 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN
1047 */
1048static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1049{
1050 u32 low;
1051 u32 off = dram << 3; /* 8 bytes between DRAM entries */
ddff876d 1052
6ba5dcdc 1053 amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DRAM_BASE_LOW + off, &low);
ddff876d
DT
1054
1055 /* Extract parts into separate data entries */
4997811e 1056 pvt->dram_base[dram] = ((u64) low & 0xFFFF0000) << 8;
ddff876d
DT
1057 pvt->dram_IntlvEn[dram] = (low >> 8) & 0x7;
1058 pvt->dram_rw_en[dram] = (low & 0x3);
1059
6ba5dcdc 1060 amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DRAM_LIMIT_LOW + off, &low);
ddff876d
DT
1061
1062 /*
1063 * Extract parts into separate data entries. Limit is the HIGHEST memory
1064 * location of the region, so lower 24 bits need to be all ones
1065 */
4997811e 1066 pvt->dram_limit[dram] = (((u64) low & 0xFFFF0000) << 8) | 0x00FFFFFF;
ddff876d
DT
1067 pvt->dram_IntlvSel[dram] = (low >> 8) & 0x7;
1068 pvt->dram_DstNode[dram] = (low & 0x7);
1069}
1070
1071static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
ad6a32e9 1072 struct err_regs *err_info, u64 sys_addr)
ddff876d
DT
1073{
1074 struct mem_ctl_info *src_mci;
ddff876d
DT
1075 int channel, csrow;
1076 u32 page, offset;
ad6a32e9 1077 u16 syndrome;
ddff876d 1078
ad6a32e9 1079 syndrome = extract_syndrome(err_info);
ddff876d
DT
1080
1081 /* CHIPKILL enabled */
ad6a32e9 1082 if (err_info->nbcfg & K8_NBCFG_CHIPKILL) {
bfc04aec 1083 channel = get_channel_from_ecc_syndrome(mci, syndrome);
ddff876d
DT
1084 if (channel < 0) {
1085 /*
1086 * Syndrome didn't map, so we don't know which of the
1087 * 2 DIMMs is in error. So we need to ID 'both' of them
1088 * as suspect.
1089 */
1090 amd64_mc_printk(mci, KERN_WARNING,
ad6a32e9
BP
1091 "unknown syndrome 0x%04x - possible "
1092 "error reporting race\n", syndrome);
ddff876d
DT
1093 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1094 return;
1095 }
1096 } else {
1097 /*
1098 * non-chipkill ecc mode
1099 *
1100 * The k8 documentation is unclear about how to determine the
1101 * channel number when using non-chipkill memory. This method
1102 * was obtained from email communication with someone at AMD.
1103 * (Wish the email was placed in this comment - norsk)
1104 */
44e9e2ee 1105 channel = ((sys_addr & BIT(3)) != 0);
ddff876d
DT
1106 }
1107
1108 /*
1109 * Find out which node the error address belongs to. This may be
1110 * different from the node that detected the error.
1111 */
44e9e2ee 1112 src_mci = find_mc_by_sys_addr(mci, sys_addr);
2cff18c2 1113 if (!src_mci) {
ddff876d
DT
1114 amd64_mc_printk(mci, KERN_ERR,
1115 "failed to map error address 0x%lx to a node\n",
44e9e2ee 1116 (unsigned long)sys_addr);
ddff876d
DT
1117 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1118 return;
1119 }
1120
44e9e2ee
BP
1121 /* Now map the sys_addr to a CSROW */
1122 csrow = sys_addr_to_csrow(src_mci, sys_addr);
ddff876d
DT
1123 if (csrow < 0) {
1124 edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
1125 } else {
44e9e2ee 1126 error_address_to_page_and_offset(sys_addr, &page, &offset);
ddff876d
DT
1127
1128 edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
1129 channel, EDAC_MOD_STR);
1130 }
1131}
1132
1433eb99 1133static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
ddff876d 1134{
1433eb99 1135 int *dbam_map;
ddff876d 1136
1433eb99
BP
1137 if (pvt->ext_model >= K8_REV_F)
1138 dbam_map = ddr2_dbam;
1139 else if (pvt->ext_model >= K8_REV_D)
1140 dbam_map = ddr2_dbam_revD;
1141 else
1142 dbam_map = ddr2_dbam_revCG;
ddff876d 1143
1433eb99 1144 return dbam_map[cs_mode];
ddff876d
DT
1145}
1146
1afd3c98
DT
1147/*
1148 * Get the number of DCT channels in use.
1149 *
1150 * Return:
1151 * number of Memory Channels in operation
1152 * Pass back:
1153 * contents of the DCL0_LOW register
1154 */
1155static int f10_early_channel_count(struct amd64_pvt *pvt)
1156{
57a30854 1157 int dbams[] = { DBAM0, DBAM1 };
6ba5dcdc 1158 int i, j, channels = 0;
1afd3c98
DT
1159 u32 dbam;
1160
1afd3c98
DT
1161 /* If we are in 128 bit mode, then we are using 2 channels */
1162 if (pvt->dclr0 & F10_WIDTH_128) {
1afd3c98
DT
1163 channels = 2;
1164 return channels;
1165 }
1166
1167 /*
d16149e8
BP
1168 * Need to check if in unganged mode: In such, there are 2 channels,
1169 * but they are not in 128 bit mode and thus the above 'dclr0' status
1170 * bit will be OFF.
1afd3c98
DT
1171 *
1172 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1173 * their CSEnable bit on. If so, then SINGLE DIMM case.
1174 */
d16149e8 1175 debugf0("Data width is not 128 bits - need more decoding\n");
ddff876d 1176
1afd3c98
DT
1177 /*
1178 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1179 * is more than just one DIMM present in unganged mode. Need to check
1180 * both controllers since DIMMs can be placed in either one.
1181 */
57a30854 1182 for (i = 0; i < ARRAY_SIZE(dbams); i++) {
6ba5dcdc 1183 if (amd64_read_pci_cfg(pvt->dram_f2_ctl, dbams[i], &dbam))
1afd3c98
DT
1184 goto err_reg;
1185
57a30854
WW
1186 for (j = 0; j < 4; j++) {
1187 if (DBAM_DIMM(j, dbam) > 0) {
1188 channels++;
1189 break;
1190 }
1191 }
1afd3c98
DT
1192 }
1193
d16149e8
BP
1194 if (channels > 2)
1195 channels = 2;
1196
37da0450 1197 debugf0("MCT channel count: %d\n", channels);
1afd3c98
DT
1198
1199 return channels;
1200
1201err_reg:
1202 return -1;
1203
1204}
1205
1433eb99 1206static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
1afd3c98 1207{
1433eb99
BP
1208 int *dbam_map;
1209
1210 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1211 dbam_map = ddr3_dbam;
1212 else
1213 dbam_map = ddr2_dbam;
1214
1215 return dbam_map[cs_mode];
1afd3c98
DT
1216}
1217
1218/* Enable extended configuration access via 0xCF8 feature */
1219static void amd64_setup(struct amd64_pvt *pvt)
1220{
1221 u32 reg;
1222
6ba5dcdc 1223 amd64_read_pci_cfg(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
1afd3c98
DT
1224
1225 pvt->flags.cf8_extcfg = !!(reg & F10_NB_CFG_LOW_ENABLE_EXT_CFG);
1226 reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1227 pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
1228}
1229
1230/* Restore the extended configuration access via 0xCF8 feature */
1231static void amd64_teardown(struct amd64_pvt *pvt)
1232{
1233 u32 reg;
1234
6ba5dcdc 1235 amd64_read_pci_cfg(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
1afd3c98
DT
1236
1237 reg &= ~F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1238 if (pvt->flags.cf8_extcfg)
1239 reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1240 pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
1241}
1242
1243static u64 f10_get_error_address(struct mem_ctl_info *mci,
ef44cc4c 1244 struct err_regs *info)
1afd3c98
DT
1245{
1246 return (((u64) (info->nbeah & 0xffff)) << 32) +
1247 (info->nbeal & ~0x01);
1248}
1249
1250/*
1251 * Read the Base and Limit registers for F10 based Memory controllers. Extract
1252 * fields from the 'raw' reg into separate data fields.
1253 *
1254 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN.
1255 */
1256static void f10_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1257{
1258 u32 high_offset, low_offset, high_base, low_base, high_limit, low_limit;
1259
1260 low_offset = K8_DRAM_BASE_LOW + (dram << 3);
1261 high_offset = F10_DRAM_BASE_HIGH + (dram << 3);
1262
1263 /* read the 'raw' DRAM BASE Address register */
6ba5dcdc 1264 amd64_read_pci_cfg(pvt->addr_f1_ctl, low_offset, &low_base);
1afd3c98
DT
1265
1266 /* Read from the ECS data register */
6ba5dcdc 1267 amd64_read_pci_cfg(pvt->addr_f1_ctl, high_offset, &high_base);
1afd3c98
DT
1268
1269 /* Extract parts into separate data entries */
1270 pvt->dram_rw_en[dram] = (low_base & 0x3);
1271
1272 if (pvt->dram_rw_en[dram] == 0)
1273 return;
1274
1275 pvt->dram_IntlvEn[dram] = (low_base >> 8) & 0x7;
1276
66216a7a 1277 pvt->dram_base[dram] = (((u64)high_base & 0x000000FF) << 40) |
4997811e 1278 (((u64)low_base & 0xFFFF0000) << 8);
1afd3c98
DT
1279
1280 low_offset = K8_DRAM_LIMIT_LOW + (dram << 3);
1281 high_offset = F10_DRAM_LIMIT_HIGH + (dram << 3);
1282
1283 /* read the 'raw' LIMIT registers */
6ba5dcdc 1284 amd64_read_pci_cfg(pvt->addr_f1_ctl, low_offset, &low_limit);
1afd3c98
DT
1285
1286 /* Read from the ECS data register for the HIGH portion */
6ba5dcdc 1287 amd64_read_pci_cfg(pvt->addr_f1_ctl, high_offset, &high_limit);
1afd3c98 1288
1afd3c98
DT
1289 pvt->dram_DstNode[dram] = (low_limit & 0x7);
1290 pvt->dram_IntlvSel[dram] = (low_limit >> 8) & 0x7;
1291
1292 /*
1293 * Extract address values and form a LIMIT address. Limit is the HIGHEST
1294 * memory location of the region, so low 24 bits need to be all ones.
1295 */
66216a7a 1296 pvt->dram_limit[dram] = (((u64)high_limit & 0x000000FF) << 40) |
4997811e 1297 (((u64) low_limit & 0xFFFF0000) << 8) |
66216a7a 1298 0x00FFFFFF;
1afd3c98 1299}
6163b5d4
DT
1300
1301static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
1302{
6163b5d4 1303
6ba5dcdc
BP
1304 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCTL_SEL_LOW,
1305 &pvt->dram_ctl_select_low)) {
72381bd5
BP
1306 debugf0("F2x110 (DCTL Sel. Low): 0x%08x, "
1307 "High range addresses at: 0x%x\n",
1308 pvt->dram_ctl_select_low,
1309 dct_sel_baseaddr(pvt));
1310
1311 debugf0(" DCT mode: %s, All DCTs on: %s\n",
1312 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"),
1313 (dct_dram_enabled(pvt) ? "yes" : "no"));
1314
1315 if (!dct_ganging_enabled(pvt))
1316 debugf0(" Address range split per DCT: %s\n",
1317 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1318
1319 debugf0(" DCT data interleave for ECC: %s, "
1320 "DRAM cleared since last warm reset: %s\n",
1321 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1322 (dct_memory_cleared(pvt) ? "yes" : "no"));
1323
1324 debugf0(" DCT channel interleave: %s, "
1325 "DCT interleave bits selector: 0x%x\n",
1326 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
6163b5d4
DT
1327 dct_sel_interleave_addr(pvt));
1328 }
1329
6ba5dcdc
BP
1330 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCTL_SEL_HIGH,
1331 &pvt->dram_ctl_select_high);
6163b5d4
DT
1332}
1333
f71d0a05
DT
1334/*
1335 * determine channel based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1336 * Interleaving Modes.
1337 */
6163b5d4
DT
1338static u32 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1339 int hi_range_sel, u32 intlv_en)
1340{
1341 u32 cs, temp, dct_sel_high = (pvt->dram_ctl_select_low >> 1) & 1;
1342
1343 if (dct_ganging_enabled(pvt))
1344 cs = 0;
1345 else if (hi_range_sel)
1346 cs = dct_sel_high;
1347 else if (dct_interleave_enabled(pvt)) {
f71d0a05
DT
1348 /*
1349 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1350 */
6163b5d4
DT
1351 if (dct_sel_interleave_addr(pvt) == 0)
1352 cs = sys_addr >> 6 & 1;
1353 else if ((dct_sel_interleave_addr(pvt) >> 1) & 1) {
1354 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1355
1356 if (dct_sel_interleave_addr(pvt) & 1)
1357 cs = (sys_addr >> 9 & 1) ^ temp;
1358 else
1359 cs = (sys_addr >> 6 & 1) ^ temp;
1360 } else if (intlv_en & 4)
1361 cs = sys_addr >> 15 & 1;
1362 else if (intlv_en & 2)
1363 cs = sys_addr >> 14 & 1;
1364 else if (intlv_en & 1)
1365 cs = sys_addr >> 13 & 1;
1366 else
1367 cs = sys_addr >> 12 & 1;
1368 } else if (dct_high_range_enabled(pvt) && !dct_ganging_enabled(pvt))
1369 cs = ~dct_sel_high & 1;
1370 else
1371 cs = 0;
1372
1373 return cs;
1374}
1375
1376static inline u32 f10_map_intlv_en_to_shift(u32 intlv_en)
1377{
1378 if (intlv_en == 1)
1379 return 1;
1380 else if (intlv_en == 3)
1381 return 2;
1382 else if (intlv_en == 7)
1383 return 3;
1384
1385 return 0;
1386}
1387
f71d0a05
DT
1388/* See F10h BKDG, 2.8.10.2 DctSelBaseOffset Programming */
1389static inline u64 f10_get_base_addr_offset(u64 sys_addr, int hi_range_sel,
6163b5d4
DT
1390 u32 dct_sel_base_addr,
1391 u64 dct_sel_base_off,
f71d0a05 1392 u32 hole_valid, u32 hole_off,
6163b5d4
DT
1393 u64 dram_base)
1394{
1395 u64 chan_off;
1396
1397 if (hi_range_sel) {
9975a5f2 1398 if (!(dct_sel_base_addr & 0xFFFF0000) &&
f71d0a05 1399 hole_valid && (sys_addr >= 0x100000000ULL))
6163b5d4
DT
1400 chan_off = hole_off << 16;
1401 else
1402 chan_off = dct_sel_base_off;
1403 } else {
f71d0a05 1404 if (hole_valid && (sys_addr >= 0x100000000ULL))
6163b5d4
DT
1405 chan_off = hole_off << 16;
1406 else
1407 chan_off = dram_base & 0xFFFFF8000000ULL;
1408 }
1409
1410 return (sys_addr & 0x0000FFFFFFFFFFC0ULL) -
1411 (chan_off & 0x0000FFFFFF800000ULL);
1412}
1413
1414/* Hack for the time being - Can we get this from BIOS?? */
1415#define CH0SPARE_RANK 0
1416#define CH1SPARE_RANK 1
1417
1418/*
1419 * checks if the csrow passed in is marked as SPARED, if so returns the new
1420 * spare row
1421 */
1422static inline int f10_process_possible_spare(int csrow,
1423 u32 cs, struct amd64_pvt *pvt)
1424{
1425 u32 swap_done;
1426 u32 bad_dram_cs;
1427
1428 /* Depending on channel, isolate respective SPARING info */
1429 if (cs) {
1430 swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare);
1431 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare);
1432 if (swap_done && (csrow == bad_dram_cs))
1433 csrow = CH1SPARE_RANK;
1434 } else {
1435 swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare);
1436 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare);
1437 if (swap_done && (csrow == bad_dram_cs))
1438 csrow = CH0SPARE_RANK;
1439 }
1440 return csrow;
1441}
1442
1443/*
1444 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1445 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1446 *
1447 * Return:
1448 * -EINVAL: NOT FOUND
1449 * 0..csrow = Chip-Select Row
1450 */
1451static int f10_lookup_addr_in_dct(u32 in_addr, u32 nid, u32 cs)
1452{
1453 struct mem_ctl_info *mci;
1454 struct amd64_pvt *pvt;
1455 u32 cs_base, cs_mask;
1456 int cs_found = -EINVAL;
1457 int csrow;
1458
1459 mci = mci_lookup[nid];
1460 if (!mci)
1461 return cs_found;
1462
1463 pvt = mci->pvt_info;
1464
1465 debugf1("InputAddr=0x%x channelselect=%d\n", in_addr, cs);
1466
9d858bb1 1467 for (csrow = 0; csrow < pvt->cs_count; csrow++) {
6163b5d4
DT
1468
1469 cs_base = amd64_get_dct_base(pvt, cs, csrow);
1470 if (!(cs_base & K8_DCSB_CS_ENABLE))
1471 continue;
1472
1473 /*
1474 * We have an ENABLED CSROW, Isolate just the MASK bits of the
1475 * target: [28:19] and [13:5], which map to [36:27] and [21:13]
1476 * of the actual address.
1477 */
1478 cs_base &= REV_F_F1Xh_DCSB_BASE_BITS;
1479
1480 /*
1481 * Get the DCT Mask, and ENABLE the reserved bits: [18:16] and
1482 * [4:0] to become ON. Then mask off bits [28:0] ([36:8])
1483 */
1484 cs_mask = amd64_get_dct_mask(pvt, cs, csrow);
1485
1486 debugf1(" CSROW=%d CSBase=0x%x RAW CSMask=0x%x\n",
1487 csrow, cs_base, cs_mask);
1488
1489 cs_mask = (cs_mask | 0x0007C01F) & 0x1FFFFFFF;
1490
1491 debugf1(" Final CSMask=0x%x\n", cs_mask);
1492 debugf1(" (InputAddr & ~CSMask)=0x%x "
1493 "(CSBase & ~CSMask)=0x%x\n",
1494 (in_addr & ~cs_mask), (cs_base & ~cs_mask));
1495
1496 if ((in_addr & ~cs_mask) == (cs_base & ~cs_mask)) {
1497 cs_found = f10_process_possible_spare(csrow, cs, pvt);
1498
1499 debugf1(" MATCH csrow=%d\n", cs_found);
1500 break;
1501 }
1502 }
1503 return cs_found;
1504}
1505
f71d0a05
DT
1506/* For a given @dram_range, check if @sys_addr falls within it. */
1507static int f10_match_to_this_node(struct amd64_pvt *pvt, int dram_range,
1508 u64 sys_addr, int *nid, int *chan_sel)
1509{
1510 int node_id, cs_found = -EINVAL, high_range = 0;
1511 u32 intlv_en, intlv_sel, intlv_shift, hole_off;
1512 u32 hole_valid, tmp, dct_sel_base, channel;
1513 u64 dram_base, chan_addr, dct_sel_base_off;
1514
1515 dram_base = pvt->dram_base[dram_range];
1516 intlv_en = pvt->dram_IntlvEn[dram_range];
1517
1518 node_id = pvt->dram_DstNode[dram_range];
1519 intlv_sel = pvt->dram_IntlvSel[dram_range];
1520
1521 debugf1("(dram=%d) Base=0x%llx SystemAddr= 0x%llx Limit=0x%llx\n",
1522 dram_range, dram_base, sys_addr, pvt->dram_limit[dram_range]);
1523
1524 /*
1525 * This assumes that one node's DHAR is the same as all the other
1526 * nodes' DHAR.
1527 */
1528 hole_off = (pvt->dhar & 0x0000FF80);
1529 hole_valid = (pvt->dhar & 0x1);
1530 dct_sel_base_off = (pvt->dram_ctl_select_high & 0xFFFFFC00) << 16;
1531
1532 debugf1(" HoleOffset=0x%x HoleValid=0x%x IntlvSel=0x%x\n",
1533 hole_off, hole_valid, intlv_sel);
1534
e726f3c3 1535 if (intlv_en &&
f71d0a05
DT
1536 (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1537 return -EINVAL;
1538
1539 dct_sel_base = dct_sel_baseaddr(pvt);
1540
1541 /*
1542 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1543 * select between DCT0 and DCT1.
1544 */
1545 if (dct_high_range_enabled(pvt) &&
1546 !dct_ganging_enabled(pvt) &&
1547 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1548 high_range = 1;
1549
1550 channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);
1551
1552 chan_addr = f10_get_base_addr_offset(sys_addr, high_range, dct_sel_base,
1553 dct_sel_base_off, hole_valid,
1554 hole_off, dram_base);
1555
1556 intlv_shift = f10_map_intlv_en_to_shift(intlv_en);
1557
1558 /* remove Node ID (in case of memory interleaving) */
1559 tmp = chan_addr & 0xFC0;
1560
1561 chan_addr = ((chan_addr >> intlv_shift) & 0xFFFFFFFFF000ULL) | tmp;
1562
1563 /* remove channel interleave and hash */
1564 if (dct_interleave_enabled(pvt) &&
1565 !dct_high_range_enabled(pvt) &&
1566 !dct_ganging_enabled(pvt)) {
1567 if (dct_sel_interleave_addr(pvt) != 1)
1568 chan_addr = (chan_addr >> 1) & 0xFFFFFFFFFFFFFFC0ULL;
1569 else {
1570 tmp = chan_addr & 0xFC0;
1571 chan_addr = ((chan_addr & 0xFFFFFFFFFFFFC000ULL) >> 1)
1572 | tmp;
1573 }
1574 }
1575
1576 debugf1(" (ChannelAddrLong=0x%llx) >> 8 becomes InputAddr=0x%x\n",
1577 chan_addr, (u32)(chan_addr >> 8));
1578
1579 cs_found = f10_lookup_addr_in_dct(chan_addr >> 8, node_id, channel);
1580
1581 if (cs_found >= 0) {
1582 *nid = node_id;
1583 *chan_sel = channel;
1584 }
1585 return cs_found;
1586}
1587
1588static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
1589 int *node, int *chan_sel)
1590{
1591 int dram_range, cs_found = -EINVAL;
1592 u64 dram_base, dram_limit;
1593
1594 for (dram_range = 0; dram_range < DRAM_REG_COUNT; dram_range++) {
1595
1596 if (!pvt->dram_rw_en[dram_range])
1597 continue;
1598
1599 dram_base = pvt->dram_base[dram_range];
1600 dram_limit = pvt->dram_limit[dram_range];
1601
1602 if ((dram_base <= sys_addr) && (sys_addr <= dram_limit)) {
1603
1604 cs_found = f10_match_to_this_node(pvt, dram_range,
1605 sys_addr, node,
1606 chan_sel);
1607 if (cs_found >= 0)
1608 break;
1609 }
1610 }
1611 return cs_found;
1612}
1613
1614/*
bdc30a0c
BP
1615 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1616 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
f71d0a05 1617 *
bdc30a0c
BP
1618 * The @sys_addr is usually an error address received from the hardware
1619 * (MCX_ADDR).
f71d0a05
DT
1620 */
1621static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
ad6a32e9 1622 struct err_regs *err_info,
f71d0a05
DT
1623 u64 sys_addr)
1624{
1625 struct amd64_pvt *pvt = mci->pvt_info;
1626 u32 page, offset;
f71d0a05 1627 int nid, csrow, chan = 0;
ad6a32e9 1628 u16 syndrome;
f71d0a05
DT
1629
1630 csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
1631
bdc30a0c
BP
1632 if (csrow < 0) {
1633 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1634 return;
1635 }
1636
1637 error_address_to_page_and_offset(sys_addr, &page, &offset);
f71d0a05 1638
ad6a32e9 1639 syndrome = extract_syndrome(err_info);
bdc30a0c
BP
1640
1641 /*
1642 * We need the syndromes for channel detection only when we're
1643 * ganged. Otherwise @chan should already contain the channel at
1644 * this point.
1645 */
962b70a1 1646 if (dct_ganging_enabled(pvt) && (pvt->nbcfg & K8_NBCFG_CHIPKILL))
bdc30a0c 1647 chan = get_channel_from_ecc_syndrome(mci, syndrome);
f71d0a05 1648
bdc30a0c
BP
1649 if (chan >= 0)
1650 edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
1651 EDAC_MOD_STR);
1652 else
f71d0a05 1653 /*
bdc30a0c 1654 * Channel unknown, report all channels on this CSROW as failed.
f71d0a05 1655 */
bdc30a0c 1656 for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
f71d0a05 1657 edac_mc_handle_ce(mci, page, offset, syndrome,
bdc30a0c 1658 csrow, chan, EDAC_MOD_STR);
f71d0a05
DT
1659}
1660
f71d0a05 1661/*
8566c4df 1662 * debug routine to display the memory sizes of all logical DIMMs and its
f71d0a05
DT
1663 * CSROWs as well
1664 */
8566c4df 1665static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt)
f71d0a05 1666{
603adaf6 1667 int dimm, size0, size1, factor = 0;
f71d0a05
DT
1668 u32 dbam;
1669 u32 *dcsb;
1670
8566c4df 1671 if (boot_cpu_data.x86 == 0xf) {
603adaf6
BP
1672 if (pvt->dclr0 & F10_WIDTH_128)
1673 factor = 1;
1674
8566c4df 1675 /* K8 families < revF not supported yet */
1433eb99 1676 if (pvt->ext_model < K8_REV_F)
8566c4df
BP
1677 return;
1678 else
1679 WARN_ON(ctrl != 0);
1680 }
1681
1682 debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
1683 ctrl, ctrl ? pvt->dbam1 : pvt->dbam0);
f71d0a05
DT
1684
1685 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
1686 dcsb = ctrl ? pvt->dcsb1 : pvt->dcsb0;
1687
8566c4df
BP
1688 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1689
f71d0a05
DT
1690 /* Dump memory sizes for DIMM and its CSROWs */
1691 for (dimm = 0; dimm < 4; dimm++) {
1692
1693 size0 = 0;
1694 if (dcsb[dimm*2] & K8_DCSB_CS_ENABLE)
1433eb99 1695 size0 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
f71d0a05
DT
1696
1697 size1 = 0;
1698 if (dcsb[dimm*2 + 1] & K8_DCSB_CS_ENABLE)
1433eb99 1699 size1 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
f71d0a05 1700
8566c4df 1701 edac_printk(KERN_DEBUG, EDAC_MC, " %d: %5dMB %d: %5dMB\n",
603adaf6
BP
1702 dimm * 2, size0 << factor,
1703 dimm * 2 + 1, size1 << factor);
f71d0a05
DT
1704 }
1705}
1706
4d37607a
DT
1707static struct amd64_family_type amd64_family_types[] = {
1708 [K8_CPUS] = {
0092b20d 1709 .ctl_name = "K8",
4d37607a
DT
1710 .addr_f1_ctl = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1711 .misc_f3_ctl = PCI_DEVICE_ID_AMD_K8_NB_MISC,
1712 .ops = {
1433eb99
BP
1713 .early_channel_count = k8_early_channel_count,
1714 .get_error_address = k8_get_error_address,
1715 .read_dram_base_limit = k8_read_dram_base_limit,
1716 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1717 .dbam_to_cs = k8_dbam_to_chip_select,
4d37607a
DT
1718 }
1719 },
1720 [F10_CPUS] = {
0092b20d 1721 .ctl_name = "F10h",
4d37607a
DT
1722 .addr_f1_ctl = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1723 .misc_f3_ctl = PCI_DEVICE_ID_AMD_10H_NB_MISC,
1724 .ops = {
1433eb99
BP
1725 .early_channel_count = f10_early_channel_count,
1726 .get_error_address = f10_get_error_address,
1727 .read_dram_base_limit = f10_read_dram_base_limit,
1728 .read_dram_ctl_register = f10_read_dram_ctl_register,
1729 .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
1730 .dbam_to_cs = f10_dbam_to_chip_select,
4d37607a
DT
1731 }
1732 },
4d37607a
DT
1733};
1734
1735static struct pci_dev *pci_get_related_function(unsigned int vendor,
1736 unsigned int device,
1737 struct pci_dev *related)
1738{
1739 struct pci_dev *dev = NULL;
1740
1741 dev = pci_get_device(vendor, device, dev);
1742 while (dev) {
1743 if ((dev->bus->number == related->bus->number) &&
1744 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1745 break;
1746 dev = pci_get_device(vendor, device, dev);
1747 }
1748
1749 return dev;
1750}
1751
b1289d6f 1752/*
bfc04aec
BP
1753 * These are tables of eigenvectors (one per line) which can be used for the
1754 * construction of the syndrome tables. The modified syndrome search algorithm
1755 * uses those to find the symbol in error and thus the DIMM.
b1289d6f 1756 *
bfc04aec 1757 * Algorithm courtesy of Ross LaFetra from AMD.
b1289d6f 1758 */
bfc04aec
BP
1759static u16 x4_vectors[] = {
1760 0x2f57, 0x1afe, 0x66cc, 0xdd88,
1761 0x11eb, 0x3396, 0x7f4c, 0xeac8,
1762 0x0001, 0x0002, 0x0004, 0x0008,
1763 0x1013, 0x3032, 0x4044, 0x8088,
1764 0x106b, 0x30d6, 0x70fc, 0xe0a8,
1765 0x4857, 0xc4fe, 0x13cc, 0x3288,
1766 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1767 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1768 0x15c1, 0x2a42, 0x89ac, 0x4758,
1769 0x2b03, 0x1602, 0x4f0c, 0xca08,
1770 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1771 0x8ba7, 0x465e, 0x244c, 0x1cc8,
1772 0x2b87, 0x164e, 0x642c, 0xdc18,
1773 0x40b9, 0x80de, 0x1094, 0x20e8,
1774 0x27db, 0x1eb6, 0x9dac, 0x7b58,
1775 0x11c1, 0x2242, 0x84ac, 0x4c58,
1776 0x1be5, 0x2d7a, 0x5e34, 0xa718,
1777 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1778 0x4c97, 0xc87e, 0x11fc, 0x33a8,
1779 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1780 0x16b3, 0x3d62, 0x4f34, 0x8518,
1781 0x1e2f, 0x391a, 0x5cac, 0xf858,
1782 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1783 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1784 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1785 0x4397, 0xc27e, 0x17fc, 0x3ea8,
1786 0x1617, 0x3d3e, 0x6464, 0xb8b8,
1787 0x23ff, 0x12aa, 0xab6c, 0x56d8,
1788 0x2dfb, 0x1ba6, 0x913c, 0x7328,
1789 0x185d, 0x2ca6, 0x7914, 0x9e28,
1790 0x171b, 0x3e36, 0x7d7c, 0xebe8,
1791 0x4199, 0x82ee, 0x19f4, 0x2e58,
1792 0x4807, 0xc40e, 0x130c, 0x3208,
1793 0x1905, 0x2e0a, 0x5804, 0xac08,
1794 0x213f, 0x132a, 0xadfc, 0x5ba8,
1795 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
b1289d6f
DT
1796};
1797
bfc04aec
BP
1798static u16 x8_vectors[] = {
1799 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1800 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1801 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1802 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1803 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1804 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1805 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1806 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1807 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1808 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1809 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1810 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1811 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1812 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1813 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1814 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1815 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1816 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1817 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1818};
1819
1820static int decode_syndrome(u16 syndrome, u16 *vectors, int num_vecs,
ad6a32e9 1821 int v_dim)
b1289d6f 1822{
bfc04aec
BP
1823 unsigned int i, err_sym;
1824
1825 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1826 u16 s = syndrome;
1827 int v_idx = err_sym * v_dim;
1828 int v_end = (err_sym + 1) * v_dim;
1829
1830 /* walk over all 16 bits of the syndrome */
1831 for (i = 1; i < (1U << 16); i <<= 1) {
1832
1833 /* if bit is set in that eigenvector... */
1834 if (v_idx < v_end && vectors[v_idx] & i) {
1835 u16 ev_comp = vectors[v_idx++];
1836
1837 /* ... and bit set in the modified syndrome, */
1838 if (s & i) {
1839 /* remove it. */
1840 s ^= ev_comp;
4d37607a 1841
bfc04aec
BP
1842 if (!s)
1843 return err_sym;
1844 }
b1289d6f 1845
bfc04aec
BP
1846 } else if (s & i)
1847 /* can't get to zero, move to next symbol */
1848 break;
1849 }
b1289d6f
DT
1850 }
1851
1852 debugf0("syndrome(%x) not found\n", syndrome);
1853 return -1;
1854}
d27bf6fa 1855
bfc04aec
BP
1856static int map_err_sym_to_channel(int err_sym, int sym_size)
1857{
1858 if (sym_size == 4)
1859 switch (err_sym) {
1860 case 0x20:
1861 case 0x21:
1862 return 0;
1863 break;
1864 case 0x22:
1865 case 0x23:
1866 return 1;
1867 break;
1868 default:
1869 return err_sym >> 4;
1870 break;
1871 }
1872 /* x8 symbols */
1873 else
1874 switch (err_sym) {
1875 /* imaginary bits not in a DIMM */
1876 case 0x10:
1877 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1878 err_sym);
1879 return -1;
1880 break;
1881
1882 case 0x11:
1883 return 0;
1884 break;
1885 case 0x12:
1886 return 1;
1887 break;
1888 default:
1889 return err_sym >> 3;
1890 break;
1891 }
1892 return -1;
1893}
1894
1895static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1896{
1897 struct amd64_pvt *pvt = mci->pvt_info;
ad6a32e9
BP
1898 int err_sym = -1;
1899
1900 if (pvt->syn_type == 8)
1901 err_sym = decode_syndrome(syndrome, x8_vectors,
1902 ARRAY_SIZE(x8_vectors),
1903 pvt->syn_type);
1904 else if (pvt->syn_type == 4)
1905 err_sym = decode_syndrome(syndrome, x4_vectors,
1906 ARRAY_SIZE(x4_vectors),
1907 pvt->syn_type);
1908 else {
1909 amd64_printk(KERN_WARNING, "%s: Illegal syndrome type: %u\n",
1910 __func__, pvt->syn_type);
1911 return err_sym;
bfc04aec 1912 }
ad6a32e9
BP
1913
1914 return map_err_sym_to_channel(err_sym, pvt->syn_type);
bfc04aec
BP
1915}
1916
d27bf6fa
DT
1917/*
1918 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
1919 * ADDRESS and process.
1920 */
1921static void amd64_handle_ce(struct mem_ctl_info *mci,
ef44cc4c 1922 struct err_regs *info)
d27bf6fa
DT
1923{
1924 struct amd64_pvt *pvt = mci->pvt_info;
44e9e2ee 1925 u64 sys_addr;
d27bf6fa
DT
1926
1927 /* Ensure that the Error Address is VALID */
1928 if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
1929 amd64_mc_printk(mci, KERN_ERR,
1930 "HW has no ERROR_ADDRESS available\n");
1931 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1932 return;
1933 }
1934
1f6bcee7 1935 sys_addr = pvt->ops->get_error_address(mci, info);
d27bf6fa
DT
1936
1937 amd64_mc_printk(mci, KERN_ERR,
44e9e2ee 1938 "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
d27bf6fa 1939
44e9e2ee 1940 pvt->ops->map_sysaddr_to_csrow(mci, info, sys_addr);
d27bf6fa
DT
1941}
1942
1943/* Handle any Un-correctable Errors (UEs) */
1944static void amd64_handle_ue(struct mem_ctl_info *mci,
ef44cc4c 1945 struct err_regs *info)
d27bf6fa 1946{
1f6bcee7
BP
1947 struct amd64_pvt *pvt = mci->pvt_info;
1948 struct mem_ctl_info *log_mci, *src_mci = NULL;
d27bf6fa 1949 int csrow;
44e9e2ee 1950 u64 sys_addr;
d27bf6fa 1951 u32 page, offset;
d27bf6fa
DT
1952
1953 log_mci = mci;
1954
1955 if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
1956 amd64_mc_printk(mci, KERN_CRIT,
1957 "HW has no ERROR_ADDRESS available\n");
1958 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1959 return;
1960 }
1961
1f6bcee7 1962 sys_addr = pvt->ops->get_error_address(mci, info);
d27bf6fa
DT
1963
1964 /*
1965 * Find out which node the error address belongs to. This may be
1966 * different from the node that detected the error.
1967 */
44e9e2ee 1968 src_mci = find_mc_by_sys_addr(mci, sys_addr);
d27bf6fa
DT
1969 if (!src_mci) {
1970 amd64_mc_printk(mci, KERN_CRIT,
1971 "ERROR ADDRESS (0x%lx) value NOT mapped to a MC\n",
44e9e2ee 1972 (unsigned long)sys_addr);
d27bf6fa
DT
1973 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1974 return;
1975 }
1976
1977 log_mci = src_mci;
1978
44e9e2ee 1979 csrow = sys_addr_to_csrow(log_mci, sys_addr);
d27bf6fa
DT
1980 if (csrow < 0) {
1981 amd64_mc_printk(mci, KERN_CRIT,
1982 "ERROR_ADDRESS (0x%lx) value NOT mapped to 'csrow'\n",
44e9e2ee 1983 (unsigned long)sys_addr);
d27bf6fa
DT
1984 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1985 } else {
44e9e2ee 1986 error_address_to_page_and_offset(sys_addr, &page, &offset);
d27bf6fa
DT
1987 edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
1988 }
1989}
1990
549d042d 1991static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
b69b29de 1992 struct err_regs *info)
d27bf6fa 1993{
b70ef010
BP
1994 u32 ec = ERROR_CODE(info->nbsl);
1995 u32 xec = EXT_ERROR_CODE(info->nbsl);
17adea01 1996 int ecc_type = (info->nbsh >> 13) & 0x3;
d27bf6fa 1997
b70ef010
BP
1998 /* Bail early out if this was an 'observed' error */
1999 if (PP(ec) == K8_NBSL_PP_OBS)
2000 return;
d27bf6fa 2001
ecaf5606
BP
2002 /* Do only ECC errors */
2003 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
d27bf6fa 2004 return;
d27bf6fa 2005
ecaf5606 2006 if (ecc_type == 2)
d27bf6fa 2007 amd64_handle_ce(mci, info);
ecaf5606 2008 else if (ecc_type == 1)
d27bf6fa 2009 amd64_handle_ue(mci, info);
d27bf6fa
DT
2010}
2011
7cfd4a87 2012void amd64_decode_bus_error(int node_id, struct mce *m, u32 nbcfg)
d27bf6fa 2013{
549d042d 2014 struct mem_ctl_info *mci = mci_lookup[node_id];
7cfd4a87 2015 struct err_regs regs;
d27bf6fa 2016
7cfd4a87
BP
2017 regs.nbsl = (u32) m->status;
2018 regs.nbsh = (u32)(m->status >> 32);
2019 regs.nbeal = (u32) m->addr;
2020 regs.nbeah = (u32)(m->addr >> 32);
2021 regs.nbcfg = nbcfg;
2022
2023 __amd64_decode_bus_error(mci, &regs);
d27bf6fa 2024
d27bf6fa
DT
2025 /*
2026 * Check the UE bit of the NB status high register, if set generate some
2027 * logs. If NOT a GART error, then process the event as a NO-INFO event.
2028 * If it was a GART error, skip that process.
549d042d
BP
2029 *
2030 * FIXME: this should go somewhere else, if at all.
d27bf6fa 2031 */
7cfd4a87 2032 if (regs.nbsh & K8_NBSH_UC_ERR && !report_gart_errors)
5110dbde 2033 edac_mc_handle_ue_no_info(mci, "UE bit is set");
549d042d 2034
d27bf6fa 2035}
d27bf6fa 2036
0ec449ee 2037/*
bbd0c1f6
BP
2038 * Use pvt->dram_f2_ctl which contains the F2 CPU PCI device to get the related
2039 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
0ec449ee 2040 */
bbd0c1f6
BP
2041static int amd64_reserve_mc_sibling_devices(struct amd64_pvt *pvt, u16 f1_id,
2042 u16 f3_id)
0ec449ee 2043{
0ec449ee
DT
2044 /* Reserve the ADDRESS MAP Device */
2045 pvt->addr_f1_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
bbd0c1f6 2046 f1_id,
0ec449ee
DT
2047 pvt->dram_f2_ctl);
2048
2049 if (!pvt->addr_f1_ctl) {
2050 amd64_printk(KERN_ERR, "error address map device not found: "
2051 "vendor %x device 0x%x (broken BIOS?)\n",
bbd0c1f6
BP
2052 PCI_VENDOR_ID_AMD, f1_id);
2053 return -ENODEV;
0ec449ee
DT
2054 }
2055
2056 /* Reserve the MISC Device */
2057 pvt->misc_f3_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
bbd0c1f6 2058 f3_id,
0ec449ee
DT
2059 pvt->dram_f2_ctl);
2060
2061 if (!pvt->misc_f3_ctl) {
2062 pci_dev_put(pvt->addr_f1_ctl);
2063 pvt->addr_f1_ctl = NULL;
2064
2065 amd64_printk(KERN_ERR, "error miscellaneous device not found: "
2066 "vendor %x device 0x%x (broken BIOS?)\n",
bbd0c1f6
BP
2067 PCI_VENDOR_ID_AMD, f3_id);
2068 return -ENODEV;
0ec449ee
DT
2069 }
2070
2071 debugf1(" Addr Map device PCI Bus ID:\t%s\n",
2072 pci_name(pvt->addr_f1_ctl));
2073 debugf1(" DRAM MEM-CTL PCI Bus ID:\t%s\n",
2074 pci_name(pvt->dram_f2_ctl));
2075 debugf1(" Misc device PCI Bus ID:\t%s\n",
2076 pci_name(pvt->misc_f3_ctl));
2077
2078 return 0;
2079}
2080
2081static void amd64_free_mc_sibling_devices(struct amd64_pvt *pvt)
2082{
2083 pci_dev_put(pvt->addr_f1_ctl);
2084 pci_dev_put(pvt->misc_f3_ctl);
2085}
2086
2087/*
2088 * Retrieve the hardware registers of the memory controller (this includes the
2089 * 'Address Map' and 'Misc' device regs)
2090 */
2091static void amd64_read_mc_registers(struct amd64_pvt *pvt)
2092{
2093 u64 msr_val;
ad6a32e9 2094 u32 tmp;
6ba5dcdc 2095 int dram;
0ec449ee
DT
2096
2097 /*
2098 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2099 * those are Read-As-Zero
2100 */
e97f8bb8
BP
2101 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
2102 debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem);
0ec449ee
DT
2103
2104 /* check first whether TOP_MEM2 is enabled */
2105 rdmsrl(MSR_K8_SYSCFG, msr_val);
2106 if (msr_val & (1U << 21)) {
e97f8bb8
BP
2107 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
2108 debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
0ec449ee
DT
2109 } else
2110 debugf0(" TOP_MEM2 disabled.\n");
2111
6ba5dcdc 2112 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCAP, &pvt->nbcap);
0ec449ee
DT
2113
2114 if (pvt->ops->read_dram_ctl_register)
2115 pvt->ops->read_dram_ctl_register(pvt);
2116
2117 for (dram = 0; dram < DRAM_REG_COUNT; dram++) {
2118 /*
2119 * Call CPU specific READ function to get the DRAM Base and
2120 * Limit values from the DCT.
2121 */
2122 pvt->ops->read_dram_base_limit(pvt, dram);
2123
2124 /*
2125 * Only print out debug info on rows with both R and W Enabled.
2126 * Normal processing, compiler should optimize this whole 'if'
2127 * debug output block away.
2128 */
2129 if (pvt->dram_rw_en[dram] != 0) {
e97f8bb8
BP
2130 debugf1(" DRAM-BASE[%d]: 0x%016llx "
2131 "DRAM-LIMIT: 0x%016llx\n",
0ec449ee 2132 dram,
e97f8bb8
BP
2133 pvt->dram_base[dram],
2134 pvt->dram_limit[dram]);
2135
0ec449ee
DT
2136 debugf1(" IntlvEn=%s %s %s "
2137 "IntlvSel=%d DstNode=%d\n",
2138 pvt->dram_IntlvEn[dram] ?
2139 "Enabled" : "Disabled",
2140 (pvt->dram_rw_en[dram] & 0x2) ? "W" : "!W",
2141 (pvt->dram_rw_en[dram] & 0x1) ? "R" : "!R",
2142 pvt->dram_IntlvSel[dram],
2143 pvt->dram_DstNode[dram]);
2144 }
2145 }
2146
2147 amd64_read_dct_base_mask(pvt);
2148
6ba5dcdc 2149 amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DHAR, &pvt->dhar);
0ec449ee
DT
2150 amd64_read_dbam_reg(pvt);
2151
6ba5dcdc
BP
2152 amd64_read_pci_cfg(pvt->misc_f3_ctl,
2153 F10_ONLINE_SPARE, &pvt->online_spare);
0ec449ee 2154
6ba5dcdc
BP
2155 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
2156 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCHR_0, &pvt->dchr0);
0ec449ee 2157
ad6a32e9
BP
2158 if (boot_cpu_data.x86 >= 0x10) {
2159 if (!dct_ganging_enabled(pvt)) {
2160 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_1, &pvt->dclr1);
2161 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCHR_1, &pvt->dchr1);
2162 }
2163 amd64_read_pci_cfg(pvt->misc_f3_ctl, EXT_NB_MCA_CFG, &tmp);
0ec449ee 2164 }
ad6a32e9
BP
2165
2166 if (boot_cpu_data.x86 == 0x10 &&
2167 boot_cpu_data.x86_model > 7 &&
2168 /* F3x180[EccSymbolSize]=1 => x8 symbols */
2169 tmp & BIT(25))
2170 pvt->syn_type = 8;
2171 else
2172 pvt->syn_type = 4;
2173
0ec449ee 2174 amd64_dump_misc_regs(pvt);
0ec449ee
DT
2175}
2176
2177/*
2178 * NOTE: CPU Revision Dependent code
2179 *
2180 * Input:
9d858bb1 2181 * @csrow_nr ChipSelect Row Number (0..pvt->cs_count-1)
0ec449ee
DT
2182 * k8 private pointer to -->
2183 * DRAM Bank Address mapping register
2184 * node_id
2185 * DCL register where dual_channel_active is
2186 *
2187 * The DBAM register consists of 4 sets of 4 bits each definitions:
2188 *
2189 * Bits: CSROWs
2190 * 0-3 CSROWs 0 and 1
2191 * 4-7 CSROWs 2 and 3
2192 * 8-11 CSROWs 4 and 5
2193 * 12-15 CSROWs 6 and 7
2194 *
2195 * Values range from: 0 to 15
2196 * The meaning of the values depends on CPU revision and dual-channel state,
2197 * see relevant BKDG more info.
2198 *
2199 * The memory controller provides for total of only 8 CSROWs in its current
2200 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2201 * single channel or two (2) DIMMs in dual channel mode.
2202 *
2203 * The following code logic collapses the various tables for CSROW based on CPU
2204 * revision.
2205 *
2206 * Returns:
2207 * The number of PAGE_SIZE pages on the specified CSROW number it
2208 * encompasses
2209 *
2210 */
2211static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
2212{
1433eb99 2213 u32 cs_mode, nr_pages;
0ec449ee
DT
2214
2215 /*
2216 * The math on this doesn't look right on the surface because x/2*4 can
2217 * be simplified to x*2 but this expression makes use of the fact that
2218 * it is integral math where 1/2=0. This intermediate value becomes the
2219 * number of bits to shift the DBAM register to extract the proper CSROW
2220 * field.
2221 */
1433eb99 2222 cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
0ec449ee 2223
1433eb99 2224 nr_pages = pvt->ops->dbam_to_cs(pvt, cs_mode) << (20 - PAGE_SHIFT);
0ec449ee
DT
2225
2226 /*
2227 * If dual channel then double the memory size of single channel.
2228 * Channel count is 1 or 2
2229 */
2230 nr_pages <<= (pvt->channel_count - 1);
2231
1433eb99 2232 debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
0ec449ee
DT
2233 debugf0(" nr_pages= %u channel-count = %d\n",
2234 nr_pages, pvt->channel_count);
2235
2236 return nr_pages;
2237}
2238
2239/*
2240 * Initialize the array of csrow attribute instances, based on the values
2241 * from pci config hardware registers.
2242 */
2243static int amd64_init_csrows(struct mem_ctl_info *mci)
2244{
2245 struct csrow_info *csrow;
2246 struct amd64_pvt *pvt;
2247 u64 input_addr_min, input_addr_max, sys_addr;
6ba5dcdc 2248 int i, empty = 1;
0ec449ee
DT
2249
2250 pvt = mci->pvt_info;
2251
6ba5dcdc 2252 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &pvt->nbcfg);
0ec449ee
DT
2253
2254 debugf0("NBCFG= 0x%x CHIPKILL= %s DRAM ECC= %s\n", pvt->nbcfg,
2255 (pvt->nbcfg & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2256 (pvt->nbcfg & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled"
2257 );
2258
9d858bb1 2259 for (i = 0; i < pvt->cs_count; i++) {
0ec449ee
DT
2260 csrow = &mci->csrows[i];
2261
2262 if ((pvt->dcsb0[i] & K8_DCSB_CS_ENABLE) == 0) {
2263 debugf1("----CSROW %d EMPTY for node %d\n", i,
2264 pvt->mc_node_id);
2265 continue;
2266 }
2267
2268 debugf1("----CSROW %d VALID for MC node %d\n",
2269 i, pvt->mc_node_id);
2270
2271 empty = 0;
2272 csrow->nr_pages = amd64_csrow_nr_pages(i, pvt);
2273 find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
2274 sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
2275 csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
2276 sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
2277 csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
2278 csrow->page_mask = ~mask_from_dct_mask(pvt, i);
2279 /* 8 bytes of resolution */
2280
2281 csrow->mtype = amd64_determine_memory_type(pvt);
2282
2283 debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
2284 debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
2285 (unsigned long)input_addr_min,
2286 (unsigned long)input_addr_max);
2287 debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
2288 (unsigned long)sys_addr, csrow->page_mask);
2289 debugf1(" nr_pages: %u first_page: 0x%lx "
2290 "last_page: 0x%lx\n",
2291 (unsigned)csrow->nr_pages,
2292 csrow->first_page, csrow->last_page);
2293
2294 /*
2295 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2296 */
2297 if (pvt->nbcfg & K8_NBCFG_ECC_ENABLE)
2298 csrow->edac_mode =
2299 (pvt->nbcfg & K8_NBCFG_CHIPKILL) ?
2300 EDAC_S4ECD4ED : EDAC_SECDED;
2301 else
2302 csrow->edac_mode = EDAC_NONE;
2303 }
2304
2305 return empty;
2306}
d27bf6fa 2307
f6d6ae96
BP
2308/* get all cores on this DCT */
2309static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, int nid)
2310{
2311 int cpu;
2312
2313 for_each_online_cpu(cpu)
2314 if (amd_get_nb_id(cpu) == nid)
2315 cpumask_set_cpu(cpu, mask);
2316}
2317
2318/* check MCG_CTL on all the cpus on this node */
2319static bool amd64_nb_mce_bank_enabled_on_node(int nid)
2320{
2321 cpumask_var_t mask;
50542251 2322 int cpu, nbe;
f6d6ae96
BP
2323 bool ret = false;
2324
2325 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2326 amd64_printk(KERN_WARNING, "%s: error allocating mask\n",
2327 __func__);
2328 return false;
2329 }
2330
2331 get_cpus_on_this_dct_cpumask(mask, nid);
2332
f6d6ae96
BP
2333 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2334
2335 for_each_cpu(cpu, mask) {
50542251
BP
2336 struct msr *reg = per_cpu_ptr(msrs, cpu);
2337 nbe = reg->l & K8_MSR_MCGCTL_NBE;
f6d6ae96
BP
2338
2339 debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
50542251 2340 cpu, reg->q,
f6d6ae96
BP
2341 (nbe ? "enabled" : "disabled"));
2342
2343 if (!nbe)
2344 goto out;
f6d6ae96
BP
2345 }
2346 ret = true;
2347
2348out:
f6d6ae96
BP
2349 free_cpumask_var(mask);
2350 return ret;
2351}
2352
2353static int amd64_toggle_ecc_err_reporting(struct amd64_pvt *pvt, bool on)
2354{
2355 cpumask_var_t cmask;
50542251 2356 int cpu;
f6d6ae96
BP
2357
2358 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2359 amd64_printk(KERN_WARNING, "%s: error allocating mask\n",
2360 __func__);
2361 return false;
2362 }
2363
2364 get_cpus_on_this_dct_cpumask(cmask, pvt->mc_node_id);
2365
f6d6ae96
BP
2366 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2367
2368 for_each_cpu(cpu, cmask) {
2369
50542251
BP
2370 struct msr *reg = per_cpu_ptr(msrs, cpu);
2371
f6d6ae96 2372 if (on) {
50542251 2373 if (reg->l & K8_MSR_MCGCTL_NBE)
d95cf4de 2374 pvt->flags.nb_mce_enable = 1;
f6d6ae96 2375
50542251 2376 reg->l |= K8_MSR_MCGCTL_NBE;
f6d6ae96
BP
2377 } else {
2378 /*
d95cf4de 2379 * Turn off NB MCE reporting only when it was off before
f6d6ae96 2380 */
d95cf4de 2381 if (!pvt->flags.nb_mce_enable)
50542251 2382 reg->l &= ~K8_MSR_MCGCTL_NBE;
f6d6ae96 2383 }
f6d6ae96
BP
2384 }
2385 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2386
f6d6ae96
BP
2387 free_cpumask_var(cmask);
2388
2389 return 0;
2390}
2391
f9431992
DT
2392static void amd64_enable_ecc_error_reporting(struct mem_ctl_info *mci)
2393{
2394 struct amd64_pvt *pvt = mci->pvt_info;
f6d6ae96 2395 u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
f9431992 2396
6ba5dcdc 2397 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCTL, &value);
f9431992
DT
2398
2399 /* turn on UECCn and CECCEn bits */
2400 pvt->old_nbctl = value & mask;
2401 pvt->nbctl_mcgctl_saved = 1;
2402
2403 value |= mask;
2404 pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
2405
f6d6ae96
BP
2406 if (amd64_toggle_ecc_err_reporting(pvt, ON))
2407 amd64_printk(KERN_WARNING, "Error enabling ECC reporting over "
2408 "MCGCTL!\n");
f9431992 2409
6ba5dcdc 2410 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
f9431992
DT
2411
2412 debugf0("NBCFG(1)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
2413 (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2414 (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
2415
2416 if (!(value & K8_NBCFG_ECC_ENABLE)) {
2417 amd64_printk(KERN_WARNING,
2418 "This node reports that DRAM ECC is "
2419 "currently Disabled; ENABLING now\n");
2420
d95cf4de
BP
2421 pvt->flags.nb_ecc_prev = 0;
2422
f9431992
DT
2423 /* Attempt to turn on DRAM ECC Enable */
2424 value |= K8_NBCFG_ECC_ENABLE;
2425 pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCFG, value);
2426
6ba5dcdc 2427 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
f9431992
DT
2428
2429 if (!(value & K8_NBCFG_ECC_ENABLE)) {
2430 amd64_printk(KERN_WARNING,
2431 "Hardware rejects Enabling DRAM ECC checking\n"
2432 "Check memory DIMM configuration\n");
2433 } else {
2434 amd64_printk(KERN_DEBUG,
2435 "Hardware accepted DRAM ECC Enable\n");
2436 }
d95cf4de
BP
2437 } else {
2438 pvt->flags.nb_ecc_prev = 1;
f9431992 2439 }
d95cf4de 2440
f9431992
DT
2441 debugf0("NBCFG(2)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
2442 (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2443 (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
2444
2445 pvt->ctl_error_info.nbcfg = value;
2446}
2447
2448static void amd64_restore_ecc_error_reporting(struct amd64_pvt *pvt)
2449{
f6d6ae96 2450 u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
f9431992
DT
2451
2452 if (!pvt->nbctl_mcgctl_saved)
2453 return;
2454
6ba5dcdc 2455 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCTL, &value);
f9431992
DT
2456 value &= ~mask;
2457 value |= pvt->old_nbctl;
2458
f9431992
DT
2459 pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
2460
d95cf4de
BP
2461 /* restore previous BIOS DRAM ECC "off" setting which we force-enabled */
2462 if (!pvt->flags.nb_ecc_prev) {
2463 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
2464 value &= ~K8_NBCFG_ECC_ENABLE;
2465 pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCFG, value);
2466 }
2467
2468 /* restore the NB Enable MCGCTL bit */
f6d6ae96 2469 if (amd64_toggle_ecc_err_reporting(pvt, OFF))
d95cf4de 2470 amd64_printk(KERN_WARNING, "Error restoring NB MCGCTL settings!\n");
f9431992
DT
2471}
2472
2473/*
2474 * EDAC requires that the BIOS have ECC enabled before taking over the
2475 * processing of ECC errors. This is because the BIOS can properly initialize
2476 * the memory system completely. A command line option allows to force-enable
2477 * hardware ECC later in amd64_enable_ecc_error_reporting().
2478 */
cab4d277
BP
2479static const char *ecc_msg =
2480 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2481 " Either enable ECC checking or force module loading by setting "
2482 "'ecc_enable_override'.\n"
2483 " (Note that use of the override may cause unknown side effects.)\n";
be3468e8 2484
f9431992
DT
2485static int amd64_check_ecc_enabled(struct amd64_pvt *pvt)
2486{
2487 u32 value;
06724535
BP
2488 u8 ecc_enabled = 0;
2489 bool nb_mce_en = false;
f9431992 2490
6ba5dcdc 2491 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
f9431992
DT
2492
2493 ecc_enabled = !!(value & K8_NBCFG_ECC_ENABLE);
be3468e8 2494 if (!ecc_enabled)
cab4d277 2495 amd64_printk(KERN_NOTICE, "This node reports that Memory ECC "
be3468e8
BP
2496 "is currently disabled, set F3x%x[22] (%s).\n",
2497 K8_NBCFG, pci_name(pvt->misc_f3_ctl));
2498 else
2499 amd64_printk(KERN_INFO, "ECC is enabled by BIOS.\n");
f9431992 2500
06724535
BP
2501 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(pvt->mc_node_id);
2502 if (!nb_mce_en)
cab4d277 2503 amd64_printk(KERN_NOTICE, "NB MCE bank disabled, set MSR "
be3468e8
BP
2504 "0x%08x[4] on node %d to enable.\n",
2505 MSR_IA32_MCG_CTL, pvt->mc_node_id);
f9431992 2506
06724535 2507 if (!ecc_enabled || !nb_mce_en) {
f9431992 2508 if (!ecc_enable_override) {
cab4d277 2509 amd64_printk(KERN_NOTICE, "%s", ecc_msg);
be3468e8 2510 return -ENODEV;
d95cf4de
BP
2511 } else {
2512 amd64_printk(KERN_WARNING, "Forcing ECC checking on!\n");
be3468e8 2513 }
43f5e687 2514 }
f9431992 2515
be3468e8 2516 return 0;
f9431992
DT
2517}
2518
7d6034d3
DT
2519struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
2520 ARRAY_SIZE(amd64_inj_attrs) +
2521 1];
2522
2523struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
2524
2525static void amd64_set_mc_sysfs_attributes(struct mem_ctl_info *mci)
2526{
2527 unsigned int i = 0, j = 0;
2528
2529 for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
2530 sysfs_attrs[i] = amd64_dbg_attrs[i];
2531
2532 for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
2533 sysfs_attrs[i] = amd64_inj_attrs[j];
2534
2535 sysfs_attrs[i] = terminator;
2536
2537 mci->mc_driver_sysfs_attributes = sysfs_attrs;
2538}
2539
2540static void amd64_setup_mci_misc_attributes(struct mem_ctl_info *mci)
2541{
2542 struct amd64_pvt *pvt = mci->pvt_info;
2543
2544 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2545 mci->edac_ctl_cap = EDAC_FLAG_NONE;
7d6034d3
DT
2546
2547 if (pvt->nbcap & K8_NBCAP_SECDED)
2548 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2549
2550 if (pvt->nbcap & K8_NBCAP_CHIPKILL)
2551 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2552
2553 mci->edac_cap = amd64_determine_edac_cap(pvt);
2554 mci->mod_name = EDAC_MOD_STR;
2555 mci->mod_ver = EDAC_AMD64_VERSION;
0092b20d 2556 mci->ctl_name = pvt->ctl_name;
7d6034d3
DT
2557 mci->dev_name = pci_name(pvt->dram_f2_ctl);
2558 mci->ctl_page_to_phys = NULL;
2559
7d6034d3
DT
2560 /* memory scrubber interface */
2561 mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2562 mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2563}
2564
0092b20d
BP
2565/*
2566 * returns a pointer to the family descriptor on success, NULL otherwise.
2567 */
2568static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
395ae783 2569{
0092b20d
BP
2570 u8 fam = boot_cpu_data.x86;
2571 struct amd64_family_type *fam_type = NULL;
2572
2573 switch (fam) {
395ae783 2574 case 0xf:
0092b20d 2575 fam_type = &amd64_family_types[K8_CPUS];
b8cfa02f 2576 pvt->ops = &amd64_family_types[K8_CPUS].ops;
0092b20d
BP
2577 pvt->ctl_name = fam_type->ctl_name;
2578 pvt->min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
395ae783
BP
2579 break;
2580 case 0x10:
0092b20d 2581 fam_type = &amd64_family_types[F10_CPUS];
b8cfa02f 2582 pvt->ops = &amd64_family_types[F10_CPUS].ops;
0092b20d
BP
2583 pvt->ctl_name = fam_type->ctl_name;
2584 pvt->min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
395ae783
BP
2585 break;
2586
2587 default:
2588 amd64_printk(KERN_ERR, "Unsupported family!\n");
0092b20d 2589 return NULL;
395ae783 2590 }
0092b20d 2591
b8cfa02f
BP
2592 pvt->ext_model = boot_cpu_data.x86_model >> 4;
2593
0092b20d
BP
2594 amd64_printk(KERN_INFO, "%s %s detected.\n", pvt->ctl_name,
2595 (fam == 0xf ?
2596 (pvt->ext_model >= K8_REV_F ? "revF or later"
2597 : "revE or earlier")
2598 : ""));
2599 return fam_type;
395ae783
BP
2600}
2601
7d6034d3
DT
2602/*
2603 * Init stuff for this DRAM Controller device.
2604 *
2605 * Due to a hardware feature on Fam10h CPUs, the Enable Extended Configuration
2606 * Space feature MUST be enabled on ALL Processors prior to actually reading
2607 * from the ECS registers. Since the loading of the module can occur on any
2608 * 'core', and cores don't 'see' all the other processors ECS data when the
2609 * others are NOT enabled. Our solution is to first enable ECS access in this
2610 * routine on all processors, gather some data in a amd64_pvt structure and
2611 * later come back in a finish-setup function to perform that final
2612 * initialization. See also amd64_init_2nd_stage() for that.
2613 */
b8cfa02f 2614static int amd64_probe_one_instance(struct pci_dev *dram_f2_ctl)
7d6034d3
DT
2615{
2616 struct amd64_pvt *pvt = NULL;
0092b20d 2617 struct amd64_family_type *fam_type = NULL;
7d6034d3
DT
2618 int err = 0, ret;
2619
2620 ret = -ENOMEM;
2621 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2622 if (!pvt)
2623 goto err_exit;
2624
b8cfa02f
BP
2625 pvt->mc_node_id = get_node_id(dram_f2_ctl);
2626 pvt->dram_f2_ctl = dram_f2_ctl;
7d6034d3 2627
395ae783 2628 ret = -EINVAL;
0092b20d
BP
2629 fam_type = amd64_per_family_init(pvt);
2630 if (!fam_type)
395ae783
BP
2631 goto err_free;
2632
7d6034d3 2633 ret = -ENODEV;
bbd0c1f6
BP
2634 err = amd64_reserve_mc_sibling_devices(pvt, fam_type->addr_f1_ctl,
2635 fam_type->misc_f3_ctl);
7d6034d3
DT
2636 if (err)
2637 goto err_free;
2638
2639 ret = -EINVAL;
2640 err = amd64_check_ecc_enabled(pvt);
2641 if (err)
2642 goto err_put;
2643
2644 /*
2645 * Key operation here: setup of HW prior to performing ops on it. Some
2646 * setup is required to access ECS data. After this is performed, the
2647 * 'teardown' function must be called upon error and normal exit paths.
2648 */
2649 if (boot_cpu_data.x86 >= 0x10)
2650 amd64_setup(pvt);
2651
2652 /*
2653 * Save the pointer to the private data for use in 2nd initialization
2654 * stage
2655 */
2656 pvt_lookup[pvt->mc_node_id] = pvt;
2657
2658 return 0;
2659
2660err_put:
2661 amd64_free_mc_sibling_devices(pvt);
2662
2663err_free:
2664 kfree(pvt);
2665
2666err_exit:
2667 return ret;
2668}
2669
2670/*
2671 * This is the finishing stage of the init code. Needs to be performed after all
2672 * MCs' hardware have been prepped for accessing extended config space.
2673 */
2674static int amd64_init_2nd_stage(struct amd64_pvt *pvt)
2675{
2676 int node_id = pvt->mc_node_id;
2677 struct mem_ctl_info *mci;
18ba54ac 2678 int ret = -ENODEV;
7d6034d3
DT
2679
2680 amd64_read_mc_registers(pvt);
2681
7d6034d3
DT
2682 /*
2683 * We need to determine how many memory channels there are. Then use
2684 * that information for calculating the size of the dynamic instance
2685 * tables in the 'mci' structure
2686 */
2687 pvt->channel_count = pvt->ops->early_channel_count(pvt);
2688 if (pvt->channel_count < 0)
2689 goto err_exit;
2690
2691 ret = -ENOMEM;
9d858bb1 2692 mci = edac_mc_alloc(0, pvt->cs_count, pvt->channel_count, node_id);
7d6034d3
DT
2693 if (!mci)
2694 goto err_exit;
2695
2696 mci->pvt_info = pvt;
2697
2698 mci->dev = &pvt->dram_f2_ctl->dev;
2699 amd64_setup_mci_misc_attributes(mci);
2700
2701 if (amd64_init_csrows(mci))
2702 mci->edac_cap = EDAC_FLAG_NONE;
2703
2704 amd64_enable_ecc_error_reporting(mci);
2705 amd64_set_mc_sysfs_attributes(mci);
2706
2707 ret = -ENODEV;
2708 if (edac_mc_add_mc(mci)) {
2709 debugf1("failed edac_mc_add_mc()\n");
2710 goto err_add_mc;
2711 }
2712
2713 mci_lookup[node_id] = mci;
2714 pvt_lookup[node_id] = NULL;
549d042d
BP
2715
2716 /* register stuff with EDAC MCE */
2717 if (report_gart_errors)
2718 amd_report_gart_errors(true);
2719
2720 amd_register_ecc_decoder(amd64_decode_bus_error);
2721
7d6034d3
DT
2722 return 0;
2723
2724err_add_mc:
2725 edac_mc_free(mci);
2726
2727err_exit:
2728 debugf0("failure to init 2nd stage: ret=%d\n", ret);
2729
2730 amd64_restore_ecc_error_reporting(pvt);
2731
2732 if (boot_cpu_data.x86 > 0xf)
2733 amd64_teardown(pvt);
2734
2735 amd64_free_mc_sibling_devices(pvt);
2736
2737 kfree(pvt_lookup[pvt->mc_node_id]);
2738 pvt_lookup[node_id] = NULL;
2739
2740 return ret;
2741}
2742
2743
2744static int __devinit amd64_init_one_instance(struct pci_dev *pdev,
b8cfa02f 2745 const struct pci_device_id *mc_type)
7d6034d3
DT
2746{
2747 int ret = 0;
2748
0092b20d 2749 debugf0("(MC node=%d)\n", get_node_id(pdev));
7d6034d3
DT
2750
2751 ret = pci_enable_device(pdev);
b8cfa02f
BP
2752 if (ret < 0) {
2753 debugf0("ret=%d\n", ret);
2754 return -EIO;
2755 }
7d6034d3 2756
b8cfa02f 2757 ret = amd64_probe_one_instance(pdev);
7d6034d3 2758 if (ret < 0)
b8cfa02f
BP
2759 amd64_printk(KERN_ERR, "Error probing instance: %d\n",
2760 get_node_id(pdev));
7d6034d3
DT
2761
2762 return ret;
2763}
2764
2765static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
2766{
2767 struct mem_ctl_info *mci;
2768 struct amd64_pvt *pvt;
2769
2770 /* Remove from EDAC CORE tracking list */
2771 mci = edac_mc_del_mc(&pdev->dev);
2772 if (!mci)
2773 return;
2774
2775 pvt = mci->pvt_info;
2776
2777 amd64_restore_ecc_error_reporting(pvt);
2778
2779 if (boot_cpu_data.x86 > 0xf)
2780 amd64_teardown(pvt);
2781
2782 amd64_free_mc_sibling_devices(pvt);
2783
549d042d
BP
2784 /* unregister from EDAC MCE */
2785 amd_report_gart_errors(false);
2786 amd_unregister_ecc_decoder(amd64_decode_bus_error);
2787
7d6034d3 2788 /* Free the EDAC CORE resources */
8f68ed97
BP
2789 mci->pvt_info = NULL;
2790 mci_lookup[pvt->mc_node_id] = NULL;
2791
2792 kfree(pvt);
7d6034d3
DT
2793 edac_mc_free(mci);
2794}
2795
2796/*
2797 * This table is part of the interface for loading drivers for PCI devices. The
2798 * PCI core identifies what devices are on a system during boot, and then
2799 * inquiry this table to see if this driver is for a given device found.
2800 */
2801static const struct pci_device_id amd64_pci_table[] __devinitdata = {
2802 {
2803 .vendor = PCI_VENDOR_ID_AMD,
2804 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2805 .subvendor = PCI_ANY_ID,
2806 .subdevice = PCI_ANY_ID,
2807 .class = 0,
2808 .class_mask = 0,
7d6034d3
DT
2809 },
2810 {
2811 .vendor = PCI_VENDOR_ID_AMD,
2812 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2813 .subvendor = PCI_ANY_ID,
2814 .subdevice = PCI_ANY_ID,
2815 .class = 0,
2816 .class_mask = 0,
7d6034d3 2817 },
7d6034d3
DT
2818 {0, }
2819};
2820MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2821
2822static struct pci_driver amd64_pci_driver = {
2823 .name = EDAC_MOD_STR,
2824 .probe = amd64_init_one_instance,
2825 .remove = __devexit_p(amd64_remove_one_instance),
2826 .id_table = amd64_pci_table,
2827};
2828
2829static void amd64_setup_pci_device(void)
2830{
2831 struct mem_ctl_info *mci;
2832 struct amd64_pvt *pvt;
2833
2834 if (amd64_ctl_pci)
2835 return;
2836
2837 mci = mci_lookup[0];
2838 if (mci) {
2839
2840 pvt = mci->pvt_info;
2841 amd64_ctl_pci =
2842 edac_pci_create_generic_ctl(&pvt->dram_f2_ctl->dev,
2843 EDAC_MOD_STR);
2844
2845 if (!amd64_ctl_pci) {
2846 pr_warning("%s(): Unable to create PCI control\n",
2847 __func__);
2848
2849 pr_warning("%s(): PCI error report via EDAC not set\n",
2850 __func__);
2851 }
2852 }
2853}
2854
2855static int __init amd64_edac_init(void)
2856{
2857 int nb, err = -ENODEV;
56b34b91 2858 bool load_ok = false;
7d6034d3
DT
2859
2860 edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");
2861
2862 opstate_init();
2863
9653a5c7 2864 if (amd_cache_northbridges() < 0)
56b34b91 2865 goto err_ret;
7d6034d3 2866
50542251 2867 msrs = msrs_alloc();
56b34b91
BP
2868 if (!msrs)
2869 goto err_ret;
50542251 2870
7d6034d3
DT
2871 err = pci_register_driver(&amd64_pci_driver);
2872 if (err)
56b34b91 2873 goto err_pci;
7d6034d3
DT
2874
2875 /*
2876 * At this point, the array 'pvt_lookup[]' contains pointers to alloc'd
2877 * amd64_pvt structs. These will be used in the 2nd stage init function
2878 * to finish initialization of the MC instances.
2879 */
56b34b91 2880 err = -ENODEV;
9653a5c7 2881 for (nb = 0; nb < amd_nb_num(); nb++) {
7d6034d3
DT
2882 if (!pvt_lookup[nb])
2883 continue;
2884
2885 err = amd64_init_2nd_stage(pvt_lookup[nb]);
2886 if (err)
37da0450 2887 goto err_2nd_stage;
7d6034d3 2888
56b34b91
BP
2889 load_ok = true;
2890 }
7d6034d3 2891
56b34b91
BP
2892 if (load_ok) {
2893 amd64_setup_pci_device();
2894 return 0;
2895 }
7d6034d3 2896
37da0450 2897err_2nd_stage:
7d6034d3 2898 pci_unregister_driver(&amd64_pci_driver);
56b34b91
BP
2899err_pci:
2900 msrs_free(msrs);
2901 msrs = NULL;
2902err_ret:
7d6034d3
DT
2903 return err;
2904}
2905
2906static void __exit amd64_edac_exit(void)
2907{
2908 if (amd64_ctl_pci)
2909 edac_pci_release_generic_ctl(amd64_ctl_pci);
2910
2911 pci_unregister_driver(&amd64_pci_driver);
50542251
BP
2912
2913 msrs_free(msrs);
2914 msrs = NULL;
7d6034d3
DT
2915}
2916
2917module_init(amd64_edac_init);
2918module_exit(amd64_edac_exit);
2919
2920MODULE_LICENSE("GPL");
2921MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
2922 "Dave Peterson, Thayne Harbaugh");
2923MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
2924 EDAC_AMD64_VERSION);
2925
2926module_param(edac_op_state, int, 0444);
2927MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
This page took 0.272854 seconds and 5 git commands to generate.