amd64_edac: Cleanup NBCTL code
[deliverable/linux.git] / drivers / edac / amd64_edac.c
CommitLineData
2bc65418 1#include "amd64_edac.h"
23ac4ae8 2#include <asm/amd_nb.h>
2bc65418
DT
3
4static struct edac_pci_ctl_info *amd64_ctl_pci;
5
6static int report_gart_errors;
7module_param(report_gart_errors, int, 0644);
8
9/*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
12 */
13static int ecc_enable_override;
14module_param(ecc_enable_override, int, 0644);
15
a29d8b8e 16static struct msr __percpu *msrs;
50542251 17
360b7f3c
BP
18/*
19 * count successfully initialized driver instances for setup_pci_device()
20 */
21static atomic_t drv_instances = ATOMIC_INIT(0);
22
cc4d8860
BP
23/* Per-node driver instances */
24static struct mem_ctl_info **mcis;
ae7bb7c6 25static struct ecc_settings **ecc_stngs;
2bc65418 26
b70ef010 27/*
1433eb99
BP
28 * Address to DRAM bank mapping: see F2x80 for K8 and F2x[1,0]80 for Fam10 and
29 * later.
b70ef010 30 */
1433eb99
BP
31static int ddr2_dbam_revCG[] = {
32 [0] = 32,
33 [1] = 64,
34 [2] = 128,
35 [3] = 256,
36 [4] = 512,
37 [5] = 1024,
38 [6] = 2048,
39};
40
41static int ddr2_dbam_revD[] = {
42 [0] = 32,
43 [1] = 64,
44 [2 ... 3] = 128,
45 [4] = 256,
46 [5] = 512,
47 [6] = 256,
48 [7] = 512,
49 [8 ... 9] = 1024,
50 [10] = 2048,
51};
52
53static int ddr2_dbam[] = { [0] = 128,
54 [1] = 256,
55 [2 ... 4] = 512,
56 [5 ... 6] = 1024,
57 [7 ... 8] = 2048,
58 [9 ... 10] = 4096,
59 [11] = 8192,
60};
61
62static int ddr3_dbam[] = { [0] = -1,
63 [1] = 256,
64 [2] = 512,
65 [3 ... 4] = -1,
66 [5 ... 6] = 1024,
67 [7 ... 8] = 2048,
68 [9 ... 10] = 4096,
24f9a7fe 69 [11] = 8192,
b70ef010
BP
70};
71
72/*
73 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
74 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
75 * or higher value'.
76 *
77 *FIXME: Produce a better mapping/linearisation.
78 */
79
39094443
BP
80
81struct scrubrate {
82 u32 scrubval; /* bit pattern for scrub rate */
83 u32 bandwidth; /* bandwidth consumed (bytes/sec) */
84} scrubrates[] = {
b70ef010
BP
85 { 0x01, 1600000000UL},
86 { 0x02, 800000000UL},
87 { 0x03, 400000000UL},
88 { 0x04, 200000000UL},
89 { 0x05, 100000000UL},
90 { 0x06, 50000000UL},
91 { 0x07, 25000000UL},
92 { 0x08, 12284069UL},
93 { 0x09, 6274509UL},
94 { 0x0A, 3121951UL},
95 { 0x0B, 1560975UL},
96 { 0x0C, 781440UL},
97 { 0x0D, 390720UL},
98 { 0x0E, 195300UL},
99 { 0x0F, 97650UL},
100 { 0x10, 48854UL},
101 { 0x11, 24427UL},
102 { 0x12, 12213UL},
103 { 0x13, 6101UL},
104 { 0x14, 3051UL},
105 { 0x15, 1523UL},
106 { 0x16, 761UL},
107 { 0x00, 0UL}, /* scrubbing off */
108};
109
b2b0c605
BP
110static int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
111 u32 *val, const char *func)
112{
113 int err = 0;
114
115 err = pci_read_config_dword(pdev, offset, val);
116 if (err)
117 amd64_warn("%s: error reading F%dx%03x.\n",
118 func, PCI_FUNC(pdev->devfn), offset);
119
120 return err;
121}
122
123int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
124 u32 val, const char *func)
125{
126 int err = 0;
127
128 err = pci_write_config_dword(pdev, offset, val);
129 if (err)
130 amd64_warn("%s: error writing to F%dx%03x.\n",
131 func, PCI_FUNC(pdev->devfn), offset);
132
133 return err;
134}
135
136/*
137 *
138 * Depending on the family, F2 DCT reads need special handling:
139 *
140 * K8: has a single DCT only
141 *
142 * F10h: each DCT has its own set of regs
143 * DCT0 -> F2x040..
144 * DCT1 -> F2x140..
145 *
146 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
147 *
148 */
149static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
150 const char *func)
151{
152 if (addr >= 0x100)
153 return -EINVAL;
154
155 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
156}
157
158static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
159 const char *func)
160{
161 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
162}
163
164static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
165 const char *func)
166{
167 u32 reg = 0;
168 u8 dct = 0;
169
170 if (addr >= 0x140 && addr <= 0x1a0) {
171 dct = 1;
172 addr -= 0x100;
173 }
174
175 amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
176 reg &= 0xfffffffe;
177 reg |= dct;
178 amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
179
180 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
181}
182
2bc65418
DT
183/*
184 * Memory scrubber control interface. For K8, memory scrubbing is handled by
185 * hardware and can involve L2 cache, dcache as well as the main memory. With
186 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
187 * functionality.
188 *
189 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
190 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
191 * bytes/sec for the setting.
192 *
193 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
194 * other archs, we might not have access to the caches directly.
195 */
196
197/*
198 * scan the scrub rate mapping table for a close or matching bandwidth value to
199 * issue. If requested is too big, then use last maximum value found.
200 */
395ae783 201static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
2bc65418
DT
202{
203 u32 scrubval;
204 int i;
205
206 /*
207 * map the configured rate (new_bw) to a value specific to the AMD64
208 * memory controller and apply to register. Search for the first
209 * bandwidth entry that is greater or equal than the setting requested
210 * and program that. If at last entry, turn off DRAM scrubbing.
211 */
212 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
213 /*
214 * skip scrub rates which aren't recommended
215 * (see F10 BKDG, F3x58)
216 */
395ae783 217 if (scrubrates[i].scrubval < min_rate)
2bc65418
DT
218 continue;
219
220 if (scrubrates[i].bandwidth <= new_bw)
221 break;
222
223 /*
224 * if no suitable bandwidth found, turn off DRAM scrubbing
225 * entirely by falling back to the last element in the
226 * scrubrates array.
227 */
228 }
229
230 scrubval = scrubrates[i].scrubval;
2bc65418
DT
231
232 pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F);
233
39094443
BP
234 if (scrubval)
235 return scrubrates[i].bandwidth;
236
2bc65418
DT
237 return 0;
238}
239
395ae783 240static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
2bc65418
DT
241{
242 struct amd64_pvt *pvt = mci->pvt_info;
2bc65418 243
8d5b5d9c 244 return __amd64_set_scrub_rate(pvt->F3, bw, pvt->min_scrubrate);
2bc65418
DT
245}
246
39094443 247static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
2bc65418
DT
248{
249 struct amd64_pvt *pvt = mci->pvt_info;
250 u32 scrubval = 0;
39094443 251 int i, retval = -EINVAL;
2bc65418 252
8d5b5d9c 253 amd64_read_pci_cfg(pvt->F3, K8_SCRCTRL, &scrubval);
2bc65418
DT
254
255 scrubval = scrubval & 0x001F;
256
24f9a7fe 257 amd64_debug("pci-read, sdram scrub control value: %d\n", scrubval);
2bc65418 258
926311fd 259 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
2bc65418 260 if (scrubrates[i].scrubval == scrubval) {
39094443 261 retval = scrubrates[i].bandwidth;
2bc65418
DT
262 break;
263 }
264 }
39094443 265 return retval;
2bc65418
DT
266}
267
6775763a 268/*
7f19bf75
BP
269 * returns true if the SysAddr given by sys_addr matches the
270 * DRAM base/limit associated with node_id
6775763a 271 */
7f19bf75 272static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, int nid)
6775763a 273{
7f19bf75 274 u64 addr;
6775763a
DT
275
276 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
277 * all ones if the most significant implemented address bit is 1.
278 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
279 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
280 * Application Programming.
281 */
282 addr = sys_addr & 0x000000ffffffffffull;
283
7f19bf75
BP
284 return ((addr >= get_dram_base(pvt, nid)) &&
285 (addr <= get_dram_limit(pvt, nid)));
6775763a
DT
286}
287
288/*
289 * Attempt to map a SysAddr to a node. On success, return a pointer to the
290 * mem_ctl_info structure for the node that the SysAddr maps to.
291 *
292 * On failure, return NULL.
293 */
294static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
295 u64 sys_addr)
296{
297 struct amd64_pvt *pvt;
298 int node_id;
299 u32 intlv_en, bits;
300
301 /*
302 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
303 * 3.4.4.2) registers to map the SysAddr to a node ID.
304 */
305 pvt = mci->pvt_info;
306
307 /*
308 * The value of this field should be the same for all DRAM Base
309 * registers. Therefore we arbitrarily choose to read it from the
310 * register for node 0.
311 */
7f19bf75 312 intlv_en = dram_intlv_en(pvt, 0);
6775763a
DT
313
314 if (intlv_en == 0) {
7f19bf75 315 for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
6775763a 316 if (amd64_base_limit_match(pvt, sys_addr, node_id))
8edc5445 317 goto found;
6775763a 318 }
8edc5445 319 goto err_no_match;
6775763a
DT
320 }
321
72f158fe
BP
322 if (unlikely((intlv_en != 0x01) &&
323 (intlv_en != 0x03) &&
324 (intlv_en != 0x07))) {
24f9a7fe 325 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
6775763a
DT
326 return NULL;
327 }
328
329 bits = (((u32) sys_addr) >> 12) & intlv_en;
330
331 for (node_id = 0; ; ) {
7f19bf75 332 if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
6775763a
DT
333 break; /* intlv_sel field matches */
334
7f19bf75 335 if (++node_id >= DRAM_RANGES)
6775763a
DT
336 goto err_no_match;
337 }
338
339 /* sanity test for sys_addr */
340 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
24f9a7fe
BP
341 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
342 "range for node %d with node interleaving enabled.\n",
343 __func__, sys_addr, node_id);
6775763a
DT
344 return NULL;
345 }
346
347found:
348 return edac_mc_find(node_id);
349
350err_no_match:
351 debugf2("sys_addr 0x%lx doesn't match any node\n",
352 (unsigned long)sys_addr);
353
354 return NULL;
355}
e2ce7255
DT
356
357/*
11c75ead
BP
358 * compute the CS base address of the @csrow on the DRAM controller @dct.
359 * For details see F2x[5C:40] in the processor's BKDG
e2ce7255 360 */
11c75ead
BP
361static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
362 u64 *base, u64 *mask)
e2ce7255 363{
11c75ead
BP
364 u64 csbase, csmask, base_bits, mask_bits;
365 u8 addr_shift;
e2ce7255 366
11c75ead
BP
367 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
368 csbase = pvt->csels[dct].csbases[csrow];
369 csmask = pvt->csels[dct].csmasks[csrow];
370 base_bits = GENMASK(21, 31) | GENMASK(9, 15);
371 mask_bits = GENMASK(21, 29) | GENMASK(9, 15);
372 addr_shift = 4;
373 } else {
374 csbase = pvt->csels[dct].csbases[csrow];
375 csmask = pvt->csels[dct].csmasks[csrow >> 1];
376 addr_shift = 8;
e2ce7255 377
11c75ead
BP
378 if (boot_cpu_data.x86 == 0x15)
379 base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13);
380 else
381 base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13);
382 }
e2ce7255 383
11c75ead 384 *base = (csbase & base_bits) << addr_shift;
e2ce7255 385
11c75ead
BP
386 *mask = ~0ULL;
387 /* poke holes for the csmask */
388 *mask &= ~(mask_bits << addr_shift);
389 /* OR them in */
390 *mask |= (csmask & mask_bits) << addr_shift;
e2ce7255
DT
391}
392
11c75ead
BP
393#define for_each_chip_select(i, dct, pvt) \
394 for (i = 0; i < pvt->csels[dct].b_cnt; i++)
395
396#define for_each_chip_select_mask(i, dct, pvt) \
397 for (i = 0; i < pvt->csels[dct].m_cnt; i++)
398
e2ce7255
DT
399/*
400 * @input_addr is an InputAddr associated with the node given by mci. Return the
401 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
402 */
403static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
404{
405 struct amd64_pvt *pvt;
406 int csrow;
407 u64 base, mask;
408
409 pvt = mci->pvt_info;
410
11c75ead
BP
411 for_each_chip_select(csrow, 0, pvt) {
412 if (!csrow_enabled(csrow, 0, pvt))
e2ce7255
DT
413 continue;
414
11c75ead
BP
415 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
416
417 mask = ~mask;
e2ce7255
DT
418
419 if ((input_addr & mask) == (base & mask)) {
420 debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
421 (unsigned long)input_addr, csrow,
422 pvt->mc_node_id);
423
424 return csrow;
425 }
426 }
e2ce7255
DT
427 debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
428 (unsigned long)input_addr, pvt->mc_node_id);
429
430 return -1;
431}
432
e2ce7255
DT
433/*
434 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
435 * for the node represented by mci. Info is passed back in *hole_base,
436 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
437 * info is invalid. Info may be invalid for either of the following reasons:
438 *
439 * - The revision of the node is not E or greater. In this case, the DRAM Hole
440 * Address Register does not exist.
441 *
442 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
443 * indicating that its contents are not valid.
444 *
445 * The values passed back in *hole_base, *hole_offset, and *hole_size are
446 * complete 32-bit values despite the fact that the bitfields in the DHAR
447 * only represent bits 31-24 of the base and offset values.
448 */
449int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
450 u64 *hole_offset, u64 *hole_size)
451{
452 struct amd64_pvt *pvt = mci->pvt_info;
453 u64 base;
454
455 /* only revE and later have the DRAM Hole Address Register */
1433eb99 456 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
e2ce7255
DT
457 debugf1(" revision %d for node %d does not support DHAR\n",
458 pvt->ext_model, pvt->mc_node_id);
459 return 1;
460 }
461
bc21fa57 462 /* valid for Fam10h and above */
c8e518d5 463 if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
e2ce7255
DT
464 debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
465 return 1;
466 }
467
c8e518d5 468 if (!dhar_valid(pvt)) {
e2ce7255
DT
469 debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
470 pvt->mc_node_id);
471 return 1;
472 }
473
474 /* This node has Memory Hoisting */
475
476 /* +------------------+--------------------+--------------------+-----
477 * | memory | DRAM hole | relocated |
478 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
479 * | | | DRAM hole |
480 * | | | [0x100000000, |
481 * | | | (0x100000000+ |
482 * | | | (0xffffffff-x))] |
483 * +------------------+--------------------+--------------------+-----
484 *
485 * Above is a diagram of physical memory showing the DRAM hole and the
486 * relocated addresses from the DRAM hole. As shown, the DRAM hole
487 * starts at address x (the base address) and extends through address
488 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
489 * addresses in the hole so that they start at 0x100000000.
490 */
491
bc21fa57 492 base = dhar_base(pvt);
e2ce7255
DT
493
494 *hole_base = base;
495 *hole_size = (0x1ull << 32) - base;
496
497 if (boot_cpu_data.x86 > 0xf)
bc21fa57 498 *hole_offset = f10_dhar_offset(pvt);
e2ce7255 499 else
bc21fa57 500 *hole_offset = k8_dhar_offset(pvt);
e2ce7255
DT
501
502 debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
503 pvt->mc_node_id, (unsigned long)*hole_base,
504 (unsigned long)*hole_offset, (unsigned long)*hole_size);
505
506 return 0;
507}
508EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
509
93c2df58
DT
510/*
511 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
512 * assumed that sys_addr maps to the node given by mci.
513 *
514 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
515 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
516 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
517 * then it is also involved in translating a SysAddr to a DramAddr. Sections
518 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
519 * These parts of the documentation are unclear. I interpret them as follows:
520 *
521 * When node n receives a SysAddr, it processes the SysAddr as follows:
522 *
523 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
524 * Limit registers for node n. If the SysAddr is not within the range
525 * specified by the base and limit values, then node n ignores the Sysaddr
526 * (since it does not map to node n). Otherwise continue to step 2 below.
527 *
528 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
529 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
530 * the range of relocated addresses (starting at 0x100000000) from the DRAM
531 * hole. If not, skip to step 3 below. Else get the value of the
532 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
533 * offset defined by this value from the SysAddr.
534 *
535 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
536 * Base register for node n. To obtain the DramAddr, subtract the base
537 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
538 */
539static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
540{
7f19bf75 541 struct amd64_pvt *pvt = mci->pvt_info;
93c2df58
DT
542 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
543 int ret = 0;
544
7f19bf75 545 dram_base = get_dram_base(pvt, pvt->mc_node_id);
93c2df58
DT
546
547 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
548 &hole_size);
549 if (!ret) {
550 if ((sys_addr >= (1ull << 32)) &&
551 (sys_addr < ((1ull << 32) + hole_size))) {
552 /* use DHAR to translate SysAddr to DramAddr */
553 dram_addr = sys_addr - hole_offset;
554
555 debugf2("using DHAR to translate SysAddr 0x%lx to "
556 "DramAddr 0x%lx\n",
557 (unsigned long)sys_addr,
558 (unsigned long)dram_addr);
559
560 return dram_addr;
561 }
562 }
563
564 /*
565 * Translate the SysAddr to a DramAddr as shown near the start of
566 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
567 * only deals with 40-bit values. Therefore we discard bits 63-40 of
568 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
569 * discard are all 1s. Otherwise the bits we discard are all 0s. See
570 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
571 * Programmer's Manual Volume 1 Application Programming.
572 */
f678b8cc 573 dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base;
93c2df58
DT
574
575 debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
576 "DramAddr 0x%lx\n", (unsigned long)sys_addr,
577 (unsigned long)dram_addr);
578 return dram_addr;
579}
580
581/*
582 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
583 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
584 * for node interleaving.
585 */
586static int num_node_interleave_bits(unsigned intlv_en)
587{
588 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
589 int n;
590
591 BUG_ON(intlv_en > 7);
592 n = intlv_shift_table[intlv_en];
593 return n;
594}
595
596/* Translate the DramAddr given by @dram_addr to an InputAddr. */
597static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
598{
599 struct amd64_pvt *pvt;
600 int intlv_shift;
601 u64 input_addr;
602
603 pvt = mci->pvt_info;
604
605 /*
606 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
607 * concerning translating a DramAddr to an InputAddr.
608 */
7f19bf75 609 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
f678b8cc
BP
610 input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) +
611 (dram_addr & 0xfff);
93c2df58
DT
612
613 debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
614 intlv_shift, (unsigned long)dram_addr,
615 (unsigned long)input_addr);
616
617 return input_addr;
618}
619
620/*
621 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
622 * assumed that @sys_addr maps to the node given by mci.
623 */
624static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
625{
626 u64 input_addr;
627
628 input_addr =
629 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
630
631 debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
632 (unsigned long)sys_addr, (unsigned long)input_addr);
633
634 return input_addr;
635}
636
637
638/*
639 * @input_addr is an InputAddr associated with the node represented by mci.
640 * Translate @input_addr to a DramAddr and return the result.
641 */
642static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
643{
644 struct amd64_pvt *pvt;
645 int node_id, intlv_shift;
646 u64 bits, dram_addr;
647 u32 intlv_sel;
648
649 /*
650 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
651 * shows how to translate a DramAddr to an InputAddr. Here we reverse
652 * this procedure. When translating from a DramAddr to an InputAddr, the
653 * bits used for node interleaving are discarded. Here we recover these
654 * bits from the IntlvSel field of the DRAM Limit register (section
655 * 3.4.4.2) for the node that input_addr is associated with.
656 */
657 pvt = mci->pvt_info;
658 node_id = pvt->mc_node_id;
659 BUG_ON((node_id < 0) || (node_id > 7));
660
7f19bf75 661 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
93c2df58
DT
662
663 if (intlv_shift == 0) {
664 debugf1(" InputAddr 0x%lx translates to DramAddr of "
665 "same value\n", (unsigned long)input_addr);
666
667 return input_addr;
668 }
669
f678b8cc
BP
670 bits = ((input_addr & GENMASK(12, 35)) << intlv_shift) +
671 (input_addr & 0xfff);
93c2df58 672
7f19bf75 673 intlv_sel = dram_intlv_sel(pvt, node_id) & ((1 << intlv_shift) - 1);
93c2df58
DT
674 dram_addr = bits + (intlv_sel << 12);
675
676 debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
677 "(%d node interleave bits)\n", (unsigned long)input_addr,
678 (unsigned long)dram_addr, intlv_shift);
679
680 return dram_addr;
681}
682
683/*
684 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
685 * @dram_addr to a SysAddr.
686 */
687static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
688{
689 struct amd64_pvt *pvt = mci->pvt_info;
7f19bf75 690 u64 hole_base, hole_offset, hole_size, base, sys_addr;
93c2df58
DT
691 int ret = 0;
692
693 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
694 &hole_size);
695 if (!ret) {
696 if ((dram_addr >= hole_base) &&
697 (dram_addr < (hole_base + hole_size))) {
698 sys_addr = dram_addr + hole_offset;
699
700 debugf1("using DHAR to translate DramAddr 0x%lx to "
701 "SysAddr 0x%lx\n", (unsigned long)dram_addr,
702 (unsigned long)sys_addr);
703
704 return sys_addr;
705 }
706 }
707
7f19bf75 708 base = get_dram_base(pvt, pvt->mc_node_id);
93c2df58
DT
709 sys_addr = dram_addr + base;
710
711 /*
712 * The sys_addr we have computed up to this point is a 40-bit value
713 * because the k8 deals with 40-bit values. However, the value we are
714 * supposed to return is a full 64-bit physical address. The AMD
715 * x86-64 architecture specifies that the most significant implemented
716 * address bit through bit 63 of a physical address must be either all
717 * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
718 * 64-bit value below. See section 3.4.2 of AMD publication 24592:
719 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
720 * Programming.
721 */
722 sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
723
724 debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
725 pvt->mc_node_id, (unsigned long)dram_addr,
726 (unsigned long)sys_addr);
727
728 return sys_addr;
729}
730
731/*
732 * @input_addr is an InputAddr associated with the node given by mci. Translate
733 * @input_addr to a SysAddr.
734 */
735static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
736 u64 input_addr)
737{
738 return dram_addr_to_sys_addr(mci,
739 input_addr_to_dram_addr(mci, input_addr));
740}
741
742/*
743 * Find the minimum and maximum InputAddr values that map to the given @csrow.
744 * Pass back these values in *input_addr_min and *input_addr_max.
745 */
746static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
747 u64 *input_addr_min, u64 *input_addr_max)
748{
749 struct amd64_pvt *pvt;
750 u64 base, mask;
751
752 pvt = mci->pvt_info;
11c75ead 753 BUG_ON((csrow < 0) || (csrow >= pvt->csels[0].b_cnt));
93c2df58 754
11c75ead 755 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
93c2df58
DT
756
757 *input_addr_min = base & ~mask;
11c75ead 758 *input_addr_max = base | mask;
93c2df58
DT
759}
760
93c2df58
DT
761/* Map the Error address to a PAGE and PAGE OFFSET. */
762static inline void error_address_to_page_and_offset(u64 error_address,
763 u32 *page, u32 *offset)
764{
765 *page = (u32) (error_address >> PAGE_SHIFT);
766 *offset = ((u32) error_address) & ~PAGE_MASK;
767}
768
769/*
770 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
771 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
772 * of a node that detected an ECC memory error. mci represents the node that
773 * the error address maps to (possibly different from the node that detected
774 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
775 * error.
776 */
777static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
778{
779 int csrow;
780
781 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
782
783 if (csrow == -1)
24f9a7fe
BP
784 amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
785 "address 0x%lx\n", (unsigned long)sys_addr);
93c2df58
DT
786 return csrow;
787}
e2ce7255 788
bfc04aec 789static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
2da11654 790
ad6a32e9
BP
791static u16 extract_syndrome(struct err_regs *err)
792{
793 return ((err->nbsh >> 15) & 0xff) | ((err->nbsl >> 16) & 0xff00);
794}
795
2da11654
DT
796/*
797 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
798 * are ECC capable.
799 */
800static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
801{
cb328507 802 u8 bit;
584fcff4 803 enum dev_type edac_cap = EDAC_FLAG_NONE;
2da11654 804
1433eb99 805 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
2da11654
DT
806 ? 19
807 : 17;
808
584fcff4 809 if (pvt->dclr0 & BIT(bit))
2da11654
DT
810 edac_cap = EDAC_FLAG_SECDED;
811
812 return edac_cap;
813}
814
815
8566c4df 816static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt);
2da11654 817
68798e17
BP
818static void amd64_dump_dramcfg_low(u32 dclr, int chan)
819{
820 debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
821
822 debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
823 (dclr & BIT(16)) ? "un" : "",
824 (dclr & BIT(19)) ? "yes" : "no");
825
826 debugf1(" PAR/ERR parity: %s\n",
827 (dclr & BIT(8)) ? "enabled" : "disabled");
828
cb328507
BP
829 if (boot_cpu_data.x86 == 0x10)
830 debugf1(" DCT 128bit mode width: %s\n",
831 (dclr & BIT(11)) ? "128b" : "64b");
68798e17
BP
832
833 debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
834 (dclr & BIT(12)) ? "yes" : "no",
835 (dclr & BIT(13)) ? "yes" : "no",
836 (dclr & BIT(14)) ? "yes" : "no",
837 (dclr & BIT(15)) ? "yes" : "no");
838}
839
2da11654 840/* Display and decode various NB registers for debug purposes. */
b2b0c605 841static void dump_misc_regs(struct amd64_pvt *pvt)
2da11654 842{
68798e17
BP
843 debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
844
845 debugf1(" NB two channel DRAM capable: %s\n",
846 (pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "yes" : "no");
2da11654 847
68798e17
BP
848 debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n",
849 (pvt->nbcap & K8_NBCAP_SECDED) ? "yes" : "no",
850 (pvt->nbcap & K8_NBCAP_CHIPKILL) ? "yes" : "no");
851
852 amd64_dump_dramcfg_low(pvt->dclr0, 0);
2da11654 853
8de1d91e 854 debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
2da11654 855
8de1d91e
BP
856 debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
857 "offset: 0x%08x\n",
bc21fa57
BP
858 pvt->dhar, dhar_base(pvt),
859 (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt)
860 : f10_dhar_offset(pvt));
2da11654 861
c8e518d5 862 debugf1(" DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
2da11654 863
4d796364
BP
864 amd64_debug_display_dimm_sizes(0, pvt);
865
8de1d91e 866 /* everything below this point is Fam10h and above */
4d796364 867 if (boot_cpu_data.x86 == 0xf)
2da11654 868 return;
4d796364
BP
869
870 amd64_debug_display_dimm_sizes(1, pvt);
2da11654 871
24f9a7fe 872 amd64_info("using %s syndromes.\n", ((pvt->syn_type == 8) ? "x8" : "x4"));
ad6a32e9 873
8de1d91e 874 /* Only if NOT ganged does dclr1 have valid info */
68798e17
BP
875 if (!dct_ganging_enabled(pvt))
876 amd64_dump_dramcfg_low(pvt->dclr1, 1);
2da11654
DT
877}
878
94be4bff 879/*
11c75ead 880 * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
94be4bff 881 */
11c75ead 882static void prep_chip_selects(struct amd64_pvt *pvt)
94be4bff 883{
1433eb99 884 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
11c75ead
BP
885 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
886 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
9d858bb1 887 } else {
11c75ead
BP
888 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
889 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
94be4bff
DT
890 }
891}
892
893/*
11c75ead 894 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
94be4bff 895 */
b2b0c605 896static void read_dct_base_mask(struct amd64_pvt *pvt)
94be4bff 897{
11c75ead 898 int cs;
94be4bff 899
11c75ead 900 prep_chip_selects(pvt);
94be4bff 901
11c75ead
BP
902 for_each_chip_select(cs, 0, pvt) {
903 u32 reg0 = DCSB0 + (cs * 4);
904 u32 reg1 = DCSB1 + (cs * 4);
905 u32 *base0 = &pvt->csels[0].csbases[cs];
906 u32 *base1 = &pvt->csels[1].csbases[cs];
b2b0c605 907
11c75ead 908 if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
94be4bff 909 debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
11c75ead 910 cs, *base0, reg0);
94be4bff 911
11c75ead
BP
912 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
913 continue;
b2b0c605 914
11c75ead
BP
915 if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
916 debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
917 cs, *base1, reg1);
94be4bff
DT
918 }
919
11c75ead
BP
920 for_each_chip_select_mask(cs, 0, pvt) {
921 u32 reg0 = DCSM0 + (cs * 4);
922 u32 reg1 = DCSM1 + (cs * 4);
923 u32 *mask0 = &pvt->csels[0].csmasks[cs];
924 u32 *mask1 = &pvt->csels[1].csmasks[cs];
b2b0c605 925
11c75ead 926 if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
94be4bff 927 debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
11c75ead 928 cs, *mask0, reg0);
94be4bff 929
11c75ead
BP
930 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
931 continue;
b2b0c605 932
11c75ead
BP
933 if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
934 debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
935 cs, *mask1, reg1);
94be4bff
DT
936 }
937}
938
24f9a7fe 939static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
94be4bff
DT
940{
941 enum mem_type type;
942
cb328507
BP
943 /* F15h supports only DDR3 */
944 if (boot_cpu_data.x86 >= 0x15)
945 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
946 else if (boot_cpu_data.x86 == 0x10 || pvt->ext_model >= K8_REV_F) {
6b4c0bde
BP
947 if (pvt->dchr0 & DDR3_MODE)
948 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
949 else
950 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
94be4bff 951 } else {
94be4bff
DT
952 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
953 }
954
24f9a7fe 955 amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
94be4bff
DT
956
957 return type;
958}
959
cb328507 960/* Get the number of DCT channels the memory controller is using. */
ddff876d
DT
961static int k8_early_channel_count(struct amd64_pvt *pvt)
962{
cb328507 963 int flag;
ddff876d 964
9f56da0e 965 if (pvt->ext_model >= K8_REV_F)
ddff876d
DT
966 /* RevF (NPT) and later */
967 flag = pvt->dclr0 & F10_WIDTH_128;
9f56da0e 968 else
ddff876d
DT
969 /* RevE and earlier */
970 flag = pvt->dclr0 & REVE_WIDTH_128;
ddff876d
DT
971
972 /* not used */
973 pvt->dclr1 = 0;
974
975 return (flag) ? 2 : 1;
976}
977
cb328507 978/* Extract the ERROR ADDRESS for the K8 CPUs */
ddff876d 979static u64 k8_get_error_address(struct mem_ctl_info *mci,
ef44cc4c 980 struct err_regs *info)
ddff876d
DT
981{
982 return (((u64) (info->nbeah & 0xff)) << 32) +
983 (info->nbeal & ~0x03);
984}
985
7f19bf75 986static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
ddff876d 987{
7f19bf75 988 u32 off = range << 3;
ddff876d 989
7f19bf75
BP
990 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
991 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
ddff876d 992
7f19bf75
BP
993 if (boot_cpu_data.x86 == 0xf)
994 return;
ddff876d 995
7f19bf75
BP
996 if (!dram_rw(pvt, range))
997 return;
ddff876d 998
7f19bf75
BP
999 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
1000 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
ddff876d
DT
1001}
1002
1003static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
ad6a32e9 1004 struct err_regs *err_info, u64 sys_addr)
ddff876d
DT
1005{
1006 struct mem_ctl_info *src_mci;
ddff876d
DT
1007 int channel, csrow;
1008 u32 page, offset;
ad6a32e9 1009 u16 syndrome;
ddff876d 1010
ad6a32e9 1011 syndrome = extract_syndrome(err_info);
ddff876d
DT
1012
1013 /* CHIPKILL enabled */
ad6a32e9 1014 if (err_info->nbcfg & K8_NBCFG_CHIPKILL) {
bfc04aec 1015 channel = get_channel_from_ecc_syndrome(mci, syndrome);
ddff876d
DT
1016 if (channel < 0) {
1017 /*
1018 * Syndrome didn't map, so we don't know which of the
1019 * 2 DIMMs is in error. So we need to ID 'both' of them
1020 * as suspect.
1021 */
24f9a7fe
BP
1022 amd64_mc_warn(mci, "unknown syndrome 0x%04x - possible "
1023 "error reporting race\n", syndrome);
ddff876d
DT
1024 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1025 return;
1026 }
1027 } else {
1028 /*
1029 * non-chipkill ecc mode
1030 *
1031 * The k8 documentation is unclear about how to determine the
1032 * channel number when using non-chipkill memory. This method
1033 * was obtained from email communication with someone at AMD.
1034 * (Wish the email was placed in this comment - norsk)
1035 */
44e9e2ee 1036 channel = ((sys_addr & BIT(3)) != 0);
ddff876d
DT
1037 }
1038
1039 /*
1040 * Find out which node the error address belongs to. This may be
1041 * different from the node that detected the error.
1042 */
44e9e2ee 1043 src_mci = find_mc_by_sys_addr(mci, sys_addr);
2cff18c2 1044 if (!src_mci) {
24f9a7fe 1045 amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
44e9e2ee 1046 (unsigned long)sys_addr);
ddff876d
DT
1047 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1048 return;
1049 }
1050
44e9e2ee
BP
1051 /* Now map the sys_addr to a CSROW */
1052 csrow = sys_addr_to_csrow(src_mci, sys_addr);
ddff876d
DT
1053 if (csrow < 0) {
1054 edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
1055 } else {
44e9e2ee 1056 error_address_to_page_and_offset(sys_addr, &page, &offset);
ddff876d
DT
1057
1058 edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
1059 channel, EDAC_MOD_STR);
1060 }
1061}
1062
1433eb99 1063static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
ddff876d 1064{
1433eb99 1065 int *dbam_map;
ddff876d 1066
1433eb99
BP
1067 if (pvt->ext_model >= K8_REV_F)
1068 dbam_map = ddr2_dbam;
1069 else if (pvt->ext_model >= K8_REV_D)
1070 dbam_map = ddr2_dbam_revD;
1071 else
1072 dbam_map = ddr2_dbam_revCG;
ddff876d 1073
1433eb99 1074 return dbam_map[cs_mode];
ddff876d
DT
1075}
1076
1afd3c98
DT
1077/*
1078 * Get the number of DCT channels in use.
1079 *
1080 * Return:
1081 * number of Memory Channels in operation
1082 * Pass back:
1083 * contents of the DCL0_LOW register
1084 */
1085static int f10_early_channel_count(struct amd64_pvt *pvt)
1086{
6ba5dcdc 1087 int i, j, channels = 0;
1afd3c98 1088
1afd3c98
DT
1089 /* If we are in 128 bit mode, then we are using 2 channels */
1090 if (pvt->dclr0 & F10_WIDTH_128) {
1afd3c98
DT
1091 channels = 2;
1092 return channels;
1093 }
1094
1095 /*
d16149e8
BP
1096 * Need to check if in unganged mode: In such, there are 2 channels,
1097 * but they are not in 128 bit mode and thus the above 'dclr0' status
1098 * bit will be OFF.
1afd3c98
DT
1099 *
1100 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1101 * their CSEnable bit on. If so, then SINGLE DIMM case.
1102 */
d16149e8 1103 debugf0("Data width is not 128 bits - need more decoding\n");
ddff876d 1104
1afd3c98
DT
1105 /*
1106 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1107 * is more than just one DIMM present in unganged mode. Need to check
1108 * both controllers since DIMMs can be placed in either one.
1109 */
525a1b20
BP
1110 for (i = 0; i < 2; i++) {
1111 u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1afd3c98 1112
57a30854
WW
1113 for (j = 0; j < 4; j++) {
1114 if (DBAM_DIMM(j, dbam) > 0) {
1115 channels++;
1116 break;
1117 }
1118 }
1afd3c98
DT
1119 }
1120
d16149e8
BP
1121 if (channels > 2)
1122 channels = 2;
1123
24f9a7fe 1124 amd64_info("MCT channel count: %d\n", channels);
1afd3c98
DT
1125
1126 return channels;
1afd3c98
DT
1127}
1128
1433eb99 1129static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
1afd3c98 1130{
1433eb99
BP
1131 int *dbam_map;
1132
1133 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1134 dbam_map = ddr3_dbam;
1135 else
1136 dbam_map = ddr2_dbam;
1137
1138 return dbam_map[cs_mode];
1afd3c98
DT
1139}
1140
1afd3c98 1141static u64 f10_get_error_address(struct mem_ctl_info *mci,
ef44cc4c 1142 struct err_regs *info)
1afd3c98
DT
1143{
1144 return (((u64) (info->nbeah & 0xffff)) << 32) +
1145 (info->nbeal & ~0x01);
1146}
1147
6163b5d4
DT
1148static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
1149{
6163b5d4 1150
78da121e
BP
1151 if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
1152 debugf0("F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
1153 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
72381bd5 1154
78da121e 1155 debugf0(" mode: %s, All DCTs on: %s\n",
72381bd5
BP
1156 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"),
1157 (dct_dram_enabled(pvt) ? "yes" : "no"));
1158
1159 if (!dct_ganging_enabled(pvt))
1160 debugf0(" Address range split per DCT: %s\n",
1161 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1162
78da121e 1163 debugf0(" data interleave for ECC: %s, "
72381bd5
BP
1164 "DRAM cleared since last warm reset: %s\n",
1165 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1166 (dct_memory_cleared(pvt) ? "yes" : "no"));
1167
78da121e
BP
1168 debugf0(" channel interleave: %s, "
1169 "interleave bits selector: 0x%x\n",
72381bd5 1170 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
6163b5d4
DT
1171 dct_sel_interleave_addr(pvt));
1172 }
1173
78da121e 1174 amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
6163b5d4
DT
1175}
1176
f71d0a05 1177/*
229a7a11 1178 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
f71d0a05
DT
1179 * Interleaving Modes.
1180 */
11c75ead 1181static u8 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
229a7a11 1182 bool hi_range_sel, u8 intlv_en)
6163b5d4 1183{
78da121e 1184 u32 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
6163b5d4
DT
1185
1186 if (dct_ganging_enabled(pvt))
229a7a11 1187 return 0;
6163b5d4 1188
229a7a11
BP
1189 if (hi_range_sel)
1190 return dct_sel_high;
6163b5d4 1191
229a7a11
BP
1192 /*
1193 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1194 */
1195 if (dct_interleave_enabled(pvt)) {
1196 u8 intlv_addr = dct_sel_interleave_addr(pvt);
1197
1198 /* return DCT select function: 0=DCT0, 1=DCT1 */
1199 if (!intlv_addr)
1200 return sys_addr >> 6 & 1;
1201
1202 if (intlv_addr & 0x2) {
1203 u8 shift = intlv_addr & 0x1 ? 9 : 6;
1204 u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1205
1206 return ((sys_addr >> shift) & 1) ^ temp;
1207 }
1208
1209 return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
1210 }
1211
1212 if (dct_high_range_enabled(pvt))
1213 return ~dct_sel_high & 1;
6163b5d4
DT
1214
1215 return 0;
1216}
1217
c8e518d5
BP
1218/* Convert the sys_addr to the normalized DCT address */
1219static u64 f10_get_norm_dct_addr(struct amd64_pvt *pvt, int range,
1220 u64 sys_addr, bool hi_rng,
1221 u32 dct_sel_base_addr)
6163b5d4
DT
1222{
1223 u64 chan_off;
c8e518d5
BP
1224 u64 dram_base = get_dram_base(pvt, range);
1225 u64 hole_off = f10_dhar_offset(pvt);
1226 u32 hole_valid = dhar_valid(pvt);
1227 u64 dct_sel_base_off = (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
6163b5d4 1228
c8e518d5
BP
1229 if (hi_rng) {
1230 /*
1231 * if
1232 * base address of high range is below 4Gb
1233 * (bits [47:27] at [31:11])
1234 * DRAM address space on this DCT is hoisted above 4Gb &&
1235 * sys_addr > 4Gb
1236 *
1237 * remove hole offset from sys_addr
1238 * else
1239 * remove high range offset from sys_addr
1240 */
1241 if ((!(dct_sel_base_addr >> 16) ||
1242 dct_sel_base_addr < dhar_base(pvt)) &&
1243 hole_valid &&
1244 (sys_addr >= BIT_64(32)))
bc21fa57 1245 chan_off = hole_off;
6163b5d4
DT
1246 else
1247 chan_off = dct_sel_base_off;
1248 } else {
c8e518d5
BP
1249 /*
1250 * if
1251 * we have a valid hole &&
1252 * sys_addr > 4Gb
1253 *
1254 * remove hole
1255 * else
1256 * remove dram base to normalize to DCT address
1257 */
1258 if (hole_valid && (sys_addr >= BIT_64(32)))
bc21fa57 1259 chan_off = hole_off;
6163b5d4 1260 else
c8e518d5 1261 chan_off = dram_base;
6163b5d4
DT
1262 }
1263
c8e518d5 1264 return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47));
6163b5d4
DT
1265}
1266
1267/* Hack for the time being - Can we get this from BIOS?? */
1268#define CH0SPARE_RANK 0
1269#define CH1SPARE_RANK 1
1270
1271/*
1272 * checks if the csrow passed in is marked as SPARED, if so returns the new
1273 * spare row
1274 */
11c75ead 1275static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
6163b5d4
DT
1276{
1277 u32 swap_done;
1278 u32 bad_dram_cs;
1279
1280 /* Depending on channel, isolate respective SPARING info */
11c75ead 1281 if (dct) {
6163b5d4
DT
1282 swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare);
1283 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare);
1284 if (swap_done && (csrow == bad_dram_cs))
1285 csrow = CH1SPARE_RANK;
1286 } else {
1287 swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare);
1288 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare);
1289 if (swap_done && (csrow == bad_dram_cs))
1290 csrow = CH0SPARE_RANK;
1291 }
1292 return csrow;
1293}
1294
1295/*
1296 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1297 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1298 *
1299 * Return:
1300 * -EINVAL: NOT FOUND
1301 * 0..csrow = Chip-Select Row
1302 */
11c75ead 1303static int f10_lookup_addr_in_dct(u64 in_addr, u32 nid, u8 dct)
6163b5d4
DT
1304{
1305 struct mem_ctl_info *mci;
1306 struct amd64_pvt *pvt;
11c75ead 1307 u64 cs_base, cs_mask;
6163b5d4
DT
1308 int cs_found = -EINVAL;
1309 int csrow;
1310
cc4d8860 1311 mci = mcis[nid];
6163b5d4
DT
1312 if (!mci)
1313 return cs_found;
1314
1315 pvt = mci->pvt_info;
1316
11c75ead 1317 debugf1("input addr: 0x%llx, DCT: %d\n", in_addr, dct);
6163b5d4 1318
11c75ead
BP
1319 for_each_chip_select(csrow, dct, pvt) {
1320 if (!csrow_enabled(csrow, dct, pvt))
6163b5d4
DT
1321 continue;
1322
11c75ead 1323 get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
6163b5d4 1324
11c75ead
BP
1325 debugf1(" CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
1326 csrow, cs_base, cs_mask);
6163b5d4 1327
11c75ead 1328 cs_mask = ~cs_mask;
6163b5d4 1329
11c75ead
BP
1330 debugf1(" (InputAddr & ~CSMask)=0x%llx "
1331 "(CSBase & ~CSMask)=0x%llx\n",
1332 (in_addr & cs_mask), (cs_base & cs_mask));
6163b5d4 1333
11c75ead
BP
1334 if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
1335 cs_found = f10_process_possible_spare(pvt, dct, csrow);
6163b5d4
DT
1336
1337 debugf1(" MATCH csrow=%d\n", cs_found);
1338 break;
1339 }
1340 }
1341 return cs_found;
1342}
1343
f71d0a05 1344/* For a given @dram_range, check if @sys_addr falls within it. */
7f19bf75 1345static int f10_match_to_this_node(struct amd64_pvt *pvt, int range,
f71d0a05
DT
1346 u64 sys_addr, int *nid, int *chan_sel)
1347{
229a7a11 1348 int cs_found = -EINVAL;
c8e518d5
BP
1349 u64 chan_addr;
1350 u32 tmp, dct_sel_base;
11c75ead 1351 u8 channel;
229a7a11 1352 bool high_range = false;
f71d0a05 1353
7f19bf75 1354 u8 node_id = dram_dst_node(pvt, range);
229a7a11 1355 u8 intlv_en = dram_intlv_en(pvt, range);
7f19bf75 1356 u32 intlv_sel = dram_intlv_sel(pvt, range);
f71d0a05 1357
c8e518d5
BP
1358 debugf1("(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1359 range, sys_addr, get_dram_limit(pvt, range));
f71d0a05 1360
e726f3c3 1361 if (intlv_en &&
f71d0a05
DT
1362 (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1363 return -EINVAL;
1364
1365 dct_sel_base = dct_sel_baseaddr(pvt);
1366
1367 /*
1368 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1369 * select between DCT0 and DCT1.
1370 */
1371 if (dct_high_range_enabled(pvt) &&
1372 !dct_ganging_enabled(pvt) &&
1373 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
229a7a11 1374 high_range = true;
f71d0a05
DT
1375
1376 channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);
1377
c8e518d5
BP
1378 chan_addr = f10_get_norm_dct_addr(pvt, range, sys_addr,
1379 high_range, dct_sel_base);
f71d0a05 1380
f678b8cc 1381 /* remove Node ID (in case of node interleaving) */
f71d0a05
DT
1382 tmp = chan_addr & 0xFC0;
1383
f678b8cc 1384 chan_addr = ((chan_addr >> hweight8(intlv_en)) & GENMASK(12, 47)) | tmp;
f71d0a05
DT
1385
1386 /* remove channel interleave and hash */
1387 if (dct_interleave_enabled(pvt) &&
1388 !dct_high_range_enabled(pvt) &&
1389 !dct_ganging_enabled(pvt)) {
1390 if (dct_sel_interleave_addr(pvt) != 1)
f678b8cc 1391 chan_addr = (chan_addr >> 1) & GENMASK(6, 63);
f71d0a05
DT
1392 else {
1393 tmp = chan_addr & 0xFC0;
f678b8cc 1394 chan_addr = ((chan_addr & GENMASK(14, 63)) >> 1) | tmp;
f71d0a05
DT
1395 }
1396 }
1397
11c75ead 1398 debugf1(" (ChannelAddrLong=0x%llx)\n", chan_addr);
f71d0a05 1399
11c75ead 1400 cs_found = f10_lookup_addr_in_dct(chan_addr, node_id, channel);
f71d0a05
DT
1401
1402 if (cs_found >= 0) {
1403 *nid = node_id;
1404 *chan_sel = channel;
1405 }
1406 return cs_found;
1407}
1408
1409static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
1410 int *node, int *chan_sel)
1411{
7f19bf75 1412 int range, cs_found = -EINVAL;
f71d0a05 1413
7f19bf75 1414 for (range = 0; range < DRAM_RANGES; range++) {
f71d0a05 1415
7f19bf75 1416 if (!dram_rw(pvt, range))
f71d0a05
DT
1417 continue;
1418
7f19bf75
BP
1419 if ((get_dram_base(pvt, range) <= sys_addr) &&
1420 (get_dram_limit(pvt, range) >= sys_addr)) {
f71d0a05 1421
7f19bf75 1422 cs_found = f10_match_to_this_node(pvt, range,
f71d0a05
DT
1423 sys_addr, node,
1424 chan_sel);
1425 if (cs_found >= 0)
1426 break;
1427 }
1428 }
1429 return cs_found;
1430}
1431
1432/*
bdc30a0c
BP
1433 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1434 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
f71d0a05 1435 *
bdc30a0c
BP
1436 * The @sys_addr is usually an error address received from the hardware
1437 * (MCX_ADDR).
f71d0a05
DT
1438 */
1439static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
ad6a32e9 1440 struct err_regs *err_info,
f71d0a05
DT
1441 u64 sys_addr)
1442{
1443 struct amd64_pvt *pvt = mci->pvt_info;
1444 u32 page, offset;
f71d0a05 1445 int nid, csrow, chan = 0;
ad6a32e9 1446 u16 syndrome;
f71d0a05
DT
1447
1448 csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
1449
bdc30a0c
BP
1450 if (csrow < 0) {
1451 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1452 return;
1453 }
1454
1455 error_address_to_page_and_offset(sys_addr, &page, &offset);
f71d0a05 1456
ad6a32e9 1457 syndrome = extract_syndrome(err_info);
bdc30a0c
BP
1458
1459 /*
1460 * We need the syndromes for channel detection only when we're
1461 * ganged. Otherwise @chan should already contain the channel at
1462 * this point.
1463 */
962b70a1 1464 if (dct_ganging_enabled(pvt) && (pvt->nbcfg & K8_NBCFG_CHIPKILL))
bdc30a0c 1465 chan = get_channel_from_ecc_syndrome(mci, syndrome);
f71d0a05 1466
bdc30a0c
BP
1467 if (chan >= 0)
1468 edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
1469 EDAC_MOD_STR);
1470 else
f71d0a05 1471 /*
bdc30a0c 1472 * Channel unknown, report all channels on this CSROW as failed.
f71d0a05 1473 */
bdc30a0c 1474 for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
f71d0a05 1475 edac_mc_handle_ce(mci, page, offset, syndrome,
bdc30a0c 1476 csrow, chan, EDAC_MOD_STR);
f71d0a05
DT
1477}
1478
f71d0a05 1479/*
8566c4df 1480 * debug routine to display the memory sizes of all logical DIMMs and its
cb328507 1481 * CSROWs
f71d0a05 1482 */
8566c4df 1483static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt)
f71d0a05 1484{
603adaf6 1485 int dimm, size0, size1, factor = 0;
525a1b20
BP
1486 u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
1487 u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
f71d0a05 1488
8566c4df 1489 if (boot_cpu_data.x86 == 0xf) {
603adaf6
BP
1490 if (pvt->dclr0 & F10_WIDTH_128)
1491 factor = 1;
1492
8566c4df 1493 /* K8 families < revF not supported yet */
1433eb99 1494 if (pvt->ext_model < K8_REV_F)
8566c4df
BP
1495 return;
1496 else
1497 WARN_ON(ctrl != 0);
1498 }
1499
4d796364 1500 dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
11c75ead
BP
1501 dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
1502 : pvt->csels[0].csbases;
f71d0a05 1503
4d796364 1504 debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", ctrl, dbam);
f71d0a05 1505
8566c4df
BP
1506 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1507
f71d0a05
DT
1508 /* Dump memory sizes for DIMM and its CSROWs */
1509 for (dimm = 0; dimm < 4; dimm++) {
1510
1511 size0 = 0;
11c75ead 1512 if (dcsb[dimm*2] & DCSB_CS_ENABLE)
1433eb99 1513 size0 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
f71d0a05
DT
1514
1515 size1 = 0;
11c75ead 1516 if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
1433eb99 1517 size1 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
f71d0a05 1518
24f9a7fe
BP
1519 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
1520 dimm * 2, size0 << factor,
1521 dimm * 2 + 1, size1 << factor);
f71d0a05
DT
1522 }
1523}
1524
4d37607a
DT
1525static struct amd64_family_type amd64_family_types[] = {
1526 [K8_CPUS] = {
0092b20d 1527 .ctl_name = "K8",
8d5b5d9c
BP
1528 .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1529 .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
4d37607a 1530 .ops = {
1433eb99
BP
1531 .early_channel_count = k8_early_channel_count,
1532 .get_error_address = k8_get_error_address,
1433eb99
BP
1533 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1534 .dbam_to_cs = k8_dbam_to_chip_select,
b2b0c605 1535 .read_dct_pci_cfg = k8_read_dct_pci_cfg,
4d37607a
DT
1536 }
1537 },
1538 [F10_CPUS] = {
0092b20d 1539 .ctl_name = "F10h",
8d5b5d9c
BP
1540 .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1541 .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
4d37607a 1542 .ops = {
1433eb99
BP
1543 .early_channel_count = f10_early_channel_count,
1544 .get_error_address = f10_get_error_address,
1433eb99
BP
1545 .read_dram_ctl_register = f10_read_dram_ctl_register,
1546 .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
1547 .dbam_to_cs = f10_dbam_to_chip_select,
b2b0c605
BP
1548 .read_dct_pci_cfg = f10_read_dct_pci_cfg,
1549 }
1550 },
1551 [F15_CPUS] = {
1552 .ctl_name = "F15h",
1553 .ops = {
1554 .read_dct_pci_cfg = f15_read_dct_pci_cfg,
4d37607a
DT
1555 }
1556 },
4d37607a
DT
1557};
1558
1559static struct pci_dev *pci_get_related_function(unsigned int vendor,
1560 unsigned int device,
1561 struct pci_dev *related)
1562{
1563 struct pci_dev *dev = NULL;
1564
1565 dev = pci_get_device(vendor, device, dev);
1566 while (dev) {
1567 if ((dev->bus->number == related->bus->number) &&
1568 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1569 break;
1570 dev = pci_get_device(vendor, device, dev);
1571 }
1572
1573 return dev;
1574}
1575
b1289d6f 1576/*
bfc04aec
BP
1577 * These are tables of eigenvectors (one per line) which can be used for the
1578 * construction of the syndrome tables. The modified syndrome search algorithm
1579 * uses those to find the symbol in error and thus the DIMM.
b1289d6f 1580 *
bfc04aec 1581 * Algorithm courtesy of Ross LaFetra from AMD.
b1289d6f 1582 */
bfc04aec
BP
1583static u16 x4_vectors[] = {
1584 0x2f57, 0x1afe, 0x66cc, 0xdd88,
1585 0x11eb, 0x3396, 0x7f4c, 0xeac8,
1586 0x0001, 0x0002, 0x0004, 0x0008,
1587 0x1013, 0x3032, 0x4044, 0x8088,
1588 0x106b, 0x30d6, 0x70fc, 0xe0a8,
1589 0x4857, 0xc4fe, 0x13cc, 0x3288,
1590 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1591 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1592 0x15c1, 0x2a42, 0x89ac, 0x4758,
1593 0x2b03, 0x1602, 0x4f0c, 0xca08,
1594 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1595 0x8ba7, 0x465e, 0x244c, 0x1cc8,
1596 0x2b87, 0x164e, 0x642c, 0xdc18,
1597 0x40b9, 0x80de, 0x1094, 0x20e8,
1598 0x27db, 0x1eb6, 0x9dac, 0x7b58,
1599 0x11c1, 0x2242, 0x84ac, 0x4c58,
1600 0x1be5, 0x2d7a, 0x5e34, 0xa718,
1601 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1602 0x4c97, 0xc87e, 0x11fc, 0x33a8,
1603 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1604 0x16b3, 0x3d62, 0x4f34, 0x8518,
1605 0x1e2f, 0x391a, 0x5cac, 0xf858,
1606 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1607 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1608 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1609 0x4397, 0xc27e, 0x17fc, 0x3ea8,
1610 0x1617, 0x3d3e, 0x6464, 0xb8b8,
1611 0x23ff, 0x12aa, 0xab6c, 0x56d8,
1612 0x2dfb, 0x1ba6, 0x913c, 0x7328,
1613 0x185d, 0x2ca6, 0x7914, 0x9e28,
1614 0x171b, 0x3e36, 0x7d7c, 0xebe8,
1615 0x4199, 0x82ee, 0x19f4, 0x2e58,
1616 0x4807, 0xc40e, 0x130c, 0x3208,
1617 0x1905, 0x2e0a, 0x5804, 0xac08,
1618 0x213f, 0x132a, 0xadfc, 0x5ba8,
1619 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
b1289d6f
DT
1620};
1621
bfc04aec
BP
1622static u16 x8_vectors[] = {
1623 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1624 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1625 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1626 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1627 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1628 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1629 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1630 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1631 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1632 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1633 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1634 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1635 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1636 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1637 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1638 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1639 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1640 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1641 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1642};
1643
1644static int decode_syndrome(u16 syndrome, u16 *vectors, int num_vecs,
ad6a32e9 1645 int v_dim)
b1289d6f 1646{
bfc04aec
BP
1647 unsigned int i, err_sym;
1648
1649 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1650 u16 s = syndrome;
1651 int v_idx = err_sym * v_dim;
1652 int v_end = (err_sym + 1) * v_dim;
1653
1654 /* walk over all 16 bits of the syndrome */
1655 for (i = 1; i < (1U << 16); i <<= 1) {
1656
1657 /* if bit is set in that eigenvector... */
1658 if (v_idx < v_end && vectors[v_idx] & i) {
1659 u16 ev_comp = vectors[v_idx++];
1660
1661 /* ... and bit set in the modified syndrome, */
1662 if (s & i) {
1663 /* remove it. */
1664 s ^= ev_comp;
4d37607a 1665
bfc04aec
BP
1666 if (!s)
1667 return err_sym;
1668 }
b1289d6f 1669
bfc04aec
BP
1670 } else if (s & i)
1671 /* can't get to zero, move to next symbol */
1672 break;
1673 }
b1289d6f
DT
1674 }
1675
1676 debugf0("syndrome(%x) not found\n", syndrome);
1677 return -1;
1678}
d27bf6fa 1679
bfc04aec
BP
1680static int map_err_sym_to_channel(int err_sym, int sym_size)
1681{
1682 if (sym_size == 4)
1683 switch (err_sym) {
1684 case 0x20:
1685 case 0x21:
1686 return 0;
1687 break;
1688 case 0x22:
1689 case 0x23:
1690 return 1;
1691 break;
1692 default:
1693 return err_sym >> 4;
1694 break;
1695 }
1696 /* x8 symbols */
1697 else
1698 switch (err_sym) {
1699 /* imaginary bits not in a DIMM */
1700 case 0x10:
1701 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1702 err_sym);
1703 return -1;
1704 break;
1705
1706 case 0x11:
1707 return 0;
1708 break;
1709 case 0x12:
1710 return 1;
1711 break;
1712 default:
1713 return err_sym >> 3;
1714 break;
1715 }
1716 return -1;
1717}
1718
1719static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1720{
1721 struct amd64_pvt *pvt = mci->pvt_info;
ad6a32e9
BP
1722 int err_sym = -1;
1723
1724 if (pvt->syn_type == 8)
1725 err_sym = decode_syndrome(syndrome, x8_vectors,
1726 ARRAY_SIZE(x8_vectors),
1727 pvt->syn_type);
1728 else if (pvt->syn_type == 4)
1729 err_sym = decode_syndrome(syndrome, x4_vectors,
1730 ARRAY_SIZE(x4_vectors),
1731 pvt->syn_type);
1732 else {
24f9a7fe 1733 amd64_warn("Illegal syndrome type: %u\n", pvt->syn_type);
ad6a32e9 1734 return err_sym;
bfc04aec 1735 }
ad6a32e9
BP
1736
1737 return map_err_sym_to_channel(err_sym, pvt->syn_type);
bfc04aec
BP
1738}
1739
d27bf6fa
DT
1740/*
1741 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
1742 * ADDRESS and process.
1743 */
1744static void amd64_handle_ce(struct mem_ctl_info *mci,
ef44cc4c 1745 struct err_regs *info)
d27bf6fa
DT
1746{
1747 struct amd64_pvt *pvt = mci->pvt_info;
44e9e2ee 1748 u64 sys_addr;
d27bf6fa
DT
1749
1750 /* Ensure that the Error Address is VALID */
24f9a7fe
BP
1751 if (!(info->nbsh & K8_NBSH_VALID_ERROR_ADDR)) {
1752 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
d27bf6fa
DT
1753 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1754 return;
1755 }
1756
1f6bcee7 1757 sys_addr = pvt->ops->get_error_address(mci, info);
d27bf6fa 1758
24f9a7fe 1759 amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
d27bf6fa 1760
44e9e2ee 1761 pvt->ops->map_sysaddr_to_csrow(mci, info, sys_addr);
d27bf6fa
DT
1762}
1763
1764/* Handle any Un-correctable Errors (UEs) */
1765static void amd64_handle_ue(struct mem_ctl_info *mci,
ef44cc4c 1766 struct err_regs *info)
d27bf6fa 1767{
1f6bcee7
BP
1768 struct amd64_pvt *pvt = mci->pvt_info;
1769 struct mem_ctl_info *log_mci, *src_mci = NULL;
d27bf6fa 1770 int csrow;
44e9e2ee 1771 u64 sys_addr;
d27bf6fa 1772 u32 page, offset;
d27bf6fa
DT
1773
1774 log_mci = mci;
1775
24f9a7fe
BP
1776 if (!(info->nbsh & K8_NBSH_VALID_ERROR_ADDR)) {
1777 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
d27bf6fa
DT
1778 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1779 return;
1780 }
1781
1f6bcee7 1782 sys_addr = pvt->ops->get_error_address(mci, info);
d27bf6fa
DT
1783
1784 /*
1785 * Find out which node the error address belongs to. This may be
1786 * different from the node that detected the error.
1787 */
44e9e2ee 1788 src_mci = find_mc_by_sys_addr(mci, sys_addr);
d27bf6fa 1789 if (!src_mci) {
24f9a7fe
BP
1790 amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n",
1791 (unsigned long)sys_addr);
d27bf6fa
DT
1792 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1793 return;
1794 }
1795
1796 log_mci = src_mci;
1797
44e9e2ee 1798 csrow = sys_addr_to_csrow(log_mci, sys_addr);
d27bf6fa 1799 if (csrow < 0) {
24f9a7fe
BP
1800 amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n",
1801 (unsigned long)sys_addr);
d27bf6fa
DT
1802 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1803 } else {
44e9e2ee 1804 error_address_to_page_and_offset(sys_addr, &page, &offset);
d27bf6fa
DT
1805 edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
1806 }
1807}
1808
549d042d 1809static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
b69b29de 1810 struct err_regs *info)
d27bf6fa 1811{
62452882
BP
1812 u16 ec = EC(info->nbsl);
1813 u8 xec = XEC(info->nbsl, 0x1f);
17adea01 1814 int ecc_type = (info->nbsh >> 13) & 0x3;
d27bf6fa 1815
b70ef010
BP
1816 /* Bail early out if this was an 'observed' error */
1817 if (PP(ec) == K8_NBSL_PP_OBS)
1818 return;
d27bf6fa 1819
ecaf5606
BP
1820 /* Do only ECC errors */
1821 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
d27bf6fa 1822 return;
d27bf6fa 1823
ecaf5606 1824 if (ecc_type == 2)
d27bf6fa 1825 amd64_handle_ce(mci, info);
ecaf5606 1826 else if (ecc_type == 1)
d27bf6fa 1827 amd64_handle_ue(mci, info);
d27bf6fa
DT
1828}
1829
7cfd4a87 1830void amd64_decode_bus_error(int node_id, struct mce *m, u32 nbcfg)
d27bf6fa 1831{
cc4d8860 1832 struct mem_ctl_info *mci = mcis[node_id];
7cfd4a87 1833 struct err_regs regs;
d27bf6fa 1834
7cfd4a87
BP
1835 regs.nbsl = (u32) m->status;
1836 regs.nbsh = (u32)(m->status >> 32);
1837 regs.nbeal = (u32) m->addr;
1838 regs.nbeah = (u32)(m->addr >> 32);
1839 regs.nbcfg = nbcfg;
1840
1841 __amd64_decode_bus_error(mci, &regs);
d27bf6fa 1842
d27bf6fa
DT
1843 /*
1844 * Check the UE bit of the NB status high register, if set generate some
1845 * logs. If NOT a GART error, then process the event as a NO-INFO event.
1846 * If it was a GART error, skip that process.
549d042d
BP
1847 *
1848 * FIXME: this should go somewhere else, if at all.
d27bf6fa 1849 */
7cfd4a87 1850 if (regs.nbsh & K8_NBSH_UC_ERR && !report_gart_errors)
5110dbde 1851 edac_mc_handle_ue_no_info(mci, "UE bit is set");
549d042d 1852
d27bf6fa 1853}
d27bf6fa 1854
0ec449ee 1855/*
8d5b5d9c 1856 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
bbd0c1f6 1857 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
0ec449ee 1858 */
360b7f3c 1859static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
0ec449ee 1860{
0ec449ee 1861 /* Reserve the ADDRESS MAP Device */
8d5b5d9c
BP
1862 pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
1863 if (!pvt->F1) {
24f9a7fe
BP
1864 amd64_err("error address map device not found: "
1865 "vendor %x device 0x%x (broken BIOS?)\n",
1866 PCI_VENDOR_ID_AMD, f1_id);
bbd0c1f6 1867 return -ENODEV;
0ec449ee
DT
1868 }
1869
1870 /* Reserve the MISC Device */
8d5b5d9c
BP
1871 pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
1872 if (!pvt->F3) {
1873 pci_dev_put(pvt->F1);
1874 pvt->F1 = NULL;
0ec449ee 1875
24f9a7fe
BP
1876 amd64_err("error F3 device not found: "
1877 "vendor %x device 0x%x (broken BIOS?)\n",
1878 PCI_VENDOR_ID_AMD, f3_id);
0ec449ee 1879
bbd0c1f6 1880 return -ENODEV;
0ec449ee 1881 }
8d5b5d9c
BP
1882 debugf1("F1: %s\n", pci_name(pvt->F1));
1883 debugf1("F2: %s\n", pci_name(pvt->F2));
1884 debugf1("F3: %s\n", pci_name(pvt->F3));
0ec449ee
DT
1885
1886 return 0;
1887}
1888
360b7f3c 1889static void free_mc_sibling_devs(struct amd64_pvt *pvt)
0ec449ee 1890{
8d5b5d9c
BP
1891 pci_dev_put(pvt->F1);
1892 pci_dev_put(pvt->F3);
0ec449ee
DT
1893}
1894
1895/*
1896 * Retrieve the hardware registers of the memory controller (this includes the
1897 * 'Address Map' and 'Misc' device regs)
1898 */
360b7f3c 1899static void read_mc_regs(struct amd64_pvt *pvt)
0ec449ee
DT
1900{
1901 u64 msr_val;
ad6a32e9 1902 u32 tmp;
7f19bf75 1903 int range;
0ec449ee
DT
1904
1905 /*
1906 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
1907 * those are Read-As-Zero
1908 */
e97f8bb8
BP
1909 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
1910 debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem);
0ec449ee
DT
1911
1912 /* check first whether TOP_MEM2 is enabled */
1913 rdmsrl(MSR_K8_SYSCFG, msr_val);
1914 if (msr_val & (1U << 21)) {
e97f8bb8
BP
1915 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
1916 debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
0ec449ee
DT
1917 } else
1918 debugf0(" TOP_MEM2 disabled.\n");
1919
8d5b5d9c 1920 amd64_read_pci_cfg(pvt->F3, K8_NBCAP, &pvt->nbcap);
0ec449ee
DT
1921
1922 if (pvt->ops->read_dram_ctl_register)
1923 pvt->ops->read_dram_ctl_register(pvt);
1924
7f19bf75
BP
1925 for (range = 0; range < DRAM_RANGES; range++) {
1926 u8 rw;
0ec449ee 1927
7f19bf75
BP
1928 /* read settings for this DRAM range */
1929 read_dram_base_limit_regs(pvt, range);
1930
1931 rw = dram_rw(pvt, range);
1932 if (!rw)
1933 continue;
1934
1935 debugf1(" DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
1936 range,
1937 get_dram_base(pvt, range),
1938 get_dram_limit(pvt, range));
1939
1940 debugf1(" IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
1941 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
1942 (rw & 0x1) ? "R" : "-",
1943 (rw & 0x2) ? "W" : "-",
1944 dram_intlv_sel(pvt, range),
1945 dram_dst_node(pvt, range));
0ec449ee
DT
1946 }
1947
b2b0c605 1948 read_dct_base_mask(pvt);
0ec449ee 1949
bc21fa57 1950 amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
525a1b20 1951 amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
0ec449ee 1952
8d5b5d9c 1953 amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
0ec449ee 1954
cb328507
BP
1955 amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
1956 amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
0ec449ee 1957
78da121e 1958 if (!dct_ganging_enabled(pvt)) {
cb328507
BP
1959 amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
1960 amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
0ec449ee 1961 }
ad6a32e9 1962
525a1b20 1963 if (boot_cpu_data.x86 >= 0x10) {
b2b0c605 1964 amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
525a1b20
BP
1965 amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
1966 }
b2b0c605 1967
ad6a32e9
BP
1968 if (boot_cpu_data.x86 == 0x10 &&
1969 boot_cpu_data.x86_model > 7 &&
1970 /* F3x180[EccSymbolSize]=1 => x8 symbols */
1971 tmp & BIT(25))
1972 pvt->syn_type = 8;
1973 else
1974 pvt->syn_type = 4;
1975
b2b0c605 1976 dump_misc_regs(pvt);
0ec449ee
DT
1977}
1978
1979/*
1980 * NOTE: CPU Revision Dependent code
1981 *
1982 * Input:
11c75ead 1983 * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
0ec449ee
DT
1984 * k8 private pointer to -->
1985 * DRAM Bank Address mapping register
1986 * node_id
1987 * DCL register where dual_channel_active is
1988 *
1989 * The DBAM register consists of 4 sets of 4 bits each definitions:
1990 *
1991 * Bits: CSROWs
1992 * 0-3 CSROWs 0 and 1
1993 * 4-7 CSROWs 2 and 3
1994 * 8-11 CSROWs 4 and 5
1995 * 12-15 CSROWs 6 and 7
1996 *
1997 * Values range from: 0 to 15
1998 * The meaning of the values depends on CPU revision and dual-channel state,
1999 * see relevant BKDG more info.
2000 *
2001 * The memory controller provides for total of only 8 CSROWs in its current
2002 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2003 * single channel or two (2) DIMMs in dual channel mode.
2004 *
2005 * The following code logic collapses the various tables for CSROW based on CPU
2006 * revision.
2007 *
2008 * Returns:
2009 * The number of PAGE_SIZE pages on the specified CSROW number it
2010 * encompasses
2011 *
2012 */
2013static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
2014{
1433eb99 2015 u32 cs_mode, nr_pages;
0ec449ee
DT
2016
2017 /*
2018 * The math on this doesn't look right on the surface because x/2*4 can
2019 * be simplified to x*2 but this expression makes use of the fact that
2020 * it is integral math where 1/2=0. This intermediate value becomes the
2021 * number of bits to shift the DBAM register to extract the proper CSROW
2022 * field.
2023 */
1433eb99 2024 cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
0ec449ee 2025
1433eb99 2026 nr_pages = pvt->ops->dbam_to_cs(pvt, cs_mode) << (20 - PAGE_SHIFT);
0ec449ee
DT
2027
2028 /*
2029 * If dual channel then double the memory size of single channel.
2030 * Channel count is 1 or 2
2031 */
2032 nr_pages <<= (pvt->channel_count - 1);
2033
1433eb99 2034 debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
0ec449ee
DT
2035 debugf0(" nr_pages= %u channel-count = %d\n",
2036 nr_pages, pvt->channel_count);
2037
2038 return nr_pages;
2039}
2040
2041/*
2042 * Initialize the array of csrow attribute instances, based on the values
2043 * from pci config hardware registers.
2044 */
360b7f3c 2045static int init_csrows(struct mem_ctl_info *mci)
0ec449ee
DT
2046{
2047 struct csrow_info *csrow;
2299ef71 2048 struct amd64_pvt *pvt = mci->pvt_info;
11c75ead 2049 u64 input_addr_min, input_addr_max, sys_addr, base, mask;
2299ef71 2050 u32 val;
6ba5dcdc 2051 int i, empty = 1;
0ec449ee 2052
2299ef71 2053 amd64_read_pci_cfg(pvt->F3, K8_NBCFG, &val);
0ec449ee 2054
2299ef71
BP
2055 pvt->nbcfg = val;
2056 pvt->ctl_error_info.nbcfg = val;
0ec449ee 2057
2299ef71
BP
2058 debugf0("node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2059 pvt->mc_node_id, val,
2060 !!(val & K8_NBCFG_CHIPKILL), !!(val & K8_NBCFG_ECC_ENABLE));
0ec449ee 2061
11c75ead 2062 for_each_chip_select(i, 0, pvt) {
0ec449ee
DT
2063 csrow = &mci->csrows[i];
2064
11c75ead 2065 if (!csrow_enabled(i, 0, pvt)) {
0ec449ee
DT
2066 debugf1("----CSROW %d EMPTY for node %d\n", i,
2067 pvt->mc_node_id);
2068 continue;
2069 }
2070
2071 debugf1("----CSROW %d VALID for MC node %d\n",
2072 i, pvt->mc_node_id);
2073
2074 empty = 0;
2075 csrow->nr_pages = amd64_csrow_nr_pages(i, pvt);
2076 find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
2077 sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
2078 csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
2079 sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
2080 csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
11c75ead
BP
2081
2082 get_cs_base_and_mask(pvt, i, 0, &base, &mask);
2083 csrow->page_mask = ~mask;
0ec449ee
DT
2084 /* 8 bytes of resolution */
2085
24f9a7fe 2086 csrow->mtype = amd64_determine_memory_type(pvt, i);
0ec449ee
DT
2087
2088 debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
2089 debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
2090 (unsigned long)input_addr_min,
2091 (unsigned long)input_addr_max);
2092 debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
2093 (unsigned long)sys_addr, csrow->page_mask);
2094 debugf1(" nr_pages: %u first_page: 0x%lx "
2095 "last_page: 0x%lx\n",
2096 (unsigned)csrow->nr_pages,
2097 csrow->first_page, csrow->last_page);
2098
2099 /*
2100 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2101 */
2102 if (pvt->nbcfg & K8_NBCFG_ECC_ENABLE)
2103 csrow->edac_mode =
2104 (pvt->nbcfg & K8_NBCFG_CHIPKILL) ?
2105 EDAC_S4ECD4ED : EDAC_SECDED;
2106 else
2107 csrow->edac_mode = EDAC_NONE;
2108 }
2109
2110 return empty;
2111}
d27bf6fa 2112
f6d6ae96
BP
2113/* get all cores on this DCT */
2114static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, int nid)
2115{
2116 int cpu;
2117
2118 for_each_online_cpu(cpu)
2119 if (amd_get_nb_id(cpu) == nid)
2120 cpumask_set_cpu(cpu, mask);
2121}
2122
2123/* check MCG_CTL on all the cpus on this node */
2124static bool amd64_nb_mce_bank_enabled_on_node(int nid)
2125{
2126 cpumask_var_t mask;
50542251 2127 int cpu, nbe;
f6d6ae96
BP
2128 bool ret = false;
2129
2130 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
24f9a7fe 2131 amd64_warn("%s: Error allocating mask\n", __func__);
f6d6ae96
BP
2132 return false;
2133 }
2134
2135 get_cpus_on_this_dct_cpumask(mask, nid);
2136
f6d6ae96
BP
2137 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2138
2139 for_each_cpu(cpu, mask) {
50542251
BP
2140 struct msr *reg = per_cpu_ptr(msrs, cpu);
2141 nbe = reg->l & K8_MSR_MCGCTL_NBE;
f6d6ae96
BP
2142
2143 debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
50542251 2144 cpu, reg->q,
f6d6ae96
BP
2145 (nbe ? "enabled" : "disabled"));
2146
2147 if (!nbe)
2148 goto out;
f6d6ae96
BP
2149 }
2150 ret = true;
2151
2152out:
f6d6ae96
BP
2153 free_cpumask_var(mask);
2154 return ret;
2155}
2156
2299ef71 2157static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on)
f6d6ae96
BP
2158{
2159 cpumask_var_t cmask;
50542251 2160 int cpu;
f6d6ae96
BP
2161
2162 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
24f9a7fe 2163 amd64_warn("%s: error allocating mask\n", __func__);
f6d6ae96
BP
2164 return false;
2165 }
2166
ae7bb7c6 2167 get_cpus_on_this_dct_cpumask(cmask, nid);
f6d6ae96 2168
f6d6ae96
BP
2169 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2170
2171 for_each_cpu(cpu, cmask) {
2172
50542251
BP
2173 struct msr *reg = per_cpu_ptr(msrs, cpu);
2174
f6d6ae96 2175 if (on) {
50542251 2176 if (reg->l & K8_MSR_MCGCTL_NBE)
ae7bb7c6 2177 s->flags.nb_mce_enable = 1;
f6d6ae96 2178
50542251 2179 reg->l |= K8_MSR_MCGCTL_NBE;
f6d6ae96
BP
2180 } else {
2181 /*
d95cf4de 2182 * Turn off NB MCE reporting only when it was off before
f6d6ae96 2183 */
ae7bb7c6 2184 if (!s->flags.nb_mce_enable)
50542251 2185 reg->l &= ~K8_MSR_MCGCTL_NBE;
f6d6ae96 2186 }
f6d6ae96
BP
2187 }
2188 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2189
f6d6ae96
BP
2190 free_cpumask_var(cmask);
2191
2192 return 0;
2193}
2194
2299ef71
BP
2195static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2196 struct pci_dev *F3)
f9431992 2197{
2299ef71 2198 bool ret = true;
c9f4f26e 2199 u32 value, mask = 0x3; /* UECC/CECC enable */
f9431992 2200
2299ef71
BP
2201 if (toggle_ecc_err_reporting(s, nid, ON)) {
2202 amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2203 return false;
2204 }
2205
c9f4f26e 2206 amd64_read_pci_cfg(F3, NBCTL, &value);
f9431992 2207
ae7bb7c6
BP
2208 s->old_nbctl = value & mask;
2209 s->nbctl_valid = true;
f9431992
DT
2210
2211 value |= mask;
c9f4f26e 2212 amd64_write_pci_cfg(F3, NBCTL, value);
f9431992 2213
2299ef71 2214 amd64_read_pci_cfg(F3, K8_NBCFG, &value);
f9431992 2215
2299ef71
BP
2216 debugf0("1: node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2217 nid, value,
2218 !!(value & K8_NBCFG_CHIPKILL), !!(value & K8_NBCFG_ECC_ENABLE));
f9431992
DT
2219
2220 if (!(value & K8_NBCFG_ECC_ENABLE)) {
24f9a7fe 2221 amd64_warn("DRAM ECC disabled on this node, enabling...\n");
f9431992 2222
ae7bb7c6 2223 s->flags.nb_ecc_prev = 0;
d95cf4de 2224
f9431992
DT
2225 /* Attempt to turn on DRAM ECC Enable */
2226 value |= K8_NBCFG_ECC_ENABLE;
b2b0c605 2227 amd64_write_pci_cfg(F3, K8_NBCFG, value);
f9431992 2228
2299ef71 2229 amd64_read_pci_cfg(F3, K8_NBCFG, &value);
f9431992
DT
2230
2231 if (!(value & K8_NBCFG_ECC_ENABLE)) {
24f9a7fe
BP
2232 amd64_warn("Hardware rejected DRAM ECC enable,"
2233 "check memory DIMM configuration.\n");
2299ef71 2234 ret = false;
f9431992 2235 } else {
24f9a7fe 2236 amd64_info("Hardware accepted DRAM ECC Enable\n");
f9431992 2237 }
d95cf4de 2238 } else {
ae7bb7c6 2239 s->flags.nb_ecc_prev = 1;
f9431992 2240 }
d95cf4de 2241
2299ef71
BP
2242 debugf0("2: node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2243 nid, value,
2244 !!(value & K8_NBCFG_CHIPKILL), !!(value & K8_NBCFG_ECC_ENABLE));
f9431992 2245
2299ef71 2246 return ret;
f9431992
DT
2247}
2248
360b7f3c
BP
2249static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2250 struct pci_dev *F3)
f9431992 2251{
c9f4f26e
BP
2252 u32 value, mask = 0x3; /* UECC/CECC enable */
2253
f9431992 2254
ae7bb7c6 2255 if (!s->nbctl_valid)
f9431992
DT
2256 return;
2257
c9f4f26e 2258 amd64_read_pci_cfg(F3, NBCTL, &value);
f9431992 2259 value &= ~mask;
ae7bb7c6 2260 value |= s->old_nbctl;
f9431992 2261
c9f4f26e 2262 amd64_write_pci_cfg(F3, NBCTL, value);
f9431992 2263
ae7bb7c6
BP
2264 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
2265 if (!s->flags.nb_ecc_prev) {
360b7f3c 2266 amd64_read_pci_cfg(F3, K8_NBCFG, &value);
d95cf4de 2267 value &= ~K8_NBCFG_ECC_ENABLE;
b2b0c605 2268 amd64_write_pci_cfg(F3, K8_NBCFG, value);
d95cf4de
BP
2269 }
2270
2271 /* restore the NB Enable MCGCTL bit */
2299ef71 2272 if (toggle_ecc_err_reporting(s, nid, OFF))
24f9a7fe 2273 amd64_warn("Error restoring NB MCGCTL settings!\n");
f9431992
DT
2274}
2275
2276/*
2299ef71
BP
2277 * EDAC requires that the BIOS have ECC enabled before
2278 * taking over the processing of ECC errors. A command line
2279 * option allows to force-enable hardware ECC later in
2280 * enable_ecc_error_reporting().
f9431992 2281 */
cab4d277
BP
2282static const char *ecc_msg =
2283 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2284 " Either enable ECC checking or force module loading by setting "
2285 "'ecc_enable_override'.\n"
2286 " (Note that use of the override may cause unknown side effects.)\n";
be3468e8 2287
2299ef71 2288static bool ecc_enabled(struct pci_dev *F3, u8 nid)
f9431992
DT
2289{
2290 u32 value;
2299ef71 2291 u8 ecc_en = 0;
06724535 2292 bool nb_mce_en = false;
f9431992 2293
2299ef71 2294 amd64_read_pci_cfg(F3, K8_NBCFG, &value);
f9431992 2295
2299ef71
BP
2296 ecc_en = !!(value & K8_NBCFG_ECC_ENABLE);
2297 amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
f9431992 2298
2299ef71 2299 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
06724535 2300 if (!nb_mce_en)
2299ef71
BP
2301 amd64_notice("NB MCE bank disabled, set MSR "
2302 "0x%08x[4] on node %d to enable.\n",
2303 MSR_IA32_MCG_CTL, nid);
f9431992 2304
2299ef71
BP
2305 if (!ecc_en || !nb_mce_en) {
2306 amd64_notice("%s", ecc_msg);
2307 return false;
2308 }
2309 return true;
f9431992
DT
2310}
2311
7d6034d3
DT
2312struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
2313 ARRAY_SIZE(amd64_inj_attrs) +
2314 1];
2315
2316struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
2317
360b7f3c 2318static void set_mc_sysfs_attrs(struct mem_ctl_info *mci)
7d6034d3
DT
2319{
2320 unsigned int i = 0, j = 0;
2321
2322 for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
2323 sysfs_attrs[i] = amd64_dbg_attrs[i];
2324
a135cef7
BP
2325 if (boot_cpu_data.x86 >= 0x10)
2326 for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
2327 sysfs_attrs[i] = amd64_inj_attrs[j];
7d6034d3
DT
2328
2329 sysfs_attrs[i] = terminator;
2330
2331 mci->mc_driver_sysfs_attributes = sysfs_attrs;
2332}
2333
360b7f3c 2334static void setup_mci_misc_attrs(struct mem_ctl_info *mci)
7d6034d3
DT
2335{
2336 struct amd64_pvt *pvt = mci->pvt_info;
2337
2338 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2339 mci->edac_ctl_cap = EDAC_FLAG_NONE;
7d6034d3
DT
2340
2341 if (pvt->nbcap & K8_NBCAP_SECDED)
2342 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2343
2344 if (pvt->nbcap & K8_NBCAP_CHIPKILL)
2345 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2346
2347 mci->edac_cap = amd64_determine_edac_cap(pvt);
2348 mci->mod_name = EDAC_MOD_STR;
2349 mci->mod_ver = EDAC_AMD64_VERSION;
0092b20d 2350 mci->ctl_name = pvt->ctl_name;
8d5b5d9c 2351 mci->dev_name = pci_name(pvt->F2);
7d6034d3
DT
2352 mci->ctl_page_to_phys = NULL;
2353
7d6034d3
DT
2354 /* memory scrubber interface */
2355 mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2356 mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2357}
2358
0092b20d
BP
2359/*
2360 * returns a pointer to the family descriptor on success, NULL otherwise.
2361 */
2362static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
395ae783 2363{
0092b20d
BP
2364 u8 fam = boot_cpu_data.x86;
2365 struct amd64_family_type *fam_type = NULL;
2366
2367 switch (fam) {
395ae783 2368 case 0xf:
0092b20d 2369 fam_type = &amd64_family_types[K8_CPUS];
b8cfa02f 2370 pvt->ops = &amd64_family_types[K8_CPUS].ops;
0092b20d
BP
2371 pvt->ctl_name = fam_type->ctl_name;
2372 pvt->min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
395ae783
BP
2373 break;
2374 case 0x10:
0092b20d 2375 fam_type = &amd64_family_types[F10_CPUS];
b8cfa02f 2376 pvt->ops = &amd64_family_types[F10_CPUS].ops;
0092b20d
BP
2377 pvt->ctl_name = fam_type->ctl_name;
2378 pvt->min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
395ae783
BP
2379 break;
2380
2381 default:
24f9a7fe 2382 amd64_err("Unsupported family!\n");
0092b20d 2383 return NULL;
395ae783 2384 }
0092b20d 2385
b8cfa02f
BP
2386 pvt->ext_model = boot_cpu_data.x86_model >> 4;
2387
24f9a7fe 2388 amd64_info("%s %sdetected (node %d).\n", pvt->ctl_name,
0092b20d 2389 (fam == 0xf ?
24f9a7fe
BP
2390 (pvt->ext_model >= K8_REV_F ? "revF or later "
2391 : "revE or earlier ")
2392 : ""), pvt->mc_node_id);
0092b20d 2393 return fam_type;
395ae783
BP
2394}
2395
2299ef71 2396static int amd64_init_one_instance(struct pci_dev *F2)
7d6034d3
DT
2397{
2398 struct amd64_pvt *pvt = NULL;
0092b20d 2399 struct amd64_family_type *fam_type = NULL;
360b7f3c 2400 struct mem_ctl_info *mci = NULL;
7d6034d3 2401 int err = 0, ret;
360b7f3c 2402 u8 nid = get_node_id(F2);
7d6034d3
DT
2403
2404 ret = -ENOMEM;
2405 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2406 if (!pvt)
360b7f3c 2407 goto err_ret;
7d6034d3 2408
360b7f3c 2409 pvt->mc_node_id = nid;
8d5b5d9c 2410 pvt->F2 = F2;
7d6034d3 2411
395ae783 2412 ret = -EINVAL;
0092b20d
BP
2413 fam_type = amd64_per_family_init(pvt);
2414 if (!fam_type)
395ae783
BP
2415 goto err_free;
2416
7d6034d3 2417 ret = -ENODEV;
360b7f3c 2418 err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
7d6034d3
DT
2419 if (err)
2420 goto err_free;
2421
360b7f3c 2422 read_mc_regs(pvt);
7d6034d3 2423
7d6034d3
DT
2424 /*
2425 * We need to determine how many memory channels there are. Then use
2426 * that information for calculating the size of the dynamic instance
360b7f3c 2427 * tables in the 'mci' structure.
7d6034d3 2428 */
360b7f3c 2429 ret = -EINVAL;
7d6034d3
DT
2430 pvt->channel_count = pvt->ops->early_channel_count(pvt);
2431 if (pvt->channel_count < 0)
360b7f3c 2432 goto err_siblings;
7d6034d3
DT
2433
2434 ret = -ENOMEM;
11c75ead 2435 mci = edac_mc_alloc(0, pvt->csels[0].b_cnt, pvt->channel_count, nid);
7d6034d3 2436 if (!mci)
360b7f3c 2437 goto err_siblings;
7d6034d3
DT
2438
2439 mci->pvt_info = pvt;
8d5b5d9c 2440 mci->dev = &pvt->F2->dev;
7d6034d3 2441
360b7f3c
BP
2442 setup_mci_misc_attrs(mci);
2443
2444 if (init_csrows(mci))
7d6034d3
DT
2445 mci->edac_cap = EDAC_FLAG_NONE;
2446
360b7f3c 2447 set_mc_sysfs_attrs(mci);
7d6034d3
DT
2448
2449 ret = -ENODEV;
2450 if (edac_mc_add_mc(mci)) {
2451 debugf1("failed edac_mc_add_mc()\n");
2452 goto err_add_mc;
2453 }
2454
549d042d
BP
2455 /* register stuff with EDAC MCE */
2456 if (report_gart_errors)
2457 amd_report_gart_errors(true);
2458
2459 amd_register_ecc_decoder(amd64_decode_bus_error);
2460
360b7f3c
BP
2461 mcis[nid] = mci;
2462
2463 atomic_inc(&drv_instances);
2464
7d6034d3
DT
2465 return 0;
2466
2467err_add_mc:
2468 edac_mc_free(mci);
2469
360b7f3c
BP
2470err_siblings:
2471 free_mc_sibling_devs(pvt);
7d6034d3 2472
360b7f3c
BP
2473err_free:
2474 kfree(pvt);
7d6034d3 2475
360b7f3c 2476err_ret:
7d6034d3
DT
2477 return ret;
2478}
2479
2299ef71 2480static int __devinit amd64_probe_one_instance(struct pci_dev *pdev,
b8cfa02f 2481 const struct pci_device_id *mc_type)
7d6034d3 2482{
ae7bb7c6 2483 u8 nid = get_node_id(pdev);
2299ef71 2484 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
ae7bb7c6 2485 struct ecc_settings *s;
2299ef71 2486 int ret = 0;
7d6034d3 2487
7d6034d3 2488 ret = pci_enable_device(pdev);
b8cfa02f
BP
2489 if (ret < 0) {
2490 debugf0("ret=%d\n", ret);
2491 return -EIO;
2492 }
7d6034d3 2493
ae7bb7c6
BP
2494 ret = -ENOMEM;
2495 s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
2496 if (!s)
2299ef71 2497 goto err_out;
ae7bb7c6
BP
2498
2499 ecc_stngs[nid] = s;
2500
2299ef71
BP
2501 if (!ecc_enabled(F3, nid)) {
2502 ret = -ENODEV;
2503
2504 if (!ecc_enable_override)
2505 goto err_enable;
2506
2507 amd64_warn("Forcing ECC on!\n");
2508
2509 if (!enable_ecc_error_reporting(s, nid, F3))
2510 goto err_enable;
2511 }
2512
2513 ret = amd64_init_one_instance(pdev);
360b7f3c 2514 if (ret < 0) {
ae7bb7c6 2515 amd64_err("Error probing instance: %d\n", nid);
360b7f3c
BP
2516 restore_ecc_error_reporting(s, nid, F3);
2517 }
7d6034d3
DT
2518
2519 return ret;
2299ef71
BP
2520
2521err_enable:
2522 kfree(s);
2523 ecc_stngs[nid] = NULL;
2524
2525err_out:
2526 return ret;
7d6034d3
DT
2527}
2528
2529static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
2530{
2531 struct mem_ctl_info *mci;
2532 struct amd64_pvt *pvt;
360b7f3c
BP
2533 u8 nid = get_node_id(pdev);
2534 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2535 struct ecc_settings *s = ecc_stngs[nid];
7d6034d3
DT
2536
2537 /* Remove from EDAC CORE tracking list */
2538 mci = edac_mc_del_mc(&pdev->dev);
2539 if (!mci)
2540 return;
2541
2542 pvt = mci->pvt_info;
2543
360b7f3c 2544 restore_ecc_error_reporting(s, nid, F3);
7d6034d3 2545
360b7f3c 2546 free_mc_sibling_devs(pvt);
7d6034d3 2547
549d042d
BP
2548 /* unregister from EDAC MCE */
2549 amd_report_gart_errors(false);
2550 amd_unregister_ecc_decoder(amd64_decode_bus_error);
2551
360b7f3c
BP
2552 kfree(ecc_stngs[nid]);
2553 ecc_stngs[nid] = NULL;
ae7bb7c6 2554
7d6034d3 2555 /* Free the EDAC CORE resources */
8f68ed97 2556 mci->pvt_info = NULL;
360b7f3c 2557 mcis[nid] = NULL;
8f68ed97
BP
2558
2559 kfree(pvt);
7d6034d3
DT
2560 edac_mc_free(mci);
2561}
2562
2563/*
2564 * This table is part of the interface for loading drivers for PCI devices. The
2565 * PCI core identifies what devices are on a system during boot, and then
2566 * inquiry this table to see if this driver is for a given device found.
2567 */
2568static const struct pci_device_id amd64_pci_table[] __devinitdata = {
2569 {
2570 .vendor = PCI_VENDOR_ID_AMD,
2571 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2572 .subvendor = PCI_ANY_ID,
2573 .subdevice = PCI_ANY_ID,
2574 .class = 0,
2575 .class_mask = 0,
7d6034d3
DT
2576 },
2577 {
2578 .vendor = PCI_VENDOR_ID_AMD,
2579 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2580 .subvendor = PCI_ANY_ID,
2581 .subdevice = PCI_ANY_ID,
2582 .class = 0,
2583 .class_mask = 0,
7d6034d3 2584 },
7d6034d3
DT
2585 {0, }
2586};
2587MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2588
2589static struct pci_driver amd64_pci_driver = {
2590 .name = EDAC_MOD_STR,
2299ef71 2591 .probe = amd64_probe_one_instance,
7d6034d3
DT
2592 .remove = __devexit_p(amd64_remove_one_instance),
2593 .id_table = amd64_pci_table,
2594};
2595
360b7f3c 2596static void setup_pci_device(void)
7d6034d3
DT
2597{
2598 struct mem_ctl_info *mci;
2599 struct amd64_pvt *pvt;
2600
2601 if (amd64_ctl_pci)
2602 return;
2603
cc4d8860 2604 mci = mcis[0];
7d6034d3
DT
2605 if (mci) {
2606
2607 pvt = mci->pvt_info;
2608 amd64_ctl_pci =
8d5b5d9c 2609 edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
7d6034d3
DT
2610
2611 if (!amd64_ctl_pci) {
2612 pr_warning("%s(): Unable to create PCI control\n",
2613 __func__);
2614
2615 pr_warning("%s(): PCI error report via EDAC not set\n",
2616 __func__);
2617 }
2618 }
2619}
2620
2621static int __init amd64_edac_init(void)
2622{
360b7f3c 2623 int err = -ENODEV;
7d6034d3
DT
2624
2625 edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");
2626
2627 opstate_init();
2628
9653a5c7 2629 if (amd_cache_northbridges() < 0)
56b34b91 2630 goto err_ret;
7d6034d3 2631
cc4d8860 2632 err = -ENOMEM;
ae7bb7c6
BP
2633 mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
2634 ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
360b7f3c 2635 if (!(mcis && ecc_stngs))
cc4d8860
BP
2636 goto err_ret;
2637
50542251 2638 msrs = msrs_alloc();
56b34b91 2639 if (!msrs)
360b7f3c 2640 goto err_free;
50542251 2641
7d6034d3
DT
2642 err = pci_register_driver(&amd64_pci_driver);
2643 if (err)
56b34b91 2644 goto err_pci;
7d6034d3 2645
56b34b91 2646 err = -ENODEV;
360b7f3c
BP
2647 if (!atomic_read(&drv_instances))
2648 goto err_no_instances;
7d6034d3 2649
360b7f3c
BP
2650 setup_pci_device();
2651 return 0;
7d6034d3 2652
360b7f3c 2653err_no_instances:
7d6034d3 2654 pci_unregister_driver(&amd64_pci_driver);
cc4d8860 2655
56b34b91
BP
2656err_pci:
2657 msrs_free(msrs);
2658 msrs = NULL;
cc4d8860 2659
360b7f3c
BP
2660err_free:
2661 kfree(mcis);
2662 mcis = NULL;
2663
2664 kfree(ecc_stngs);
2665 ecc_stngs = NULL;
2666
56b34b91 2667err_ret:
7d6034d3
DT
2668 return err;
2669}
2670
2671static void __exit amd64_edac_exit(void)
2672{
2673 if (amd64_ctl_pci)
2674 edac_pci_release_generic_ctl(amd64_ctl_pci);
2675
2676 pci_unregister_driver(&amd64_pci_driver);
50542251 2677
ae7bb7c6
BP
2678 kfree(ecc_stngs);
2679 ecc_stngs = NULL;
2680
cc4d8860
BP
2681 kfree(mcis);
2682 mcis = NULL;
2683
50542251
BP
2684 msrs_free(msrs);
2685 msrs = NULL;
7d6034d3
DT
2686}
2687
2688module_init(amd64_edac_init);
2689module_exit(amd64_edac_exit);
2690
2691MODULE_LICENSE("GPL");
2692MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
2693 "Dave Peterson, Thayne Harbaugh");
2694MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
2695 EDAC_AMD64_VERSION);
2696
2697module_param(edac_op_state, int, 0444);
2698MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
This page took 0.300004 seconds and 5 git commands to generate.