amd64_edac: Factor in CC6 save area
[deliverable/linux.git] / drivers / edac / amd64_edac.c
CommitLineData
2bc65418 1#include "amd64_edac.h"
23ac4ae8 2#include <asm/amd_nb.h>
2bc65418
DT
3
4static struct edac_pci_ctl_info *amd64_ctl_pci;
5
6static int report_gart_errors;
7module_param(report_gart_errors, int, 0644);
8
9/*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
12 */
13static int ecc_enable_override;
14module_param(ecc_enable_override, int, 0644);
15
a29d8b8e 16static struct msr __percpu *msrs;
50542251 17
360b7f3c
BP
18/*
19 * count successfully initialized driver instances for setup_pci_device()
20 */
21static atomic_t drv_instances = ATOMIC_INIT(0);
22
cc4d8860
BP
23/* Per-node driver instances */
24static struct mem_ctl_info **mcis;
ae7bb7c6 25static struct ecc_settings **ecc_stngs;
2bc65418 26
b70ef010
BP
27/*
28 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
29 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
30 * or higher value'.
31 *
32 *FIXME: Produce a better mapping/linearisation.
33 */
39094443
BP
34struct scrubrate {
35 u32 scrubval; /* bit pattern for scrub rate */
36 u32 bandwidth; /* bandwidth consumed (bytes/sec) */
37} scrubrates[] = {
b70ef010
BP
38 { 0x01, 1600000000UL},
39 { 0x02, 800000000UL},
40 { 0x03, 400000000UL},
41 { 0x04, 200000000UL},
42 { 0x05, 100000000UL},
43 { 0x06, 50000000UL},
44 { 0x07, 25000000UL},
45 { 0x08, 12284069UL},
46 { 0x09, 6274509UL},
47 { 0x0A, 3121951UL},
48 { 0x0B, 1560975UL},
49 { 0x0C, 781440UL},
50 { 0x0D, 390720UL},
51 { 0x0E, 195300UL},
52 { 0x0F, 97650UL},
53 { 0x10, 48854UL},
54 { 0x11, 24427UL},
55 { 0x12, 12213UL},
56 { 0x13, 6101UL},
57 { 0x14, 3051UL},
58 { 0x15, 1523UL},
59 { 0x16, 761UL},
60 { 0x00, 0UL}, /* scrubbing off */
61};
62
b2b0c605
BP
63static int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
64 u32 *val, const char *func)
65{
66 int err = 0;
67
68 err = pci_read_config_dword(pdev, offset, val);
69 if (err)
70 amd64_warn("%s: error reading F%dx%03x.\n",
71 func, PCI_FUNC(pdev->devfn), offset);
72
73 return err;
74}
75
76int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
77 u32 val, const char *func)
78{
79 int err = 0;
80
81 err = pci_write_config_dword(pdev, offset, val);
82 if (err)
83 amd64_warn("%s: error writing to F%dx%03x.\n",
84 func, PCI_FUNC(pdev->devfn), offset);
85
86 return err;
87}
88
89/*
90 *
91 * Depending on the family, F2 DCT reads need special handling:
92 *
93 * K8: has a single DCT only
94 *
95 * F10h: each DCT has its own set of regs
96 * DCT0 -> F2x040..
97 * DCT1 -> F2x140..
98 *
99 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
100 *
101 */
102static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
103 const char *func)
104{
105 if (addr >= 0x100)
106 return -EINVAL;
107
108 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
109}
110
111static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
112 const char *func)
113{
114 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
115}
116
117static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
118 const char *func)
119{
120 u32 reg = 0;
121 u8 dct = 0;
122
123 if (addr >= 0x140 && addr <= 0x1a0) {
124 dct = 1;
125 addr -= 0x100;
126 }
127
128 amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
129 reg &= 0xfffffffe;
130 reg |= dct;
131 amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
132
133 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
134}
135
2bc65418
DT
136/*
137 * Memory scrubber control interface. For K8, memory scrubbing is handled by
138 * hardware and can involve L2 cache, dcache as well as the main memory. With
139 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
140 * functionality.
141 *
142 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
143 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
144 * bytes/sec for the setting.
145 *
146 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
147 * other archs, we might not have access to the caches directly.
148 */
149
150/*
151 * scan the scrub rate mapping table for a close or matching bandwidth value to
152 * issue. If requested is too big, then use last maximum value found.
153 */
395ae783 154static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
2bc65418
DT
155{
156 u32 scrubval;
157 int i;
158
159 /*
160 * map the configured rate (new_bw) to a value specific to the AMD64
161 * memory controller and apply to register. Search for the first
162 * bandwidth entry that is greater or equal than the setting requested
163 * and program that. If at last entry, turn off DRAM scrubbing.
164 */
165 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
166 /*
167 * skip scrub rates which aren't recommended
168 * (see F10 BKDG, F3x58)
169 */
395ae783 170 if (scrubrates[i].scrubval < min_rate)
2bc65418
DT
171 continue;
172
173 if (scrubrates[i].bandwidth <= new_bw)
174 break;
175
176 /*
177 * if no suitable bandwidth found, turn off DRAM scrubbing
178 * entirely by falling back to the last element in the
179 * scrubrates array.
180 */
181 }
182
183 scrubval = scrubrates[i].scrubval;
2bc65418 184
5980bb9c 185 pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
2bc65418 186
39094443
BP
187 if (scrubval)
188 return scrubrates[i].bandwidth;
189
2bc65418
DT
190 return 0;
191}
192
395ae783 193static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
2bc65418
DT
194{
195 struct amd64_pvt *pvt = mci->pvt_info;
87b3e0e6 196 u32 min_scrubrate = 0x5;
2bc65418 197
87b3e0e6
BP
198 if (boot_cpu_data.x86 == 0xf)
199 min_scrubrate = 0x0;
200
201 return __amd64_set_scrub_rate(pvt->F3, bw, min_scrubrate);
2bc65418
DT
202}
203
39094443 204static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
2bc65418
DT
205{
206 struct amd64_pvt *pvt = mci->pvt_info;
207 u32 scrubval = 0;
39094443 208 int i, retval = -EINVAL;
2bc65418 209
5980bb9c 210 amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
2bc65418
DT
211
212 scrubval = scrubval & 0x001F;
213
926311fd 214 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
2bc65418 215 if (scrubrates[i].scrubval == scrubval) {
39094443 216 retval = scrubrates[i].bandwidth;
2bc65418
DT
217 break;
218 }
219 }
39094443 220 return retval;
2bc65418
DT
221}
222
6775763a 223/*
7f19bf75
BP
224 * returns true if the SysAddr given by sys_addr matches the
225 * DRAM base/limit associated with node_id
6775763a 226 */
b487c33e
BP
227static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr,
228 unsigned nid)
6775763a 229{
7f19bf75 230 u64 addr;
6775763a
DT
231
232 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
233 * all ones if the most significant implemented address bit is 1.
234 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
235 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
236 * Application Programming.
237 */
238 addr = sys_addr & 0x000000ffffffffffull;
239
7f19bf75
BP
240 return ((addr >= get_dram_base(pvt, nid)) &&
241 (addr <= get_dram_limit(pvt, nid)));
6775763a
DT
242}
243
244/*
245 * Attempt to map a SysAddr to a node. On success, return a pointer to the
246 * mem_ctl_info structure for the node that the SysAddr maps to.
247 *
248 * On failure, return NULL.
249 */
250static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
251 u64 sys_addr)
252{
253 struct amd64_pvt *pvt;
b487c33e 254 unsigned node_id;
6775763a
DT
255 u32 intlv_en, bits;
256
257 /*
258 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
259 * 3.4.4.2) registers to map the SysAddr to a node ID.
260 */
261 pvt = mci->pvt_info;
262
263 /*
264 * The value of this field should be the same for all DRAM Base
265 * registers. Therefore we arbitrarily choose to read it from the
266 * register for node 0.
267 */
7f19bf75 268 intlv_en = dram_intlv_en(pvt, 0);
6775763a
DT
269
270 if (intlv_en == 0) {
7f19bf75 271 for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
6775763a 272 if (amd64_base_limit_match(pvt, sys_addr, node_id))
8edc5445 273 goto found;
6775763a 274 }
8edc5445 275 goto err_no_match;
6775763a
DT
276 }
277
72f158fe
BP
278 if (unlikely((intlv_en != 0x01) &&
279 (intlv_en != 0x03) &&
280 (intlv_en != 0x07))) {
24f9a7fe 281 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
6775763a
DT
282 return NULL;
283 }
284
285 bits = (((u32) sys_addr) >> 12) & intlv_en;
286
287 for (node_id = 0; ; ) {
7f19bf75 288 if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
6775763a
DT
289 break; /* intlv_sel field matches */
290
7f19bf75 291 if (++node_id >= DRAM_RANGES)
6775763a
DT
292 goto err_no_match;
293 }
294
295 /* sanity test for sys_addr */
296 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
24f9a7fe
BP
297 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
298 "range for node %d with node interleaving enabled.\n",
299 __func__, sys_addr, node_id);
6775763a
DT
300 return NULL;
301 }
302
303found:
b487c33e 304 return edac_mc_find((int)node_id);
6775763a
DT
305
306err_no_match:
307 debugf2("sys_addr 0x%lx doesn't match any node\n",
308 (unsigned long)sys_addr);
309
310 return NULL;
311}
e2ce7255
DT
312
313/*
11c75ead
BP
314 * compute the CS base address of the @csrow on the DRAM controller @dct.
315 * For details see F2x[5C:40] in the processor's BKDG
e2ce7255 316 */
11c75ead
BP
317static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
318 u64 *base, u64 *mask)
e2ce7255 319{
11c75ead
BP
320 u64 csbase, csmask, base_bits, mask_bits;
321 u8 addr_shift;
e2ce7255 322
11c75ead
BP
323 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
324 csbase = pvt->csels[dct].csbases[csrow];
325 csmask = pvt->csels[dct].csmasks[csrow];
326 base_bits = GENMASK(21, 31) | GENMASK(9, 15);
327 mask_bits = GENMASK(21, 29) | GENMASK(9, 15);
328 addr_shift = 4;
329 } else {
330 csbase = pvt->csels[dct].csbases[csrow];
331 csmask = pvt->csels[dct].csmasks[csrow >> 1];
332 addr_shift = 8;
e2ce7255 333
11c75ead
BP
334 if (boot_cpu_data.x86 == 0x15)
335 base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13);
336 else
337 base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13);
338 }
e2ce7255 339
11c75ead 340 *base = (csbase & base_bits) << addr_shift;
e2ce7255 341
11c75ead
BP
342 *mask = ~0ULL;
343 /* poke holes for the csmask */
344 *mask &= ~(mask_bits << addr_shift);
345 /* OR them in */
346 *mask |= (csmask & mask_bits) << addr_shift;
e2ce7255
DT
347}
348
11c75ead
BP
349#define for_each_chip_select(i, dct, pvt) \
350 for (i = 0; i < pvt->csels[dct].b_cnt; i++)
351
614ec9d8
BP
352#define chip_select_base(i, dct, pvt) \
353 pvt->csels[dct].csbases[i]
354
11c75ead
BP
355#define for_each_chip_select_mask(i, dct, pvt) \
356 for (i = 0; i < pvt->csels[dct].m_cnt; i++)
357
e2ce7255
DT
358/*
359 * @input_addr is an InputAddr associated with the node given by mci. Return the
360 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
361 */
362static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
363{
364 struct amd64_pvt *pvt;
365 int csrow;
366 u64 base, mask;
367
368 pvt = mci->pvt_info;
369
11c75ead
BP
370 for_each_chip_select(csrow, 0, pvt) {
371 if (!csrow_enabled(csrow, 0, pvt))
e2ce7255
DT
372 continue;
373
11c75ead
BP
374 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
375
376 mask = ~mask;
e2ce7255
DT
377
378 if ((input_addr & mask) == (base & mask)) {
379 debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
380 (unsigned long)input_addr, csrow,
381 pvt->mc_node_id);
382
383 return csrow;
384 }
385 }
e2ce7255
DT
386 debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
387 (unsigned long)input_addr, pvt->mc_node_id);
388
389 return -1;
390}
391
e2ce7255
DT
392/*
393 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
394 * for the node represented by mci. Info is passed back in *hole_base,
395 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
396 * info is invalid. Info may be invalid for either of the following reasons:
397 *
398 * - The revision of the node is not E or greater. In this case, the DRAM Hole
399 * Address Register does not exist.
400 *
401 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
402 * indicating that its contents are not valid.
403 *
404 * The values passed back in *hole_base, *hole_offset, and *hole_size are
405 * complete 32-bit values despite the fact that the bitfields in the DHAR
406 * only represent bits 31-24 of the base and offset values.
407 */
408int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
409 u64 *hole_offset, u64 *hole_size)
410{
411 struct amd64_pvt *pvt = mci->pvt_info;
412 u64 base;
413
414 /* only revE and later have the DRAM Hole Address Register */
1433eb99 415 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
e2ce7255
DT
416 debugf1(" revision %d for node %d does not support DHAR\n",
417 pvt->ext_model, pvt->mc_node_id);
418 return 1;
419 }
420
bc21fa57 421 /* valid for Fam10h and above */
c8e518d5 422 if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
e2ce7255
DT
423 debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
424 return 1;
425 }
426
c8e518d5 427 if (!dhar_valid(pvt)) {
e2ce7255
DT
428 debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
429 pvt->mc_node_id);
430 return 1;
431 }
432
433 /* This node has Memory Hoisting */
434
435 /* +------------------+--------------------+--------------------+-----
436 * | memory | DRAM hole | relocated |
437 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
438 * | | | DRAM hole |
439 * | | | [0x100000000, |
440 * | | | (0x100000000+ |
441 * | | | (0xffffffff-x))] |
442 * +------------------+--------------------+--------------------+-----
443 *
444 * Above is a diagram of physical memory showing the DRAM hole and the
445 * relocated addresses from the DRAM hole. As shown, the DRAM hole
446 * starts at address x (the base address) and extends through address
447 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
448 * addresses in the hole so that they start at 0x100000000.
449 */
450
bc21fa57 451 base = dhar_base(pvt);
e2ce7255
DT
452
453 *hole_base = base;
454 *hole_size = (0x1ull << 32) - base;
455
456 if (boot_cpu_data.x86 > 0xf)
bc21fa57 457 *hole_offset = f10_dhar_offset(pvt);
e2ce7255 458 else
bc21fa57 459 *hole_offset = k8_dhar_offset(pvt);
e2ce7255
DT
460
461 debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
462 pvt->mc_node_id, (unsigned long)*hole_base,
463 (unsigned long)*hole_offset, (unsigned long)*hole_size);
464
465 return 0;
466}
467EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
468
93c2df58
DT
469/*
470 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
471 * assumed that sys_addr maps to the node given by mci.
472 *
473 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
474 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
475 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
476 * then it is also involved in translating a SysAddr to a DramAddr. Sections
477 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
478 * These parts of the documentation are unclear. I interpret them as follows:
479 *
480 * When node n receives a SysAddr, it processes the SysAddr as follows:
481 *
482 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
483 * Limit registers for node n. If the SysAddr is not within the range
484 * specified by the base and limit values, then node n ignores the Sysaddr
485 * (since it does not map to node n). Otherwise continue to step 2 below.
486 *
487 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
488 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
489 * the range of relocated addresses (starting at 0x100000000) from the DRAM
490 * hole. If not, skip to step 3 below. Else get the value of the
491 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
492 * offset defined by this value from the SysAddr.
493 *
494 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
495 * Base register for node n. To obtain the DramAddr, subtract the base
496 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
497 */
498static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
499{
7f19bf75 500 struct amd64_pvt *pvt = mci->pvt_info;
93c2df58
DT
501 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
502 int ret = 0;
503
7f19bf75 504 dram_base = get_dram_base(pvt, pvt->mc_node_id);
93c2df58
DT
505
506 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
507 &hole_size);
508 if (!ret) {
509 if ((sys_addr >= (1ull << 32)) &&
510 (sys_addr < ((1ull << 32) + hole_size))) {
511 /* use DHAR to translate SysAddr to DramAddr */
512 dram_addr = sys_addr - hole_offset;
513
514 debugf2("using DHAR to translate SysAddr 0x%lx to "
515 "DramAddr 0x%lx\n",
516 (unsigned long)sys_addr,
517 (unsigned long)dram_addr);
518
519 return dram_addr;
520 }
521 }
522
523 /*
524 * Translate the SysAddr to a DramAddr as shown near the start of
525 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
526 * only deals with 40-bit values. Therefore we discard bits 63-40 of
527 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
528 * discard are all 1s. Otherwise the bits we discard are all 0s. See
529 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
530 * Programmer's Manual Volume 1 Application Programming.
531 */
f678b8cc 532 dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base;
93c2df58
DT
533
534 debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
535 "DramAddr 0x%lx\n", (unsigned long)sys_addr,
536 (unsigned long)dram_addr);
537 return dram_addr;
538}
539
540/*
541 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
542 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
543 * for node interleaving.
544 */
545static int num_node_interleave_bits(unsigned intlv_en)
546{
547 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
548 int n;
549
550 BUG_ON(intlv_en > 7);
551 n = intlv_shift_table[intlv_en];
552 return n;
553}
554
555/* Translate the DramAddr given by @dram_addr to an InputAddr. */
556static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
557{
558 struct amd64_pvt *pvt;
559 int intlv_shift;
560 u64 input_addr;
561
562 pvt = mci->pvt_info;
563
564 /*
565 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
566 * concerning translating a DramAddr to an InputAddr.
567 */
7f19bf75 568 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
f678b8cc
BP
569 input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) +
570 (dram_addr & 0xfff);
93c2df58
DT
571
572 debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
573 intlv_shift, (unsigned long)dram_addr,
574 (unsigned long)input_addr);
575
576 return input_addr;
577}
578
579/*
580 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
581 * assumed that @sys_addr maps to the node given by mci.
582 */
583static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
584{
585 u64 input_addr;
586
587 input_addr =
588 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
589
590 debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
591 (unsigned long)sys_addr, (unsigned long)input_addr);
592
593 return input_addr;
594}
595
596
597/*
598 * @input_addr is an InputAddr associated with the node represented by mci.
599 * Translate @input_addr to a DramAddr and return the result.
600 */
601static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
602{
603 struct amd64_pvt *pvt;
b487c33e 604 unsigned node_id, intlv_shift;
93c2df58
DT
605 u64 bits, dram_addr;
606 u32 intlv_sel;
607
608 /*
609 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
610 * shows how to translate a DramAddr to an InputAddr. Here we reverse
611 * this procedure. When translating from a DramAddr to an InputAddr, the
612 * bits used for node interleaving are discarded. Here we recover these
613 * bits from the IntlvSel field of the DRAM Limit register (section
614 * 3.4.4.2) for the node that input_addr is associated with.
615 */
616 pvt = mci->pvt_info;
617 node_id = pvt->mc_node_id;
b487c33e
BP
618
619 BUG_ON(node_id > 7);
93c2df58 620
7f19bf75 621 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
93c2df58
DT
622 if (intlv_shift == 0) {
623 debugf1(" InputAddr 0x%lx translates to DramAddr of "
624 "same value\n", (unsigned long)input_addr);
625
626 return input_addr;
627 }
628
f678b8cc
BP
629 bits = ((input_addr & GENMASK(12, 35)) << intlv_shift) +
630 (input_addr & 0xfff);
93c2df58 631
7f19bf75 632 intlv_sel = dram_intlv_sel(pvt, node_id) & ((1 << intlv_shift) - 1);
93c2df58
DT
633 dram_addr = bits + (intlv_sel << 12);
634
635 debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
636 "(%d node interleave bits)\n", (unsigned long)input_addr,
637 (unsigned long)dram_addr, intlv_shift);
638
639 return dram_addr;
640}
641
642/*
643 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
644 * @dram_addr to a SysAddr.
645 */
646static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
647{
648 struct amd64_pvt *pvt = mci->pvt_info;
7f19bf75 649 u64 hole_base, hole_offset, hole_size, base, sys_addr;
93c2df58
DT
650 int ret = 0;
651
652 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
653 &hole_size);
654 if (!ret) {
655 if ((dram_addr >= hole_base) &&
656 (dram_addr < (hole_base + hole_size))) {
657 sys_addr = dram_addr + hole_offset;
658
659 debugf1("using DHAR to translate DramAddr 0x%lx to "
660 "SysAddr 0x%lx\n", (unsigned long)dram_addr,
661 (unsigned long)sys_addr);
662
663 return sys_addr;
664 }
665 }
666
7f19bf75 667 base = get_dram_base(pvt, pvt->mc_node_id);
93c2df58
DT
668 sys_addr = dram_addr + base;
669
670 /*
671 * The sys_addr we have computed up to this point is a 40-bit value
672 * because the k8 deals with 40-bit values. However, the value we are
673 * supposed to return is a full 64-bit physical address. The AMD
674 * x86-64 architecture specifies that the most significant implemented
675 * address bit through bit 63 of a physical address must be either all
676 * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
677 * 64-bit value below. See section 3.4.2 of AMD publication 24592:
678 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
679 * Programming.
680 */
681 sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
682
683 debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
684 pvt->mc_node_id, (unsigned long)dram_addr,
685 (unsigned long)sys_addr);
686
687 return sys_addr;
688}
689
690/*
691 * @input_addr is an InputAddr associated with the node given by mci. Translate
692 * @input_addr to a SysAddr.
693 */
694static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
695 u64 input_addr)
696{
697 return dram_addr_to_sys_addr(mci,
698 input_addr_to_dram_addr(mci, input_addr));
699}
700
701/*
702 * Find the minimum and maximum InputAddr values that map to the given @csrow.
703 * Pass back these values in *input_addr_min and *input_addr_max.
704 */
705static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
706 u64 *input_addr_min, u64 *input_addr_max)
707{
708 struct amd64_pvt *pvt;
709 u64 base, mask;
710
711 pvt = mci->pvt_info;
11c75ead 712 BUG_ON((csrow < 0) || (csrow >= pvt->csels[0].b_cnt));
93c2df58 713
11c75ead 714 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
93c2df58
DT
715
716 *input_addr_min = base & ~mask;
11c75ead 717 *input_addr_max = base | mask;
93c2df58
DT
718}
719
93c2df58
DT
720/* Map the Error address to a PAGE and PAGE OFFSET. */
721static inline void error_address_to_page_and_offset(u64 error_address,
722 u32 *page, u32 *offset)
723{
724 *page = (u32) (error_address >> PAGE_SHIFT);
725 *offset = ((u32) error_address) & ~PAGE_MASK;
726}
727
728/*
729 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
730 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
731 * of a node that detected an ECC memory error. mci represents the node that
732 * the error address maps to (possibly different from the node that detected
733 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
734 * error.
735 */
736static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
737{
738 int csrow;
739
740 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
741
742 if (csrow == -1)
24f9a7fe
BP
743 amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
744 "address 0x%lx\n", (unsigned long)sys_addr);
93c2df58
DT
745 return csrow;
746}
e2ce7255 747
bfc04aec 748static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
2da11654 749
2da11654
DT
750/*
751 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
752 * are ECC capable.
753 */
754static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
755{
cb328507 756 u8 bit;
584fcff4 757 enum dev_type edac_cap = EDAC_FLAG_NONE;
2da11654 758
1433eb99 759 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
2da11654
DT
760 ? 19
761 : 17;
762
584fcff4 763 if (pvt->dclr0 & BIT(bit))
2da11654
DT
764 edac_cap = EDAC_FLAG_SECDED;
765
766 return edac_cap;
767}
768
8c671751 769static void amd64_debug_display_dimm_sizes(struct amd64_pvt *, u8);
2da11654 770
68798e17
BP
771static void amd64_dump_dramcfg_low(u32 dclr, int chan)
772{
773 debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
774
775 debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
776 (dclr & BIT(16)) ? "un" : "",
777 (dclr & BIT(19)) ? "yes" : "no");
778
779 debugf1(" PAR/ERR parity: %s\n",
780 (dclr & BIT(8)) ? "enabled" : "disabled");
781
cb328507
BP
782 if (boot_cpu_data.x86 == 0x10)
783 debugf1(" DCT 128bit mode width: %s\n",
784 (dclr & BIT(11)) ? "128b" : "64b");
68798e17
BP
785
786 debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
787 (dclr & BIT(12)) ? "yes" : "no",
788 (dclr & BIT(13)) ? "yes" : "no",
789 (dclr & BIT(14)) ? "yes" : "no",
790 (dclr & BIT(15)) ? "yes" : "no");
791}
792
2da11654 793/* Display and decode various NB registers for debug purposes. */
b2b0c605 794static void dump_misc_regs(struct amd64_pvt *pvt)
2da11654 795{
68798e17
BP
796 debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
797
798 debugf1(" NB two channel DRAM capable: %s\n",
5980bb9c 799 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
2da11654 800
68798e17 801 debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n",
5980bb9c
BP
802 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
803 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
68798e17
BP
804
805 amd64_dump_dramcfg_low(pvt->dclr0, 0);
2da11654 806
8de1d91e 807 debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
2da11654 808
8de1d91e
BP
809 debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
810 "offset: 0x%08x\n",
bc21fa57
BP
811 pvt->dhar, dhar_base(pvt),
812 (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt)
813 : f10_dhar_offset(pvt));
2da11654 814
c8e518d5 815 debugf1(" DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
2da11654 816
8c671751 817 amd64_debug_display_dimm_sizes(pvt, 0);
4d796364 818
8de1d91e 819 /* everything below this point is Fam10h and above */
4d796364 820 if (boot_cpu_data.x86 == 0xf)
2da11654 821 return;
4d796364 822
8c671751 823 amd64_debug_display_dimm_sizes(pvt, 1);
2da11654 824
a3b7db09 825 amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
ad6a32e9 826
8de1d91e 827 /* Only if NOT ganged does dclr1 have valid info */
68798e17
BP
828 if (!dct_ganging_enabled(pvt))
829 amd64_dump_dramcfg_low(pvt->dclr1, 1);
2da11654
DT
830}
831
94be4bff 832/*
11c75ead 833 * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
94be4bff 834 */
11c75ead 835static void prep_chip_selects(struct amd64_pvt *pvt)
94be4bff 836{
1433eb99 837 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
11c75ead
BP
838 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
839 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
9d858bb1 840 } else {
11c75ead
BP
841 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
842 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
94be4bff
DT
843 }
844}
845
846/*
11c75ead 847 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
94be4bff 848 */
b2b0c605 849static void read_dct_base_mask(struct amd64_pvt *pvt)
94be4bff 850{
11c75ead 851 int cs;
94be4bff 852
11c75ead 853 prep_chip_selects(pvt);
94be4bff 854
11c75ead 855 for_each_chip_select(cs, 0, pvt) {
71d2a32e
BP
856 int reg0 = DCSB0 + (cs * 4);
857 int reg1 = DCSB1 + (cs * 4);
11c75ead
BP
858 u32 *base0 = &pvt->csels[0].csbases[cs];
859 u32 *base1 = &pvt->csels[1].csbases[cs];
b2b0c605 860
11c75ead 861 if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
94be4bff 862 debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
11c75ead 863 cs, *base0, reg0);
94be4bff 864
11c75ead
BP
865 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
866 continue;
b2b0c605 867
11c75ead
BP
868 if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
869 debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
870 cs, *base1, reg1);
94be4bff
DT
871 }
872
11c75ead 873 for_each_chip_select_mask(cs, 0, pvt) {
71d2a32e
BP
874 int reg0 = DCSM0 + (cs * 4);
875 int reg1 = DCSM1 + (cs * 4);
11c75ead
BP
876 u32 *mask0 = &pvt->csels[0].csmasks[cs];
877 u32 *mask1 = &pvt->csels[1].csmasks[cs];
b2b0c605 878
11c75ead 879 if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
94be4bff 880 debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
11c75ead 881 cs, *mask0, reg0);
94be4bff 882
11c75ead
BP
883 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
884 continue;
b2b0c605 885
11c75ead
BP
886 if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
887 debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
888 cs, *mask1, reg1);
94be4bff
DT
889 }
890}
891
24f9a7fe 892static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
94be4bff
DT
893{
894 enum mem_type type;
895
cb328507
BP
896 /* F15h supports only DDR3 */
897 if (boot_cpu_data.x86 >= 0x15)
898 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
899 else if (boot_cpu_data.x86 == 0x10 || pvt->ext_model >= K8_REV_F) {
6b4c0bde
BP
900 if (pvt->dchr0 & DDR3_MODE)
901 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
902 else
903 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
94be4bff 904 } else {
94be4bff
DT
905 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
906 }
907
24f9a7fe 908 amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
94be4bff
DT
909
910 return type;
911}
912
cb328507 913/* Get the number of DCT channels the memory controller is using. */
ddff876d
DT
914static int k8_early_channel_count(struct amd64_pvt *pvt)
915{
cb328507 916 int flag;
ddff876d 917
9f56da0e 918 if (pvt->ext_model >= K8_REV_F)
ddff876d 919 /* RevF (NPT) and later */
41d8bfab 920 flag = pvt->dclr0 & WIDTH_128;
9f56da0e 921 else
ddff876d
DT
922 /* RevE and earlier */
923 flag = pvt->dclr0 & REVE_WIDTH_128;
ddff876d
DT
924
925 /* not used */
926 pvt->dclr1 = 0;
927
928 return (flag) ? 2 : 1;
929}
930
70046624
BP
931/* On F10h and later ErrAddr is MC4_ADDR[47:1] */
932static u64 get_error_address(struct mce *m)
ddff876d 933{
70046624
BP
934 u8 start_bit = 1;
935 u8 end_bit = 47;
936
937 if (boot_cpu_data.x86 == 0xf) {
938 start_bit = 3;
939 end_bit = 39;
940 }
941
942 return m->addr & GENMASK(start_bit, end_bit);
ddff876d
DT
943}
944
7f19bf75 945static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
ddff876d 946{
f08e457c 947 struct cpuinfo_x86 *c = &boot_cpu_data;
71d2a32e 948 int off = range << 3;
ddff876d 949
7f19bf75
BP
950 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
951 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
ddff876d 952
f08e457c 953 if (c->x86 == 0xf)
7f19bf75 954 return;
ddff876d 955
7f19bf75
BP
956 if (!dram_rw(pvt, range))
957 return;
ddff876d 958
7f19bf75
BP
959 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
960 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
f08e457c
BP
961
962 /* Factor in CC6 save area by reading dst node's limit reg */
963 if (c->x86 == 0x15) {
964 struct pci_dev *f1 = NULL;
965 u8 nid = dram_dst_node(pvt, range);
966 u32 llim;
967
968 f1 = pci_get_domain_bus_and_slot(0, 0, PCI_DEVFN(0x18 + nid, 1));
969 if (WARN_ON(!f1))
970 return;
971
972 amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
973
974 pvt->ranges[range].lim.lo &= GENMASK(0, 15);
975
976 /* {[39:27],111b} */
977 pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
978
979 pvt->ranges[range].lim.hi &= GENMASK(0, 7);
980
981 /* [47:40] */
982 pvt->ranges[range].lim.hi |= llim >> 13;
983
984 pci_dev_put(f1);
985 }
ddff876d
DT
986}
987
f192c7b1
BP
988static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
989 u16 syndrome)
ddff876d
DT
990{
991 struct mem_ctl_info *src_mci;
f192c7b1 992 struct amd64_pvt *pvt = mci->pvt_info;
ddff876d
DT
993 int channel, csrow;
994 u32 page, offset;
ddff876d
DT
995
996 /* CHIPKILL enabled */
f192c7b1 997 if (pvt->nbcfg & NBCFG_CHIPKILL) {
bfc04aec 998 channel = get_channel_from_ecc_syndrome(mci, syndrome);
ddff876d
DT
999 if (channel < 0) {
1000 /*
1001 * Syndrome didn't map, so we don't know which of the
1002 * 2 DIMMs is in error. So we need to ID 'both' of them
1003 * as suspect.
1004 */
24f9a7fe
BP
1005 amd64_mc_warn(mci, "unknown syndrome 0x%04x - possible "
1006 "error reporting race\n", syndrome);
ddff876d
DT
1007 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1008 return;
1009 }
1010 } else {
1011 /*
1012 * non-chipkill ecc mode
1013 *
1014 * The k8 documentation is unclear about how to determine the
1015 * channel number when using non-chipkill memory. This method
1016 * was obtained from email communication with someone at AMD.
1017 * (Wish the email was placed in this comment - norsk)
1018 */
44e9e2ee 1019 channel = ((sys_addr & BIT(3)) != 0);
ddff876d
DT
1020 }
1021
1022 /*
1023 * Find out which node the error address belongs to. This may be
1024 * different from the node that detected the error.
1025 */
44e9e2ee 1026 src_mci = find_mc_by_sys_addr(mci, sys_addr);
2cff18c2 1027 if (!src_mci) {
24f9a7fe 1028 amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
44e9e2ee 1029 (unsigned long)sys_addr);
ddff876d
DT
1030 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1031 return;
1032 }
1033
44e9e2ee
BP
1034 /* Now map the sys_addr to a CSROW */
1035 csrow = sys_addr_to_csrow(src_mci, sys_addr);
ddff876d
DT
1036 if (csrow < 0) {
1037 edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
1038 } else {
44e9e2ee 1039 error_address_to_page_and_offset(sys_addr, &page, &offset);
ddff876d
DT
1040
1041 edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
1042 channel, EDAC_MOD_STR);
1043 }
1044}
1045
41d8bfab 1046static int ddr2_cs_size(unsigned i, bool dct_width)
ddff876d 1047{
41d8bfab 1048 unsigned shift = 0;
ddff876d 1049
41d8bfab
BP
1050 if (i <= 2)
1051 shift = i;
1052 else if (!(i & 0x1))
1053 shift = i >> 1;
1433eb99 1054 else
41d8bfab 1055 shift = (i + 1) >> 1;
ddff876d 1056
41d8bfab
BP
1057 return 128 << (shift + !!dct_width);
1058}
1059
1060static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1061 unsigned cs_mode)
1062{
1063 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1064
1065 if (pvt->ext_model >= K8_REV_F) {
1066 WARN_ON(cs_mode > 11);
1067 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1068 }
1069 else if (pvt->ext_model >= K8_REV_D) {
1070 WARN_ON(cs_mode > 10);
1071
1072 if (cs_mode == 3 || cs_mode == 8)
1073 return 32 << (cs_mode - 1);
1074 else
1075 return 32 << cs_mode;
1076 }
1077 else {
1078 WARN_ON(cs_mode > 6);
1079 return 32 << cs_mode;
1080 }
ddff876d
DT
1081}
1082
1afd3c98
DT
1083/*
1084 * Get the number of DCT channels in use.
1085 *
1086 * Return:
1087 * number of Memory Channels in operation
1088 * Pass back:
1089 * contents of the DCL0_LOW register
1090 */
7d20d14d 1091static int f1x_early_channel_count(struct amd64_pvt *pvt)
1afd3c98 1092{
6ba5dcdc 1093 int i, j, channels = 0;
1afd3c98 1094
7d20d14d 1095 /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
41d8bfab 1096 if (boot_cpu_data.x86 == 0x10 && (pvt->dclr0 & WIDTH_128))
7d20d14d 1097 return 2;
1afd3c98
DT
1098
1099 /*
d16149e8
BP
1100 * Need to check if in unganged mode: In such, there are 2 channels,
1101 * but they are not in 128 bit mode and thus the above 'dclr0' status
1102 * bit will be OFF.
1afd3c98
DT
1103 *
1104 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1105 * their CSEnable bit on. If so, then SINGLE DIMM case.
1106 */
d16149e8 1107 debugf0("Data width is not 128 bits - need more decoding\n");
ddff876d 1108
1afd3c98
DT
1109 /*
1110 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1111 * is more than just one DIMM present in unganged mode. Need to check
1112 * both controllers since DIMMs can be placed in either one.
1113 */
525a1b20
BP
1114 for (i = 0; i < 2; i++) {
1115 u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1afd3c98 1116
57a30854
WW
1117 for (j = 0; j < 4; j++) {
1118 if (DBAM_DIMM(j, dbam) > 0) {
1119 channels++;
1120 break;
1121 }
1122 }
1afd3c98
DT
1123 }
1124
d16149e8
BP
1125 if (channels > 2)
1126 channels = 2;
1127
24f9a7fe 1128 amd64_info("MCT channel count: %d\n", channels);
1afd3c98
DT
1129
1130 return channels;
1afd3c98
DT
1131}
1132
41d8bfab 1133static int ddr3_cs_size(unsigned i, bool dct_width)
1afd3c98 1134{
41d8bfab
BP
1135 unsigned shift = 0;
1136 int cs_size = 0;
1137
1138 if (i == 0 || i == 3 || i == 4)
1139 cs_size = -1;
1140 else if (i <= 2)
1141 shift = i;
1142 else if (i == 12)
1143 shift = 7;
1144 else if (!(i & 0x1))
1145 shift = i >> 1;
1146 else
1147 shift = (i + 1) >> 1;
1148
1149 if (cs_size != -1)
1150 cs_size = (128 * (1 << !!dct_width)) << shift;
1151
1152 return cs_size;
1153}
1154
1155static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1156 unsigned cs_mode)
1157{
1158 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1159
1160 WARN_ON(cs_mode > 11);
1433eb99
BP
1161
1162 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
41d8bfab 1163 return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1433eb99 1164 else
41d8bfab
BP
1165 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1166}
1167
1168/*
1169 * F15h supports only 64bit DCT interfaces
1170 */
1171static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1172 unsigned cs_mode)
1173{
1174 WARN_ON(cs_mode > 12);
1433eb99 1175
41d8bfab 1176 return ddr3_cs_size(cs_mode, false);
1afd3c98
DT
1177}
1178
5a5d2371 1179static void read_dram_ctl_register(struct amd64_pvt *pvt)
6163b5d4 1180{
6163b5d4 1181
5a5d2371
BP
1182 if (boot_cpu_data.x86 == 0xf)
1183 return;
1184
78da121e
BP
1185 if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
1186 debugf0("F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
1187 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
72381bd5 1188
5a5d2371
BP
1189 debugf0(" DCTs operate in %s mode.\n",
1190 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
72381bd5
BP
1191
1192 if (!dct_ganging_enabled(pvt))
1193 debugf0(" Address range split per DCT: %s\n",
1194 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1195
78da121e 1196 debugf0(" data interleave for ECC: %s, "
72381bd5
BP
1197 "DRAM cleared since last warm reset: %s\n",
1198 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1199 (dct_memory_cleared(pvt) ? "yes" : "no"));
1200
78da121e
BP
1201 debugf0(" channel interleave: %s, "
1202 "interleave bits selector: 0x%x\n",
72381bd5 1203 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
6163b5d4
DT
1204 dct_sel_interleave_addr(pvt));
1205 }
1206
78da121e 1207 amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
6163b5d4
DT
1208}
1209
f71d0a05 1210/*
229a7a11 1211 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
f71d0a05
DT
1212 * Interleaving Modes.
1213 */
b15f0fca 1214static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
229a7a11 1215 bool hi_range_sel, u8 intlv_en)
6163b5d4 1216{
151fa71c 1217 u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
6163b5d4
DT
1218
1219 if (dct_ganging_enabled(pvt))
229a7a11 1220 return 0;
6163b5d4 1221
229a7a11
BP
1222 if (hi_range_sel)
1223 return dct_sel_high;
6163b5d4 1224
229a7a11
BP
1225 /*
1226 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1227 */
1228 if (dct_interleave_enabled(pvt)) {
1229 u8 intlv_addr = dct_sel_interleave_addr(pvt);
1230
1231 /* return DCT select function: 0=DCT0, 1=DCT1 */
1232 if (!intlv_addr)
1233 return sys_addr >> 6 & 1;
1234
1235 if (intlv_addr & 0x2) {
1236 u8 shift = intlv_addr & 0x1 ? 9 : 6;
1237 u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1238
1239 return ((sys_addr >> shift) & 1) ^ temp;
1240 }
1241
1242 return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
1243 }
1244
1245 if (dct_high_range_enabled(pvt))
1246 return ~dct_sel_high & 1;
6163b5d4
DT
1247
1248 return 0;
1249}
1250
c8e518d5 1251/* Convert the sys_addr to the normalized DCT address */
e761359a 1252static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, unsigned range,
c8e518d5
BP
1253 u64 sys_addr, bool hi_rng,
1254 u32 dct_sel_base_addr)
6163b5d4
DT
1255{
1256 u64 chan_off;
c8e518d5
BP
1257 u64 dram_base = get_dram_base(pvt, range);
1258 u64 hole_off = f10_dhar_offset(pvt);
c8e518d5 1259 u64 dct_sel_base_off = (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
6163b5d4 1260
c8e518d5
BP
1261 if (hi_rng) {
1262 /*
1263 * if
1264 * base address of high range is below 4Gb
1265 * (bits [47:27] at [31:11])
1266 * DRAM address space on this DCT is hoisted above 4Gb &&
1267 * sys_addr > 4Gb
1268 *
1269 * remove hole offset from sys_addr
1270 * else
1271 * remove high range offset from sys_addr
1272 */
1273 if ((!(dct_sel_base_addr >> 16) ||
1274 dct_sel_base_addr < dhar_base(pvt)) &&
972ea17a 1275 dhar_valid(pvt) &&
c8e518d5 1276 (sys_addr >= BIT_64(32)))
bc21fa57 1277 chan_off = hole_off;
6163b5d4
DT
1278 else
1279 chan_off = dct_sel_base_off;
1280 } else {
c8e518d5
BP
1281 /*
1282 * if
1283 * we have a valid hole &&
1284 * sys_addr > 4Gb
1285 *
1286 * remove hole
1287 * else
1288 * remove dram base to normalize to DCT address
1289 */
972ea17a 1290 if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
bc21fa57 1291 chan_off = hole_off;
6163b5d4 1292 else
c8e518d5 1293 chan_off = dram_base;
6163b5d4
DT
1294 }
1295
c8e518d5 1296 return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47));
6163b5d4
DT
1297}
1298
6163b5d4
DT
1299/*
1300 * checks if the csrow passed in is marked as SPARED, if so returns the new
1301 * spare row
1302 */
11c75ead 1303static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
6163b5d4 1304{
614ec9d8
BP
1305 int tmp_cs;
1306
1307 if (online_spare_swap_done(pvt, dct) &&
1308 csrow == online_spare_bad_dramcs(pvt, dct)) {
1309
1310 for_each_chip_select(tmp_cs, dct, pvt) {
1311 if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
1312 csrow = tmp_cs;
1313 break;
1314 }
1315 }
6163b5d4
DT
1316 }
1317 return csrow;
1318}
1319
1320/*
1321 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1322 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1323 *
1324 * Return:
1325 * -EINVAL: NOT FOUND
1326 * 0..csrow = Chip-Select Row
1327 */
b15f0fca 1328static int f1x_lookup_addr_in_dct(u64 in_addr, u32 nid, u8 dct)
6163b5d4
DT
1329{
1330 struct mem_ctl_info *mci;
1331 struct amd64_pvt *pvt;
11c75ead 1332 u64 cs_base, cs_mask;
6163b5d4
DT
1333 int cs_found = -EINVAL;
1334 int csrow;
1335
cc4d8860 1336 mci = mcis[nid];
6163b5d4
DT
1337 if (!mci)
1338 return cs_found;
1339
1340 pvt = mci->pvt_info;
1341
11c75ead 1342 debugf1("input addr: 0x%llx, DCT: %d\n", in_addr, dct);
6163b5d4 1343
11c75ead
BP
1344 for_each_chip_select(csrow, dct, pvt) {
1345 if (!csrow_enabled(csrow, dct, pvt))
6163b5d4
DT
1346 continue;
1347
11c75ead 1348 get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
6163b5d4 1349
11c75ead
BP
1350 debugf1(" CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
1351 csrow, cs_base, cs_mask);
6163b5d4 1352
11c75ead 1353 cs_mask = ~cs_mask;
6163b5d4 1354
11c75ead
BP
1355 debugf1(" (InputAddr & ~CSMask)=0x%llx "
1356 "(CSBase & ~CSMask)=0x%llx\n",
1357 (in_addr & cs_mask), (cs_base & cs_mask));
6163b5d4 1358
11c75ead
BP
1359 if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
1360 cs_found = f10_process_possible_spare(pvt, dct, csrow);
6163b5d4
DT
1361
1362 debugf1(" MATCH csrow=%d\n", cs_found);
1363 break;
1364 }
1365 }
1366 return cs_found;
1367}
1368
95b0ef55
BP
1369/*
1370 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
1371 * swapped with a region located at the bottom of memory so that the GPU can use
1372 * the interleaved region and thus two channels.
1373 */
b15f0fca 1374static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
95b0ef55
BP
1375{
1376 u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
1377
1378 if (boot_cpu_data.x86 == 0x10) {
1379 /* only revC3 and revE have that feature */
1380 if (boot_cpu_data.x86_model < 4 ||
1381 (boot_cpu_data.x86_model < 0xa &&
1382 boot_cpu_data.x86_mask < 3))
1383 return sys_addr;
1384 }
1385
1386 amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg);
1387
1388 if (!(swap_reg & 0x1))
1389 return sys_addr;
1390
1391 swap_base = (swap_reg >> 3) & 0x7f;
1392 swap_limit = (swap_reg >> 11) & 0x7f;
1393 rgn_size = (swap_reg >> 20) & 0x7f;
1394 tmp_addr = sys_addr >> 27;
1395
1396 if (!(sys_addr >> 34) &&
1397 (((tmp_addr >= swap_base) &&
1398 (tmp_addr <= swap_limit)) ||
1399 (tmp_addr < rgn_size)))
1400 return sys_addr ^ (u64)swap_base << 27;
1401
1402 return sys_addr;
1403}
1404
f71d0a05 1405/* For a given @dram_range, check if @sys_addr falls within it. */
e761359a 1406static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
f71d0a05
DT
1407 u64 sys_addr, int *nid, int *chan_sel)
1408{
229a7a11 1409 int cs_found = -EINVAL;
c8e518d5 1410 u64 chan_addr;
5d4b58e8 1411 u32 dct_sel_base;
11c75ead 1412 u8 channel;
229a7a11 1413 bool high_range = false;
f71d0a05 1414
7f19bf75 1415 u8 node_id = dram_dst_node(pvt, range);
229a7a11 1416 u8 intlv_en = dram_intlv_en(pvt, range);
7f19bf75 1417 u32 intlv_sel = dram_intlv_sel(pvt, range);
f71d0a05 1418
c8e518d5
BP
1419 debugf1("(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1420 range, sys_addr, get_dram_limit(pvt, range));
f71d0a05 1421
355fba60
BP
1422 if (dhar_valid(pvt) &&
1423 dhar_base(pvt) <= sys_addr &&
1424 sys_addr < BIT_64(32)) {
1425 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1426 sys_addr);
1427 return -EINVAL;
1428 }
1429
f030ddfb 1430 if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
f71d0a05
DT
1431 return -EINVAL;
1432
b15f0fca 1433 sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
95b0ef55 1434
f71d0a05
DT
1435 dct_sel_base = dct_sel_baseaddr(pvt);
1436
1437 /*
1438 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1439 * select between DCT0 and DCT1.
1440 */
1441 if (dct_high_range_enabled(pvt) &&
1442 !dct_ganging_enabled(pvt) &&
1443 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
229a7a11 1444 high_range = true;
f71d0a05 1445
b15f0fca 1446 channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
f71d0a05 1447
b15f0fca 1448 chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
c8e518d5 1449 high_range, dct_sel_base);
f71d0a05 1450
e2f79dbd
BP
1451 /* Remove node interleaving, see F1x120 */
1452 if (intlv_en)
1453 chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
1454 (chan_addr & 0xfff);
f71d0a05 1455
5d4b58e8 1456 /* remove channel interleave */
f71d0a05
DT
1457 if (dct_interleave_enabled(pvt) &&
1458 !dct_high_range_enabled(pvt) &&
1459 !dct_ganging_enabled(pvt)) {
5d4b58e8
BP
1460
1461 if (dct_sel_interleave_addr(pvt) != 1) {
1462 if (dct_sel_interleave_addr(pvt) == 0x3)
1463 /* hash 9 */
1464 chan_addr = ((chan_addr >> 10) << 9) |
1465 (chan_addr & 0x1ff);
1466 else
1467 /* A[6] or hash 6 */
1468 chan_addr = ((chan_addr >> 7) << 6) |
1469 (chan_addr & 0x3f);
1470 } else
1471 /* A[12] */
1472 chan_addr = ((chan_addr >> 13) << 12) |
1473 (chan_addr & 0xfff);
f71d0a05
DT
1474 }
1475
5d4b58e8 1476 debugf1(" Normalized DCT addr: 0x%llx\n", chan_addr);
f71d0a05 1477
b15f0fca 1478 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
f71d0a05
DT
1479
1480 if (cs_found >= 0) {
1481 *nid = node_id;
1482 *chan_sel = channel;
1483 }
1484 return cs_found;
1485}
1486
b15f0fca 1487static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
f71d0a05
DT
1488 int *node, int *chan_sel)
1489{
e761359a
BP
1490 int cs_found = -EINVAL;
1491 unsigned range;
f71d0a05 1492
7f19bf75 1493 for (range = 0; range < DRAM_RANGES; range++) {
f71d0a05 1494
7f19bf75 1495 if (!dram_rw(pvt, range))
f71d0a05
DT
1496 continue;
1497
7f19bf75
BP
1498 if ((get_dram_base(pvt, range) <= sys_addr) &&
1499 (get_dram_limit(pvt, range) >= sys_addr)) {
f71d0a05 1500
b15f0fca 1501 cs_found = f1x_match_to_this_node(pvt, range,
f71d0a05
DT
1502 sys_addr, node,
1503 chan_sel);
1504 if (cs_found >= 0)
1505 break;
1506 }
1507 }
1508 return cs_found;
1509}
1510
1511/*
bdc30a0c
BP
1512 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1513 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
f71d0a05 1514 *
bdc30a0c
BP
1515 * The @sys_addr is usually an error address received from the hardware
1516 * (MCX_ADDR).
f71d0a05 1517 */
b15f0fca 1518static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
f192c7b1 1519 u16 syndrome)
f71d0a05
DT
1520{
1521 struct amd64_pvt *pvt = mci->pvt_info;
1522 u32 page, offset;
f71d0a05
DT
1523 int nid, csrow, chan = 0;
1524
b15f0fca 1525 csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
f71d0a05 1526
bdc30a0c
BP
1527 if (csrow < 0) {
1528 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1529 return;
1530 }
1531
1532 error_address_to_page_and_offset(sys_addr, &page, &offset);
f71d0a05 1533
bdc30a0c
BP
1534 /*
1535 * We need the syndromes for channel detection only when we're
1536 * ganged. Otherwise @chan should already contain the channel at
1537 * this point.
1538 */
a97fa68e 1539 if (dct_ganging_enabled(pvt))
bdc30a0c 1540 chan = get_channel_from_ecc_syndrome(mci, syndrome);
f71d0a05 1541
bdc30a0c
BP
1542 if (chan >= 0)
1543 edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
1544 EDAC_MOD_STR);
1545 else
f71d0a05 1546 /*
bdc30a0c 1547 * Channel unknown, report all channels on this CSROW as failed.
f71d0a05 1548 */
bdc30a0c 1549 for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
f71d0a05 1550 edac_mc_handle_ce(mci, page, offset, syndrome,
bdc30a0c 1551 csrow, chan, EDAC_MOD_STR);
f71d0a05
DT
1552}
1553
f71d0a05 1554/*
8566c4df 1555 * debug routine to display the memory sizes of all logical DIMMs and its
cb328507 1556 * CSROWs
f71d0a05 1557 */
8c671751 1558static void amd64_debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
f71d0a05 1559{
603adaf6 1560 int dimm, size0, size1, factor = 0;
525a1b20
BP
1561 u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
1562 u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
f71d0a05 1563
8566c4df 1564 if (boot_cpu_data.x86 == 0xf) {
41d8bfab 1565 if (pvt->dclr0 & WIDTH_128)
603adaf6
BP
1566 factor = 1;
1567
8566c4df 1568 /* K8 families < revF not supported yet */
1433eb99 1569 if (pvt->ext_model < K8_REV_F)
8566c4df
BP
1570 return;
1571 else
1572 WARN_ON(ctrl != 0);
1573 }
1574
4d796364 1575 dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
11c75ead
BP
1576 dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
1577 : pvt->csels[0].csbases;
f71d0a05 1578
4d796364 1579 debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", ctrl, dbam);
f71d0a05 1580
8566c4df
BP
1581 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1582
f71d0a05
DT
1583 /* Dump memory sizes for DIMM and its CSROWs */
1584 for (dimm = 0; dimm < 4; dimm++) {
1585
1586 size0 = 0;
11c75ead 1587 if (dcsb[dimm*2] & DCSB_CS_ENABLE)
41d8bfab
BP
1588 size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
1589 DBAM_DIMM(dimm, dbam));
f71d0a05
DT
1590
1591 size1 = 0;
11c75ead 1592 if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
41d8bfab
BP
1593 size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
1594 DBAM_DIMM(dimm, dbam));
f71d0a05 1595
24f9a7fe
BP
1596 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
1597 dimm * 2, size0 << factor,
1598 dimm * 2 + 1, size1 << factor);
f71d0a05
DT
1599 }
1600}
1601
4d37607a
DT
1602static struct amd64_family_type amd64_family_types[] = {
1603 [K8_CPUS] = {
0092b20d 1604 .ctl_name = "K8",
8d5b5d9c
BP
1605 .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1606 .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
4d37607a 1607 .ops = {
1433eb99 1608 .early_channel_count = k8_early_channel_count,
1433eb99
BP
1609 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1610 .dbam_to_cs = k8_dbam_to_chip_select,
b2b0c605 1611 .read_dct_pci_cfg = k8_read_dct_pci_cfg,
4d37607a
DT
1612 }
1613 },
1614 [F10_CPUS] = {
0092b20d 1615 .ctl_name = "F10h",
8d5b5d9c
BP
1616 .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1617 .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
4d37607a 1618 .ops = {
7d20d14d 1619 .early_channel_count = f1x_early_channel_count,
b15f0fca 1620 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1433eb99 1621 .dbam_to_cs = f10_dbam_to_chip_select,
b2b0c605
BP
1622 .read_dct_pci_cfg = f10_read_dct_pci_cfg,
1623 }
1624 },
1625 [F15_CPUS] = {
1626 .ctl_name = "F15h",
df71a053
BP
1627 .f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
1628 .f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3,
b2b0c605 1629 .ops = {
7d20d14d 1630 .early_channel_count = f1x_early_channel_count,
b15f0fca 1631 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
41d8bfab 1632 .dbam_to_cs = f15_dbam_to_chip_select,
b2b0c605 1633 .read_dct_pci_cfg = f15_read_dct_pci_cfg,
4d37607a
DT
1634 }
1635 },
4d37607a
DT
1636};
1637
1638static struct pci_dev *pci_get_related_function(unsigned int vendor,
1639 unsigned int device,
1640 struct pci_dev *related)
1641{
1642 struct pci_dev *dev = NULL;
1643
1644 dev = pci_get_device(vendor, device, dev);
1645 while (dev) {
1646 if ((dev->bus->number == related->bus->number) &&
1647 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1648 break;
1649 dev = pci_get_device(vendor, device, dev);
1650 }
1651
1652 return dev;
1653}
1654
b1289d6f 1655/*
bfc04aec
BP
1656 * These are tables of eigenvectors (one per line) which can be used for the
1657 * construction of the syndrome tables. The modified syndrome search algorithm
1658 * uses those to find the symbol in error and thus the DIMM.
b1289d6f 1659 *
bfc04aec 1660 * Algorithm courtesy of Ross LaFetra from AMD.
b1289d6f 1661 */
bfc04aec
BP
1662static u16 x4_vectors[] = {
1663 0x2f57, 0x1afe, 0x66cc, 0xdd88,
1664 0x11eb, 0x3396, 0x7f4c, 0xeac8,
1665 0x0001, 0x0002, 0x0004, 0x0008,
1666 0x1013, 0x3032, 0x4044, 0x8088,
1667 0x106b, 0x30d6, 0x70fc, 0xe0a8,
1668 0x4857, 0xc4fe, 0x13cc, 0x3288,
1669 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1670 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1671 0x15c1, 0x2a42, 0x89ac, 0x4758,
1672 0x2b03, 0x1602, 0x4f0c, 0xca08,
1673 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1674 0x8ba7, 0x465e, 0x244c, 0x1cc8,
1675 0x2b87, 0x164e, 0x642c, 0xdc18,
1676 0x40b9, 0x80de, 0x1094, 0x20e8,
1677 0x27db, 0x1eb6, 0x9dac, 0x7b58,
1678 0x11c1, 0x2242, 0x84ac, 0x4c58,
1679 0x1be5, 0x2d7a, 0x5e34, 0xa718,
1680 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1681 0x4c97, 0xc87e, 0x11fc, 0x33a8,
1682 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1683 0x16b3, 0x3d62, 0x4f34, 0x8518,
1684 0x1e2f, 0x391a, 0x5cac, 0xf858,
1685 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1686 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1687 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1688 0x4397, 0xc27e, 0x17fc, 0x3ea8,
1689 0x1617, 0x3d3e, 0x6464, 0xb8b8,
1690 0x23ff, 0x12aa, 0xab6c, 0x56d8,
1691 0x2dfb, 0x1ba6, 0x913c, 0x7328,
1692 0x185d, 0x2ca6, 0x7914, 0x9e28,
1693 0x171b, 0x3e36, 0x7d7c, 0xebe8,
1694 0x4199, 0x82ee, 0x19f4, 0x2e58,
1695 0x4807, 0xc40e, 0x130c, 0x3208,
1696 0x1905, 0x2e0a, 0x5804, 0xac08,
1697 0x213f, 0x132a, 0xadfc, 0x5ba8,
1698 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
b1289d6f
DT
1699};
1700
bfc04aec
BP
1701static u16 x8_vectors[] = {
1702 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1703 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1704 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1705 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1706 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1707 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1708 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1709 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1710 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1711 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1712 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1713 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1714 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1715 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1716 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1717 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1718 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1719 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1720 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1721};
1722
d34a6ecd
BP
1723static int decode_syndrome(u16 syndrome, u16 *vectors, unsigned num_vecs,
1724 unsigned v_dim)
b1289d6f 1725{
bfc04aec
BP
1726 unsigned int i, err_sym;
1727
1728 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1729 u16 s = syndrome;
d34a6ecd
BP
1730 unsigned v_idx = err_sym * v_dim;
1731 unsigned v_end = (err_sym + 1) * v_dim;
bfc04aec
BP
1732
1733 /* walk over all 16 bits of the syndrome */
1734 for (i = 1; i < (1U << 16); i <<= 1) {
1735
1736 /* if bit is set in that eigenvector... */
1737 if (v_idx < v_end && vectors[v_idx] & i) {
1738 u16 ev_comp = vectors[v_idx++];
1739
1740 /* ... and bit set in the modified syndrome, */
1741 if (s & i) {
1742 /* remove it. */
1743 s ^= ev_comp;
4d37607a 1744
bfc04aec
BP
1745 if (!s)
1746 return err_sym;
1747 }
b1289d6f 1748
bfc04aec
BP
1749 } else if (s & i)
1750 /* can't get to zero, move to next symbol */
1751 break;
1752 }
b1289d6f
DT
1753 }
1754
1755 debugf0("syndrome(%x) not found\n", syndrome);
1756 return -1;
1757}
d27bf6fa 1758
bfc04aec
BP
1759static int map_err_sym_to_channel(int err_sym, int sym_size)
1760{
1761 if (sym_size == 4)
1762 switch (err_sym) {
1763 case 0x20:
1764 case 0x21:
1765 return 0;
1766 break;
1767 case 0x22:
1768 case 0x23:
1769 return 1;
1770 break;
1771 default:
1772 return err_sym >> 4;
1773 break;
1774 }
1775 /* x8 symbols */
1776 else
1777 switch (err_sym) {
1778 /* imaginary bits not in a DIMM */
1779 case 0x10:
1780 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1781 err_sym);
1782 return -1;
1783 break;
1784
1785 case 0x11:
1786 return 0;
1787 break;
1788 case 0x12:
1789 return 1;
1790 break;
1791 default:
1792 return err_sym >> 3;
1793 break;
1794 }
1795 return -1;
1796}
1797
1798static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1799{
1800 struct amd64_pvt *pvt = mci->pvt_info;
ad6a32e9
BP
1801 int err_sym = -1;
1802
a3b7db09 1803 if (pvt->ecc_sym_sz == 8)
ad6a32e9
BP
1804 err_sym = decode_syndrome(syndrome, x8_vectors,
1805 ARRAY_SIZE(x8_vectors),
a3b7db09
BP
1806 pvt->ecc_sym_sz);
1807 else if (pvt->ecc_sym_sz == 4)
ad6a32e9
BP
1808 err_sym = decode_syndrome(syndrome, x4_vectors,
1809 ARRAY_SIZE(x4_vectors),
a3b7db09 1810 pvt->ecc_sym_sz);
ad6a32e9 1811 else {
a3b7db09 1812 amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
ad6a32e9 1813 return err_sym;
bfc04aec 1814 }
ad6a32e9 1815
a3b7db09 1816 return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
bfc04aec
BP
1817}
1818
d27bf6fa
DT
1819/*
1820 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
1821 * ADDRESS and process.
1822 */
f192c7b1 1823static void amd64_handle_ce(struct mem_ctl_info *mci, struct mce *m)
d27bf6fa
DT
1824{
1825 struct amd64_pvt *pvt = mci->pvt_info;
44e9e2ee 1826 u64 sys_addr;
f192c7b1 1827 u16 syndrome;
d27bf6fa
DT
1828
1829 /* Ensure that the Error Address is VALID */
f192c7b1 1830 if (!(m->status & MCI_STATUS_ADDRV)) {
24f9a7fe 1831 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
d27bf6fa
DT
1832 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1833 return;
1834 }
1835
70046624 1836 sys_addr = get_error_address(m);
f192c7b1 1837 syndrome = extract_syndrome(m->status);
d27bf6fa 1838
24f9a7fe 1839 amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
d27bf6fa 1840
f192c7b1 1841 pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, syndrome);
d27bf6fa
DT
1842}
1843
1844/* Handle any Un-correctable Errors (UEs) */
f192c7b1 1845static void amd64_handle_ue(struct mem_ctl_info *mci, struct mce *m)
d27bf6fa 1846{
1f6bcee7 1847 struct mem_ctl_info *log_mci, *src_mci = NULL;
d27bf6fa 1848 int csrow;
44e9e2ee 1849 u64 sys_addr;
d27bf6fa 1850 u32 page, offset;
d27bf6fa
DT
1851
1852 log_mci = mci;
1853
f192c7b1 1854 if (!(m->status & MCI_STATUS_ADDRV)) {
24f9a7fe 1855 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
d27bf6fa
DT
1856 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1857 return;
1858 }
1859
70046624 1860 sys_addr = get_error_address(m);
d27bf6fa
DT
1861
1862 /*
1863 * Find out which node the error address belongs to. This may be
1864 * different from the node that detected the error.
1865 */
44e9e2ee 1866 src_mci = find_mc_by_sys_addr(mci, sys_addr);
d27bf6fa 1867 if (!src_mci) {
24f9a7fe
BP
1868 amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n",
1869 (unsigned long)sys_addr);
d27bf6fa
DT
1870 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1871 return;
1872 }
1873
1874 log_mci = src_mci;
1875
44e9e2ee 1876 csrow = sys_addr_to_csrow(log_mci, sys_addr);
d27bf6fa 1877 if (csrow < 0) {
24f9a7fe
BP
1878 amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n",
1879 (unsigned long)sys_addr);
d27bf6fa
DT
1880 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1881 } else {
44e9e2ee 1882 error_address_to_page_and_offset(sys_addr, &page, &offset);
d27bf6fa
DT
1883 edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
1884 }
1885}
1886
549d042d 1887static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
f192c7b1 1888 struct mce *m)
d27bf6fa 1889{
f192c7b1
BP
1890 u16 ec = EC(m->status);
1891 u8 xec = XEC(m->status, 0x1f);
1892 u8 ecc_type = (m->status >> 45) & 0x3;
d27bf6fa 1893
b70ef010 1894 /* Bail early out if this was an 'observed' error */
5980bb9c 1895 if (PP(ec) == NBSL_PP_OBS)
b70ef010 1896 return;
d27bf6fa 1897
ecaf5606
BP
1898 /* Do only ECC errors */
1899 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
d27bf6fa 1900 return;
d27bf6fa 1901
ecaf5606 1902 if (ecc_type == 2)
f192c7b1 1903 amd64_handle_ce(mci, m);
ecaf5606 1904 else if (ecc_type == 1)
f192c7b1 1905 amd64_handle_ue(mci, m);
d27bf6fa
DT
1906}
1907
7cfd4a87 1908void amd64_decode_bus_error(int node_id, struct mce *m, u32 nbcfg)
d27bf6fa 1909{
cc4d8860 1910 struct mem_ctl_info *mci = mcis[node_id];
7cfd4a87 1911
f192c7b1 1912 __amd64_decode_bus_error(mci, m);
d27bf6fa 1913}
d27bf6fa 1914
0ec449ee 1915/*
8d5b5d9c 1916 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
bbd0c1f6 1917 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
0ec449ee 1918 */
360b7f3c 1919static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
0ec449ee 1920{
0ec449ee 1921 /* Reserve the ADDRESS MAP Device */
8d5b5d9c
BP
1922 pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
1923 if (!pvt->F1) {
24f9a7fe
BP
1924 amd64_err("error address map device not found: "
1925 "vendor %x device 0x%x (broken BIOS?)\n",
1926 PCI_VENDOR_ID_AMD, f1_id);
bbd0c1f6 1927 return -ENODEV;
0ec449ee
DT
1928 }
1929
1930 /* Reserve the MISC Device */
8d5b5d9c
BP
1931 pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
1932 if (!pvt->F3) {
1933 pci_dev_put(pvt->F1);
1934 pvt->F1 = NULL;
0ec449ee 1935
24f9a7fe
BP
1936 amd64_err("error F3 device not found: "
1937 "vendor %x device 0x%x (broken BIOS?)\n",
1938 PCI_VENDOR_ID_AMD, f3_id);
0ec449ee 1939
bbd0c1f6 1940 return -ENODEV;
0ec449ee 1941 }
8d5b5d9c
BP
1942 debugf1("F1: %s\n", pci_name(pvt->F1));
1943 debugf1("F2: %s\n", pci_name(pvt->F2));
1944 debugf1("F3: %s\n", pci_name(pvt->F3));
0ec449ee
DT
1945
1946 return 0;
1947}
1948
360b7f3c 1949static void free_mc_sibling_devs(struct amd64_pvt *pvt)
0ec449ee 1950{
8d5b5d9c
BP
1951 pci_dev_put(pvt->F1);
1952 pci_dev_put(pvt->F3);
0ec449ee
DT
1953}
1954
1955/*
1956 * Retrieve the hardware registers of the memory controller (this includes the
1957 * 'Address Map' and 'Misc' device regs)
1958 */
360b7f3c 1959static void read_mc_regs(struct amd64_pvt *pvt)
0ec449ee 1960{
a3b7db09 1961 struct cpuinfo_x86 *c = &boot_cpu_data;
0ec449ee 1962 u64 msr_val;
ad6a32e9 1963 u32 tmp;
e761359a 1964 unsigned range;
0ec449ee
DT
1965
1966 /*
1967 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
1968 * those are Read-As-Zero
1969 */
e97f8bb8
BP
1970 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
1971 debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem);
0ec449ee
DT
1972
1973 /* check first whether TOP_MEM2 is enabled */
1974 rdmsrl(MSR_K8_SYSCFG, msr_val);
1975 if (msr_val & (1U << 21)) {
e97f8bb8
BP
1976 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
1977 debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
0ec449ee
DT
1978 } else
1979 debugf0(" TOP_MEM2 disabled.\n");
1980
5980bb9c 1981 amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
0ec449ee 1982
5a5d2371 1983 read_dram_ctl_register(pvt);
0ec449ee 1984
7f19bf75
BP
1985 for (range = 0; range < DRAM_RANGES; range++) {
1986 u8 rw;
0ec449ee 1987
7f19bf75
BP
1988 /* read settings for this DRAM range */
1989 read_dram_base_limit_regs(pvt, range);
1990
1991 rw = dram_rw(pvt, range);
1992 if (!rw)
1993 continue;
1994
1995 debugf1(" DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
1996 range,
1997 get_dram_base(pvt, range),
1998 get_dram_limit(pvt, range));
1999
2000 debugf1(" IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
2001 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
2002 (rw & 0x1) ? "R" : "-",
2003 (rw & 0x2) ? "W" : "-",
2004 dram_intlv_sel(pvt, range),
2005 dram_dst_node(pvt, range));
0ec449ee
DT
2006 }
2007
b2b0c605 2008 read_dct_base_mask(pvt);
0ec449ee 2009
bc21fa57 2010 amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
525a1b20 2011 amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
0ec449ee 2012
8d5b5d9c 2013 amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
0ec449ee 2014
cb328507
BP
2015 amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
2016 amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
0ec449ee 2017
78da121e 2018 if (!dct_ganging_enabled(pvt)) {
cb328507
BP
2019 amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
2020 amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
0ec449ee 2021 }
ad6a32e9 2022
a3b7db09
BP
2023 pvt->ecc_sym_sz = 4;
2024
2025 if (c->x86 >= 0x10) {
b2b0c605 2026 amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
525a1b20 2027 amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
ad6a32e9 2028
a3b7db09
BP
2029 /* F10h, revD and later can do x8 ECC too */
2030 if ((c->x86 > 0x10 || c->x86_model > 7) && tmp & BIT(25))
2031 pvt->ecc_sym_sz = 8;
2032 }
b2b0c605 2033 dump_misc_regs(pvt);
0ec449ee
DT
2034}
2035
2036/*
2037 * NOTE: CPU Revision Dependent code
2038 *
2039 * Input:
11c75ead 2040 * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
0ec449ee
DT
2041 * k8 private pointer to -->
2042 * DRAM Bank Address mapping register
2043 * node_id
2044 * DCL register where dual_channel_active is
2045 *
2046 * The DBAM register consists of 4 sets of 4 bits each definitions:
2047 *
2048 * Bits: CSROWs
2049 * 0-3 CSROWs 0 and 1
2050 * 4-7 CSROWs 2 and 3
2051 * 8-11 CSROWs 4 and 5
2052 * 12-15 CSROWs 6 and 7
2053 *
2054 * Values range from: 0 to 15
2055 * The meaning of the values depends on CPU revision and dual-channel state,
2056 * see relevant BKDG more info.
2057 *
2058 * The memory controller provides for total of only 8 CSROWs in its current
2059 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2060 * single channel or two (2) DIMMs in dual channel mode.
2061 *
2062 * The following code logic collapses the various tables for CSROW based on CPU
2063 * revision.
2064 *
2065 * Returns:
2066 * The number of PAGE_SIZE pages on the specified CSROW number it
2067 * encompasses
2068 *
2069 */
41d8bfab 2070static u32 amd64_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
0ec449ee 2071{
1433eb99 2072 u32 cs_mode, nr_pages;
0ec449ee
DT
2073
2074 /*
2075 * The math on this doesn't look right on the surface because x/2*4 can
2076 * be simplified to x*2 but this expression makes use of the fact that
2077 * it is integral math where 1/2=0. This intermediate value becomes the
2078 * number of bits to shift the DBAM register to extract the proper CSROW
2079 * field.
2080 */
1433eb99 2081 cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
0ec449ee 2082
41d8bfab 2083 nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT);
0ec449ee
DT
2084
2085 /*
2086 * If dual channel then double the memory size of single channel.
2087 * Channel count is 1 or 2
2088 */
2089 nr_pages <<= (pvt->channel_count - 1);
2090
1433eb99 2091 debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
0ec449ee
DT
2092 debugf0(" nr_pages= %u channel-count = %d\n",
2093 nr_pages, pvt->channel_count);
2094
2095 return nr_pages;
2096}
2097
2098/*
2099 * Initialize the array of csrow attribute instances, based on the values
2100 * from pci config hardware registers.
2101 */
360b7f3c 2102static int init_csrows(struct mem_ctl_info *mci)
0ec449ee
DT
2103{
2104 struct csrow_info *csrow;
2299ef71 2105 struct amd64_pvt *pvt = mci->pvt_info;
11c75ead 2106 u64 input_addr_min, input_addr_max, sys_addr, base, mask;
2299ef71 2107 u32 val;
6ba5dcdc 2108 int i, empty = 1;
0ec449ee 2109
a97fa68e 2110 amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
0ec449ee 2111
2299ef71 2112 pvt->nbcfg = val;
0ec449ee 2113
2299ef71
BP
2114 debugf0("node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2115 pvt->mc_node_id, val,
a97fa68e 2116 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
0ec449ee 2117
11c75ead 2118 for_each_chip_select(i, 0, pvt) {
0ec449ee
DT
2119 csrow = &mci->csrows[i];
2120
11c75ead 2121 if (!csrow_enabled(i, 0, pvt)) {
0ec449ee
DT
2122 debugf1("----CSROW %d EMPTY for node %d\n", i,
2123 pvt->mc_node_id);
2124 continue;
2125 }
2126
2127 debugf1("----CSROW %d VALID for MC node %d\n",
2128 i, pvt->mc_node_id);
2129
2130 empty = 0;
41d8bfab 2131 csrow->nr_pages = amd64_csrow_nr_pages(pvt, 0, i);
0ec449ee
DT
2132 find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
2133 sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
2134 csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
2135 sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
2136 csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
11c75ead
BP
2137
2138 get_cs_base_and_mask(pvt, i, 0, &base, &mask);
2139 csrow->page_mask = ~mask;
0ec449ee
DT
2140 /* 8 bytes of resolution */
2141
24f9a7fe 2142 csrow->mtype = amd64_determine_memory_type(pvt, i);
0ec449ee
DT
2143
2144 debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
2145 debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
2146 (unsigned long)input_addr_min,
2147 (unsigned long)input_addr_max);
2148 debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
2149 (unsigned long)sys_addr, csrow->page_mask);
2150 debugf1(" nr_pages: %u first_page: 0x%lx "
2151 "last_page: 0x%lx\n",
2152 (unsigned)csrow->nr_pages,
2153 csrow->first_page, csrow->last_page);
2154
2155 /*
2156 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2157 */
a97fa68e 2158 if (pvt->nbcfg & NBCFG_ECC_ENABLE)
0ec449ee 2159 csrow->edac_mode =
a97fa68e 2160 (pvt->nbcfg & NBCFG_CHIPKILL) ?
0ec449ee
DT
2161 EDAC_S4ECD4ED : EDAC_SECDED;
2162 else
2163 csrow->edac_mode = EDAC_NONE;
2164 }
2165
2166 return empty;
2167}
d27bf6fa 2168
f6d6ae96 2169/* get all cores on this DCT */
b487c33e 2170static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, unsigned nid)
f6d6ae96
BP
2171{
2172 int cpu;
2173
2174 for_each_online_cpu(cpu)
2175 if (amd_get_nb_id(cpu) == nid)
2176 cpumask_set_cpu(cpu, mask);
2177}
2178
2179/* check MCG_CTL on all the cpus on this node */
b487c33e 2180static bool amd64_nb_mce_bank_enabled_on_node(unsigned nid)
f6d6ae96
BP
2181{
2182 cpumask_var_t mask;
50542251 2183 int cpu, nbe;
f6d6ae96
BP
2184 bool ret = false;
2185
2186 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
24f9a7fe 2187 amd64_warn("%s: Error allocating mask\n", __func__);
f6d6ae96
BP
2188 return false;
2189 }
2190
2191 get_cpus_on_this_dct_cpumask(mask, nid);
2192
f6d6ae96
BP
2193 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2194
2195 for_each_cpu(cpu, mask) {
50542251 2196 struct msr *reg = per_cpu_ptr(msrs, cpu);
5980bb9c 2197 nbe = reg->l & MSR_MCGCTL_NBE;
f6d6ae96
BP
2198
2199 debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
50542251 2200 cpu, reg->q,
f6d6ae96
BP
2201 (nbe ? "enabled" : "disabled"));
2202
2203 if (!nbe)
2204 goto out;
f6d6ae96
BP
2205 }
2206 ret = true;
2207
2208out:
f6d6ae96
BP
2209 free_cpumask_var(mask);
2210 return ret;
2211}
2212
2299ef71 2213static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on)
f6d6ae96
BP
2214{
2215 cpumask_var_t cmask;
50542251 2216 int cpu;
f6d6ae96
BP
2217
2218 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
24f9a7fe 2219 amd64_warn("%s: error allocating mask\n", __func__);
f6d6ae96
BP
2220 return false;
2221 }
2222
ae7bb7c6 2223 get_cpus_on_this_dct_cpumask(cmask, nid);
f6d6ae96 2224
f6d6ae96
BP
2225 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2226
2227 for_each_cpu(cpu, cmask) {
2228
50542251
BP
2229 struct msr *reg = per_cpu_ptr(msrs, cpu);
2230
f6d6ae96 2231 if (on) {
5980bb9c 2232 if (reg->l & MSR_MCGCTL_NBE)
ae7bb7c6 2233 s->flags.nb_mce_enable = 1;
f6d6ae96 2234
5980bb9c 2235 reg->l |= MSR_MCGCTL_NBE;
f6d6ae96
BP
2236 } else {
2237 /*
d95cf4de 2238 * Turn off NB MCE reporting only when it was off before
f6d6ae96 2239 */
ae7bb7c6 2240 if (!s->flags.nb_mce_enable)
5980bb9c 2241 reg->l &= ~MSR_MCGCTL_NBE;
f6d6ae96 2242 }
f6d6ae96
BP
2243 }
2244 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2245
f6d6ae96
BP
2246 free_cpumask_var(cmask);
2247
2248 return 0;
2249}
2250
2299ef71
BP
2251static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2252 struct pci_dev *F3)
f9431992 2253{
2299ef71 2254 bool ret = true;
c9f4f26e 2255 u32 value, mask = 0x3; /* UECC/CECC enable */
f9431992 2256
2299ef71
BP
2257 if (toggle_ecc_err_reporting(s, nid, ON)) {
2258 amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2259 return false;
2260 }
2261
c9f4f26e 2262 amd64_read_pci_cfg(F3, NBCTL, &value);
f9431992 2263
ae7bb7c6
BP
2264 s->old_nbctl = value & mask;
2265 s->nbctl_valid = true;
f9431992
DT
2266
2267 value |= mask;
c9f4f26e 2268 amd64_write_pci_cfg(F3, NBCTL, value);
f9431992 2269
a97fa68e 2270 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2271
a97fa68e
BP
2272 debugf0("1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2273 nid, value, !!(value & NBCFG_ECC_ENABLE));
f9431992 2274
a97fa68e 2275 if (!(value & NBCFG_ECC_ENABLE)) {
24f9a7fe 2276 amd64_warn("DRAM ECC disabled on this node, enabling...\n");
f9431992 2277
ae7bb7c6 2278 s->flags.nb_ecc_prev = 0;
d95cf4de 2279
f9431992 2280 /* Attempt to turn on DRAM ECC Enable */
a97fa68e
BP
2281 value |= NBCFG_ECC_ENABLE;
2282 amd64_write_pci_cfg(F3, NBCFG, value);
f9431992 2283
a97fa68e 2284 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2285
a97fa68e 2286 if (!(value & NBCFG_ECC_ENABLE)) {
24f9a7fe
BP
2287 amd64_warn("Hardware rejected DRAM ECC enable,"
2288 "check memory DIMM configuration.\n");
2299ef71 2289 ret = false;
f9431992 2290 } else {
24f9a7fe 2291 amd64_info("Hardware accepted DRAM ECC Enable\n");
f9431992 2292 }
d95cf4de 2293 } else {
ae7bb7c6 2294 s->flags.nb_ecc_prev = 1;
f9431992 2295 }
d95cf4de 2296
a97fa68e
BP
2297 debugf0("2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2298 nid, value, !!(value & NBCFG_ECC_ENABLE));
f9431992 2299
2299ef71 2300 return ret;
f9431992
DT
2301}
2302
360b7f3c
BP
2303static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2304 struct pci_dev *F3)
f9431992 2305{
c9f4f26e
BP
2306 u32 value, mask = 0x3; /* UECC/CECC enable */
2307
f9431992 2308
ae7bb7c6 2309 if (!s->nbctl_valid)
f9431992
DT
2310 return;
2311
c9f4f26e 2312 amd64_read_pci_cfg(F3, NBCTL, &value);
f9431992 2313 value &= ~mask;
ae7bb7c6 2314 value |= s->old_nbctl;
f9431992 2315
c9f4f26e 2316 amd64_write_pci_cfg(F3, NBCTL, value);
f9431992 2317
ae7bb7c6
BP
2318 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
2319 if (!s->flags.nb_ecc_prev) {
a97fa68e
BP
2320 amd64_read_pci_cfg(F3, NBCFG, &value);
2321 value &= ~NBCFG_ECC_ENABLE;
2322 amd64_write_pci_cfg(F3, NBCFG, value);
d95cf4de
BP
2323 }
2324
2325 /* restore the NB Enable MCGCTL bit */
2299ef71 2326 if (toggle_ecc_err_reporting(s, nid, OFF))
24f9a7fe 2327 amd64_warn("Error restoring NB MCGCTL settings!\n");
f9431992
DT
2328}
2329
2330/*
2299ef71
BP
2331 * EDAC requires that the BIOS have ECC enabled before
2332 * taking over the processing of ECC errors. A command line
2333 * option allows to force-enable hardware ECC later in
2334 * enable_ecc_error_reporting().
f9431992 2335 */
cab4d277
BP
2336static const char *ecc_msg =
2337 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2338 " Either enable ECC checking or force module loading by setting "
2339 "'ecc_enable_override'.\n"
2340 " (Note that use of the override may cause unknown side effects.)\n";
be3468e8 2341
2299ef71 2342static bool ecc_enabled(struct pci_dev *F3, u8 nid)
f9431992
DT
2343{
2344 u32 value;
2299ef71 2345 u8 ecc_en = 0;
06724535 2346 bool nb_mce_en = false;
f9431992 2347
a97fa68e 2348 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2349
a97fa68e 2350 ecc_en = !!(value & NBCFG_ECC_ENABLE);
2299ef71 2351 amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
f9431992 2352
2299ef71 2353 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
06724535 2354 if (!nb_mce_en)
2299ef71
BP
2355 amd64_notice("NB MCE bank disabled, set MSR "
2356 "0x%08x[4] on node %d to enable.\n",
2357 MSR_IA32_MCG_CTL, nid);
f9431992 2358
2299ef71
BP
2359 if (!ecc_en || !nb_mce_en) {
2360 amd64_notice("%s", ecc_msg);
2361 return false;
2362 }
2363 return true;
f9431992
DT
2364}
2365
7d6034d3
DT
2366struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
2367 ARRAY_SIZE(amd64_inj_attrs) +
2368 1];
2369
2370struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
2371
360b7f3c 2372static void set_mc_sysfs_attrs(struct mem_ctl_info *mci)
7d6034d3
DT
2373{
2374 unsigned int i = 0, j = 0;
2375
2376 for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
2377 sysfs_attrs[i] = amd64_dbg_attrs[i];
2378
a135cef7
BP
2379 if (boot_cpu_data.x86 >= 0x10)
2380 for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
2381 sysfs_attrs[i] = amd64_inj_attrs[j];
7d6034d3
DT
2382
2383 sysfs_attrs[i] = terminator;
2384
2385 mci->mc_driver_sysfs_attributes = sysfs_attrs;
2386}
2387
df71a053
BP
2388static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
2389 struct amd64_family_type *fam)
7d6034d3
DT
2390{
2391 struct amd64_pvt *pvt = mci->pvt_info;
2392
2393 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2394 mci->edac_ctl_cap = EDAC_FLAG_NONE;
7d6034d3 2395
5980bb9c 2396 if (pvt->nbcap & NBCAP_SECDED)
7d6034d3
DT
2397 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2398
5980bb9c 2399 if (pvt->nbcap & NBCAP_CHIPKILL)
7d6034d3
DT
2400 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2401
2402 mci->edac_cap = amd64_determine_edac_cap(pvt);
2403 mci->mod_name = EDAC_MOD_STR;
2404 mci->mod_ver = EDAC_AMD64_VERSION;
df71a053 2405 mci->ctl_name = fam->ctl_name;
8d5b5d9c 2406 mci->dev_name = pci_name(pvt->F2);
7d6034d3
DT
2407 mci->ctl_page_to_phys = NULL;
2408
7d6034d3
DT
2409 /* memory scrubber interface */
2410 mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2411 mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2412}
2413
0092b20d
BP
2414/*
2415 * returns a pointer to the family descriptor on success, NULL otherwise.
2416 */
2417static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
395ae783 2418{
0092b20d
BP
2419 u8 fam = boot_cpu_data.x86;
2420 struct amd64_family_type *fam_type = NULL;
2421
2422 switch (fam) {
395ae783 2423 case 0xf:
0092b20d 2424 fam_type = &amd64_family_types[K8_CPUS];
b8cfa02f 2425 pvt->ops = &amd64_family_types[K8_CPUS].ops;
395ae783 2426 break;
df71a053 2427
395ae783 2428 case 0x10:
0092b20d 2429 fam_type = &amd64_family_types[F10_CPUS];
b8cfa02f 2430 pvt->ops = &amd64_family_types[F10_CPUS].ops;
df71a053
BP
2431 break;
2432
2433 case 0x15:
2434 fam_type = &amd64_family_types[F15_CPUS];
2435 pvt->ops = &amd64_family_types[F15_CPUS].ops;
395ae783
BP
2436 break;
2437
2438 default:
24f9a7fe 2439 amd64_err("Unsupported family!\n");
0092b20d 2440 return NULL;
395ae783 2441 }
0092b20d 2442
b8cfa02f
BP
2443 pvt->ext_model = boot_cpu_data.x86_model >> 4;
2444
df71a053 2445 amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
0092b20d 2446 (fam == 0xf ?
24f9a7fe
BP
2447 (pvt->ext_model >= K8_REV_F ? "revF or later "
2448 : "revE or earlier ")
2449 : ""), pvt->mc_node_id);
0092b20d 2450 return fam_type;
395ae783
BP
2451}
2452
2299ef71 2453static int amd64_init_one_instance(struct pci_dev *F2)
7d6034d3
DT
2454{
2455 struct amd64_pvt *pvt = NULL;
0092b20d 2456 struct amd64_family_type *fam_type = NULL;
360b7f3c 2457 struct mem_ctl_info *mci = NULL;
7d6034d3 2458 int err = 0, ret;
360b7f3c 2459 u8 nid = get_node_id(F2);
7d6034d3
DT
2460
2461 ret = -ENOMEM;
2462 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2463 if (!pvt)
360b7f3c 2464 goto err_ret;
7d6034d3 2465
360b7f3c 2466 pvt->mc_node_id = nid;
8d5b5d9c 2467 pvt->F2 = F2;
7d6034d3 2468
395ae783 2469 ret = -EINVAL;
0092b20d
BP
2470 fam_type = amd64_per_family_init(pvt);
2471 if (!fam_type)
395ae783
BP
2472 goto err_free;
2473
7d6034d3 2474 ret = -ENODEV;
360b7f3c 2475 err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
7d6034d3
DT
2476 if (err)
2477 goto err_free;
2478
360b7f3c 2479 read_mc_regs(pvt);
7d6034d3 2480
7d6034d3
DT
2481 /*
2482 * We need to determine how many memory channels there are. Then use
2483 * that information for calculating the size of the dynamic instance
360b7f3c 2484 * tables in the 'mci' structure.
7d6034d3 2485 */
360b7f3c 2486 ret = -EINVAL;
7d6034d3
DT
2487 pvt->channel_count = pvt->ops->early_channel_count(pvt);
2488 if (pvt->channel_count < 0)
360b7f3c 2489 goto err_siblings;
7d6034d3
DT
2490
2491 ret = -ENOMEM;
11c75ead 2492 mci = edac_mc_alloc(0, pvt->csels[0].b_cnt, pvt->channel_count, nid);
7d6034d3 2493 if (!mci)
360b7f3c 2494 goto err_siblings;
7d6034d3
DT
2495
2496 mci->pvt_info = pvt;
8d5b5d9c 2497 mci->dev = &pvt->F2->dev;
7d6034d3 2498
df71a053 2499 setup_mci_misc_attrs(mci, fam_type);
360b7f3c
BP
2500
2501 if (init_csrows(mci))
7d6034d3
DT
2502 mci->edac_cap = EDAC_FLAG_NONE;
2503
360b7f3c 2504 set_mc_sysfs_attrs(mci);
7d6034d3
DT
2505
2506 ret = -ENODEV;
2507 if (edac_mc_add_mc(mci)) {
2508 debugf1("failed edac_mc_add_mc()\n");
2509 goto err_add_mc;
2510 }
2511
549d042d
BP
2512 /* register stuff with EDAC MCE */
2513 if (report_gart_errors)
2514 amd_report_gart_errors(true);
2515
2516 amd_register_ecc_decoder(amd64_decode_bus_error);
2517
360b7f3c
BP
2518 mcis[nid] = mci;
2519
2520 atomic_inc(&drv_instances);
2521
7d6034d3
DT
2522 return 0;
2523
2524err_add_mc:
2525 edac_mc_free(mci);
2526
360b7f3c
BP
2527err_siblings:
2528 free_mc_sibling_devs(pvt);
7d6034d3 2529
360b7f3c
BP
2530err_free:
2531 kfree(pvt);
7d6034d3 2532
360b7f3c 2533err_ret:
7d6034d3
DT
2534 return ret;
2535}
2536
2299ef71 2537static int __devinit amd64_probe_one_instance(struct pci_dev *pdev,
b8cfa02f 2538 const struct pci_device_id *mc_type)
7d6034d3 2539{
ae7bb7c6 2540 u8 nid = get_node_id(pdev);
2299ef71 2541 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
ae7bb7c6 2542 struct ecc_settings *s;
2299ef71 2543 int ret = 0;
7d6034d3 2544
7d6034d3 2545 ret = pci_enable_device(pdev);
b8cfa02f
BP
2546 if (ret < 0) {
2547 debugf0("ret=%d\n", ret);
2548 return -EIO;
2549 }
7d6034d3 2550
ae7bb7c6
BP
2551 ret = -ENOMEM;
2552 s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
2553 if (!s)
2299ef71 2554 goto err_out;
ae7bb7c6
BP
2555
2556 ecc_stngs[nid] = s;
2557
2299ef71
BP
2558 if (!ecc_enabled(F3, nid)) {
2559 ret = -ENODEV;
2560
2561 if (!ecc_enable_override)
2562 goto err_enable;
2563
2564 amd64_warn("Forcing ECC on!\n");
2565
2566 if (!enable_ecc_error_reporting(s, nid, F3))
2567 goto err_enable;
2568 }
2569
2570 ret = amd64_init_one_instance(pdev);
360b7f3c 2571 if (ret < 0) {
ae7bb7c6 2572 amd64_err("Error probing instance: %d\n", nid);
360b7f3c
BP
2573 restore_ecc_error_reporting(s, nid, F3);
2574 }
7d6034d3
DT
2575
2576 return ret;
2299ef71
BP
2577
2578err_enable:
2579 kfree(s);
2580 ecc_stngs[nid] = NULL;
2581
2582err_out:
2583 return ret;
7d6034d3
DT
2584}
2585
2586static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
2587{
2588 struct mem_ctl_info *mci;
2589 struct amd64_pvt *pvt;
360b7f3c
BP
2590 u8 nid = get_node_id(pdev);
2591 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2592 struct ecc_settings *s = ecc_stngs[nid];
7d6034d3
DT
2593
2594 /* Remove from EDAC CORE tracking list */
2595 mci = edac_mc_del_mc(&pdev->dev);
2596 if (!mci)
2597 return;
2598
2599 pvt = mci->pvt_info;
2600
360b7f3c 2601 restore_ecc_error_reporting(s, nid, F3);
7d6034d3 2602
360b7f3c 2603 free_mc_sibling_devs(pvt);
7d6034d3 2604
549d042d
BP
2605 /* unregister from EDAC MCE */
2606 amd_report_gart_errors(false);
2607 amd_unregister_ecc_decoder(amd64_decode_bus_error);
2608
360b7f3c
BP
2609 kfree(ecc_stngs[nid]);
2610 ecc_stngs[nid] = NULL;
ae7bb7c6 2611
7d6034d3 2612 /* Free the EDAC CORE resources */
8f68ed97 2613 mci->pvt_info = NULL;
360b7f3c 2614 mcis[nid] = NULL;
8f68ed97
BP
2615
2616 kfree(pvt);
7d6034d3
DT
2617 edac_mc_free(mci);
2618}
2619
2620/*
2621 * This table is part of the interface for loading drivers for PCI devices. The
2622 * PCI core identifies what devices are on a system during boot, and then
2623 * inquiry this table to see if this driver is for a given device found.
2624 */
2625static const struct pci_device_id amd64_pci_table[] __devinitdata = {
2626 {
2627 .vendor = PCI_VENDOR_ID_AMD,
2628 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2629 .subvendor = PCI_ANY_ID,
2630 .subdevice = PCI_ANY_ID,
2631 .class = 0,
2632 .class_mask = 0,
7d6034d3
DT
2633 },
2634 {
2635 .vendor = PCI_VENDOR_ID_AMD,
2636 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2637 .subvendor = PCI_ANY_ID,
2638 .subdevice = PCI_ANY_ID,
2639 .class = 0,
2640 .class_mask = 0,
7d6034d3 2641 },
df71a053
BP
2642 {
2643 .vendor = PCI_VENDOR_ID_AMD,
2644 .device = PCI_DEVICE_ID_AMD_15H_NB_F2,
2645 .subvendor = PCI_ANY_ID,
2646 .subdevice = PCI_ANY_ID,
2647 .class = 0,
2648 .class_mask = 0,
2649 },
2650
7d6034d3
DT
2651 {0, }
2652};
2653MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2654
2655static struct pci_driver amd64_pci_driver = {
2656 .name = EDAC_MOD_STR,
2299ef71 2657 .probe = amd64_probe_one_instance,
7d6034d3
DT
2658 .remove = __devexit_p(amd64_remove_one_instance),
2659 .id_table = amd64_pci_table,
2660};
2661
360b7f3c 2662static void setup_pci_device(void)
7d6034d3
DT
2663{
2664 struct mem_ctl_info *mci;
2665 struct amd64_pvt *pvt;
2666
2667 if (amd64_ctl_pci)
2668 return;
2669
cc4d8860 2670 mci = mcis[0];
7d6034d3
DT
2671 if (mci) {
2672
2673 pvt = mci->pvt_info;
2674 amd64_ctl_pci =
8d5b5d9c 2675 edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
7d6034d3
DT
2676
2677 if (!amd64_ctl_pci) {
2678 pr_warning("%s(): Unable to create PCI control\n",
2679 __func__);
2680
2681 pr_warning("%s(): PCI error report via EDAC not set\n",
2682 __func__);
2683 }
2684 }
2685}
2686
2687static int __init amd64_edac_init(void)
2688{
360b7f3c 2689 int err = -ENODEV;
7d6034d3 2690
df71a053 2691 printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
7d6034d3
DT
2692
2693 opstate_init();
2694
9653a5c7 2695 if (amd_cache_northbridges() < 0)
56b34b91 2696 goto err_ret;
7d6034d3 2697
cc4d8860 2698 err = -ENOMEM;
ae7bb7c6
BP
2699 mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
2700 ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
360b7f3c 2701 if (!(mcis && ecc_stngs))
a9f0fbe2 2702 goto err_free;
cc4d8860 2703
50542251 2704 msrs = msrs_alloc();
56b34b91 2705 if (!msrs)
360b7f3c 2706 goto err_free;
50542251 2707
7d6034d3
DT
2708 err = pci_register_driver(&amd64_pci_driver);
2709 if (err)
56b34b91 2710 goto err_pci;
7d6034d3 2711
56b34b91 2712 err = -ENODEV;
360b7f3c
BP
2713 if (!atomic_read(&drv_instances))
2714 goto err_no_instances;
7d6034d3 2715
360b7f3c
BP
2716 setup_pci_device();
2717 return 0;
7d6034d3 2718
360b7f3c 2719err_no_instances:
7d6034d3 2720 pci_unregister_driver(&amd64_pci_driver);
cc4d8860 2721
56b34b91
BP
2722err_pci:
2723 msrs_free(msrs);
2724 msrs = NULL;
cc4d8860 2725
360b7f3c
BP
2726err_free:
2727 kfree(mcis);
2728 mcis = NULL;
2729
2730 kfree(ecc_stngs);
2731 ecc_stngs = NULL;
2732
56b34b91 2733err_ret:
7d6034d3
DT
2734 return err;
2735}
2736
2737static void __exit amd64_edac_exit(void)
2738{
2739 if (amd64_ctl_pci)
2740 edac_pci_release_generic_ctl(amd64_ctl_pci);
2741
2742 pci_unregister_driver(&amd64_pci_driver);
50542251 2743
ae7bb7c6
BP
2744 kfree(ecc_stngs);
2745 ecc_stngs = NULL;
2746
cc4d8860
BP
2747 kfree(mcis);
2748 mcis = NULL;
2749
50542251
BP
2750 msrs_free(msrs);
2751 msrs = NULL;
7d6034d3
DT
2752}
2753
2754module_init(amd64_edac_init);
2755module_exit(amd64_edac_exit);
2756
2757MODULE_LICENSE("GPL");
2758MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
2759 "Dave Peterson, Thayne Harbaugh");
2760MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
2761 EDAC_AMD64_VERSION);
2762
2763module_param(edac_op_state, int, 0444);
2764MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
This page took 0.323816 seconds and 5 git commands to generate.