amd64_edac: Simplify scrubrate setting
[deliverable/linux.git] / drivers / edac / amd64_edac.h
CommitLineData
cfe40fdb
DT
1/*
2 * AMD64 class Memory Controller kernel module
3 *
4 * Copyright (c) 2009 SoftwareBitMaker.
5 * Copyright (c) 2009 Advanced Micro Devices, Inc.
6 *
7 * This file may be distributed under the terms of the
8 * GNU General Public License.
9 *
10 * Originally Written by Thayne Harbaugh
11 *
12 * Changes by Douglas "norsk" Thompson <dougthompson@xmission.com>:
13 * - K8 CPU Revision D and greater support
14 *
15 * Changes by Dave Peterson <dsp@llnl.gov> <dave_peterson@pobox.com>:
16 * - Module largely rewritten, with new (and hopefully correct)
17 * code for dealing with node and chip select interleaving,
18 * various code cleanup, and bug fixes
19 * - Added support for memory hoisting using DRAM hole address
20 * register
21 *
22 * Changes by Douglas "norsk" Thompson <dougthompson@xmission.com>:
23 * -K8 Rev (1207) revision support added, required Revision
24 * specific mini-driver code to support Rev F as well as
25 * prior revisions
26 *
27 * Changes by Douglas "norsk" Thompson <dougthompson@xmission.com>:
28 * -Family 10h revision support added. New PCI Device IDs,
29 * indicating new changes. Actual registers modified
30 * were slight, less than the Rev E to Rev F transition
31 * but changing the PCI Device ID was the proper thing to
32 * do, as it provides for almost automactic family
33 * detection. The mods to Rev F required more family
34 * information detection.
35 *
36 * Changes/Fixes by Borislav Petkov <borislav.petkov@amd.com>:
37 * - misc fixes and code cleanups
38 *
39 * This module is based on the following documents
40 * (available from http://www.amd.com/):
41 *
42 * Title: BIOS and Kernel Developer's Guide for AMD Athlon 64 and AMD
43 * Opteron Processors
44 * AMD publication #: 26094
45 *` Revision: 3.26
46 *
47 * Title: BIOS and Kernel Developer's Guide for AMD NPT Family 0Fh
48 * Processors
49 * AMD publication #: 32559
50 * Revision: 3.00
51 * Issue Date: May 2006
52 *
53 * Title: BIOS and Kernel Developer's Guide (BKDG) For AMD Family 10h
54 * Processors
55 * AMD publication #: 31116
56 * Revision: 3.00
57 * Issue Date: September 07, 2007
58 *
59 * Sections in the first 2 documents are no longer in sync with each other.
60 * The Family 10h BKDG was totally re-written from scratch with a new
61 * presentation model.
62 * Therefore, comments that refer to a Document section might be off.
63 */
64
65#include <linux/module.h>
66#include <linux/ctype.h>
67#include <linux/init.h>
68#include <linux/pci.h>
69#include <linux/pci_ids.h>
70#include <linux/slab.h>
71#include <linux/mmzone.h>
72#include <linux/edac.h>
f9431992 73#include <asm/msr.h>
cfe40fdb 74#include "edac_core.h"
47ca08a4 75#include "mce_amd.h"
cfe40fdb 76
24f9a7fe
BP
77#define amd64_debug(fmt, arg...) \
78 edac_printk(KERN_DEBUG, "amd64", fmt, ##arg)
cfe40fdb 79
24f9a7fe
BP
80#define amd64_info(fmt, arg...) \
81 edac_printk(KERN_INFO, "amd64", fmt, ##arg)
82
83#define amd64_notice(fmt, arg...) \
84 edac_printk(KERN_NOTICE, "amd64", fmt, ##arg)
85
86#define amd64_warn(fmt, arg...) \
87 edac_printk(KERN_WARNING, "amd64", fmt, ##arg)
88
89#define amd64_err(fmt, arg...) \
90 edac_printk(KERN_ERR, "amd64", fmt, ##arg)
91
92#define amd64_mc_warn(mci, fmt, arg...) \
93 edac_mc_chipset_printk(mci, KERN_WARNING, "amd64", fmt, ##arg)
94
95#define amd64_mc_err(mci, fmt, arg...) \
96 edac_mc_chipset_printk(mci, KERN_ERR, "amd64", fmt, ##arg)
cfe40fdb
DT
97
98/*
99 * Throughout the comments in this code, the following terms are used:
100 *
101 * SysAddr, DramAddr, and InputAddr
102 *
103 * These terms come directly from the amd64 documentation
104 * (AMD publication #26094). They are defined as follows:
105 *
106 * SysAddr:
107 * This is a physical address generated by a CPU core or a device
108 * doing DMA. If generated by a CPU core, a SysAddr is the result of
109 * a virtual to physical address translation by the CPU core's address
110 * translation mechanism (MMU).
111 *
112 * DramAddr:
113 * A DramAddr is derived from a SysAddr by subtracting an offset that
114 * depends on which node the SysAddr maps to and whether the SysAddr
115 * is within a range affected by memory hoisting. The DRAM Base
116 * (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers
117 * determine which node a SysAddr maps to.
118 *
119 * If the DRAM Hole Address Register (DHAR) is enabled and the SysAddr
120 * is within the range of addresses specified by this register, then
121 * a value x from the DHAR is subtracted from the SysAddr to produce a
122 * DramAddr. Here, x represents the base address for the node that
123 * the SysAddr maps to plus an offset due to memory hoisting. See
124 * section 3.4.8 and the comments in amd64_get_dram_hole_info() and
125 * sys_addr_to_dram_addr() below for more information.
126 *
127 * If the SysAddr is not affected by the DHAR then a value y is
128 * subtracted from the SysAddr to produce a DramAddr. Here, y is the
129 * base address for the node that the SysAddr maps to. See section
130 * 3.4.4 and the comments in sys_addr_to_dram_addr() below for more
131 * information.
132 *
133 * InputAddr:
134 * A DramAddr is translated to an InputAddr before being passed to the
135 * memory controller for the node that the DramAddr is associated
136 * with. The memory controller then maps the InputAddr to a csrow.
137 * If node interleaving is not in use, then the InputAddr has the same
138 * value as the DramAddr. Otherwise, the InputAddr is produced by
139 * discarding the bits used for node interleaving from the DramAddr.
140 * See section 3.4.4 for more information.
141 *
142 * The memory controller for a given node uses its DRAM CS Base and
143 * DRAM CS Mask registers to map an InputAddr to a csrow. See
144 * sections 3.5.4 and 3.5.5 for more information.
145 */
146
24f9a7fe 147#define EDAC_AMD64_VERSION "v3.3.0"
cfe40fdb
DT
148#define EDAC_MOD_STR "amd64_edac"
149
150/* Extended Model from CPUID, for CPU Revision numbers */
1433eb99
BP
151#define K8_REV_D 1
152#define K8_REV_E 2
153#define K8_REV_F 4
cfe40fdb
DT
154
155/* Hardware limit on ChipSelect rows per MC and processors per system */
7f19bf75
BP
156#define NUM_CHIPSELECTS 8
157#define DRAM_RANGES 8
cfe40fdb 158
f6d6ae96
BP
159#define ON true
160#define OFF false
cfe40fdb 161
11c75ead
BP
162/*
163 * Create a contiguous bitmask starting at bit position @lo and ending at
164 * position @hi. For example
165 *
166 * GENMASK(21, 39) gives us the 64bit vector 0x000000ffffe00000.
167 */
168#define GENMASK(lo, hi) (((1ULL << ((hi) - (lo) + 1)) - 1) << (lo))
169
cfe40fdb
DT
170/*
171 * PCI-defined configuration space registers
172 */
173
174
175/*
176 * Function 1 - Address Map
177 */
7f19bf75
BP
178#define DRAM_BASE_LO 0x40
179#define DRAM_LIMIT_LO 0x44
180
181#define dram_intlv_en(pvt, i) ((pvt->ranges[i].base.lo >> 8) & 0x7)
182#define dram_rw(pvt, i) (pvt->ranges[i].base.lo & 0x3)
183#define dram_intlv_sel(pvt, i) ((pvt->ranges[i].lim.lo >> 8) & 0x7)
184#define dram_dst_node(pvt, i) (pvt->ranges[i].lim.lo & 0x7)
185
bc21fa57 186#define DHAR 0xf0
c8e518d5
BP
187#define dhar_valid(pvt) ((pvt)->dhar & BIT(0))
188#define dhar_mem_hoist_valid(pvt) ((pvt)->dhar & BIT(1))
189#define dhar_base(pvt) ((pvt)->dhar & 0xff000000)
190#define k8_dhar_offset(pvt) (((pvt)->dhar & 0x0000ff00) << 16)
cfe40fdb 191
cfe40fdb 192 /* NOTE: Extra mask bit vs K8 */
c8e518d5 193#define f10_dhar_offset(pvt) (((pvt)->dhar & 0x0000ff80) << 16)
cfe40fdb 194
b2b0c605 195#define DCT_CFG_SEL 0x10C
cfe40fdb 196
7f19bf75
BP
197#define DRAM_BASE_HI 0x140
198#define DRAM_LIMIT_HI 0x144
cfe40fdb
DT
199
200
201/*
202 * Function 2 - DRAM controller
203 */
11c75ead
BP
204#define DCSB0 0x40
205#define DCSB1 0x140
206#define DCSB_CS_ENABLE BIT(0)
cfe40fdb 207
11c75ead
BP
208#define DCSM0 0x60
209#define DCSM1 0x160
cfe40fdb 210
11c75ead 211#define csrow_enabled(i, dct, pvt) ((pvt)->csels[(dct)].csbases[(i)] & DCSB_CS_ENABLE)
cfe40fdb
DT
212
213#define DBAM0 0x80
214#define DBAM1 0x180
215
216/* Extract the DIMM 'type' on the i'th DIMM from the DBAM reg value passed */
217#define DBAM_DIMM(i, reg) ((((reg) >> (4*i))) & 0xF)
218
219#define DBAM_MAX_VALUE 11
220
cb328507
BP
221#define DCLR0 0x90
222#define DCLR1 0x190
cfe40fdb 223#define REVE_WIDTH_128 BIT(16)
41d8bfab 224#define WIDTH_128 BIT(11)
cfe40fdb 225
cb328507
BP
226#define DCHR0 0x94
227#define DCHR1 0x194
1433eb99 228#define DDR3_MODE BIT(8)
cfe40fdb 229
78da121e
BP
230#define DCT_SEL_LO 0x110
231#define dct_sel_baseaddr(pvt) ((pvt)->dct_sel_lo & 0xFFFFF800)
232#define dct_sel_interleave_addr(pvt) (((pvt)->dct_sel_lo >> 6) & 0x3)
233#define dct_high_range_enabled(pvt) ((pvt)->dct_sel_lo & BIT(0))
234#define dct_interleave_enabled(pvt) ((pvt)->dct_sel_lo & BIT(2))
cb328507 235
78da121e 236#define dct_ganging_enabled(pvt) ((boot_cpu_data.x86 == 0x10) && ((pvt)->dct_sel_lo & BIT(4)))
cb328507 237
78da121e 238#define dct_data_intlv_enabled(pvt) ((pvt)->dct_sel_lo & BIT(5))
78da121e 239#define dct_memory_cleared(pvt) ((pvt)->dct_sel_lo & BIT(10))
cfe40fdb 240
95b0ef55
BP
241#define SWAP_INTLV_REG 0x10c
242
78da121e 243#define DCT_SEL_HI 0x114
cfe40fdb 244
cfe40fdb
DT
245/*
246 * Function 3 - Misc Control
247 */
c9f4f26e 248#define NBCTL 0x40
cfe40fdb 249
a97fa68e
BP
250#define NBCFG 0x44
251#define NBCFG_CHIPKILL BIT(23)
252#define NBCFG_ECC_ENABLE BIT(22)
cfe40fdb 253
5980bb9c 254/* F3x48: NBSL */
cfe40fdb 255#define F10_NBSL_EXT_ERR_ECC 0x8
5980bb9c 256#define NBSL_PP_OBS 0x2
cfe40fdb 257
5980bb9c 258#define SCRCTRL 0x58
cfe40fdb
DT
259
260#define F10_ONLINE_SPARE 0xB0
614ec9d8
BP
261#define online_spare_swap_done(pvt, c) (((pvt)->online_spare >> (1 + 2 * (c))) & 0x1)
262#define online_spare_bad_dramcs(pvt, c) (((pvt)->online_spare >> (4 + 4 * (c))) & 0x7)
cfe40fdb
DT
263
264#define F10_NB_ARRAY_ADDR 0xB8
5980bb9c 265#define F10_NB_ARRAY_DRAM_ECC BIT(31)
cfe40fdb
DT
266
267/* Bits [2:1] are used to select 16-byte section within a 64-byte cacheline */
268#define SET_NB_ARRAY_ADDRESS(section) (((section) & 0x3) << 1)
269
270#define F10_NB_ARRAY_DATA 0xBC
cfe40fdb
DT
271#define SET_NB_DRAM_INJECTION_WRITE(word, bits) \
272 (BIT(((word) & 0xF) + 20) | \
94baaee4 273 BIT(17) | bits)
cfe40fdb
DT
274#define SET_NB_DRAM_INJECTION_READ(word, bits) \
275 (BIT(((word) & 0xF) + 20) | \
94baaee4 276 BIT(16) | bits)
cfe40fdb 277
5980bb9c
BP
278#define NBCAP 0xE8
279#define NBCAP_CHIPKILL BIT(4)
280#define NBCAP_SECDED BIT(3)
281#define NBCAP_DCT_DUAL BIT(0)
cfe40fdb 282
ad6a32e9
BP
283#define EXT_NB_MCA_CFG 0x180
284
f6d6ae96 285/* MSRs */
5980bb9c 286#define MSR_MCGCTL_NBE BIT(4)
cfe40fdb
DT
287
288/* AMD sets the first MC device at device ID 0x18. */
37da0450 289static inline int get_node_id(struct pci_dev *pdev)
cfe40fdb
DT
290{
291 return PCI_SLOT(pdev->devfn) - 0x18;
292}
293
b2b0c605 294enum amd_families {
cfe40fdb
DT
295 K8_CPUS = 0,
296 F10_CPUS,
b2b0c605
BP
297 F15_CPUS,
298 NUM_FAMILIES,
cfe40fdb
DT
299};
300
cfe40fdb
DT
301/* Error injection control structure */
302struct error_injection {
303 u32 section;
304 u32 word;
305 u32 bit_map;
306};
307
7f19bf75
BP
308/* low and high part of PCI config space regs */
309struct reg_pair {
310 u32 lo, hi;
311};
312
313/*
314 * See F1x[1, 0][7C:40] DRAM Base/Limit Registers
315 */
316struct dram_range {
317 struct reg_pair base;
318 struct reg_pair lim;
319};
320
11c75ead
BP
321/* A DCT chip selects collection */
322struct chip_select {
323 u32 csbases[NUM_CHIPSELECTS];
324 u8 b_cnt;
325
326 u32 csmasks[NUM_CHIPSELECTS];
327 u8 m_cnt;
328};
329
cfe40fdb 330struct amd64_pvt {
b8cfa02f
BP
331 struct low_ops *ops;
332
cfe40fdb 333 /* pci_device handles which we utilize */
8d5b5d9c 334 struct pci_dev *F1, *F2, *F3;
cfe40fdb
DT
335
336 int mc_node_id; /* MC index of this MC node */
337 int ext_model; /* extended model value of this node */
cfe40fdb
DT
338 int channel_count;
339
340 /* Raw registers */
341 u32 dclr0; /* DRAM Configuration Low DCT0 reg */
342 u32 dclr1; /* DRAM Configuration Low DCT1 reg */
343 u32 dchr0; /* DRAM Configuration High DCT0 reg */
344 u32 dchr1; /* DRAM Configuration High DCT1 reg */
345 u32 nbcap; /* North Bridge Capabilities */
346 u32 nbcfg; /* F10 North Bridge Configuration */
347 u32 ext_nbcfg; /* Extended F10 North Bridge Configuration */
348 u32 dhar; /* DRAM Hoist reg */
349 u32 dbam0; /* DRAM Base Address Mapping reg for DCT0 */
350 u32 dbam1; /* DRAM Base Address Mapping reg for DCT1 */
351
11c75ead
BP
352 /* one for each DCT */
353 struct chip_select csels[2];
cfe40fdb 354
7f19bf75
BP
355 /* DRAM base and limit pairs F1x[78,70,68,60,58,50,48,40] */
356 struct dram_range ranges[DRAM_RANGES];
cfe40fdb 357
cfe40fdb
DT
358 u64 top_mem; /* top of memory below 4GB */
359 u64 top_mem2; /* top of memory above 4GB */
360
78da121e
BP
361 u32 dct_sel_lo; /* DRAM Controller Select Low */
362 u32 dct_sel_hi; /* DRAM Controller Select High */
b2b0c605 363 u32 online_spare; /* On-Line spare Reg */
cfe40fdb 364
ad6a32e9
BP
365 /* x4 or x8 syndromes in use */
366 u8 syn_type;
367
cfe40fdb
DT
368 /* place to store error injection parameters prior to issue */
369 struct error_injection injection;
370
0092b20d
BP
371 /* family name this instance is running on */
372 const char *ctl_name;
373
ae7bb7c6
BP
374};
375
7f19bf75
BP
376static inline u64 get_dram_base(struct amd64_pvt *pvt, unsigned i)
377{
378 u64 addr = ((u64)pvt->ranges[i].base.lo & 0xffff0000) << 8;
379
380 if (boot_cpu_data.x86 == 0xf)
381 return addr;
382
383 return (((u64)pvt->ranges[i].base.hi & 0x000000ff) << 40) | addr;
384}
385
386static inline u64 get_dram_limit(struct amd64_pvt *pvt, unsigned i)
387{
388 u64 lim = (((u64)pvt->ranges[i].lim.lo & 0xffff0000) << 8) | 0x00ffffff;
389
390 if (boot_cpu_data.x86 == 0xf)
391 return lim;
392
393 return (((u64)pvt->ranges[i].lim.hi & 0x000000ff) << 40) | lim;
394}
395
f192c7b1
BP
396static inline u16 extract_syndrome(u64 status)
397{
398 return ((status >> 47) & 0xff) | ((status >> 16) & 0xff00);
399}
400
ae7bb7c6
BP
401/*
402 * per-node ECC settings descriptor
403 */
404struct ecc_settings {
405 u32 old_nbctl;
406 bool nbctl_valid;
407
cfe40fdb 408 struct flags {
d95cf4de
BP
409 unsigned long nb_mce_enable:1;
410 unsigned long nb_ecc_prev:1;
cfe40fdb
DT
411 } flags;
412};
413
cfe40fdb
DT
414extern const char *tt_msgs[4];
415extern const char *ll_msgs[4];
416extern const char *rrrr_msgs[16];
417extern const char *to_msgs[2];
418extern const char *pp_msgs[4];
419extern const char *ii_msgs[4];
cfe40fdb
DT
420extern const char *htlink_msgs[8];
421
7d6034d3 422#ifdef CONFIG_EDAC_DEBUG
9cdeb404 423#define NUM_DBG_ATTRS 5
7d6034d3
DT
424#else
425#define NUM_DBG_ATTRS 0
426#endif
427
428#ifdef CONFIG_EDAC_AMD64_ERROR_INJECTION
429#define NUM_INJ_ATTRS 5
430#else
431#define NUM_INJ_ATTRS 0
432#endif
433
434extern struct mcidev_sysfs_attribute amd64_dbg_attrs[NUM_DBG_ATTRS],
435 amd64_inj_attrs[NUM_INJ_ATTRS];
436
cfe40fdb
DT
437/*
438 * Each of the PCI Device IDs types have their own set of hardware accessor
439 * functions and per device encoding/decoding logic.
440 */
441struct low_ops {
1433eb99 442 int (*early_channel_count) (struct amd64_pvt *pvt);
f192c7b1
BP
443 void (*map_sysaddr_to_csrow) (struct mem_ctl_info *mci, u64 sys_addr,
444 u16 syndrome);
41d8bfab 445 int (*dbam_to_cs) (struct amd64_pvt *pvt, u8 dct, unsigned cs_mode);
b2b0c605
BP
446 int (*read_dct_pci_cfg) (struct amd64_pvt *pvt, int offset,
447 u32 *val, const char *func);
cfe40fdb
DT
448};
449
450struct amd64_family_type {
451 const char *ctl_name;
8d5b5d9c 452 u16 f1_id, f3_id;
cfe40fdb
DT
453 struct low_ops ops;
454};
455
b2b0c605
BP
456int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
457 u32 val, const char *func);
6ba5dcdc 458
b2b0c605
BP
459#define amd64_read_pci_cfg(pdev, offset, val) \
460 __amd64_read_pci_cfg_dword(pdev, offset, val, __func__)
6ba5dcdc 461
b2b0c605
BP
462#define amd64_write_pci_cfg(pdev, offset, val) \
463 __amd64_write_pci_cfg_dword(pdev, offset, val, __func__)
6ba5dcdc 464
b2b0c605
BP
465#define amd64_read_dct_pci_cfg(pvt, offset, val) \
466 pvt->ops->read_dct_pci_cfg(pvt, offset, val, __func__)
6ba5dcdc 467
cfe40fdb
DT
468int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
469 u64 *hole_offset, u64 *hole_size);
This page took 0.164544 seconds and 5 git commands to generate.