r8169:add support for RTL8168EP
[deliverable/linux.git] / drivers / edac / edac_mc.c
CommitLineData
da9bb1d2
AC
1/*
2 * edac_mc kernel module
49c0dab7 3 * (C) 2005, 2006 Linux Networx (http://lnxi.com)
da9bb1d2
AC
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
6 *
7 * Written by Thayne Harbaugh
8 * Based on work by Dan Hollis <goemon at anime dot net> and others.
9 * http://www.anime.net/~goemon/linux-ecc/
10 *
11 * Modified by Dave Peterson and Doug Thompson
12 *
13 */
14
da9bb1d2
AC
15#include <linux/module.h>
16#include <linux/proc_fs.h>
17#include <linux/kernel.h>
18#include <linux/types.h>
19#include <linux/smp.h>
20#include <linux/init.h>
21#include <linux/sysctl.h>
22#include <linux/highmem.h>
23#include <linux/timer.h>
24#include <linux/slab.h>
25#include <linux/jiffies.h>
26#include <linux/spinlock.h>
27#include <linux/list.h>
da9bb1d2 28#include <linux/ctype.h>
c0d12172 29#include <linux/edac.h>
53f2d028 30#include <linux/bitops.h>
da9bb1d2
AC
31#include <asm/uaccess.h>
32#include <asm/page.h>
33#include <asm/edac.h>
20bcb7a8 34#include "edac_core.h"
7c9281d7 35#include "edac_module.h"
53f2d028
MCC
36#include <ras/ras_event.h>
37
da9bb1d2 38/* lock to memory controller's control array */
63b7df91 39static DEFINE_MUTEX(mem_ctls_mutex);
ff6ac2a6 40static LIST_HEAD(mc_devices);
da9bb1d2 41
80cc7d87
MCC
42/*
43 * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
44 * apei/ghes and i7core_edac to be used at the same time.
45 */
46static void const *edac_mc_owner;
47
88d84ac9
BP
48static struct bus_type mc_bus[EDAC_MAX_MCS];
49
6e84d359
MCC
50unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf,
51 unsigned len)
52{
53 struct mem_ctl_info *mci = dimm->mci;
54 int i, n, count = 0;
55 char *p = buf;
56
57 for (i = 0; i < mci->n_layers; i++) {
58 n = snprintf(p, len, "%s %d ",
59 edac_layer_name[mci->layers[i].type],
60 dimm->location[i]);
61 p += n;
62 len -= n;
63 count += n;
64 if (!len)
65 break;
66 }
67
68 return count;
69}
70
da9bb1d2
AC
71#ifdef CONFIG_EDAC_DEBUG
72
a4b4be3f 73static void edac_mc_dump_channel(struct rank_info *chan)
da9bb1d2 74{
6e84d359
MCC
75 edac_dbg(4, " channel->chan_idx = %d\n", chan->chan_idx);
76 edac_dbg(4, " channel = %p\n", chan);
77 edac_dbg(4, " channel->csrow = %p\n", chan->csrow);
78 edac_dbg(4, " channel->dimm = %p\n", chan->dimm);
4275be63
MCC
79}
80
6e84d359 81static void edac_mc_dump_dimm(struct dimm_info *dimm, int number)
4275be63 82{
6e84d359
MCC
83 char location[80];
84
85 edac_dimm_info_location(dimm, location, sizeof(location));
86
87 edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
9713faec 88 dimm->mci->csbased ? "rank" : "dimm",
6e84d359
MCC
89 number, location, dimm->csrow, dimm->cschannel);
90 edac_dbg(4, " dimm = %p\n", dimm);
91 edac_dbg(4, " dimm->label = '%s'\n", dimm->label);
92 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
93 edac_dbg(4, " dimm->grain = %d\n", dimm->grain);
94 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
da9bb1d2
AC
95}
96
2da1c119 97static void edac_mc_dump_csrow(struct csrow_info *csrow)
da9bb1d2 98{
6e84d359
MCC
99 edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
100 edac_dbg(4, " csrow = %p\n", csrow);
101 edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow->first_page);
102 edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow->last_page);
103 edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow->page_mask);
104 edac_dbg(4, " csrow->nr_channels = %d\n", csrow->nr_channels);
105 edac_dbg(4, " csrow->channels = %p\n", csrow->channels);
106 edac_dbg(4, " csrow->mci = %p\n", csrow->mci);
da9bb1d2
AC
107}
108
2da1c119 109static void edac_mc_dump_mci(struct mem_ctl_info *mci)
da9bb1d2 110{
956b9ba1
JP
111 edac_dbg(3, "\tmci = %p\n", mci);
112 edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
113 edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
114 edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
115 edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
116 edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
117 mci->nr_csrows, mci->csrows);
118 edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
119 mci->tot_dimms, mci->dimms);
120 edac_dbg(3, "\tdev = %p\n", mci->pdev);
121 edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
122 mci->mod_name, mci->ctl_name);
123 edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
da9bb1d2
AC
124}
125
24f9a7fe
BP
126#endif /* CONFIG_EDAC_DEBUG */
127
239642fe
BP
128/*
129 * keep those in sync with the enum mem_type
130 */
131const char *edac_mem_types[] = {
132 "Empty csrow",
133 "Reserved csrow type",
134 "Unknown csrow type",
135 "Fast page mode RAM",
136 "Extended data out RAM",
137 "Burst Extended data out RAM",
138 "Single data rate SDRAM",
139 "Registered single data rate SDRAM",
140 "Double data rate SDRAM",
141 "Registered Double data rate SDRAM",
142 "Rambus DRAM",
143 "Unbuffered DDR2 RAM",
144 "Fully buffered DDR2",
145 "Registered DDR2 RAM",
146 "Rambus XDR",
147 "Unbuffered DDR3 RAM",
148 "Registered DDR3 RAM",
149};
150EXPORT_SYMBOL_GPL(edac_mem_types);
151
93e4fe64
MCC
152/**
153 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
154 * @p: pointer to a pointer with the memory offset to be used. At
155 * return, this will be incremented to point to the next offset
156 * @size: Size of the data structure to be reserved
157 * @n_elems: Number of elements that should be reserved
da9bb1d2
AC
158 *
159 * If 'size' is a constant, the compiler will optimize this whole function
93e4fe64
MCC
160 * down to either a no-op or the addition of a constant to the value of '*p'.
161 *
162 * The 'p' pointer is absolutely needed to keep the proper advancing
163 * further in memory to the proper offsets when allocating the struct along
164 * with its embedded structs, as edac_device_alloc_ctl_info() does it
165 * above, for example.
166 *
167 * At return, the pointer 'p' will be incremented to be used on a next call
168 * to this function.
da9bb1d2 169 */
93e4fe64 170void *edac_align_ptr(void **p, unsigned size, int n_elems)
da9bb1d2
AC
171{
172 unsigned align, r;
93e4fe64 173 void *ptr = *p;
da9bb1d2 174
93e4fe64
MCC
175 *p += size * n_elems;
176
177 /*
178 * 'p' can possibly be an unaligned item X such that sizeof(X) is
179 * 'size'. Adjust 'p' so that its alignment is at least as
180 * stringent as what the compiler would provide for X and return
181 * the aligned result.
182 * Here we assume that the alignment of a "long long" is the most
da9bb1d2
AC
183 * stringent alignment that the compiler will ever provide by default.
184 * As far as I know, this is a reasonable assumption.
185 */
186 if (size > sizeof(long))
187 align = sizeof(long long);
188 else if (size > sizeof(int))
189 align = sizeof(long);
190 else if (size > sizeof(short))
191 align = sizeof(int);
192 else if (size > sizeof(char))
193 align = sizeof(short);
194 else
079708b9 195 return (char *)ptr;
da9bb1d2 196
8447c4d1 197 r = (unsigned long)p % align;
da9bb1d2
AC
198
199 if (r == 0)
079708b9 200 return (char *)ptr;
da9bb1d2 201
93e4fe64
MCC
202 *p += align - r;
203
7391c6dc 204 return (void *)(((unsigned long)ptr) + align - r);
da9bb1d2
AC
205}
206
faa2ad09
SR
207static void _edac_mc_free(struct mem_ctl_info *mci)
208{
209 int i, chn, row;
210 struct csrow_info *csr;
211 const unsigned int tot_dimms = mci->tot_dimms;
212 const unsigned int tot_channels = mci->num_cschannel;
213 const unsigned int tot_csrows = mci->nr_csrows;
214
215 if (mci->dimms) {
216 for (i = 0; i < tot_dimms; i++)
217 kfree(mci->dimms[i]);
218 kfree(mci->dimms);
219 }
220 if (mci->csrows) {
221 for (row = 0; row < tot_csrows; row++) {
222 csr = mci->csrows[row];
223 if (csr) {
224 if (csr->channels) {
225 for (chn = 0; chn < tot_channels; chn++)
226 kfree(csr->channels[chn]);
227 kfree(csr->channels);
228 }
229 kfree(csr);
230 }
231 }
232 kfree(mci->csrows);
233 }
234 kfree(mci);
235}
236
da9bb1d2 237/**
4275be63
MCC
238 * edac_mc_alloc: Allocate and partially fill a struct mem_ctl_info structure
239 * @mc_num: Memory controller number
240 * @n_layers: Number of MC hierarchy layers
241 * layers: Describes each layer as seen by the Memory Controller
242 * @size_pvt: size of private storage needed
243 *
da9bb1d2
AC
244 *
245 * Everything is kmalloc'ed as one big chunk - more efficient.
246 * Only can be used if all structures have the same lifetime - otherwise
247 * you have to allocate and initialize your own structures.
248 *
249 * Use edac_mc_free() to free mc structures allocated by this function.
250 *
4275be63
MCC
251 * NOTE: drivers handle multi-rank memories in different ways: in some
252 * drivers, one multi-rank memory stick is mapped as one entry, while, in
253 * others, a single multi-rank memory stick would be mapped into several
254 * entries. Currently, this function will allocate multiple struct dimm_info
255 * on such scenarios, as grouping the multiple ranks require drivers change.
256 *
da9bb1d2 257 * Returns:
ca0907b9
MCC
258 * On failure: NULL
259 * On success: struct mem_ctl_info pointer
da9bb1d2 260 */
ca0907b9
MCC
261struct mem_ctl_info *edac_mc_alloc(unsigned mc_num,
262 unsigned n_layers,
263 struct edac_mc_layer *layers,
264 unsigned sz_pvt)
da9bb1d2
AC
265{
266 struct mem_ctl_info *mci;
4275be63 267 struct edac_mc_layer *layer;
de3910eb
MCC
268 struct csrow_info *csr;
269 struct rank_info *chan;
a7d7d2e1 270 struct dimm_info *dimm;
4275be63
MCC
271 u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
272 unsigned pos[EDAC_MAX_LAYERS];
4275be63
MCC
273 unsigned size, tot_dimms = 1, count = 1;
274 unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0;
5926ff50 275 void *pvt, *p, *ptr = NULL;
de3910eb 276 int i, j, row, chn, n, len, off;
4275be63
MCC
277 bool per_rank = false;
278
279 BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0);
280 /*
281 * Calculate the total amount of dimms and csrows/cschannels while
282 * in the old API emulation mode
283 */
284 for (i = 0; i < n_layers; i++) {
285 tot_dimms *= layers[i].size;
286 if (layers[i].is_virt_csrow)
287 tot_csrows *= layers[i].size;
288 else
289 tot_channels *= layers[i].size;
290
291 if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT)
292 per_rank = true;
293 }
da9bb1d2
AC
294
295 /* Figure out the offsets of the various items from the start of an mc
296 * structure. We want the alignment of each item to be at least as
297 * stringent as what the compiler would provide if we could simply
298 * hardcode everything into a single struct.
299 */
93e4fe64 300 mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
4275be63 301 layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
4275be63
MCC
302 for (i = 0; i < n_layers; i++) {
303 count *= layers[i].size;
956b9ba1 304 edac_dbg(4, "errcount layer %d size %d\n", i, count);
4275be63
MCC
305 ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
306 ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
307 tot_errcount += 2 * count;
308 }
309
956b9ba1 310 edac_dbg(4, "allocating %d error counters\n", tot_errcount);
93e4fe64 311 pvt = edac_align_ptr(&ptr, sz_pvt, 1);
079708b9 312 size = ((unsigned long)pvt) + sz_pvt;
da9bb1d2 313
956b9ba1
JP
314 edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
315 size,
316 tot_dimms,
317 per_rank ? "ranks" : "dimms",
318 tot_csrows * tot_channels);
de3910eb 319
8096cfaf
DT
320 mci = kzalloc(size, GFP_KERNEL);
321 if (mci == NULL)
da9bb1d2
AC
322 return NULL;
323
324 /* Adjust pointers so they point within the memory we just allocated
325 * rather than an imaginary chunk of memory located at address 0.
326 */
4275be63 327 layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
4275be63
MCC
328 for (i = 0; i < n_layers; i++) {
329 mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i]));
330 mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i]));
331 }
079708b9 332 pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
da9bb1d2 333
b8f6f975 334 /* setup index and various internal pointers */
4275be63 335 mci->mc_idx = mc_num;
4275be63 336 mci->tot_dimms = tot_dimms;
da9bb1d2 337 mci->pvt_info = pvt;
4275be63
MCC
338 mci->n_layers = n_layers;
339 mci->layers = layer;
340 memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
341 mci->nr_csrows = tot_csrows;
342 mci->num_cschannel = tot_channels;
9713faec 343 mci->csbased = per_rank;
da9bb1d2 344
a7d7d2e1 345 /*
de3910eb 346 * Alocate and fill the csrow/channels structs
a7d7d2e1 347 */
d3d09e18 348 mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
de3910eb
MCC
349 if (!mci->csrows)
350 goto error;
4275be63 351 for (row = 0; row < tot_csrows; row++) {
de3910eb
MCC
352 csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
353 if (!csr)
354 goto error;
355 mci->csrows[row] = csr;
4275be63
MCC
356 csr->csrow_idx = row;
357 csr->mci = mci;
358 csr->nr_channels = tot_channels;
d3d09e18 359 csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
de3910eb
MCC
360 GFP_KERNEL);
361 if (!csr->channels)
362 goto error;
4275be63
MCC
363
364 for (chn = 0; chn < tot_channels; chn++) {
de3910eb
MCC
365 chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
366 if (!chan)
367 goto error;
368 csr->channels[chn] = chan;
da9bb1d2 369 chan->chan_idx = chn;
4275be63
MCC
370 chan->csrow = csr;
371 }
372 }
373
374 /*
de3910eb 375 * Allocate and fill the dimm structs
4275be63 376 */
d3d09e18 377 mci->dimms = kcalloc(tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
de3910eb
MCC
378 if (!mci->dimms)
379 goto error;
380
4275be63
MCC
381 memset(&pos, 0, sizeof(pos));
382 row = 0;
383 chn = 0;
4275be63 384 for (i = 0; i < tot_dimms; i++) {
de3910eb
MCC
385 chan = mci->csrows[row]->channels[chn];
386 off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]);
387 if (off < 0 || off >= tot_dimms) {
388 edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n");
389 goto error;
390 }
4275be63 391
de3910eb 392 dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
08a4a136
DC
393 if (!dimm)
394 goto error;
de3910eb 395 mci->dimms[off] = dimm;
4275be63 396 dimm->mci = mci;
4275be63 397
5926ff50
MCC
398 /*
399 * Copy DIMM location and initialize it.
400 */
401 len = sizeof(dimm->label);
402 p = dimm->label;
403 n = snprintf(p, len, "mc#%u", mc_num);
404 p += n;
405 len -= n;
406 for (j = 0; j < n_layers; j++) {
407 n = snprintf(p, len, "%s#%u",
408 edac_layer_name[layers[j].type],
409 pos[j]);
410 p += n;
411 len -= n;
4275be63
MCC
412 dimm->location[j] = pos[j];
413
5926ff50
MCC
414 if (len <= 0)
415 break;
416 }
417
4275be63
MCC
418 /* Link it to the csrows old API data */
419 chan->dimm = dimm;
420 dimm->csrow = row;
421 dimm->cschannel = chn;
422
423 /* Increment csrow location */
24bef66e 424 if (layers[0].is_virt_csrow) {
4275be63 425 chn++;
24bef66e
MCC
426 if (chn == tot_channels) {
427 chn = 0;
428 row++;
429 }
430 } else {
431 row++;
432 if (row == tot_csrows) {
433 row = 0;
434 chn++;
435 }
4275be63 436 }
a7d7d2e1 437
4275be63
MCC
438 /* Increment dimm location */
439 for (j = n_layers - 1; j >= 0; j--) {
440 pos[j]++;
441 if (pos[j] < layers[j].size)
442 break;
443 pos[j] = 0;
da9bb1d2
AC
444 }
445 }
446
81d87cb1 447 mci->op_state = OP_ALLOC;
8096cfaf 448
da9bb1d2 449 return mci;
de3910eb
MCC
450
451error:
faa2ad09 452 _edac_mc_free(mci);
de3910eb
MCC
453
454 return NULL;
4275be63 455}
9110540f 456EXPORT_SYMBOL_GPL(edac_mc_alloc);
da9bb1d2 457
da9bb1d2 458/**
8096cfaf
DT
459 * edac_mc_free
460 * 'Free' a previously allocated 'mci' structure
da9bb1d2 461 * @mci: pointer to a struct mem_ctl_info structure
da9bb1d2
AC
462 */
463void edac_mc_free(struct mem_ctl_info *mci)
464{
956b9ba1 465 edac_dbg(1, "\n");
bbc560ae 466
faa2ad09
SR
467 /* If we're not yet registered with sysfs free only what was allocated
468 * in edac_mc_alloc().
469 */
470 if (!device_is_registered(&mci->dev)) {
471 _edac_mc_free(mci);
472 return;
473 }
474
de3910eb 475 /* the mci instance is freed here, when the sysfs object is dropped */
7a623c03 476 edac_unregister_sysfs(mci);
da9bb1d2 477}
9110540f 478EXPORT_SYMBOL_GPL(edac_mc_free);
da9bb1d2 479
bce19683 480
939747bd 481/**
bce19683
DT
482 * find_mci_by_dev
483 *
484 * scan list of controllers looking for the one that manages
485 * the 'dev' device
939747bd 486 * @dev: pointer to a struct device related with the MCI
bce19683 487 */
939747bd 488struct mem_ctl_info *find_mci_by_dev(struct device *dev)
da9bb1d2
AC
489{
490 struct mem_ctl_info *mci;
491 struct list_head *item;
492
956b9ba1 493 edac_dbg(3, "\n");
da9bb1d2
AC
494
495 list_for_each(item, &mc_devices) {
496 mci = list_entry(item, struct mem_ctl_info, link);
497
fd687502 498 if (mci->pdev == dev)
da9bb1d2
AC
499 return mci;
500 }
501
502 return NULL;
503}
939747bd 504EXPORT_SYMBOL_GPL(find_mci_by_dev);
da9bb1d2 505
81d87cb1
DJ
506/*
507 * handler for EDAC to check if NMI type handler has asserted interrupt
508 */
509static int edac_mc_assert_error_check_and_clear(void)
510{
66ee2f94 511 int old_state;
81d87cb1 512
079708b9 513 if (edac_op_state == EDAC_OPSTATE_POLL)
81d87cb1
DJ
514 return 1;
515
66ee2f94
DJ
516 old_state = edac_err_assert;
517 edac_err_assert = 0;
81d87cb1 518
66ee2f94 519 return old_state;
81d87cb1
DJ
520}
521
522/*
523 * edac_mc_workq_function
524 * performs the operation scheduled by a workq request
525 */
81d87cb1
DJ
526static void edac_mc_workq_function(struct work_struct *work_req)
527{
fbeb4384 528 struct delayed_work *d_work = to_delayed_work(work_req);
81d87cb1 529 struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
81d87cb1
DJ
530
531 mutex_lock(&mem_ctls_mutex);
532
bf52fa4a
DT
533 /* if this control struct has movd to offline state, we are done */
534 if (mci->op_state == OP_OFFLINE) {
535 mutex_unlock(&mem_ctls_mutex);
536 return;
537 }
538
81d87cb1
DJ
539 /* Only poll controllers that are running polled and have a check */
540 if (edac_mc_assert_error_check_and_clear() && (mci->edac_check != NULL))
541 mci->edac_check(mci);
542
81d87cb1
DJ
543 mutex_unlock(&mem_ctls_mutex);
544
545 /* Reschedule */
4de78c68 546 queue_delayed_work(edac_workqueue, &mci->work,
052dfb45 547 msecs_to_jiffies(edac_mc_get_poll_msec()));
81d87cb1
DJ
548}
549
550/*
551 * edac_mc_workq_setup
552 * initialize a workq item for this mci
553 * passing in the new delay period in msec
bf52fa4a
DT
554 *
555 * locking model:
556 *
557 * called with the mem_ctls_mutex held
81d87cb1 558 */
cb6ef42e
BP
559static void edac_mc_workq_setup(struct mem_ctl_info *mci, unsigned msec,
560 bool init)
81d87cb1 561{
956b9ba1 562 edac_dbg(0, "\n");
81d87cb1 563
bf52fa4a
DT
564 /* if this instance is not in the POLL state, then simply return */
565 if (mci->op_state != OP_RUNNING_POLL)
566 return;
567
cb6ef42e
BP
568 if (init)
569 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
570
41f63c53 571 mod_delayed_work(edac_workqueue, &mci->work, msecs_to_jiffies(msec));
81d87cb1
DJ
572}
573
574/*
575 * edac_mc_workq_teardown
576 * stop the workq processing on this mci
bf52fa4a
DT
577 *
578 * locking model:
579 *
580 * called WITHOUT lock held
81d87cb1 581 */
bf52fa4a 582static void edac_mc_workq_teardown(struct mem_ctl_info *mci)
81d87cb1
DJ
583{
584 int status;
585
00740c58
BP
586 if (mci->op_state != OP_RUNNING_POLL)
587 return;
588
bce19683
DT
589 status = cancel_delayed_work(&mci->work);
590 if (status == 0) {
956b9ba1 591 edac_dbg(0, "not canceled, flush the queue\n");
bf52fa4a 592
bce19683
DT
593 /* workq instance might be running, wait for it */
594 flush_workqueue(edac_workqueue);
81d87cb1
DJ
595 }
596}
597
598/*
bce19683
DT
599 * edac_mc_reset_delay_period(unsigned long value)
600 *
601 * user space has updated our poll period value, need to
602 * reset our workq delays
81d87cb1 603 */
9da21b15 604void edac_mc_reset_delay_period(unsigned long value)
81d87cb1 605{
bce19683
DT
606 struct mem_ctl_info *mci;
607 struct list_head *item;
608
609 mutex_lock(&mem_ctls_mutex);
610
bce19683
DT
611 list_for_each(item, &mc_devices) {
612 mci = list_entry(item, struct mem_ctl_info, link);
613
cb6ef42e 614 edac_mc_workq_setup(mci, value, false);
bce19683 615 }
81d87cb1
DJ
616
617 mutex_unlock(&mem_ctls_mutex);
618}
619
bce19683
DT
620
621
2d7bbb91
DT
622/* Return 0 on success, 1 on failure.
623 * Before calling this function, caller must
624 * assign a unique value to mci->mc_idx.
bf52fa4a
DT
625 *
626 * locking model:
627 *
628 * called with the mem_ctls_mutex lock held
2d7bbb91 629 */
079708b9 630static int add_mc_to_global_list(struct mem_ctl_info *mci)
da9bb1d2
AC
631{
632 struct list_head *item, *insert_before;
633 struct mem_ctl_info *p;
da9bb1d2 634
2d7bbb91 635 insert_before = &mc_devices;
da9bb1d2 636
fd687502 637 p = find_mci_by_dev(mci->pdev);
bf52fa4a 638 if (unlikely(p != NULL))
2d7bbb91 639 goto fail0;
da9bb1d2 640
2d7bbb91
DT
641 list_for_each(item, &mc_devices) {
642 p = list_entry(item, struct mem_ctl_info, link);
da9bb1d2 643
2d7bbb91
DT
644 if (p->mc_idx >= mci->mc_idx) {
645 if (unlikely(p->mc_idx == mci->mc_idx))
646 goto fail1;
da9bb1d2 647
2d7bbb91
DT
648 insert_before = item;
649 break;
da9bb1d2 650 }
da9bb1d2
AC
651 }
652
653 list_add_tail_rcu(&mci->link, insert_before);
c0d12172 654 atomic_inc(&edac_handlers);
da9bb1d2 655 return 0;
2d7bbb91 656
052dfb45 657fail0:
2d7bbb91 658 edac_printk(KERN_WARNING, EDAC_MC,
fd687502 659 "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
17aa7e03 660 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
2d7bbb91
DT
661 return 1;
662
052dfb45 663fail1:
2d7bbb91 664 edac_printk(KERN_WARNING, EDAC_MC,
052dfb45
DT
665 "bug in low-level driver: attempt to assign\n"
666 " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
2d7bbb91 667 return 1;
da9bb1d2
AC
668}
669
80cc7d87 670static int del_mc_from_global_list(struct mem_ctl_info *mci)
a1d03fcc 671{
80cc7d87 672 int handlers = atomic_dec_return(&edac_handlers);
a1d03fcc 673 list_del_rcu(&mci->link);
e2e77098
LJ
674
675 /* these are for safe removal of devices from global list while
676 * NMI handlers may be traversing list
677 */
678 synchronize_rcu();
679 INIT_LIST_HEAD(&mci->link);
80cc7d87
MCC
680
681 return handlers;
a1d03fcc
DP
682}
683
5da0831c
DT
684/**
685 * edac_mc_find: Search for a mem_ctl_info structure whose index is 'idx'.
686 *
687 * If found, return a pointer to the structure.
688 * Else return NULL.
689 *
690 * Caller must hold mem_ctls_mutex.
691 */
079708b9 692struct mem_ctl_info *edac_mc_find(int idx)
5da0831c
DT
693{
694 struct list_head *item;
695 struct mem_ctl_info *mci;
696
697 list_for_each(item, &mc_devices) {
698 mci = list_entry(item, struct mem_ctl_info, link);
699
700 if (mci->mc_idx >= idx) {
701 if (mci->mc_idx == idx)
702 return mci;
703
704 break;
705 }
706 }
707
708 return NULL;
709}
710EXPORT_SYMBOL(edac_mc_find);
711
da9bb1d2 712/**
472678eb
DP
713 * edac_mc_add_mc: Insert the 'mci' structure into the mci global list and
714 * create sysfs entries associated with mci structure
da9bb1d2
AC
715 * @mci: pointer to the mci structure to be added to the list
716 *
717 * Return:
718 * 0 Success
719 * !0 Failure
720 */
721
722/* FIXME - should a warning be printed if no error detection? correction? */
b8f6f975 723int edac_mc_add_mc(struct mem_ctl_info *mci)
da9bb1d2 724{
80cc7d87 725 int ret = -EINVAL;
956b9ba1 726 edac_dbg(0, "\n");
b8f6f975 727
88d84ac9
BP
728 if (mci->mc_idx >= EDAC_MAX_MCS) {
729 pr_warn_once("Too many memory controllers: %d\n", mci->mc_idx);
730 return -ENODEV;
731 }
732
da9bb1d2
AC
733#ifdef CONFIG_EDAC_DEBUG
734 if (edac_debug_level >= 3)
735 edac_mc_dump_mci(mci);
e7ecd891 736
da9bb1d2
AC
737 if (edac_debug_level >= 4) {
738 int i;
739
740 for (i = 0; i < mci->nr_csrows; i++) {
6e84d359
MCC
741 struct csrow_info *csrow = mci->csrows[i];
742 u32 nr_pages = 0;
da9bb1d2 743 int j;
e7ecd891 744
6e84d359
MCC
745 for (j = 0; j < csrow->nr_channels; j++)
746 nr_pages += csrow->channels[j]->dimm->nr_pages;
747 if (!nr_pages)
748 continue;
749 edac_mc_dump_csrow(csrow);
750 for (j = 0; j < csrow->nr_channels; j++)
751 if (csrow->channels[j]->dimm->nr_pages)
752 edac_mc_dump_channel(csrow->channels[j]);
da9bb1d2 753 }
4275be63 754 for (i = 0; i < mci->tot_dimms; i++)
6e84d359
MCC
755 if (mci->dimms[i]->nr_pages)
756 edac_mc_dump_dimm(mci->dimms[i], i);
da9bb1d2
AC
757 }
758#endif
63b7df91 759 mutex_lock(&mem_ctls_mutex);
da9bb1d2 760
80cc7d87
MCC
761 if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
762 ret = -EPERM;
763 goto fail0;
764 }
765
da9bb1d2 766 if (add_mc_to_global_list(mci))
028a7b6d 767 goto fail0;
da9bb1d2
AC
768
769 /* set load time so that error rate can be tracked */
770 mci->start_time = jiffies;
771
88d84ac9
BP
772 mci->bus = &mc_bus[mci->mc_idx];
773
9794f33d 774 if (edac_create_sysfs_mci_device(mci)) {
775 edac_mc_printk(mci, KERN_WARNING,
052dfb45 776 "failed to create sysfs device\n");
9794f33d 777 goto fail1;
778 }
da9bb1d2 779
81d87cb1
DJ
780 /* If there IS a check routine, then we are running POLLED */
781 if (mci->edac_check != NULL) {
782 /* This instance is NOW RUNNING */
783 mci->op_state = OP_RUNNING_POLL;
784
cb6ef42e 785 edac_mc_workq_setup(mci, edac_mc_get_poll_msec(), true);
81d87cb1
DJ
786 } else {
787 mci->op_state = OP_RUNNING_INTERRUPT;
788 }
789
da9bb1d2 790 /* Report action taken */
7270a608
RR
791 edac_mc_printk(mci, KERN_INFO,
792 "Giving out device to module %s controller %s: DEV %s (%s)\n",
793 mci->mod_name, mci->ctl_name, mci->dev_name,
794 edac_op_state_to_string(mci->op_state));
da9bb1d2 795
80cc7d87
MCC
796 edac_mc_owner = mci->mod_name;
797
63b7df91 798 mutex_unlock(&mem_ctls_mutex);
028a7b6d 799 return 0;
da9bb1d2 800
052dfb45 801fail1:
028a7b6d
DP
802 del_mc_from_global_list(mci);
803
052dfb45 804fail0:
63b7df91 805 mutex_unlock(&mem_ctls_mutex);
80cc7d87 806 return ret;
da9bb1d2 807}
9110540f 808EXPORT_SYMBOL_GPL(edac_mc_add_mc);
da9bb1d2 809
da9bb1d2 810/**
472678eb
DP
811 * edac_mc_del_mc: Remove sysfs entries for specified mci structure and
812 * remove mci structure from global list
37f04581 813 * @pdev: Pointer to 'struct device' representing mci structure to remove.
da9bb1d2 814 *
18dbc337 815 * Return pointer to removed mci structure, or NULL if device not found.
da9bb1d2 816 */
079708b9 817struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
da9bb1d2 818{
18dbc337 819 struct mem_ctl_info *mci;
da9bb1d2 820
956b9ba1 821 edac_dbg(0, "\n");
bf52fa4a 822
63b7df91 823 mutex_lock(&mem_ctls_mutex);
18dbc337 824
bf52fa4a
DT
825 /* find the requested mci struct in the global list */
826 mci = find_mci_by_dev(dev);
827 if (mci == NULL) {
63b7df91 828 mutex_unlock(&mem_ctls_mutex);
18dbc337
DP
829 return NULL;
830 }
831
80cc7d87
MCC
832 if (!del_mc_from_global_list(mci))
833 edac_mc_owner = NULL;
63b7df91 834 mutex_unlock(&mem_ctls_mutex);
bf52fa4a 835
bb31b312 836 /* flush workq processes */
bf52fa4a 837 edac_mc_workq_teardown(mci);
bb31b312
BP
838
839 /* marking MCI offline */
840 mci->op_state = OP_OFFLINE;
841
842 /* remove from sysfs */
bf52fa4a
DT
843 edac_remove_sysfs_mci_device(mci);
844
537fba28 845 edac_printk(KERN_INFO, EDAC_MC,
052dfb45 846 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
17aa7e03 847 mci->mod_name, mci->ctl_name, edac_dev_name(mci));
bf52fa4a 848
18dbc337 849 return mci;
da9bb1d2 850}
9110540f 851EXPORT_SYMBOL_GPL(edac_mc_del_mc);
da9bb1d2 852
2da1c119
AB
853static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
854 u32 size)
da9bb1d2
AC
855{
856 struct page *pg;
857 void *virt_addr;
858 unsigned long flags = 0;
859
956b9ba1 860 edac_dbg(3, "\n");
da9bb1d2
AC
861
862 /* ECC error page was not in our memory. Ignore it. */
079708b9 863 if (!pfn_valid(page))
da9bb1d2
AC
864 return;
865
866 /* Find the actual page structure then map it and fix */
867 pg = pfn_to_page(page);
868
869 if (PageHighMem(pg))
870 local_irq_save(flags);
871
4e5df7ca 872 virt_addr = kmap_atomic(pg);
da9bb1d2
AC
873
874 /* Perform architecture specific atomic scrub operation */
875 atomic_scrub(virt_addr + offset, size);
876
877 /* Unmap and complete */
4e5df7ca 878 kunmap_atomic(virt_addr);
da9bb1d2
AC
879
880 if (PageHighMem(pg))
881 local_irq_restore(flags);
882}
883
da9bb1d2 884/* FIXME - should return -1 */
e7ecd891 885int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
da9bb1d2 886{
de3910eb 887 struct csrow_info **csrows = mci->csrows;
a895bf8b 888 int row, i, j, n;
da9bb1d2 889
956b9ba1 890 edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
da9bb1d2
AC
891 row = -1;
892
893 for (i = 0; i < mci->nr_csrows; i++) {
de3910eb 894 struct csrow_info *csrow = csrows[i];
a895bf8b
MCC
895 n = 0;
896 for (j = 0; j < csrow->nr_channels; j++) {
de3910eb 897 struct dimm_info *dimm = csrow->channels[j]->dimm;
a895bf8b
MCC
898 n += dimm->nr_pages;
899 }
900 if (n == 0)
da9bb1d2
AC
901 continue;
902
956b9ba1
JP
903 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
904 mci->mc_idx,
905 csrow->first_page, page, csrow->last_page,
906 csrow->page_mask);
da9bb1d2
AC
907
908 if ((page >= csrow->first_page) &&
909 (page <= csrow->last_page) &&
910 ((page & csrow->page_mask) ==
911 (csrow->first_page & csrow->page_mask))) {
912 row = i;
913 break;
914 }
915 }
916
917 if (row == -1)
537fba28 918 edac_mc_printk(mci, KERN_ERR,
052dfb45
DT
919 "could not look up page error address %lx\n",
920 (unsigned long)page);
da9bb1d2
AC
921
922 return row;
923}
9110540f 924EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
da9bb1d2 925
4275be63
MCC
926const char *edac_layer_name[] = {
927 [EDAC_MC_LAYER_BRANCH] = "branch",
928 [EDAC_MC_LAYER_CHANNEL] = "channel",
929 [EDAC_MC_LAYER_SLOT] = "slot",
930 [EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
c66b5a79 931 [EDAC_MC_LAYER_ALL_MEM] = "memory",
4275be63
MCC
932};
933EXPORT_SYMBOL_GPL(edac_layer_name);
934
935static void edac_inc_ce_error(struct mem_ctl_info *mci,
9eb07a7f
MCC
936 bool enable_per_layer_report,
937 const int pos[EDAC_MAX_LAYERS],
938 const u16 count)
da9bb1d2 939{
4275be63 940 int i, index = 0;
da9bb1d2 941
9eb07a7f 942 mci->ce_mc += count;
da9bb1d2 943
4275be63 944 if (!enable_per_layer_report) {
9eb07a7f 945 mci->ce_noinfo_count += count;
da9bb1d2
AC
946 return;
947 }
e7ecd891 948
4275be63
MCC
949 for (i = 0; i < mci->n_layers; i++) {
950 if (pos[i] < 0)
951 break;
952 index += pos[i];
9eb07a7f 953 mci->ce_per_layer[i][index] += count;
4275be63
MCC
954
955 if (i < mci->n_layers - 1)
956 index *= mci->layers[i + 1].size;
957 }
958}
959
960static void edac_inc_ue_error(struct mem_ctl_info *mci,
961 bool enable_per_layer_report,
9eb07a7f
MCC
962 const int pos[EDAC_MAX_LAYERS],
963 const u16 count)
4275be63
MCC
964{
965 int i, index = 0;
966
9eb07a7f 967 mci->ue_mc += count;
4275be63
MCC
968
969 if (!enable_per_layer_report) {
9eb07a7f 970 mci->ce_noinfo_count += count;
da9bb1d2
AC
971 return;
972 }
973
4275be63
MCC
974 for (i = 0; i < mci->n_layers; i++) {
975 if (pos[i] < 0)
976 break;
977 index += pos[i];
9eb07a7f 978 mci->ue_per_layer[i][index] += count;
a7d7d2e1 979
4275be63
MCC
980 if (i < mci->n_layers - 1)
981 index *= mci->layers[i + 1].size;
982 }
983}
da9bb1d2 984
4275be63 985static void edac_ce_error(struct mem_ctl_info *mci,
9eb07a7f 986 const u16 error_count,
4275be63
MCC
987 const int pos[EDAC_MAX_LAYERS],
988 const char *msg,
989 const char *location,
990 const char *label,
991 const char *detail,
992 const char *other_detail,
993 const bool enable_per_layer_report,
994 const unsigned long page_frame_number,
995 const unsigned long offset_in_page,
53f2d028 996 long grain)
4275be63
MCC
997{
998 unsigned long remapped_page;
f430d570
BP
999 char *msg_aux = "";
1000
1001 if (*msg)
1002 msg_aux = " ";
4275be63
MCC
1003
1004 if (edac_mc_get_log_ce()) {
1005 if (other_detail && *other_detail)
1006 edac_mc_printk(mci, KERN_WARNING,
f430d570
BP
1007 "%d CE %s%son %s (%s %s - %s)\n",
1008 error_count, msg, msg_aux, label,
1009 location, detail, other_detail);
4275be63
MCC
1010 else
1011 edac_mc_printk(mci, KERN_WARNING,
f430d570
BP
1012 "%d CE %s%son %s (%s %s)\n",
1013 error_count, msg, msg_aux, label,
1014 location, detail);
4275be63 1015 }
9eb07a7f 1016 edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count);
da9bb1d2 1017
aa2064d7 1018 if (mci->scrub_mode == SCRUB_SW_SRC) {
da9bb1d2 1019 /*
4275be63
MCC
1020 * Some memory controllers (called MCs below) can remap
1021 * memory so that it is still available at a different
1022 * address when PCI devices map into memory.
1023 * MC's that can't do this, lose the memory where PCI
1024 * devices are mapped. This mapping is MC-dependent
1025 * and so we call back into the MC driver for it to
1026 * map the MC page to a physical (CPU) page which can
1027 * then be mapped to a virtual page - which can then
1028 * be scrubbed.
1029 */
da9bb1d2 1030 remapped_page = mci->ctl_page_to_phys ?
052dfb45
DT
1031 mci->ctl_page_to_phys(mci, page_frame_number) :
1032 page_frame_number;
da9bb1d2 1033
4275be63
MCC
1034 edac_mc_scrub_block(remapped_page,
1035 offset_in_page, grain);
da9bb1d2
AC
1036 }
1037}
1038
4275be63 1039static void edac_ue_error(struct mem_ctl_info *mci,
9eb07a7f 1040 const u16 error_count,
4275be63
MCC
1041 const int pos[EDAC_MAX_LAYERS],
1042 const char *msg,
1043 const char *location,
1044 const char *label,
1045 const char *detail,
1046 const char *other_detail,
1047 const bool enable_per_layer_report)
da9bb1d2 1048{
f430d570
BP
1049 char *msg_aux = "";
1050
1051 if (*msg)
1052 msg_aux = " ";
1053
4275be63
MCC
1054 if (edac_mc_get_log_ue()) {
1055 if (other_detail && *other_detail)
1056 edac_mc_printk(mci, KERN_WARNING,
f430d570
BP
1057 "%d UE %s%son %s (%s %s - %s)\n",
1058 error_count, msg, msg_aux, label,
1059 location, detail, other_detail);
4275be63
MCC
1060 else
1061 edac_mc_printk(mci, KERN_WARNING,
f430d570
BP
1062 "%d UE %s%son %s (%s %s)\n",
1063 error_count, msg, msg_aux, label,
1064 location, detail);
4275be63 1065 }
e7ecd891 1066
4275be63
MCC
1067 if (edac_mc_get_panic_on_ue()) {
1068 if (other_detail && *other_detail)
f430d570
BP
1069 panic("UE %s%son %s (%s%s - %s)\n",
1070 msg, msg_aux, label, location, detail, other_detail);
4275be63 1071 else
f430d570
BP
1072 panic("UE %s%son %s (%s%s)\n",
1073 msg, msg_aux, label, location, detail);
4275be63
MCC
1074 }
1075
9eb07a7f 1076 edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count);
da9bb1d2
AC
1077}
1078
e7e24830
MCC
1079/**
1080 * edac_raw_mc_handle_error - reports a memory event to userspace without doing
1081 * anything to discover the error location
1082 *
1083 * @type: severity of the error (CE/UE/Fatal)
1084 * @mci: a struct mem_ctl_info pointer
1085 * @e: error description
1086 *
1087 * This raw function is used internally by edac_mc_handle_error(). It should
1088 * only be called directly when the hardware error come directly from BIOS,
1089 * like in the case of APEI GHES driver.
1090 */
1091void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type,
1092 struct mem_ctl_info *mci,
1093 struct edac_raw_error_desc *e)
1094{
1095 char detail[80];
1096 int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
1097
1098 /* Memory type dependent details about the error */
1099 if (type == HW_EVENT_ERR_CORRECTED) {
1100 snprintf(detail, sizeof(detail),
1101 "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
1102 e->page_frame_number, e->offset_in_page,
1103 e->grain, e->syndrome);
1104 edac_ce_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1105 detail, e->other_detail, e->enable_per_layer_report,
1106 e->page_frame_number, e->offset_in_page, e->grain);
1107 } else {
1108 snprintf(detail, sizeof(detail),
1109 "page:0x%lx offset:0x%lx grain:%ld",
1110 e->page_frame_number, e->offset_in_page, e->grain);
1111
1112 edac_ue_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1113 detail, e->other_detail, e->enable_per_layer_report);
1114 }
1115
1116
1117}
1118EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
53f2d028
MCC
1119
1120/**
1121 * edac_mc_handle_error - reports a memory event to userspace
1122 *
1123 * @type: severity of the error (CE/UE/Fatal)
1124 * @mci: a struct mem_ctl_info pointer
9eb07a7f 1125 * @error_count: Number of errors of the same type
53f2d028
MCC
1126 * @page_frame_number: mem page where the error occurred
1127 * @offset_in_page: offset of the error inside the page
1128 * @syndrome: ECC syndrome
1129 * @top_layer: Memory layer[0] position
1130 * @mid_layer: Memory layer[1] position
1131 * @low_layer: Memory layer[2] position
1132 * @msg: Message meaningful to the end users that
1133 * explains the event
1134 * @other_detail: Technical details about the event that
1135 * may help hardware manufacturers and
1136 * EDAC developers to analyse the event
53f2d028 1137 */
4275be63
MCC
1138void edac_mc_handle_error(const enum hw_event_mc_err_type type,
1139 struct mem_ctl_info *mci,
9eb07a7f 1140 const u16 error_count,
4275be63
MCC
1141 const unsigned long page_frame_number,
1142 const unsigned long offset_in_page,
1143 const unsigned long syndrome,
53f2d028
MCC
1144 const int top_layer,
1145 const int mid_layer,
1146 const int low_layer,
4275be63 1147 const char *msg,
03f7eae8 1148 const char *other_detail)
da9bb1d2 1149{
4275be63
MCC
1150 char *p;
1151 int row = -1, chan = -1;
53f2d028 1152 int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
c7ef7645 1153 int i, n_labels = 0;
53f2d028 1154 u8 grain_bits;
c7ef7645 1155 struct edac_raw_error_desc *e = &mci->error_desc;
da9bb1d2 1156
956b9ba1 1157 edac_dbg(3, "MC%d\n", mci->mc_idx);
da9bb1d2 1158
c7ef7645
MCC
1159 /* Fills the error report buffer */
1160 memset(e, 0, sizeof (*e));
1161 e->error_count = error_count;
1162 e->top_layer = top_layer;
1163 e->mid_layer = mid_layer;
1164 e->low_layer = low_layer;
1165 e->page_frame_number = page_frame_number;
1166 e->offset_in_page = offset_in_page;
1167 e->syndrome = syndrome;
1168 e->msg = msg;
1169 e->other_detail = other_detail;
1170
4275be63
MCC
1171 /*
1172 * Check if the event report is consistent and if the memory
1173 * location is known. If it is known, enable_per_layer_report will be
1174 * true, the DIMM(s) label info will be filled and the per-layer
1175 * error counters will be incremented.
1176 */
1177 for (i = 0; i < mci->n_layers; i++) {
1178 if (pos[i] >= (int)mci->layers[i].size) {
4275be63
MCC
1179
1180 edac_mc_printk(mci, KERN_ERR,
1181 "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1182 edac_layer_name[mci->layers[i].type],
1183 pos[i], mci->layers[i].size);
1184 /*
1185 * Instead of just returning it, let's use what's
1186 * known about the error. The increment routines and
1187 * the DIMM filter logic will do the right thing by
1188 * pointing the likely damaged DIMMs.
1189 */
1190 pos[i] = -1;
1191 }
1192 if (pos[i] >= 0)
c7ef7645 1193 e->enable_per_layer_report = true;
da9bb1d2
AC
1194 }
1195
4275be63
MCC
1196 /*
1197 * Get the dimm label/grain that applies to the match criteria.
1198 * As the error algorithm may not be able to point to just one memory
1199 * stick, the logic here will get all possible labels that could
1200 * pottentially be affected by the error.
1201 * On FB-DIMM memory controllers, for uncorrected errors, it is common
1202 * to have only the MC channel and the MC dimm (also called "branch")
1203 * but the channel is not known, as the memory is arranged in pairs,
1204 * where each memory belongs to a separate channel within the same
1205 * branch.
1206 */
c7ef7645 1207 p = e->label;
4275be63 1208 *p = '\0';
4da1b7bf 1209
4275be63 1210 for (i = 0; i < mci->tot_dimms; i++) {
de3910eb 1211 struct dimm_info *dimm = mci->dimms[i];
da9bb1d2 1212
53f2d028 1213 if (top_layer >= 0 && top_layer != dimm->location[0])
4275be63 1214 continue;
53f2d028 1215 if (mid_layer >= 0 && mid_layer != dimm->location[1])
4275be63 1216 continue;
53f2d028 1217 if (low_layer >= 0 && low_layer != dimm->location[2])
4275be63 1218 continue;
da9bb1d2 1219
4275be63 1220 /* get the max grain, over the error match range */
c7ef7645
MCC
1221 if (dimm->grain > e->grain)
1222 e->grain = dimm->grain;
9794f33d 1223
4275be63
MCC
1224 /*
1225 * If the error is memory-controller wide, there's no need to
1226 * seek for the affected DIMMs because the whole
1227 * channel/memory controller/... may be affected.
1228 * Also, don't show errors for empty DIMM slots.
1229 */
c7ef7645
MCC
1230 if (e->enable_per_layer_report && dimm->nr_pages) {
1231 if (n_labels >= EDAC_MAX_LABELS) {
1232 e->enable_per_layer_report = false;
1233 break;
1234 }
1235 n_labels++;
1236 if (p != e->label) {
4275be63
MCC
1237 strcpy(p, OTHER_LABEL);
1238 p += strlen(OTHER_LABEL);
1239 }
1240 strcpy(p, dimm->label);
1241 p += strlen(p);
1242 *p = '\0';
1243
1244 /*
1245 * get csrow/channel of the DIMM, in order to allow
1246 * incrementing the compat API counters
1247 */
956b9ba1 1248 edac_dbg(4, "%s csrows map: (%d,%d)\n",
9713faec 1249 mci->csbased ? "rank" : "dimm",
956b9ba1 1250 dimm->csrow, dimm->cschannel);
4275be63
MCC
1251 if (row == -1)
1252 row = dimm->csrow;
1253 else if (row >= 0 && row != dimm->csrow)
1254 row = -2;
1255
1256 if (chan == -1)
1257 chan = dimm->cschannel;
1258 else if (chan >= 0 && chan != dimm->cschannel)
1259 chan = -2;
1260 }
9794f33d 1261 }
1262
c7ef7645
MCC
1263 if (!e->enable_per_layer_report) {
1264 strcpy(e->label, "any memory");
4275be63 1265 } else {
956b9ba1 1266 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
c7ef7645
MCC
1267 if (p == e->label)
1268 strcpy(e->label, "unknown memory");
4275be63
MCC
1269 if (type == HW_EVENT_ERR_CORRECTED) {
1270 if (row >= 0) {
9eb07a7f 1271 mci->csrows[row]->ce_count += error_count;
4275be63 1272 if (chan >= 0)
9eb07a7f 1273 mci->csrows[row]->channels[chan]->ce_count += error_count;
4275be63
MCC
1274 }
1275 } else
1276 if (row >= 0)
9eb07a7f 1277 mci->csrows[row]->ue_count += error_count;
9794f33d 1278 }
1279
4275be63 1280 /* Fill the RAM location data */
c7ef7645 1281 p = e->location;
4da1b7bf 1282
4275be63
MCC
1283 for (i = 0; i < mci->n_layers; i++) {
1284 if (pos[i] < 0)
1285 continue;
9794f33d 1286
4275be63
MCC
1287 p += sprintf(p, "%s:%d ",
1288 edac_layer_name[mci->layers[i].type],
1289 pos[i]);
9794f33d 1290 }
c7ef7645 1291 if (p > e->location)
53f2d028
MCC
1292 *(p - 1) = '\0';
1293
1294 /* Report the error via the trace interface */
c7ef7645
MCC
1295 grain_bits = fls_long(e->grain) + 1;
1296 trace_mc_event(type, e->msg, e->label, e->error_count,
1297 mci->mc_idx, e->top_layer, e->mid_layer, e->low_layer,
1298 PAGES_TO_MiB(e->page_frame_number) | e->offset_in_page,
e7e24830 1299 grain_bits, e->syndrome, e->other_detail);
a7d7d2e1 1300
e7e24830 1301 edac_raw_mc_handle_error(type, mci, e);
9794f33d 1302}
4275be63 1303EXPORT_SYMBOL_GPL(edac_mc_handle_error);
This page took 0.792622 seconds and 5 git commands to generate.