Commit | Line | Data |
---|---|---|
535c6a53 JU |
1 | /* |
2 | * Intel 3000/3010 Memory Controller kernel module | |
3 | * Copyright (C) 2007 Akamai Technologies, Inc. | |
4 | * Shamelessly copied from: | |
5 | * Intel D82875P Memory Controller kernel module | |
6 | * (C) 2003 Linux Networx (http://lnxi.com) | |
7 | * | |
8 | * This file may be distributed under the terms of the | |
9 | * GNU General Public License. | |
10 | */ | |
11 | ||
12 | #include <linux/module.h> | |
13 | #include <linux/init.h> | |
14 | #include <linux/pci.h> | |
15 | #include <linux/pci_ids.h> | |
7ed31e0f | 16 | #include <linux/edac.h> |
535c6a53 JU |
17 | #include "edac_core.h" |
18 | ||
19 | #define I3000_REVISION "1.1" | |
20 | ||
21 | #define EDAC_MOD_STR "i3000_edac" | |
22 | ||
23 | #define I3000_RANKS 8 | |
24 | #define I3000_RANKS_PER_CHANNEL 4 | |
25 | #define I3000_CHANNELS 2 | |
26 | ||
27 | /* Intel 3000 register addresses - device 0 function 0 - DRAM Controller */ | |
28 | ||
29 | #define I3000_MCHBAR 0x44 /* MCH Memory Mapped Register BAR */ | |
30 | #define I3000_MCHBAR_MASK 0xffffc000 | |
31 | #define I3000_MMR_WINDOW_SIZE 16384 | |
32 | ||
ce783d70 JU |
33 | #define I3000_EDEAP 0x70 /* Extended DRAM Error Address Pointer (8b) |
34 | * | |
35 | * 7:1 reserved | |
36 | * 0 bit 32 of address | |
37 | */ | |
38 | #define I3000_DEAP 0x58 /* DRAM Error Address Pointer (32b) | |
39 | * | |
40 | * 31:7 address | |
41 | * 6:1 reserved | |
42 | * 0 Error channel 0/1 | |
43 | */ | |
44 | #define I3000_DEAP_GRAIN (1 << 7) | |
4d2b165e | 45 | |
870897a5 JU |
46 | /* |
47 | * Helper functions to decode the DEAP/EDEAP hardware registers. | |
48 | * | |
49 | * The type promotion here is deliberate; we're deriving an | |
50 | * unsigned long pfn and offset from hardware regs which are u8/u32. | |
51 | */ | |
52 | ||
4d2b165e JU |
53 | static inline unsigned long deap_pfn(u8 edeap, u32 deap) |
54 | { | |
55 | deap >>= PAGE_SHIFT; | |
56 | deap |= (edeap & 1) << (32 - PAGE_SHIFT); | |
57 | return deap; | |
58 | } | |
59 | ||
60 | static inline unsigned long deap_offset(u32 deap) | |
61 | { | |
62 | return deap & ~(I3000_DEAP_GRAIN - 1) & ~PAGE_MASK; | |
63 | } | |
64 | ||
65 | static inline int deap_channel(u32 deap) | |
66 | { | |
67 | return deap & 1; | |
68 | } | |
535c6a53 | 69 | |
ce783d70 JU |
70 | #define I3000_DERRSYN 0x5c /* DRAM Error Syndrome (8b) |
71 | * | |
72 | * 7:0 DRAM ECC Syndrome | |
73 | */ | |
74 | ||
75 | #define I3000_ERRSTS 0xc8 /* Error Status Register (16b) | |
76 | * | |
77 | * 15:12 reserved | |
78 | * 11 MCH Thermal Sensor Event | |
79 | * for SMI/SCI/SERR | |
80 | * 10 reserved | |
81 | * 9 LOCK to non-DRAM Memory Flag (LCKF) | |
82 | * 8 Received Refresh Timeout Flag (RRTOF) | |
83 | * 7:2 reserved | |
84 | * 1 Multi-bit DRAM ECC Error Flag (DMERR) | |
85 | * 0 Single-bit DRAM ECC Error Flag (DSERR) | |
86 | */ | |
535c6a53 JU |
87 | #define I3000_ERRSTS_BITS 0x0b03 /* bits which indicate errors */ |
88 | #define I3000_ERRSTS_UE 0x0002 | |
89 | #define I3000_ERRSTS_CE 0x0001 | |
90 | ||
ce783d70 JU |
91 | #define I3000_ERRCMD 0xca /* Error Command (16b) |
92 | * | |
93 | * 15:12 reserved | |
94 | * 11 SERR on MCH Thermal Sensor Event | |
95 | * (TSESERR) | |
96 | * 10 reserved | |
97 | * 9 SERR on LOCK to non-DRAM Memory | |
98 | * (LCKERR) | |
99 | * 8 SERR on DRAM Refresh Timeout | |
100 | * (DRTOERR) | |
101 | * 7:2 reserved | |
102 | * 1 SERR Multi-Bit DRAM ECC Error | |
103 | * (DMERR) | |
104 | * 0 SERR on Single-Bit ECC Error | |
105 | * (DSERR) | |
106 | */ | |
535c6a53 JU |
107 | |
108 | /* Intel MMIO register space - device 0 function 0 - MMR space */ | |
109 | ||
110 | #define I3000_DRB_SHIFT 25 /* 32MiB grain */ | |
111 | ||
ce783d70 JU |
112 | #define I3000_C0DRB 0x100 /* Channel 0 DRAM Rank Boundary (8b x 4) |
113 | * | |
114 | * 7:0 Channel 0 DRAM Rank Boundary Address | |
115 | */ | |
116 | #define I3000_C1DRB 0x180 /* Channel 1 DRAM Rank Boundary (8b x 4) | |
117 | * | |
118 | * 7:0 Channel 1 DRAM Rank Boundary Address | |
119 | */ | |
120 | ||
121 | #define I3000_C0DRA 0x108 /* Channel 0 DRAM Rank Attribute (8b x 2) | |
122 | * | |
123 | * 7 reserved | |
124 | * 6:4 DRAM odd Rank Attribute | |
125 | * 3 reserved | |
126 | * 2:0 DRAM even Rank Attribute | |
127 | * | |
128 | * Each attribute defines the page | |
129 | * size of the corresponding rank: | |
130 | * 000: unpopulated | |
131 | * 001: reserved | |
132 | * 010: 4 KB | |
133 | * 011: 8 KB | |
134 | * 100: 16 KB | |
135 | * Others: reserved | |
136 | */ | |
137 | #define I3000_C1DRA 0x188 /* Channel 1 DRAM Rank Attribute (8b x 2) */ | |
4d2b165e JU |
138 | |
139 | static inline unsigned char odd_rank_attrib(unsigned char dra) | |
140 | { | |
141 | return (dra & 0x70) >> 4; | |
142 | } | |
143 | ||
144 | static inline unsigned char even_rank_attrib(unsigned char dra) | |
145 | { | |
146 | return dra & 0x07; | |
147 | } | |
ce783d70 JU |
148 | |
149 | #define I3000_C0DRC0 0x120 /* DRAM Controller Mode 0 (32b) | |
150 | * | |
151 | * 31:30 reserved | |
152 | * 29 Initialization Complete (IC) | |
153 | * 28:11 reserved | |
154 | * 10:8 Refresh Mode Select (RMS) | |
155 | * 7 reserved | |
156 | * 6:4 Mode Select (SMS) | |
157 | * 3:2 reserved | |
158 | * 1:0 DRAM Type (DT) | |
159 | */ | |
160 | ||
161 | #define I3000_C0DRC1 0x124 /* DRAM Controller Mode 1 (32b) | |
162 | * | |
163 | * 31 Enhanced Addressing Enable (ENHADE) | |
164 | * 30:0 reserved | |
165 | */ | |
535c6a53 | 166 | |
535c6a53 JU |
167 | enum i3000p_chips { |
168 | I3000 = 0, | |
169 | }; | |
170 | ||
171 | struct i3000_dev_info { | |
172 | const char *ctl_name; | |
173 | }; | |
174 | ||
175 | struct i3000_error_info { | |
176 | u16 errsts; | |
177 | u8 derrsyn; | |
178 | u8 edeap; | |
179 | u32 deap; | |
180 | u16 errsts2; | |
181 | }; | |
182 | ||
183 | static const struct i3000_dev_info i3000_devs[] = { | |
184 | [I3000] = { | |
052dfb45 | 185 | .ctl_name = "i3000"}, |
535c6a53 JU |
186 | }; |
187 | ||
f044091c | 188 | static struct pci_dev *mci_pdev; |
535c6a53 | 189 | static int i3000_registered = 1; |
456a2f95 | 190 | static struct edac_pci_ctl_info *i3000_pci; |
535c6a53 JU |
191 | |
192 | static void i3000_get_error_info(struct mem_ctl_info *mci, | |
36b8289e | 193 | struct i3000_error_info *info) |
535c6a53 JU |
194 | { |
195 | struct pci_dev *pdev; | |
196 | ||
fd687502 | 197 | pdev = to_pci_dev(mci->pdev); |
535c6a53 JU |
198 | |
199 | /* | |
200 | * This is a mess because there is no atomic way to read all the | |
201 | * registers at once and the registers can transition from CE being | |
202 | * overwritten by UE. | |
203 | */ | |
204 | pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts); | |
205 | if (!(info->errsts & I3000_ERRSTS_BITS)) | |
206 | return; | |
207 | pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap); | |
208 | pci_read_config_dword(pdev, I3000_DEAP, &info->deap); | |
209 | pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn); | |
210 | pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts2); | |
211 | ||
212 | /* | |
213 | * If the error is the same for both reads then the first set | |
214 | * of reads is valid. If there is a change then there is a CE | |
215 | * with no info and the second set of reads is valid and | |
216 | * should be UE info. | |
217 | */ | |
218 | if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) { | |
36b8289e DJ |
219 | pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap); |
220 | pci_read_config_dword(pdev, I3000_DEAP, &info->deap); | |
221 | pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn); | |
535c6a53 JU |
222 | } |
223 | ||
ce783d70 JU |
224 | /* |
225 | * Clear any error bits. | |
535c6a53 JU |
226 | * (Yes, we really clear bits by writing 1 to them.) |
227 | */ | |
36b8289e DJ |
228 | pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS, |
229 | I3000_ERRSTS_BITS); | |
535c6a53 JU |
230 | } |
231 | ||
232 | static int i3000_process_error_info(struct mem_ctl_info *mci, | |
052dfb45 DT |
233 | struct i3000_error_info *info, |
234 | int handle_errors) | |
535c6a53 | 235 | { |
4d2b165e JU |
236 | int row, multi_chan, channel; |
237 | unsigned long pfn, offset; | |
535c6a53 | 238 | |
de3910eb | 239 | multi_chan = mci->csrows[0]->nr_channels - 1; |
535c6a53 JU |
240 | |
241 | if (!(info->errsts & I3000_ERRSTS_BITS)) | |
242 | return 0; | |
243 | ||
244 | if (!handle_errors) | |
245 | return 1; | |
246 | ||
247 | if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) { | |
9eb07a7f | 248 | edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1, 0, 0, 0, |
884906f1 | 249 | -1, -1, -1, |
03f7eae8 | 250 | "UE overwrote CE", ""); |
535c6a53 JU |
251 | info->errsts = info->errsts2; |
252 | } | |
253 | ||
4d2b165e JU |
254 | pfn = deap_pfn(info->edeap, info->deap); |
255 | offset = deap_offset(info->deap); | |
256 | channel = deap_channel(info->deap); | |
535c6a53 JU |
257 | |
258 | row = edac_mc_find_csrow_by_page(mci, pfn); | |
259 | ||
260 | if (info->errsts & I3000_ERRSTS_UE) | |
9eb07a7f | 261 | edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1, |
884906f1 MCC |
262 | pfn, offset, 0, |
263 | row, -1, -1, | |
03f7eae8 | 264 | "i3000 UE", ""); |
535c6a53 | 265 | else |
9eb07a7f | 266 | edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, |
884906f1 MCC |
267 | pfn, offset, info->derrsyn, |
268 | row, multi_chan ? channel : 0, -1, | |
03f7eae8 | 269 | "i3000 CE", ""); |
535c6a53 JU |
270 | |
271 | return 1; | |
272 | } | |
273 | ||
274 | static void i3000_check(struct mem_ctl_info *mci) | |
275 | { | |
276 | struct i3000_error_info info; | |
277 | ||
956b9ba1 | 278 | edac_dbg(1, "MC%d\n", mci->mc_idx); |
535c6a53 JU |
279 | i3000_get_error_info(mci, &info); |
280 | i3000_process_error_info(mci, &info, 1); | |
281 | } | |
282 | ||
283 | static int i3000_is_interleaved(const unsigned char *c0dra, | |
284 | const unsigned char *c1dra, | |
285 | const unsigned char *c0drb, | |
286 | const unsigned char *c1drb) | |
287 | { | |
288 | int i; | |
289 | ||
ce783d70 JU |
290 | /* |
291 | * If the channels aren't populated identically then | |
535c6a53 JU |
292 | * we're not interleaved. |
293 | */ | |
294 | for (i = 0; i < I3000_RANKS_PER_CHANNEL / 2; i++) | |
4d2b165e JU |
295 | if (odd_rank_attrib(c0dra[i]) != odd_rank_attrib(c1dra[i]) || |
296 | even_rank_attrib(c0dra[i]) != | |
297 | even_rank_attrib(c1dra[i])) | |
535c6a53 JU |
298 | return 0; |
299 | ||
ce783d70 JU |
300 | /* |
301 | * If the rank boundaries for the two channels are different | |
535c6a53 JU |
302 | * then we're not interleaved. |
303 | */ | |
304 | for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++) | |
305 | if (c0drb[i] != c1drb[i]) | |
306 | return 0; | |
307 | ||
308 | return 1; | |
309 | } | |
310 | ||
311 | static int i3000_probe1(struct pci_dev *pdev, int dev_idx) | |
312 | { | |
313 | int rc; | |
084a4fcc | 314 | int i, j; |
535c6a53 | 315 | struct mem_ctl_info *mci = NULL; |
884906f1 | 316 | struct edac_mc_layer layers[2]; |
a895bf8b | 317 | unsigned long last_cumul_size, nr_pages; |
535c6a53 JU |
318 | int interleaved, nr_channels; |
319 | unsigned char dra[I3000_RANKS / 2], drb[I3000_RANKS]; | |
320 | unsigned char *c0dra = dra, *c1dra = &dra[I3000_RANKS_PER_CHANNEL / 2]; | |
321 | unsigned char *c0drb = drb, *c1drb = &drb[I3000_RANKS_PER_CHANNEL]; | |
322 | unsigned long mchbar; | |
0bd8496b | 323 | void __iomem *window; |
535c6a53 | 324 | |
956b9ba1 | 325 | edac_dbg(0, "MC:\n"); |
535c6a53 | 326 | |
36b8289e | 327 | pci_read_config_dword(pdev, I3000_MCHBAR, (u32 *) & mchbar); |
535c6a53 JU |
328 | mchbar &= I3000_MCHBAR_MASK; |
329 | window = ioremap_nocache(mchbar, I3000_MMR_WINDOW_SIZE); | |
330 | if (!window) { | |
36b8289e | 331 | printk(KERN_ERR "i3000: cannot map mmio space at 0x%lx\n", |
052dfb45 | 332 | mchbar); |
535c6a53 JU |
333 | return -ENODEV; |
334 | } | |
335 | ||
36b8289e DJ |
336 | c0dra[0] = readb(window + I3000_C0DRA + 0); /* ranks 0,1 */ |
337 | c0dra[1] = readb(window + I3000_C0DRA + 1); /* ranks 2,3 */ | |
338 | c1dra[0] = readb(window + I3000_C1DRA + 0); /* ranks 0,1 */ | |
339 | c1dra[1] = readb(window + I3000_C1DRA + 1); /* ranks 2,3 */ | |
535c6a53 JU |
340 | |
341 | for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++) { | |
342 | c0drb[i] = readb(window + I3000_C0DRB + i); | |
343 | c1drb[i] = readb(window + I3000_C1DRB + i); | |
344 | } | |
345 | ||
346 | iounmap(window); | |
347 | ||
ce783d70 JU |
348 | /* |
349 | * Figure out how many channels we have. | |
535c6a53 JU |
350 | * |
351 | * If we have what the datasheet calls "asymmetric channels" | |
352 | * (essentially the same as what was called "virtual single | |
353 | * channel mode" in the i82875) then it's a single channel as | |
354 | * far as EDAC is concerned. | |
355 | */ | |
356 | interleaved = i3000_is_interleaved(c0dra, c1dra, c0drb, c1drb); | |
357 | nr_channels = interleaved ? 2 : 1; | |
884906f1 MCC |
358 | |
359 | layers[0].type = EDAC_MC_LAYER_CHIP_SELECT; | |
360 | layers[0].size = I3000_RANKS / nr_channels; | |
361 | layers[0].is_virt_csrow = true; | |
362 | layers[1].type = EDAC_MC_LAYER_CHANNEL; | |
363 | layers[1].size = nr_channels; | |
364 | layers[1].is_virt_csrow = false; | |
ca0907b9 | 365 | mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, 0); |
535c6a53 JU |
366 | if (!mci) |
367 | return -ENOMEM; | |
368 | ||
956b9ba1 | 369 | edac_dbg(3, "MC: init mci\n"); |
535c6a53 | 370 | |
fd687502 | 371 | mci->pdev = &pdev->dev; |
535c6a53 JU |
372 | mci->mtype_cap = MEM_FLAG_DDR2; |
373 | ||
374 | mci->edac_ctl_cap = EDAC_FLAG_SECDED; | |
375 | mci->edac_cap = EDAC_FLAG_SECDED; | |
376 | ||
377 | mci->mod_name = EDAC_MOD_STR; | |
378 | mci->mod_ver = I3000_REVISION; | |
379 | mci->ctl_name = i3000_devs[dev_idx].ctl_name; | |
380 | mci->dev_name = pci_name(pdev); | |
381 | mci->edac_check = i3000_check; | |
382 | mci->ctl_page_to_phys = NULL; | |
383 | ||
384 | /* | |
385 | * The dram rank boundary (DRB) reg values are boundary addresses | |
386 | * for each DRAM rank with a granularity of 32MB. DRB regs are | |
387 | * cumulative; the last one will contain the total memory | |
388 | * contained in all ranks. | |
389 | * | |
390 | * If we're in interleaved mode then we're only walking through | |
391 | * the ranks of controller 0, so we double all the values we see. | |
392 | */ | |
393 | for (last_cumul_size = i = 0; i < mci->nr_csrows; i++) { | |
394 | u8 value; | |
395 | u32 cumul_size; | |
de3910eb | 396 | struct csrow_info *csrow = mci->csrows[i]; |
535c6a53 JU |
397 | |
398 | value = drb[i]; | |
399 | cumul_size = value << (I3000_DRB_SHIFT - PAGE_SHIFT); | |
400 | if (interleaved) | |
401 | cumul_size <<= 1; | |
956b9ba1 | 402 | edac_dbg(3, "MC: (%d) cumul_size 0x%x\n", i, cumul_size); |
084a4fcc | 403 | if (cumul_size == last_cumul_size) |
535c6a53 | 404 | continue; |
535c6a53 JU |
405 | |
406 | csrow->first_page = last_cumul_size; | |
407 | csrow->last_page = cumul_size - 1; | |
a895bf8b | 408 | nr_pages = cumul_size - last_cumul_size; |
535c6a53 | 409 | last_cumul_size = cumul_size; |
084a4fcc MCC |
410 | |
411 | for (j = 0; j < nr_channels; j++) { | |
de3910eb | 412 | struct dimm_info *dimm = csrow->channels[j]->dimm; |
a895bf8b MCC |
413 | |
414 | dimm->nr_pages = nr_pages / nr_channels; | |
084a4fcc MCC |
415 | dimm->grain = I3000_DEAP_GRAIN; |
416 | dimm->mtype = MEM_DDR2; | |
417 | dimm->dtype = DEV_UNKNOWN; | |
418 | dimm->edac_mode = EDAC_UNKNOWN; | |
419 | } | |
535c6a53 JU |
420 | } |
421 | ||
ce783d70 JU |
422 | /* |
423 | * Clear any error bits. | |
535c6a53 JU |
424 | * (Yes, we really clear bits by writing 1 to them.) |
425 | */ | |
36b8289e DJ |
426 | pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS, |
427 | I3000_ERRSTS_BITS); | |
535c6a53 JU |
428 | |
429 | rc = -ENODEV; | |
b8f6f975 | 430 | if (edac_mc_add_mc(mci)) { |
956b9ba1 | 431 | edac_dbg(3, "MC: failed edac_mc_add_mc()\n"); |
535c6a53 JU |
432 | goto fail; |
433 | } | |
434 | ||
456a2f95 DJ |
435 | /* allocating generic PCI control info */ |
436 | i3000_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR); | |
437 | if (!i3000_pci) { | |
438 | printk(KERN_WARNING | |
439 | "%s(): Unable to create PCI control\n", | |
440 | __func__); | |
441 | printk(KERN_WARNING | |
442 | "%s(): PCI error report via EDAC not setup\n", | |
443 | __func__); | |
444 | } | |
445 | ||
535c6a53 | 446 | /* get this far and it's successful */ |
956b9ba1 | 447 | edac_dbg(3, "MC: success\n"); |
535c6a53 JU |
448 | return 0; |
449 | ||
ce783d70 | 450 | fail: |
535c6a53 JU |
451 | if (mci) |
452 | edac_mc_free(mci); | |
453 | ||
454 | return rc; | |
455 | } | |
456 | ||
457 | /* returns count (>= 0), or negative on error */ | |
458 | static int __devinit i3000_init_one(struct pci_dev *pdev, | |
052dfb45 | 459 | const struct pci_device_id *ent) |
535c6a53 JU |
460 | { |
461 | int rc; | |
462 | ||
956b9ba1 | 463 | edac_dbg(0, "MC:\n"); |
535c6a53 JU |
464 | |
465 | if (pci_enable_device(pdev) < 0) | |
466 | return -EIO; | |
467 | ||
468 | rc = i3000_probe1(pdev, ent->driver_data); | |
ce783d70 | 469 | if (!mci_pdev) |
535c6a53 JU |
470 | mci_pdev = pci_dev_get(pdev); |
471 | ||
472 | return rc; | |
473 | } | |
474 | ||
475 | static void __devexit i3000_remove_one(struct pci_dev *pdev) | |
476 | { | |
477 | struct mem_ctl_info *mci; | |
478 | ||
956b9ba1 | 479 | edac_dbg(0, "\n"); |
535c6a53 | 480 | |
456a2f95 DJ |
481 | if (i3000_pci) |
482 | edac_pci_release_generic_ctl(i3000_pci); | |
483 | ||
ce783d70 JU |
484 | mci = edac_mc_del_mc(&pdev->dev); |
485 | if (!mci) | |
535c6a53 JU |
486 | return; |
487 | ||
488 | edac_mc_free(mci); | |
489 | } | |
490 | ||
36c46f31 | 491 | static DEFINE_PCI_DEVICE_TABLE(i3000_pci_tbl) = { |
535c6a53 | 492 | { |
36b8289e DJ |
493 | PCI_VEND_DEV(INTEL, 3000_HB), PCI_ANY_ID, PCI_ANY_ID, 0, 0, |
494 | I3000}, | |
535c6a53 | 495 | { |
36b8289e DJ |
496 | 0, |
497 | } /* 0 terminated list. */ | |
535c6a53 JU |
498 | }; |
499 | ||
500 | MODULE_DEVICE_TABLE(pci, i3000_pci_tbl); | |
501 | ||
502 | static struct pci_driver i3000_driver = { | |
503 | .name = EDAC_MOD_STR, | |
504 | .probe = i3000_init_one, | |
505 | .remove = __devexit_p(i3000_remove_one), | |
506 | .id_table = i3000_pci_tbl, | |
507 | }; | |
508 | ||
509 | static int __init i3000_init(void) | |
510 | { | |
511 | int pci_rc; | |
512 | ||
956b9ba1 | 513 | edac_dbg(3, "MC:\n"); |
c3c52bce HM |
514 | |
515 | /* Ensure that the OPSTATE is set correctly for POLL or NMI */ | |
516 | opstate_init(); | |
517 | ||
535c6a53 JU |
518 | pci_rc = pci_register_driver(&i3000_driver); |
519 | if (pci_rc < 0) | |
520 | goto fail0; | |
521 | ||
ce783d70 | 522 | if (!mci_pdev) { |
535c6a53 JU |
523 | i3000_registered = 0; |
524 | mci_pdev = pci_get_device(PCI_VENDOR_ID_INTEL, | |
052dfb45 | 525 | PCI_DEVICE_ID_INTEL_3000_HB, NULL); |
535c6a53 | 526 | if (!mci_pdev) { |
956b9ba1 | 527 | edac_dbg(0, "i3000 pci_get_device fail\n"); |
535c6a53 JU |
528 | pci_rc = -ENODEV; |
529 | goto fail1; | |
530 | } | |
531 | ||
532 | pci_rc = i3000_init_one(mci_pdev, i3000_pci_tbl); | |
533 | if (pci_rc < 0) { | |
956b9ba1 | 534 | edac_dbg(0, "i3000 init fail\n"); |
535c6a53 JU |
535 | pci_rc = -ENODEV; |
536 | goto fail1; | |
537 | } | |
538 | } | |
539 | ||
540 | return 0; | |
541 | ||
052dfb45 | 542 | fail1: |
535c6a53 JU |
543 | pci_unregister_driver(&i3000_driver); |
544 | ||
052dfb45 | 545 | fail0: |
535c6a53 JU |
546 | if (mci_pdev) |
547 | pci_dev_put(mci_pdev); | |
548 | ||
549 | return pci_rc; | |
550 | } | |
551 | ||
552 | static void __exit i3000_exit(void) | |
553 | { | |
956b9ba1 | 554 | edac_dbg(3, "MC:\n"); |
535c6a53 JU |
555 | |
556 | pci_unregister_driver(&i3000_driver); | |
557 | if (!i3000_registered) { | |
558 | i3000_remove_one(mci_pdev); | |
559 | pci_dev_put(mci_pdev); | |
560 | } | |
561 | } | |
562 | ||
563 | module_init(i3000_init); | |
564 | module_exit(i3000_exit); | |
565 | ||
566 | MODULE_LICENSE("GPL"); | |
567 | MODULE_AUTHOR("Akamai Technologies Arthur Ulfeldt/Jason Uhlenkott"); | |
568 | MODULE_DESCRIPTION("MC support for Intel 3000 memory hub controllers"); | |
7ed31e0f HM |
569 | |
570 | module_param(edac_op_state, int, 0444); | |
571 | MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); |