drivers/edac: Lindent r82600
[deliverable/linux.git] / drivers / edac / i3000_edac.c
CommitLineData
535c6a53
JU
1/*
2 * Intel 3000/3010 Memory Controller kernel module
3 * Copyright (C) 2007 Akamai Technologies, Inc.
4 * Shamelessly copied from:
5 * Intel D82875P Memory Controller kernel module
6 * (C) 2003 Linux Networx (http://lnxi.com)
7 *
8 * This file may be distributed under the terms of the
9 * GNU General Public License.
10 */
11
12#include <linux/module.h>
13#include <linux/init.h>
14#include <linux/pci.h>
15#include <linux/pci_ids.h>
16#include <linux/slab.h>
17#include "edac_core.h"
18
19#define I3000_REVISION "1.1"
20
21#define EDAC_MOD_STR "i3000_edac"
22
23#define I3000_RANKS 8
24#define I3000_RANKS_PER_CHANNEL 4
25#define I3000_CHANNELS 2
26
27/* Intel 3000 register addresses - device 0 function 0 - DRAM Controller */
28
29#define I3000_MCHBAR 0x44 /* MCH Memory Mapped Register BAR */
30#define I3000_MCHBAR_MASK 0xffffc000
31#define I3000_MMR_WINDOW_SIZE 16384
32
33#define I3000_EDEAP 0x70 /* Extended DRAM Error Address Pointer (8b)
34 *
35 * 7:1 reserved
36 * 0 bit 32 of address
37 */
38#define I3000_DEAP 0x58 /* DRAM Error Address Pointer (32b)
39 *
40 * 31:7 address
41 * 6:1 reserved
42 * 0 Error channel 0/1
43 */
44#define I3000_DEAP_GRAIN (1 << 7)
45#define I3000_DEAP_PFN(edeap, deap) ((((edeap) & 1) << (32 - PAGE_SHIFT)) | \
46 ((deap) >> PAGE_SHIFT))
47#define I3000_DEAP_OFFSET(deap) ((deap) & ~(I3000_DEAP_GRAIN-1) & ~PAGE_MASK)
48#define I3000_DEAP_CHANNEL(deap) ((deap) & 1)
49
50#define I3000_DERRSYN 0x5c /* DRAM Error Syndrome (8b)
51 *
52 * 7:0 DRAM ECC Syndrome
53 */
54
55#define I3000_ERRSTS 0xc8 /* Error Status Register (16b)
56 *
57 * 15:12 reserved
58 * 11 MCH Thermal Sensor Event for SMI/SCI/SERR
59 * 10 reserved
60 * 9 LOCK to non-DRAM Memory Flag (LCKF)
61 * 8 Received Refresh Timeout Flag (RRTOF)
62 * 7:2 reserved
63 * 1 Multiple-bit DRAM ECC Error Flag (DMERR)
64 * 0 Single-bit DRAM ECC Error Flag (DSERR)
65 */
66#define I3000_ERRSTS_BITS 0x0b03 /* bits which indicate errors */
67#define I3000_ERRSTS_UE 0x0002
68#define I3000_ERRSTS_CE 0x0001
69
70#define I3000_ERRCMD 0xca /* Error Command (16b)
71 *
72 * 15:12 reserved
73 * 11 SERR on MCH Thermal Sensor Event (TSESERR)
74 * 10 reserved
75 * 9 SERR on LOCK to non-DRAM Memory (LCKERR)
76 * 8 SERR on DRAM Refresh Timeout (DRTOERR)
77 * 7:2 reserved
78 * 1 SERR Multiple-Bit DRAM ECC Error (DMERR)
79 * 0 SERR on Single-Bit ECC Error (DSERR)
80 */
81
82/* Intel MMIO register space - device 0 function 0 - MMR space */
83
84#define I3000_DRB_SHIFT 25 /* 32MiB grain */
85
86#define I3000_C0DRB 0x100 /* Channel 0 DRAM Rank Boundary (8b x 4)
87 *
88 * 7:0 Channel 0 DRAM Rank Boundary Address
89 */
90#define I3000_C1DRB 0x180 /* Channel 1 DRAM Rank Boundary (8b x 4)
91 *
92 * 7:0 Channel 1 DRAM Rank Boundary Address
93 */
94
95#define I3000_C0DRA 0x108 /* Channel 0 DRAM Rank Attribute (8b x 2)
96 *
97 * 7 reserved
98 * 6:4 DRAM odd Rank Attribute
99 * 3 reserved
100 * 2:0 DRAM even Rank Attribute
101 *
102 * Each attribute defines the page
103 * size of the corresponding rank:
104 * 000: unpopulated
105 * 001: reserved
106 * 010: 4 KB
107 * 011: 8 KB
108 * 100: 16 KB
109 * Others: reserved
110 */
111#define I3000_C1DRA 0x188 /* Channel 1 DRAM Rank Attribute (8b x 2) */
112#define ODD_RANK_ATTRIB(dra) (((dra) & 0x70) >> 4)
113#define EVEN_RANK_ATTRIB(dra) ((dra) & 0x07)
114
115#define I3000_C0DRC0 0x120 /* DRAM Controller Mode 0 (32b)
116 *
117 * 31:30 reserved
118 * 29 Initialization Complete (IC)
119 * 28:11 reserved
120 * 10:8 Refresh Mode Select (RMS)
121 * 7 reserved
122 * 6:4 Mode Select (SMS)
123 * 3:2 reserved
124 * 1:0 DRAM Type (DT)
125 */
126
127#define I3000_C0DRC1 0x124 /* DRAM Controller Mode 1 (32b)
128 *
129 * 31 Enhanced Addressing Enable (ENHADE)
130 * 30:0 reserved
131 */
132
535c6a53
JU
133enum i3000p_chips {
134 I3000 = 0,
135};
136
137struct i3000_dev_info {
138 const char *ctl_name;
139};
140
141struct i3000_error_info {
142 u16 errsts;
143 u8 derrsyn;
144 u8 edeap;
145 u32 deap;
146 u16 errsts2;
147};
148
149static const struct i3000_dev_info i3000_devs[] = {
150 [I3000] = {
36b8289e 151 .ctl_name = "i3000"},
535c6a53
JU
152};
153
154static struct pci_dev *mci_pdev = NULL;
155static int i3000_registered = 1;
156
157static void i3000_get_error_info(struct mem_ctl_info *mci,
36b8289e 158 struct i3000_error_info *info)
535c6a53
JU
159{
160 struct pci_dev *pdev;
161
162 pdev = to_pci_dev(mci->dev);
163
164 /*
165 * This is a mess because there is no atomic way to read all the
166 * registers at once and the registers can transition from CE being
167 * overwritten by UE.
168 */
169 pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts);
170 if (!(info->errsts & I3000_ERRSTS_BITS))
171 return;
172 pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap);
173 pci_read_config_dword(pdev, I3000_DEAP, &info->deap);
174 pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn);
175 pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts2);
176
177 /*
178 * If the error is the same for both reads then the first set
179 * of reads is valid. If there is a change then there is a CE
180 * with no info and the second set of reads is valid and
181 * should be UE info.
182 */
183 if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) {
36b8289e
DJ
184 pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap);
185 pci_read_config_dword(pdev, I3000_DEAP, &info->deap);
186 pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn);
535c6a53
JU
187 }
188
189 /* Clear any error bits.
190 * (Yes, we really clear bits by writing 1 to them.)
191 */
36b8289e
DJ
192 pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS,
193 I3000_ERRSTS_BITS);
535c6a53
JU
194}
195
196static int i3000_process_error_info(struct mem_ctl_info *mci,
36b8289e
DJ
197 struct i3000_error_info *info,
198 int handle_errors)
535c6a53
JU
199{
200 int row, multi_chan;
201 int pfn, offset, channel;
202
203 multi_chan = mci->csrows[0].nr_channels - 1;
204
205 if (!(info->errsts & I3000_ERRSTS_BITS))
206 return 0;
207
208 if (!handle_errors)
209 return 1;
210
211 if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) {
212 edac_mc_handle_ce_no_info(mci, "UE overwrote CE");
213 info->errsts = info->errsts2;
214 }
215
216 pfn = I3000_DEAP_PFN(info->edeap, info->deap);
217 offset = I3000_DEAP_OFFSET(info->deap);
218 channel = I3000_DEAP_CHANNEL(info->deap);
219
220 row = edac_mc_find_csrow_by_page(mci, pfn);
221
222 if (info->errsts & I3000_ERRSTS_UE)
223 edac_mc_handle_ue(mci, pfn, offset, row, "i3000 UE");
224 else
225 edac_mc_handle_ce(mci, pfn, offset, info->derrsyn, row,
36b8289e 226 multi_chan ? channel : 0, "i3000 CE");
535c6a53
JU
227
228 return 1;
229}
230
231static void i3000_check(struct mem_ctl_info *mci)
232{
233 struct i3000_error_info info;
234
235 debugf1("MC%d: %s()\n", mci->mc_idx, __func__);
236 i3000_get_error_info(mci, &info);
237 i3000_process_error_info(mci, &info, 1);
238}
239
240static int i3000_is_interleaved(const unsigned char *c0dra,
241 const unsigned char *c1dra,
242 const unsigned char *c0drb,
243 const unsigned char *c1drb)
244{
245 int i;
246
247 /* If the channels aren't populated identically then
248 * we're not interleaved.
249 */
250 for (i = 0; i < I3000_RANKS_PER_CHANNEL / 2; i++)
251 if (ODD_RANK_ATTRIB(c0dra[i]) != ODD_RANK_ATTRIB(c1dra[i]) ||
252 EVEN_RANK_ATTRIB(c0dra[i]) != EVEN_RANK_ATTRIB(c1dra[i]))
253 return 0;
254
255 /* If the rank boundaries for the two channels are different
256 * then we're not interleaved.
257 */
258 for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++)
259 if (c0drb[i] != c1drb[i])
260 return 0;
261
262 return 1;
263}
264
265static int i3000_probe1(struct pci_dev *pdev, int dev_idx)
266{
267 int rc;
268 int i;
269 struct mem_ctl_info *mci = NULL;
270 unsigned long last_cumul_size;
271 int interleaved, nr_channels;
272 unsigned char dra[I3000_RANKS / 2], drb[I3000_RANKS];
273 unsigned char *c0dra = dra, *c1dra = &dra[I3000_RANKS_PER_CHANNEL / 2];
274 unsigned char *c0drb = drb, *c1drb = &drb[I3000_RANKS_PER_CHANNEL];
275 unsigned long mchbar;
276 void *window;
277
278 debugf0("MC: %s()\n", __func__);
279
36b8289e 280 pci_read_config_dword(pdev, I3000_MCHBAR, (u32 *) & mchbar);
535c6a53
JU
281 mchbar &= I3000_MCHBAR_MASK;
282 window = ioremap_nocache(mchbar, I3000_MMR_WINDOW_SIZE);
283 if (!window) {
36b8289e
DJ
284 printk(KERN_ERR "i3000: cannot map mmio space at 0x%lx\n",
285 mchbar);
535c6a53
JU
286 return -ENODEV;
287 }
288
36b8289e
DJ
289 c0dra[0] = readb(window + I3000_C0DRA + 0); /* ranks 0,1 */
290 c0dra[1] = readb(window + I3000_C0DRA + 1); /* ranks 2,3 */
291 c1dra[0] = readb(window + I3000_C1DRA + 0); /* ranks 0,1 */
292 c1dra[1] = readb(window + I3000_C1DRA + 1); /* ranks 2,3 */
535c6a53
JU
293
294 for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++) {
295 c0drb[i] = readb(window + I3000_C0DRB + i);
296 c1drb[i] = readb(window + I3000_C1DRB + i);
297 }
298
299 iounmap(window);
300
301 /* Figure out how many channels we have.
302 *
303 * If we have what the datasheet calls "asymmetric channels"
304 * (essentially the same as what was called "virtual single
305 * channel mode" in the i82875) then it's a single channel as
306 * far as EDAC is concerned.
307 */
308 interleaved = i3000_is_interleaved(c0dra, c1dra, c0drb, c1drb);
309 nr_channels = interleaved ? 2 : 1;
310 mci = edac_mc_alloc(0, I3000_RANKS / nr_channels, nr_channels);
311 if (!mci)
312 return -ENOMEM;
313
314 debugf3("MC: %s(): init mci\n", __func__);
315
316 mci->dev = &pdev->dev;
317 mci->mtype_cap = MEM_FLAG_DDR2;
318
319 mci->edac_ctl_cap = EDAC_FLAG_SECDED;
320 mci->edac_cap = EDAC_FLAG_SECDED;
321
322 mci->mod_name = EDAC_MOD_STR;
323 mci->mod_ver = I3000_REVISION;
324 mci->ctl_name = i3000_devs[dev_idx].ctl_name;
325 mci->dev_name = pci_name(pdev);
326 mci->edac_check = i3000_check;
327 mci->ctl_page_to_phys = NULL;
328
329 /*
330 * The dram rank boundary (DRB) reg values are boundary addresses
331 * for each DRAM rank with a granularity of 32MB. DRB regs are
332 * cumulative; the last one will contain the total memory
333 * contained in all ranks.
334 *
335 * If we're in interleaved mode then we're only walking through
336 * the ranks of controller 0, so we double all the values we see.
337 */
338 for (last_cumul_size = i = 0; i < mci->nr_csrows; i++) {
339 u8 value;
340 u32 cumul_size;
341 struct csrow_info *csrow = &mci->csrows[i];
342
343 value = drb[i];
344 cumul_size = value << (I3000_DRB_SHIFT - PAGE_SHIFT);
345 if (interleaved)
346 cumul_size <<= 1;
347 debugf3("MC: %s(): (%d) cumul_size 0x%x\n",
348 __func__, i, cumul_size);
349 if (cumul_size == last_cumul_size) {
350 csrow->mtype = MEM_EMPTY;
351 continue;
352 }
353
354 csrow->first_page = last_cumul_size;
355 csrow->last_page = cumul_size - 1;
356 csrow->nr_pages = cumul_size - last_cumul_size;
357 last_cumul_size = cumul_size;
358 csrow->grain = I3000_DEAP_GRAIN;
359 csrow->mtype = MEM_DDR2;
360 csrow->dtype = DEV_UNKNOWN;
361 csrow->edac_mode = EDAC_UNKNOWN;
362 }
363
364 /* Clear any error bits.
365 * (Yes, we really clear bits by writing 1 to them.)
366 */
36b8289e
DJ
367 pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS,
368 I3000_ERRSTS_BITS);
535c6a53
JU
369
370 rc = -ENODEV;
371 if (edac_mc_add_mc(mci, 0)) {
372 debugf3("MC: %s(): failed edac_mc_add_mc()\n", __func__);
373 goto fail;
374 }
375
376 /* get this far and it's successful */
377 debugf3("MC: %s(): success\n", __func__);
378 return 0;
379
380 fail:
381 if (mci)
382 edac_mc_free(mci);
383
384 return rc;
385}
386
387/* returns count (>= 0), or negative on error */
388static int __devinit i3000_init_one(struct pci_dev *pdev,
36b8289e 389 const struct pci_device_id *ent)
535c6a53
JU
390{
391 int rc;
392
393 debugf0("MC: %s()\n", __func__);
394
395 if (pci_enable_device(pdev) < 0)
396 return -EIO;
397
398 rc = i3000_probe1(pdev, ent->driver_data);
399 if (mci_pdev == NULL)
400 mci_pdev = pci_dev_get(pdev);
401
402 return rc;
403}
404
405static void __devexit i3000_remove_one(struct pci_dev *pdev)
406{
407 struct mem_ctl_info *mci;
408
409 debugf0("%s()\n", __func__);
410
411 if ((mci = edac_mc_del_mc(&pdev->dev)) == NULL)
412 return;
413
414 edac_mc_free(mci);
415}
416
417static const struct pci_device_id i3000_pci_tbl[] __devinitdata = {
418 {
36b8289e
DJ
419 PCI_VEND_DEV(INTEL, 3000_HB), PCI_ANY_ID, PCI_ANY_ID, 0, 0,
420 I3000},
535c6a53 421 {
36b8289e
DJ
422 0,
423 } /* 0 terminated list. */
535c6a53
JU
424};
425
426MODULE_DEVICE_TABLE(pci, i3000_pci_tbl);
427
428static struct pci_driver i3000_driver = {
429 .name = EDAC_MOD_STR,
430 .probe = i3000_init_one,
431 .remove = __devexit_p(i3000_remove_one),
432 .id_table = i3000_pci_tbl,
433};
434
435static int __init i3000_init(void)
436{
437 int pci_rc;
438
439 debugf3("MC: %s()\n", __func__);
440 pci_rc = pci_register_driver(&i3000_driver);
441 if (pci_rc < 0)
442 goto fail0;
443
444 if (mci_pdev == NULL) {
445 i3000_registered = 0;
446 mci_pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
447 PCI_DEVICE_ID_INTEL_3000_HB, NULL);
448 if (!mci_pdev) {
449 debugf0("i3000 pci_get_device fail\n");
450 pci_rc = -ENODEV;
451 goto fail1;
452 }
453
454 pci_rc = i3000_init_one(mci_pdev, i3000_pci_tbl);
455 if (pci_rc < 0) {
456 debugf0("i3000 init fail\n");
457 pci_rc = -ENODEV;
458 goto fail1;
459 }
460 }
461
462 return 0;
463
36b8289e 464 fail1:
535c6a53
JU
465 pci_unregister_driver(&i3000_driver);
466
36b8289e 467 fail0:
535c6a53
JU
468 if (mci_pdev)
469 pci_dev_put(mci_pdev);
470
471 return pci_rc;
472}
473
474static void __exit i3000_exit(void)
475{
476 debugf3("MC: %s()\n", __func__);
477
478 pci_unregister_driver(&i3000_driver);
479 if (!i3000_registered) {
480 i3000_remove_one(mci_pdev);
481 pci_dev_put(mci_pdev);
482 }
483}
484
485module_init(i3000_init);
486module_exit(i3000_exit);
487
488MODULE_LICENSE("GPL");
489MODULE_AUTHOR("Akamai Technologies Arthur Ulfeldt/Jason Uhlenkott");
490MODULE_DESCRIPTION("MC support for Intel 3000 memory hub controllers");
This page took 0.043521 seconds and 5 git commands to generate.