usb: dwc3: ep0: trace ep0 TRBs too
[deliverable/linux.git] / drivers / edac / sb_edac.c
CommitLineData
eebf11a0
MCC
1/* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
2 *
3 * This driver supports the memory controllers found on the Intel
4 * processor family Sandy Bridge.
5 *
6 * This file may be distributed under the terms of the
7 * GNU General Public License version 2 only.
8 *
9 * Copyright (c) 2011 by:
37e59f87 10 * Mauro Carvalho Chehab
eebf11a0
MCC
11 */
12
13#include <linux/module.h>
14#include <linux/init.h>
15#include <linux/pci.h>
16#include <linux/pci_ids.h>
17#include <linux/slab.h>
18#include <linux/delay.h>
19#include <linux/edac.h>
20#include <linux/mmzone.h>
eebf11a0
MCC
21#include <linux/smp.h>
22#include <linux/bitmap.h>
5b889e37 23#include <linux/math64.h>
eebf11a0 24#include <asm/processor.h>
3d78c9af 25#include <asm/mce.h>
eebf11a0
MCC
26
27#include "edac_core.h"
28
29/* Static vars */
30static LIST_HEAD(sbridge_edac_list);
31static DEFINE_MUTEX(sbridge_edac_lock);
32static int probed;
33
34/*
35 * Alter this version for the module when modifications are made
36 */
4d715a80 37#define SBRIDGE_REVISION " Ver: 1.1.0 "
eebf11a0
MCC
38#define EDAC_MOD_STR "sbridge_edac"
39
40/*
41 * Debug macros
42 */
43#define sbridge_printk(level, fmt, arg...) \
44 edac_printk(level, "sbridge", fmt, ##arg)
45
46#define sbridge_mc_printk(mci, level, fmt, arg...) \
47 edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
48
49/*
50 * Get a bit field at register value <v>, from bit <lo> to bit <hi>
51 */
52#define GET_BITFIELD(v, lo, hi) \
10ef6b0d 53 (((v) & GENMASK_ULL(hi, lo)) >> (lo))
eebf11a0 54
eebf11a0 55/* Devices 12 Function 6, Offsets 0x80 to 0xcc */
464f1d82 56static const u32 sbridge_dram_rule[] = {
eebf11a0
MCC
57 0x80, 0x88, 0x90, 0x98, 0xa0,
58 0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
59};
eebf11a0 60
4d715a80
AR
61static const u32 ibridge_dram_rule[] = {
62 0x60, 0x68, 0x70, 0x78, 0x80,
63 0x88, 0x90, 0x98, 0xa0, 0xa8,
64 0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
65 0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
66};
eebf11a0
MCC
67
68#define SAD_LIMIT(reg) ((GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff)
69#define DRAM_ATTR(reg) GET_BITFIELD(reg, 2, 3)
70#define INTERLEAVE_MODE(reg) GET_BITFIELD(reg, 1, 1)
71#define DRAM_RULE_ENABLE(reg) GET_BITFIELD(reg, 0, 0)
50d1bb93 72#define A7MODE(reg) GET_BITFIELD(reg, 26, 26)
eebf11a0
MCC
73
74static char *get_dram_attr(u32 reg)
75{
76 switch(DRAM_ATTR(reg)) {
77 case 0:
78 return "DRAM";
79 case 1:
80 return "MMCFG";
81 case 2:
82 return "NXM";
83 default:
84 return "unknown";
85 }
86}
87
ef1ce51e 88static const u32 sbridge_interleave_list[] = {
eebf11a0
MCC
89 0x84, 0x8c, 0x94, 0x9c, 0xa4,
90 0xac, 0xb4, 0xbc, 0xc4, 0xcc,
91};
eebf11a0 92
4d715a80
AR
93static const u32 ibridge_interleave_list[] = {
94 0x64, 0x6c, 0x74, 0x7c, 0x84,
95 0x8c, 0x94, 0x9c, 0xa4, 0xac,
96 0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
97 0xdc, 0xe4, 0xec, 0xf4, 0xfc,
98};
99
cc311991
AR
100struct interleave_pkg {
101 unsigned char start;
102 unsigned char end;
103};
104
105static const struct interleave_pkg sbridge_interleave_pkg[] = {
106 { 0, 2 },
107 { 3, 5 },
108 { 8, 10 },
109 { 11, 13 },
110 { 16, 18 },
111 { 19, 21 },
112 { 24, 26 },
113 { 27, 29 },
114};
115
4d715a80
AR
116static const struct interleave_pkg ibridge_interleave_pkg[] = {
117 { 0, 3 },
118 { 4, 7 },
119 { 8, 11 },
120 { 12, 15 },
121 { 16, 19 },
122 { 20, 23 },
123 { 24, 27 },
124 { 28, 31 },
125};
126
cc311991
AR
127static inline int sad_pkg(const struct interleave_pkg *table, u32 reg,
128 int interleave)
eebf11a0 129{
cc311991
AR
130 return GET_BITFIELD(reg, table[interleave].start,
131 table[interleave].end);
eebf11a0
MCC
132}
133
134/* Devices 12 Function 7 */
135
136#define TOLM 0x80
137#define TOHM 0x84
50d1bb93
AR
138#define HASWELL_TOHM_0 0xd4
139#define HASWELL_TOHM_1 0xd8
eebf11a0
MCC
140
141#define GET_TOLM(reg) ((GET_BITFIELD(reg, 0, 3) << 28) | 0x3ffffff)
142#define GET_TOHM(reg) ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
143
144/* Device 13 Function 6 */
145
146#define SAD_TARGET 0xf0
147
148#define SOURCE_ID(reg) GET_BITFIELD(reg, 9, 11)
149
150#define SAD_CONTROL 0xf4
151
eebf11a0
MCC
152/* Device 14 function 0 */
153
154static const u32 tad_dram_rule[] = {
155 0x40, 0x44, 0x48, 0x4c,
156 0x50, 0x54, 0x58, 0x5c,
157 0x60, 0x64, 0x68, 0x6c,
158};
159#define MAX_TAD ARRAY_SIZE(tad_dram_rule)
160
161#define TAD_LIMIT(reg) ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
162#define TAD_SOCK(reg) GET_BITFIELD(reg, 10, 11)
163#define TAD_CH(reg) GET_BITFIELD(reg, 8, 9)
164#define TAD_TGT3(reg) GET_BITFIELD(reg, 6, 7)
165#define TAD_TGT2(reg) GET_BITFIELD(reg, 4, 5)
166#define TAD_TGT1(reg) GET_BITFIELD(reg, 2, 3)
167#define TAD_TGT0(reg) GET_BITFIELD(reg, 0, 1)
168
169/* Device 15, function 0 */
170
171#define MCMTR 0x7c
172
173#define IS_ECC_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 2, 2)
174#define IS_LOCKSTEP_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 1, 1)
175#define IS_CLOSE_PG(mcmtr) GET_BITFIELD(mcmtr, 0, 0)
176
177/* Device 15, function 1 */
178
179#define RASENABLES 0xac
180#define IS_MIRROR_ENABLED(reg) GET_BITFIELD(reg, 0, 0)
181
182/* Device 15, functions 2-5 */
183
184static const int mtr_regs[] = {
185 0x80, 0x84, 0x88,
186};
187
188#define RANK_DISABLE(mtr) GET_BITFIELD(mtr, 16, 19)
189#define IS_DIMM_PRESENT(mtr) GET_BITFIELD(mtr, 14, 14)
190#define RANK_CNT_BITS(mtr) GET_BITFIELD(mtr, 12, 13)
191#define RANK_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 2, 4)
192#define COL_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 0, 1)
193
194static const u32 tad_ch_nilv_offset[] = {
195 0x90, 0x94, 0x98, 0x9c,
196 0xa0, 0xa4, 0xa8, 0xac,
197 0xb0, 0xb4, 0xb8, 0xbc,
198};
199#define CHN_IDX_OFFSET(reg) GET_BITFIELD(reg, 28, 29)
200#define TAD_OFFSET(reg) (GET_BITFIELD(reg, 6, 25) << 26)
201
202static const u32 rir_way_limit[] = {
203 0x108, 0x10c, 0x110, 0x114, 0x118,
204};
205#define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
206
207#define IS_RIR_VALID(reg) GET_BITFIELD(reg, 31, 31)
208#define RIR_WAY(reg) GET_BITFIELD(reg, 28, 29)
eebf11a0
MCC
209
210#define MAX_RIR_WAY 8
211
212static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
213 { 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
214 { 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
215 { 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
216 { 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
217 { 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
218};
219
220#define RIR_RNK_TGT(reg) GET_BITFIELD(reg, 16, 19)
221#define RIR_OFFSET(reg) GET_BITFIELD(reg, 2, 14)
222
223/* Device 16, functions 2-7 */
224
225/*
226 * FIXME: Implement the error count reads directly
227 */
228
229static const u32 correrrcnt[] = {
230 0x104, 0x108, 0x10c, 0x110,
231};
232
233#define RANK_ODD_OV(reg) GET_BITFIELD(reg, 31, 31)
234#define RANK_ODD_ERR_CNT(reg) GET_BITFIELD(reg, 16, 30)
235#define RANK_EVEN_OV(reg) GET_BITFIELD(reg, 15, 15)
236#define RANK_EVEN_ERR_CNT(reg) GET_BITFIELD(reg, 0, 14)
237
238static const u32 correrrthrsld[] = {
239 0x11c, 0x120, 0x124, 0x128,
240};
241
242#define RANK_ODD_ERR_THRSLD(reg) GET_BITFIELD(reg, 16, 30)
243#define RANK_EVEN_ERR_THRSLD(reg) GET_BITFIELD(reg, 0, 14)
244
245
246/* Device 17, function 0 */
247
ef1e8d03 248#define SB_RANK_CFG_A 0x0328
eebf11a0 249
4d715a80 250#define IB_RANK_CFG_A 0x0320
eebf11a0 251
eebf11a0
MCC
252/*
253 * sbridge structs
254 */
255
351fc4a9
SJ
256#define NUM_CHANNELS 4
257#define MAX_DIMMS 3 /* Max DIMMS per channel */
258#define CHANNEL_UNSPECIFIED 0xf /* Intel IA32 SDM 15-14 */
eebf11a0 259
4d715a80
AR
260enum type {
261 SANDY_BRIDGE,
262 IVY_BRIDGE,
50d1bb93 263 HASWELL,
4d715a80
AR
264};
265
fb79a509 266struct sbridge_pvt;
eebf11a0 267struct sbridge_info {
4d715a80 268 enum type type;
464f1d82
AR
269 u32 mcmtr;
270 u32 rankcfgr;
271 u64 (*get_tolm)(struct sbridge_pvt *pvt);
272 u64 (*get_tohm)(struct sbridge_pvt *pvt);
b976bcf2 273 u64 (*rir_limit)(u32 reg);
464f1d82 274 const u32 *dram_rule;
ef1ce51e 275 const u32 *interleave_list;
cc311991 276 const struct interleave_pkg *interleave_pkg;
464f1d82 277 u8 max_sad;
ef1ce51e 278 u8 max_interleave;
f14d6892 279 u8 (*get_node_id)(struct sbridge_pvt *pvt);
9e375446 280 enum mem_type (*get_memory_type)(struct sbridge_pvt *pvt);
50d1bb93 281 struct pci_dev *pci_vtd;
eebf11a0
MCC
282};
283
284struct sbridge_channel {
285 u32 ranks;
286 u32 dimms;
287};
288
289struct pci_id_descr {
c41afdca 290 int dev_id;
eebf11a0
MCC
291 int optional;
292};
293
294struct pci_id_table {
295 const struct pci_id_descr *descr;
296 int n_devs;
297};
298
299struct sbridge_dev {
300 struct list_head list;
301 u8 bus, mc;
302 u8 node_id, source_id;
303 struct pci_dev **pdev;
304 int n_devs;
305 struct mem_ctl_info *mci;
306};
307
308struct sbridge_pvt {
309 struct pci_dev *pci_ta, *pci_ddrio, *pci_ras;
4d715a80
AR
310 struct pci_dev *pci_sad0, *pci_sad1;
311 struct pci_dev *pci_ha0, *pci_ha1;
312 struct pci_dev *pci_br0, *pci_br1;
50d1bb93 313 struct pci_dev *pci_ha1_ta;
eebf11a0
MCC
314 struct pci_dev *pci_tad[NUM_CHANNELS];
315
316 struct sbridge_dev *sbridge_dev;
317
318 struct sbridge_info info;
319 struct sbridge_channel channel[NUM_CHANNELS];
320
eebf11a0
MCC
321 /* Memory type detection */
322 bool is_mirrored, is_lockstep, is_close_pg;
323
eebf11a0
MCC
324 /* Fifo double buffers */
325 struct mce mce_entry[MCE_LOG_LEN];
326 struct mce mce_outentry[MCE_LOG_LEN];
327
328 /* Fifo in/out counters */
329 unsigned mce_in, mce_out;
330
331 /* Count indicator to show errors not got */
332 unsigned mce_overrun;
333
334 /* Memory description */
335 u64 tolm, tohm;
336};
337
dbc954dd
AR
338#define PCI_DESCR(device_id, opt) \
339 .dev_id = (device_id), \
de4772c6 340 .optional = opt
eebf11a0
MCC
341
342static const struct pci_id_descr pci_dev_descr_sbridge[] = {
343 /* Processor Home Agent */
dbc954dd 344 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0, 0) },
eebf11a0
MCC
345
346 /* Memory controller */
dbc954dd
AR
347 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA, 0) },
348 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS, 0) },
349 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0, 0) },
350 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1, 0) },
351 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2, 0) },
352 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3, 0) },
353 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1) },
eebf11a0
MCC
354
355 /* System Address Decoder */
dbc954dd
AR
356 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0, 0) },
357 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1, 0) },
eebf11a0
MCC
358
359 /* Broadcast Registers */
dbc954dd 360 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR, 0) },
eebf11a0
MCC
361};
362
363#define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
364static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
365 PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge),
366 {0,} /* 0 terminated list. */
367};
368
4d715a80
AR
369/* This changes depending if 1HA or 2HA:
370 * 1HA:
371 * 0x0eb8 (17.0) is DDRIO0
372 * 2HA:
373 * 0x0ebc (17.4) is DDRIO0
374 */
375#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0 0x0eb8
376#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0 0x0ebc
377
378/* pci ids */
379#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0 0x0ea0
380#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA 0x0ea8
381#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS 0x0e71
382#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0 0x0eaa
383#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1 0x0eab
384#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2 0x0eac
385#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3 0x0ead
386#define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD 0x0ec8
387#define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0 0x0ec9
388#define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1 0x0eca
389#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1 0x0e60
390#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA 0x0e68
391#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS 0x0e79
392#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0 0x0e6a
393#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1 0x0e6b
394
395static const struct pci_id_descr pci_dev_descr_ibridge[] = {
396 /* Processor Home Agent */
dbc954dd 397 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0, 0) },
4d715a80
AR
398
399 /* Memory controller */
dbc954dd
AR
400 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA, 0) },
401 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS, 0) },
402 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0, 0) },
403 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1, 0) },
404 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2, 0) },
405 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3, 0) },
4d715a80
AR
406
407 /* System Address Decoder */
dbc954dd 408 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD, 0) },
4d715a80
AR
409
410 /* Broadcast Registers */
dbc954dd
AR
411 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0, 1) },
412 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1, 0) },
4d715a80
AR
413
414 /* Optional, mode 2HA */
dbc954dd 415 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1, 1) },
4d715a80 416#if 0
dbc954dd
AR
417 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA, 1) },
418 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS, 1) },
4d715a80 419#endif
dbc954dd
AR
420 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0, 1) },
421 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1, 1) },
4d715a80 422
dbc954dd
AR
423 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1) },
424 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1) },
4d715a80
AR
425};
426
427static const struct pci_id_table pci_dev_descr_ibridge_table[] = {
428 PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge),
429 {0,} /* 0 terminated list. */
430};
431
50d1bb93
AR
432/* Haswell support */
433/* EN processor:
434 * - 1 IMC
435 * - 3 DDR3 channels, 2 DPC per channel
436 * EP processor:
437 * - 1 or 2 IMC
438 * - 4 DDR4 channels, 3 DPC per channel
439 * EP 4S processor:
440 * - 2 IMC
441 * - 4 DDR4 channels, 3 DPC per channel
442 * EX processor:
443 * - 2 IMC
444 * - each IMC interfaces with a SMI 2 channel
445 * - each SMI channel interfaces with a scalable memory buffer
446 * - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
447 */
448#define HASWELL_DDRCRCLKCONTROLS 0xa10
449#define HASWELL_HASYSDEFEATURE2 0x84
450#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
451#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0 0x2fa0
452#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1 0x2f60
453#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA 0x2fa8
454#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL 0x2f71
455#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA 0x2f68
456#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL 0x2f79
457#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
458#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
459#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
460#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
461#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
462#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
463#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
464#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
465#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
466#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
467#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
468static const struct pci_id_descr pci_dev_descr_haswell[] = {
469 /* first item must be the HA */
470 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0, 0) },
471
472 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0, 0) },
473 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1, 0) },
474
475 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1, 1) },
476
477 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA, 0) },
478 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL, 0) },
479 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0, 0) },
480 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1, 0) },
481 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2, 1) },
482 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3, 1) },
483
484 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0, 1) },
485
486 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA, 1) },
487 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL, 1) },
488 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0, 1) },
489 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1, 1) },
490 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2, 1) },
491 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3, 1) },
492};
493
494static const struct pci_id_table pci_dev_descr_haswell_table[] = {
495 PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell),
496 {0,} /* 0 terminated list. */
497};
498
eebf11a0
MCC
499/*
500 * pci_device_id table for which devices we are looking for
501 */
ba935f40 502static const struct pci_device_id sbridge_pci_tbl[] = {
d0585cd8 503 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0)},
4d715a80 504 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA)},
50d1bb93 505 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0)},
eebf11a0
MCC
506 {0,} /* 0 terminated list. */
507};
508
509
510/****************************************************************************
15ed103a 511 Ancillary status routines
eebf11a0
MCC
512 ****************************************************************************/
513
50d1bb93 514static inline int numrank(enum type type, u32 mtr)
eebf11a0
MCC
515{
516 int ranks = (1 << RANK_CNT_BITS(mtr));
50d1bb93
AR
517 int max = 4;
518
519 if (type == HASWELL)
520 max = 8;
eebf11a0 521
50d1bb93
AR
522 if (ranks > max) {
523 edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
524 ranks, max, (unsigned int)RANK_CNT_BITS(mtr), mtr);
eebf11a0
MCC
525 return -EINVAL;
526 }
527
528 return ranks;
529}
530
531static inline int numrow(u32 mtr)
532{
533 int rows = (RANK_WIDTH_BITS(mtr) + 12);
534
535 if (rows < 13 || rows > 18) {
956b9ba1
JP
536 edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
537 rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
eebf11a0
MCC
538 return -EINVAL;
539 }
540
541 return 1 << rows;
542}
543
544static inline int numcol(u32 mtr)
545{
546 int cols = (COL_WIDTH_BITS(mtr) + 10);
547
548 if (cols > 12) {
956b9ba1
JP
549 edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
550 cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
eebf11a0
MCC
551 return -EINVAL;
552 }
553
554 return 1 << cols;
555}
556
557static struct sbridge_dev *get_sbridge_dev(u8 bus)
558{
559 struct sbridge_dev *sbridge_dev;
560
561 list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
562 if (sbridge_dev->bus == bus)
563 return sbridge_dev;
564 }
565
566 return NULL;
567}
568
569static struct sbridge_dev *alloc_sbridge_dev(u8 bus,
570 const struct pci_id_table *table)
571{
572 struct sbridge_dev *sbridge_dev;
573
574 sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
575 if (!sbridge_dev)
576 return NULL;
577
578 sbridge_dev->pdev = kzalloc(sizeof(*sbridge_dev->pdev) * table->n_devs,
579 GFP_KERNEL);
580 if (!sbridge_dev->pdev) {
581 kfree(sbridge_dev);
582 return NULL;
583 }
584
585 sbridge_dev->bus = bus;
586 sbridge_dev->n_devs = table->n_devs;
587 list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
588
589 return sbridge_dev;
590}
591
592static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
593{
594 list_del(&sbridge_dev->list);
595 kfree(sbridge_dev->pdev);
596 kfree(sbridge_dev);
597}
598
fb79a509
AR
599static u64 sbridge_get_tolm(struct sbridge_pvt *pvt)
600{
601 u32 reg;
602
603 /* Address range is 32:28 */
604 pci_read_config_dword(pvt->pci_sad1, TOLM, &reg);
605 return GET_TOLM(reg);
606}
607
8fd6a43a
AR
608static u64 sbridge_get_tohm(struct sbridge_pvt *pvt)
609{
610 u32 reg;
611
612 pci_read_config_dword(pvt->pci_sad1, TOHM, &reg);
613 return GET_TOHM(reg);
614}
615
4d715a80
AR
616static u64 ibridge_get_tolm(struct sbridge_pvt *pvt)
617{
618 u32 reg;
619
620 pci_read_config_dword(pvt->pci_br1, TOLM, &reg);
621
622 return GET_TOLM(reg);
623}
624
625static u64 ibridge_get_tohm(struct sbridge_pvt *pvt)
626{
627 u32 reg;
628
629 pci_read_config_dword(pvt->pci_br1, TOHM, &reg);
630
631 return GET_TOHM(reg);
632}
633
b976bcf2
AR
634static u64 rir_limit(u32 reg)
635{
636 return ((u64)GET_BITFIELD(reg, 1, 10) << 29) | 0x1fffffff;
637}
638
9e375446
AR
639static enum mem_type get_memory_type(struct sbridge_pvt *pvt)
640{
641 u32 reg;
642 enum mem_type mtype;
643
644 if (pvt->pci_ddrio) {
645 pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr,
646 &reg);
647 if (GET_BITFIELD(reg, 11, 11))
648 /* FIXME: Can also be LRDIMM */
649 mtype = MEM_RDDR3;
650 else
651 mtype = MEM_DDR3;
652 } else
653 mtype = MEM_UNKNOWN;
654
655 return mtype;
656}
657
50d1bb93
AR
658static enum mem_type haswell_get_memory_type(struct sbridge_pvt *pvt)
659{
660 u32 reg;
661 bool registered = false;
662 enum mem_type mtype = MEM_UNKNOWN;
663
664 if (!pvt->pci_ddrio)
665 goto out;
666
667 pci_read_config_dword(pvt->pci_ddrio,
668 HASWELL_DDRCRCLKCONTROLS, &reg);
669 /* Is_Rdimm */
670 if (GET_BITFIELD(reg, 16, 16))
671 registered = true;
672
673 pci_read_config_dword(pvt->pci_ta, MCMTR, &reg);
674 if (GET_BITFIELD(reg, 14, 14)) {
675 if (registered)
676 mtype = MEM_RDDR4;
677 else
678 mtype = MEM_DDR4;
679 } else {
680 if (registered)
681 mtype = MEM_RDDR3;
682 else
683 mtype = MEM_DDR3;
684 }
685
686out:
687 return mtype;
688}
689
f14d6892
AR
690static u8 get_node_id(struct sbridge_pvt *pvt)
691{
692 u32 reg;
693 pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, &reg);
694 return GET_BITFIELD(reg, 0, 2);
695}
696
50d1bb93
AR
697static u8 haswell_get_node_id(struct sbridge_pvt *pvt)
698{
699 u32 reg;
700
701 pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
702 return GET_BITFIELD(reg, 0, 3);
703}
704
705static u64 haswell_get_tolm(struct sbridge_pvt *pvt)
706{
707 u32 reg;
708
709 pci_read_config_dword(pvt->info.pci_vtd, TOLM, &reg);
710 return (GET_BITFIELD(reg, 26, 31) << 26) | 0x1ffffff;
711}
712
713static u64 haswell_get_tohm(struct sbridge_pvt *pvt)
714{
715 u64 rc;
716 u32 reg;
717
718 pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_0, &reg);
719 rc = GET_BITFIELD(reg, 26, 31);
720 pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_1, &reg);
721 rc = ((reg << 6) | rc) << 26;
722
723 return rc | 0x1ffffff;
724}
725
726static u64 haswell_rir_limit(u32 reg)
727{
728 return (((u64)GET_BITFIELD(reg, 1, 11) + 1) << 29) - 1;
729}
730
4d715a80
AR
731static inline u8 sad_pkg_socket(u8 pkg)
732{
733 /* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
2ff3a308 734 return ((pkg >> 3) << 2) | (pkg & 0x3);
4d715a80
AR
735}
736
737static inline u8 sad_pkg_ha(u8 pkg)
738{
739 return (pkg >> 2) & 0x1;
740}
741
eebf11a0
MCC
742/****************************************************************************
743 Memory check routines
744 ****************************************************************************/
dbc954dd 745static struct pci_dev *get_pdev_same_bus(u8 bus, u32 id)
eebf11a0 746{
dbc954dd 747 struct pci_dev *pdev = NULL;
eebf11a0 748
dbc954dd
AR
749 do {
750 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, id, pdev);
751 if (pdev && pdev->bus->number == bus)
752 break;
753 } while (pdev);
eebf11a0 754
dbc954dd 755 return pdev;
eebf11a0
MCC
756}
757
758/**
c36e3e77 759 * check_if_ecc_is_active() - Checks if ECC is active
50d1bb93
AR
760 * @bus: Device bus
761 * @type: Memory controller type
762 * returns: 0 in case ECC is active, -ENODEV if it can't be determined or
763 * disabled
eebf11a0 764 */
dbc954dd 765static int check_if_ecc_is_active(const u8 bus, enum type type)
eebf11a0
MCC
766{
767 struct pci_dev *pdev = NULL;
dbc954dd 768 u32 mcmtr, id;
eebf11a0 769
dbc954dd
AR
770 if (type == IVY_BRIDGE)
771 id = PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA;
50d1bb93
AR
772 else if (type == HASWELL)
773 id = PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA;
dbc954dd
AR
774 else
775 id = PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA;
776
777 pdev = get_pdev_same_bus(bus, id);
eebf11a0
MCC
778 if (!pdev) {
779 sbridge_printk(KERN_ERR, "Couldn't find PCI device "
dbc954dd
AR
780 "%04x:%04x! on bus %02d\n",
781 PCI_VENDOR_ID_INTEL, id, bus);
eebf11a0
MCC
782 return -ENODEV;
783 }
784
785 pci_read_config_dword(pdev, MCMTR, &mcmtr);
786 if (!IS_ECC_ENABLED(mcmtr)) {
787 sbridge_printk(KERN_ERR, "ECC is disabled. Aborting\n");
788 return -ENODEV;
789 }
eebf11a0
MCC
790 return 0;
791}
792
084a4fcc 793static int get_dimm_config(struct mem_ctl_info *mci)
eebf11a0
MCC
794{
795 struct sbridge_pvt *pvt = mci->pvt_info;
c36e3e77 796 struct dimm_info *dimm;
deb09dda
MCC
797 unsigned i, j, banks, ranks, rows, cols, npages;
798 u64 size;
eebf11a0
MCC
799 u32 reg;
800 enum edac_type mode;
c6e13b52 801 enum mem_type mtype;
eebf11a0 802
50d1bb93
AR
803 if (pvt->info.type == HASWELL)
804 pci_read_config_dword(pvt->pci_sad1, SAD_TARGET, &reg);
805 else
806 pci_read_config_dword(pvt->pci_br0, SAD_TARGET, &reg);
807
eebf11a0
MCC
808 pvt->sbridge_dev->source_id = SOURCE_ID(reg);
809
f14d6892 810 pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt);
956b9ba1
JP
811 edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
812 pvt->sbridge_dev->mc,
813 pvt->sbridge_dev->node_id,
814 pvt->sbridge_dev->source_id);
eebf11a0
MCC
815
816 pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg);
817 if (IS_MIRROR_ENABLED(reg)) {
956b9ba1 818 edac_dbg(0, "Memory mirror is enabled\n");
eebf11a0
MCC
819 pvt->is_mirrored = true;
820 } else {
956b9ba1 821 edac_dbg(0, "Memory mirror is disabled\n");
eebf11a0
MCC
822 pvt->is_mirrored = false;
823 }
824
825 pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr);
826 if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
956b9ba1 827 edac_dbg(0, "Lockstep is enabled\n");
eebf11a0
MCC
828 mode = EDAC_S8ECD8ED;
829 pvt->is_lockstep = true;
830 } else {
956b9ba1 831 edac_dbg(0, "Lockstep is disabled\n");
eebf11a0
MCC
832 mode = EDAC_S4ECD4ED;
833 pvt->is_lockstep = false;
834 }
835 if (IS_CLOSE_PG(pvt->info.mcmtr)) {
956b9ba1 836 edac_dbg(0, "address map is on closed page mode\n");
eebf11a0
MCC
837 pvt->is_close_pg = true;
838 } else {
956b9ba1 839 edac_dbg(0, "address map is on open page mode\n");
eebf11a0
MCC
840 pvt->is_close_pg = false;
841 }
842
9e375446 843 mtype = pvt->info.get_memory_type(pvt);
50d1bb93 844 if (mtype == MEM_RDDR3 || mtype == MEM_RDDR4)
9e375446
AR
845 edac_dbg(0, "Memory is registered\n");
846 else if (mtype == MEM_UNKNOWN)
de4772c6 847 edac_dbg(0, "Cannot determine memory type\n");
9e375446
AR
848 else
849 edac_dbg(0, "Memory is unregistered\n");
eebf11a0 850
50d1bb93
AR
851 if (mtype == MEM_DDR4 || MEM_RDDR4)
852 banks = 16;
853 else
854 banks = 8;
eebf11a0
MCC
855
856 for (i = 0; i < NUM_CHANNELS; i++) {
857 u32 mtr;
858
859 for (j = 0; j < ARRAY_SIZE(mtr_regs); j++) {
c36e3e77
MCC
860 dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
861 i, j, 0);
eebf11a0
MCC
862 pci_read_config_dword(pvt->pci_tad[i],
863 mtr_regs[j], &mtr);
956b9ba1 864 edac_dbg(4, "Channel #%d MTR%d = %x\n", i, j, mtr);
eebf11a0
MCC
865 if (IS_DIMM_PRESENT(mtr)) {
866 pvt->channel[i].dimms++;
867
50d1bb93 868 ranks = numrank(pvt->info.type, mtr);
eebf11a0
MCC
869 rows = numrow(mtr);
870 cols = numcol(mtr);
871
deb09dda 872 size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
eebf11a0
MCC
873 npages = MiB_TO_PAGES(size);
874
deb09dda 875 edac_dbg(0, "mc#%d: channel %d, dimm %d, %Ld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
956b9ba1
JP
876 pvt->sbridge_dev->mc, i, j,
877 size, npages,
878 banks, ranks, rows, cols);
eebf11a0 879
a895bf8b 880 dimm->nr_pages = npages;
084a4fcc 881 dimm->grain = 32;
50d1bb93
AR
882 switch (banks) {
883 case 16:
884 dimm->dtype = DEV_X16;
885 break;
886 case 8:
887 dimm->dtype = DEV_X8;
888 break;
889 case 4:
890 dimm->dtype = DEV_X4;
891 break;
892 }
084a4fcc
MCC
893 dimm->mtype = mtype;
894 dimm->edac_mode = mode;
895 snprintf(dimm->label, sizeof(dimm->label),
eebf11a0
MCC
896 "CPU_SrcID#%u_Channel#%u_DIMM#%u",
897 pvt->sbridge_dev->source_id, i, j);
eebf11a0
MCC
898 }
899 }
900 }
901
902 return 0;
903}
904
905static void get_memory_layout(const struct mem_ctl_info *mci)
906{
907 struct sbridge_pvt *pvt = mci->pvt_info;
908 int i, j, k, n_sads, n_tads, sad_interl;
909 u32 reg;
910 u64 limit, prv = 0;
911 u64 tmp_mb;
5b889e37 912 u32 mb, kb;
eebf11a0
MCC
913 u32 rir_way;
914
915 /*
916 * Step 1) Get TOLM/TOHM ranges
917 */
918
fb79a509 919 pvt->tolm = pvt->info.get_tolm(pvt);
eebf11a0
MCC
920 tmp_mb = (1 + pvt->tolm) >> 20;
921
5b889e37 922 mb = div_u64_rem(tmp_mb, 1000, &kb);
956b9ba1 923 edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n", mb, kb, (u64)pvt->tolm);
eebf11a0
MCC
924
925 /* Address range is already 45:25 */
8fd6a43a 926 pvt->tohm = pvt->info.get_tohm(pvt);
eebf11a0
MCC
927 tmp_mb = (1 + pvt->tohm) >> 20;
928
5b889e37 929 mb = div_u64_rem(tmp_mb, 1000, &kb);
da14d93d 930 edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n", mb, kb, (u64)pvt->tohm);
eebf11a0
MCC
931
932 /*
933 * Step 2) Get SAD range and SAD Interleave list
934 * TAD registers contain the interleave wayness. However, it
935 * seems simpler to just discover it indirectly, with the
936 * algorithm bellow.
937 */
938 prv = 0;
464f1d82 939 for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
eebf11a0 940 /* SAD_LIMIT Address range is 45:26 */
464f1d82 941 pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
eebf11a0
MCC
942 &reg);
943 limit = SAD_LIMIT(reg);
944
945 if (!DRAM_RULE_ENABLE(reg))
946 continue;
947
948 if (limit <= prv)
949 break;
950
951 tmp_mb = (limit + 1) >> 20;
5b889e37 952 mb = div_u64_rem(tmp_mb, 1000, &kb);
956b9ba1
JP
953 edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
954 n_sads,
955 get_dram_attr(reg),
956 mb, kb,
957 ((u64)tmp_mb) << 20L,
958 INTERLEAVE_MODE(reg) ? "8:6" : "[8:6]XOR[18:16]",
959 reg);
eebf11a0
MCC
960 prv = limit;
961
ef1ce51e 962 pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
eebf11a0 963 &reg);
cc311991 964 sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
eebf11a0 965 for (j = 0; j < 8; j++) {
cc311991
AR
966 u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j);
967 if (j > 0 && sad_interl == pkg)
eebf11a0
MCC
968 break;
969
956b9ba1 970 edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
cc311991 971 n_sads, j, pkg);
eebf11a0
MCC
972 }
973 }
974
975 /*
976 * Step 3) Get TAD range
977 */
978 prv = 0;
979 for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
980 pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
981 &reg);
982 limit = TAD_LIMIT(reg);
983 if (limit <= prv)
984 break;
985 tmp_mb = (limit + 1) >> 20;
986
5b889e37 987 mb = div_u64_rem(tmp_mb, 1000, &kb);
956b9ba1
JP
988 edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
989 n_tads, mb, kb,
990 ((u64)tmp_mb) << 20L,
991 (u32)TAD_SOCK(reg),
992 (u32)TAD_CH(reg),
993 (u32)TAD_TGT0(reg),
994 (u32)TAD_TGT1(reg),
995 (u32)TAD_TGT2(reg),
996 (u32)TAD_TGT3(reg),
997 reg);
7fae0db4 998 prv = limit;
eebf11a0
MCC
999 }
1000
1001 /*
1002 * Step 4) Get TAD offsets, per each channel
1003 */
1004 for (i = 0; i < NUM_CHANNELS; i++) {
1005 if (!pvt->channel[i].dimms)
1006 continue;
1007 for (j = 0; j < n_tads; j++) {
1008 pci_read_config_dword(pvt->pci_tad[i],
1009 tad_ch_nilv_offset[j],
1010 &reg);
1011 tmp_mb = TAD_OFFSET(reg) >> 20;
5b889e37 1012 mb = div_u64_rem(tmp_mb, 1000, &kb);
956b9ba1
JP
1013 edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
1014 i, j,
1015 mb, kb,
1016 ((u64)tmp_mb) << 20L,
1017 reg);
eebf11a0
MCC
1018 }
1019 }
1020
1021 /*
1022 * Step 6) Get RIR Wayness/Limit, per each channel
1023 */
1024 for (i = 0; i < NUM_CHANNELS; i++) {
1025 if (!pvt->channel[i].dimms)
1026 continue;
1027 for (j = 0; j < MAX_RIR_RANGES; j++) {
1028 pci_read_config_dword(pvt->pci_tad[i],
1029 rir_way_limit[j],
1030 &reg);
1031
1032 if (!IS_RIR_VALID(reg))
1033 continue;
1034
b976bcf2 1035 tmp_mb = pvt->info.rir_limit(reg) >> 20;
eebf11a0 1036 rir_way = 1 << RIR_WAY(reg);
5b889e37 1037 mb = div_u64_rem(tmp_mb, 1000, &kb);
956b9ba1
JP
1038 edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
1039 i, j,
1040 mb, kb,
1041 ((u64)tmp_mb) << 20L,
1042 rir_way,
1043 reg);
eebf11a0
MCC
1044
1045 for (k = 0; k < rir_way; k++) {
1046 pci_read_config_dword(pvt->pci_tad[i],
1047 rir_offset[j][k],
1048 &reg);
1049 tmp_mb = RIR_OFFSET(reg) << 6;
1050
5b889e37 1051 mb = div_u64_rem(tmp_mb, 1000, &kb);
956b9ba1
JP
1052 edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
1053 i, j, k,
1054 mb, kb,
1055 ((u64)tmp_mb) << 20L,
1056 (u32)RIR_RNK_TGT(reg),
1057 reg);
eebf11a0
MCC
1058 }
1059 }
1060 }
1061}
1062
8112c0cd 1063static struct mem_ctl_info *get_mci_for_node_id(u8 node_id)
eebf11a0
MCC
1064{
1065 struct sbridge_dev *sbridge_dev;
1066
1067 list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
1068 if (sbridge_dev->node_id == node_id)
1069 return sbridge_dev->mci;
1070 }
1071 return NULL;
1072}
1073
1074static int get_memory_error_data(struct mem_ctl_info *mci,
1075 u64 addr,
1076 u8 *socket,
1077 long *channel_mask,
1078 u8 *rank,
e17a2f42 1079 char **area_type, char *msg)
eebf11a0
MCC
1080{
1081 struct mem_ctl_info *new_mci;
1082 struct sbridge_pvt *pvt = mci->pvt_info;
4d715a80 1083 struct pci_dev *pci_ha;
c41afdca 1084 int n_rir, n_sads, n_tads, sad_way, sck_xch;
eebf11a0 1085 int sad_interl, idx, base_ch;
50d1bb93 1086 int interleave_mode, shiftup = 0;
ef1ce51e 1087 unsigned sad_interleave[pvt->info.max_interleave];
50d1bb93 1088 u32 reg, dram_rule;
4d715a80 1089 u8 ch_way, sck_way, pkg, sad_ha = 0;
eebf11a0
MCC
1090 u32 tad_offset;
1091 u32 rir_way;
5b889e37 1092 u32 mb, kb;
bd4b9683 1093 u64 ch_addr, offset, limit = 0, prv = 0;
eebf11a0
MCC
1094
1095
1096 /*
1097 * Step 0) Check if the address is at special memory ranges
1098 * The check bellow is probably enough to fill all cases where
1099 * the error is not inside a memory, except for the legacy
1100 * range (e. g. VGA addresses). It is unlikely, however, that the
1101 * memory controller would generate an error on that range.
1102 */
5b889e37 1103 if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
eebf11a0 1104 sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
eebf11a0
MCC
1105 return -EINVAL;
1106 }
1107 if (addr >= (u64)pvt->tohm) {
1108 sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
eebf11a0
MCC
1109 return -EINVAL;
1110 }
1111
1112 /*
1113 * Step 1) Get socket
1114 */
464f1d82
AR
1115 for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1116 pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
eebf11a0
MCC
1117 &reg);
1118
1119 if (!DRAM_RULE_ENABLE(reg))
1120 continue;
1121
1122 limit = SAD_LIMIT(reg);
1123 if (limit <= prv) {
1124 sprintf(msg, "Can't discover the memory socket");
eebf11a0
MCC
1125 return -EINVAL;
1126 }
1127 if (addr <= limit)
1128 break;
1129 prv = limit;
1130 }
464f1d82 1131 if (n_sads == pvt->info.max_sad) {
eebf11a0 1132 sprintf(msg, "Can't discover the memory socket");
eebf11a0
MCC
1133 return -EINVAL;
1134 }
50d1bb93
AR
1135 dram_rule = reg;
1136 *area_type = get_dram_attr(dram_rule);
1137 interleave_mode = INTERLEAVE_MODE(dram_rule);
eebf11a0 1138
ef1ce51e 1139 pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
eebf11a0 1140 &reg);
4d715a80
AR
1141
1142 if (pvt->info.type == SANDY_BRIDGE) {
1143 sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1144 for (sad_way = 0; sad_way < 8; sad_way++) {
1145 u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way);
1146 if (sad_way > 0 && sad_interl == pkg)
1147 break;
1148 sad_interleave[sad_way] = pkg;
1149 edac_dbg(0, "SAD interleave #%d: %d\n",
1150 sad_way, sad_interleave[sad_way]);
1151 }
1152 edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
1153 pvt->sbridge_dev->mc,
1154 n_sads,
1155 addr,
1156 limit,
1157 sad_way + 7,
1158 !interleave_mode ? "" : "XOR[18:16]");
1159 if (interleave_mode)
1160 idx = ((addr >> 6) ^ (addr >> 16)) & 7;
1161 else
1162 idx = (addr >> 6) & 7;
1163 switch (sad_way) {
1164 case 1:
1165 idx = 0;
eebf11a0 1166 break;
4d715a80
AR
1167 case 2:
1168 idx = idx & 1;
1169 break;
1170 case 4:
1171 idx = idx & 3;
1172 break;
1173 case 8:
1174 break;
1175 default:
1176 sprintf(msg, "Can't discover socket interleave");
1177 return -EINVAL;
1178 }
1179 *socket = sad_interleave[idx];
1180 edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
1181 idx, sad_way, *socket);
50d1bb93
AR
1182 } else if (pvt->info.type == HASWELL) {
1183 int bits, a7mode = A7MODE(dram_rule);
1184
1185 if (a7mode) {
1186 /* A7 mode swaps P9 with P6 */
1187 bits = GET_BITFIELD(addr, 7, 8) << 1;
1188 bits |= GET_BITFIELD(addr, 9, 9);
1189 } else
1190 bits = GET_BITFIELD(addr, 7, 9);
1191
1192 if (interleave_mode) {
1193 /* interleave mode will XOR {8,7,6} with {18,17,16} */
1194 idx = GET_BITFIELD(addr, 16, 18);
1195 idx ^= bits;
1196 } else
1197 idx = bits;
1198
1199 pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
1200 *socket = sad_pkg_socket(pkg);
1201 sad_ha = sad_pkg_ha(pkg);
1202
1203 if (a7mode) {
1204 /* MCChanShiftUpEnable */
1205 pci_read_config_dword(pvt->pci_ha0,
1206 HASWELL_HASYSDEFEATURE2, &reg);
1207 shiftup = GET_BITFIELD(reg, 22, 22);
1208 }
1209
1210 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
1211 idx, *socket, sad_ha, shiftup);
4d715a80
AR
1212 } else {
1213 /* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
eebf11a0 1214 idx = (addr >> 6) & 7;
4d715a80
AR
1215 pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
1216 *socket = sad_pkg_socket(pkg);
1217 sad_ha = sad_pkg_ha(pkg);
1218 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
1219 idx, *socket, sad_ha);
eebf11a0 1220 }
eebf11a0
MCC
1221
1222 /*
1223 * Move to the proper node structure, in order to access the
1224 * right PCI registers
1225 */
1226 new_mci = get_mci_for_node_id(*socket);
1227 if (!new_mci) {
1228 sprintf(msg, "Struct for socket #%u wasn't initialized",
1229 *socket);
eebf11a0
MCC
1230 return -EINVAL;
1231 }
1232 mci = new_mci;
1233 pvt = mci->pvt_info;
1234
1235 /*
1236 * Step 2) Get memory channel
1237 */
1238 prv = 0;
4d715a80
AR
1239 if (pvt->info.type == SANDY_BRIDGE)
1240 pci_ha = pvt->pci_ha0;
1241 else {
1242 if (sad_ha)
1243 pci_ha = pvt->pci_ha1;
1244 else
1245 pci_ha = pvt->pci_ha0;
1246 }
eebf11a0 1247 for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
4d715a80 1248 pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], &reg);
eebf11a0
MCC
1249 limit = TAD_LIMIT(reg);
1250 if (limit <= prv) {
1251 sprintf(msg, "Can't discover the memory channel");
eebf11a0
MCC
1252 return -EINVAL;
1253 }
1254 if (addr <= limit)
1255 break;
1256 prv = limit;
1257 }
4d715a80
AR
1258 if (n_tads == MAX_TAD) {
1259 sprintf(msg, "Can't discover the memory channel");
1260 return -EINVAL;
1261 }
1262
eebf11a0
MCC
1263 ch_way = TAD_CH(reg) + 1;
1264 sck_way = TAD_SOCK(reg) + 1;
eebf11a0
MCC
1265
1266 if (ch_way == 3)
1267 idx = addr >> 6;
1268 else
50d1bb93 1269 idx = (addr >> (6 + sck_way + shiftup)) & 0x3;
eebf11a0
MCC
1270 idx = idx % ch_way;
1271
1272 /*
1273 * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
1274 */
1275 switch (idx) {
1276 case 0:
1277 base_ch = TAD_TGT0(reg);
1278 break;
1279 case 1:
1280 base_ch = TAD_TGT1(reg);
1281 break;
1282 case 2:
1283 base_ch = TAD_TGT2(reg);
1284 break;
1285 case 3:
1286 base_ch = TAD_TGT3(reg);
1287 break;
1288 default:
1289 sprintf(msg, "Can't discover the TAD target");
eebf11a0
MCC
1290 return -EINVAL;
1291 }
1292 *channel_mask = 1 << base_ch;
1293
4d715a80
AR
1294 pci_read_config_dword(pvt->pci_tad[base_ch],
1295 tad_ch_nilv_offset[n_tads],
1296 &tad_offset);
1297
eebf11a0
MCC
1298 if (pvt->is_mirrored) {
1299 *channel_mask |= 1 << ((base_ch + 2) % 4);
1300 switch(ch_way) {
1301 case 2:
1302 case 4:
1303 sck_xch = 1 << sck_way * (ch_way >> 1);
1304 break;
1305 default:
1306 sprintf(msg, "Invalid mirror set. Can't decode addr");
eebf11a0
MCC
1307 return -EINVAL;
1308 }
1309 } else
1310 sck_xch = (1 << sck_way) * ch_way;
1311
1312 if (pvt->is_lockstep)
1313 *channel_mask |= 1 << ((base_ch + 1) % 4);
1314
1315 offset = TAD_OFFSET(tad_offset);
1316
956b9ba1
JP
1317 edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
1318 n_tads,
1319 addr,
1320 limit,
1321 (u32)TAD_SOCK(reg),
1322 ch_way,
1323 offset,
1324 idx,
1325 base_ch,
1326 *channel_mask);
eebf11a0
MCC
1327
1328 /* Calculate channel address */
1329 /* Remove the TAD offset */
1330
1331 if (offset > addr) {
1332 sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
1333 offset, addr);
eebf11a0
MCC
1334 return -EINVAL;
1335 }
1336 addr -= offset;
1337 /* Store the low bits [0:6] of the addr */
1338 ch_addr = addr & 0x7f;
1339 /* Remove socket wayness and remove 6 bits */
1340 addr >>= 6;
5b889e37 1341 addr = div_u64(addr, sck_xch);
eebf11a0
MCC
1342#if 0
1343 /* Divide by channel way */
1344 addr = addr / ch_way;
1345#endif
1346 /* Recover the last 6 bits */
1347 ch_addr |= addr << 6;
1348
1349 /*
1350 * Step 3) Decode rank
1351 */
1352 for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
1353 pci_read_config_dword(pvt->pci_tad[base_ch],
1354 rir_way_limit[n_rir],
1355 &reg);
1356
1357 if (!IS_RIR_VALID(reg))
1358 continue;
1359
b976bcf2 1360 limit = pvt->info.rir_limit(reg);
5b889e37 1361 mb = div_u64_rem(limit >> 20, 1000, &kb);
956b9ba1
JP
1362 edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
1363 n_rir,
1364 mb, kb,
1365 limit,
1366 1 << RIR_WAY(reg));
eebf11a0
MCC
1367 if (ch_addr <= limit)
1368 break;
1369 }
1370 if (n_rir == MAX_RIR_RANGES) {
1371 sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
1372 ch_addr);
eebf11a0
MCC
1373 return -EINVAL;
1374 }
1375 rir_way = RIR_WAY(reg);
50d1bb93 1376
eebf11a0
MCC
1377 if (pvt->is_close_pg)
1378 idx = (ch_addr >> 6);
1379 else
1380 idx = (ch_addr >> 13); /* FIXME: Datasheet says to shift by 15 */
1381 idx %= 1 << rir_way;
1382
1383 pci_read_config_dword(pvt->pci_tad[base_ch],
1384 rir_offset[n_rir][idx],
1385 &reg);
1386 *rank = RIR_RNK_TGT(reg);
1387
956b9ba1
JP
1388 edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
1389 n_rir,
1390 ch_addr,
1391 limit,
1392 rir_way,
1393 idx);
eebf11a0
MCC
1394
1395 return 0;
1396}
1397
1398/****************************************************************************
1399 Device initialization routines: put/get, init/exit
1400 ****************************************************************************/
1401
1402/*
1403 * sbridge_put_all_devices 'put' all the devices that we have
1404 * reserved via 'get'
1405 */
1406static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
1407{
1408 int i;
1409
956b9ba1 1410 edac_dbg(0, "\n");
eebf11a0
MCC
1411 for (i = 0; i < sbridge_dev->n_devs; i++) {
1412 struct pci_dev *pdev = sbridge_dev->pdev[i];
1413 if (!pdev)
1414 continue;
956b9ba1
JP
1415 edac_dbg(0, "Removing dev %02x:%02x.%d\n",
1416 pdev->bus->number,
1417 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
eebf11a0
MCC
1418 pci_dev_put(pdev);
1419 }
1420}
1421
1422static void sbridge_put_all_devices(void)
1423{
1424 struct sbridge_dev *sbridge_dev, *tmp;
1425
1426 list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
1427 sbridge_put_devices(sbridge_dev);
1428 free_sbridge_dev(sbridge_dev);
1429 }
1430}
1431
eebf11a0
MCC
1432static int sbridge_get_onedevice(struct pci_dev **prev,
1433 u8 *num_mc,
1434 const struct pci_id_table *table,
1435 const unsigned devno)
1436{
1437 struct sbridge_dev *sbridge_dev;
1438 const struct pci_id_descr *dev_descr = &table->descr[devno];
eebf11a0
MCC
1439 struct pci_dev *pdev = NULL;
1440 u8 bus = 0;
1441
ec5a0b38 1442 sbridge_printk(KERN_DEBUG,
dbc954dd 1443 "Seeking for: PCI ID %04x:%04x\n",
eebf11a0
MCC
1444 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1445
1446 pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1447 dev_descr->dev_id, *prev);
1448
1449 if (!pdev) {
1450 if (*prev) {
1451 *prev = pdev;
1452 return 0;
1453 }
1454
1455 if (dev_descr->optional)
1456 return 0;
1457
dbc954dd 1458 /* if the HA wasn't found */
eebf11a0
MCC
1459 if (devno == 0)
1460 return -ENODEV;
1461
1462 sbridge_printk(KERN_INFO,
dbc954dd 1463 "Device not found: %04x:%04x\n",
eebf11a0
MCC
1464 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1465
1466 /* End of list, leave */
1467 return -ENODEV;
1468 }
1469 bus = pdev->bus->number;
1470
1471 sbridge_dev = get_sbridge_dev(bus);
1472 if (!sbridge_dev) {
1473 sbridge_dev = alloc_sbridge_dev(bus, table);
1474 if (!sbridge_dev) {
1475 pci_dev_put(pdev);
1476 return -ENOMEM;
1477 }
1478 (*num_mc)++;
1479 }
1480
1481 if (sbridge_dev->pdev[devno]) {
1482 sbridge_printk(KERN_ERR,
dbc954dd 1483 "Duplicated device for %04x:%04x\n",
eebf11a0
MCC
1484 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1485 pci_dev_put(pdev);
1486 return -ENODEV;
1487 }
1488
1489 sbridge_dev->pdev[devno] = pdev;
1490
eebf11a0
MCC
1491 /* Be sure that the device is enabled */
1492 if (unlikely(pci_enable_device(pdev) < 0)) {
1493 sbridge_printk(KERN_ERR,
dbc954dd 1494 "Couldn't enable %04x:%04x\n",
eebf11a0
MCC
1495 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1496 return -ENODEV;
1497 }
1498
dbc954dd 1499 edac_dbg(0, "Detected %04x:%04x\n",
956b9ba1 1500 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
eebf11a0
MCC
1501
1502 /*
1503 * As stated on drivers/pci/search.c, the reference count for
1504 * @from is always decremented if it is not %NULL. So, as we need
1505 * to get all devices up to null, we need to do a get for the device
1506 */
1507 pci_dev_get(pdev);
1508
1509 *prev = pdev;
1510
1511 return 0;
1512}
1513
5153a0f9
AR
1514/*
1515 * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
dbc954dd 1516 * devices we want to reference for this driver.
5153a0f9 1517 * @num_mc: pointer to the memory controllers count, to be incremented in case
c41afdca 1518 * of success.
5153a0f9
AR
1519 * @table: model specific table
1520 *
1521 * returns 0 in case of success or error code
1522 */
1523static int sbridge_get_all_devices(u8 *num_mc,
1524 const struct pci_id_table *table)
eebf11a0
MCC
1525{
1526 int i, rc;
1527 struct pci_dev *pdev = NULL;
eebf11a0
MCC
1528
1529 while (table && table->descr) {
1530 for (i = 0; i < table->n_devs; i++) {
1531 pdev = NULL;
1532 do {
1533 rc = sbridge_get_onedevice(&pdev, num_mc,
1534 table, i);
1535 if (rc < 0) {
1536 if (i == 0) {
1537 i = table->n_devs;
1538 break;
1539 }
1540 sbridge_put_all_devices();
1541 return -ENODEV;
1542 }
1543 } while (pdev);
1544 }
1545 table++;
1546 }
1547
1548 return 0;
1549}
1550
ea779b5a
AR
1551static int sbridge_mci_bind_devs(struct mem_ctl_info *mci,
1552 struct sbridge_dev *sbridge_dev)
eebf11a0
MCC
1553{
1554 struct sbridge_pvt *pvt = mci->pvt_info;
1555 struct pci_dev *pdev;
dbc954dd 1556 int i;
eebf11a0
MCC
1557
1558 for (i = 0; i < sbridge_dev->n_devs; i++) {
1559 pdev = sbridge_dev->pdev[i];
1560 if (!pdev)
1561 continue;
dbc954dd
AR
1562
1563 switch (pdev->device) {
1564 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0:
1565 pvt->pci_sad0 = pdev;
eebf11a0 1566 break;
dbc954dd
AR
1567 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1:
1568 pvt->pci_sad1 = pdev;
eebf11a0 1569 break;
dbc954dd
AR
1570 case PCI_DEVICE_ID_INTEL_SBRIDGE_BR:
1571 pvt->pci_br0 = pdev;
eebf11a0 1572 break;
dbc954dd
AR
1573 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
1574 pvt->pci_ha0 = pdev;
eebf11a0 1575 break;
dbc954dd
AR
1576 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA:
1577 pvt->pci_ta = pdev;
1578 break;
1579 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS:
1580 pvt->pci_ras = pdev;
1581 break;
1582 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0:
1583 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1:
1584 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2:
1585 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3:
1586 {
1587 int id = pdev->device - PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0;
1588 pvt->pci_tad[id] = pdev;
1589 }
1590 break;
1591 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO:
1592 pvt->pci_ddrio = pdev;
eebf11a0
MCC
1593 break;
1594 default:
1595 goto error;
1596 }
1597
dbc954dd
AR
1598 edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
1599 pdev->vendor, pdev->device,
956b9ba1 1600 sbridge_dev->bus,
956b9ba1 1601 pdev);
eebf11a0
MCC
1602 }
1603
1604 /* Check if everything were registered */
1605 if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha0 ||
de4772c6 1606 !pvt-> pci_tad || !pvt->pci_ras || !pvt->pci_ta)
eebf11a0
MCC
1607 goto enodev;
1608
1609 for (i = 0; i < NUM_CHANNELS; i++) {
1610 if (!pvt->pci_tad[i])
1611 goto enodev;
1612 }
1613 return 0;
1614
1615enodev:
1616 sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
1617 return -ENODEV;
1618
1619error:
dbc954dd
AR
1620 sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n",
1621 PCI_VENDOR_ID_INTEL, pdev->device);
eebf11a0
MCC
1622 return -EINVAL;
1623}
1624
4d715a80
AR
1625static int ibridge_mci_bind_devs(struct mem_ctl_info *mci,
1626 struct sbridge_dev *sbridge_dev)
1627{
1628 struct sbridge_pvt *pvt = mci->pvt_info;
1629 struct pci_dev *pdev, *tmp;
dbc954dd 1630 int i;
4d715a80
AR
1631 bool mode_2ha = false;
1632
1633 tmp = pci_get_device(PCI_VENDOR_ID_INTEL,
1634 PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1, NULL);
1635 if (tmp) {
1636 mode_2ha = true;
1637 pci_dev_put(tmp);
1638 }
1639
1640 for (i = 0; i < sbridge_dev->n_devs; i++) {
1641 pdev = sbridge_dev->pdev[i];
1642 if (!pdev)
1643 continue;
4d715a80 1644
dbc954dd
AR
1645 switch (pdev->device) {
1646 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0:
1647 pvt->pci_ha0 = pdev;
1648 break;
1649 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
1650 pvt->pci_ta = pdev;
1651 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS:
1652 pvt->pci_ras = pdev;
1653 break;
1654 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2:
1655 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3:
1656 /* if we have 2 HAs active, channels 2 and 3
1657 * are in other device */
1658 if (mode_2ha)
4d715a80 1659 break;
dbc954dd
AR
1660 /* fall through */
1661 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0:
1662 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1:
1663 {
1664 int id = pdev->device - PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0;
1665 pvt->pci_tad[id] = pdev;
1666 }
4d715a80 1667 break;
dbc954dd
AR
1668 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0:
1669 pvt->pci_ddrio = pdev;
1670 break;
1671 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0:
1672 if (!mode_2ha)
4d715a80 1673 pvt->pci_ddrio = pdev;
4d715a80 1674 break;
dbc954dd
AR
1675 case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD:
1676 pvt->pci_sad0 = pdev;
1677 break;
1678 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0:
1679 pvt->pci_br0 = pdev;
1680 break;
1681 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1:
1682 pvt->pci_br1 = pdev;
1683 break;
1684 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1:
1685 pvt->pci_ha1 = pdev;
1686 break;
1687 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0:
1688 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1:
1689 {
1690 int id = pdev->device - PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0 + 2;
1691
4d715a80
AR
1692 /* we shouldn't have this device if we have just one
1693 * HA present */
1694 WARN_ON(!mode_2ha);
dbc954dd
AR
1695 pvt->pci_tad[id] = pdev;
1696 }
1697 break;
4d715a80
AR
1698 default:
1699 goto error;
1700 }
1701
1702 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
1703 sbridge_dev->bus,
1704 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1705 pdev);
1706 }
1707
1708 /* Check if everything were registered */
1709 if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_br0 ||
1710 !pvt->pci_br1 || !pvt->pci_tad || !pvt->pci_ras ||
1711 !pvt->pci_ta)
1712 goto enodev;
1713
1714 for (i = 0; i < NUM_CHANNELS; i++) {
1715 if (!pvt->pci_tad[i])
1716 goto enodev;
1717 }
1718 return 0;
1719
1720enodev:
1721 sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
1722 return -ENODEV;
1723
1724error:
1725 sbridge_printk(KERN_ERR,
dbc954dd
AR
1726 "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL,
1727 pdev->device);
4d715a80
AR
1728 return -EINVAL;
1729}
1730
50d1bb93
AR
1731static int haswell_mci_bind_devs(struct mem_ctl_info *mci,
1732 struct sbridge_dev *sbridge_dev)
1733{
1734 struct sbridge_pvt *pvt = mci->pvt_info;
1735 struct pci_dev *pdev, *tmp;
1736 int i;
1737 bool mode_2ha = false;
1738
1739 tmp = pci_get_device(PCI_VENDOR_ID_INTEL,
1740 PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1, NULL);
1741 if (tmp) {
1742 mode_2ha = true;
1743 pci_dev_put(tmp);
1744 }
1745
1746 /* there's only one device per system; not tied to any bus */
1747 if (pvt->info.pci_vtd == NULL)
1748 /* result will be checked later */
1749 pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
1750 PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC,
1751 NULL);
1752
1753 for (i = 0; i < sbridge_dev->n_devs; i++) {
1754 pdev = sbridge_dev->pdev[i];
1755 if (!pdev)
1756 continue;
1757
1758 switch (pdev->device) {
1759 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0:
1760 pvt->pci_sad0 = pdev;
1761 break;
1762 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1:
1763 pvt->pci_sad1 = pdev;
1764 break;
1765 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
1766 pvt->pci_ha0 = pdev;
1767 break;
1768 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA:
1769 pvt->pci_ta = pdev;
1770 break;
1771 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL:
1772 pvt->pci_ras = pdev;
1773 break;
1774 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0:
1775 pvt->pci_tad[0] = pdev;
1776 break;
1777 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1:
1778 pvt->pci_tad[1] = pdev;
1779 break;
1780 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2:
1781 if (!mode_2ha)
1782 pvt->pci_tad[2] = pdev;
1783 break;
1784 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3:
1785 if (!mode_2ha)
1786 pvt->pci_tad[3] = pdev;
1787 break;
1788 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0:
1789 pvt->pci_ddrio = pdev;
1790 break;
1791 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1:
1792 pvt->pci_ha1 = pdev;
1793 break;
1794 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA:
1795 pvt->pci_ha1_ta = pdev;
1796 break;
1797 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0:
1798 if (mode_2ha)
1799 pvt->pci_tad[2] = pdev;
1800 break;
1801 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1:
1802 if (mode_2ha)
1803 pvt->pci_tad[3] = pdev;
1804 break;
1805 default:
1806 break;
1807 }
1808
1809 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
1810 sbridge_dev->bus,
1811 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1812 pdev);
1813 }
1814
1815 /* Check if everything were registered */
1816 if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_sad1 ||
1817 !pvt->pci_ras || !pvt->pci_ta || !pvt->info.pci_vtd)
1818 goto enodev;
1819
1820 for (i = 0; i < NUM_CHANNELS; i++) {
1821 if (!pvt->pci_tad[i])
1822 goto enodev;
1823 }
1824 return 0;
1825
1826enodev:
1827 sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
1828 return -ENODEV;
1829}
1830
eebf11a0
MCC
1831/****************************************************************************
1832 Error check routines
1833 ****************************************************************************/
1834
1835/*
1836 * While Sandy Bridge has error count registers, SMI BIOS read values from
1837 * and resets the counters. So, they are not reliable for the OS to read
1838 * from them. So, we have no option but to just trust on whatever MCE is
1839 * telling us about the errors.
1840 */
1841static void sbridge_mce_output_error(struct mem_ctl_info *mci,
1842 const struct mce *m)
1843{
1844 struct mem_ctl_info *new_mci;
1845 struct sbridge_pvt *pvt = mci->pvt_info;
c36e3e77 1846 enum hw_event_mc_err_type tp_event;
e17a2f42 1847 char *type, *optype, msg[256];
eebf11a0
MCC
1848 bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
1849 bool overflow = GET_BITFIELD(m->status, 62, 62);
1850 bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
4d715a80 1851 bool recoverable;
eebf11a0
MCC
1852 u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
1853 u32 mscod = GET_BITFIELD(m->status, 16, 31);
1854 u32 errcode = GET_BITFIELD(m->status, 0, 15);
1855 u32 channel = GET_BITFIELD(m->status, 0, 3);
1856 u32 optypenum = GET_BITFIELD(m->status, 4, 6);
1857 long channel_mask, first_channel;
1858 u8 rank, socket;
c36e3e77 1859 int rc, dimm;
e17a2f42 1860 char *area_type = NULL;
eebf11a0 1861
4d715a80
AR
1862 if (pvt->info.type == IVY_BRIDGE)
1863 recoverable = true;
1864 else
1865 recoverable = GET_BITFIELD(m->status, 56, 56);
1866
c36e3e77
MCC
1867 if (uncorrected_error) {
1868 if (ripv) {
1869 type = "FATAL";
1870 tp_event = HW_EVENT_ERR_FATAL;
1871 } else {
1872 type = "NON_FATAL";
1873 tp_event = HW_EVENT_ERR_UNCORRECTED;
1874 }
1875 } else {
1876 type = "CORRECTED";
1877 tp_event = HW_EVENT_ERR_CORRECTED;
1878 }
eebf11a0
MCC
1879
1880 /*
15ed103a 1881 * According with Table 15-9 of the Intel Architecture spec vol 3A,
eebf11a0
MCC
1882 * memory errors should fit in this mask:
1883 * 000f 0000 1mmm cccc (binary)
1884 * where:
1885 * f = Correction Report Filtering Bit. If 1, subsequent errors
1886 * won't be shown
1887 * mmm = error type
1888 * cccc = channel
1889 * If the mask doesn't match, report an error to the parsing logic
1890 */
1891 if (! ((errcode & 0xef80) == 0x80)) {
1892 optype = "Can't parse: it is not a mem";
1893 } else {
1894 switch (optypenum) {
1895 case 0:
c36e3e77 1896 optype = "generic undef request error";
eebf11a0
MCC
1897 break;
1898 case 1:
c36e3e77 1899 optype = "memory read error";
eebf11a0
MCC
1900 break;
1901 case 2:
c36e3e77 1902 optype = "memory write error";
eebf11a0
MCC
1903 break;
1904 case 3:
c36e3e77 1905 optype = "addr/cmd error";
eebf11a0
MCC
1906 break;
1907 case 4:
c36e3e77 1908 optype = "memory scrubbing error";
eebf11a0
MCC
1909 break;
1910 default:
1911 optype = "reserved";
1912 break;
1913 }
1914 }
1915
be3036d2
AR
1916 /* Only decode errors with an valid address (ADDRV) */
1917 if (!GET_BITFIELD(m->status, 58, 58))
1918 return;
1919
eebf11a0 1920 rc = get_memory_error_data(mci, m->addr, &socket,
e17a2f42 1921 &channel_mask, &rank, &area_type, msg);
eebf11a0 1922 if (rc < 0)
c36e3e77 1923 goto err_parsing;
eebf11a0
MCC
1924 new_mci = get_mci_for_node_id(socket);
1925 if (!new_mci) {
c36e3e77
MCC
1926 strcpy(msg, "Error: socket got corrupted!");
1927 goto err_parsing;
eebf11a0
MCC
1928 }
1929 mci = new_mci;
1930 pvt = mci->pvt_info;
1931
1932 first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
1933
1934 if (rank < 4)
1935 dimm = 0;
1936 else if (rank < 8)
1937 dimm = 1;
1938 else
1939 dimm = 2;
1940
eebf11a0
MCC
1941
1942 /*
e17a2f42
MCC
1943 * FIXME: On some memory configurations (mirror, lockstep), the
1944 * Memory Controller can't point the error to a single DIMM. The
1945 * EDAC core should be handling the channel mask, in order to point
1946 * to the group of dimm's where the error may be happening.
eebf11a0 1947 */
d7c660b7
AR
1948 if (!pvt->is_lockstep && !pvt->is_mirrored && !pvt->is_close_pg)
1949 channel = first_channel;
1950
c36e3e77 1951 snprintf(msg, sizeof(msg),
c1053839 1952 "%s%s area:%s err_code:%04x:%04x socket:%d channel_mask:%ld rank:%d",
e17a2f42
MCC
1953 overflow ? " OVERFLOW" : "",
1954 (uncorrected_error && recoverable) ? " recoverable" : "",
1955 area_type,
1956 mscod, errcode,
1957 socket,
1958 channel_mask,
1959 rank);
eebf11a0 1960
956b9ba1 1961 edac_dbg(0, "%s\n", msg);
eebf11a0 1962
c36e3e77
MCC
1963 /* FIXME: need support for channel mask */
1964
351fc4a9
SJ
1965 if (channel == CHANNEL_UNSPECIFIED)
1966 channel = -1;
1967
eebf11a0 1968 /* Call the helper to output message */
c1053839 1969 edac_mc_handle_error(tp_event, mci, core_err_cnt,
c36e3e77
MCC
1970 m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
1971 channel, dimm, -1,
03f7eae8 1972 optype, msg);
c36e3e77
MCC
1973 return;
1974err_parsing:
c1053839 1975 edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
c36e3e77 1976 -1, -1, -1,
03f7eae8 1977 msg, "");
eebf11a0 1978
eebf11a0
MCC
1979}
1980
1981/*
1982 * sbridge_check_error Retrieve and process errors reported by the
1983 * hardware. Called by the Core module.
1984 */
1985static void sbridge_check_error(struct mem_ctl_info *mci)
1986{
1987 struct sbridge_pvt *pvt = mci->pvt_info;
1988 int i;
1989 unsigned count = 0;
1990 struct mce *m;
1991
1992 /*
1993 * MCE first step: Copy all mce errors into a temporary buffer
1994 * We use a double buffering here, to reduce the risk of
1995 * loosing an error.
1996 */
1997 smp_rmb();
1998 count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
1999 % MCE_LOG_LEN;
2000 if (!count)
2001 return;
2002
2003 m = pvt->mce_outentry;
2004 if (pvt->mce_in + count > MCE_LOG_LEN) {
2005 unsigned l = MCE_LOG_LEN - pvt->mce_in;
2006
2007 memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
2008 smp_wmb();
2009 pvt->mce_in = 0;
2010 count -= l;
2011 m += l;
2012 }
2013 memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
2014 smp_wmb();
2015 pvt->mce_in += count;
2016
2017 smp_rmb();
2018 if (pvt->mce_overrun) {
2019 sbridge_printk(KERN_ERR, "Lost %d memory errors\n",
2020 pvt->mce_overrun);
2021 smp_wmb();
2022 pvt->mce_overrun = 0;
2023 }
2024
2025 /*
2026 * MCE second step: parse errors and display
2027 */
2028 for (i = 0; i < count; i++)
2029 sbridge_mce_output_error(mci, &pvt->mce_outentry[i]);
2030}
2031
2032/*
2033 * sbridge_mce_check_error Replicates mcelog routine to get errors
2034 * This routine simply queues mcelog errors, and
2035 * return. The error itself should be handled later
2036 * by sbridge_check_error.
2037 * WARNING: As this routine should be called at NMI time, extra care should
2038 * be taken to avoid deadlocks, and to be as fast as possible.
2039 */
3d78c9af
MCC
2040static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
2041 void *data)
eebf11a0 2042{
3d78c9af
MCC
2043 struct mce *mce = (struct mce *)data;
2044 struct mem_ctl_info *mci;
2045 struct sbridge_pvt *pvt;
cf40f80c 2046 char *type;
3d78c9af 2047
fd521039
CG
2048 if (get_edac_report_status() == EDAC_REPORTING_DISABLED)
2049 return NOTIFY_DONE;
2050
3d78c9af
MCC
2051 mci = get_mci_for_node_id(mce->socketid);
2052 if (!mci)
2053 return NOTIFY_BAD;
2054 pvt = mci->pvt_info;
eebf11a0
MCC
2055
2056 /*
2057 * Just let mcelog handle it if the error is
2058 * outside the memory controller. A memory error
2059 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
2060 * bit 12 has an special meaning.
2061 */
2062 if ((mce->status & 0xefff) >> 7 != 1)
3d78c9af 2063 return NOTIFY_DONE;
eebf11a0 2064
cf40f80c
AR
2065 if (mce->mcgstatus & MCG_STATUS_MCIP)
2066 type = "Exception";
2067 else
2068 type = "Event";
2069
49856dc9 2070 sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
eebf11a0 2071
49856dc9
AR
2072 sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
2073 "Bank %d: %016Lx\n", mce->extcpu, type,
2074 mce->mcgstatus, mce->bank, mce->status);
2075 sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
2076 sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
2077 sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
eebf11a0 2078
49856dc9
AR
2079 sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
2080 "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
2081 mce->time, mce->socketid, mce->apicid);
eebf11a0 2082
eebf11a0
MCC
2083 smp_rmb();
2084 if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
2085 smp_wmb();
2086 pvt->mce_overrun++;
3d78c9af 2087 return NOTIFY_DONE;
eebf11a0
MCC
2088 }
2089
2090 /* Copy memory error at the ringbuffer */
2091 memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
2092 smp_wmb();
2093 pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;
2094
2095 /* Handle fatal errors immediately */
2096 if (mce->mcgstatus & 1)
2097 sbridge_check_error(mci);
2098
2099 /* Advice mcelog that the error were handled */
3d78c9af 2100 return NOTIFY_STOP;
eebf11a0
MCC
2101}
2102
3d78c9af
MCC
2103static struct notifier_block sbridge_mce_dec = {
2104 .notifier_call = sbridge_mce_check_error,
2105};
2106
eebf11a0
MCC
2107/****************************************************************************
2108 EDAC register/unregister logic
2109 ****************************************************************************/
2110
2111static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
2112{
2113 struct mem_ctl_info *mci = sbridge_dev->mci;
2114 struct sbridge_pvt *pvt;
2115
2116 if (unlikely(!mci || !mci->pvt_info)) {
956b9ba1 2117 edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
eebf11a0
MCC
2118
2119 sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
2120 return;
2121 }
2122
2123 pvt = mci->pvt_info;
2124
956b9ba1
JP
2125 edac_dbg(0, "MC: mci = %p, dev = %p\n",
2126 mci, &sbridge_dev->pdev[0]->dev);
eebf11a0 2127
eebf11a0 2128 /* Remove MC sysfs nodes */
fd687502 2129 edac_mc_del_mc(mci->pdev);
eebf11a0 2130
956b9ba1 2131 edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
eebf11a0
MCC
2132 kfree(mci->ctl_name);
2133 edac_mc_free(mci);
2134 sbridge_dev->mci = NULL;
2135}
2136
4d715a80 2137static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type)
eebf11a0
MCC
2138{
2139 struct mem_ctl_info *mci;
c36e3e77 2140 struct edac_mc_layer layers[2];
eebf11a0 2141 struct sbridge_pvt *pvt;
4d715a80 2142 struct pci_dev *pdev = sbridge_dev->pdev[0];
c36e3e77 2143 int rc;
eebf11a0
MCC
2144
2145 /* Check the number of active and not disabled channels */
dbc954dd 2146 rc = check_if_ecc_is_active(sbridge_dev->bus, type);
eebf11a0
MCC
2147 if (unlikely(rc < 0))
2148 return rc;
2149
2150 /* allocate a new MC control structure */
c36e3e77
MCC
2151 layers[0].type = EDAC_MC_LAYER_CHANNEL;
2152 layers[0].size = NUM_CHANNELS;
2153 layers[0].is_virt_csrow = false;
2154 layers[1].type = EDAC_MC_LAYER_SLOT;
2155 layers[1].size = MAX_DIMMS;
2156 layers[1].is_virt_csrow = true;
ca0907b9 2157 mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
c36e3e77
MCC
2158 sizeof(*pvt));
2159
eebf11a0
MCC
2160 if (unlikely(!mci))
2161 return -ENOMEM;
2162
956b9ba1 2163 edac_dbg(0, "MC: mci = %p, dev = %p\n",
4d715a80 2164 mci, &pdev->dev);
eebf11a0
MCC
2165
2166 pvt = mci->pvt_info;
2167 memset(pvt, 0, sizeof(*pvt));
2168
2169 /* Associate sbridge_dev and mci for future usage */
2170 pvt->sbridge_dev = sbridge_dev;
2171 sbridge_dev->mci = mci;
2172
2173 mci->mtype_cap = MEM_FLAG_DDR3;
2174 mci->edac_ctl_cap = EDAC_FLAG_NONE;
2175 mci->edac_cap = EDAC_FLAG_NONE;
2176 mci->mod_name = "sbridge_edac.c";
2177 mci->mod_ver = SBRIDGE_REVISION;
4d715a80 2178 mci->dev_name = pci_name(pdev);
eebf11a0
MCC
2179 mci->ctl_page_to_phys = NULL;
2180
2181 /* Set the function pointer to an actual operation function */
2182 mci->edac_check = sbridge_check_error;
2183
4d715a80 2184 pvt->info.type = type;
50d1bb93
AR
2185 switch (type) {
2186 case IVY_BRIDGE:
4d715a80
AR
2187 pvt->info.rankcfgr = IB_RANK_CFG_A;
2188 pvt->info.get_tolm = ibridge_get_tolm;
2189 pvt->info.get_tohm = ibridge_get_tohm;
2190 pvt->info.dram_rule = ibridge_dram_rule;
9e375446 2191 pvt->info.get_memory_type = get_memory_type;
f14d6892 2192 pvt->info.get_node_id = get_node_id;
b976bcf2 2193 pvt->info.rir_limit = rir_limit;
4d715a80
AR
2194 pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
2195 pvt->info.interleave_list = ibridge_interleave_list;
2196 pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
2197 pvt->info.interleave_pkg = ibridge_interleave_pkg;
2198 mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge Socket#%d", mci->mc_idx);
2199
2200 /* Store pci devices at mci for faster access */
2201 rc = ibridge_mci_bind_devs(mci, sbridge_dev);
2202 if (unlikely(rc < 0))
2203 goto fail0;
50d1bb93
AR
2204 break;
2205 case SANDY_BRIDGE:
4d715a80
AR
2206 pvt->info.rankcfgr = SB_RANK_CFG_A;
2207 pvt->info.get_tolm = sbridge_get_tolm;
2208 pvt->info.get_tohm = sbridge_get_tohm;
2209 pvt->info.dram_rule = sbridge_dram_rule;
9e375446 2210 pvt->info.get_memory_type = get_memory_type;
f14d6892 2211 pvt->info.get_node_id = get_node_id;
b976bcf2 2212 pvt->info.rir_limit = rir_limit;
4d715a80
AR
2213 pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule);
2214 pvt->info.interleave_list = sbridge_interleave_list;
2215 pvt->info.max_interleave = ARRAY_SIZE(sbridge_interleave_list);
2216 pvt->info.interleave_pkg = sbridge_interleave_pkg;
2217 mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge Socket#%d", mci->mc_idx);
2218
2219 /* Store pci devices at mci for faster access */
2220 rc = sbridge_mci_bind_devs(mci, sbridge_dev);
2221 if (unlikely(rc < 0))
2222 goto fail0;
50d1bb93
AR
2223 break;
2224 case HASWELL:
2225 /* rankcfgr isn't used */
2226 pvt->info.get_tolm = haswell_get_tolm;
2227 pvt->info.get_tohm = haswell_get_tohm;
2228 pvt->info.dram_rule = ibridge_dram_rule;
2229 pvt->info.get_memory_type = haswell_get_memory_type;
2230 pvt->info.get_node_id = haswell_get_node_id;
2231 pvt->info.rir_limit = haswell_rir_limit;
2232 pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
2233 pvt->info.interleave_list = ibridge_interleave_list;
2234 pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
2235 pvt->info.interleave_pkg = ibridge_interleave_pkg;
2236 mci->ctl_name = kasprintf(GFP_KERNEL, "Haswell Socket#%d", mci->mc_idx);
4d715a80 2237
50d1bb93
AR
2238 /* Store pci devices at mci for faster access */
2239 rc = haswell_mci_bind_devs(mci, sbridge_dev);
2240 if (unlikely(rc < 0))
2241 goto fail0;
2242 break;
2243 }
eebf11a0
MCC
2244
2245 /* Get dimm basic config and the memory layout */
2246 get_dimm_config(mci);
2247 get_memory_layout(mci);
2248
2249 /* record ptr to the generic device */
4d715a80 2250 mci->pdev = &pdev->dev;
eebf11a0
MCC
2251
2252 /* add this new MC control structure to EDAC's list of MCs */
2253 if (unlikely(edac_mc_add_mc(mci))) {
956b9ba1 2254 edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
eebf11a0
MCC
2255 rc = -EINVAL;
2256 goto fail0;
2257 }
2258
eebf11a0 2259 return 0;
eebf11a0
MCC
2260
2261fail0:
2262 kfree(mci->ctl_name);
2263 edac_mc_free(mci);
2264 sbridge_dev->mci = NULL;
2265 return rc;
2266}
2267
2268/*
2269 * sbridge_probe Probe for ONE instance of device to see if it is
2270 * present.
2271 * return:
2272 * 0 for FOUND a device
2273 * < 0 for error code
2274 */
2275
9b3c6e85 2276static int sbridge_probe(struct pci_dev *pdev, const struct pci_device_id *id)
eebf11a0 2277{
50d1bb93 2278 int rc = -ENODEV;
eebf11a0
MCC
2279 u8 mc, num_mc = 0;
2280 struct sbridge_dev *sbridge_dev;
50d1bb93 2281 enum type type = SANDY_BRIDGE;
eebf11a0
MCC
2282
2283 /* get the pci devices we want to reserve for our use */
2284 mutex_lock(&sbridge_edac_lock);
2285
2286 /*
2287 * All memory controllers are allocated at the first pass.
2288 */
2289 if (unlikely(probed >= 1)) {
2290 mutex_unlock(&sbridge_edac_lock);
2291 return -ENODEV;
2292 }
2293 probed++;
2294
50d1bb93
AR
2295 switch (pdev->device) {
2296 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
4d715a80
AR
2297 rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_ibridge_table);
2298 type = IVY_BRIDGE;
50d1bb93
AR
2299 break;
2300 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA:
4d715a80
AR
2301 rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_sbridge_table);
2302 type = SANDY_BRIDGE;
50d1bb93
AR
2303 break;
2304 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
2305 rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_haswell_table);
2306 type = HASWELL;
2307 break;
4d715a80 2308 }
eebf11a0
MCC
2309 if (unlikely(rc < 0))
2310 goto fail0;
2311 mc = 0;
2312
2313 list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
956b9ba1
JP
2314 edac_dbg(0, "Registering MC#%d (%d of %d)\n",
2315 mc, mc + 1, num_mc);
50d1bb93 2316
eebf11a0 2317 sbridge_dev->mc = mc++;
4d715a80 2318 rc = sbridge_register_mci(sbridge_dev, type);
eebf11a0
MCC
2319 if (unlikely(rc < 0))
2320 goto fail1;
2321 }
2322
2323 sbridge_printk(KERN_INFO, "Driver loaded.\n");
2324
2325 mutex_unlock(&sbridge_edac_lock);
2326 return 0;
2327
2328fail1:
2329 list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
2330 sbridge_unregister_mci(sbridge_dev);
2331
2332 sbridge_put_all_devices();
2333fail0:
2334 mutex_unlock(&sbridge_edac_lock);
2335 return rc;
2336}
2337
2338/*
2339 * sbridge_remove destructor for one instance of device
2340 *
2341 */
9b3c6e85 2342static void sbridge_remove(struct pci_dev *pdev)
eebf11a0
MCC
2343{
2344 struct sbridge_dev *sbridge_dev;
2345
956b9ba1 2346 edac_dbg(0, "\n");
eebf11a0
MCC
2347
2348 /*
2349 * we have a trouble here: pdev value for removal will be wrong, since
2350 * it will point to the X58 register used to detect that the machine
2351 * is a Nehalem or upper design. However, due to the way several PCI
2352 * devices are grouped together to provide MC functionality, we need
2353 * to use a different method for releasing the devices
2354 */
2355
2356 mutex_lock(&sbridge_edac_lock);
2357
2358 if (unlikely(!probed)) {
2359 mutex_unlock(&sbridge_edac_lock);
2360 return;
2361 }
2362
2363 list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
2364 sbridge_unregister_mci(sbridge_dev);
2365
2366 /* Release PCI resources */
2367 sbridge_put_all_devices();
2368
2369 probed--;
2370
2371 mutex_unlock(&sbridge_edac_lock);
2372}
2373
2374MODULE_DEVICE_TABLE(pci, sbridge_pci_tbl);
2375
2376/*
2377 * sbridge_driver pci_driver structure for this module
2378 *
2379 */
2380static struct pci_driver sbridge_driver = {
2381 .name = "sbridge_edac",
2382 .probe = sbridge_probe,
9b3c6e85 2383 .remove = sbridge_remove,
eebf11a0
MCC
2384 .id_table = sbridge_pci_tbl,
2385};
2386
2387/*
2388 * sbridge_init Module entry function
2389 * Try to initialize this module for its devices
2390 */
2391static int __init sbridge_init(void)
2392{
2393 int pci_rc;
2394
956b9ba1 2395 edac_dbg(2, "\n");
eebf11a0
MCC
2396
2397 /* Ensure that the OPSTATE is set correctly for POLL or NMI */
2398 opstate_init();
2399
2400 pci_rc = pci_register_driver(&sbridge_driver);
e35fca47
CG
2401 if (pci_rc >= 0) {
2402 mce_register_decode_chain(&sbridge_mce_dec);
fd521039
CG
2403 if (get_edac_report_status() == EDAC_REPORTING_DISABLED)
2404 sbridge_printk(KERN_WARNING, "Loading driver, error reporting disabled.\n");
eebf11a0 2405 return 0;
e35fca47 2406 }
eebf11a0
MCC
2407
2408 sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
2409 pci_rc);
2410
2411 return pci_rc;
2412}
2413
2414/*
2415 * sbridge_exit() Module exit function
2416 * Unregister the driver
2417 */
2418static void __exit sbridge_exit(void)
2419{
956b9ba1 2420 edac_dbg(2, "\n");
eebf11a0 2421 pci_unregister_driver(&sbridge_driver);
e35fca47 2422 mce_unregister_decode_chain(&sbridge_mce_dec);
eebf11a0
MCC
2423}
2424
2425module_init(sbridge_init);
2426module_exit(sbridge_exit);
2427
2428module_param(edac_op_state, int, 0444);
2429MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
2430
2431MODULE_LICENSE("GPL");
37e59f87 2432MODULE_AUTHOR("Mauro Carvalho Chehab");
eebf11a0 2433MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
4d715a80 2434MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "
eebf11a0 2435 SBRIDGE_REVISION);
This page took 0.31015 seconds and 5 git commands to generate.